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PREFACE

As I was writing the final chapters in this book in the summer of 2009, I realized
that software engineering was 40 years old. The name ‘software engineering’ was
proposed in 1969 at a NATO conference to discuss software development problems—
large software systems were late, did not deliver the functionality needed by their
users, cost more than expected, and were unreliable. I did not attend that conference
but, a year later, I wrote my first program and started my professional life in software.

Progress in software engineering has been remarkable over my professional life-
time. Our societies could not function without large, professional software systems.
For building business systems, there is an alphabet soup of technologies—IJ2EE,
.NET, SaaS, SAP, BPEL4WS, SOAP, CBSE, etc.—that support the development and
deployment of large enterprise applications. National utilities and infrastructure—
energy, communications, and transport—all rely on complex and mostly reliable
computer systems. Software has allowed us to explore space and to create the World
Wide Web, the most significant information system in the history of mankind.
Humanity is now faced with a new set of challenges—climate change and extreme
weather, declining natural resources, an increasing world population to be fed and
housed, international terrorism, and the need to help elderly people lead satisfying
and fulfilled lives. We need new technologies to help us address these problems and,
for sure, software will play a central role in these technologies.

Software engineering is, therefore, a critically important technology for the future
of mankind. We must continue to educate software engineers and develop the disci-
pline so that we can create more complex software systems. Of course, there are still
problems with software projects. Software is still sometimes late and costs more
than expected. However, we should not let these problems conceal the real successes
in software engineering and the impressive software engineering methods and tech-
nologies that have been developed.

Software engineering is now such a huge area that it is impossible to cover the
whole subject in one book. My focus, therefore, is on key topics that are fundamental
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to all development processes and topics concerned with the development of reliable,
distributed systems. There is an increased emphasis on agile methods and software
reuse. I strongly believe that agile methods have their place but so too does ‘tradi-
tional’ plan-driven software engineering. We need to combine the best of these
approaches to build better software systems.

Books inevitably reflect the opinions and prejudices of their authors. Some read-
ers will inevitably disagree with my opinions and with my choice of material. Such
disagreement is a healthy reflection of the diversity of the discipline and is essential
for its evolution. Nevertheless, I hope that all software engineers and software engi-
neering students can find something of interest here.

Integration with the Web

There is an incredible amount of information on software engineering available on the
Web and some people have questioned if textbooks like this one are still needed.
However, the quality of available information is very patchy, information is sometimes
presented badly and it can be hard to find the information that you need. Consequently,
I believe that textbooks still have an important role to play in learning. They serve as a
roadmap to the subject and allow information on method and techniques to be organized
and presented in a coherent and readable way. They also provide a starting point for
deeper exploration of the research literature and material available on the Web.

I strongly believe that textbooks have a future but only if they are integrated with
and add value to material on the Web. This book has therefore been designed as a
hybrid print/web text in which core information in the printed edition is linked to
supplementary material on the Web. Almost all chapters include specially written
‘web sections’ that add to the information in that chapter. There are also four ‘web
chapters’ on topics that I have not covered in the print version of the book.

The website that is associated with the book is:

http://www.SoftwareEngineering-9.com

The book’s web has four principal components:

1. Web sections These are extra sections that add to the content presented in each
chapter. These web sections are linked from breakout boxes in each chapter.

2. Web chapters There are four web chapters covering formal methods, interaction
design, documentation, and application architectures. I may add other chapters
on new topics during the lifetime of the book.

3. Material for instructors The material in this section is intended to support peo-
ple who are teaching software engineering. See the “Support Materials” section
in this Preface.

4. Case studies These provide additional information about the case studies used
in the book (insulin pump, mental health-care system, wilderness weather system)
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as well as information about further case studies, such as the failure of the
Ariane 5 launcher.

As well as these sections, there are also links to other sites with useful material on
software engineering, further reading, blogs, newsletters, etc.

I welcome your constructive comments and suggestions about the book and the
website. You can contact me at ian@SoftwareEngineering-9.com. Please include
[SE9] in the subject of your message. Otherwise, my spam filters will probably
reject your mail and you will not receive a reply. I do not have time to help students
with their homework, so please don’t ask.

Readership

The book is primarily aimed at university and college students taking introductory
and advanced courses in software and systems engineering. Software engineers in
the industry may find the book useful as general reading and as a means of updating
their knowledge on topics such as software reuse, architectural design, dependability
and security, and process improvement. I assume that readers have completed an
introductory programming course and are familiar with programming terminology.

Changes from previous editions

This edition has retained the fundamental material on software engineering that was
covered in previous editions but I have revised and updated all chapters and have
included new material on many different topics. The most important changes are:

1. The move from a print-only book to a hybrid print/web book with the web mate-
rial tightly integrated with the sections in the book. This has allowed me to reduce
the number of chapters in the book and to focus on core material in each chapter.

2. Complete restructuring to make it easier to use the book in teaching software
engineering. The book now has four rather than eight parts and each part may be
used on its own or in combination with other parts as the basis of a software
engineering course. The four parts are an introduction to software engineering,
dependability and security, advanced software engineering, and software engi-
neering management.

3. Several topics from previous editions are presented more concisely in a single
chapter, with extra material moved onto the Web.

4. Additional web chapters, based on chapters from previous editions that I have
not included here, are available on the Web.
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I have updated and revised the content in all chapters. I estimate that between
30% and 40% of the text has been completely rewritten.

I'have added new chapters on agile software development and embedded systems.

As well as these new chapters, there is new material on model-driven engineer-
ing, open source development, test-driven development, Reason’s Swiss Cheese
model, dependable systems architectures, static analysis and model checking,
COTS reuse, software as a service, and agile planning.

A new case study on a patient record system for patients who are undergoing
treatment for mental health problems has been used in several chapters.

Using the book for teaching

I have designed the book so that it can be used in three different types of software
engineering courses:

General introductory courses in software engineering The first part of the book
has been designed explicitly to support a one-semester course in introductory
software engineering.

Introductory or intermediate courses on specific software engineering topics You
can create a range of more advanced courses using the chapters in Parts 2—4. For
example, I have taught a course in critical systems engineering using the chapters
in Part 2 plus chapters on quality management and configuration management.

More advanced courses in specific software engineering topics In this case, the
chapters in the book form a foundation for the course. These are then supple-
mented with further reading that explores the topic in more detail. For example,
a course on software reuse could be based around Chapters 16, 17, 18, and 19.

More information about using the book for teaching, including a comparison with

previous editions, is available on the book’s website.

Support materials

A wide range of support material is available to help people using the book for teach-
ing software engineering courses. This includes:

* PowerPoint presentations for all of the chapters in the book.

* Figures in PowerPoint.
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e Aninstructor’s guide that gives advice on how to use the book in different courses
and explains the relationship between the chapters in this edition and previous
editions.

e Further information on the book’s case studies.
e Additional case studies that may be used in software engineering courses.
e Additional PowerPoint presentations on systems engineering.

* Four web chapters covering formal methods, interaction design, application
architectures, and documentation.

All of this material is available free to readers of the book from the book’s web-
site or from the Pearson support site below. Additional material for instructors is
available on a restricted basis to accredited instructors only:

e Model answers to selected end-of-chapter exercises.

* Quiz questions and answers for each chapter.

All support material, including restricted material, is available from:
http://www.pearsonhighered.com/sommerville/

Instructors using the book for teaching may obtain a password to access restricted
material by registering at the Pearson website, by contacting their local Pearson rep-
resentative, or by requesting a password by e-mail from computing@aw.com.
Passwords are not available from the author.
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PART Introduction
to Software
Engineering

My aim in this part of the book is to provide a general introduction to
software engineering. | introduce important concepts such as software
processes and agile methods, and describe essential software development
activities, from initial software specification through to system evolution.
The chapters in this part have been designed to support a one-semester
course in software engineering.

Chapter 1 is a general introduction that introduces professional software
engineering and defines some software engineering concepts. | have
also written a brief discussion of ethical issues in software engineering.
I think that it is important for software engineers to think about the
wider implications of their work. This chapter also introduces three case
studies that I use in the book, namely a system for managing records of
patients undergoing treatment for mental health problems, a control
system for a portable insulin pump and a wilderness weather system.

Chapters 2 and 3 cover software engineering processes and agile devel-
opment. In Chapter 2, | introduce commonly used generic software
process models, such as the waterfall model, and I discuss the basic
activities that are part of these processes. Chapter 3 supplements this
with a discussion of agile development methods for software engineer-
ing. 1 mostly use Extreme Programming as an example of an agile method
but also briefly introduce Scrum in this chapter.






Introduction

Objectives

The objectives of this chapter are to introduce software engineering and
to provide a framework for understanding the rest of the book. When you
have read this chapter you will:

m understand what software engineering is and why it is important;

m understand that the development of different types of software
systems may require different software engineering techniques;

m understand some ethical and professional issues that are important
for software engineers;

m have been introduced to three systems, of different types, that will be
used as examples throughout the book.

Contents

1.1 Professional software development
1.2 Software engineering ethics
1.3 Case studies
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Introduction

We can’t run the modern world without software. National infrastructures and utili-
ties are controlled by computer-based systems and most electrical products include a
computer and controlling software. Industrial manufacturing and distribution is
completely computerized, as is the financial system. Entertainment, including the
music industry, computer games, and film and television, is software intensive.
Therefore, software engineering is essential for the functioning of national and inter-
national societies.

Software systems are abstract and intangible. They are not constrained by the
properties of materials, governed by physical laws, or by manufacturing processes.
This simplifies software engineering, as there are no natural limits to the potential of
software. However, because of the lack of physical constraints, software systems can
quickly become extremely complex, difficult to understand, and expensive to change.

There are many different types of software systems, from simple embedded sys-
tems to complex, worldwide information systems. It is pointless to look for universal
notations, methods, or techniques for software engineering because different types
of software require different approaches. Developing an organizational information
system is completely different from developing a controller for a scientific instru-
ment. Neither of these systems has much in common with a graphics-intensive com-
puter game. All of these applications need software engineering; they do not all need
the same software engineering techniques.

There are still many reports of software projects going wrong and ‘software failures’.
Software engineering is criticized as inadequate for modern software development.
However, in my view, many of these so-called software failures are a consequence of
two factors:

1. Increasing demands As new software engineering techniques help us to build
larger, more complex systems, the demands change. Systems have to be built
and delivered more quickly; larger, even more complex systems are required;
systems have to have new capabilities that were previously thought to be impos-
sible. Existing software engineering methods cannot cope and new software
engineering techniques have to be developed to meet new these new demands.

2. Low expectations It is relatively easy to write computer programs without using
software engineering methods and techniques. Many companies have drifted
into software development as their products and services have evolved. They do
not use software engineering methods in their everyday work. Consequently,
their software is often more expensive and less reliable than it should be. We
need better software engineering education and training to address this problem.

Software engineers can be rightly proud of their achievements. Of course we still
have problems developing complex software but, without software engineering, we
would not have explored space, would not have the Internet or modern telecommuni-
cations. All forms of travel would be more dangerous and expensive. Software engi-
neering has contributed a great deal and I am convinced that its contributions in the
21st century will be even greater.
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@ History of software engineering

The notion of ‘software engineering’ was first proposed in 1968 at a conference held to discuss what was then
called the ‘software crisis’ (Naur and Randell, 1969). It became clear that individual approaches to program
development did not scale up to large and complex software systems. These were unreliable, cost more than
expected, and were delivered late.

Throughout the 1970s and 1980s, a variety of new software engineering techniques and methods were
developed, such as structured programming, information hiding and object-oriented development. Tools and
standard notations were developed and are now extensively used.

http://www.SoftwareEngineering-9.com/Web/History/

IR Professional software development

Lots of people write programs. People in business write spreadsheet programs to
simplify their jobs, scientists and engineers write programs to process their experi-
mental data, and hobbyists write programs for their own interest and enjoyment.
However, the vast majority of software development is a professional activity where
software is developed for specific business purposes, for inclusion in other devices,
or as software products such as information systems, CAD systems, etc. Professional
software, intended for use by someone apart from its developer, is usually developed
by teams rather than individuals. It is maintained and changed throughout its life.

Software engineering is intended to support professional software development,
rather than individual programming. It includes techniques that support program
specification, design, and evolution, none of which are normally relevant for per-
sonal software development. To help you to get a broad view of what software engi-
neering is about, I have summarized some frequently asked questions in Figure 1.1.

Many people think that software is simply another word for computer programs.
However, when we are talking about software engineering, software is not just the
programs themselves but also all associated documentation and configuration data
that is required to make these programs operate correctly. A professionally devel-
oped software system is often more than a single program. The system usually con-
sists of a number of separate programs and configuration files that are used to set up
these programs. It may include system documentation, which describes the structure
of the system; user documentation, which explains how to use the system, and web-
sites for users to download recent product information.

This is one of the important differences between professional and amateur soft-
ware development. If you are writing a program for yourself, no one else will use it
and you don’t have to worry about writing program guides, documenting the pro-
gram design, etc. However, if you are writing software that other people will use and
other engineers will change then you usually have to provide additional information
as well as the code of the program.
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Introduction

What is software?

What are the attributes of good software?

What is software engineering?

What are the fundamental software engineering
activities?

What is the difference between software
engineering and computer science?

What is the difference between software
engineering and system engineering?

What are the key challenges facing software
engineering?

What are the costs of software engineering?

What are the best software engineering techniques

and methods?

What differences has the Web made to software
engineering?

Computer programs and associated documentation.
Software products may be developed for a particular
customer or may be developed for a general market.

Good software should deliver the required
functionality and performance to the user and should
be maintainable, dependable, and usable.

Software engineering is an engineering discipline that
is concerned with all aspects of software production.

Software specification, software development,
software validation, and software evolution.

Computer science focuses on theory and
fundamentals; software engineering is concerned
with the practicalities of developing and delivering
useful software.

System engineering is concerned with all aspects of
computer-based systems development including
hardware, software, and process engineering. Software
engineering is part of this more general process.

Coping with increasing diversity, demands for reduced
delivery times, and developing trustworthy software.

Roughly 60% of software costs are development
costs; 40% are testing costs. For custom software,
evolution costs often exceed development costs.

While all software projects have to be professionally
managed and developed, different techniques are
appropriate for different types of system. For example,
games should always be developed using a series of
prototypes whereas safety critical control systems
require a complete and analyzable specification to be
developed. You can't, therefore, say that one method
is better than another.

The Web has led to the availability of software
services and the possibility of developing highly
distributed service-based systems. Web-based
systems development has led to important advances
in programming languages and software reuse.

Software engineers are concerned with developing software products (i.e., soft-

Figure 1.1 Frequentl R .
asied questionqs abozt ware which can be sold to a customer). There are two kinds of software products:

software
1. Generic products These are stand-alone systems that are produced by a develop-
ment organization and sold on the open market to any customer who is able to
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1.1.1

buy them. Examples of this type of product include software for PCs such as
databases, word processors, drawing packages, and project-management tools.
It also includes so-called vertical applications designed for some specific pur-
pose such as library information systems, accounting systems, or systems for
maintaining dental records.

2. Customized (or bespoke) products These are systems that are commissioned by
a particular customer. A software contractor develops the software especially
for that customer. Examples of this type of software include control systems for
electronic devices, systems written to support a particular business process, and
air traffic control systems.

An important difference between these types of software is that, in generic products,
the organization that develops the software controls the software specification. For cus-
tom products, the specification is usually developed and controlled by the organization
that is buying the software. The software developers must work to that specification.

However, the distinction between these system product types is becoming
increasingly blurred. More and more systems are now being built with a generic
product as a base, which is then adapted to suit the requirements of a customer.
Enterprise Resource Planning (ERP) systems, such as the SAP system, are the best
examples of this approach. Here, a large and complex system is adapted for a com-
pany by incorporating information about business rules and processes, reports
required, and so on.

When we talk about the quality of professional software, we have to take into
account that the software is used and changed by people apart from its developers.
Quality is therefore not just concerned with what the software does. Rather, it has to
include the software’s behavior while it is executing and the structure and organization
of the system programs and associated documentation. This is reflected in so-called
quality or non-functional software attributes. Examples of these attributes are the soft-
ware’s response time to a user query and the understandability of the program code.

The specific set of attributes that you might expect from a software system obvi-
ously depends on its application. Therefore, a banking system must be secure, an
interactive game must be responsive, a telephone switching system must be reliable,
and so on. These can be generalized into the set of attributes shown in Figure 1.2,
which I believe are the essential characteristics of a professional software system.

Software engineering

Software engineering is an engineering discipline that is concerned with all aspects of
software production from the early stages of system specification through to maintain-
ing the system after it has gone into use. In this definition, there are two key phrases:

1. Engineering discipline Engineers make things work. They apply theories, meth-
ods, and tools where these are appropriate. However, they use them selectively
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Maintainability Software should be written in such a way so that it can evolve to
meet the changing needs of customers. This is a critical attribute
because software change is an inevitable requirement of a
changing business environment.

Dependability and security Software dependability includes a range of characteristics
including reliability, security, and safety. Dependable software
should not cause physical or economic damage in the event of
system failure. Malicious users should not be able to access or
damage the system.

Efficiency Software should not make wasteful use of system resources such
as memory and processor cycles. Efficiency therefore includes
responsiveness, processing time, memory utilization, etc.

Acceptability Software must be acceptable to the type of users for which it is
designed. This means that it must be understandable, usable, and
compatible with other systems that they use.

Fing Essential and always try to discover solutions to problems even when there are no appli-

attributes of good cable theories and methods. Engineers also recognize that they must work to

software organizational and financial constraints so they look for solutions within these
constraints.

2. All aspects of software production Software engineering is not just concerned
with the technical processes of software development. It also includes activities
such as software project management and the development of tools, methods,
and theories to support software production.

Engineering is about getting results of the required quality within the schedule
and budget. This often involves making compromises—engineers cannot be perfec-
tionists. People writing programs for themselves, however, can spend as much time
as they wish on the program development.

In general, software engineers adopt a systematic and organized approach to their
work, as this is often the most effective way to produce high-quality software.
However, engineering is all about selecting the most appropriate method for a set of
circumstances so a more creative, less formal approach to development may be
effective in some circumstances. Less formal development is particularly appropri-
ate for the development of web-based systems, which requires a blend of software
and graphical design skills.

Software engineering is important for two reasons:

1. More and more, individuals and society rely on advanced software systems. We
need to be able to produce reliable and trustworthy systems economically and
quickly.
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It is usually cheaper, in the long run, to use software engineering methods and
techniques for software systems rather than just write the programs as if it was a
personal programming project. For most types of systems, the majority of costs
are the costs of changing the software after it has gone into use.

The systematic approach that is used in software engineering is sometimes called

a software process. A software process is a sequence of activities that leads to the
production of a software product. There are four fundamental activities that are com-
mon to all software processes. These activities are:

Software specification, where customers and engineers define the software that
is to be produced and the constraints on its operation.

Software development, where the software is designed and programmed.

Software validation, where the software is checked to ensure that it is what the
customer requires.

Software evolution, where the software is modified to reflect changing customer
and market requirements.

Different types of systems need different development processes. For example,

real-time software in an aircraft has to be completely specified before development
begins. In e-commerce systems, the specification and the program are usually devel-
oped together. Consequently, these generic activities may be organized in different
ways and described at different levels of detail depending on the type of software
being developed. I describe software processes in more detail in Chapter 2.

Software engineering is related to both computer science and systems engineering:

Computer science is concerned with the theories and methods that underlie com-
puters and software systems, whereas software engineering is concerned with the
practical problems of producing software. Some knowledge of computer science
is essential for software engineers in the same way that some knowledge of
physics is essential for electrical engineers. Computer science theory, however, is
often most applicable to relatively small programs. Elegant theories of computer
science cannot always be applied to large, complex problems that require a soft-
ware solution.

System engineering is concerned with all aspects of the development and evo-
lution of complex systems where software plays a major role. System engineer-
ing is therefore concerned with hardware development, policy and process
design and system deployment, as well as software engineering. System engi-
neers are involved in specifying the system, defining its overall architecture,
and then integrating the different parts to create the finished system. They are
less concerned with the engineering of the system components (hardware,
software, etc.).
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As I discuss in the next section, there are many different types of software. There is no
universal software engineering method or technique that is applicable for all of these.
However, there are three general issues that affect many different types of software:

1. Heterogeneity Increasingly, systems are required to operate as distributed systems
across networks that include different types of computer and mobile devices. As
well as running on general-purpose computers, software may also have to execute
on mobile phones. You often have to integrate new software with older legacy sys-
tems written in different programming languages. The challenge here is to develop
techniques for building dependable software that is flexible enough to cope with
this heterogeneity.

2. Business and social change Business and society are changing incredibly quickly
as emerging economies develop and new technologies become available. They
need to be able to change their existing software and to rapidly develop new soft-
ware. Many traditional software engineering techniques are time consuming and
delivery of new systems often takes longer than planned. They need to evolve so
that the time required for software to deliver value to its customers is reduced.

3. Security and trust As software is intertwined with all aspects of our lives, it is
essential that we can trust that software. This is especially true for remote soft-
ware systems accessed through a web page or web service interface. We have to
make sure that malicious users cannot attack our software and that information
security is maintained.

Of course, these are not independent issues. For example, it may be necessary to
make rapid changes to a legacy system to provide it with a web service interface. To
address these challenges we will need new tools and techniques as well as innovative
ways of combining and using existing software engineering methods.

Software engineering diversity

Software engineering is a systematic approach to the production of software that
takes into account practical cost, schedule, and dependability issues, as well as the
needs of software customers and producers. How this systematic approach is actu-
ally implemented varies dramatically depending on the organization developing the
software, the type of software, and the people involved in the development process.
There are no universal software engineering methods and techniques that are suit-
able for all systems and all companies. Rather, a diverse set of software engineering
methods and tools has evolved over the past 50 years.

Perhaps the most significant factor in determining which software engineering
methods and techniques are most important is the type of application that is being
developed. There are many different types of application including:

1. Stand-alone applications These are application systems that run on a local com-
puter, such as a PC. They include all necessary functionality and do not need to
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be connected to a network. Examples of such applications are office applica-
tions on a PC, CAD programs, photo manipulation software, etc.

2. Interactive transaction-based applications These are applications that execute
on a remote computer and that are accessed by users from their own PCs or
terminals. Obviously, these include web applications such as e-commerce appli-
cations where you can interact with a remote system to buy goods and services.
This class of application also includes business systems, where a business
provides access to its systems through a web browser or special-purpose client
program and cloud-based services, such as mail and photo sharing. Interactive
applications often incorporate a large data store that is accessed and updated in
each transaction.

3. Embedded control systems These are software control systems that control and
manage hardware devices. Numerically, there are probably more embedded sys-
tems than any other type of system. Examples of embedded systems include the
software in a mobile (cell) phone, software that controls anti-lock braking in a
car, and software in a microwave oven to control the cooking process.

4. Batch processing systems These are business systems that are designed to
process data in large batches. They process large numbers of individual inputs to
create corresponding outputs. Examples of batch systems include periodic
billing systems, such as phone billing systems, and salary payment systems.

5. Entertainment systems These are systems that are primarily for personal use and
which are intended to entertain the user. Most of these systems are games of one
kind or another. The quality of the user interaction offered is the most important
distinguishing characteristic of entertainment systems.

6. Systems for modeling and simulation These are systems that are developed by
scientists and engineers to model physical processes or situations, which
include many, separate, interacting objects. These are often computationally
intensive and require high-performance parallel systems for execution.

7. Data collection systems These are systems that collect data from their environ-
ment using a set of sensors and send that data to other systems for processing.
The software has to interact with sensors and often is installed in a hostile envi-
ronment such as inside an engine or in a remote location.

8. Systems of systems These are systems that are composed of a number of other
software systems. Some of these may be generic software products, such as a
spreadsheet program. Other systems in the assembly may be specially written
for that environment.

Of course, the boundaries between these system types are blurred. If you develop
a game for a mobile (cell) phone, you have to take into account the same constraints
(power, hardware interaction) as the developers of the phone software. Batch pro-
cessing systems are often used in conjunction with web-based systems. For example,
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in a company, travel expense claims may be submitted through a web application but
processed in a batch application for monthly payment.

You use different software engineering techniques for each type of system
because the software has quite different characteristics. For example, an embedded
control system in an automobile is safety-critical and is burned into ROM when
installed in the vehicle. It is therefore very expensive to change. Such a system needs
very extensive verification and validation so that the chances of having to recall cars
after sale to fix software problems are minimized. User interaction is minimal (or
perhaps nonexistent) so there is no need to use a development process that relies on
user interface prototyping.

For a web-based system, an approach based on iterative development and delivery
may be appropriate, with the system being composed of reusable components.
However, such an approach may be impractical for a system of systems, where
detailed specifications of the system interactions have to be specified in advance so
that each system can be separately developed.

Nevertheless, there are software engineering fundamentals that apply to all types
of software system:

1. They should be developed using a managed and understood development
process. The organization developing the software should plan the development
process and have clear ideas of what will be produced and when it will be com-
pleted. Of course, different processes are used for different types of software.

2. Dependability and performance are important for all types of systems. Software
should behave as expected, without failures and should be available for use
when it is required. It should be safe in its operation and, as far as possible,
should be secure against external attack. The system should perform efficiently
and should not waste resources.

3. Understanding and managing the software specification and requirements (what
the software should do) are important. You have to know what different customers
and users of the system expect from it and you have to manage their expectations
so that a useful system can be delivered within budget and to schedule.

4. You should make as effective use as possible of existing resources. This means
that, where appropriate, you should reuse software that has already been devel-
oped rather than write new software.

These fundamental notions of process, dependability, requirements, management,
and reuse are important themes of this book. Different methods reflect them in dif-
ferent ways but they underlie all professional software development.

You should notice that these fundamentals do not cover implementation and pro-
gramming. I don’t cover specific programming techniques in this book because these
vary dramatically from one type of system to another. For example, a scripting lan-
guage such as Ruby is used for web-based system programming but would be com-
pletely inappropriate for embedded systems engineering.
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1.1.3 Software engineering and the Web

The development of the World Wide Web has had a profound effect on all of our
lives. Initially, the Web was primarily a universally accessible information store and
it had little effect on software systems. These systems ran on local computers and
were only accessible from within an organization. Around 2000, the Web started to
evolve and more and more functionality was added to browsers. This meant that
web-based systems could be developed where, instead of a special-purpose user
interface, these systems could be accessed using a web browser. This led to the
development of a vast range of new system products that delivered innovative serv-
ices, accessed over the Web. These are often funded by adverts that are displayed on
the user’s screen and do not involve direct payment from users.

As well as these system products, the development of web browsers that could
run small programs and do some local processing led to an evolution in business and
organizational software. Instead of writing software and deploying it on users’ PCs,
the software was deployed on a web server. This made it much cheaper to change
and upgrade the software, as there was no need to install the software on every PC. It
also reduced costs, as user interface development is particularly expensive.
Consequently, wherever it has been possible to do so, many businesses have moved
to web-based interaction with company software systems.

The next stage in the development of web-based systems was the notion of web
services. Web services are software components that deliver specific, useful function-
ality and which are accessed over the Web. Applications are constructed by integrating
these web services, which may be provided by different companies. In principle, this
linking can be dynamic so that an application may use different web services each time
that it is executed. I cover this approach to software development in Chapter 19.

In the last few years, the notion of ‘software as a service’ has been developed. It
has been proposed that software will not normally run on local computers but will
run on ‘computing clouds’ that are accessed over the Internet. If you use a service
such as web-based mail, you are using a cloud-based system. A computing cloud is
a huge number of linked computer systems that is shared by many users. Users do
not buy software but pay according to how much the software is used or are given
free access in return for watching adverts that are displayed on their screen.

The advent of the web, therefore, has led to a significant change in the way that
business software is organized. Before the web, business applications were mostly
monolithic, single programs running on single computers or computer clusters.
Communications were local, within an organization. Now, software is highly distrib-
uted, sometimes across the world. Business applications are not programmed from
scratch but involve extensive reuse of components and programs.

This radical change in software organization has, obviously, led to changes in the
ways that web-based systems are engineered. For example:

1. Software reuse has become the dominant approach for constructing web-based
systems. When building these systems, you think about how you can assemble
them from pre-existing software components and systems.
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2. It is now generally recognized that it is impractical to specify all the require-
ments for such systems in advance. Web-based systems should be developed
and delivered incrementally.

3. User interfaces are constrained by the capabilities of web browsers. Although
technologies such as AJAX (Holdener, 2008) mean that rich interfaces can be
created within a web browser, these technologies are still difficult to use. Web
forms with local scripting are more commonly used. Application interfaces on
web-based systems are often poorer than the specially designed user interfaces
on PC system products.

The fundamental ideas of software engineering, discussed in the previous section,
apply to web-based software in the same way that they apply to other types of soft-
ware system. Experience gained with large system development in the 20th century
is still relevant to web-based software.

IEW 1 Software engineering ethics

Like other engineering disciplines, software engineering is carried out within a
social and legal framework that limits the freedom of people working in that area. As
a software engineer, you must accept that your job involves wider responsibilities
than simply the application of technical skills. You must also behave in an ethical
and morally responsible way if you are to be respected as a professional engineer.

It goes without saying that you should uphold normal standards of honesty and
integrity. You should not use your skills and abilities to behave in a dishonest way or
in a way that will bring disrepute to the software engineering profession. However,
there are areas where standards of acceptable behavior are not bound by laws but by
the more tenuous notion of professional responsibility. Some of these are:

1. Confidentiality You should normally respect the confidentiality of your employ-
ers or clients irrespective of whether or not a formal confidentiality agreement
has been signed.

2. Competence You should not misrepresent your level of competence. You should
not knowingly accept work that is outside your competence.

3. Intellectual property rights You should be aware of local laws governing the use
of intellectual property such as patents and copyright. You should be careful to
ensure that the intellectual property of employers and clients is protected.

4.  Computer misuse You should not use your technical skills to misuse other
people’s computers. Computer misuse ranges from relatively trivial (game playing
on an employer’s machine, say) to extremely serious (dissemination of viruses or
other malware).
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ACM/IEEE Code of
Ethics (© IEEE/ACM  and Electronic Engineers), and the British Computer Society publish a code

1999) professional conduct or code of ethics. Members of these organizations undertake to

Software Engineering Code of Ethics and Professional Practice
ACM/IEEE-CS Joint Task Force on Software Engineering Ethics and Professional Practices

PREAMBLE

The short version of the code summarizes aspirations at a high level of the abstraction; the clauses that are
included in the full version give examples and details of how these aspirations change the way we act as
software engineering professionals. Without the aspirations, the details can become legalistic and tedious;
without the details, the aspirations can become high sounding but empty; together, the aspirations and the
details form a cohesive code.

Software engineers shall commit themselves to making the analysis, specification, design, development,
testing and maintenance of software a beneficial and respected profession. In accordance with their
commitment to the health, safety and welfare of the public, software engineers shall adhere to the following
Eight Principles:

1. PUBLIC — Software engineers shall act consistently with the public interest.

2. CLIENT AND EMPLOYER — Software engineers shall act in a manner that is in the
best interests of their client and employer consistent with the public interest.

3. PRODUCT — Software engineers shall ensure that their products and related
modifications meet the highest professional standards possible.

4. JUDGMENT — Software engineers shall maintain integrity and independence in their
professional judgment.

5. MANAGEMENT — Software engineering managers and leaders shall subscribe to and
promote an ethical approach to the management of software development and
maintenance.

6. PROFESSION — Software engineers shall advance the integrity and reputation of
the profession consistent with the public interest.

7. COLLEAGUES — Software engineers shall be fair to and supportive of their
colleagues.

8. SELF — Software engineers shall participate in Tifelong learning regarding the
practice of their profession and shall promote an ethical approach to the
practice of the profession.

Figure 1.3 The

Professional societies and institutions have an important role to play in setting
ethical standards. Organizations such as the ACM, the IEEE (Institute of Electrical

of

follow that code when they sign up for membership. These codes of conduct are gen-

erally concerned with fundamental ethical behavior.

Professional associations, notably the ACM and the IEEE, have cooperated to
produce a joint code of ethics and professional practice. This code exists in both a
short form, shown in Figure 1.3, and a longer form (Gotterbarn et al., 1999) that adds
detail and substance to the shorter version. The rationale behind this code is summa-

rized in the first two paragraphs of the longer form:

Computers have a central and growing role in commerce, industry, government,
medicine, education, entertainment and society at large. Software engineers are
those who contribute by direct participation or by teaching, to the analysis, spec-
ification, design, development, certification, maintenance and testing of software
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systems. Because of their roles in developing software systems, software engi-
neers have significant opportunities to do good or cause harm, to enable others to
do good or cause harm, or to influence others to do good or cause harm. To
ensure, as much as possible, that their efforts will be used for good, software engi-
neers must commit themselves to making software engineering a beneficial and
respected profession. In accordance with that commitment, software engineers
shall adhere to the following Code of Ethics and Professional Practice.

The Code contains eight Principles related to the behaviour of and decisions
made by professional software engineers, including practitioners, educators,
managers, supervisors and policy makers, as well as trainees and students of
the profession. The Principles identify the ethically responsible relationships
in which individuals, groups, and organizations participate and the primary
obligations within these relationships. The Clauses of each Principle are illus-
trations of some of the obligations included in these relationships. These obli-
gations are founded in the software engineer’s humanity, in special care owed
to people affected by the work of software engineers, and the unique elements
of the practice of software engineering. The Code prescribes these as obliga-
tions of anyone claiming to be or aspiring to be a software engineer.

In any situation where different people have different views and objectives you
are likely to be faced with ethical dilemmas. For example, if you disagree, in princi-
ple, with the policies of more senior management in the company, how should you
react? Clearly, this depends on the particular individuals and the nature of the dis-
agreement. Is it best to argue a case for your position from within the organization or
to resign in principle? If you feel that there are problems with a software project,
when do you reveal these to management? If you discuss these while they are just a
suspicion, you may be overreacting to a situation; if you leave it too late, it may be
impossible to resolve the difficulties.

Such ethical dilemmas face all of us in our professional lives and, fortunately, in
most cases they are either relatively minor or can be resolved without too much dif-
ficulty. Where they cannot be resolved, the engineer is faced with, perhaps, another
problem. The principled action may be to resign from their job but this may well
affect others such as their partner or their children.

A particularly difficult situation for professional engineers arises when their
employer acts in an unethical way. Say a company is responsible for developing a
safety-critical system and, because of time pressure, falsifies the safety validation
records. Is the engineer’s responsibility to maintain confidentiality or to alert the
customer or publicize, in some way, that the delivered system may be unsafe?

The problem here is that there are no absolutes when it comes to safety. Although
the system may not have been validated according to predefined criteria, these crite-
ria may be too strict. The system may actually operate safely throughout its lifetime.
It is also the case that, even when properly validated, the system may fail and cause
an accident. Early disclosure of problems may result in damage to the employer and
other employees; failure to disclose problems may result in damage to others.



1.3 Case studies 17

You must make up your own mind in these matters. The appropriate ethical posi-
tion here depends entirely on the views of the individuals who are involved. In this
case, the potential for damage, the extent of the damage, and the people affected by
the damage should influence the decision. If the situation is very dangerous, it may
be justified to publicize it using the national press (say). However, you should
always try to resolve the situation while respecting the rights of your employer.

Another ethical issue is participation in the development of military and nuclear
systems. Some people feel strongly about these issues and do not wish to participate in
any systems development associated with military systems. Others will work on mili-
tary systems but not on weapons systems. Yet others feel that national security is an
overriding principle and have no ethical objections to working on weapons systems.

In this situation, it is important that both employers and employees should make
their views known to each other in advance. Where an organization is involved in
military or nuclear work, they should be able to specify that employees must be will-
ing to accept any work assignment. Equally, if an employee is taken on and makes
clear that they do not wish to work on such systems, employers should not put pres-
sure on them to do so at some later date.

The general area of ethics and professional responsibility is becoming more
important as software-intensive systems pervade every aspect of work and everyday
life. It can be considered from a philosophical standpoint where the basic principles
of ethics are considered and software engineering ethics are discussed with reference
to these basic principles. This is the approach taken by Laudon (1995) and to a lesser
extent by Huff and Martin (1995). Johnson’s text on computer ethics (2001) also
approaches the topic from a philosophical perspective.

However, I find that this philosophical approach is too abstract and difficult to
relate to everyday experience. I prefer the more concrete approach embodied in codes
of conduct and practice. I think that ethics are best discussed in a software engineer-
ing context and not as a subject in their own right. In this book, therefore, I do not
include abstract ethical discussions but, where appropriate, include examples in the
exercises that can be the starting point for a group discussion on ethical issues.

IR Case studies

To illustrate software engineering concepts, I use examples from three different
types of systems throughout the book. The reason why I have not used a single case
study is that one of the key messages in this book is that software engineering prac-
tice depends on the type of systems being produced. I therefore choose an appropri-
ate example when discussing concepts such as safety and dependability, system
modeling, reuse, etc.

The three types of systems that I use as case studies are:

1. An embedded system This is a system where the software controls a hardware
device and is embedded in that device. Issues in embedded systems typically
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include physical size, responsiveness, power management, etc. The example of an
embedded system that I use is a software system to control a medical device.

2. An information system This is a system whose primary purpose is to manage
and provide access to a database of information. Issues in information systems
include security, usability, privacy, and maintaining data integrity. The example
of an information system that I use is a medical records system.

3. A sensor-based data collection system This is a system whose primary purpose
is to collect data from a set of sensors and process that data in some way. The
key requirements of such systems are reliability, even in hostile environmental
conditions, and maintainability. The example of a data collection system that
T use is a wilderness weather station.

I introduce each of these systems in this chapter, with more information about
each of them available on the Web.

An insulin pump control system

An insulin pump is a medical system that simulates the operation of the pancreas (an
internal organ). The software controlling this system is an embedded system, which
collects information from a sensor and controls a pump that delivers a controlled
dose of insulin to a user.

People who suffer from diabetes use the system. Diabetes is a relatively common
condition where the human pancreas is unable to produce sufficient quantities of a
hormone called insulin. Insulin metabolises glucose (sugar) in the blood. The con-
ventional treatment of diabetes involves regular injections of genetically engineered
insulin. Diabetics measure their blood sugar levels using an external meter and then
calculate the dose of insulin that they should inject.

The problem with this treatment is that the level of insulin required does not just
depend on the blood glucose level but also on the time of the last insulin injection.
This can lead to very low levels of blood glucose (if there is too much insulin) or very
high levels of blood sugar (if there is too little insulin). Low blood glucose is, in the
short term, a more serious condition as it can result in temporary brain malfunctioning
and, ultimately, unconsciousness and death. In the long term, however, continual high
levels of blood glucose can lead to eye damage, kidney damage, and heart problems.

Current advances in developing miniaturized sensors have meant that it is now pos-
sible to develop automated insulin delivery systems. These systems monitor blood sugar
levels and deliver an appropriate dose of insulin when required. Insulin delivery systems
like this already exist for the treatment of hospital patients. In the future, it may be pos-
sible for many diabetics to have such systems permanently attached to their bodies.

A software-controlled insulin delivery system might work by using a micro-
sensor embedded in the patient to measure some blood parameter that is proportional
to the sugar level. This is then sent to the pump controller. This controller computes
the sugar level and the amount of insulin that is needed. It then sends signals to a
miniaturized pump to deliver the insulin via a permanently attached needle.
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Figure 1.4 shows the hardware components and organization of the insulin
pump. To understand the examples in this book, all you need to know is that the
blood sensor measures the electrical conductivity of the blood under different
conditions and that these values can be related to the blood sugar level. The
insulin pump delivers one unit of insulin in response to a single pulse from a con-
troller. Therefore, to deliver 10 units of insulin, the controller sends 10 pulses to
the pump. Figure 1.5 is a UML activity model that illustrates how the software
transforms an input blood sugar level to a sequence of commands that drive the
insulin pump.

Clearly, this is a safety-critical system. If the pump fails to operate or does not
operate correctly, then the user’s health may be damaged or they may fall into a
coma because their blood sugar levels are too high or too low. There are, therefore,
two essential high-level requirements that this system must meet:

1. The system shall be available to deliver insulin when required.

2. The system shall perform reliably and deliver the correct amount of insulin to
counteract the current level of blood sugar.
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The system must therefore be designed and implemented to ensure that the sys-
tem always meets these requirements. More detailed requirements and discussions
of how to ensure that the system is safe are discussed in later chapters.

A patient information system for mental health care

A patient information system to support mental health care is a medical informa-
tion system that maintains information about patients suffering from mental
health problems and the treatments that they have received. Most mental health
patients do not require dedicated hospital treatment but need to attend specialist
clinics regularly where they can meet a doctor who has detailed knowledge of
their problems. To make it easier for patients to attend, these clinics are not just
run in hospitals. They may also be held in local medical practices or community
centers.

The MHC-PMS (Mental Health Care-Patient Management System) is an informa-
tion system that is intended for use in clinics. It makes use of a centralized database of
patient information but has also been designed to run on a PC, so that it may be accessed
and used from sites that do not have secure network connectivity. When the local sys-
tems have secure network access, they use patient information in the database but they
can download and use local copies of patient records when they are disconnected. The
system is not a complete medical records system so does not maintain information
about other medical conditions. However, it may interact and exchange data with other
clinical information systems. Figure 1.6 illustrates the organization of the MHC-PMS.

The MHC-PMS has two overall goals:

1. To generate management information that allows health service managers to
assess performance against local and government targets.

2. To provide medical staff with timely information to support the treatment of
patients.
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The nature of mental health problems is such that patients are often disorganized
so may miss appointments, deliberately or accidentally lose prescriptions and med-
ication, forget instructions, and make unreasonable demands on medical staff. They
may drop in on clinics unexpectedly. In a minority of cases, they may be a danger to
themselves or to other people. They may regularly change address or may be home-
less on a long-term or short-term basis. Where patients are dangerous, they may need
to be ‘sectioned’—confined to a secure hospital for treatment and observation.

Users of the system include clinical staff such as doctors, nurses, and health visi-
tors (nurses who visit people at home to check on their treatment). Nonmedical users
include receptionists who make appointments, medical records staff who maintain
the records system, and administrative staff who generate reports.

The system is used to record information about patients (name, address, age, next
of kin, etc.), consultations (date, doctor seen, subjective impressions of the patient,
etc.), conditions, and treatments. Reports are generated at regular intervals for med-
ical staff and health authority managers. Typically, reports for medical staff focus on
information about individual patients whereas management reports are anonymized
and are concerned with conditions, costs of treatment, etc.

The key features of the system are:

1. Individual care management Clinicians can create records for patients, edit the
information in the system, view patient history, etc. The system supports data
summaries so that doctors who have not previously met a patient can quickly
learn about the key problems and treatments that have been prescribed.

2. Patient monitoring The system regularly monitors the records of patients that
are involved in treatment and issues warnings if possible problems are detected.
Therefore, if a patient has not seen a doctor for some time, a warning may be
issued. One of the most important elements of the monitoring system is to keep
track of patients who have been sectioned and to ensure that the legally required
checks are carried out at the right time.

3. Administrative reporting The system generates monthly management reports
showing the number of patients treated at each clinic, the number of patients
who have entered and left the care system, number of patients sectioned, the
drugs prescribed and their costs, etc.

Two different laws affect the system. These are laws on data protection that govern
the confidentiality of personal information and mental health laws that govern the com-
pulsory detention of patients deemed to be a danger to themselves or others. Mental
health is unique in this respect as it is the only medical speciality that can recommend
the detention of patients against their will. This is subject to very strict legislative safe-
guards. One of the aims of the MHC-PMS is to ensure that staff always act in accor-
dance with the law and that their decisions are recorded for judicial review if necessary.

As in all medical systems, privacy is a critical system requirement. It is essential that
patient information is confidential and is never disclosed to anyone apart from author-
ized medical staff and the patient themselves. The MHC-PMS is also a safety-critical
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system. Some mental illnesses cause patients to become suicidal or a danger to other
people. Wherever possible, the system should warn medical staff about potentially sui-
cidal or dangerous patients.

The overall design of the system has to take into account privacy and safety
requirements. The system must be available when needed otherwise safety may be
compromised and it may be impossible to prescribe the correct medication to patients.
There is a potential conflict here—privacy is easiest to maintain when there is only a
single copy of the system data. However, to ensure availability in the event of server
failure or when disconnected from a network, multiple copies of the data should be
maintained. I discuss the trade-offs between these requirements in later chapters.

A wilderness weather station

To help monitor climate change and to improve the accuracy of weather forecasts in
remote areas, the government of a country with large areas of wilderness decides to
deploy several hundred weather stations in remote areas. These weather stations col-
lect data from a set of instruments that measure temperature and pressure, sunshine,
rainfall, wind speed, and wind direction.

Wilderness weather stations are part of a larger system (Figure 1.7), which is a
weather information system that collects data from weather stations and makes it
available to other systems for processing. The systems in Figure 1.7 are:

1. The weather station system This is responsible for collecting weather data,
carrying out some initial data processing, and transmitting it to the data manage-
ment system.

2. The data management and archiving system This system collects the data from
all of the wilderness weather stations, carries out data processing and analysis,
and archives the data in a form that can be retrieved by other systems, such as
weather forecasting systems.

3. The station maintenance system This system can communicate by satellite
with all wilderness weather stations to monitor the health of these systems and
provide reports of problems. It can update the embedded software in these
systems. In the event of system problems, this system can also be used to
remotely control a wilderness weather system.
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In Figure 1.7, I have used the UML package symbol to indicate that each system
is a collection of components and have identified the separate systems, using the
UML stereotype «system». The associations between the packages indicate there is
an exchange of information but, at this stage, there is no need to define them in any
more detail.

Each weather station includes a number of instruments that measure weather
parameters such as the wind speed and direction, the ground and air temperatures,
the barometric pressure, and the rainfall over a 24-hour period. Each of these instru-
ments is controlled by a software system that takes parameter readings periodically
and manages the data collected from the instruments.

The weather station system operates by collecting weather observations at fre-
quent intervals—for example, temperatures are measured every minute. However,
because the bandwidth to the satellite is relatively narrow, the weather station carries
out some local processing and aggregation of the data. It then transmits this aggre-
gated data when requested by the data collection system. If, for whatever reason, it is
impossible to make a connection, then the weather station maintains the data locally
until communication can be resumed.

Each weather station is battery-powered and must be entirely self-contained—there
are no external power or network cables available. All communications are through a rel-
atively slow-speed satellite link and the weather station must include some mechanism
(solar or wind power) to charge its batteries. As they are deployed in wilderness areas,
they are exposed to severe environmental conditions and may be damaged by animals.
The station software is therefore not just concerned with data collection. It must also:

1. Monitor the instruments, power, and communication hardware and report faults
to the management system.

2. Manage the system power, ensuring that batteries are charged whenever the
environmental conditions permit but also that generators are shut down in
potentially damaging weather conditions, such as high wind.

3. Allow for dynamic reconfiguration where parts of the software are replaced
with new versions and where backup instruments are switched into the system
in the event of system failure.

Because weather stations have to be self-contained and unattended, this means
that the software installed is complex, even though the data collection functionality
is fairly simple.
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KEY POINTS

Software engineering is an engineering discipline that is concerned with all aspects of software
production.

Software is not just a program or programs but also includes documentation. Essential software
product attributes are maintainability, dependability, security, efficiency, and acceptability.

The software process includes all of the activities involved in software development. The high-
level activities of specification, development, validation, and evolution are part of all software
processes.

The fundamental notions of software engineering are universally applicable to all types of
system development. These fundamentals include software processes, dependability, security,
requirements, and reuse.

There are many different types of systems and each requires appropriate software engineering
tools and techniques for their development. There are few, if any, specific design and
implementation techniques that are applicable to all kinds of systems.

The fundamental ideas of software engineering are applicable to all types of software systems.
These fundamentals include managed software processes, software dependability and security,
requirements engineering, and software reuse.

Software engineers have responsibilities to the engineering profession and society. They should
not simply be concerned with technical issues.

Professional societies publish codes of conduct that set out the standards of behavior expected
of their members.

FURTHER READING

‘No silver bullet: Essence and accidents of software engineering’. In spite of its age, this paper is a
good general introduction to the problems of software engineering. The essential message of the
paper still hasn’t changed. (F. P. Brooks, IEEE Computer, 20 (4), April 1987.)
http://doi.ieeecomputersociety.org/10.1109/MC.1987.1663532.

‘Software engineering code of ethics is approved’. An article that discusses the background to the
development of the ACM/IEEE Code of Ethics and that includes both the short and long form of the
code. (Comm. ACM, D. Gotterbarn, K. Miller, and S. Rogerson, October 1999.)
http://portal.acm.org/citation.cfm?doid=317665.317682.

Professional Issues in Software Engineering. This is an excellent book discussing legal and
professional issues as well as ethics. | prefer its practical approach to more theoretical texts on
ethics. (F. Bott, A. Coleman, ). Eaton and D. Rowland, 3rd edition, 2000, Taylor and Francis.)
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IEEE Software, March/April 2002. This is a special issue of the magazine devoted to the
development of Web-based software. This area has changed very quickly so some articles are a little
dated but most are still relevant. (/EEE Software, 19 (2), 2002.)
http://www2.computer.org/portal/web/software.

‘A View of 20th and 21st Century Software Engineering’. A backward and forward look at software
engineering from one of the first and most distinguished software engineers. Barry Boehm identifies
timeless software engineering principles but also suggests that some commonly used practices are
obsolete. (B. Boehm, Proc. 28th Software Engineering Conf., Shanghai. 2006.)
http://doi.ieeecomputersociety.org/10.1145/1134285.1134288.

‘Software Engineering Ethics’. Special issue of IEEE Computer, with a number of papers on the topic.
(/EEE Computer, 42 (6), June 2009.)

EXERCISES

1.1. Explain why professional software is not just the programs that are developed for a customer.

1.2. What is the most important difference between generic software product development and
custom software development? What might this mean in practice for users of generic software
products?

1.3. What are the four important attributes that all professional software should have? Suggest
four other attributes that may sometimes be significant.

1.4. Apart from the challenges of heterogeneity, business and social change, and trust and
security, identify other problems and challenges that software engineering is likely to face in
the 21st century (Hint: think about the environment).

1.5. Based on your own knowledge of some of the application types discussed in section 1.1.2,
explain, with examples, why different application types require specialized software
engineering techniques to support their design and development.

1.6. Explain why there are fundamental ideas of software engineering that apply to all types of
software systems.

1.7. Explain how the universal use of the Web has changed software systems.

1.8. Discuss whether professional engineers should be certified in the same way as doctors or
lawyers.

1.9. For each of the clauses in the ACM/IEEE Code of Ethics shown in Figure 1.3, suggest an
appropriate example that illustrates that clause.

1.10. To help counter terrorism, many countries are planning or have developed computer systems
that track large numbers of their citizens and their actions. Clearly this has privacy
implications. Discuss the ethics of working on the development of this type of system.
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Software processes

Objectives

The objective of this chapter is to introduce you to the idea of a software
process—a coherent set of activities for software production. When you
have read this chapter you will:

m understand the concepts of software processes and software process
models;

m have been introduced to three generic software process models and
when they might be used;

m know about the fundamental process activities of software
requirements engineering, software development, testing, and
evolution;

m understand why processes should be organized to cope with changes
in the software requirements and design;

m understand how the Rational Unified Process integrates good software
engineering practice to create adaptable software processes.

Contents

2.1 Software process models
2.2 Process activities

2.3 Coping with change

2.4 The Rational Unified Process
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A software process is a set of related activities that leads to the production of a soft-
ware product. These activities may involve the development of software from scratch
in a standard programming language like Java or C. However, business applications
are not necessarily developed in this way. New business software is now often devel-
oped by extending and modifying existing systems or by configuring and integrating
off-the-shelf software or system components.

There are many different software processes but all must include four activities
that are fundamental to software engineering:

1. Software specification The functionality of the software and constraints on its
operation must be defined.

2.  Software design and implementation The software to meet the specification
must be produced.

3.  Software validation The software must be validated to ensure that it does what
the customer wants.

4. Software evolution The software must evolve to meet changing customer needs.

In some form, these activities are part of all software processes. In practice, of
course, they are complex activities in themselves and include sub-activities such as
requirements validation, architectural design, unit testing, etc. There are also support-
ing process activities such as documentation and software configuration management.

When we describe and discuss processes, we usually talk about the activities in
these processes such as specifying a data model, designing a user interface, etc., and
the ordering of these activities. However, as well as activities, process descriptions
may also include:

1. Products, which are the outcomes of a process activity. For example, the out-
come of the activity of architectural design may be a model of the software
architecture.

2. Roles, which reflect the responsibilities of the people involved in the process.
Examples of roles are project manager, configuration manager, programmer, etc.

3. Pre- and post-conditions, which are statements that are true before and after a
process activity has been enacted or a product produced. For example, before
architectural design begins, a pre-condition may be that all requirements have
been approved by the customer; after this activity is finished, a post-condition
might be that the UML models describing the architecture have been reviewed.

Software processes are complex and, like all intellectual and creative processes,
rely on people making decisions and judgments. There is no ideal process and most
organizations have developed their own software development processes. Processes
have evolved to take advantage of the capabilities of the people in an organization
and the specific characteristics of the systems that are being developed. For some
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systems, such as critical systems, a very structured development process is required.
For business systems, with rapidly changing requirements, a less formal, flexible
process is likely to be more effective.

Sometimes, software processes are categorized as either plan-driven or agile
processes. Plan-driven processes are processes where all of the process activities are
planned in advance and progress is measured against this plan. In agile processes,
which I discuss in Chapter 3, planning is incremental and it is easier to change the
process to reflect changing customer requirements. As Boehm and Turner (2003)
discuss, each approach is suitable for different types of software. Generally, you
need to find a balance between plan-driven and agile processes.

Although there is no ‘ideal’ software process, there is scope for improving the
software process in many organizations. Processes may include outdated techniques
or may not take advantage of the best practice in industrial software engineering.
Indeed, many organizations still do not take advantage of software engineering
methods in their software development.

Software processes can be improved by process standardization where the diver-
sity in software processes across an organization is reduced. This leads to improved
communication and a reduction in training time, and makes automated process sup-
port more economical. Standardization is also an important first step in introducing
new software engineering methods and techniques and good software engineering
practice. I discuss software process improvement in more detail in Chapter 26.

XU Software process models

As I explained in Chapter 1, a software process model is a simplified representation
of a software process. Each process model represents a process from a particular per-
spective, and thus provides only partial information about that process. For example,
a process activity model shows the activities and their sequence but may not show
the roles of the people involved in these activities. In this section, I introduce a num-
ber of very general process models (sometimes called ‘process paradigms’) and
present these from an architectural perspective. That is, we see the framework of the
process but not the details of specific activities.

These generic models are not definitive descriptions of software processes. Rather,
they are abstractions of the process that can be used to explain different approaches to
software development. You can think of them as process frameworks that may be
extended and adapted to create more specific software engineering processes.

The process models that I cover here are:

1. The waterfall model This takes the fundamental process activities of specifica-
tion, development, validation, and evolution and represents them as separate
process phases such as requirements specification, software design, implemen-
tation, testing, and so on.
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2. Incremental development This approach interleaves the activities of specifica-
tion, development, and validation. The system is developed as a series of versions
(increments), with each version adding functionality to the previous version.

3. Reuse-oriented software engineering This approach is based on the existence of
a significant number of reusable components. The system development process
focuses on integrating these components into a system rather than developing
them from scratch.

These models are not mutually exclusive and are often used together, especially
for large systems development. For large systems, it makes sense to combine some
of the best features of the waterfall and the incremental development models. You
need to have information about the essential system requirements to design a soft-
ware architecture to support these requirements. You cannot develop this incremen-
tally. Sub-systems within a larger system may be developed using different
approaches. Parts of the system that are well understood can be specified and devel-
oped using a waterfall-based process. Parts of the system which are difficult to
specify in advance, such as the user interface, should always be developed using an
incremental approach.

The waterfall model

The first published model of the software development process was derived from
more general system engineering processes (Royce, 1970). This model is illustrated
in Figure 2.1. Because of the cascade from one phase to another, this model is known
as the ‘waterfall model’ or software life cycle. The waterfall model is an example of
a plan-driven process—in principle, you must plan and schedule all of the process
activities before starting work on them.
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The principal stages of the waterfall model directly reflect the fundamental devel-
opment activities:

1. Requirements analysis and definition The system’s services, constraints, and
goals are established by consultation with system users. They are then defined
in detail and serve as a system specification.

2. System and software design The systems design process allocates the require-
ments to either hardware or software systems by establishing an overall system
architecture. Software design involves identifying and describing the fundamen-
tal software system abstractions and their relationships.

3. Implementation and unit testing During this stage, the software design is real-
ized as a set of programs or program units. Unit testing involves verifying that
each unit meets its specification.

4. Integration and system testing The individual program units or programs
are integrated and tested as a complete system to ensure that the software
requirements have been met. After testing, the software system is delivered to
the customer.

5. Operation and maintenance Normally (although not necessarily), this is the
longest life cycle phase. The system is installed and put into practical use.
Maintenance involves correcting errors which were not discovered in earlier
stages of the life cycle, improving the implementation of system units and
enhancing the system’s services as new requirements are discovered.

In principle, the result of each phase is one or more documents that are approved
(‘signed off”). The following phase should not start until the previous phase has fin-
ished. In practice, these stages overlap and feed information to each other. During
design, problems with requirements are identified. During coding, design problems
are found and so on. The software process is not a simple linear model but involves
feedback from one phase to another. Documents produced in each phase may then
have to be modified to reflect the changes made.

Because of the costs of producing and approving documents, iterations can be
costly and involve significant rework. Therefore, after a small number of iterations,
it is normal to freeze parts of the development, such as the specification, and to con-
tinue with the later development stages. Problems are left for later resolution,
ignored, or programmed around. This premature freezing of requirements may mean
that the system won’t do what the user wants. It may also lead to badly structured
systems as design problems are circumvented by implementation tricks.

During the final life cycle phase (operation and maintenance) the software is put
into use. Errors and omissions in the original software requirements are discovered.
Program and design errors emerge and the need for new functionality is identified.
The system must therefore evolve to remain useful. Making these changes (software
maintenance) may involve repeating previous process stages.
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of reliability.

2.1.2

@ Cleanroom software engineering

An example of a formal development process, originally developed by IBM, is the Cleanroom process. In the
Cleanroom process each software increment is formally specified and this specification is transformed into an
implementation. Software correctness is demonstrated using a formal approach. There is no unit testing for
defects in the process and the system testing is focused on assessing the system'’s reliability.

The objective of the Cleanroom process is zero-defects software so that delivered systems have a high level

http://www.SoftwareEngineering-9.com/Web/Cleanroom/

The waterfall model is consistent with other engineering process models and docu-
mentation is produced at each phase. This makes the process visible so managers can
monitor progress against the development plan. Its major problem is the inflexible par-
titioning of the project into distinct stages. Commitments must be made at an early stage
in the process, which makes it difficult to respond to changing customer requirements.

In principle, the waterfall model should only be used when the requirements are
well understood and unlikely to change radically during system development.
However, the waterfall model reflects the type of process used in other engineering
projects. As is easier to use a common management model for the whole project,
software processes based on the waterfall model are still commonly used.

An important variant of the waterfall model is formal system development, where
a mathematical model of a system specification is created. This model is then
refined, using mathematical transformations that preserve its consistency, into exe-
cutable code. Based on the assumption that your mathematical transformations are
correct, you can therefore make a strong argument that a program generated in this
way is consistent with its specification.

Formal development processes, such as that based on the B method (Schneider,
2001; Wordsworth, 1996) are particularly suited to the development of systems that
have stringent safety, reliability, or security requirements. The formal approach sim-
plifies the production of a safety or security case. This demonstrates to customers or
regulators that the system actually meets its safety or security requirements.

Processes based on formal transformations are generally only used in the devel-
opment of safety-critical or security-critical systems. They require specialized
expertise. For the majority of systems this process does not offer significant cost-
benefits over other approaches to system development.

Incremental development

Incremental development is based on the idea of developing an initial implementa-
tion, exposing this to user comment and evolving it through several versions until an
adequate system has been developed (Figure 2.2). Specification, development, and
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Figure 2.2 Incremental
development

Concurrent
Activities

e | . Initial
Specification  —— | Version

Outline Intermediate ||
Description —( Development - Versions |
( validation ) —— Final
Version

validation activities are interleaved rather than separate, with rapid feedback across
activities.

Incremental software development, which is a fundamental part of agile
approaches, is better than a waterfall approach for most business, e-commerce, and
personal systems. Incremental development reflects the way that we solve prob-
lems. We rarely work out a complete problem solution in advance but move toward
a solution in a series of steps, backtracking when we realize that we have made a
mistake. By developing the software incrementally, it is cheaper and easier to make
changes in the software as it is being developed.

Each increment or version of the system incorporates some of the functionality
that is needed by the customer. Generally, the early increments of the system include
the most important or most urgently required functionality. This means that the
customer can evaluate the system at a relatively early stage in the development to see
if it delivers what is required. If not, then only the current increment has to be
changed and, possibly, new functionality defined for later increments.

Incremental development has three important benefits, compared to the waterfall
model:

1. The cost of accommodating changing customer requirements is reduced. The
amount of analysis and documentation that has to be redone is much less than is
required with the waterfall model.

2. It is easier to get customer feedback on the development work that has been
done. Customers can comment on demonstrations of the software and see how
much has been implemented. Customers find it difficult to judge progress from
software design documents.

3. More rapid delivery and deployment of useful software to the customer is possi-
ble, even if all of the functionality has not been included. Customers are able to
use and gain value from the software earlier than is possible with a waterfall
process.
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unavoidable.

@ Problems with incremental development

Although incremental development has many advantages, it is not problem-free. The primary cause of the
difficulty is the fact that large organizations have bureaucratic procedures that have evolved over time and there
may be a mismatch between these procedures and a more informal iterative or agile process.

Sometimes these procedures are there for good reasons—for example, there may be procedures to ensure
that the software properly implements external regulations (e.g., in the United States, the Sarbanes-Oxley
accounting regulations). Changing these procedures may not be possible so process conflicts may be

http://www.SoftwareEngineering-9.com/Web/IncrementalDev/

Incremental development in some form is now the most common approach for the
development of application systems. This approach can be either plan-driven, agile,
or, more usually, a mixture of these approaches. In a plan-driven approach, the system
increments are identified in advance; if an agile approach is adopted, the early incre-
ments are identified but the development of later increments depends on progress and
customer priorities.

From a management perspective, the incremental approach has two problems:

1. The process is not visible. Managers need regular deliverables to measure
progress. If systems are developed quickly, it is not cost-effective to produce
documents that reflect every version of the system.

2. System structure tends to degrade as new increments are added. Unless time and
money is spent on refactoring to improve the software, regular change tends to
corrupt its structure. Incorporating further software changes becomes increas-
ingly difficult and costly.

The problems of incremental development become particularly acute for large,
complex, long-lifetime systems, where different teams develop different parts of the
system. Large systems need a stable framework or architecture and the responsibili-
ties of the different teams working on parts of the system need to be clearly defined
with respect to that architecture. This has to be planned in advance rather than devel-
oped incrementally.

You can develop a system incrementally and expose it to customers for comment,
without actually delivering it and deploying it in the customer’s environment.
Incremental delivery and deployment means that the software is used in real, opera-
tional processes. This is not always possible as experimenting with new software can
disrupt normal business processes. I discuss the advantages and disadvantages of incre-
mental delivery in Section 2.3.2.
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2.1.3 Reuse-oriented software engineering

In the majority of software projects, there is some software reuse. This often happens
informally when people working on the project know of designs or code that are
similar to what is required. They look for these, modify them as needed, and incor-
porate them into their system.

This informal reuse takes place irrespective of the development process that is
used. However, in the 21st century, software development processes that focus on the
reuse of existing software have become widely used. Reuse-oriented approaches rely
on a large base of reusable software components and an integrating framework for
the composition of these components. Sometimes, these components are systems in
their own right (COTS or commercial off-the-shelf systems) that may provide spe-
cific functionality such as word processing or a spreadsheet.

A general process model for reuse-based development is shown in Figure 2.3.
Although the initial requirements specification stage and the validation stage are
comparable with other software processes, the intermediate stages in a reuse-
oriented process are different. These stages are:

1. Component analysis Given the requirements specification, a search is made for
components to implement that specification. Usually, there is no exact match and
the components that may be used only provide some of the functionality required.

2. Requirements modification During this stage, the requirements are analyzed using
information about the components that have been discovered. They are then mod-
ified to reflect the available components. Where modifications are impossible, the
component analysis activity may be re-entered to search for alternative solutions.

3. System design with reuse During this phase, the framework of the system is
designed or an existing framework is reused. The designers take into account the
components that are reused and organize the framework to cater for this. Some
new software may have to be designed if reusable components are not available.

4. Development and integration Software that cannot be externally procured is
developed, and the components and COTS systems are integrated to create the
new system. System integration, in this model, may be part of the development
process rather than a separate activity.
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There are three types of software component that may be used in a reuse-oriented
process:

1. Web services that are developed according to service standards and which are
available for remote invocation.

2. Collections of objects that are developed as a package to be integrated with a
component framework such as .NET or J2EE.

3. Stand-alone software systems that are configured for use in a particular
environment.

Reuse-oriented software engineering has the obvious advantage of reducing the
amount of software to be developed and so reducing cost and risks. It usually also
leads to faster delivery of the software. However, requirements compromises are
inevitable and this may lead to a system that does not meet the real needs of users.
Furthermore, some control over the system evolution is lost as new versions of the
reusable components are not under the control of the organization using them.

Software reuse is very important and I have dedicated several chapters in the third
part of the book to this topic. General issues of software reuse and COTS reuse are
covered in Chapter 16, component-based software engineering in Chapters 17 and
18, and service-oriented systems in Chapter 19.

I ¥ 1 Process activities

2.2.1

Real software processes are interleaved sequences of technical, collaborative, and
managerial activities with the overall goal of specifying, designing, implementing,
and testing a software system. Software developers use a variety of different software
tools in their work. Tools are particularly useful for supporting the editing of different
types of document and for managing the immense volume of detailed information
that is generated in a large software project.

The four basic process activities of specification, development, validation, and evo-
lution are organized differently in different development processes. In the waterfall
model, they are organized in sequence, whereas in incremental development they are
interleaved. How these activities are carried out depends on the type of software,
people, and organizational structures involved. In extreme programming, for example,
specifications are written on cards. Tests are executable and developed before the
program itself. Evolution may involve substantial system restructuring or refactoring.

Software specification

Software specification or requirements engineering is the process of understanding
and defining what services are required from the system and identifying the con-
straints on the system’s operation and development. Requirements engineering is a
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@ Software development tools

Software development tools (sometimes called Computer-Aided Software Engineering or CASE tools) are
programs that are used to support software engineering process activities. These tools therefore include design
editors, data dictionaries, compilers, debuggers, system building tools, etc.

Software tools provide process support by automating some process activities and by providing information
about the software that is being developed. Examples of activities that can be automated include:

m The development of graphical system models as part of the requirements specification or the software design
m The generation of code from these graphical models

m The generation of user interfaces from a graphical interface description that is created interactively by the user
m Program debugging through the provision of information about an executing program

m The automated translation of programs written using an old version of a programming language to a more
recent version

Tools may be combined within a framework called an Interactive Development Environment or IDE. This
provides a common set of facilities that tools can use so that it is easier for tools to communicate and operate
in an integrated way. The ECLIPSE IDE is widely used and has been designed to incorporate many different
types of software tools.

http://www.SoftwareEngineering-9.com/Web/CASE/

particularly critical stage of the software process as errors at this stage inevitably
lead to later problems in the system design and implementation.

The requirements engineering process (Figure 2.4) aims to produce an agreed
requirements document that specifies a system satisfying stakeholder requirements.
Requirements are usually presented at two levels of detail. End-users and customers
need a high-level statement of the requirements; system developers need a more
detailed system specification.

There are four main activities in the requirements engineering process:

1. Feasibility study An estimate is made of whether the identified user needs may be
satisfied using current software and hardware technologies. The study considers
whether the proposed system will be cost-effective from a business point of view
and if it can be developed within existing budgetary constraints. A feasibility
study should be relatively cheap and quick. The result should inform the decision
of whether or not to go ahead with a more detailed analysis.

2.  Requirements elicitation and analysis This is the process of deriving the system
requirements through observation of existing systems, discussions with poten-
tial users and procurers, task analysis, and so on. This may involve the develop-
ment of one or more system models and prototypes. These help you understand
the system to be specified.

3. Requirements specification Requirements specification is the activity of trans-
lating the information gathered during the analysis activity into a document that
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defines a set of requirements. Two types of requirements may be included in this
document. User requirements are abstract statements of the system require-
ments for the customer and end-user of the system; system requirements are a
more detailed description of the functionality to be provided.

4. Requirements validation This activity checks the requirements for realism, consis-
tency, and completeness. During this process, errors in the requirements document
are inevitably discovered. It must then be modified to correct these problems.

Of course, the activities in the requirements process are not simply carried out in a
strict sequence. Requirements analysis continues during definition and specification and
new requirements come to light throughout the process. Therefore, the activities of
analysis, definition, and specification are interleaved. In agile methods, such as extreme
programming, requirements are developed incrementally according to user priorities and
the elicitation of requirements comes from users who are part of the development team.

Software design and implementation

The implementation stage of software development is the process of converting a
system specification into an executable system. It always involves processes of soft-
ware design and programming but, if an incremental approach to development is
used, may also involve refinement of the software specification.

A software design is a description of the structure of the software to be implemented,
the data models and structures used by the system, the interfaces between system com-
ponents and, sometimes, the algorithms used. Designers do not arrive at a finished
design immediately but develop the design iteratively. They add formality and detail as
they develop their design with constant backtracking to correct earlier designs.

Figure 2.5 is an abstract model of this process showing the inputs to the design
process, process activities, and the documents produced as outputs from this process.
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Figure 2.5 A general
model of the design
process

Design Inputs

Platform Requirements Data
Information Specification Description

Design Activities

Architectural Interface Component
Design Design Design
C Database Design )

Design Outputs

System Database Interface Component
Architecture Specification Specification Specification

The diagram suggests that the stages of the design process are sequential. In fact,
design process activities are interleaved. Feedback from one stage to another and
consequent design rework is inevitable in all design processes.

Most software interfaces with other software systems. These include the operating
system, database, middleware, and other application systems. These make up the ‘soft-
ware platform’, the environment in which the software will execute. Information about
this platform is an essential input to the design process, as designers must decide how
best to integrate it with the software’s environment. The requirements specification is a
description of the functionality the software must provide and its performance and
dependability requirements. If the system is to process existing data, then the description
of that data may be included in the platform specification; otherwise, the data description
must be an input to the design process so that the system data organization to be defined.

The activities in the design process vary, depending on the type of system being
developed. For example, real-time systems require timing design but may not
include a database so there is no database design involved. Figure 2.5 shows four
activities that may be part of the design process for information systems:

1. Architectural design, where you identify the overall structure of the system, the
principal components (sometimes called sub-systems or modules), their rela-
tionships, and how they are distributed.

2. Interface design, where you define the interfaces between system components.
This interface specification must be unambiguous. With a precise interface, a
component can be used without other components having to know how it is
implemented. Once interface specifications are agreed, the components can be
designed and developed concurrently.
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@ Structured methods

Structured methods are an approach to software design in which graphical models that should be developed as
part of the design process are defined. The method may also define a process for developing the models and rules
that apply to each model type. Structured methods lead to standardized documentation for a system and are
particularly useful in providing a development framework for less-experienced and less-expert software developers.

http://www.SoftwareEngineering-9.com/Web/Structured-methods/

3. Component design, where you take each system component and design how it will
operate. This may be a simple statement of the expected functionality to be
implemented, with the specific design left to the programmer. Alternatively, it may
be a list of changes to be made to a reusable component or a detailed design model.
The design model may be used to automatically generate an implementation.

4. Database design, where you design the system data structures and how these are
to be represented in a database. Again, the work here depends on whether an
existing database is to be reused or a new database is to be created.

These activities lead to a set of design outputs, which are also shown in Figure 2.5.
The detail and representation of these vary considerably. For critical systems, detailed
design documents setting out precise and accurate descriptions of the system must be
produced. If a model-driven approach is used, these outputs may mostly be diagrams.
Where agile methods of development are used, the outputs of the design process may not
be separate specification documents but may be represented in the code of the program.

Structured methods for design were developed in the 1970s and 1980s and were
the precursor to the UML and object-oriented design (Budgen, 2003). They rely on
producing graphical models of the system and, in many cases, automatically generat-
ing code from these models. Model-driven development (MDD) or model-driven
engineering (Schmidt, 2006), where models of the software are created at different
levels of abstraction, is an evolution of structured methods. In MDD, there is greater
emphasis on architectural models with a separation between abstract implementation-
independent models and implementation-specific models. The models are developed
in sufficient detail so that the executable system can be generated from them. I discuss
this approach to development in Chapter 5.

The development of a program to implement the system follows naturally from the
system design processes. Although some classes of program, such as safety-critical
systems, are usually designed in detail before any implementation begins, it is more
common for the later stages of design and program development to be interleaved.
Software development tools may be used to generate a skeleton program from a
design. This includes code to define and implement interfaces, and, in many cases, the
developer need only add details of the operation of each program component.

Programming is a personal activity and there is no general process that is usually
followed. Some programmers start with components that they understand, develop
these, and then move on to less-understood components. Others take the opposite
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approach, leaving familiar components till last because they know how to develop
them. Some developers like to define data early in the process then use this to drive
the program development; others leave data unspecified for as long as possible.

Normally, programmers carry out some testing of the code they have developed. This
often reveals program defects that must be removed from the program. This is called
debugging. Defect testing and debugging are different processes. Testing establishes the
existence of defects. Debugging is concerned with locating and correcting these defects.

When you are debugging, you have to generate hypotheses about the observable
behavior of the program then test these hypotheses in the hope of finding the fault that
caused the output anomaly. Testing the hypotheses may involve tracing the program
code manually. It may require new test cases to localize the problem. Interactive
debugging tools, which show the intermediate values of program variables and a trace
of the statements executed, may be used to support the debugging process.

Software validation

Software validation or, more generally, verification and validation (V&V) is
intended to show that a system both conforms to its specification and that it meets
the expectations of the system customer. Program testing, where the system is exe-
cuted using simulated test data, is the principal validation technique. Validation may
also involve checking processes, such as inspections and reviews, at each stage of the
software process from user requirements definition to program development.
Because of the predominance of testing, the majority of validation costs are incurred
during and after implementation.

Except for small programs, systems should not be tested as a single, monolithic
unit. Figure 2.6 shows a three-stage testing process in which system components are
tested then the integrated system is tested and, finally, the system is tested with the
customer’s data. Ideally, component defects are discovered early in the process, and
interface problems are found when the system is integrated. However, as defects are
discovered, the program must be debugged and this may require other stages in the
testing process to be repeated. Errors in program components, say, may come to light
during system testing. The process is therefore an iterative one with information
being fed back from later stages to earlier parts of the process.

The stages in the testing process are:

1. Development testing The components making up the system are tested by the
people developing the system. Each component is tested independently, without
other system components. Components may be simple entities such as functions
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or object classes, or may be coherent groupings of these entities. Test automa-
tion tools, such as JUnit (Massol and Husted, 2003), that can re-run component
tests when new versions of the component are created, are commonly used.

2. System testing System components are integrated to create a complete system.
This process is concerned with finding errors that result from unanticipated
interactions between components and component interface problems. It is also
concerned with showing that the system meets its functional and non-functional
requirements, and testing the emergent system properties. For large systems,
this may be a multi-stage process where components are integrated to form sub-
systems that are individually tested before these sub-systems are themselves
integrated to form the final system.

3. Acceptance testing This is the final stage in the testing process before the system
is accepted for operational use. The system is tested with data supplied by the
system customer rather than with simulated test data. Acceptance testing may
reveal errors and omissions in the system requirements definition, because the
real data exercise the system in different ways from the test data. Acceptance
testing may also reveal requirements problems where the system’s facilities do
not really meet the user’s needs or the system performance is unacceptable.

Normally, component development and testing processes are interleaved.
Programmers make up their own test data and incrementally test the code as it is
developed. This is an economically sensible approach, as the programmer knows the
component and is therefore the best person to generate test cases.

If an incremental approach to development is used, each increment should be
tested as it is developed, with these tests based on the requirements for that incre-
ment. In extreme programming, tests are developed along with the requirements
before development starts. This helps the testers and developers to understand the
requirements and ensures that there are no delays as test cases are created.

When a plan-driven software process is used (e.g., for critical systems develop-
ment), testing is driven by a set of test plans. An independent team of testers works
from these pre-formulated test plans, which have been developed from the system
specification and design. Figure 2.7 illustrates how test plans are the link between
testing and development activities. This is sometimes called the V-model of develop-
ment (turn it on its side to see the V).

Acceptance testing is sometimes called ‘alpha testing’. Custom systems are
developed for a single client. The alpha testing process continues until the system
developer and the client agree that the delivered system is an acceptable implemen-
tation of the requirements.

When a system is to be marketed as a software product, a testing process called
‘beta testing’ is often used. Beta testing involves delivering a system to a number of
potential customers who agree to use that system. They report problems to the sys-
tem developers. This exposes the product to real use and detects errors that may not
have been anticipated by the system builders. After this feedback, the system is mod-
ified and released either for further beta testing or for general sale.
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Figure27  2-2.4 Software evolution

Testing phases The flexibility of software systems is one of the main reasons why more and more
in a plan-driven

software process software is being incorporated in large, complex systems. Once a decision has been
made to manufacture hardware, it is very expensive to make changes to the hardware
design. However, changes can be made to software at any time during or after the
system development. Even extensive changes are still much cheaper than correspon-
ding changes to system hardware.

Historically, there has always been a split between the process of software devel-
opment and the process of software evolution (software maintenance). People think
of software development as a creative activity in which a software system is devel-
oped from an initial concept through to a working system. However, they sometimes
think of software maintenance as dull and uninteresting. Although the costs of main-
tenance are often several times the initial development costs, maintenance processes
are sometimes considered to be less challenging than original software development.

This distinction between development and maintenance is increasingly irrelevant.
Hardly any software systems are completely new systems and it makes much more
sense to see development and maintenance as a continuum. Rather than two separate
processes, it is more realistic to think of software engineering as an evolutionary
process (Figure 2.8) where software is continually changed over its lifetime in
response to changing requirements and customer needs.

I XN Coping with change

Change is inevitable in all large software projects. The system requirements change
as the business procuring the system responds to external pressures and management
priorities change. As new technologies become available, new design and implemen-
tation possibilities emerge. Therefore whatever software process model is used, it is
essential that it can accommodate changes to the software being developed.
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Change adds to the costs of software development because it usually means that
work that has been completed has to be redone. This is called rework. For example, if
the relationships between the requirements in a system have been analyzed and new
requirements are then identified, some or all of the requirements analysis has to be
repeated. It may then be necessary to redesign the system to deliver the new require-
ments, change any programs that have been developed, and re-test the system.

There are two related approaches that may be used to reduce the costs of rework:

1. Change avoidance, where the software process includes activities that can antic-
ipate possible changes before significant rework is required. For example, a pro-
totype system may be developed to show some key features of the system to
customers. They can experiment with the prototype and refine their require-
ments before committing to high software production costs.

2. Change tolerance, where the process is designed so that changes can be accom-
modated at relatively low cost. This normally involves some form of incremen-
tal development. Proposed changes may be implemented in increments that
have not yet been developed. If this is impossible, then only a single increment
(a small part of the system) may have to be altered to incorporate the change.

In this section, I discuss two ways of coping with change and changing system
requirements. These are:

1. System prototyping, where a version of the system or part of the system is developed
quickly to check the customer’s requirements and the feasibility of some design
decisions. This supports change avoidance as it allows users to experiment with the
system before delivery and so refine their requirements. The number of require-
ments change proposals made after delivery is therefore likely to be reduced.

2. Incremental delivery, where system increments are delivered to the customer for
comment and experimentation. This supports both change avoidance and
change tolerance. It avoids the premature commitment to requirements for the
whole system and allows changes to be incorporated into later increments at rel-
atively low cost.

The notion of refactoring, namely improving the structure and organization of a
program, is also an important mechanism that supports change tolerance. I discuss
this in Chapter 3, which covers agile methods.
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A prototype is an initial version of a software system that is used to demonstrate
concepts, try out design options, and find out more about the problem and its possi-
ble solutions. Rapid, iterative development of the prototype is essential so that costs
are controlled and system stakeholders can experiment with the prototype early in
the software process.

A software prototype can be used in a software development process to help
anticipate changes that may be required:

1. In the requirements engineering process, a prototype can help with the elicita-
tion and validation of system requirements.

2. In the system design process, a prototype can be used to explore particular soft-
ware solutions and to support user interface design.

System prototypes allow users to see how well the system supports their work.
They may get new ideas for requirements, and find areas of strength and weakness in
the software. They may then propose new system requirements. Furthermore, as the
prototype is developed, it may reveal errors and omissions in the requirements that
have been proposed. A function described in a specification may seem useful and well
defined. However, when that function is combined with other functions, users often
find that their initial view was incorrect or incomplete. The system specification may
then be modified to reflect their changed understanding of the requirements.

A system prototype may be used while the system is being designed to carry out
design experiments to check the feasibility of a proposed design. For example, a
database design may be prototyped and tested to check that it supports efficient data
access for the most common user queries. Prototyping is also an essential part of the
user interface design process. Because of the dynamic nature of user interfaces, tex-
tual descriptions and diagrams are not good enough for expressing the user interface
requirements. Therefore, rapid prototyping with end-user involvement is the only
sensible way to develop graphical user interfaces for software systems.

A process model for prototype development is shown in Figure 2.9. The objec-
tives of prototyping should be made explicit from the start of the process. These may
be to develop a system to prototype the user interface, to develop a system to validate
functional system requirements, or to develop a system to demonstrate the feasibility
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of the application to managers. The same prototype cannot meet all objectives. If the
objectives are left unstated, management or end-users may misunderstand the func-
tion of the prototype. Consequently, they may not get the benefits that they expected
from the prototype development.

The next stage in the process is to decide what to put into and, perhaps more
importantly, what to leave out of the prototype system. To reduce prototyping costs
and accelerate the delivery schedule, you may leave some functionality out of the
prototype. You may decide to relax non-functional requirements such as response
time and memory utilization. Error handling and management may be ignored unless
the objective of the prototype is to establish a user interface. Standards of reliability
and program quality may be reduced.

The final stage of the process is prototype evaluation. Provision must be made
during this stage for user training and the prototype objectives should be used to
derive a plan for evaluation. Users need time to become comfortable with a new sys-
tem and to settle into a normal pattern of usage. Once they are using the system nor-
mally, they then discover requirements errors and omissions.

A general problem with prototyping is that the prototype may not necessarily be
used in the same way as the final system. The tester of the prototype may not be typ-
ical of system users. The training time during prototype evaluation may be insuffi-
cient. If the prototype is slow, the evaluators may adjust their way of working and
avoid those system features that have slow response times. When provided with bet-
ter response in the final system, they may use it in a different way.

Developers are sometimes pressured by managers to deliver throwaway proto-
types, particularly when there are delays in delivering the final version of the soft-
ware. However, this is usually unwise:

1. It may be impossible to tune the prototype to meet non-functional requirements,
such as performance, security, robustness, and reliability requirements, which
were ignored during prototype development.

2. Rapid change during development inevitably means that the prototype is undoc-
umented. The only design specification is the prototype code. This is not good
enough for long-term maintenance.

3. The changes made during prototype development will probably have degraded
the system structure. The system will be difficult and expensive to maintain.

4. Organizational quality standards are normally relaxed for prototype development.

Prototypes do not have to be executable to be useful. Paper-based mock-ups of
the system user interface (Rettig, 1994) can be effective in helping users refine an
interface design and work through usage scenarios. These are very cheap to develop
and can be constructed in a few days. An extension of this technique is a Wizard of
Oz prototype where only the user interface is developed. Users interact with this
interface but their requests are passed to a person who interprets them and outputs
the appropriate response.
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Incremental delivery

Incremental delivery (Figure 2.10) is an approach to software development where
some of the developed increments are delivered to the customer and deployed for use
in an operational environment. In an incremental delivery process, customers iden-
tify, in outline, the services to be provided by the system. They identify which of the
services are most important and which are least important to them. A number of
delivery increments are then defined, with each increment providing a sub-set of the
system functionality. The allocation of services to increments depends on the service
priority, with the highest-priority services implemented and delivered first.

Once the system increments have been identified, the requirements for the serv-
ices to be delivered in the first increment are defined in detail and that increment is
developed. During development, further requirements analysis for later increments
can take place but requirements changes for the current increment are not accepted.

Once an increment is completed and delivered, customers can put it into service.
This means that they take early delivery of part of the system functionality. They can
experiment with the system and this helps them clarify their requirements for later sys-
tem increments. As new increments are completed, they are integrated with existing
increments so that the system functionality improves with each delivered increment.

Incremental delivery has a number of advantages:

1. Customers can use the early increments as prototypes and gain experience that
informs their requirements for later system increments. Unlike prototypes, these
are part of the real system so there is no re-learning when the complete system is
available.

2. Customers do not have to wait until the entire system is delivered before they
can gain value from it. The first increment satisfies their most critical require-
ments so they can use the software immediately.

3. The process maintains the benefits of incremental development in that it should
be relatively easy to incorporate changes into the system.

4. As the highest-priority services are delivered first and increments then inte-
grated, the most important system services receive the most testing. This means
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2.3.3

that customers are less likely to encounter software failures in the most impor-
tant parts of the system.

However, there are problems with incremental delivery:

1. Most systems require a set of basic facilities that are used by different parts of the
system. As requirements are not defined in detail until an increment is to be
implemented, it can be hard to identify common facilities that are needed by all
increments.

2. TIterative development can also be difficult when a replacement system is being
developed. Users want all of the functionality of the old system and are often
unwilling to experiment with an incomplete new system. Therefore, getting use-
ful customer feedback is difficult.

3. The essence of iterative processes is that the specification is developed in conjunc-
tion with the software. However, this conflicts with the procurement model of
many organizations, where the complete system specification is part of the system
development contract. In the incremental approach, there is no complete system
specification until the final increment is specified. This requires a new form of
contract, which large customers such as government agencies may find difficult to
accommodate.

There are some types of system where incremental development and delivery is
not the best approach. These are very large systems where development may involve
teams working in different locations, some embedded systems where the software
depends on hardware development and some critical systems where all the require-
ments must be analyzed to check for interactions that may compromise the safety or
security of the system.

These systems, of course, suffer from the same problems of uncertain and chang-
ing requirements. Therefore, to address these problems and get some of the benefits
of incremental development, a process may be used in which a system prototype is
developed iteratively and used as a platform for experiments with the system
requirements and design. With the experience gained from the prototype, definitive
requirements can then be agreed.

Boehm’s spiral model

A risk-driven software process framework (the spiral model) was proposed by
Boehm (1988). This is shown in Figure 2.11. Here, the software process is repre-
sented as a spiral, rather than a sequence of activities with some backtracking from
one activity to another. Each loop in the spiral represents a phase of the software
process. Thus, the innermost loop might be concerned with system feasibility, the
next loop with requirements definition, the next loop with system design, and so on.
The spiral model combines change avoidance with change tolerance. It assumes that
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changes are a result of project risks and includes explicit risk management activities
to reduce these risks.

Each loop in the spiral is split into four sectors:

Objective setting Specific objectives for that phase of the project are defined.
Constraints on the process and the product are identified and a detailed manage-
ment plan is drawn up. Project risks are identified. Alternative strategies,
depending on these risks, may be planned.

Risk assessment and reduction For each of the identified project risks, a detailed
analysis is carried out. Steps are taken to reduce the risk. For example, if there is a
risk that the requirements are inappropriate, a prototype system may be developed.

Development and validation After risk evaluation, a development model for the
system is chosen. For example, throwaway prototyping may be the best devel-
opment approach if user interface risks are dominant. If safety risks are the main
consideration, development based on formal transformations may be the most
appropriate process, and so on. If the main identified risk is sub-system integra-
tion, the waterfall model may be the best development model to use.

Planning The project is reviewed and a decision made whether to continue with
a further loop of the spiral. If it is decided to continue, plans are drawn up for the
next phase of the project.
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The main difference between the spiral model and other software process models is
its explicit recognition of risk. A cycle of the spiral begins by elaborating objectives
such as performance and functionality. Alternative ways of achieving these objec-
tives, and dealing with the constraints on each of them, are then enumerated. Each
alternative is assessed against each objective and sources of project risk are identi-
fied. The next step is to resolve these risks by information-gathering activities such
as more detailed analysis, prototyping, and simulation.

Once risks have been assessed, some development is carried out, followed by a plan-
ning activity for the next phase of the process. Informally, risk simply means something
that can go wrong. For example, if the intention is to use a new programming language,
a risk is that the available compilers are unreliable or do not produce sufficiently effi-
cient object code. Risks lead to proposed software changes and project problems such as
schedule and cost overrun, so risk minimization is a very important project management
activity. Risk management, an essential part of project management, is covered in
Chapter 22.

Y The Rational Unified Process

The Rational Unified Process (RUP) (Krutchen, 2003) is an example of a modern
process model that has been derived from work on the UML and the associated Unified
Software Development Process (Rumbaugh, et al., 1999; Arlow and Neustadt, 2005).
I have included a description here, as it is a good example of a hybrid process model.
It brings together elements from all of the generic process models (Section 2.1), illus-
trates good practice in specification and design (Section 2.2) and supports prototyping
and incremental delivery (Section 2.3).

The RUP recognizes that conventional process models present a single view of
the process. In contrast, the RUP is normally described from three perspectives:

1. A dynamic perspective, which shows the phases of the model over time.
2. A static perspective, which shows the process activities that are enacted.

3. A practice perspective, which suggests good practices to be used during the process.

Most descriptions of the RUP attempt to combine the static and dynamic perspec-
tives in a single diagram (Krutchen, 2003). I think that makes the process harder to
understand, so I use separate descriptions of each of these perspectives.

The RUP is a phased model that identifies four discrete phases in the software
process. However, unlike the waterfall model where phases are equated with process
activities, the phases in the RUP are more closely related to business rather than
technical concerns. Figure 2.11 shows the phases in the RUP. These are:

1. Inception The goal of the inception phase is to establish a business case for the
system. You should identify all external entities (people and systems) that will
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interact with the system and define these interactions. You then use this infor-
mation to assess the contribution that the system makes to the business. If this
contribution is minor, then the project may be cancelled after this phase.

2. Elaboration The goals of the elaboration phase are to develop an understanding
of the problem domain, establish an architectural framework for the system,
develop the project plan, and identify key project risks. On completion of this
phase you should have a requirements model for the system, which may be a set
of UML use-cases, an architectural description, and a development plan for the
software.

3. Construction The construction phase involves system design, programming, and
testing. Parts of the system are developed in parallel and integrated during this
phase. On completion of this phase, you should have a working software system
and associated documentation that is ready for delivery to users.

4. Transition The final phase of the RUP is concerned with moving the system
from the development community to the user community and making it work in
a real environment. This is something that is ignored in most software process
models but is, in fact, an expensive and sometimes problematic activity. On
completion of this phase, you should have a documented software system that is
working correctly in its operational environment.

Iteration within the RUP is supported in two ways. Each phase may be enacted in
an iterative way with the results developed incrementally. In addition, the whole set
of phases may also be enacted incrementally, as shown by the looping arrow from
Transition to Inception in Figure 2.12.

The static view of the RUP focuses on the activities that take place during the
development process. These are called workflows in the RUP description. There are
six core process workflows identified in the process and three core supporting work-
flows. The RUP has been designed in conjunction with the UML, so the workflow
description is oriented around associated UML models such as sequence models,
object models, etc. The core engineering and support workflows are described in
Figure 2.13.

The advantage in presenting dynamic and static views is that phases of the devel-
opment process are not associated with specific workflows. In principle at least, all
of the RUP workflows may be active at all stages of the process. In the early phases
of the process, most effort will probably be spent on workflows such as business
modelling and requirements and, in the later phases, in testing and deployment.
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I

Business modelling The business processes are modelled using business use cases.

Requirements Actors who interact with the system are identified and use
cases are developed to model the system requirements.

Analysis and design A design model is created and documented using architectural
models, component models, object models, and sequence
models.

Implementation The components in the system are implemented and

structured into implementation sub-systems. Automatic code
generation from design models helps accelerate this process.

Testing Testing is an iterative process that is carried out in conjunction
with implementation. System testing follows the completion of
the implementation.

Deployment A product release is created, distributed to users, and installed
in their workplace.

Configuration and change management This supporting workflow manages changes to the system (see
Chapter 25).
Project management This supporting workflow manages the system development

(see Chapters 22 and 23).

Environment This workflow is concerned with making appropriate software
tools available to the software development team.

Figure 2.13 Static The practice perspective on the RUP describes good software engineering prac-
workflows in the tices that are recommended for use in systems development. Six fundamental best

Rational Unified practices are recommended:
Process

1. Develop software iteratively Plan increments of the system based on customer
priorities and develop the highest-priority system features early in the develop-
ment process.

2. Manage requirements Explicitly document the customer’s requirements and
keep track of changes to these requirements. Analyze the impact of changes on
the system before accepting them.

3. Use component-based architectures Structure the system architecture into com-
ponents, as discussed earlier in this chapter.

4. Visually model software Use graphical UML models to present static and
dynamic views of the software.

5. Verify software quality Ensure that the software meets the organizational quality
standards.
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6. Control changes to software Manage changes to the software using a change
management system and configuration management procedures and tools.

The RUP is not a suitable process for all types of development, e.g., embedded
software development. However, it does represent an approach that potentially com-
bines the three generic process models discussed in Section 2.1. The most important
innovations in the RUP are the separation of phases and workflows, and the recogni-
tion that deploying software in a user’s environment is part of the process. Phases are
dynamic and have goals. Workflows are static and are technical activities that are not
associated with a single phase but may be used throughout the development to
achieve the goals of each phase.

KEY POINTS

Software processes are the activities involved in producing a software system. Software process
models are abstract representations of these processes.

General process models describe the organization of software processes. Examples of these general
models include the waterfall model, incremental development, and reuse-oriented development.

Requirements engineering is the process of developing a software specification. Specifications
are intended to communicate the system needs of the customer to the system developers.

Design and implementation processes are concerned with transforming a requirements
specification into an executable software system. Systematic design methods may be used as
part of this transformation.

Software validation is the process of checking that the system conforms to its specification and
that it meets the real needs of the users of the system.

Software evolution takes place when you change existing software systems to meet new
requirements. Changes are continuous and the software must evolve to remain useful.

Processes should include activities to cope with change. This may involve a prototyping phase
that helps avoid poor decisions on requirements and design. Processes may be structured for
iterative development and delivery so that changes may be made without disrupting the system
as a whole.

The Rational Unified Process is a modern generic process model that is organized into phases
(inception, elaboration, construction, and transition) but separates activities (requirements,
analysis, and design, etc.) from these phases.
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FURTHER READING

Managing Software Quality and Business Risk. This is primarily a book about software management
but it includes an excellent chapter (Chapter 4) on process models. (M. Ould, John Wiley and Sons
Ltd, 1999.)

Process Models in Software Engineering. This is an excellent overview of a wide range of software
engineering process models that have been proposed. (W. Scacchi, Encyclopaedia of Software
Engineering, ed. ).). Marciniak, John Wiley and Sons, 2001.) http://www.ics.uci.edu/~wscacchi/
Papers/SE-Encyc/Process-Models-SE-Encyc.pdf.

The Rational Unified Process—An Introduction (3rd edition). This is the most readable book
available on the RUP at the time of this writing. Krutchen describes the process well, but

I would like to have seen more on the practical difficulties of using the process. (P. Krutchen,
Addison-Wesley, 2003.)

EXERCISES

2.1. Giving reasons for your answer based on the type of system being developed, suggest the
most appropriate generic software process model that might be used as a basis for managing
the development of the following systems:

A system to control anti-lock braking in a car
Avirtual reality system to support software maintenance
A university accounting system that replaces an existing system

An interactive travel planning system that helps users plan journeys with the lowest
environmental impact

2.2. Explain why incremental development is the most effective approach for developing business
software systems. Why is this model less appropriate for real-time systems engineering?

2.3. Consider the reuse-based process model shown in Figure 2.3. Explain why it is essential to
have two separate requirements engineering activities in the process.

2.4, Suggest why it is important to make a distinction between developing the user
requirements and developing system requirements in the requirements engineering
process.

2.5. Describe the main activities in the software design process and the outputs of these
activities. Using a diagram, show possible relationships between the outputs of these
activities.

2.6. Explain why change is inevitable in complex systems and give examples (apart from
prototyping and incremental delivery) of software process activities that help predict changes
and make the software being developed more resilient to change.
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2.7. Explain why systems developed as prototypes should not normally be used as production
systems.

2.8. Explain why Boehm’s spiral model is an adaptable model that can support both change
avoidance and change tolerance activities. In practice, this model has not been widely used.
Suggest why this might be the case.

2.9. What are the advantages of providing static and dynamic views of the software process as in
the Rational Unified Process?

2.10. Historically, the introduction of technology has caused profound changes in the labor market and,
temporarily at least, displaced people from jobs. Discuss whether the introduction of extensive
process automation is likely to have the same consequences for software engineers. If you don’t
think it will, explain why not. If you think that it will reduce job opportunities, is it ethical for the
engineers affected to passively or actively resist the introduction of this technology?

REFERENCES

Arlow, ). and Neustadt, I. (2005). UML 2 and the Unified Process: Practical Object-Oriented
Analysis and Design (2nd Edition). Boston: Addison-Wesley.

Boehm, B. and Turner, R. (2003). Balancing Agility and Discipline: A Guide for the Perplexed.
Boston: Addison-Wesley.

Boehm, B. W. (1988). ‘A Spiral Model of Software Development and Enhancement’. /EEE
Computer, 21 (5), 61-72.

Budgen, D. (2003). Software Design (2nd Edition). Harlow, UK.: Addison-Wesley.

Krutchen, P. (2003). The Rational Unified Process—An Introduction (3rd Edition). Reading, MA:
Addison-Wesley.

Massol, V. and Husted, T. (2003). JUnit in Action. Greenwich, Conn.: Manning Publications Co.
Rettig, M. (1994). ‘Practical Programmer: Prototyping for Tiny Fingers’. Comm. ACM, 37 (4), 21-7.

Royce, W. W. (1970). ‘Managing the Development of Large Software Systems: Concepts and
Techniques’. IEEE WESTCON, Los Angeles CA: 1-9.

Rumbaugh, ., Jacobson, I. and Booch, G. (1999). The Unified Software Development Process.
Reading, Mass.: Addison-Wesley.

Schmidt, D. C. (2006). ‘Model-Driven Engineering’. IEEE Computer, 39 (2), 25-31.
Schneider, S. (2001). The B Method. Houndmills, UK: Palgrave Macmillan.

Wordsworth, ). (1996). Software Engineering with B. Wokingham: Addison-Wesley.



A—gile software
development

Objectives

The objective of this chapter is to introduce you to agile software
development methods. When you have read the chapter, you will:

m understand the rationale for agile software development methods,
the agile manifesto, and the differences between agile and plan-
driven development;

m know the key practices in extreme programming and how these
relate to the general principles of agile methods;

m understand the Scrum approach to agile project management;

m be aware of the issues and problems of scaling agile development
methods to the development of large software systems.

Contents

3.1 Agile methods

3.2 Plan-driven and agile development
3.3 Extreme programming

3.4 Agile project management

3.5 Scaling agile methods
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Businesses now operate in a global, rapidly changing environment. They have to
respond to new opportunities and markets, changing economic conditions, and the
emergence of competing products and services. Software is part of almost all busi-
ness operations so new software is developed quickly to take advantage of new
opportunities and to respond to competitive pressure. Rapid development and deliv-
ery is therefore now often the most critical requirement for software systems. In fact,
many businesses are willing to trade off software quality and compromise on
requirements to achieve faster deployment of the software that they need.

Because these businesses are operating in a changing environment, it is often prac-
tically impossible to derive a complete set of stable software requirements. The initial
requirements inevitably change because customers find it impossible to predict how a
system will affect working practices, how it will interact with other systems, and what
user operations should be automated. It may only be after a system has been delivered
and users gain experience with it that the real requirements become clear. Even then,
the requirements are likely to change quickly and unpredictably due to external fac-
tors. The software may then be out of date when it is delivered.

Software development processes that plan on completely specifying the requirements
and then designing, building, and testing the system are not geared to rapid software
development. As the requirements change or as requirements problems are discovered,
the system design or implementation has to be reworked and retested. As a consequence,
a conventional waterfall or specification-based process is usually prolonged and the final
software is delivered to the customer long after it was originally specified.

For some types of software, such as safety-critical control systems, where a com-
plete analysis of the system is essential, a plan-driven approach is the right one.
However, in a fast-moving business environment, this can cause real problems. By
the time the software is available for use, the original reason for its procurement may
have changed so radically that the software is effectively useless. Therefore, for busi-
ness systems in particular, development processes that focus on rapid software
development and delivery are essential.

The need for rapid system development and processes that can handle changing
requirements has been recognized for some time. IBM introduced incremental
development in the 1980s (Mills et al., 1980). The introduction of so-called fourth-
generation languages, also in the 1980s, supported the idea of quickly developing
and delivering software (Martin, 1981). However, the notion really took off in the
late 1990s with the development of the notion of agile approaches such as DSDM
(Stapleton, 1997), Scrum (Schwaber and Beedle, 2001), and extreme programming
(Beck, 1999; Beck, 2000).

Rapid software development processes are designed to produce useful software
quickly. The software is not developed as a single unit but as a series of increments, with
each increment including new system functionality. Although there are many
approaches to rapid software development, they share some fundamental characteristics:

1. The processes of specification, design, and implementation are interleaved.
There is no detailed system specification, and design documentation is mini-
mized or generated automatically by the programming environment used to
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implement the system. The user requirements document only defines the most
important characteristics of the system.

2. The system is developed in a series of versions. End-users and other system
stakeholders are involved in specifying and evaluating each version. They may
propose changes to the software and new requirements that should be imple-
mented in a later version of the system.

3. System user interfaces are often developed using an interactive development
system that allows the interface design to be quickly created by drawing and plac-
ing icons on the interface. The system may then generate a web-based interface for
a browser or an interface for a specific platform such as Microsoft Windows.

Agile methods are incremental development methods in which the increments are
small and, typically, new releases of the system are created and made available to cus-
tomers every two or three weeks. They involve customers in the development process
to get rapid feedback on changing requirements. They minimize documentation by
using informal communications rather than formal meetings with written documents.

BN Agile methods

In the 1980s and early 1990s, there was a widespread view that the best way to
achieve better software was through careful project planning, formalized quality
assurance, the use of analysis and design methods supported by CASE tools, and
controlled and rigorous software development processes. This view came from the
software engineering community that was responsible for developing large, long-
lived software systems such as aerospace and government systems.

This software was developed by large teams working for different companies. Teams
were often geographically dispersed and worked on the software for long periods of
time. An example of this type of software is the control systems for a modern aircraft,
which might take up to 10 years from initial specification to deployment. These plan-
driven approaches involve a significant overhead in planning, designing, and document-
ing the system. This overhead is justified when the work of multiple development teams
has to be coordinated, when the system is a critical system, and when many different
people will be involved in maintaining the software over its lifetime.

However, when this heavyweight, plan-driven development approach is applied
to small and medium-sized business systems, the overhead involved is so large that it
dominates the software development process. More time is spent on how the system
should be developed than on program development and testing. As the system
requirements change, rework is essential and, in principle at least, the specification
and design has to change with the program.

Dissatisfaction with these heavyweight approaches to software engineering led a
number of software developers in the 1990s to propose new ‘agile methods’. These
allowed the development team to focus on the software itself rather than on its design
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and documentation. Agile methods universally rely on an incremental approach to soft-
ware specification, development, and delivery. They are best suited to application devel-
opment where the system requirements usually change rapidly during the development
process. They are intended to deliver working software quickly to customers, who can
then propose new and changed requirements to be included in later iterations of the sys-
tem. They aim to cut down on process bureaucracy by avoiding work that has dubious
long-term value and eliminating documentation that will probably never be used.

The philosophy behind agile methods is reflected in the agile manifesto that was
agreed on by many of the leading developers of these methods. This manifesto states:

We are uncovering better ways of developing software by doing it and helping
others do it. Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the
left more.

Probably the best-known agile method is extreme programming (Beck, 1999;
Beck, 2000), which I describe later in this chapter. Other agile approaches include
Scrum (Cohn, 2009; Schwaber, 2004; Schwaber and Beedle, 2001), Crystal
(Cockburn, 2001; Cockburn, 2004), Adaptive Software Development (Highsmith,
2000), DSDM (Stapleton, 1997; Stapleton, 2003), and Feature Driven Development
(Palmer and Felsing, 2002). The success of these methods has led to some integration
with more traditional development methods based on system modelling, resulting in
the notion of agile modelling (Ambler and Jeffries, 2002) and agile instantiations of
the Rational Unified Process (Larman, 2002).

Although these agile methods are all based around the notion of incremental devel-
opment and delivery, they propose different processes to achieve this. However, they
share a set of principles, based on the agile manifesto, and so have much in common.
These principles are shown in Figure 3.1. Different agile methods instantiate these prin-
ciples in different ways and I don’t have space to discuss all agile methods. Instead, I
focus on two of the most widely used methods: extreme programming (Section 3.3) and
Scrum (Section 3.4).

Agile methods have been very successful for some types of system development:

1. Product development where a software company is developing a small or
medium-sized product for sale.

2. Custom system development within an organization, where there is a clear com-
mitment from the customer to become involved in the development process and
where there are not a lot of external rules and regulations that affect the software.
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Cprde o

Customer involvement Customers should be closely involved throughout the development process.
Their role is provide and prioritize new system requirements and to evaluate
the iterations of the system.

Incremental delivery The software is developed in increments with the customer specifying the
requirements to be included in each increment.

People not process The skills of the development team should be recognized and exploited. Team
members should be left to develop their own ways of working without
prescriptive processes.

Embrace change Expect the system requirements to change and so design the system to
accommodate these changes.

Maintain simplicity Focus on simplicity in both the software being developed and in the
development process. Wherever possible, actively work to eliminate complexity
from the system.

m The As I discuss in the final section of this chapter, the success of agile methods has
principles of agile meant that there is a lot of interest in using these methods for other types of software
methods development. However, because of their focus on small, tightly integrated teams,
there are problems in scaling them to large systems. There have also been experi-
ments in using agile approaches for critical systems engineering (Drobna et al.,
2004). However, because of the need for security, safety, and dependability analysis
in critical systems, agile methods require significant modification before they can be
routinely used for critical systems engineering.
In practice, the principles underlying agile methods are sometimes difficult to
realize:

1. Although the idea of customer involvement in the development process is an
attractive one, its success depends on having a customer who is willing and able
to spend time with the development team and who can represent all system
stakeholders. Frequently, the customer representatives are subject to other pres-
sures and cannot take full part in the software development.

2. Individual team members may not have suitable personalities for the intense
involvement that is typical of agile methods, and therefore not interact well with
other team members.

3. Prioritizing changes can be extremely difficult, especially in systems for which
there are many stakeholders. Typically, each stakeholder gives different priori-
ties to different changes.

4. Maintaining simplicity requires extra work. Under pressure from delivery
schedules, the team members may not have time to carry out desirable system
simplifications.
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5. Many organizations, especially large companies, have spent years changing
their culture so that processes are defined and followed. It is difficult for them to
move to a working model in which processes are informal and defined by devel-
opment teams.

Another non-technical problem—that is a general problem with incremental
development and delivery—occurs when the system customer uses an outside organ-
ization for system development. The software requirements document is usually part
of the contract between the customer and the supplier. Because incremental specifi-
cation is inherent in agile methods, writing contracts for this type of development
may be difficult.

Consequently, agile methods have to rely on contracts in which the customer pays
for the time required for system development rather than the development of a spe-
cific set of requirements. So long as all goes well, this benefits both the customer and
the developer. However, if problems arise then there may be difficult disputes over
who is to blame and who should pay for the extra time and resources required to
resolve the problems.

Most books and papers that describe agile methods and experiences with agile
methods talk about the use of these methods for new systems development.
However, as I explain in Chapter 9, a huge amount of software engineering effort
goes into the maintenance and evolution of existing software systems. There are only
a small number of experience reports on using agile methods for software mainte-
nance (Poole and Huisman, 2001). There are two questions that should be consid-
ered when considering agile methods and maintenance:

1. Are systems that are developed using an agile approach maintainable, given the
emphasis in the development process of minimizing formal documentation?

2. Can agile methods be used effectively for evolving a system in response to cus-
tomer change requests?

Formal documentation is supposed to describe the system and so make it easier
for people changing the system to understand. In practice, however, formal docu-
mentation is often not kept up to date and so does not accurately reflect the program
code. For this reason, agile methods enthusiasts argue that it is a waste of time to
write this documentation and that the key to implementing maintainable software is
to produce high-quality, readable code. Agile practices therefore emphasize the
importance of writing well-structured code and investing effort in code improve-
ment. Therefore, the lack of documentation should not be a problem in maintaining
systems developed using an agile approach.

However, my experience of system maintenance suggests that the key document
is the system requirements document, which tells the software engineer what the
system is supposed to do. Without such knowledge, it is difficult to assess the impact
of proposed system changes. Many agile methods collect requirements informally
and incrementally and do not create a coherent requirements document. In this
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respect, the use of agile methods is likely to make subsequent system maintenance
more difficult and expensive.

Agile practices, used in the maintenance process itself, are likely to be effective,
whether or not an agile approach has been used for system development. Incremental
delivery, design for change and maintaining simplicity all make sense when software
is being changed. In fact, you can think of an agile development process as a process
of software evolution.

However, the main difficulty after software delivery is likely to be keeping cus-
tomers involved in the process. Although a customer may be able to justify the full-
time involvement of a representative during system development, this is less likely
during maintenance where changes are not continuous. Customer representatives are
likely to lose interest in the system. Therefore, it is likely that alternative mecha-
nisms, such as change proposals, discussed in Chapter 25, will be required to create
the new system requirements.

The other problem that is likely to arise is maintaining continuity of the develop-
ment team. Agile methods rely on team members understanding aspects of the
system without having to consult documentation. If an agile development team is
broken up, then this implicit knowledge is lost and it is difficult for new team mem-
bers to build up the same understanding of the system and its components.

Supporters of agile methods have been evangelical in promoting their use and
have tended to overlook their shortcomings. This has prompted an equally extreme
response, which, in my view, exaggerates the problems with this approach (Stephens
and Rosenberg, 2003). More reasoned critics such as DeMarco and Boehm
(DeMarco and Boehm, 2002) highlight both the advantages and disadvantages of
agile methods. They propose a hybrid approach where agile methods incorporate
some techniques from plan-driven development may be the best way forward.

Y Plan-driven and agile development

Agile approaches to software development consider design and implementation to be
the central activities in the software process. They incorporate other activities, such as
requirements elicitation and testing, into design and implementation. By contrast, a
plan-driven approach to software engineering identifies separate stages in the soft-
ware process with outputs associated with each stage. The outputs from one stage are
used as a basis for planning the following process activity. Figure 3.2 shows the dis-
tinctions between plan-driven and agile approaches to system specification.

In a plan-driven approach, iteration occurs within activities with formal docu-
ments used to communicate between stages of the process. For example, the require-
ments will evolve and, ultimately, a requirements specification will be produced.
This is then an input to the design and implementation process. In an agile approach,
iteration occurs across activities. Therefore, the requirements and the design are
developed together, rather than separately.
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Figure 3.2 Plan-driven
and agile specification
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A plan-driven software process can support incremental development and deliv-
ery. It is perfectly feasible to allocate requirements and plan the design and develop-
ment phase as a series of increments. An agile process is not inevitably code-focused
and it may produce some design documentation. As I discuss in the following sec-
tion, the agile development team may decide to include a documentation ‘spike’,
where, instead of producing a new version of a system, the team produce system
documentation.

In fact, most software projects include practices from plan-driven and agile
approaches. To decide on the balance between a plan-based and an agile approach,
you have to answer a range of technical, human, and organizational questions:

1. Is it important to have a very detailed specification and design before moving to
implementation? If so, you probably need to use a plan-driven approach.

2. Is an incremental delivery strategy, where you deliver the software to customers
and get rapid feedback from them, realistic? If so, consider using agile methods.

3. How large is the system that is being developed? Agile methods are most effec-
tive when the system can be developed with a small co-located team who can
communicate informally. This may not be possible for large systems that require
larger development teams so a plan-driven approach may have to be used.

4. What type of system is being developed? Systems that require a lot of analysis
before implementation (e.g., real-time system with complex timing require-
ments) usually need a fairly detailed design to carry out this analysis. A plan-
driven approach may be best in those circumstances.

5. What is the expected system lifetime? Long-lifetime systems may require more
design documentation to communicate the original intentions of the system
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10.

developers to the support team. However, supporters of agile methods rightly
argue that documentation is frequently not kept up to date and it is not of much
use for long-term system maintenance.

What technologies are available to support system development? Agile methods
often rely on good tools to keep track of an evolving design. If you are develop-
ing a system using an IDE that does not have good tools for program visualiza-
tion and analysis, then more design documentation may be required.

. How is the development team organized? If the development team is distributed

or if part of the development is being outsourced, then you may need to develop
design documents to communicate across the development teams. You may
need to plan in advance what these are.

Are there cultural issues that may affect the system development? Traditional
engineering organizations have a culture of plan-based development, as this is
the norm in engineering. This usually requires extensive design documentation,
rather than the informal knowledge used in agile processes.

How good are the designers and programmers in the development team? It is
sometimes argued that agile methods require higher skill levels than plan-based
approaches in which programmers simply translate a detailed design into code.
If you have a team with relatively low skill levels, you may need to use the best
people to develop the design, with others responsible for programming.

Is the system subject to external regulation? If a system has to be approved by an
external regulator (e.g., the Federal Aviation Authority [FAA] approve software
that is critical to the operation of an aircraft) then you will probably be required
to produce detailed documentation as part of the system safety case.

In reality, the issue of whether a project can be labelled as plan-driven or agile is

not very important. Ultimately, the primary concern of buyers of a software system
is whether or not they have an executable software system that meets their needs and
does useful things for the individual user or the organization. In practice, many com-
panies who claim to have used agile methods have adopted some agile practices and
have integrated these with their plan-driven processes.

BEEN Extreme programming

Extreme programming (XP) is perhaps the best known and most widely used of the
agile methods. The name was coined by Beck (2000) because the approach was
developed by pushing recognized good practice, such as iterative development, to
‘extreme’ levels. For example, in XP, several new versions of a system may be devel-
oped by different programmers, integrated and tested in a day.



3.3 Extreme programming 65

Figure 3.3 The extreme
programming release
cycle
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In extreme programming, requirements are expressed as scenarios (called user
stories), which are implemented directly as a series of tasks. Programmers work in
pairs and develop tests for each task before writing the code. All tests must be suc-
cessfully executed when new code is integrated into the system. There is a short time
gap between releases of the system. Figure 3.3 illustrates the XP process to produce
an increment of the system that is being developed.

Extreme programming involves a number of practices, summarized in Figure 3.4,
which reflect the principles of agile methods:

1. Incremental development is supported through small, frequent releases of the
system. Requirements are based on simple customer stories or scenarios that are
used as a basis for deciding what functionality should be included in a system
increment.

Customer involvement is supported through the continuous engagement of the
customer in the development team. The customer representative takes part in the
development and is responsible for defining acceptance tests for the system.

People, not process, are supported through pair programming, collective owner-
ship of the system code, and a sustainable development process that does not
involve excessively long working hours.

Change is embraced through regular system releases to customers, test-first
development, refactoring to avoid code degeneration, and continuous integra-
tion of new functionality.

Maintaining simplicity is supported by constant refactoring that improves code
quality and by using simple designs that do not unnecessarily anticipate future
changes to the system.

In an XP process, customers are intimately involved in specifying and prioritizing
system requirements. The requirements are not specified as lists of required system
functions. Rather, the system customer is part of the development team and discusses
scenarios with other team members. Together, they develop a ‘story card’ that encap-
sulates the customer needs. The development team then aims to implement that sce-
nario in a future release of the software. An example of a story card for the mental
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Incremental planning

Small releases

Simple design

Requirements are recorded on Story Cards and the Stories to be included in a
release are determined by the time available and their relative priority. The
developers break these Stories into development ‘Tasks”. See Figures 3.5 and 3.6.

The minimal useful set of functionality that provides business value is developed
first. Releases of the system are frequent and incrementally add functionality to
the first release.

Enough design is carried out to meet the current requirements and no more.

Test-first development An automated unit test framework is used to write tests for a new piece of

Refactoring

Pair programming

Collective ownership

functionality before that functionality itself is implemented.

All developers are expected to refactor the code continuously as soon as possible
code improvements are found. This keeps the code simple and maintainable.

Developers work in pairs, checking each other’s work and providing the support
to always do a good job.

The pairs of developers work on all areas of the system, so that no islands of
expertise develop and all the developers take responsibility for all of the code.
Anyone can change anything.

Continuous integration As soon as the work on a task is complete, it is integrated into the whole system.

Sustainable pace

On-site customer

After any such integration, all the unit tests in the system must pass.

Large amounts of overtime are not considered acceptable as the net effect is
often to reduce code quality and medium term productivity

A representative of the end-user of the system (the Customer) should be
available full time for the use of the XP team. In an extreme programming
process, the customer is a member of the development team and is responsible
for bringing system requirements to the team for implementation.

Figure 3.4 Extreme
programming practices

health care patient management system is shown in Figure 3.5. This is a short
description of a scenario for prescribing medication for a patient.

The story cards are the main inputs to the XP planning process or the ‘planning
game’. Once the story cards have been developed, the development team breaks these
down into tasks (Figure 3.6) and estimates the effort and resources required for imple-
menting each task. This usually involves discussions with the customer to refine the
requirements. The customer then prioritizes the stories for implementation, choosing
those stories that can be used immediately to deliver useful business support. The
intention is to identify useful functionality that can be implemented in about two
weeks, when the next release of the system is made available to the customer.

Of course, as requirements change, the unimplemented stories change or may be
discarded. If changes are required for a system that has already been delivered, new
story cards are developed and again, the customer decides whether these changes
should have priority over new functionality.
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Figure 3.5 A
‘prescribing medication’
story.

Kate is a doctor who wishes to prescribe medication for a patient attending a clinic.
The patient record is already displayed on her computer so she clicks on the
medication field and can select current medication’, ‘new medication’ or ‘formulary’.

If she selects ‘current medication’, the system asks her to check the dose. If she
wants to change the dose, she enters the dose and then confirms the prescription.

If she chooses 'new medication’, the system assumes that she knows which
medication to prescribe. She types the first few letters of the drug name. The system
displays a list of possible drugs starting with these letters. She chooses the required
medication and the system responds by asking her to check that the medication
selected is correct. She enters the dose and then confirms the prescription.

If she chooses ‘formulary’, the system displays a search box for the approved
formulary. She can then search for the drug required. She selects a drug and is asked
to check that the medication is correct. She enters the dose and then confirms the
prescription.

The system always checks that the dose is within the approved range. If it isn't, Kate
is asked to change the dose.

After Kate has confirmed the prescription, it will be displayed for checking. She either
clicks ‘OK’ or ‘Change’. If she clicks ‘OK’, the prescription is recorded on the audit
database. If she clicks on ‘Change’, she reenters the ‘Prescribing medication’ process.

Sometimes, during the planning game, questions that cannot be easily answered
come to light and additional work is required to explore possible solutions. The team
may carry out some prototyping or trial development to understand the problem and
solution. In XP terms, this is a ‘spike’, an increment where no programming is done.
There may also be ‘spikes’ to design the system architecture or to develop system
documentation.

Extreme programming takes an ‘extreme’ approach to incremental development.
New versions of the software may be built several times per day and releases are
delivered to customers roughly every two weeks. Release deadlines are never
slipped; if there are development problems, the customer is consulted and function-
ality is removed from the planned release.

When a programmer builds the system to create a new version, he or she must run
all existing automated tests as well as the tests for the new functionality. The new
build of the software is accepted only if all tests execute successfully. This then
becomes the basis for the next iteration of the system.

A fundamental precept of traditional software engineering is that you should
design for change. That is, you should anticipate future changes to the software and
design it so that these changes can be easily implemented. Extreme programming,
however, has discarded this principle on the basis that designing for change is often
wasted effort. It isn’t worth taking time to add generality to a program to cope with
change. The changes anticipated often never materialize and completely different
change requests may actually be made. Therefore, the XP approach accepts that
changes will happen and reorganize the software when these changes actually occur.
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Figure 3.6 Examples
of task cards for
prescribing medication.

Dose checking is a safety precaution to check that
the doctor has not prescribed a dangerously small
or large dose.

Using the formulary ID for the generic drug name,

look up the formulary and retrieve the recommended
maximum and minimum dose.

Check the prescribed dose against the minimum and
L maximum. If outside the range, issue an error
message saying that the dose is too high or too low.

If within the range, enable the ‘Confirm’ button.

A general problem with incremental development is that it tends to degrade the
software structure, so changes to the software become harder and harder to imple-
ment. Essentially, the development proceeds by finding workarounds to problems,
with the result that code is often duplicated, parts of the software are reused in inap-
propriate ways, and the overall structure degrades as code is added to the system.

Extreme programming tackles this problem by suggesting that the software
should be constantly refactored. This means that the programming team look for
possible improvements to the software and implement them immediately. When a
team member sees code that can be improved, they make these improvements even
in situations where there is no immediate need for them. Examples of refactoring
include the reorganization of a class hierarchy to remove duplicate code, the tidy-
ing up and renaming of attributes and methods, and the replacement of code with
calls to methods defined in a program library. Program development environments,
such as Eclipse (Carlson, 2005), include tools for refactoring which simplify the
process of finding dependencies between code sections and making global code
modifications.

In principle then, the software should always be easy to understand and change as
new stories are implemented. In practice, this is not always the case. Sometimes
development pressure means that refactoring is delayed because the time is devoted
to the implementation of new functionality. Some new features and changes cannot
readily be accommodated by code-level refactoring and require the architecture of
the system to be modified.

In practice, many companies that have adopted XP do not use all of the extreme
programming practices listed in Figure 3.4. They pick and choose according to their
local ways of working. For example, some companies find pair programming help-
ful; others prefer to use individual programming and reviews. To accommodate dif-
ferent levels of skill, some programmers don’t do refactoring in parts of the system
they did not develop, and conventional requirements may be used rather than user
stories. However, most companies who have adopted an XP variant use small
releases, test-first development, and continuous integration.
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3.3.1 Testing in XP

As I discussed in the introduction to this chapter, one of the important differences
between incremental development and plan-driven development is in the way that
the system is tested. With incremental development, there is no system specification
that can be used by an external testing team to develop system tests. As a conse-
quence, some approaches to incremental development have a very informal testing
process, in comparison with plan-driven testing.

To avoid some of the problems of testing and system validation, XP emphasizes
the importance of program testing. XP includes an approach to testing that reduces
the chances of introducing undiscovered errors into the current version of the system.

The key features of testing in XP are:

1. Test-first development,
incremental test development from scenarios,

user involvement in the test development and validation, and

> » D

the use of automated testing frameworks.

Test-first development is one of the most important innovations in XP. Instead of
writing some code and then writing tests for that code, you write the tests before you
write the code. This means that you can run the test as the code is being written and
discover problems during development.

Writing tests implicitly defines both an interface and a specification of behavior
for the functionality being developed. Problems of requirements and interface misun-
derstandings are reduced. This approach can be adopted in any process in which there
is a clear relationship between a system requirement and the code implementing that
requirement. In XP, you can always see this link because the story cards representing
the requirements are broken down into tasks and the tasks are the principal unit of
implementation. The adoption of test-first development in XP has led to more general
test-driven approaches to development (Astels, 2003). I discuss these in Chapter 8.

In test-first development, the task implementers have to thoroughly understand
the specification so that they can write tests for the system. This means that ambigu-
ities and omissions in the specification have to be clarified before implementation
begins. Furthermore, it also avoids the problem of ‘test-lag’. This may happen when
the developer of the system works at a faster pace than the tester. The implementa-
tion gets further and further ahead of the testing and there is a tendency to skip tests,
so that the development schedule can be maintained.

User requirements in XP are expressed as scenarios or stories and the user priori-
tizes these for development. The development team assesses each scenario and
breaks it down into tasks. For example, some of the task cards developed from the
story card for prescribing medication (Figure 3.5) are shown in Figure 3.6. Each task
generates one or more unit tests that check the implementation described in that task.
Figure 3.7 is a shortened description of a test case that has been developed to check
that the prescribed dose of a drug does not fall outside known safe limits.
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Figure 3.7 Test case
description for dose
checking

Input:
1. A number in mg representing a single dose of the drug.
2. A number representing the number of single doses per day.

Tests:

1. Test for inputs where the single dose is correct but the frequency is too high.
2. Test for inputs where the single dose is too high and too low.

3. Test for inputs where the single dose x frequency is too high and too low.

4. Test for inputs where single dose x frequency is in the permitted range.

Output:
OK or error message indicating that the dose is outside the safe range.

The role of the customer in the testing process is to help develop acceptance tests
for the stories that are to be implemented in the next release of the system. As I dis-
cuss in Chapter 8, acceptance testing is the process where the system is tested using
customer data to check that it meets the customer’s real needs.

In XP, acceptance testing, like development, is incremental. The customer who is
part of the team writes tests as development proceeds. All new code is therefore val-
idated to ensure that it is what the customer needs. For the story in Figure 3.5, the
acceptance test would involve scenarios where (a) the dose of a drug was changed,
(b) a new drug was selected, and (c) the formulary was used to find a drug. In prac-
tice, a series of acceptance tests rather than a single test are normally required.

Relying on the customer to support acceptance test development is sometimes a
major difficulty in the XP testing process. People adopting the customer role have
very limited available time and may not be able to work full-time with the develop-
ment team. The customer may feel that providing the requirements was enough of a
contribution and so may be reluctant to get involved in the testing process.

Test automation is essential for test-first development. Tests are written as executable
components before the task is implemented. These testing components should be stand-
alone, should simulate the submission of input to be tested, and should check that the
result meets the output specification. An automated test framework is a system that
makes it easy to write executable tests and submit a set of tests for execution. Junit
(Massol and Husted, 2003) is a widely used example of an automated testing framework.

As testing is automated, there is always a set of tests that can be quickly and eas-
ily executed. Whenever any functionality is added to the system, the tests can be run
and problems that the new code has introduced can be caught immediately.

Test-first development and automated testing usually results in a large number of
tests being written and executed. However, this approach does not necessarily lead to
thorough program testing. There are three reasons for this:

1. Programmers prefer programming to testing and sometimes they take shortcuts
when writing tests. For example, they may write incomplete tests that do not
check for all possible exceptions that may occur.



3.3 = Extreme programming 71

3.3.2

2. Some tests can be very difficult to write incrementally. For example, in a com-
plex user interface, it is often difficult to write unit tests for the code that imple-
ments the ‘display logic’ and workflow between screens.

3. It difficult to judge the completeness of a set of tests. Although you may have a
lot of system tests, your test set may not provide complete coverage. Crucial
parts of the system may not be executed and so remain untested.

Therefore, although a large set of frequently executed tests may give the impres-
sion that the system is complete and correct, this may not be the case. If the tests are
not reviewed and further tests written after development, then undetected bugs may
be delivered in the system release.

Pair programming

Another innovative practice that has been introduced in XP is that programmers
work in pairs to develop the software. They actually sit together at the same worksta-
tion to develop the software. However, the same pairs do not always program
together. Rather, pairs are created dynamically so that all team members work with
each other during the development process.

The use of pair programming has a number of advantages:

1. It supports the idea of collective ownership and responsibility for the system.
This reflects Weinberg’s (1971) idea of egoless programming where the soft-
ware is owned by the team as a whole and individuals are not held responsible
for problems with the code. Instead, the team has collective responsibility for
resolving these problems.

2. Itacts as an informal review process because each line of code is looked at by at
least two people. Code inspections and reviews (covered in Chapter 24) are very
successful in discovering a high percentage of software errors. However, they
are time consuming to organize and, typically, introduce delays into the devel-
opment process. Although pair programming is a less formal process that prob-
ably doesn’t find as many errors as code inspections, it is a much cheaper
inspection process than formal program inspections.

3. Tt helps support refactoring, which is a process of software improvement. The diffi-
culty of implementing this in a normal development environment is that effort in
refactoring is expended for long-term benefit. An individual who practices refac-
toring may be judged to be less efficient than one who simply carries on developing
code. Where pair programming and collective ownership are used, others benefit
immediately from the refactoring so they are likely to support the process.

You might think that pair programming would be less efficient than individual pro-
gramming. In a given time, a pair of developers would produce half as much code as
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two individuals working alone. There have been various studies of the productivity of
paid programmers with mixed results. Using student volunteers, Williams and her
collaborators (Cockburn and Williams, 2001; Williams et al., 2000) found that pro-
ductivity with pair programming seems to be comparable with that of two people
working independently. The reasons suggested are that pairs discuss the software
before development so probably have fewer false starts and less rework. Furthermore,
the number of errors avoided by the informal inspection is such that less time is spent
repairing bugs discovered during the testing process.

However, studies with more experienced programmers (Arisholm et al., 2007;
Parrish et al., 2004) did not replicate these results. They found that there was a signifi-
cant loss of productivity compared with two programmers working alone. There were
some quality benefits but these did not fully compensate for the pair-programming
overhead. Nevertheless, the sharing of knowledge that happens during pair program-
ming is very important as it reduces the overall risks to a project when team members
leave. In itself, this may make pair programming worthwhile.

Agile project management

The principal responsibility of software project managers is to manage the project so
that the software is delivered on time and within the planned budget for the project.
They supervise the work of software engineers and monitor how well the software
development is progressing.

The standard approach to project management is plan-driven. As I discuss in
Chapter 23, managers draw up a plan for the project showing what should be deliv-
ered, when it should be delivered, and who will work on the development of the proj-
ect deliverables. A plan-based approach really requires a manager to have a stable
view of everything that has to be developed and the development processes.
However, it does not work well with agile methods where the requirements are
developed incrementally; where the software is delivered in short, rapid increments;
and where changes to the requirements and the software are the norm.

Like every other professional software development process, agile development
has to be managed so that the best use is made of the time and resources available to
the team. This requires a different approach to project management, which is
adapted to incremental development and the particular strengths of agile methods.

The Scrum approach (Schwaber, 2004; Schwaber and Beedle, 2001) is a general
agile method but its focus is on managing iterative development rather than specific
technical approaches to agile software engineering. Figure 3.8 is a diagram of the Scrum
management process. Scrum does not prescribe the use of programming practices such
as pair programming and test-first development. It can therefore be used with more tech-
nical agile approaches, such as XP, to provide a management framework for the project.

There are three phases in Scrum. The first is an outline planning phase where you
establish the general objectives for the project and design the software architecture.
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Figure 3.8 The Scrum
process

Outline Planning A |:|:> M

and Architectural Project Closure
Design - <:|:| Y
Review | Develop

Sprint Cycle

This is followed by a series of sprint cycles, where each cycle develops an increment
of the system. Finally, the project closure phase wraps up the project, completes
required documentation such as system help frames and user manuals, and assesses
the lessons learned from the project.

The innovative feature of Scrum is its central phase, namely the sprint cycles.
A Scrum sprint is a planning unit in which the work to be done is assessed, features
are selected for development, and the software is implemented. At the end of a
sprint, the completed functionality is delivered to stakeholders. Key characteristics
of this process are as follows:

1. Sprints are fixed length, normally 2—4 weeks. They correspond to the develop-
ment of a release of the system in XP.

2. The starting point for planning is the product backlog, which is the list of work
to be done on the project. During the assessment phase of the sprint, this is
reviewed, and priorities and risks are assigned. The customer is closely involved
in this process and can introduce new requirements or tasks at the beginning of
each sprint.

3. The selection phase involves all of the project team who work with the customer
to select the features and functionality to be developed during the sprint.

4. Once these are agreed, the team organizes themselves to develop the software.
Short daily meetings involving all team members are held to review progress
and if necessary, reprioritize work. During this stage the team is isolated from
the customer and the organization, with all communications channelled through
the so-called ‘Scrum master’. The role of the Scrum master is to protect the
development team from external distractions. The way in which the work is
done depends on the problem and the team. Unlike XP, Scrum does not make
specific suggestions on how to write requirements, test-first development, etc.
However, these XP practices can be used if the team thinks they are appropriate.

5. Atthe end of the sprint, the work done is reviewed and presented to stakeholders.
The next sprint cycle then begins.

The idea behind Scrum is that the whole team should be empowered to make
decisions so the term ‘project manager’, has been deliberately avoided. Rather, the
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‘Scrum master’ is a facilitator who arranges daily meetings, tracks the backlog of
work to be done, records decisions, measures progress against the backlog, and com-
municates with customers and management outside of the team.

The whole team attends the daily meetings, which are sometimes ‘stand-up’
meetings to keep them short and focused. During the meeting, all team members
share information, describe their progress since the last meeting, problems that have
arisen, and what is planned for the following day. This means that everyone on the
team knows what is going on and, if problems arise, can replan short-term work to
cope with them. Everyone participates in this short-term planning—there is no top-
down direction from the Scrum master.

There are many anecdotal reports of the successful use of Scrum available on the
Web. Rising and Janoff (2000) discuss its successful use in a telecommunication
software development environment, and they list its advantages as follows:

1. The product is broken down into a set of manageable and understandable
chunks.

2. Unstable requirements do not hold up progress.

3. The whole team has visibility of everything and consequently team communica-
tion is improved.

4. Customers see on-time delivery of increments and gain feedback on how the
product works.

5. Trust between customers and developers is established and a positive culture is
created in which everyone expects the project to succeed.

Scrum, as originally designed, was intended for use with co-located teams where
all team members could get together every day in stand-up meetings. However,
much software development now involves distributed teams with team members
located in different places around the world. Consequently, there are various experi-
ments going on to develop Scrum for distributed development environments (Smits
and Pshigoda, 2007; Sutherland et al., 2007).

BN A Scaling agile methods

Agile methods were developed for use by small programming teams who could
work together in the same room and communicate informally. Agile methods have
therefore been mostly used for the development of small and medium-sized systems.
Of course, the need for faster delivery of software, which is more suited to customer
needs, also applies to larger systems. Consequently, there has been a great deal of
interest in scaling agile methods to cope with larger systems, developed by large
organizations.
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Denning et al. (2008) argue that the only way to avoid common software engineer-
ing problems, such as systems that don’t meet customer needs and budget overruns, is
to find ways of making agile methods work for large systems. Leffingwell (2007) dis-
cusses which agile practices scale to large systems development. Moore and Spens
(2008) report on their experience of using an agile approach to develop a large med-
ical system with 300 developers working in geographically distributed teams.

Large software system development is different from small system development
in a number of ways:

1. Large systems are usually collections of separate, communicating systems,
where separate teams develop each system. Frequently, these teams are working
in different places, sometimes in different time zones. It is practically impossi-
ble for each team to have a view of the whole system. Consequently, their prior-
ities are usually to complete their part of the system without regard for wider
systems issues.

2. Large systems are ‘brownfield systems’ (Hopkins and Jenkins, 2008); that is
they include and interact with a number of existing systems. Many of the system
requirements are concerned with this interaction and so don’t really lend them-
selves to flexibility and incremental development. Political issues can also be
significant here—often the easiest solution to a problem is to change an existing
system. However, this requires negotiation with the managers of that system to
convince them that the changes can be implemented without risk to the system’s
operation.

3.  Where several systems are integrated to create a system, a significant fraction of
the development is concerned with system configuration rather than original
code development. This is not necessarily compatible with incremental develop-
ment and frequent system integration.

4. Large systems and their development processes are often constrained by exter-
nal rules and regulations limiting the way that they can be developed, that
require certain types of system documentation to be produced, etc.

5. Large systems have a long procurement and development time. It is difficult to
maintain coherent teams who know about the system over that period as,
inevitably, people move on to other jobs and projects.

6. Large systems usually have a diverse set of stakeholders. For example, nurses and
administrators may be the end-users of a medical system but senior medical staff,
hospital managers, etc. are also stakeholders in the system. It is practically impos-
sible to involve all of these different stakeholders in the development process.

There are two perspectives on the scaling of agile methods:

1. A ‘scaling up’ perspective, which is concerned with using these methods for
developing large software systems that cannot be developed by a small team.
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2. A ‘scaling out’ perspective, which is concerned with how agile methods can be
introduced across a large organization with many years of software development
experience.

Agile methods have to be adapted to cope with large systems engineering.
Leffingwell (2007) argues that it is essential to maintain the fundamentals of agile
methods—flexible planning, frequent system releases, continuous integration, test-
driven development, and good team communications. I believe that the critical adap-
tations that have to be introduced are as follows:

1. For large systems development, it is not possible to focus only on the code of the
system. You need to do more up-front design and system documentation. The
software architecture has to be designed and there has to be documentation pro-
duced to describe critical aspects of the system, such as database schemas, the
work breakdown across teams, etc.

2. Cross-team communication mechanisms have to be designed and used. This
should involve regular phone and video conferences between team members and
frequent, short electronic meetings where teams update each other on progress.
A range of communication channels such as e-mail, instant messaging, wikis,
and social networking systems should be provided to facilitate communications.

3. Continuous integration, where the whole system is built every time any devel-
oper checks in a change, is practically impossible when several separate pro-
grams have to be integrated to create the system. However, it is essential to
maintain frequent system builds and regular releases of the system. This may
mean that new configuration management tools that support multi-team soft-
ware development have to be introduced.

Small software companies that develop software products have been amongst the
most enthusiastic adopters of agile methods. These companies are not constrained by
organizational bureaucracies or process standards and they can change quickly to
adopt new ideas. Of course, larger companies have also experimented with agile
methods in specific projects, but it is much more difficult for them to ‘scale out’
these methods across the organization. Lindvall, et al. (2004) discuss some of the
problems in scaling-out agile methods in four large technology companies.

It is difficult to introduce agile methods into large companies for a number of
reasons:

1. Project managers who do not have experience of agile methods may be reluctant
to accept the risk of a new approach, as they do not know how this will affect
their particular projects.

2. Large organizations often have quality procedures and standards that all projects
are expected to follow and, because of their bureaucratic nature, these are likely to
be incompatible with agile methods. Sometimes, these are supported by software
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tools (e.g., requirements management tools) and the use of these tools is mandated
for all projects.

3. Agile methods seem to work best when team members have a relatively high
skill level. However, within large organizations, there are likely to be a wide
range of skills and abilities, and people with lower skill levels may not be effec-
tive team members in agile processes.

4. There may be cultural resistance to agile methods, especially in those organizations
that have a long history of using conventional systems engineering processes.

Change management and testing procedures are examples of company proce-
dures that may not be compatible with agile methods. Change management is the
process of controlling changes to a system, so that the impact of changes is pre-
dictable and costs are controlled. All changes have to be approved in advance before
they are made and this conflicts with the notion of refactoring. In XP, any developer
can improve any code without getting external approval. For large systems, there are
also testing standards where a system build is handed over to an external testing
team. This may conflict with the test-first and test-often approaches used in XP.

Introducing and sustaining the use of agile methods across a large organization is
a process of cultural change. Cultural change takes a long time to implement and
often requires a change of management before it can be accomplished. Companies
wishing to use agile methods need evangelists to promote change. They must devote
significant resources to the change process. At the time of writing, few large compa-
nies have made a successful transition to agile development across the organization.

KEY POINTS

Agile methods are incremental development methods that focus on rapid development, frequent
releases of the software, reducing process overheads, and producing high-quality code. They
involve the customer directly in the development process.

The decision on whether to use an agile or a plan-driven approach to development should
depend on the type of software being developed, the capabilities of the development team, and
the culture of the company developing the system.

Extreme programming is a well-known agile method that integrates a range of good
programming practices such as frequent releases of the software, continuous software
improvement, and customer participation in the development team.

A particular strength of extreme programming is the development of automated tests before a
program feature is created. All tests must successfully execute when an increment is integrated
into a system.
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The Scrum method is an agile method that provides a project management framework. It is
centered around a set of sprints, which are fixed time periods when a system increment is
developed. Planning is based on prioritizing a backlog of work and selecting the highest-
priority tasks for a sprint.

Scaling agile methods for large systems is difficult. Large systems need up-front design and
some documentation. Continuous integration is practically impossible when there are several
separate development teams working on a project.

FURTHER READING

Extreme Programming Explained. This was the first book on XP and is still, perhaps, the most
readable. It explains the approach from the perspective of one of its inventors and his
enthusiasm comes through very clearly in the book. (Kent Beck, Addison-Wesley, 2000.)

‘Get Ready for Agile Methods, With Care’. A thoughtful critique of agile methods that discusses
their strengths and weaknesses, written by a vastly experienced software engineer. (B. Boehm,
|EEE Computer, January 2002.) http://doi.ieeecomputersociety.org/10.1109/2.976920.

Scaling Software Agility: Best Practices for Large Enterprises. Although focused on issues of
scaling agile development, this book also includes a summary of the principal agile methods
such as XP, Scrum, and Crystal. (D. Leffingwell, Addison-Wesley, 2007.)

Running an Agile Software Development Project. Most books on agile methods focus on a
specific method but this book takes a different approach and discusses how to put XP into
practice in a project. Good, practical advice. (M. Holcombe, John Wiley and Sons, 2008.)

EXERCISES

3.1. Explain why the rapid delivery and deployment of new systems is often more important
to businesses than the detailed functionality of these systems.

3.2. Explain how the principles underlying agile methods lead to the accelerated development
and deployment of software.

3.3. When would you recommend against the use of an agile method for developing a software
system?

3.4. Extreme programming expresses user requirements as stories, with each story written
on a card. Discuss the advantages and disadvantages of this approach to requirements
description.
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3.5.

3.6.

3.7.

3.8.

3.9.

3.10.

Explain why test-first development helps the programmer to develop a better understanding
of the system requirements. What are the potential difficulties with test-first development?

Suggest four reasons why the productivity rate of programmers working as a pair might be
more than half that of two programmers working individually.

Compare and contrast the Scrum approach to project management with conventional
plan-based approaches, as discussed in Chapter 23. The comparisons should be based
on the effectiveness of each approach for planning the allocation of people to projects,
estimating the cost of projects, maintaining team cohesion, and managing changes in
project team membership.

You are a software manager in a company that develops critical control software

for aircraft. You are responsible for the development of a software design support
system that supports the translation of software requirements to a formal software
specification (discussed in Chapter 13). Comment on the advantages and disadvantages
of the following development strategies:

a. Collect the requirements for such a system from software engineers and external
stakeholders (such as the regulatory certification authority) and develop the system
using a plan-driven approach.

b. Develop a prototype using a scripting language, such as Ruby or Python, evaluate
this prototype with software engineers and other stakeholders, then review the
system requirements. Redevelop the final system using Java.

c. Develop the system in Java using an agile approach with a user involved in the
development team.

It has been suggested that one of the problems of having a user closely involved with

a software development team is that they ‘go native’; that is, they adopt the outlook of
the development team and lose sight of the needs of their user colleagues. Suggest three
ways how you might avoid this problem and discuss the advantages and disadvantages
of each approach.

To reduce costs and the environmental impact of commuting, your company decides to
close a number of offices and to provide support for staff to work from home. However,
the senior management who introduce the policy are unaware that software is developed
using agile methods, which rely on close team working and pair programming. Discuss
the difficulties that this new policy might cause and how you might get around these
problems.
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Objectives

The objective of this chapter is to introduce software requirements and
to discuss the processes involved in discovering and documenting
these requirements. When you have read the chapter you will:

m understand the concepts of user and system requirements and
why these requirements should be written in different ways;

m understand the differences between functional and nonfunctional
software requirements;

m understand how requirements may be organized in a software
requirements document;

m understand the principal requirements engineering activities of
elicitation, analysis and validation, and the relationships between
these activities;

m understand why requirements management is necessary and how
it supports other requirements engineering activities.

Contents
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4.2 The software requirements document

4.3 Requirements specification

4.4 Requirements engineering processes
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The requirements for a system are the descriptions of what the system should do—
the services that it provides and the constraints on its operation. These requirements
reflect the needs of customers for a system that serves a certain purpose such as con-
trolling a device, placing an order, or finding information. The process of finding
out, analyzing, documenting and checking these services and constraints is called
requirements engineering (RE).

The term ‘requirement’ is not used consistently in the software industry. In some
cases, a requirement is simply a high-level, abstract statement of a service that a sys-
tem should provide or a constraint on a system. At the other extreme, it is a detailed,
formal definition of a system function. Davis (1993) explains why these differences
exist:

If a company wishes to let a contract for a large software development project,
it must define its needs in a sufficiently abstract way that a solution is not pre-
defined. The requirements must be written so that several contractors can bid
for the contract, offering, perhaps, different ways of meeting the client organi-
zation’s needs. Once a contract has been awarded, the contractor must write a
system definition for the client in more detail so that the client understands and
can validate what the software will do. Both of these documents may be called
the requirements document for the system.

Some of the problems that arise during the requirements engineering process are
a result of failing to make a clear separation between these different levels of
description. I distinguish between them by using the term ‘user requirements’ to
mean the high-level abstract requirements and ‘system requirements’ to mean the
detailed description of what the system should do. User requirements and system
requirements may be defined as follows:

1. User requirements are statements, in a natural language plus diagrams, of what
services the system is expected to provide to system users and the constraints
under which it must operate.

2. System requirements are more detailed descriptions of the software system’s
functions, services, and operational constraints. The system requirements docu-
ment (sometimes called a functional specification) should define exactly what is
to be implemented. It may be part of the contract between the system buyer and
the software developers.

Different levels of requirements are useful because they communicate informa-
tion about the system to different types of reader. Figure 4.1 illustrates the distinction
between user and system requirements. This example from a mental health care
patient management system (MHC-PMS) shows how a user requirement may be
expanded into several system requirements. You can see from Figure 4.1 that the
user requirement is quite general. The system requirements provide more specific
information about the services and functions of the system that is to be implemented.
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Figure 4.1 User and
system requirements

User Requirement Definition

1. The MHC-PMS shall generate monthly management reports showing
the cost of drugs prescribed by each clinic during that month.

System Requirements Specification

1.1 On the last working day of each month, a summary of the drugs
prescribed, their cost, and the prescribing clinics shall be generated.

1.2 The system shall automatically generate the report for printing after
17.30 on the last working day of the month.

1.3 A report shall be created for each clinic and shall list the individual
drug names, the total number of prescriptions, the number of doses
prescribed, and the total cost of the prescribed drugs.

1.4 If drugs are available in different dose units (e.g., 10 mg, 20 mg)
separate reports shall be created for each dose unit.

1.5 Access to all cost reports shall be restricted to authorized users listed
on a management access control list.

You need to write requirements at different levels of detail because different read-
ers use them in different ways. Figure 4.2 shows possible readers of the user and sys-
tem requirements. The readers of the user requirements are not usually concerned
with how the system will be implemented and may be managers who are not inter-
ested in the detailed facilities of the system. The readers of the system requirements
need to know more precisely what the system will do because they are concerned
with how it will support the business processes or because they are involved in the
system implementation.

In this chapter, I present a ‘traditional” view of requirements rather than require-
ments in agile processes. For most large systems, it is still the case that there is a
clearly identifiable requirements engineering phase before the implementation of
the system begins. The outcome is a requirements document, which may be part of the
system development contract. Of course, there are usually subsequent changes to
the requirements and user requirements may be expanded into more detailed system
requirements. However, the agile approach of concurrently eliciting the require-
ments as the system is developed is rarely used for large systems development.

IS Functional and non-functional requirements

Software system requirements are often classified as functional requirements or non-
functional requirements:

1. Functional requirements These are statements of services the system should
provide, how the system should react to particular inputs, and how the system
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Figure 4.2 Readers
of different types
of requirements
specification

4.1.1

Client Managers
System End-Users
Client Engineers
Contractor Managers
System Architects

User
Requirements

System End-Users
System Client Engineers

Requirements System Architects

Software Developers

should behave in particular situations. In some cases, the functional require-
ments may also explicitly state what the system should not do.

2. Non-functional requirements These are constraints on the services or functions
offered by the system. They include timing constraints, constraints on the devel-
opment process, and constraints imposed by standards. Non-functional require-
ments often apply to the system as a whole, rather than individual system
features or services.

In reality, the distinction between different types of requirement is not as clear-cut
as these simple definitions suggest. A user requirement concerned with security,
such as a statement limiting access to authorized users, may appear to be a non-
functional requirement. However, when developed in more detail, this requirement
may generate other requirements that are clearly functional, such as the need to
include user authentication facilities in the system.

This shows that requirements are not independent and that one requirement often
generates or constrains other requirements. The system requirements therefore do not
just specify the services or the features of the system that are required; they also specify
the necessary functionality to ensure that these services/features are delivered properly.

Functional requirements

The functional requirements for a system describe what the system should do. These
requirements depend on the type of software being developed, the expected users of
the software, and the general approach taken by the organization when writing
requirements. When expressed as user requirements, functional requirements are
usually described in an abstract way that can be understood by system users.
However, more specific functional system requirements describe the system func-
tions, its inputs and outputs, exceptions, etc., in detail.

Functional system requirements vary from general requirements covering what
the system should do to very specific requirements reflecting local ways of working
or an organization’s existing systems. For example, here are examples of functional
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@ Domain requirements

Domain requirements are derived from the application domain of the system rather than from the specific
needs of system users. They may be new functional requirements in their own right, constrain existing
functional requirements, or set out how particular computations must be carried out.

The problem with domain requirements is that software engineers may not understand the characteristics of
the domain in which the system operates. They often cannot tell whether or not a domain requirement has
been missed out or conflicts with other requirements.

http://www.SoftwareEngineering-9.com/Web/Requirements/DomainReq.html

requirements for the MHC-PMS system, used to maintain information about patients
receiving treatment for mental health problems:

1. A user shall be able to search the appointments lists for all clinics.

2. The system shall generate each day, for each clinic, a list of patients who are
expected to attend appointments that day.

3. Each staff member using the system shall be uniquely identified by his or her
eight-digit employee number.

These functional user requirements define specific facilities to be provided by the
system. These have been taken from the user requirements document and they show
that functional requirements may be written at different levels of detail (contrast
requirements 1 and 3).

Imprecision in the requirements specification is the cause of many software engi-
neering problems. It is natural for a system developer to interpret an ambiguous
requirement in a way that simplifies its implementation. Often, however, this is not
what the customer wants. New requirements have to be established and changes
made to the system. Of course, this delays system delivery and increases costs.

For example, the first example requirement for the MHC-PMS states that a user shall
be able to search the appointments lists for all clinics. The rationale for this requirement
is that patients with mental health problems are sometimes confused. They may have an
appointment at one clinic but actually go to a different clinic. If they have an appoint-
ment, they will be recorded as having attended, irrespective of the clinic.

The medical staff member specifying this may expect ‘search’ to mean that, given
a patient name, the system looks for that name in all appointments at all clinics.
However, this is not explicit in the requirement. System developers may interpret the
requirement in a different way and may implement a search so that the user has to
choose a clinic then carry out the search. This obviously will involve more user input
and so take longer.

In principle, the functional requirements specification of a system should be both
complete and consistent. Completeness means that all services required by the user
should be defined. Consistency means that requirements should not have contradictory
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4.1.2

definitions. In practice, for large, complex systems, it is practically impossible to
achieve requirements consistency and completeness. One reason for this is that it is easy
to make mistakes and omissions when writing specifications for complex systems.
Another reason is that there are many stakeholders in a large system. A stakeholder is a
person or role that is affected by the system in some way. Stakeholders have different—
and often inconsistent—needs. These inconsistencies may not be obvious when the
requirements are first specified, so inconsistent requirements are included in the specifi-
cation. The problems may only emerge after deeper analysis or after the system has
been delivered to the customer.

Non-functional requirements

Non-functional requirements, as the name suggests, are requirements that are not
directly concerned with the specific services delivered by the system to its users.
They may relate to emergent system properties such as reliability, response time, and
store occupancy. Alternatively, they may define constraints on the system implemen-
tation such as the capabilities of I/O devices or the data representations used in inter-
faces with other systems.

Non-functional requirements, such as performance, security, or availability, usually
specify or constrain characteristics of the system as a whole. Non-functional require-
ments are often more critical than individual functional requirements. System users can
usually find ways to work around a system function that doesn’t really meet their needs.
However, failing to meet a non-functional requirement can mean that the whole system
is unusable. For example, if an aircraft system does not meet its reliability requirements,
it will not be certified as safe for operation; if an embedded control system fails to meet
its performance requirements, the control functions will not operate correctly.

Although it is often possible to identify which system components implement
specific functional requirements (e.g., there may be formatting components that
implement reporting requirements), it is often more difficult to relate components to
non-functional requirements. The implementation of these requirements may be dif-
fused throughout the system. There are two reasons for this:

1. Non-functional requirements may affect the overall architecture of a system
rather than the individual components. For example, to ensure that performance
requirements are met, you may have to organize the system to minimize com-
munications between components.

2. A single non-functional requirement, such as a security requirement, may generate
a number of related functional requirements that define new system services that
are required. In addition, it may also generate requirements that restrict existing
requirements.

Non-functional requirements arise through user needs, because of budget con-
straints, organizational policies, the need for interoperability with other software or
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hardware systems, or external factors such as safety regulations or privacy legisla-
tion. Figure 4.3 is a classification of non-functional requirements. You can see from
this diagram that the non-functional requirements may come from required charac-
teristics of the software (product requirements), the organization developing the soft-

—

Accounting
Requirements

Safety/Security
Requirements

ware (organizational requirements), or from external sources:

Product requirements These requirements specify or constrain the behavior of the
software. Examples include performance requirements on how fast the system
must execute and how much memory it requires, reliability requirements that set
out the acceptable failure rate, security requirements, and usability requirements.

Organizational requirements These requirements are broad system requirements
derived from policies and procedures in the customer’s and developer’s organiza-
tion. Examples include operational process requirements that define how the sys-
tem will be used, development process requirements that specify the programming
language, the development environment or process standards to be used, and envi-
ronmental requirements that specify the operating environment of the system.

External requirements This broad heading covers all requirements that are
derived from factors external to the system and its development process. These
may include regulatory requirements that set out what must be done for the sys-
tem to be approved for use by a regulator, such as a central bank; legislative
requirements that must be followed to ensure that the system operates within the
law; and ethical requirements that ensure that the system will be acceptable to
its users and the general public.
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PRODUCT REQUIREMENT
The MHC-PMS shall be available to all clinics during normal working hours (Mon-Fri, 08.30-17.30). Downtime
within normal working hours shall not exceed five seconds in any one day.

ORGANIZATIONAL REQUIREMENT
Users of the MHC-PMS system shall authenticate themselves using their health authority identity card.

EXTERNAL REQUIREMENT
The system shall implement patient privacy provisions as set out in HStan-03-2006-priv.

Figure 4.4 Examples
of non-functional
requirements in the
MHC-PMS

Figure 4.4 shows examples of product, organizational, and external requirements
taken from the MHC-PMS whose user requirements were introduced in Section 4.1.1.
The product requirement is an availability requirement that defines when the system
has to be available and the allowed down time each day. It says nothing about the
functionality of MHC-PMS and clearly identifies a constraint that has to be consid-
ered by the system designers.

The organizational requirement specifies how users authenticate themselves to the
system. The health authority that operates the system is moving to a standard authenti-
cation procedure for all software where, instead of users having a login name, they
swipe their identity card through a reader to identify themselves. The external require-
ment is derived from the need for the system to conform to privacy legislation. Privacy
is obviously a very important issue in healthcare systems and the requirement specifies
that the system should be developed in accordance with a national privacy standard.

A common problem with non-functional requirements is that users or customers
often propose these requirements as general goals, such as ease of use, the ability of
the system to recover from failure, or rapid user response. Goals set out good inten-
tions but cause problems for system developers as they leave scope for interpretation
and subsequent dispute once the system is delivered. For example, the following sys-
tem goal is typical of how a manager might express usability requirements:

The system should be easy to use by medical staff and should be organized in
such a way that user errors are minimized.

I have rewritten this to show how the goal could be expressed as a ‘testable’ non-
functional requirement. It is impossible to objectively verify the system goal, but in
the description below you can at least include software instrumentation to count the
errors made by users when they are testing the system.

Medical staff shall be able to use all the system functions after four hours of
training. After this training, the average number of errors made by experi-
enced users shall not exceed two per hour of system use.

Whenever possible, you should write non-functional requirements quantitatively
so that they can be objectively tested. Figure 4.5 shows metrics that you can use to
specify non-functional system properties. You can measure these characteristics
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Figure 4.5 Metrics
for specifying
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when the system is being tested to check whether or not the system has met its non-
functional requirements.

In practice, customers for a system often find it difficult to translate their goals
into measurable requirements. For some goals, such as maintainability, there are no
metrics that can be used. In other cases, even when quantitative specification is pos-
sible, customers may not be able to relate their needs to these specifications. They
don’t understand what some number defining the required reliability (say) means in
terms of their everyday experience with computer systems. Furthermore, the cost of
objectively verifying measurable, non-functional requirements can be very high and
the customers paying for the system may not think these costs are justified.

Non-functional requirements often conflict and interact with other functional
or non-functional requirements. For example, the authentication requirement in
Figure 4.4 obviously requires a card reader to be installed with each computer
attached to the system. However, there may be another requirement that requests
mobile access to the system from doctors’ or nurses’ laptops. These are not normally
equipped with card readers so, in these circumstances, some alternative authentica-
tion method may have to be allowed.

It is difficult, in practice, to separate functional and non-functional requirements
in the requirements document. If the non-functional requirements are stated sepa-
rately from the functional requirements, the relationships between them may be hard
to understand. However, you should explicitly highlight requirements that are clearly
related to emergent system properties, such as performance or reliability. You can do
this by putting them in a separate section of the requirements document or by distin-
guishing them, in some way, from other system requirements.
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@ Requirements document standards

A number of large organizations, such as the U.S. Department of Defense and the IEEE, have defined standards
for requirements documents. These are usually very generic but are nevertheless useful as a basis for
developing more detailed organizational standards. The U.S. Institute of Electrical and Electronic Engineers
(IEEE) is one of the best-known standards providers and they have developed a standard for the structure of
requirements documents. This standard is most appropriate for systems such as military command and control
systems that have a long lifetime and are usually developed by a group of organizations.

http://www.SoftwareEngineering-9.com/Web/Requirements/IEEE-standard.html|

Non-functional requirements such as reliability, safety, and confidentiality
requirements are particularly important for critical systems. I cover these require-
ments in Chapter 12, where I describe specific techniques for specifying dependabil-
ity and security requirements.

The software requirements document

The software requirements document (sometimes called the software requirements
specification or SRS) is an official statement of what the system developers should
implement. It should include both the user requirements for a system and a detailed
specification of the system requirements. Sometimes, the user and system require-
ments are integrated into a single description. In other cases, the user requirements
are defined in an introduction to the system requirements specification. If there are a
large number of requirements, the detailed system requirements may be presented in
a separate document.

Requirements documents are essential when an outside contractor is developing
the software system. However, agile development methods argue that requirements
change so rapidly that a requirements document is out of date as soon as it is written,
so the effort is largely wasted. Rather than a formal document, approaches such as
Extreme Programming (Beck, 1999) collect user requirements incrementally and
write these on cards as user stories. The user then prioritizes requirements for imple-
mentation in the next increment of the system.

For business systems where requirements are unstable, I think that this approach
is a good one. However, I think that it is still useful to write a short supporting docu-
ment that defines the business and dependability requirements for the system; it is
easy to forget the requirements that apply to the system as a whole when focusing on
the functional requirements for the next system release.

The requirements document has a diverse set of users, ranging from the senior
management of the organization that is paying for the system to the engineers
responsible for developing the software. Figure 4.6, taken from my book with Gerald
Kotonya on requirements engineering (Kotonya and Sommerville, 1998) shows
possible users of the document and how they use it.



92 Chapter 4 m Requirements engineering

Figure 4.6 Users of a
requirements document
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The diversity of possible users means that the requirements document has to be a
compromise between communicating the requirements to customers, defining the
requirements in precise detail for developers and testers, and including information
about possible system evolution. Information on anticipated changes can help sys-
tem designers avoid restrictive design decisions and help system maintenance engi-
neers who have to adapt the system to new requirements.

The level of detail that you should include in a requirements document depends on
the type of system that is being developed and the development process used. Critical
systems need to have detailed requirements because safety and security have to be ana-
lyzed in detail. When the system is to be developed by a separate company (e.g.,
through outsourcing), the system specifications need to be detailed and precise. If an in-
house, iterative development process is used, the requirements document can be much
less detailed and any ambiguities can be resolved during development of the system.

Figure 4.7 shows one possible organization for a requirements document that is
based on an IEEE standard for requirements documents (IEEE, 1998). This standard
is a generic standard that can be adapted to specific uses. In this case, I have
extended the standard to include information about predicted system evolution. This
information helps the maintainers of the system and allows designers to include sup-
port for future system features.

Naturally, the information that is included in a requirements document depends
on the type of software being developed and the approach to development that is to
be used. If an evolutionary approach is adopted for a software product (say), the
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This should define the expected readership of the document and describe its
version history, including a rationale for the creation of a new version and a
summary of the changes made in each version.

This should describe the need for the system. It should briefly describe the
system’s functions and explain how it will work with other systems. It should
also describe how the system fits into the overall business or strategic
objectives of the organization commissioning the software.

This should define the technical terms used in the document. You should not
make assumptions about the experience or expertise of the reader.

Here, you describe the services provided for the user. The non-functional
system requirements should also be described in this section. This
description may use natural language, diagrams, or other notations that are
understandable to customers. Product and process standards that must be
followed should be specified.

This chapter should present a high-level overview of the anticipated system
architecture, showing the distribution of functions across system modules.
Architectural components that are reused should be highlighted.

This should describe the functional and non-functional requirements in more
detail. If necessary, further detail may also be added to the non-functional
requirements. Interfaces to other systems may be defined.

This might include graphical system models showing the relationships between
the system components, the system, and its environment. Examples of possible
models are object models, data-flow models, or semantic data models.

This should describe the fundamental assumptions on which the system is
based, and any anticipated changes due to hardware evolution, changing
user needs, and so on. This section is useful for system designers as it may
help them avoid design decisions that would constrain likely future changes
to the system.

These should provide detailed, specific information that is related to the
application being developed; for example, hardware and database descriptions.
Hardware requirements define the minimal and optimal configurations for the
system. Database requirements define the logical organization of the data used
by the system and the relationships between data.

Several indexes to the document may be included. As well as a normal
alphabetic index, there may be an index of diagrams, an index of functions,
and so on.

Figure 4.7 The
structure of a
requirements
document

requirements document will leave out many of detailed chapters suggested above.
The focus will be on defining the user requirements and high-level, non-functional
system requirements. In this case, the designers and programmers use their judgment
to decide how to meet the outline user requirements for the system.

However, when the software is part of a large system project that includes interact-
ing hardware and software systems, it is usually necessary to define the requirements
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@ Problems with using natural language for requirements specification

The flexibility of natural language, which is so useful for specification, often causes problems. There is scope for
writing unclear requirements, and readers (the designers) may misinterpret requirements because they have a
different background to the user. It is easy to amalgamate several requirements into a single sentence and
structuring natural language requirements can be difficult.

http://www.SoftwareEngineering-9.com/Web/Requirements/NL-problems.html

to a fine level of detail. This means that the requirements documents are likely to be
very long and should include most if not all of the chapters shown in Figure 4.7. For
long documents, it is particularly important to include a comprehensive table of con-
tents and document index so that readers can find the information that they need.

Requirements specification

Requirements specification is the process of writing down the user and system
requirements in a requirements document. Ideally, the user and system requirements
should be clear, unambiguous, easy to understand, complete, and consistent. In prac-
tice, this is difficult to achieve as stakeholders interpret the requirements in different
ways and there are often inherent conflicts and inconsistencies in the requirements.

The user requirements for a system should describe the functional and non-
functional requirements so that they are understandable by system users who don’t have
detailed technical knowledge. Ideally, they should specify only the external behavior of
the system. The requirements document should not include details of the system archi-
tecture or design. Consequently, if you are writing user requirements, you should not
use software jargon, structured notations, or formal notations. You should write user
requirements in natural language, with simple tables, forms, and intuitive diagrams.

System requirements are expanded versions of the user requirements that are used
by software engineers as the starting point for the system design. They add detail and
explain how the user requirements should be provided by the system. They may be
used as part of the contract for the implementation of the system and should there-
fore be a complete and detailed specification of the whole system.

Ideally, the system requirements should simply describe the external behavior
of the system and its operational constraints. They should not be concerned with how
the system should be designed or implemented. However, at the level of detail
required to completely specify a complex software system, it is practically impossi-
ble to exclude all design information. There are several reasons for this:

1. You may have to design an initial architecture of the system to help structure the
requirements specification. The system requirements are organized according to
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Natural language sentences The requirements are written using numbered sentences in natural

language. Each sentence should express one requirement.

Structured natural language The requirements are written in natural language on a standard form or

template. Each field provides information about an aspect of the
requirement.

Design description languages This approach uses a language like a programming language, but with

Graphical notations

more abstract features to specify the requirements by defining an
operational model of the system. This approach is now rarely used
although it can be useful for interface specifications.

Graphical models, supplemented by text annotations, are used to define
the functional requirements for the system; UML use case and sequence
diagrams are commonly used.

Mathematical specifications These notations are based on mathematical concepts such as finite-state

machines or sets. Although these unambiguous specifications can reduce
the ambiguity in a requirements document, most customers don't
understand a formal specification. They cannot check that it represents
what they want and are reluctant to accept it as a system contract.

Figure 4.8 Ways of
writing a system
requirements
specification

the different sub-systems that make up the system. As I discuss in Chapters 6
and 18, this architectural definition is essential if you want to reuse software
components when implementing the system.

2. In most cases, systems must interoperate with existing systems, which constrain
the design and impose requirements on the new system.

3. The use of a specific architecture to satisfy non-functional requirements (such
as N-version programming to achieve reliability, discussed in Chapter 13) may
be necessary. An external regulator who needs to certify that the system is safe
may specify that an already certified architectural design be used.

User requirements are almost always written in natural language supplemented
by appropriate diagrams and tables in the requirements document. System
requirements may also be written in natural language but other notations based on
forms, graphical system models, or mathematical system models can also be
used. Figure 4.8 summarizes the possible notations that could be used for writing
system requirements.

Graphical models are most useful when you need to show how a state changes or
when you need to describe a sequence of actions. UML sequence charts and state
charts, described in Chapter 5, show the sequence of actions that occur in response
to a certain message or event. Formal mathematical specifications are sometimes
used to describe the requirements for safety- or security-critical systems, but are
rarely used in other circumstances. I explain this approach to writing specifications
in Chapter 12.
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3.2 The system shall measure the blood sugar and deliver insulin, if required, every 10 minutes. (Changes in
blood sugar are relatively slow so more frequent measurement is unnecessary; less frequent measurement
could lead to unnecessarily high sugar levels.)

3.6 The system shall run a self-test routine every minute with the conditions to be tested and the associated
actions defined in Table 1. (A self-test routine can discover hardware and software problems and alert the user
to the fact the normal operation may be impossible.)

Figure 4.9
Example requirements
for the insulin pump
software system

4.3.1 Natural language specification

Natural language has been used to write requirements for software since the beginning
of software engineering. It is expressive, intuitive, and universal. It is also potentially
vague, ambiguous, and its meaning depends on the background of the reader. As a
result, there have been many proposals for alternative ways to write requirements.
However, none of these have been widely adopted and natural language will continue
to be the most widely used way of specifying system and software requirements.

To minimize misunderstandings when writing natural language requirements,

I recommend that you follow some simple guidelines:

1.

Invent a standard format and ensure that all requirement definitions adhere to
that format. Standardizing the format makes omissions less likely and require-
ments easier to check. The format I use expresses the requirement in a single
sentence. I associate a statement of rationale with each user requirement to
explain why the requirement has been proposed. The rationale may also include
information on who proposed the requirement (the requirement source) so that
you know whom to consult if the requirement has to be changed.

Use language consistently to distinguish between mandatory and desirable
requirements. Mandatory requirements are requirements that the system must
support and are usually written using ‘shall’. Desirable requirements are not
essential and are written using ‘should’.

Use text highlighting (bold, italic, or color) to pick out key parts of the requirement.

Do not assume that readers understand technical software engineering language.
It is easy for words like ‘architecture’ and ‘module’ to be misunderstood. You
should, therefore, avoid the use of jargon, abbreviations, and acronyms.

Whenever possible, you should try to associate a rationale with each user
requirement. The rationale should explain why the requirement has been
included. It is particularly useful when requirements are changed as it may help
decide what changes would be undesirable.

Figure 4.9 illustrates how these guidelines may be used. It includes two require-

ments for the embedded software for the automated insulin pump, introduced in
Chapter 1. You can download the complete insulin pump requirements specification
from the book’s web pages.
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Insulin Pump/Control Software/SRS/3.3.2

Function
Description

Inputs
Source
Outputs
Destination
Action

Requirements
Pre-condition

Post-condition
Side effects

Figure 4.10

4.3.2

A structured
specification

of a requirement for

an insulin pump

Compute insulin dose: Safe sugar level.

Computes the dose of insulin to be delivered when the current measured sugar level is in
the safe zone between 3 and 7 units.

Current sugar reading (r2), the previous two readings (r0 and r1).
Current sugar reading from sensor. Other readings from memory.
CompDose—the dose in insulin to be delivered.

Main control loop.

CompDose is zero if the sugar level is stable or falling or if the level is increasing but the
rate of increase is decreasing. If the level is increasing and the rate of increase is
increasing, then CompDose is computed by dividing the difference between the current
sugar level and the previous level by 4 and rounding the result. If the result, is rounded to
zero then CompDose is set to the minimum dose that can be delivered.

Two previous readings so that the rate of change of sugar level can be computed.
The insulin reservoir contains at least the maximum allowed single dose of insulin.
r0 is replaced by r1 then r1 is replaced by r2.

None.

Structured specifications

Structured natural language is a way of writing system requirements where the
freedom of the requirements writer is limited and all requirements are written in a
standard way. This approach maintains most of the expressiveness and understand-
ability of natural language but ensures that some uniformity is imposed on the
specification. Structured language notations use templates to specify system
requirements. The specification may use programming language constructs to
show alternatives and iteration, and may highlight key elements using shading or
different fonts.

The Robertsons (Robertson and Robertson, 1999), in their book on the
VOLERE requirements engineering method, recommend that user requirements be
initially written on cards, one requirement per card. They suggest a number of
fields on each card, such as the requirements rationale, the dependencies on other
requirements, the source of the requirements, supporting materials, and so on. This
is similar to the approach used in the example of a structured specification shown
in Figure 4.10.

To use a structured approach to specifying system requirements, you define one or
more standard templates for requirements and represent these templates as structured
forms. The specification may be structured around the objects manipulated by the sys-
tem, the functions performed by the system, or the events processed by the system. An
example of a form-based specification, in this case, one that defines how to calculate the
dose of insulin to be delivered when the blood sugar is within a safe band, is shown in
Figure 4.10.
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Sugar level falling (r2 < r1) CompDose = 0
Sugar level stable (12 = r1) CompDose = 0
Sugar level increasing and rate of increase CompDose = 0

decreasing ((r2 — r1) < (r1 — r0))

Sugar level increasing and rate of increase stable or CompDose = round ((r2 — r1)/4)
increasing ((r2 — r1) = (r1 — r0)) If rounded result = 0 then

CompDose = MinimumDose

Figure 4.11 Tabular
specification of
computation for

an insulin pump

When a standard form is used for specifying functional requirements, the follow-
ing information should be included:

1. A description of the function or entity being specified.

2. A description of its inputs and where these come from.

3. A description of its outputs and where these go to.

4. Information about the information that is needed for the computation or other
entities in the system that are used (the ‘requires’ part).

5. A description of the action to be taken.

6. If a functional approach is used, a pre-condition setting out what must be true
before the function is called, and a post-condition specifying what is true after
the function is called.

7. A description of the side effects (if any) of the operation.

Using structured specifications removes some of the problems of natural lan-
guage specification. Variability in the specification is reduced and requirements are
organized more effectively. However, it is still sometimes difficult to write require-
ments in a clear and unambiguous way, particularly when complex computations
(e.g., how to calculate the insulin dose) are to be specified.

To address this problem, you can add extra information to natural language
requirements, for example, by using tables or graphical models of the system. These
can show how computations proceed, how the system state changes, how users inter-
act with the system, and how sequences of actions are performed.

Tables are particularly useful when there are a number of possible alternative sit-
uations and you need to describe the actions to be taken for each of these. The insulin
pump bases its computations of the insulin requirement on the rate of change of
blood sugar levels. The rates of change are computed using the current and previous
readings. Figure 4.11 is a tabular description of how the rate of change of blood
sugar is used to calculate the amount of insulin to be delivered.
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Requirements
Specification

System Requirements
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User Requirements
Specification

Business Requirements
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Figure 4.12 A spiral
view of the
requirements System Requirements
engineering process Document

Requirements engineering processes

As I discussed in Chapter 2, requirements engineering processes may include four
high-level activities. These focus on assessing if the system is useful to the business
(feasibility study), discovering requirements (elicitation and analysis), converting
these requirements into some standard form (specification), and checking that the
requirements actually define the system that the customer wants (validation). I have
shown these as sequential processes in Figure 2.6. However, in practice, require-
ments engineering is an iterative process in which the activities are interleaved.
Figure 4.12 shows this interleaving. The activities are organized as an iterative
process around a spiral, with the output being a system requirements document.
The amount of time and effort devoted to each activity in each iteration depends on
the stage of the overall process and the type of system being developed. Early in
the process, most effort will be spent on understanding high-level business and
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@ Feasibility studies

A feasibility study is a short, focused study that should take place early in the RE process. It should answer three
key questions: a) does the system contribute to the overall objectives of the organization? b) can the system be
implemented within schedule and budget using current technology? and c) can the system be integrated with
other systems that are used?

If the answer to any of these questions is no, you should probably not go ahead with the project.

http://www.SoftwareEngineering-9.com/Web/Requirements/FeasibilityStudy.html

non-functional requirements, and the user requirements for the system. Later in the
process, in the outer rings of the spiral, more effort will be devoted to eliciting and
understanding the detailed system requirements.

This spiral model accommodates approaches to development where the require-
ments are developed to different levels of detail. The number of iterations around the
spiral can vary so the spiral can be exited after some or all of the user requirements
have been elicited. Agile development can be used instead of prototyping so that the
requirements and the system implementation are developed together.

Some people consider requirements engineering to be the process of applying a
structured analysis method, such as object-oriented analysis (Larman, 2002). This
involves analyzing the system and developing a set of graphical system models, such
as use case models, which then serve as a system specification. The set of models
describes the behavior of the system and is annotated with additional information
describing, for example, the system’s required performance or reliability.

Although structured methods have a role to play in the requirements engineering
process, there is much more to requirements engineering than is covered by these
methods. Requirements elicitation, in particular, is a human-centered activity and
people dislike the constraints imposed on it by rigid system models.

In virtually all systems, requirements change. The people involved develop a bet-
ter understanding of what they want the software to do; the organization buying the
system changes; modifications are made to the system’s hardware, software, and
organizational environment. The process of managing these changing requirements
is called requirements management, which I cover in Section 4.7.

BN Requirements elicitation and analysis

After an initial feasibility study, the next stage of the requirements engineering
process is requirements elicitation and analysis. In this activity, software engineers
work with customers and system end-users to find out about the application domain,
what services the system should provide, the required performance of the system,
hardware constraints, and so on.
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Figure 4.13 The
requirements elicitation
and analysis process

1. Requirements
Discovery

2. Requirements
Classification and
Organization

4. Requirements
Specification

3. Requirements
Prioritization and
Negotiation

Requirements elicitation and analysis may involve a variety of different kinds of

people in an organization. A system stakeholder is anyone who should have some
direct or indirect influence on the system requirements. Stakeholders include end-
users who will interact with the system and anyone else in an organization who will
be affected by it. Other system stakeholders might be engineers who are developing
or maintaining other related systems, business managers, domain experts, and trade
union representatives.

A process model of the elicitation and analysis process is shown in Figure 4.13.

Each organization will have its own version or instantiation of this general model
depending on local factors such as the expertise of the staff, the type of system being
developed, the standards used, etc.

The process activities are:

Requirements discovery This is the process of interacting with stakeholders of the
system to discover their requirements. Domain requirements from stakeholders and
documentation are also discovered during this activity. There are several comple-
mentary techniques that can be used for requirements discovery, which I discuss
later in this section.

Requirements classification and organization This activity takes the unstruc-
tured collection of requirements, groups related requirements, and organizes
them into coherent clusters. The most common way of grouping requirements is
to use a model of the system architecture to identify sub-systems and to associ-
ate requirements with each sub-system. In practice, requirements engineering
and architectural design cannot be completely separate activities.

Requirements prioritization and negotiation Inevitably, when multiple stake-
holders are involved, requirements will conflict. This activity is concerned with
prioritizing requirements and finding and resolving requirements conflicts
through negotiation. Usually, stakeholders have to meet to resolve differences
and agree on compromise requirements.
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4.  Requirements specification The requirements are documented and input into the
next round of the spiral. Formal or informal requirements documents may be
produced, as discussed in Section 4.3.

Figure 4.13 shows that requirements elicitation and analysis is an iterative
process with continual feedback from each activity to other activities. The process
cycle starts with requirements discovery and ends with the requirements documenta-
tion. The analyst’s understanding of the requirements improves with each round of
the cycle. The cycle ends when the requirements document is complete.

Eliciting and understanding requirements from system stakeholders is a difficult
process for several reasons:

1. Stakeholders often don’t know what they want from a computer system except
in the most general terms; they may find it difficult to articulate what they want
the system to do; they may make unrealistic demands because they don’t know
what is and isn’t feasible.

2. Stakeholders in a system naturally express requirements in their own terms and
with implicit knowledge of their own work. Requirements engineers, without
experience in the customer’s domain, may not understand these requirements.

3. Different stakeholders have different requirements and they may express these
in different ways. Requirements engineers have to discover all potential sources
of requirements and discover commonalities and conflict.

4. Political factors may influence the requirements of a system. Managers may
demand specific system requirements because these will allow them to increase
their influence in the organization.

5. The economic and business environment in which the analysis takes place is
dynamic. It inevitably changes during the analysis process. The importance of
particular requirements may change. New requirements may emerge from new
stakeholders who were not originally consulted.

Inevitably, different stakeholders have different views on the importance and pri-
ority of requirements and, sometimes, these views are conflicting. During the
process, you should organize regular stakeholder negotiations so that compromises
can be reached. It is impossible to completely satisfy every stakeholder but if some
stakeholders feel that their views have not been properly considered then they may
deliberately attempt to undermine the RE process.

At the requirements specification stage, the requirements that have been elicited
so far are documented in such a way that they can be used to help with requirements
discovery. At this stage, an early version of the system requirements document may
be produced with missing sections and incomplete requirements. Alternatively, the
requirements may be documented in a completely different way (e.g., in a spread-
sheet or on cards). Writing requirements on cards can be very effective as these are
easy for stakeholders to handle, change, and organize.
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@ Viewpoints

A viewpoint is way of collecting and organizing a set of requirements from a group of stakeholders who have
something in common. Each viewpoint therefore includes a set of system requirements. Viewpoints might come
from end-users, managers, etc. They help identify the people who can provide information about their
requirements and structure the requirements for analysis.

http://www.SoftwareEngineering-9.com/Web/Requirements/Viewpoints.html|

4.5.1 Requirements discovery

Requirements discovery (sometime called requirements elicitation) is the process of
gathering information about the required system and existing systems, and distilling
the user and system requirements from this information. Sources of information dur-
ing the requirements discovery phase include documentation, system stakeholders,
and specifications of similar systems. You interact with stakeholders through inter-
views and observation and you may use scenarios and prototypes to help stakehold-
ers understand what the system will be like.

Stakeholders range from end-users of a system through managers to external stake-
holders such as regulators, who certify the acceptability of the system. For example,
system stakeholders for the mental healthcare patient information system include:

1. Patients whose information is recorded in the system.

2. Doctors who are responsible for assessing and treating patients.

3. Nurses who coordinate the consultations with doctors and administer some
treatments.

4. Medical receptionists who manage patients’ appointments.
5. IT staff who are responsible for installing and maintaining the system.

6. A medical ethics manager who must ensure that the system meets current ethi-
cal guidelines for patient care.

7. Healthcare managers who obtain management information from the system.

8. Medical records staff who are responsible for ensuring that system information
can be maintained and preserved, and that record keeping procedures have been
properly implemented.

In addition to system stakeholders, we have already seen that requirements may
also come from the application domain and from other systems that interact with the
system being specified. All of these must be considered during the requirements
elicitation process.

These different requirements sources (stakeholders, domain, systems) can all be
represented as system viewpoints with each viewpoint showing a subset of the
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requirements for the system. Different viewpoints on a problem see the problem in
different ways. However, their perspectives are not completely independent but usu-
ally overlap so that they have common requirements. You can use these viewpoints
to structure both the discovery and the documentation of the system requirements.

Interviewing

Formal or informal interviews with system stakeholders are part of most require-
ments engineering processes. In these interviews, the requirements engineering team
puts questions to stakeholders about the system that they currently use and the sys-
tem to be developed. Requirements are derived from the answers to these questions.
Interviews may be of two types:

1. Closed interviews, where the stakeholder answers a pre-defined set of questions.

2. Open interviews, in which there is no pre-defined agenda. The requirements
engineering team explores a range of issues with system stakeholders and hence
develop a better understanding of their needs.

In practice, interviews with stakeholders are normally a mixture of both of these.
You may have to obtain the answer to certain questions but these usually lead on to
other issues that are discussed in a less structured way. Completely open-ended dis-
cussions rarely work well. You usually have to ask some questions to get started and
to keep the interview focused on the system to be developed.

Interviews are good for getting an overall understanding of what stakeholders do,
how they might interact with the new system, and the difficulties that they face with
current systems. People like talking about their work so are usually happy to get
involved in interviews. However, interviews are not so helpful in understanding the
requirements from the application domain.

It can be difficult to elicit domain knowledge through interviews for two reasons:

1. All application specialists use terminology and jargon that are specific to a
domain. It is impossible for them to discuss domain requirements without using
this terminology. They normally use terminology in a precise and subtle way
that is easy for requirements engineers to misunderstand.

2. Some domain knowledge is so familiar to stakeholders that they either find it
difficult to explain or they think it is so fundamental that it isn’t worth mention-
ing. For example, for a librarian, it goes without saying that all acquisitions are
catalogued before they are added to the library. However, this may not be obvi-
ous to the interviewer, and so it isn’t taken into account in the requirements.

Interviews are also not an effective technique for eliciting knowledge about orga-
nizational requirements and constraints because there are subtle power relationships
between the different people in the organization. Published organizational structures
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rarely match the reality of decision making in an organization but interviewees may
not wish to reveal the actual rather than the theoretical structure to a stranger. In gen-
eral, most people are generally reluctant to discuss political and organizational
issues that may affect the requirements.

Effective interviewers have two characteristics:

1. They are open-minded, avoid pre-conceived ideas about the requirements, and
are willing to listen to stakeholders. If the stakeholder comes up with surprising
requirements, then they are willing to change their mind about the system.

2. They prompt the interviewee to get discussions going using a springboard question,
a requirements proposal, or by working together on a prototype system. Saying to
people ‘tell me what you want’ is unlikely to result in useful information. They find
it much easier to talk in a defined context rather than in general terms.

Information from interviews supplements other information about the system from
documentation describing business processes or existing systems, user observations,
etc. Sometimes, apart from the information in the system documents, the interview
information may be the only source of information about the system requirements.
However, interviewing on its own is liable to miss essential information and so it
should be used in conjunction with other requirements elicitation techniques.

Scenarios

People usually find it easier to relate to real-life examples rather than abstract
descriptions. They can understand and criticize a scenario of how they might interact
with a software system. Requirements engineers can use the information gained
from this discussion to formulate the actual system requirements.

Scenarios can be particularly useful for adding detail to an outline requirements
description. They are descriptions of example interaction sessions. Each scenario
usually covers one or a small number of possible interactions. Different forms of
scenarios are developed and they provide different types of information at different
levels of detail about the system. The stories used in extreme programming, dis-
cussed in Chapter 3, are a type of requirements scenario.

A scenario starts with an outline of the interaction. During the elicitation process,
details are added to this to create a complete description of that interaction. At its
most general, a scenario may include:

1. A description of what the system and users expects when the scenario starts.
A description of the normal flow of events in the scenario.

A description of what can go wrong and how this is handled.

Information about other activities that might be going on at the same time.

wokse o we

A description of the system state when the scenario finishes.
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INITIAL ASSUMPTION:
The patient has seen a medical receptionist who has created a record in the system and collected the patient’s
personal information (name, address, age, etc.). A nurse is logged on to the system and is collecting medical history.

NORMAL:
The nurse searches for the patient by family name. If there is more than one patient with the same surname,
the given name (first name in English) and date of birth are used to identify the patient.

The nurse chooses the menu option to add medical history.

The nurse then follows a series of prompts from the system to enter information about consultations elsewhere
on mental health problems (free text input), existing medical conditions (nurse selects conditions from menu),
medication currently taken (selected from menu), allergies (free text), and home life (form).

WHAT CAN GO WRONG:
The patient’s record does not exist or cannot be found. The nurse should create a new record and record
personal information.

Patient conditions or medication are not entered in the menu. The nurse should choose the ‘other’ option and
enter free text describing the condition/medication.

Patient cannot/will not provide information on medical history. The nurse should enter free text recording the
patient’s inability/unwillingness to provide information. The system should print the standard exclusion form
stating that the lack of information may mean that treatment will be limited or delayed. This should be signed
and handed to the patient.

OTHER ACTIVITIES:

Record may be consulted but not edited by other staff while information is being entered.

SYSTEM STATE ON COMPLETION:
User is logged on. The patient record including medical history is entered in the database, a record is added to
the system log showing the start and end time of the session and the nurse involved.

Figure 4.14 Scenario
for collecting medical
history in MHC-PMS

4.5.4

Scenario-based elicitation involves working with stakeholders to identify scenar-
ios and to capture details to be included in these scenarios. Scenarios may be written
as text, supplemented by diagrams, screen shots, etc. Alternatively, a more structured
approach such as event scenarios or use cases may be used.

As an example of a simple text scenario, consider how the MHC-PMS may be
used to enter data for a new patient (Figure 4.14). When a new patient attends a
clinic, a new record is created by a medical receptionist and personal information
(name, age, etc.) is added to it. A nurse then interviews the patient and collects med-
ical history. The patient then has an initial consultation with a doctor who makes a
diagnosis and, if appropriate, recommends a course of treatment. The scenario
shows what happens when medical history is collected.

Use cases

Use cases are a requirements discovery technique that were first introduced in the
Objectory method (Jacobson et al., 1993). They have now become a fundamental
feature of the unified modeling language. In their simplest form, a use case identifies
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Figure 4.15 Use cases
for the MHC-PMS
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the actors involved in an interaction and names the type of interaction. This is then
supplemented by additional information describing the interaction with the system.
The additional information may be a textual description or one or more graphical
models such as UML sequence or state charts.

Use cases are documented using a high-level use case diagram. The set of use
cases represents all of the possible interactions that will be described in the system
requirements. Actors in the process, who may be human or other systems, are repre-
sented as stick figures. Each class of interaction is represented as a named ellipse.
Lines link the actors with the interaction. Optionally, arrowheads may be added to
lines to show how the interaction is initiated. This is illustrated in Figure 4.15, which
shows some of the use cases for the patient information system.

There is no hard and fast distinction between scenarios and use cases. Some peo-
ple consider that each use case is a single scenario; others, as suggested by Stevens
and Pooley (2006), encapsulate a set of scenarios in a single use case. Each scenario
is a single thread through the use case. Therefore, there would be a scenario for the
normal interaction plus scenarios for each possible exception. You can, in practice,
use them in either way.

Use cases identify the individual interactions between the system and its users or
other systems. Each use case should be documented with a textual description. These
can then be linked to other models in the UML that will develop the scenario in more
detail. For example, a brief description of the Setup Consultation use case from
Figure 4.15 might be:

Setup consultation allows two or more doctors, working in different offices, to
view the same record at the same time. One doctor initiates the consultation by
choosing the people involved from a drop-down menu of doctors who are on-
line. The patient record is then displayed on their screens but only the initiating
doctor can edit the record. In addition, a text chat window is created to help
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coordinate actions. It is assumed that a phone conference for voice communica-
tion will be separately set up.

Scenarios and use cases are effective techniques for eliciting requirements from
stakeholders who interact directly with the system. Each type of interaction can be
represented as a use case. However, because they focus on interactions with the sys-
tem, they are not as effective for eliciting constraints or high-level business and non-
functional requirements or for discovering domain requirements.

The UML is a de facto standard for object-oriented modeling, so use cases and
use case—based elicitation are now widely used for requirements elicitation. I discuss
use cases further in Chapter 5 and show how they are used alongside other system
models to document a system design.

Ethnography

Software systems do not exist in isolation. They are used in a social and organiza-
tional context and software system requirements may be derived or constrained by
that context. Satisfying these social and organizational requirements is often critical
for the success of the system. One reason why many software systems are delivered
but never used is that their requirements do not take proper account of how the social
and organizational context affects the practical operation of the system.

Ethnography is an observational technique that can be used to understand opera-
tional processes and help derive support requirements for these processes. An ana-
lyst immerses himself or herself in the working environment where the system will
be used. The day-to-day work is observed and notes made of the actual tasks in
which participants are involved. The value of ethnography is that it helps discover
implicit system requirements that reflect the actual ways that people work, rather
than the formal processes defined by the organization.

People often find it very difficult to articulate details of their work because it is
second nature to them. They understand their own work but may not understand its
relationship to other work in the organization. Social and organizational factors that
affect the work, but which are not obvious to individuals, may only become clear
when noticed by an unbiased observer. For example, a work group may self-organize
so that members know of each other’s work and can cover for each other if someone
is absent. This may not be mentioned during an interview as the group might not see
it as an integral part of their work.

Suchman (1987) pioneered the use of ethnography to study office work. She
found that the actual work practices were far richer, more complex, and more
dynamic than the simple models assumed by office automation systems. The differ-
ence between the assumed and the actual work was the most important reason why
these office systems had no significant effect on productivity. Crabtree (2003)
discusses a wide range of studies since then and describes, in general, the use of
ethnography in systems design. In my own research, I have investigated methods of
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integrating ethnography into the software engineering process by linking it with
requirements engineering methods (Viller and Sommerville, 1999; Viller and
Sommerville, 2000) and documenting patterns of interaction in cooperative systems
(Martin et al., 2001; Martin et al., 2002; Martin and Sommerville, 2004).
Ethnography is particularly effective for discovering two types of requirements:

1. Requirements that are derived from the way in which people actually work,
rather than the way in which process definitions say they ought to work. For
example, air traffic controllers may switch off a conflict alert system that
detects aircraft with intersecting flight paths, even though normal control
procedures specify that it should be used. They deliberately put the aircraft
on conflicting paths for a short time to help manage the airspace. Their con-
trol strategy is designed to ensure that these aircrafts are moved apart before
problems occur and they find that the conflict alert alarm distracts them from
their work.

2. Requirements that are derived from cooperation and awareness of other people’s
activities. For example, air traffic controllers may use an awareness of other
controllers’ work to predict the number of aircrafts that will be entering their
control sector. They then modify their control strategies depending on that pre-
dicted workload. Therefore, an automated ATC system should allow controllers
in a sector to have some visibility of the work in adjacent sectors.

Ethnography can be combined with prototyping (Figure 4.16). The ethnography
informs the development of the prototype so that fewer prototype refinement cycles
are required. Furthermore, the prototyping focuses the ethnography by identifying
problems and questions that can then be discussed with the ethnographer. He or she
should then look for the answers to these questions during the next phase of the sys-
tem study (Sommerville et al., 1993).

Ethnographic studies can reveal critical process details that are often missed by
other requirements elicitation techniques. However, because of its focus on the
end-user, this approach is not always appropriate for discovering organizational or
domain requirements. They cannot always identify new features that should be
added to a system. Ethnography is not, therefore, a complete approach to elicita-
tion on its own and it should be used to complement other approaches, such as use
case analysis.
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@ Requirements reviews

A requirements review is a process where a group of people from the system customer and the system
developer read the requirements document in detail and check for errors, anomalies, and inconsistencies. Once
these have been detected and recorded, it is then up to the customer and the developer to negotiate how the
identified problems should be solved.

http://www.SoftwareEngineering-9.com/Web/Requirements/Reviews.html

XA Requirements validation

Requirements validation is the process of checking that requirements actually define
the system that the customer really wants. It overlaps with analysis as it is concerned
with finding problems with the requirements. Requirements validation is important
because errors in a requirements document can lead to extensive rework costs when
these problems are discovered during development or after the system is in service.

The cost of fixing a requirements problem by making a system change is usually
much greater than repairing design or coding errors. The reason for this is that a
change to the requirements usually means that the system design and implementa-
tion must also be changed. Furthermore the system must then be re-tested.

During the requirements validation process, different types of checks should be
carried out on the requirements in the requirements document. These checks include:

1. Validity checks A user may think that a system is needed to perform certain func-
tions. However, further thought and analysis may identify additional or different
functions that are required. Systems have diverse stakeholders with different
needs and any set of requirements is inevitably a compromise across the stake-
holder community.

2. Consistency checks Requirements in the document should not conflict. That is,
there should not be contradictory constraints or different descriptions of the
same system function.

3. Completeness checks The requirements document should include requirements
that define all functions and the constraints intended by the system user.

4. Realism checks Using knowledge of existing technology, the requirements
should be checked to ensure that they can actually be implemented. These checks
should also take account of the budget and schedule for the system development.

5. Verifiability To reduce the potential for dispute between customer and contrac-
tor, system requirements should always be written so that they are verifiable.
This means that you should be able to write a set of tests that can demonstrate
that the delivered system meets each specified requirement.
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There are a number of requirements validation techniques that can be used
individually or in conjunction with one another:

1. Requirements reviews The requirements are analyzed systematically by a team
of reviewers who check for errors and inconsistencies.

2. Prototyping In this approach to validation, an executable model of the system in
question is demonstrated to end-users and customers. They can experiment with
this model to see if it meets their real needs.

3. Test-case generation Requirements should be testable. If the tests for the
requirements are devised as part of the validation process, this often reveals
requirements problems. If a test is difficult or impossible to design, this usually
means that the requirements will be difficult to implement and should be recon-
sidered. Developing tests from the user requirements before any code is written
is an integral part of extreme programming.

You should not underestimate the problems involved in requirements validation.
Ultimately, it is difficult to show that a set of requirements does in fact meet a user’s
needs. Users need to picture the system in operation and imagine how that system
would fit into their work. It is hard even for skilled computer professionals to per-
form this type of abstract analysis and harder still for system users. As a result, you
rarely find all requirements problems during the requirements validation process. It
is inevitable that there will be further requirements changes to correct omissions and
misunderstandings after the requirements document has been agreed upon.

YA Requirements management

The requirements for large software systems are always changing. One reason for this is
that these systems are usually developed to address ‘wicked” problems—problems that
cannot be completely defined. Because the problem cannot be fully defined, the soft-
ware requirements are bound to be incomplete. During the software process, the stake-
holders’ understanding of the problem is constantly changing (Figure 4.17). The system
requirements must then also evolve to reflect this changed problem view.
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4.7.1

@ Enduring and volatile requirements

Some requirements are more susceptible to change than others. Enduring requirements are the requirements that
are associated with the core, slow-to-change activities of an organization. Enduring requirements are associated
with fundamental work activities. Volatile requirements are more likely to change. They are usually associated with
supporting activities that reflect how the organization does its work rather than the work itself.

http://www.SoftwareEngineering-9.com/Web/Requirements/EnduringReq.html

Once a system has been installed and is regularly used, new requirements inevitably
emerge. It is hard for users and system customers to anticipate what effects the new
system will have on their business processes and the way that work is done. Once end-
users have experience of a system, they will discover new needs and priorities. There
are several reasons why change is inevitable:

1. The business and technical environment of the system always changes after
installation. New hardware may be introduced, it may be necessary to interface
the system with other systems, business priorities may change (with consequent
changes in the system support required), and new legislation and regulations
may be introduced that the system must necessarily abide by.

2. The people who pay for a system and the users of that system are rarely the
same people. System customers impose requirements because of organizational
and budgetary constraints. These may conflict with end-user requirements and,
after delivery, new features may have to be added for user support if the system
is to meet its goals.

3. Large systems usually have a diverse user community, with many users having
different requirements and priorities that may be conflicting or contradictory.
The final system requirements are inevitably a compromise between them and,
with experience, it is often discovered that the balance of support given to differ-
ent users has to be changed.

Requirements management is the process of understanding and controlling
changes to system requirements. You need to keep track of individual requirements
and maintain links between dependent requirements so that you can assess the
impact of requirements changes. You need to establish a formal process for making
change proposals and linking these to system requirements. The formal process of
requirements management should start as soon as a draft version of the requirements
document is available. However, you should start planning how to manage changing
requirements during the requirements elicitation process.

Requirements management planning

Planning is an essential first stage in the requirements management process. The
planning stage establishes the level of requirements management detail that is
required. During the requirements management stage, you have to decide on:
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1. Requirements identification Each requirement must be uniquely identified so
that it can be cross-referenced with other requirements and used in traceability
assessments.

2. A change management process This is the set of activities that assess the impact
and cost of changes. I discuss this process in more detail in the following section.

3. Traceability policies These policies define the relationships between each require-
ment and between the requirements and the system design that should be recorded.
The traceability policy should also define how these records should be maintained.

4. Tool support Requirements management involves the processing of large amounts
of information about the requirements. Tools that may be used range from specialist
requirements management systems to spreadsheets and simple database systems.

Requirements management needs automated support and the software tools for
this should be chosen during the planning phase. You need tool support for:

1. Requirements storage The requirements should be maintained in a secure, man-
aged data store that is accessible to everyone involved in the requirements engi-
neering process.

2. Change management The process of change management (Figure 4.18) is sim-
plified if active tool support is available.

3. Traceability management As discussed above, tool support for traceability
allows related requirements to be discovered. Some tools are available which
use natural language processing techniques to help discover possible relation-
ships between requirements.

For small systems, it may not be necessary to use specialized requirements man-
agement tools. The requirements management process may be supported using the
facilities available in word processors, spreadsheets, and PC databases. However,
for larger systems, more specialized tool support is required. I have included links
to information about requirements management tools in the book’s web pages.

Requirements change management

Requirements change management (Figure 4.18) should be applied to all proposed
changes to a system’s requirements after the requirements document has been approved.
Change management is essential because you need to decide if the benefits of imple-
menting new requirements are justified by the costs of implementation. The advantage of
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@ Requirements traceability

You need to keep track of the relationships between requirements, their sources, and the system design so
that you can analyze the reasons for proposed changes and the impact that these changes are likely to have on
other parts of the system. You need to be able to trace how a change ripples its way through the system. Why?

http://www.SoftwareEngineering-9.com/Web/Requirements/ReqTraceability.html

using a formal process for change management is that all change proposals are treated
consistently and changes to the requirements document are made in a controlled way.
There are three principal stages to a change management process:

1. Problem analysis and change specification The process starts with an identified
requirements problem or, sometimes, with a specific change proposal. During
this stage, the problem or the change proposal is analyzed to check that it is
valid. This analysis is fed back to the change requestor who may respond with a
more specific requirements change proposal, or decide to withdraw the request.

2. Change analysis and costing The effect of the proposed change is assessed
using traceability information and general knowledge of the system require-
ments. The cost of making the change is estimated both in terms of modifica-
tions to the requirements document and, if appropriate, to the system design and
implementation. Once this analysis is completed, a decision is made whether or
not to proceed with the requirements change.

3. Change implementation The requirements document and, where necessary, the
system design and implementation, are modified. You should organize the
requirements document so that you can make changes to it without extensive
rewriting or reorganization. As with programs, changeability in documents is
achieved by minimizing external references and making the document sections
as modular as possible. Thus, individual sections can be changed and replaced
without affecting other parts of the document.

If a new requirement has to be urgently implemented, there is always a temptation to
change the system and then retrospectively modify the requirements document. You
should try to avoid this as it almost inevitably leads to the requirements specification and
the system implementation getting out of step. Once system changes have been made, it
is easy to forget to include these changes in the requirements document or to add infor-
mation to the requirements document that is inconsistent with the implementation.

Agile development processes, such as extreme programming, have been designed
to cope with requirements that change during the development process. In these
processes, when a user proposes a requirements change, this change does not go
through a formal change management process. Rather, the user has to prioritize that
change and, if it is high priority, decide what system features that were planned for the
next iteration should be dropped.
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KEY POINTS

Requirements for a software system set out what the system should do and define constraints
on its operation and implementation.

Functional requirements are statements of the services that the system must provide or are
descriptions of how some computations must be carried out.

Non-functional requirements often constrain the system being developed and the development
process being used. These might be product requirements, organizational requirements, or
external requirements. They often relate to the emergent properties of the system and therefore
apply to the system as a whole.

The software requirements document is an agreed statement of the system requirements. It
should be organized so that both system customers and software developers can use it.

The requirements engineering process includes a feasibility study, requirements elicitation and
analysis, requirements specification, requirements validation, and requirements management.

Requirements elicitation and analysis is an iterative process that can be represented as a spiral
of activities—requirements discovery, requirements classification and organization,
requirements negotiation, and requirements documentation.

Requirements validation is the process of checking the requirements for validity, consistency,
completeness, realism, and verifiability.

Business, organizational, and technical changes inevitably lead to changes to the requirements
for a software system. Requirements management is the process of managing and controlling
these changes.

FURTHER READING

Software Requirements, 2nd edition. This book, designed for writers and users of requirements,
discusses good requirements engineering practice. (K. M. Weigers, 2003, Microsoft Press.)

‘Integrated requirements engineering: A tutorial’. This is a tutorial paper that | wrote in which |
discuss requirements engineering activities and how these can be adapted to fit with modern
software engineering practice. (I. Sommerville, IEEE Software, 22(1), Jan—Feb 2005.)
http://dx.doi.org/10.1109/MS.2005.13.

Mastering the Requirements Process, 2nd edition. A well-written, easy-to-read book that is based
on a particular method (VOLERE) but which also includes lots of good general advice about
requirements engineering. (S. Robertson and J. Robertson, 2006, Addison-Wesley.)

‘Research Directions in Requirements Engineering’. This is a good survey of requirements
engineering research that highlights future research challenges in the area to address issues such
as scale and agility. (B. H. C. Cheng and J. M. Atlee, Proc. Conf on Future of Software Engineering,
IEEE Computer Society, 2007.) http://dx.doi.org/10.1109/FOSE.2007.17.
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EXERCISES

4.1.

4.2.

4.3.

4.4,

4.5.

4.6.

4.7.

4.8.

4.9.

4.10.

Identify and briefly describe four types of requirement that may be defined for a computer-
based system.

Discover ambiguities or omissions in the following statement of requirements for part of a
ticket-issuing system:

An automated ticket-issuing system sells rail tickets. Users select their destination and
input a credit card and a personal identification number. The rail ticket is issued and their
credit card account charged. When the user presses the start button, a menu display of
potential destinations is activated, along with a message to the user to select a destination.
Once a destination has been selected, users are requested to input their credit card. Its
validity is checked and the user is then requested to input a personal identifier. When the
credit transaction has been validated, the ticket is issued.

Rewrite the above description using the structured approach described in this chapter.
Resolve the identified ambiguities in an appropriate way.

Write a set of non-functional requirements for the ticket-issuing system, setting out its
expected reliability and response time.

Using the technique suggested here, where natural language descriptions are presented in
a standard format, write plausible user requirements for the following functions:

An unattended petrol (gas) pump system that includes a credit card reader. The
customer swipes the card through the reader then specifies the amount of fuel required.
The fuel is delivered and the customer’s account debited.

The cash-dispensing function in a bank ATM.
The spelling-check and correcting function in a word processor.

Suggest how an engineer responsible for drawing up a system requirements specification
might keep track of the relationships between functional and non-functional requirements.

Using your knowledge of how an ATM is used, develop a set of use cases that could serve
as a basis for understanding the requirements for an ATM system.

Who should be involved in a requirements review? Draw a process model showing how a
requirements review might be organized.

When emergency changes have to be made to systems, the system software may have to be
modified before changes to the requirements have been approved. Suggest a model of a
process for making these modifications that will ensure that the requirements document
and the system implementation do not become inconsistent.

You have taken a job with a software user who has contracted your previous employer to
develop a system for them. You discover that your company’s interpretation of the
requirements is different from the interpretation taken by your previous employer. Discuss
what you should do in such a situation. You know that the costs to your current employer
will increase if the ambiguities are not resolved. However, you have also a responsibility of
confidentiality to your previous employer.
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S—ystem modeling

Objectives

The aim of this chapter is to introduce some types of system model
that may be developed as part of the requirements engineering and
system design processes. When you have read the chapter, you will:

m understand how graphical models can be used to represent
software systems;

m understand why different types of model are required and the
fundamental system modeling perspectives of context, interaction,
structure, and behavior;

m have been introduced to some of the diagram types in the Unified
Modeling Language (UML) and how these diagrams may be used in
system modeling;

m be aware of the ideas underlying model-driven engineering, where a
system is automatically generated from structural and behavioral
models.

Contents

5.1 Context models

5.2 Interaction models

5.3 Structural models

5.4 Behavioral models

5.5 Model-driven engineering
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System modeling is the process of developing abstract models of a system, with each
model presenting a different view or perspective of that system. System modeling
has generally come to mean representing the system using some kind of graphical
notation, which is now almost always based on notations in the Unified Modeling
Language (UML). However, it is also possible to develop formal (mathematical)
models of a system, usually as a detailed system specification. I cover graphical
modeling using the UML in this chapter and formal modeling in Chapter 12.

Models are used during the requirements engineering process to help derive the
requirements for a system, during the design process to describe the system to engi-
neers implementing the system and after implementation to document the system’s
structure and operation. You may develop models of both the existing system and the
system to be developed:

1. Models of the existing system are used during requirements engineering. They
help clarify what the existing system does and can be used as a basis for dis-
cussing its strengths and weaknesses. These then lead to requirements for the
new system.

2. Models of the new system are used during requirements engineering to help
explain the proposed requirements to other system stakeholders. Engineers use
these models to discuss design proposals and to document the system for imple-
mentation. In a model-driven engineering process, it is possible to generate a
complete or partial system implementation from the system model.

The most important aspect of a system model is that it leaves out detail. A model
is an abstraction of the system being studied rather than an alternative representation
of that system. Ideally, a representation of a system should maintain all the informa-
tion about the entity being represented. An abstraction deliberately simplifies and
picks out the most salient characteristics. For example, in the very unlikely event of
this book being serialized in a newspaper, the presentation there would be an abstrac-
tion of the book’s key points. If it were translated from English into Italian, this
would be an alternative representation. The translator’s intention would be to main-
tain all the information as it is presented in English.

You may develop different models to represent the system from different perspec-
tives. For example:

1. Anexternal perspective, where you model the context or environment of the system.

2. An interaction perspective where you model the interactions between a system
and its environment or between the components of a system.

3. A structural perspective, where you model the organization of a system or the
structure of the data that is processed by the system.

4. A behavioral perspective, where you model the dynamic behavior of the system
and how it responds to events.
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These perspectives have much in common with Krutchen’s 4 + 1 view of system
architecture (Kruchten, 1995), where he suggests that you should document a sys-
tem’s architecture and organization from different perspectives. I discuss this 4 + 1
approach in Chapter 6.

In this chapter, I use diagrams defined in UML (Booch et al., 2005; Rumbaugh
et al., 2004), which has become a standard modeling language for object-oriented
modeling. The UML has many diagram types and so supports the creation of many
different types of system model. However, a survey in 2007 (Erickson and Siau,
2007) showed that most users of the UML thought that five diagram types could
represent the essentials of a system:

1. Activity diagrams, which show the activities involved in a process or in data
processing.

2. Use case diagrams, which show the interactions between a system and its envi-
ronment.

3. Sequence diagrams, which show interactions between actors and the system and
between system components.

4. Class diagrams, which show the object classes in the system and the associa-
tions between these classes.

5. State diagrams, which show how the system reacts to internal and external events.

As I do not have space to discuss all of the UML diagram types here, I focus on
how these five key types of diagram are used in system modeling.

When developing system models, you can often be flexible in the way that the
graphical notation is used. You do not always need to stick rigidly to the details of a
notation. The detail and rigor of a model depends on how you intend to use it. There
are three ways in which graphical models are commonly used:

1. As ameans of facilitating discussion about an existing or proposed system.
2. As a way of documenting an existing system.

3. As a detailed system description that can be used to generate a system
implementation.

In the first case, the purpose of the model is to stimulate the discussion
amongst the software engineers involved in developing the system. The models
may be incomplete (so long as they cover the key points of the discussion) and
they may use the modeling notation informally. This is how models are normally
used in so-called ‘agile modeling’ (Ambler and Jeffries, 2002). When models are
used as documentation, they do not have to be complete as you may only wish to
develop models for some parts of a system. However, these models have to be
correct—they should use the notation correctly and be an accurate description of
the system.
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@ The Unified Modeling Language

The Unified Modeling Language is a set of 13 different diagram types that may be used to model software
systems. It emerged from work in the 1990s on object-oriented modeling where similar object-oriented
notations were integrated to create the UML. A major revision (UML 2) was finalized in 2004. The UML is
universally accepted as the standard approach for developing models of software systems. Variants have been
proposed for more general system modeling.

http://www.SoftwareEngineering-9.com/Web/UML/

In the third case, where models are used as part of a model-based development
process, the system models have to be both complete and correct. The reason for this
is that they are used as a basis for generating the source code of the system.
Therefore, you have to be very careful not to confuse similar symbols, such as stick
and block arrowheads, that have different meanings.

I Context models

At an early stage in the specification of a system, you should decide on the system
boundaries. This involves working with system stakeholders to decide what func-
tionality should be included in the system and what is provided by the system’s envi-
ronment. You may decide that automated support for some business processes
should be implemented but others should be manual processes or supported by dif-
ferent systems. You should look at possible overlaps in functionality with existing
systems and decide where new functionality should be implemented. These deci-
sions should be made early in the process to limit the system costs and the time
needed for understanding the system requirements and design.

In some cases, the boundary between a system and its environment is relatively
clear. For example, where an automated system is replacing an existing manual or
computerized system, the environment of the new system is usually the same as the
existing system’s environment. In other cases, there is more flexibility, and you
decide what constitutes the boundary between the system and its environment during
the requirements engineering process.

For example, say you are developing the specification for the patient information
system for mental healthcare. This system is intended to manage information about
patients attending mental health clinics and the treatments that have been prescribed.
In developing the specification for this system, you have to decide whether the sys-
tem should focus exclusively on collecting information about consultations (using
other systems to collect personal information about patients) or whether it should
also collect personal patient information. The advantage of relying on other systems
for patient information is that you avoid duplicating data. The major disadvantage,
however, is that using other systems may make it slower to access information. If
these systems are unavailable, then the MHC-PMS cannot be used.
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The definition of a system boundary is not a value-free judgment. Social and
organizational concerns may mean that the position of a system boundary may be
determined by non-technical factors. For example, a system boundary may be delib-
erately positioned so that the analysis process can all be carried out on one site; it
may be chosen so that a particularly difficult manager need not be consulted; it may
be positioned so that the system cost is increased and the system development divi-
sion must therefore expand to design and implement the system.

Once some decisions on the boundaries of the system have been made, part of the
analysis activity is the definition of that context and the dependencies that a system
has on its environment. Normally, producing a simple architectural model is the first
step in this activity.

Figure 5.1 is a simple context model that shows the patient information system
and the other systems in its environment. From Figure 5.1, you can see that the
MHC-PMS is connected to an appointments system and a more general patient
record system with which it shares data. The system is also connected to systems for
management reporting and hospital bed allocation and a statistics system that col-
lects information for research. Finally, it makes use of a prescription system to gen-
erate prescriptions for patients’ medication.

Context models normally show that the environment includes several other auto-
mated systems. However, they do not show the types of relationships between the
systems in the environment and the system that is being specified. External systems
might produce data for or consume data from the system. They might share data with
the system, or they might be connected directly, through a network or not connected
at all. They might be physically co-located or located in separate buildings. All of
these relations may affect the requirements and design of the system being defined
and must be taken into account.

Therefore, simple context models are used along with other models, such as
business process models. These describe human and automated processes in which
particular software systems are used.
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Figure 5.2 is a model of an important system process that shows the processes in
which the MHC-PMS is used. Sometimes, patients who are suffering from mental
health problems may be a danger to others or to themselves. They may therefore
have to be detained against their will in a hospital so that treatment can be adminis-
tered. Such detention is subject to strict legal safeguards—for example, the decision
to detain a patient must be regularly reviewed so that people are not held indefinitely
without good reason. One of the functions of the MHC-PMS is to ensure that such
safeguards are implemented.

Figure 5.2 is a UML activity diagram. Activity diagrams are intended to show the
activities that make up a system process and the flow of control from one activity to
another. The start of a process is indicated by a filled circle; the end by a filled circle
inside another circle. Rectangles with round corners represent activities, that is, the spe-
cific sub-processes that must be carried out. You may include objects in activity charts.
In Figure 5.2, I have shown the systems that are used to support different processes.
I have indicated that these are separate systems using the UML stereotype feature.

In a UML activity diagram, arrows represent the flow of work from one activity to
another. A solid bar is used to indicate activity coordination. When the flow from
more than one activity leads to a solid bar then all of these activities must be com-
plete before progress is possible. When the flow from a solid bar leads to a number
of activities, these may be executed in parallel. Therefore, in Figure 5.2, the activities
to inform social care and the patient’s next of kin, and to update the detention regis-
ter may be concurrent.

Arrows may be annotated with guards that indicate the condition when that flow
is taken. In Figure 5.2, you can see guards showing the flows for patients who are
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dangerous and not dangerous to society. Patients who are dangerous to society must
be detained in a secure facility. However, patients who are suicidal and so are a
danger to themselves may be detained in an appropriate ward in a hospital.

¥ A Interaction models

5.2.1

All systems involve interaction of some kind. This can be user interaction, which
involves user inputs and outputs, interaction between the system being developed
and other systems or interaction between the components of the system. Modeling
user interaction is important as it helps to identify user requirements. Modeling sys-
tem to system interaction highlights the communication problems that may arise.
Modeling component interaction helps us understand if a proposed system structure
is likely to deliver the required system performance and dependability.
In this section, I cover two related approaches to interaction modeling:

1. Use case modeling, which is mostly used to model interactions between a
system and external actors (users or other systems).

2. Sequence diagrams, which are used to model interactions between system
components, although external agents may also be included.

Use case models and sequence diagrams present interaction at different levels of
detail and so may be used together. The details of the interactions involved in a high-
level use case may be documented in a sequence diagram. The UML also includes
communication diagrams that can be used to model interactions. I don’t discuss
these here as they are an alternative representation of sequence charts. In fact, some
tools can generate a communication diagram from a sequence diagram.

Use case modeling

Use case modeling was originally developed by Jacobson et al. (1993) in the 1990s
and was incorporated into the first release of the UML (Rumbaugh et al., 1999). As
I have discussed in Chapter 4, use case modeling is widely used to support require-
ments elicitation. A use case can be taken as a simple scenario that describes what a
user expects from a system.

Each use case represents a discrete task that involves external interaction with a
system. In its simplest form, a use case is shown as an ellipse with the actors
involved in the use case represented as stick figures. Figure 5.3 shows a use case
from the MHC-PMS that represents the task of uploading data from the MHC-PMS
to a more general patient record system. This more general system maintains sum-
mary data about a patient rather than the data about each consultation, which is
recorded in the MHC-PMS.
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Figure 5.3 Transfer-
data use case

Figure 5.4 Tabular
description of the
‘Transfer data’

use case

% —— - ( Transfer Data %

Medical Receptionist Patient Record System

Notice that there are two actors in this use case: the operator who is transferring
the data and the patient record system. The stick figure notation was originally
developed to cover human interaction but it is also now used to represent other exter-
nal systems and hardware. Formally, use case diagrams should use lines without
arrows as arrows in the UML indicate the direction of flow of messages. Obviously,
in a use case messages pass in both directions. However, the arrows in Figure 5.3 are
used informally to indicate that the medical receptionist initiates the transaction and
data is transferred to the patient record system.

Use case diagrams give a fairly simple overview of an interaction so you have to
provide more detail to understand what is involved. This detail can either be a simple
textual description, a structured description in a table, or a sequence diagram as dis-
cussed below. You chose the most appropriate format depending on the use case and
the level of detail that you think is required in the model. I find a standard tabular
format to be the most useful. Figure 5.4 shows a tabular description of the ‘Transfer
data’ use case.

As I have discussed in Chapter 4, composite use case diagrams show a number
of different use cases. Sometimes, it is possible to include all possible interactions
with a system in a single composite use case diagram. However, this may be impos-
sible because of the number of use cases. In such cases, you may develop several
diagrams, each of which shows related use cases. For example, Figure 5.5 shows all
of the use cases in the MHC-PMS in which the actor ‘Medical Receptionist’ is
involved.

MHC-PMS: Transfer data

Actors

Description

Data
Stimulus
Response

Comments

Medical receptionist, patient records system (PRS)

A receptionist may transfer data from the MHC-PMS to a general patient record database that
is maintained by a health authority. The information transferred may either be updated
personal information (address, phone number, etc.) or a summary of the patient’s diagnosis
and treatment.

Patient’s personal information, treatment summary

User command issued by medical receptionist

Confirmation that PRS has been updated

The receptionist must have appropriate security permissions to access the patient information
and the PRS.
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Sequence diagrams

Sequence diagrams in the UML are primarily used to model the interactions between
the actors and the objects in a system and the interactions between the objects them-
selves. The UML has a rich syntax for sequence diagrams, which allows many dif-
ferent kinds of interaction to be modeled. I don’t have space to cover all possibilities
here so I focus on the basics of this diagram type.

As the name implies, a sequence diagram shows the sequence of interactions that
take place during a particular use case or use case instance. Figure 5.6 is an example
of a sequence diagram that illustrates the basics of the notation. This diagram models
the interactions involved in the View patient information use case, where a medical
receptionist can see some patient information.

The objects and actors involved are listed along the top of the diagram, with a dot-
ted line drawn vertically from these. Interactions between objects are indicated by
annotated arrows. The rectangle on the dotted lines indicates the lifeline of the object
concerned (i.e., the time that object instance is involved in the computation). You
read the sequence of interactions from top to bottom. The annotations on the arrows
indicate the calls to the objects, their parameters, and the return values. In this exam-
ple, I also show the notation used to denote alternatives. A box named alt is used
with the conditions indicated in square brackets.

You can read Figure 5.6 as follows:

1. The medical receptionist triggers the ViewInfo method in an instance P of the
PatientInfo object class, supplying the patient’s identifier, PID. P is a user inter-
face object, which is displayed as a form showing patient information.

2. The instance P calls the database to return the information required, supplying
the receptionist’s identifier to allow security checking (at this stage, we do not
care where this UID comes from).
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3. The database checks with an authorization system that the user is authorized for
this action.

4. If authorized, the patient information is returned and a form on the user’s screen
is filled in. If authorization fails, then an error message is returned.

Figure 5.7 is a second example of a sequence diagram from the same system that
illustrates two additional features. These are the direct communication between the
actors in the system and the creation of objects as part of a sequence of operations. In
this example, an object of type Summary is created to hold the summary data that is to
be uploaded to the PRS (patient record system). You can read this diagram as follows:

1. The receptionist logs on to the PRS.

2. There are two options available. These allow the direct transfer of updated
patient information to the PRS and the transfer of summary health data from the
MHC-PMS to the PRS.

3. In each case, the receptionist’s permissions are checked using the authorization
system.

4. Personal information may be transferred directly from the user interface object
to the PRS. Alternatively, a summary record may be created from the database
and that record is then transferred.

5. On completion of the transfer, the PRS issues a status message and the user
logs off.
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stage and so need not be included in the sequence diagram.

Unless you are using sequence diagrams for code generation or detailed docu-
mentation, you don’t have to include every interaction in these diagrams. If you
develop system models early in the development process to support requirements
engineering and high-level design, there will be many interactions which depend on
implementation decisions. For example, in Figure 5.7 the decision on how to get the
user’s identifier to check authorization is one that can be delayed. In an implementa-
tion, this might involve interacting with a User object but this is not important at this
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@ Object-oriented requirements analysis

In object-oriented requirements analysis, you model real-world entities using object classes. You may create
different types of object model, showing how object classes are related to each other, how objects are
aggregated to form other objects, how objects interact with other objects, and so on. These each present
unique information about the system that is being specified.

http://www.SoftwareEngineering-9.com/Web/OORA/

B XY Structural models

5.3.1

Structural models of software display the organization of a system in terms of the
components that make up that system and their relationships. Structural models may
be static models, which show the structure of the system design or dynamic models,
which show the organization of the system when it is executing. These are not the
same things—the dynamic organization of a system as a set of interacting threads
may be very different from a static model of the system components.

You create structural models of a system when you are discussing and designing
the system architecture. Architectural design is a particularly important topic in soft-
ware engineering and UML component, package, and deployment diagrams may all
be used when presenting architectural models. I cover different aspects of software
architecture and architectural modeling in Chapters 6, 18, and 19. In this section, I
focus on the use of class diagrams for modeling the static structure of the object
classes in a software system.

Class diagrams

Class diagrams are used when developing an object-oriented system model to show
the classes in a system and the associations between these classes. Loosely, an object
class can be thought of as a general definition of one kind of system object. An asso-
ciation is a link between classes that indicates that there is a relationship between
these classes. Consequently, each class may have to have some knowledge of its
associated class.

When you are developing models during the early stages of the software engi-
neering process, objects represent something in the real world, such as a patient, a
prescription, a doctor, etc. As an implementation is developed, you usually need to
define additional implementation objects that are used to provide the required sys-
tem functionality. Here, I focus on the modeling of real-world objects as part of the
requirements or early software design processes.

Class diagrams in the UML can be expressed at different levels of detail. When you
are developing a model, the first stage is usually to look at the world, identify the
essential objects, and represent these as classes. The simplest way of writing these is to
write the class name in a box. You can also simply note the existence of an association
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Figure 5.8 UML

classes and association

Figure 5.9 Classes
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by drawing a line between classes. For example, Figure 5.8 is a simple class diagram
showing two classes: Patient and Patient Record with an association between them.

In Figure 5.8, I illustrate a further feature of class diagrams—the ability to show
how many objects are involved in the association. In this example, each end of the
association is annotated with a 1, meaning that there is a 1:1 relationship between
objects of these classes. That is, each patient has exactly one record and each record
maintains information about exactly one patient. As you can see from later exam-
ples, other multiplicities are possible. You can define that an exact number of objects
are involved or, by using a *, as shown in Figure 5.9, that there are an indefinite num-
ber of objects involved in the association.

Figure 5.9 develops this type of class diagram to show that objects of class Patient
are also involved in relationships with a number of other classes. In this example, |
show that you can name associations to give the reader an indication of the type of
relationship that exists. The UML also allows the role of the objects participating in
the association to be specified.

At this level of detail, class diagrams look like semantic data models. Semantic
data models are used in database design. They show the data entities, their associated
attributes, and the relations between these entities. This approach to modeling was
first proposed in the mid-1970s by Chen (1976); several variants have been devel-
oped since then (Codd, 1979; Hammer and McLeod, 1981; Hull and King, 1987), all
with the same basic form.

The UML does not include a specific notation for this database modeling as it
assumes an object-oriented development process and models data using objects and
their relationships. However, you can use the UML to represent a semantic data
model. You can think of entities in a semantic data model as simplified object classes
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Figure 5.10 The
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(they have no operations), attributes as object class attributes and relations as named
associations between object classes.

When showing the associations between classes, it is convenient to represent
these classes in the simplest possible way. To define them in more detail, you add
information about their attributes (the characteristics of an object) and operations
(the things that you can request from an object). For example, a Patient object will
have the attribute Address and you may include an operation called ChangeAddress,
which is called when a patient indicates that they have moved from one address to
another. In the UML, you show attributes and operations by extending the simple
rectangle that represents a class. This is illustrated in Figure 5.10 where:

1. The name of the object class is in the top section.

2. The class attributes are in the middle section. This must include the attribute
names and, optionally, their types.

3. The operations (called methods in Java and other OO programming languages)
associated with the object class are in the lower section of the rectangle.

Figure 5.10 shows possible attributes and operations on the class Consultation. In
this example, I assume that doctors record voice notes that are transcribed later to
record details of the consultation. To prescribe medication, the doctor involved must
use the Prescribe method to generate an electronic prescription.

Generalization

Generalization is an everyday technique that we use to manage complexity. Rather than
learn the detailed characteristics of every entity that we experience, we place these enti-
ties in more general classes (animals, cars, houses, etc.) and learn the characteristics of
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these classes. This allows us to infer that different members of these classes have some
common characteristics (e.g., squirrels and rats are rodents). We can make general state-
ments that apply to all class members (e.g., all rodents have teeth for gnawing).

In modeling systems, it is often useful to examine the classes in a system to see
if there is scope for generalization. This means that common information will be
maintained in one place only. This is good design practice as it means that, if
changes are proposed, then you do not have to look at all classes in the system to
see if they are affected by the change. In object-oriented languages, such as Java,
generalization is implemented using the class inheritance mechanisms built into the
language.

The UML has a specific type of association to denote generalization, as illus-
trated in Figure 5.11. The generalization is shown as an arrowhead pointing up to
the more general class. This shows that general practitioners and hospital doctors
can be generalized as doctors and that there are three types of Hospital Doctor—
those that have just graduated from medical school and have to be supervised
(Trainee Doctor); those that can work unsupervised as part of a consultant’s team
(Registered Doctor); and consultants, who are senior doctors with full decision-
making responsibilities.

In a generalization, the attributes and operations associated with higher-level
classes are also associated with the lower-level classes. In essence, the lower-level
classes are subclasses inherit the attributes and operations from their superclasses.
These lower-level classes then add more specific attributes and operations. For
example, all doctors have a name and phone number; all hospital doctors have a staff
number and a department but general practitioners don’t have these attributes as they
work independently. They do however, have a practice name and address. This is
illustrated in Figure 5.12, which shows part of the generalization hierarchy that I
have extended with class attributes. The operations associated with the class Doctor
are intended to register and de-register that doctor with the MHC-PMS.
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Aggregation

Objects in the real world are often composed of different parts. For example, a study
pack for a course may be composed of a book, PowerPoint slides, quizzes, and rec-
ommendations for further reading. Sometimes in a system model, you need to illus-
trate this. The UML provides a special type of association between classes called
aggregation that means that one object (the whole) is composed of other objects (the
parts). To show this, we use a diamond shape next to the class that represents the
whole. This is shown in Figure 5.13, which shows that a patient record is a composi-
tion of Patient and an indefinite number of Consultations.

Behavioral models

Figure 5.13 The
aggregation association

Behavioral models are models of the dynamic behavior of the system as it is executing.
They show what happens or what is supposed to happen when a system responds to a
stimulus from its environment. You can think of these stimuli as being of two types:

1. Data Some data arrives that has to be processed by the system.

2. Events Some event happens that triggers system processing. Events may have
associated data but this is not always the case.
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5.4.1

@ Data-flow diagrams

Data-flow diagrams (DFDs) are system models that show a functional perspective where each transformation
represents a single function or process. DFDs are used to show how data flows through a sequence of processing
steps. For example, a processing step could be the filtering of duplicate records in a customer database. The data
is transformed at each step before moving on to the next stage. These processing steps or transformations
represent software processes or functions where data-flow diagrams are used to document a software design.

http://www.SoftwareEngineering-9.com/Web/DFDs

Many business systems are data processing systems that are primarily driven by
data. They are controlled by the data input to the system with relatively little external
event processing. Their processing involves a sequence of actions on that data and the
generation of an output. For example, a phone billing system will accept information
about calls made by a customer, calculate the costs of these calls, and generate a bill
to be sent to that customer. By contrast, real-time systems are often event driven with
minimal data processing. For example, a landline phone switching system responds to
events such as ‘receiver off hook’ by generating a dial tone, or the pressing of keys on
a handset by capturing the phone number, etc.

Data-driven modeling

Data-driven models show the sequence of actions involved in processing input data
and generating an associated output. They are particularly useful during the analysis
of requirements as they can be used to show end-to-end processing in a system. That
is, they show the entire sequence of actions that take place from an input being
processed to the corresponding output, which is the system’s response.

Data-driven models were amongst the first graphical software models. In the
1970s, structured methods such as DeMarco’s Structured Analysis (DeMarco, 1978)
introduced data-flow diagrams (DFDs) as a way of illustrating the processing steps
in a system. Data-flow models are useful because tracking and documenting how the
data associated with a particular process moves through the system helps analysts
and designers understand what is going on. Data-flow diagrams are simple and intu-
itive and it is usually possible to explain them to potential system users who can then
participate in validating the model.

The UML does not support data-flow diagrams as they were originally proposed and
used for modeling data processing. The reason for this is that DFDs focus on system
functions and do not recognize system objects. However, because data-driven systems
are so common in business, UML 2.0 introduced activity diagrams, which are similar to
data-flow diagrams. For example, Figure 5.14 shows the chain of processing involved in
the insulin pump software. In this diagram, you can see the processing steps (repre-
sented as activities) and the data flowing between these steps (represented as objects).

An alternative way of showing the sequence of processing in a system is to use UML
sequence diagrams. You have seen how these can be used to model interaction but, if
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you draw these so that messages are only sent from left to right, then they show the
sequential data processing in the system. Figure 5.15 illustrates this, using a sequence
model of the processing of an order and sending it to a supplier. Sequence models high-
light objects in a system, whereas data-flow diagrams highlight the functions. The
equivalent data-flow diagram for order processing is shown on the book’s web pages.

Event-driven modeling

Event-driven modeling shows how a system responds to external and internal events. It is
based on the assumption that a system has a finite number of states and that events (stim-
uli) may cause a transition from one state to another. For example, a system controlling a
valve may move from a state ‘Valve open’ to a state ‘Valve closed” when an operator
command (the stimulus) is received. This view of a system is particularly appropriate for
real-time systems. Event-based modeling was introduced in real-time design methods
such as those proposed by Ward and Mellor (1985) and Harel (1987, 1988).

The UML supports event-based modeling using state diagrams, which were based on

processing Statecharts (Harel, 1987, 1988). State diagrams show system states and events that cause
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Figure 5.16 State diagram
of a microwave oven

transitions from one state to another. They do not show the flow of data within the system
but may include additional information on the computations carried out in each state.

I use an example of control software for a very simple microwave oven to illus-
trate event-driven modeling. Real microwave ovens are actually much more complex
than this system but the simplified system is easier to understand. This simple
microwave has a switch to select full or half power, a numeric keypad to input the
cooking time, a start/stop button, and an alphanumeric display.

I have assumed that the sequence of actions in using the microwave is:

1. Select the power level (either half power or full power).
2. Input the cooking time using a numeric keypad.

3. Press Start and the food is cooked for the given time.

For safety reasons, the oven should not operate when the door is open and, on
completion of cooking, a buzzer is sounded. The oven has a very simple alphanu-
meric display that is used to display various alerts and warning messages.

In UML state diagrams, rounded rectangles represent system states. They may
include a brief description (following ‘do’) of the actions taken in that state. The
labeled arrows represent stimuli that force a transition from one state to another. You
can indicate start and end states using filled circles, as in activity diagrams.

From Figure 5.16, you can see that the system starts in a waiting state and
responds initially to either the full-power or the half-power button. Users can change
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Figure 5.17 States
and stimuli for the
microwave oven

State Description

Waiting The oven is waiting for input. The display shows the current time.

Half power The oven power is set to 300 watts. The display shows ‘Half power".
Full power The oven power is set to 600 watts. The display shows ‘Full power".
Set time The cooking time is set to the user’s input value. The display shows

the cooking time selected and is updated as the time is set.

Disabled Oven operation is disabled for safety. Interior oven light is on.
Display shows ‘Not ready".

Enabled Oven operation is enabled. Interior oven light is off. Display shows
‘Ready to cook'.

Operation Oven in operation. Interior oven light is on. Display shows the timer
countdown. On completion of cooking, the buzzer is sounded for
five seconds. Oven light is on. Display shows ‘Cooking complete’
while buzzer is sounding.

Stimulus Description

Half power The user has pressed the half-power button.
Full power The user has pressed the full-power button.
Timer The user has pressed one of the timer buttons.
Number The user has pressed a numeric key.

Door open The oven door switch is not closed.

Door closed The oven door switch is closed.

Start The user has pressed the Start button.

Cancel The user has pressed the Cancel button.

their mind after selecting one of these and press the other button. The time is set and,
if the door is closed, the Start button is enabled. Pushing this button starts the oven
operation and cooking takes place for the specified time. This is the end of the cook-
ing cycle and the system returns to the waiting state.

The UML notation lets you indicate the activity that takes place in a state. In a
detailed system specification you have to provide more detail about both the stimuli
and the system states. I illustrate this in Figure 5.17, which shows a tabular descrip-
tion of each state and how the stimuli that force state transitions are generated.

The problem with state-based modeling is that the number of possible states
increases rapidly. For large system models, therefore, you need to hide detail in the
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models. One way to do this is by using the notion of a superstate that encapsulates a
number of separate states. This superstate looks like a single state on a high-level
model but is then expanded to show more detail on a separate diagram. To illustrate
this concept, consider the Operation state in Figure 5.15. This is a superstate that can
be expanded, as illustrated in Figure 5.18.

The Operation state includes a number of sub-states. It shows that operation starts
with a status check and that if any problems are discovered an alarm is indicated and
operation is disabled. Cooking involves running the microwave generator for the
specified time; on completion, a buzzer is sounded. If the door is opened during
operation, the system moves to the disabled state, as shown in Figure 5.15.

B2 Model-driven engineering

Model-driven engineering (MDE) is an approach to software development where mod-
els rather than programs are the principal outputs of the development process (Kent,
2002; Schmidt, 2006). The programs that execute on a hardware/software platform are
then generated automatically from the models. Proponents of MDE argue that this raises
the level of abstraction in software engineering so that engineers no longer have to be
concerned with programming language details or the specifics of execution platforms.
Model-driven engineering has its roots in model-driven architecture (MDA) which
was proposed by the Object Management Group (OMG) in 2001 as a new software
development paradigm. Model-driven engineering and model-driven architecture are
often seen as the same thing. However, I think that MDE has a wider scope than
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5.5.1

MDA. As I discuss later in this section, MDA focuses on the design and implementa-
tion stages of software development whereas MDE is concerned with all aspects of
the software engineering process. Therefore, topics such as model-based require-
ments engineering, software processes for model-based development, and model-
based testing are part of MDE but not, currently, part of MDA.

Although MDA has been in use since 2001, model-based engineering is still at an
early stage of development and it is unclear whether or not it will have a significant
effect on software engineering practice. The main arguments for and against MDE are:

1. For MDE Model-based engineering allows engineers to think about systems at a
high level of abstraction, without concern for the details of their implementa-
tion. This reduces the likelihood of errors, speeds up the design and implemen-
tation process, and allows for the creation of reusable, platform-independent
application models. By using powerful tools, system implementations can be
generated for different platforms from the same model. Therefore, to adapt the
system to some new platform technology, it is only necessary to write a transla-
tor for that platform. When this is available, all platform-independent models
can be rapidly rehosted on the new platform.

2. Against MDE As 1 discussed earlier in this chapter, models are a good way of
facilitating discussions about a software design. However, it does not always
follow that the abstractions that are supported by the model are the right abstrac-
tions for implementation. So, you may create informal design models but then
go on to implement the system using an off-the-shelf, configurable package.
Furthermore, the arguments for platform independence are only valid for large
long-lifetime systems where the platforms become obsolete during a system’s
lifetime. However, for this class of systems, we know that implementation is not
the major problem—requirements engineering, security and dependability, inte-
gration with legacy systems, and testing are more significant.

There have been significant MDE success stories reported by the OMG on their
Web pages (www.omg.org/mda/products_success.htm) and the approach is used
within large companies such as IBM and Siemens. The techniques have been used suc-
cessfully in the development of large, long-lifetime software systems such as air traffic
management systems. Nevertheless, at the time of writing, model-driven approaches
are not widely used for software engineering. Like formal methods of software engi-
neering, which I discuss in Chapter 12, I believe that MDE is an important develop-
ment. However, as is also the case with formal methods, it is not clear whether the
costs and risks of model-driven approaches outweigh the possible benefits.

Model-driven architecture

Model-driven architecture (Kleppe, et al., 2003; Mellor et al., 2004; Stahl and
Voelter, 2006) is a model-focused approach to software design and implementation
that uses a sub-set of UML models to describe a system. Here, models at different
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levels of abstraction are created. From a high-level platform independent model it is
possible, in principle, to generate a working program without manual intervention.

The MDA method recommends that three types of abstract system model should
be produced:

1. A computation independent model (CIM) that models the important domain
abstractions used in the system. CIMs are sometimes called domain models.
You may develop several different CIMs, reflecting different views of the sys-
tem. For example, there may be a security CIM in which you identify important
security abstractions such as an asset and a role and a patient record CIM, in
which you describe abstractions such as patients, consultations, etc.

2. A platform independent model (PIM) that models the operation of the system
without reference to its implementation. The PIM is usually described using
UML models that show the static system structure and how it responds to exter-
nal and internal events.

3. Platform specific models (PSM) which are transformations of the platform-
independent model with a separate PSM for each application platform. In
principle, there may be layers of PSM, with each layer adding some platform-
specific detail. So, the first-level PSM could be middleware-specific but
database independent. When a specific database has been chosen, a database-
specific PSM can then be generated.

As I have said, transformations between these models may be defined and applied
automatically by software tools. This is illustrated in Figure 5.19, which also shows
a final level of automatic transformation. A transformation is applied to the PSM to
generate executable code that runs on the designated software platform.

At the time of writing, automatic CIM to PIM translation is still at the research pro-
totype stage. It is unlikely that completely automated translation tools will be available
in the near future. Human intervention, indicated by a stick figure in Figure 5.19, will
be needed for the foreseeable future. CIMs are related and part of the translation



5.5 m Model-driven engineering 141

Figure 5.20 Multiple

platform-specific
models

J2EE Specific Java Code
J2EE Translator Model Generator Java Program
Platform
Independent
Model
.NET Specific C# Code
.Net Translator Model Generator C# Program

process may involve linking concepts in different CIMs. For example, the concept of a
role in a security CIM may be mapped onto the concept of a staff member in a hospital
CIM. Mellor and Balcer (2002) give the name ‘bridges’ to the information that sup-
ports mapping from one CIM to another.

The translation of PIMs to PSMs is more mature and several commercial tools are
available that provide translators from PIMs to common platforms such as Java and
J2EE. These rely on an extensive library of platform-specific rules and patterns to
convert the PIM to the PSM. There may be several PSMs for each PIM in the system.
If a software system is intended to run on different platforms (e.g., J2EE and .NET),
then it is only necessary to maintain the PIM. The PSMs for each platform are auto-
matically generated. This is illustrated in Figure 5.20.

Although MDA-support tools include platform-specific translators, it is often
the case that these will only offer partial support for the translation from PIMs to
PSMs. In the vast majority of cases, the execution environment for a system is
more than the standard execution platform (e.g., J2EE, .NET, etc.). It also
includes other application systems, application libraries that are specific to a
company, and user interface libraries. As these vary significantly from one com-
pany to another, standard tool support is not available. Therefore, when MDA is
introduced, special purpose translators may have to be created that take the char-
acteristics of the local environment into account. In some cases (e.g., for user
interface generation), completely automated PIM to PSM translation may be
impossible.

There is an uneasy relationship between agile methods and model-driven archi-
tecture. The notion of extensive up-front modeling contradicts the fundamental ideas
in the agile manifesto and I suspect that few agile developers feel comfortable with
model-driven engineering. The developers of MDA claim that it is intended to sup-
port an iterative approach to development and so can be used within agile methods
(Mellor, et al., 2004). If transformations can be completely automated and a com-
plete program generated from a PIM, then, in principle, MDA could be used in an
agile development process as no separate coding would be required. However, as far
as I am aware, there are no MDA tools that support practices such as regression test-
ing and test-driven development.



142 Chapter5

System modeling

5.5.2

Executable UML

The fundamental notion behind model-driven engineering is that completely automated
transformation of models to code should be possible. To achieve this, you have to be
able to construct graphical models whose semantics are well defined. You also need a
way of adding information to graphical models about the ways in which the operations
defined in the model are implemented. This is possible using a subset of UML 2, called
Executable UML or xUML (Mellor and Balcer, 2002). I don’t have space here to
describe the details of xUML, so I simply present a short overview of its main features.

UML was designed as a language for supporting and documenting software
design, not as a programming language. The designers of UML were not concerned
with semantic details of the language but with its expressiveness. They introduced
useful notions such as use case diagrams that help with the design but which are too
informal to support execution. To create an executable sub-set of UML, the number
of model types has therefore been dramatically reduced to three key model types:

1. Domain models identify the principal concerns in the system. These are defined
using UML class diagrams that include objects, attributes, and associations.

2. Class models, in which classes are defined, along with their attributes and
operations.

3. State models, in which a state diagram is associated with each class and is used
to describe the lifecycle of the class.

The dynamic behavior of the system may be specified declaratively using the
object constraint language (OCL) or may be expressed using UML’s action lan-
guage. The action language is like a very high-level programming language where
you can refer to objects and their attributes and specify actions to be carried out.

KEY POINTS

A model is an abstract view of a system that ignores some system details. Complementary system

models can b

e developed to show the system’s context, interactions, structure, and behavior.

Context models show how a system that is being modeled is positioned in an environment with

other system

s and processes. They help define the boundaries of the system to be developed.

Use case diagrams and sequence diagrams are used to describe the interactions between user

the system b

eing designed and users/other systems. Use cases describe interactions between a

system and external actors; sequence diagrams add more information to these by showing
interactions between system objects.
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Structural models show the organization and architecture of a system. Class diagrams are
used to define the static structure of classes in a system and their associations.

Behavioral models are used to describe the dynamic behavior of an executing system. This
can be modeled from the perspective of the data processed by the system or by the events
that stimulate responses from a system.

Activity diagrams may be used to model the processing of data, where each activity
represents one process step.

State diagrams are used to model a system’s behavior in response to internal or external
events.

Model-driven engineering is an approach to software development in which a system is
represented as a set of models that can be automatically transformed to executable code.

FURTHER READING

Requirements Analysis and System Design. This book focuses on information systems analysis
and discusses how different UML models can be used in the analysis process. (L. Maciaszek,
Addison-Wesley, 2001.)

MDA Distilled: Principles of Model-driven Architecture .This is a concise and accessible
introduction to the MDA method. It is written by enthusiasts so the book says very little about
possible problems with this approach. (S. J. Mellor, K. Scott and D. Weise, Addison-Wesley, 2004.)

Using UML: Software Engineering with Objects and Components, 2nd ed. A short, readable
introduction to the use of the UML in system specification and design. This book is excellent for
learning and understanding the UML, although it is not a full description of the notation.

(P. Stevens with R. Pooley, Addison-Wesley, 2006.)

EXERCISES

5.1.

5.2.

Explain why it is important to model the context of a system that is being developed. Give
two examples of possible errors that could arise if software engineers do not understand
the system context.

How might you use a model of a system that already exists? Explain why it is not always
necessary for such a system model to be complete and correct. Would the same be true if
you were developing a model of a new system?
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5.3.

5.4.

5.5.

5.6.

5.7.

5.8.

5.9.

5.10.

You have been asked to develop a system that will help with planning large-scale events
and parties such as weddings, graduation celebrations, birthday parties, etc. Using an
activity diagram, model the process context for such a system that shows the activities
involved in planning a party (booking a venue, organizing invitations, etc.) and the system
elements that may be used at each stage.

For the MHC-PMS, propose a set of use cases that illustrates the interactions between a
doctor, who sees patients and prescribes medicine and treatments, and the MHC-PMS.

Develop a sequence diagram showing the interactions involved when a student registers
for a course in a university. Courses may have limited enrollment, so the registration
process must include checks that places are available. Assume that the student accesses
an electronic course catalog to find out about available courses.

Look carefully at how messages and mailboxes are represented in the e-mail system that
you use. Model the object classes that might be used in the system implementation to
represent a mailbox and an e-mail message.

Based on your experience with a bank ATM, draw an activity diagram that models the data
processing involved when a customer withdraws cash from the machine.

Draw a sequence diagram for the same system. Explain why you might want to develop
both activity and sequence diagrams when modeling the behavior of a system.

Draw state diagrams of the control software for:

An automatic washing machine that has different programs for different types of
clothes.

The software for a DVD player.

A telephone answering system that records incoming messages and displays the
number of accepted messages on an LED. The system should allow the telephone
customer to dial in from any location, type a sequence of numbers (identified as tones),
and play any recorded messages.

You are a software engineering manager and your team proposes that model-driven
engineering should be used to develop a new system. What factors should you take into
account when deciding whether or not to introduce this new approach to software
development?
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Architectural design

Objectives

The objective of this chapter is to introduce the concepts of software
architecture and architectural design. When you have read the chapter,
you will:

understand why the architectural design of software is important;

understand the decisions that have to be made about the system
architecture during the architectural design process;

have been introduced to the idea of architectural patterns, well-tried
ways of organizing system architectures, which can be reused in
system designs;

know the architectural patterns that are often used in different types
of application system, including transaction processing systems and
language processing systems.

Contents

6.1 Architectural design decisions
6.2 Architectural views

6.3 Architectural patterns

6.4 Application architectures
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Architectural design

Architectural design is concerned with understanding how a system should be
organized and designing the overall structure of that system. In the model of the soft-
ware development process, as shown in Chapter 2, architectural design is the first
stage in the software design process. It is the critical link between design and
requirements engineering, as it identifies the main structural components in a system
and the relationships between them. The output of the architectural design process is
an architectural model that describes how the system is organized as a set of commu-
nicating components.

In agile processes, it is generally accepted that an early stage of the development
process should be concerned with establishing an overall system architecture.
Incremental development of architectures is not usually successful. While refactor-
ing components in response to changes is usually relatively easy, refactoring a sys-
tem architecture is likely to be expensive.

To help you understand what I mean by system architecture, consider Figure 6.1.
This shows an abstract model of the architecture for a packing robot system that
shows the components that have to be developed. This robotic system can pack dif-
ferent kinds of object. It uses a vision component to pick out objects on a conveyor,
identify the type of object, and select the right kind of packaging. The system then
moves objects from the delivery conveyor to be packaged. It places packaged objects
on another conveyor. The architectural model shows these components and the links
between them.

In practice, there is a significant overlap between the processes of requirements
engineering and architectural design. Ideally, a system specification should not
include any design information. This is unrealistic except for very small systems.
Architectural decomposition is usually necessary to structure and organize the spec-
ification. Therefore, as part of the requirements engineering process, you might pro-
pose an abstract system architecture where you associate groups of system functions
or features with large-scale components or sub-systems. You can then use this
decomposition to discuss the requirements and features of the system with stake-
holders.

You can design software architectures at two levels of abstraction, which I call
architecture in the small and architecture in the large:

1. Architecture in the small is concerned with the architecture of individual pro-
grams. At this level, we are concerned with the way that an individual program
is decomposed into components. This chapter is mostly concerned with pro-
gram architectures.

2. Architecture in the large is concerned with the architecture of complex enter-
prise systems that include other systems, programs, and program compo-
nents. These enterprise systems are distributed over different computers,
which may be owned and managed by different companies. I cover architec-
ture in the large in Chapters 18 and 19, where I discuss distributed systems
architectures.
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Software architecture is important because it affects the performance, robustness,
distributability, and maintainability of a system (Bosch, 2000). As Bosch discusses,
individual components implement the functional system requirements. The non-
functional requirements depend on the system architecture—the way in which these
components are organized and communicate. In many systems, non-functional
requirements are also influenced by individual components, but there is no doubt
that the architecture of the system is the dominant influence.

Bass et al. (2003) discuss three advantages of explicitly designing and document-
ing software architecture:

1. Stakeholder communication The architecture is a high-level presentation of the sys-
tem that may be used as a focus for discussion by a range of different stakeholders.

2. System analysis Making the system architecture explicit at an early stage in the
system development requires some analysis. Architectural design decisions
have a profound effect on whether or not the system can meet critical require-
ments such as performance, reliability, and maintainability.

3. Large-scale reuse A model of a system architecture is a compact, manageable
description of how a system is organized and how the components interoperate.
The system architecture is often the same for systems with similar requirements
and so can support large-scale software reuse. As I explain in Chapter 16, it may
be possible to develop product-line architectures where the same architecture is
reused across a range of related systems.
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Hofmeister et al. (2000) propose that a software architecture can serve firstly as a
design plan for the negotiation of system requirements, and secondly as a means of
structuring discussions with clients, developers, and managers. They also suggest
that it is an essential tool for complexity management. It hides details and allows the
designers to focus on the key system abstractions.

System architectures are often modeled using simple block diagrams, as in Figure 6.1.
Each box in the diagram represents a component. Boxes within boxes indicate that the
component has been decomposed to sub-components. Arrows mean that data and or con-
trol signals are passed from component to component in the direction of the arrows. You
can see many examples of this type of architectural model in Booch’s software architec-
ture catalog (Booch, 2009).

Block diagrams present a high-level picture of the system structure, which people
from different disciplines, who are involved in the system development process, can
readily understand. However, in spite of their widespread use, Bass et al. (2003) dis-
like informal block diagrams for describing an architecture. They claim that these
informal diagrams are poor architectural representations, as they show neither the
type of the relationships among system components nor the components’ externally
visible properties.

The apparent contradictions between practice and architectural theory arise
because there are two ways in which an architectural model of a program is used:

1. As a way of facilitating discussion about the system design A high-level
architectural view of a system is useful for communication with system stake-
holders and project planning because it is not cluttered with detail. Stake-
holders can relate to it and understand an abstract view of the system. They
can then discuss the system as a whole without being confused by detail. The
architectural model identifies the key components that are to be developed
so managers can start assigning people to plan the development of these
systems.

2. As a way of documenting an architecture that has been designed The aim here
is to produce a complete system model that shows the different components in
a system, their interfaces, and their connections. The argument for this is that
such a detailed architectural description makes it easier to understand and evolve
the system.

Block diagrams are an appropriate way of describing the system architecture dur-
ing the design process, as they are a good way of supporting communications
between the people involved in the process. In many projects, these are often the
only architectural documentation that exists. However, if the architecture of a system
is to be thoroughly documented then it is better to use a notation with well-defined
semantics for architectural description. However, as I discuss in Section 6.2, some
people think that detailed documentation is neither useful, nor really worth the cost
of its development.
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B XU Architectural design decisions

Architectural design is a creative process where you design a system organization
that will satisfy the functional and non-functional requirements of a system. Because
it is a creative process, the activities within the process depend on the type of system
being developed, the background and experience of the system architect, and the
specific requirements for the system. It is therefore useful to think of architectural
design as a series of decisions to be made rather than a sequence of activities.

During the architectural design process, system architects have to make a number
of structural decisions that profoundly affect the system and its development
process. Based on their knowledge and experience, they have to consider the follow-
ing fundamental questions about the system:

1. Is there a generic application architecture that can act as a template for the sys-
tem that is being designed?

How will the system be distributed across a number of cores or processors?
What architectural patterns or styles might be used?

What will be the fundamental approach used to structure the system?

wok o wn

How will the structural components in the system be decomposed into sub-
components?

6. What strategy will be used to control the operation of the components in the system?

7. What architectural organization is best for delivering the non-functional require-
ments of the system?

8. How will the architectural design be evaluated?

9. How should the architecture of the system be documented?

Although each software system is unique, systems in the same application
domain often have similar architectures that reflect the fundamental concepts of the
domain. For example, application product lines are applications that are built around
a core architecture with variants that satisfy specific customer requirements. When
designing a system architecture, you have to decide what your system and broader
application classes have in common, and decide how much knowledge from these
application architectures you can reuse. I discuss generic application architectures in
Section 6.4 and application product lines in Chapter 16.

For embedded systems and systems designed for personal computers, there is
usually only a single processor and you will not have to design a distributed architec-
ture for the system. However, most large systems are now distributed systems in
which the system software is distributed across many different computers. The
choice of distribution architecture is a key decision that affects the performance and
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reliability of the system. This is a major topic in its own right and I cover it sepa-
rately in Chapter 18.

The architecture of a software system may be based on a particular architectural
pattern or style. An architectural pattern is a description of a system organization
(Garlan and Shaw, 1993), such as a client—server organization or a layered architecture.
Architectural patterns capture the essence of an architecture that has been used in dif-
ferent software systems. You should be aware of common patterns, where they can be
used, and their strengths and weaknesses when making decisions about the architec-
ture of a system. I discuss a number of frequently used patterns in Section 6.3.

Garlan and Shaw’s notion of an architectural style (style and pattern have come to
mean the same thing) covers questions 4 to 6 in the previous list. You have to choose
the most appropriate structure, such as client—server or layered structuring, that will
enable you to meet the system requirements. To decompose structural system units,
you decide on the strategy for decomposing components into sub-components. The
approaches that you can use allow different types of architecture to be implemented.
Finally, in the control modeling process, you make decisions about how the execu-
tion of components is controlled. You develop a general model of the control rela-
tionships between the various parts of the system.

Because of the close relationship between non-functional requirements and soft-
ware architecture, the particular architectural style and structure that you choose for
a system should depend on the non-functional system requirements:

1. Performance If performance is a critical requirement, the architecture should
be designed to localize critical operations within a small number of com-
ponents, with these components all deployed on the same computer rather than
distributed across the network. This may mean using a few relatively large com-
ponents rather than small, fine-grain components, which reduces the number of
component communications. You may also consider run-time system organiza-
tions that allow the system to be replicated and executed on different processors.

2. Security If security is a critical requirement, a layered structure for the architec-
ture should be used, with the most critical assets protected in the innermost lay-
ers, with a high level of security validation applied to these layers.

3. Safety If safety is a critical requirement, the architecture should be designed so
that safety-related operations are all located in either a single component or in a
small number of components. This reduces the costs and problems of safety val-
idation and makes it possible to provide related protection systems that can
safely shut down the system in the event of failure.

4. Availability If availability is a critical requirement, the architecture should be
designed to include redundant components so that it is possible to replace and
update components without stopping the system. I describe two fault-tolerant
system architectures for high-availability systems in Chapter 13.

5. Maintainability If maintainability is a critical requirement, the system architec-
ture should be designed using fine-grain, self-contained components that may
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readily be changed. Producers of data should be separated from consumers and
shared data structures should be avoided.

Obviously there is potential conflict between some of these architectures. For
example, using large components improves performance and using small, fine-grain
components improves maintainability. If both performance and maintainability are
important system requirements, then some compromise must be found. This can
sometimes be achieved by using different architectural patterns or styles for different
parts of the system.

Evaluating an architectural design is difficult because the true test of an architec-
ture is how well the system meets its functional and non-functional requirements
when it is in use. However, you can do some evaluation by comparing your design
against reference architectures or generic architectural patterns. Bosch’s (2000)
description of the non-functional characteristics of architectural patterns can also be
used to help with architectural evaluation.

¥ Architectural views

I explained in the introduction to this chapter that architectural models of a software
system can be used to focus discussion about the software requirements or design.
Alternatively, they may be used to document a design so that it can be used as a basis
for more detailed design and implementation, and for the future evolution of the sys-
tem. In this section, I discuss two issues that are relevant to both of these:

1. What views or perspectives are useful when designing and documenting a sys-
tem’s architecture?

2. What notations should be used for describing architectural models?

It is impossible to represent all relevant information about a system’s architecture in
a single architectural model, as each model only shows one view or perspective of the
system. It might show how a system is decomposed into modules, how the run-time
processes interact, or the different ways in which system components are distributed
across a network. All of these are useful at different times so, for both design and doc-
umentation, you usually need to present multiple views of the software architecture.

There are different opinions as to what views are required. Krutchen (1995), in
his well-known 4+1 view model of software architecture, suggests that there should
be four fundamental architectural views, which are related using use cases or scenar-
10s. The views that he suggests are:

1. A logical view, which shows the key abstractions in the system as objects or
object classes. It should be possible to relate the system requirements to entities
in this logical view.
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2. A process view, which shows how, at run-time, the system is composed of inter-
acting processes. This view is useful for making judgments about non-
functional system characteristics such as performance and availability.

3. A development view, which shows how the software is decomposed for devel-
opment, that is, it shows the breakdown of the software into components that are
implemented by a single developer or development team. This view is useful for
software managers and programmers.

4. A physical view, which shows the system hardware and how software compo-
nents are distributed across the processors in the system. This view is useful for
systems engineers planning a system deployment.

Hofmeister et al. (2000) suggest the use of similar views but add to this the notion
of a conceptual view. This view is an abstract view of the system that can be the basis
for decomposing high-level requirements into more detailed specifications, help
engineers make decisions about components that can be reused, and represent
a product line (discussed in Chapter 16) rather than a single system. Figure 6.1,
which describes the architecture of a packing robot, is an example of a conceptual
system view.

In practice, conceptual views are almost always developed during the design
process and are used to support architectural decision making. They are a way of
communicating the essence of a system to different stakeholders. During the design
process, some of the other views may also be developed when different aspects of
the system are discussed, but there is no need for a complete description from all per-
spectives. It may also be possible to associate architectural patterns, discussed in the
next section, with the different views of a system.

There are differing views about whether or not software architects should use
the UML for architectural description (Clements, et al., 2002). A survey in 2006
(Lange et al., 2006) showed that, when the UML was used, it was mostly applied in
a loose and informal way. The authors of that paper argued that this was a bad thing.
I disagree with this view. The UML was designed for describing object-oriented
systems and, at the architectural design stage, you often want to describe systems at
a higher level of abstraction. Object classes are too close to the implementation to be
useful for architectural description.

I don’t find the UML to be useful during the design process itself and prefer infor-
mal notations that are quicker to write and which can be easily drawn on a white-
board. The UML is of most value when you are documenting an architecture in
detail or using model-driven development, as discussed in Chapter 5.

A number of researchers have proposed the use of more specialized architectural
description languages (ADLs) (Bass et al., 2003) to describe system architectures.
The basic elements of ADLs are components and connectors, and they include rules
and guidelines for well-formed architectures. However, because of their specialized
nature, domain and application specialists find it hard to understand and use ADLs.
This makes it difficult to assess their usefulness for practical software engineering.
ADLs designed for a particular domain (e.g., automobile systems) may be used as a
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m MVC (Model-View-Controller)

Description Separates presentation and interaction from the system data. The system is structured into
three logical components that interact with each other. The Model component manages
the system data and associated operations on that data. The View component defines and
manages how the data is presented to the user. The Controller component manages user
interaction (e.g., key presses, mouse clicks, etc.) and passes these interactions to the View
and the Model. See Figure 6.3.

Example Figure 6.4 shows the architecture of a web-based application system organized using the
MVC pattern.
When used Used when there are multiple ways to view and interact with data. Also used when the

future requirements for interaction and presentation of data are unknown.

Advantages Allows the data to change independently of its representation and vice versa. Supports
presentation of the same data in different ways with changes made in one representation
shown in all of them.

Disadvantages Can involve additional code and code complexity when the data model and interactions
are simple.

- basis for model-driven development. However, I believe that informal models and
Figure 6.2 The model- . . .

view-controller (MVC) notations, such as the UML, will remain the most commonly used ways of docu-
pattern menting system architectures.

Users of agile methods claim that detailed design documentation is mostly
unused. It is, therefore, a waste of time and money to develop it. I largely agree with
this view and I think that, for most systems, it is not worth developing a detailed
architectural description from these four perspectives. You should develop the views
that are useful for communication and not worry about whether or not your architec-
tural documentation is complete. However, an exception to this is when you are
developing critical systems, when you need to make a detailed dependability analy-
sis of the system. You may need to convince external regulators that your system
conforms to their regulations and so complete architectural documentation may be
required.

XN Architectural patterns

The idea of patterns as a way of presenting, sharing, and reusing knowledge about
software systems is now widely used. The trigger for this was the publication of a
book on object-oriented design patterns (Gamma et al., 1995), which prompted the
development of other types of pattern, such as patterns for organizational design
(Coplien and Harrison, 2004), usability patterns (Usability Group, 1998), interaction
(Martin and Sommerville, 2004), configuration management (Berczuk and
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Appleton, 2002), and so on. Architectural patterns were proposed in the 1990s under
the name ‘architectural styles’ (Shaw and Garlan, 1996), with a five-volume series of
handbooks on pattern-oriented software architecture published between 1996 and
2007 (Buschmann et al., 1996; Buschmann et al., 2007a; Buschmann et al., 2007b;
Kircher and Jain, 2004; Schmidt et al., 2000).

In this section, I introduce architectural patterns and briefly describe a selection
of architectural patterns that are commonly used in different types of systems. For
more information about patterns and their use, you should refer to published pattern
handbooks.

You can think of an architectural pattern as a stylized, abstract description of good
practice, which has been tried and tested in different systems and environments. So,
an architectural pattern should describe a system organization that has been success-
ful in previous systems. It should include information of when it is and is not appro-
priate to use that pattern, and the pattern’s strengths and weaknesses.

For example, Figure 6.2 describes the well-known Model-View-Controller pattern.
This pattern is the basis of interaction management in many web-based systems. The
stylized pattern description includes the pattern name, a brief description (with an
associated graphical model), and an example of the type of system where the pattern
is used (again, perhaps with a graphical model). You should also include information
about when the pattern should be used and its advantages and disadvantages.
Graphical models of the architecture associated with the MVC pattern are shown in
Figures 6.3 and 6.4. These present the architecture from different views—Figure 6.3
is a conceptual view and Figure 6.4 shows a possible run-time architecture when this
pattern is used for interaction management in a web-based system.

In a short section of a general chapter, it is impossible to describe all of the
generic patterns that can be used in software development. Rather, I present some
selected examples of patterns that are widely used and which capture good architec-
tural design principles. I have included some further examples of generic architec-
tural patterns on the book’s web pages.
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Figure 6.4 Web
application architecture
using the MVC pattern
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Layered architecture

The notions of separation and independence are fundamental to architectural design
because they allow changes to be localized. The MVC pattern, shown in Figure 6.2,
separates elements of a system, allowing them to change independently. For exam-
ple, adding a new view or changing an existing view can be done without any
changes to the underlying data in the model. The layered architecture pattern is
another way of achieving separation and independence. This pattern is shown in
Figure 6.5. Here, the system functionality is organized into separate layers, and each
layer only relies on the facilities and services offered by the layer immediately
beneath it.

This layered approach supports the incremental development of systems. As a
layer is developed, some of the services provided by that layer may be made avail-
able to users. The architecture is also changeable and portable. So long as its inter-
face is unchanged, a layer can be replaced by another, equivalent layer. Furthermore,
when layer interfaces change or new facilities are added to a layer, only the adjacent
layer is affected. As layered systems localize machine dependencies in inner layers,
this makes it easier to provide multi-platform implementations of an application sys-
tem. Only the inner, machine-dependent layers need be re-implemented to take
account of the facilities of a different operating system or database.

Figure 6.6 is an example of a layered architecture with four layers. The lowest
layer includes system support software—typically database and operating system
support. The next layer is the application layer that includes the components
concerned with the application functionality and utility components that are used
by other application components. The third layer is concerned with user interface
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Name Layered architecture

Description

Example

When used

Advantages

Disadvantages

Organizes the system into layers with related functionality associated with each layer.
A layer provides services to the layer above it so the lowest-level layers represent core
services that are likely to be used throughout the system. See Figure 6.6.

A layered model of a system for sharing copyright documents held in different libraries, as
shown in Figure 6.7.

Used when building new facilities on top of existing systems; when the development is
spread across several teams with each team responsibility for a layer of functionality; when
there is a requirement for multi-level security.

Allows replacement of entire layers so long as the interface is maintained. Redundant
facilities (e.g., authentication) can be provided in each layer to increase the dependability
of the system.

In practice, providing a clean separation between layers is often difficult and a high-level
layer may have to interact directly with lower-level layers rather than through the layer
immediately below it. Performance can be a problem because of multiple levels of
interpretation of a service request as it is processed at each layer.

Figure 6.5 The layered
architecture pattern

Figure 6.6 A generic
layered architecture

management and providing user authentication and authorization, with the top layer
providing user interface facilities. Of course, the number of layers is arbitrary. Any
of the layers in Figure 6.6 could be split into two or more layers.

Figure 6.7 is an example of how this layered architecture pattern can be applied to a
library system called LIBSYS, which allows controlled electronic access to copyright
material from a group of university libraries. This has a five-layer architecture, with the
bottom layer being the individual databases in each library.

You can see another example of the layered architecture pattern in Figure 6.17
(found in Section 6.4). This shows the organization of the system for mental health-
care (MHC-PMS) that I have discussed in earlier chapters.

User Interface

User Interface Management
Authentication and Authorization

Core Business Logic/Application Functionality
System Utilities

System Support (OS, Database etc.)
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6.3.2 Repository architecture

The layered architecture and MVC patterns are examples of patterns where the view
presented is the conceptual organization of a system. My next example, the
Repository pattern (Figure 6.8), describes how a set of interacting components can

share data.
Figure 6.8 The The majority of systems that use large amounts of data are organized around a
repository pattern shared database or repository. This model is therefore suited to applications in which
Description All data in a system is managed in a central repository that is accessible to all system

components. Components do not interact directly, only through the repository.

Example Figure 6.9 is an example of an IDE where the components use
a repository of system design information. Each software tool generates information which
is then available for use by other tools.

When used You should use this pattern when you have a system in which large volumes of
information are generated that has to be stored for a long time. You may also use it in
data-driven systems where the inclusion of data in the repository triggers an action
or tool.

Advantages Components can be independent—they do not need to know of the existence of other
components. Changes made by one component can be propagated to all components. All
data can be managed consistently (e.g., backups done at the same time) as it is all in one
place.

Disadvantages The repository is a single point of failure so problems in the repository affect the whole
system. May be inefficiencies in organizing all communication through the repository.
Distributing the repository across several computers may be difficult.
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data is generated by one component and used by another. Examples of this type of
system include command and control systems, management information systems,
CAD systems, and interactive development environments for software.

Figure 6.9 is an illustration of a situation in which a repository might be used.
This diagram shows an IDE that includes different tools to support model-driven
development. The repository in this case might be a version-controlled environment
(as discussed in Chapter 25) that keeps track of changes to software and allows roll-
back to earlier versions.

Organizing tools around a repository is an efficient way to share large amounts of
data. There is no need to transmit data explicitly from one component to another.
However, components must operate around an agreed repository data model.
Inevitably, this is a compromise between the specific needs of each tool and it may
be difficult or impossible to integrate new components if their data models do not fit
the agreed schema. In practice, it may be difficult to distribute the repository over a
number of machines. Although it is possible to distribute a logically centralized
repository, there may be problems with data redundancy and inconsistency.

In the example shown in Figure 6.9, the repository is passive and control is the
responsibility of the components using the repository. An alternative approach,
which has been derived for Al systems, uses a ‘blackboard’ model that triggers com-
ponents when particular data become available. This is appropriate when the form of
the repository data is less well structured. Decisions about which tool to activate can
only be made when the data has been analyzed. This model is introduced by Nii
(1986). Bosch (2000) includes a good discussion of how this style relates to system
quality attributes.

6.3.3 Client-server architecture

The repository pattern is concerned with the static structure of a system and does not
show its run-time organization. My next example illustrates a very commonly used
run-time organization for distributed systems. The Client—server pattern is described
in Figure 6.10.
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Name Client-server

Description In a client-server architecture, the functionality of the system is organized into services,
with each service delivered from a separate server. Clients are users of these services and
access servers to make use of them.

Example Figure 6.11 is an example of a film and video/DVD library organized as a client-server
system.

When used Used when data in a shared database has to be accessed from a range of locations.
Because servers can be replicated, may also be used when the load on a system is
variable.

Advantages The principal advantage of this model is that servers can be distributed across a network.

General functionality (e.g., a printing service) can be available to all clients and does not
need to be implemented by all services.

Disadvantages Each service is a single point of failure so susceptible to denial of service attacks or
server failure. Performance may be unpredictable because it depends on the network
as well as the system. May be management problems if servers are owned by different
organizations.

A system that follows the client—server pattern is organized as a set of services
and associated servers, and clients that access and use the services. The major com-
ponents of this model are:

Figure 6.10 The
client-server pattern

1. A set of servers that offer services to other components. Examples of servers
include print servers that offer printing services, file servers that offer file man-
agement services, and a compile server, which offers programming language
compilation services.

2. A set of clients that call on the services offered by servers. There will normally
be several instances of a client program executing concurrently on different
computers.

3. A network that allows the clients to access these services. Most client—server
systems are implemented as distributed systems, connected using Internet
protocols.

Client—server architectures are usually thought of as distributed systems architec-
tures but the logical model of independent services running on separate servers can
be implemented on a single computer. Again, an important benefit is separation and
independence. Services and servers can be changed without affecting other parts of
the system.

Clients may have to know the names of the available servers and the services that
they provide. However, servers do not need to know the identity of clients or how
many clients are accessing their services. Clients access the services provided by a
server through remote procedure calls using a request-reply protocol such as the http
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protocol used in the WWW. Essentially, a client makes a request to a server and
waits until it receives a reply.

Figure 6.11 is an example of a system that is based on the client—server model. This
is a multi-user, web-based system for providing a film and photograph library. In this
system, several servers manage and display the different types of media. Video frames
need to be transmitted quickly and in synchrony but at relatively low resolution. They
may be compressed in a store, so the video server can handle video compression and
decompression in different formats. Still pictures, however, must be maintained at a
high resolution, so it is appropriate to maintain them on a separate server.

The catalog must be able to deal with a variety of queries and provide links into

Figure 6.12 The pipe the web information system that includes data about the film and video clips, and an

g

and filter pattern e-commerce system that supports the sale of photographs, film, and video clips. The
Name Pipe and filter
Description The processing of the data in a system is organized so that each processing component

(filter) is discrete and carries out one type of data transformation. The data flows (as in a
pipe) from one component to another for processing.

Example Figure 6.13 is an example of a pipe and filter system used for processing invoices.

When used Commonly used in data processing applications (both batch- and transaction-based)
where inputs are processed in separate stages to generate related outputs.

Advantages Easy to understand and supports transformation reuse. Workflow style matches the
structure of many business processes. Evolution by adding transformations is
straightforward. Can be implemented as either a sequential or concurrent system.

Disadvantages The format for data transfer has to be agreed upon between communicating
transformations. Each transformation must parse its input and unparse its output to the
agreed form. This increases system overhead and may mean that it is impossible to reuse
functional transformations that use incompatible data structures.
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client program is simply an integrated user interface, constructed using a web
browser, to access these services.

The most important advantage of the client—server model is that it is a distributed
architecture. Effective use can be made of networked systems with many distributed
processors. It is easy to add a new server and integrate it with the rest of the system
or to upgrade servers transparently without affecting other parts of the system.
I discuss distributed architectures, including client—server architectures and distrib-
uted object architectures, in Chapter 18.

Pipe and filter architecture

My final example of an architectural pattern is the pipe and filter pattern. This is a
model of the run-time organization of a system where functional transformations
process their inputs and produce outputs. Data flows from one to another and is trans-
formed as it moves through the sequence. Each processing step is implemented as a
transform. Input data flows through these transforms until converted to output. The
transformations may execute sequentially or in parallel. The data can be processed by
each transform item by item or in a single batch.

The name ‘pipe and filter’ comes from the original Unix system where it was pos-
sible to link processes using ‘pipes’. These passed a text stream from one process to
another. Systems that conform to this model can be implemented by combining Unix
commands, using pipes and the control facilities of the Unix shell. The term ‘filter’
is used because a transformation ‘filters out’ the data it can process from its input
data stream.

Variants of this pattern have been in use since computers were first used for auto-
matic data processing. When transformations are sequential with data processed in
batches, this pipe and filter architectural model becomes a batch sequential model, a
common architecture for data processing systems (e.g., a billing system). The archi-
tecture of an embedded system may also be organized as a process pipeline, with
each process executing concurrently. I discuss the use of this pattern in embedded
systems in Chapter 20.

An example of this type of system architecture, used in a batch processing appli-
cation, is shown in Figure 6.13. An organization has issued invoices to customers.
Once a week, payments that have been made are reconciled with the invoices. For
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@ Architectural patterns for control

There are specific architectural patterns that reflect commonly used ways of organizing control in a system.
These include centralized control, based on one component calling other components, and event-based control,
where the system reacts to external events.

http://www.SoftwareEngineering-9.com/Web/Architecture/ArchPatterns/

those invoices that have been paid, a receipt is issued. For those invoices that have
not been paid within the allowed payment time, a reminder is issued.

Interactive systems are difficult to write using the pipe and filter model because
of the need for a stream of data to be processed. Although simple textual input
and output can be modeled in this way, graphical user interfaces have more complex
I/0 formats and a control strategy that is based on events such as mouse clicks or
menu selections. It is difficult to translate this into a form compatible with the
pipelining model.

I W Application architectures

Application systems are intended to meet a business or organizational need. All busi-
nesses have much in common—they need to hire people, issue invoices, keep
accounts, and so on. Businesses operating in the same sector use common sector-
specific applications. Therefore, as well as general business functions, all phone
companies need systems to connect calls, manage their network, issue bills to
customers, etc. Consequently, the application systems used by these businesses also
have much in common.

These commonalities have led to the development of software architectures
that describe the structure and organization of particular types of software sys-
tems. Application architectures encapsulate the principal characteristics of a
class of systems. For example, in real-time systems, there might be generic archi-
tectural models of different system types, such as data collection systems or
monitoring systems. Although instances of these systems differ in detail, the
common architectural structure can be reused when developing new systems of
the same type.

The application architecture may be re-implemented when developing new
systems but, for many business systems, application reuse is possible without re-
implementation. We see this in the growth of Enterprise Resource Planning (ERP)
systems from companies such as SAP and Oracle, and vertical software packages
(COTYS) for specialized applications in different areas of business. In these systems,
a generic system is configured and adapted to create a specific business application.
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@ Application architectures

There are several examples of application architectures on the book’s website. These include descriptions of
batch data-processing systems, resource allocation systems, and event-based editing systems.

http://www.SoftwareEngineering-9.com/Web/Architecture/AppArch/

For example, a system for supply chain management can be adapted for different
types of suppliers, goods, and contractual arrangements.

As a software designer, you can use models of application architectures in a num-
ber of ways:

1. As a starting point for the architectural design process If you are unfamiliar with
the type of application that you are developing, you can base your initial design
on a generic application architecture. Of course, this will have to be specialized
for the specific system being developed, but it is a good starting point for design.

2. As adesign checklist If you have developed an architectural design for an appli-
cation system, you can compare this with the generic application architecture.
You can check that your design is consistent with the generic architecture.

3. Asaway of organizing the work of the development team The application archi-
tectures identify stable structural features of the system architectures and in
many cases, it is possible to develop these in parallel. You can assign work to
group members to implement different components within the architecture.

4. As a means of assessing components for reuse If you have components you
might be able to reuse, you can compare these with the generic structures to see
whether there are comparable components in the application architecture.

5. Asavocabulary for talking about types of applications If you are discussing a spe-
cific application or trying to compare applications of the same types, then you can
use the concepts identified in the generic architecture to talk about the applications.

There are many types of application system and, in some cases, they may seem to
be very different. However, many of these superficially dissimilar applications actu-
ally have much in common, and thus can be represented by a single abstract applica-
tion architecture. I illustrate this here by describing the following architectures of
two types of application:

1. Transaction processing applications Transaction processing applications are
database-centered applications that process user requests for information and
update the information in a database. These are the most common type of inter-
active business systems. They are organized in such a way that user actions can’t
interfere with each other and the integrity of the database is maintained. This
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class of system includes interactive banking systems, e-commerce systems,
information systems, and booking systems.

2. Language processing systems Language processing systems are systems in
which the user’s intentions are expressed in a formal language (such as Java).
The language processing system processes this language into an internal format
and then interprets this internal representation. The best-known language pro-
cessing systems are compilers, which translate high-level language programs
into machine code. However, language processing systems are also used to
interpret command languages for databases and information systems, and
markup languages such as XML (Harold and Means, 2002; Hunter et al., 2007).

I have chosen these particular types of system because a large number of web-
based business systems are transaction-processing systems, and all software devel-
opment relies on language processing systems.

Transaction processing systems

Transaction processing (TP) systems are designed to process user requests for infor-
mation from a database, or requests to update a database (Lewis et al., 2003).
Technically, a database transaction is sequence of operations that is treated as a sin-
gle unit (an atomic unit). All of the operations in a transaction have to be completed
before the database changes are made permanent. This ensures that failure of opera-
tions within the transaction does not lead to inconsistencies in the database.

From a user perspective, a transaction is any coherent sequence of operations that
satisfies a goal, such as ‘find the times of flights from London to Paris’. If the user
transaction does not require the database to be changed then it may not be necessary
to package this as a technical database transaction.

An example of a transaction is a customer request to withdraw money from a bank
account using an ATM. This involves getting details of the customer’s account, check-
ing the balance, modifying the balance by the amount withdrawn, and sending com-
mands to the ATM to deliver the cash. Until all of these steps have been completed, the
transaction is incomplete and the customer accounts database is not changed.

Transaction processing systems are usually interactive systems in which users
make asynchronous requests for service. Figure 6.14 illustrates the conceptual ar-
chitectural structure of TP applications. First a user makes a request to the system
through an I/O processing component. The request is processed by some application-
specific logic. A transaction is created and passed to a transaction manager, which is
usually embedded in the database management system. After the transaction manager
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has ensured that the transaction is properly completed, it signals to the application
that processing has finished.

Transaction processing systems may be organized as a ‘pipe and filter’ architec-
ture with system components responsible for input, processing, and output. For
example, consider a banking system that allows customers to query their accounts
and withdraw cash from an ATM. The system is composed of two cooperating soft-
ware components—the ATM software and the account processing software in the
bank’s database server. The input and output components are implemented as soft-
ware in the ATM and the processing component is part of the bank’s database server.
Figure 6.15 shows the architecture of this system, illustrating the functions of the
input, process, and output components.

Information systems

All systems that involve interaction with a shared database can be considered to be
transaction-based information systems. An information system allows controlled
access to a large base of information, such as a library catalog, a flight timetable, or
the records of patients in a hospital. Increasingly, information systems are web-based
systems that are accessed through a web browser.

Figure 6.16 a very general model of an information system. The system is mod-
eled using a layered approach (discussed in Section 6.3) where the top layer supports
the user interface and the bottom layer is the system database. The user communica-
tions layer handles all input and output from the user interface, and the information
retrieval layer includes application-specific logic for accessing and updating the
database. As we shall see later, the layers in this model can map directly onto servers
in an Internet-based system.

As an example of an instantiation of this layered model, Figure 6.17 shows the
architecture of the MHC-PMS. Recall that this system maintains and manages details
of patients who are consulting specialist doctors about mental health problems. I have
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added detail to each layer in the model by identifying the components that support
user communications and information retrieval and access:

1. The top layer is responsible for implementing the user interface. In this case, the
UI has been implemented using a web browser.

2. The second layer provides the user interface functionality that is delivered
through the web browser. It includes components to allow users to log in to the
system and checking components that ensure that the operations they use are
allowed by their role. This layer includes form and menu management compo-
nents that present information to users, and data validation components that
check information consistency.

3. The third layer implements the functionality of the system and provides compo-
nents that implement system security, patient information creation and updating,
import and export of patient data from other databases, and report generators
that create management reports.

Web Browser
. . Form and Menu Data
Login Relle Elieed Manager Validation
Security Patient Info.  Data Import Report
Management Manager and Export Generation
Figure 6.17 The Transaction Management
architecture of the Patient Database

MHC-PMS
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6.4.3

4. Finally, the lowest layer, which is built using a commercial database manage-
ment system, provides transaction management and persistent data storage.

Information and resource management systems are now usually web-based systems
where the user interfaces are implemented using a web browser. For example,
e-commerce systems are Internet-based resource management systems that accept elec-
tronic orders for goods or services and then arrange delivery of these goods or services
to the customer. In an e-commerce system, the application-specific layer includes addi-
tional functionality supporting a ‘shopping cart’ in which users can place a number of
items in separate transactions, then pay for them all together in a single transaction.

The organization of servers in these systems usually reflects the four-layer
generic model presented in Figure 6.16. These systems are often implemented as
multi-tier client server/architectures, as discussed in Chapter 18:

1. The web server is responsible for all user communications, with the user inter-
face implemented using a web browser;

2. The application server is responsible for implementing application-specific
logic as well as information storage and retrieval requests;

3. The database server moves information to and from the database and handles
transaction management.

Using multiple servers allows high throughput and makes it possible to handle
hundreds of transactions per minute. As demand increases, servers can be added at
each level to cope with the extra processing involved.

Language processing systems

Language processing systems translate a natural or artificial language into another
representation of that language and, for programming languages, may also execute
the resulting code. In software engineering, compilers translate an artificial program-
ming language into machine code. Other language-processing systems may translate
an XML data description into commands to query a database or to an alternative
XML representation. Natural language processing systems may translate one natural
language to another e.g., French to Norwegian.

A possible architecture for a language processing system for a programming lan-
guage is illustrated in Figure 6.18. The source language instructions define the pro-
gram to be executed and a translator converts these into instructions for an abstract
machine. These instructions are then interpreted by another component that fetches
the instructions for execution and executes them using (if necessary) data from the
environment. The output of the process is the result of interpreting the instructions
on the input data.
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Translator
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Instructions Generate
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Figure 6.18 The Fetch
architecture of a Data Execute Results
language processing
system

Of course, for many compilers, the interpreter is a hardware unit that processes
machine instructions and the abstract machine is a real processor. However, for
dynamically typed languages, such as Python, the interpreter may be a software
component.

Programming language compilers that are part of a more general programming
environment have a generic architecture (Figure 6.19) that includes the following
components:

1. A lexical analyzer, which takes input language tokens and converts them to an
internal form.

2. A symbol table, which holds information about the names of entities (variables,
class names, object names, etc.) used in the text that is being translated.

3. A syntax analyzer, which checks the syntax of the language being translated. It
uses a defined grammar of the language and builds a syntax tree.

4. A syntax tree, which is an internal structure representing the program being
compiled.

Symbol Table
Syntax Tree

Figure 6.19 A pipe and Lexical Syntactic Semantic Code
filter compiler Analysis Analysis Analysis Generation
architecture
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@ Reference architectures

Reference architectures capture important features of system architectures in a domain. Essentially, they include
everything that might be in an application architecture although, in reality, it is very unlikely that any individual
application would include all the features shown in a reference architecture. The main purpose of reference
architectures is to evaluate and compare design proposals, and to educate people about architectural
characteristics in that domain.

http://www.SoftwareEngineering-9.com/Web/Architecture/RefArch.html

5. A semantic analyzer that uses information from the syntax tree and the symbol
table to check the semantic correctness of the input language text.

6. A code generator that ‘walks’ the syntax tree and generates abstract machine code.

Other components might also be included which analyze and transform the syn-
tax tree to improve efficiency and remove redundancy from the generated machine
code. In other types of language processing system, such as a natural language trans-
lator, there will be additional components such as a dictionary, and the generated
code is actually the input text translated into another language.

There are alternative architectural patterns that may be used in a language pro-
cessing system (Garlan and Shaw, 1993). Compilers can be implemented using a
composite of a repository and a pipe and filter model. In a compiler architecture, the
symbol table is a repository for shared data. The phases of lexical, syntactic, and
semantic analysis are organized sequentially, as shown in Figure 6.19, and commu-
nicate through the shared symbol table.

This pipe and filter model of language compilation is effective in batch environ-
ments where programs are compiled and executed without user interaction; for
example, in the translation of one XML document to another. It is less effective
when a compiler is integrated with other language processing tools such as a struc-
tured editing system, an interactive debugger or a program prettyprinter. In this
situation, changes from one component need to be reflected immediately in other
components. It is better, therefore, to organize the system around a repository, as
shown in Figure 6.20.

This figure illustrates how a language processing system can be part of an integrated
set of programming support tools. In this example, the symbol table and syntax tree act
as a central information repository. Tools or tool fragments communicate through it.
Other information that is sometimes embedded in tools, such as the grammar definition
and the definition of the output format for the program, have been taken out of the tools
and put into the repository. Therefore, a syntax-directed editor can check that the syntax
of a program is correct as it is being typed and a prettyprinter can create listings of the
program in a format that is easy to read.
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KEY POINTS

A software architecture is a description of how a software system is organized. Properties of a
system such as performance, security, and availability are influenced by the architecture used.

Architectural design decisions include decisions on the type of application, the distribution of
the system, the architectural styles to be used, and the ways in which the architecture should be
documented and evaluated.

Architectures may be documented from several different perspectives or views. Possible views
include a conceptual view, a logical view, a process view, a development view, and a physical view.

Architectural patterns are a means of reusing knowledge about generic system architectures.
They describe the architecture, explain when it may be used, and discuss its advantages and
disadvantages.

Commonly used architectural patterns include Model-View-Controller, Layered Architecture,
Repository, Client-server, and Pipe and Filter.

Generic models of application systems architectures help us understand the operation of
applications, compare applications of the same type, validate application system designs, and
assess large-scale components for reuse.

Transaction processing systems are interactive systems that allow information in a database to
be remotely accessed and modified by a number of users. Information systems and resource
management systems are examples of transaction processing systems.

Language processing systems are used to translate texts from one language into another and
to carry out the instructions specified in the input language. They include a translator and an
abstract machine that executes the generated language.
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FURTHER READING

Software Architecture: Perspectives on an Emerging Discipline. This was the first book on
software architecture and has a good discussion on different architectural styles. (M. Shaw and
D. Garlan, Prentice-Hall, 1996.)

Software Architecture in Practice, 2nd ed. This is a practical discussion of software architectures that
does not oversell the benefits of architectural design. It provides a clear business rationale
explaining why architectures are important. (L. Bass, P. Clements and R. Kazman, Addison-Wesley,
2003.)

‘The Golden Age of Software Architecture’ This paper surveys the development of software
architecture from its beginnings in the 1980s through to its current usage. There is little technical
content but it is an interesting historical overview. (M. Shaw and P. Clements, IEEE Software,

21 (2), March-April 2006.) http://dx.doi.org/10.1109/MS.2006.58.

Handbook of Software Architecture. This is a work in progress by Grady Booch, one of the

early evangelists for software architecture. He has been documenting the architectures of a range of
software systems so you can see reality rather than academic abstraction. Available on the Web and
intended to appear as a book. http://www.handbookofsoftwarearchitecture.com/.

EXERCISES

6.1. When describing a system, explain why you may have to design the system architecture
before the requirements specification is complete.

6.2. You have been asked to prepare and deliver a presentation to a non-technical manager to
justify the hiring of a system architect for a new project. Write a list of bullet points setting out
the key points in your presentation. Naturally, you have to explain what is meant by system
architecture.

6.3. Explain why design conflicts might arise when designing an architecture for which
both availability and security requirements are the most important non-functional
requirements.

6.4. Draw diagrams showing a conceptual view and a process view of the architectures of the
following systems:

An automated ticket-issuing system used by passengers at a railway station.

A computer-controlled video conferencing system that allows video, audio, and computer data
to be visible to several participants at the same time.

A robot floor cleaner that is intended to clean relatively clear spaces such as corridors. The
cleaner must be able to sense walls and other obstructions.
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6.5. Explain why you normally use several architectural patterns when designing the architecture
of a large system. Apart from the information about patterns that | have discussed in this
chapter, what additional information might be useful when designing large systems?

6.6. Suggest an architecture for a system (such as iTunes) that is used to sell and distribute music
on the Internet. What architectural patterns are the basis for this architecture?

6.7. Explain how you would use the reference model of CASE environments (available on the
book’s web pages) to compare the IDEs offered by different vendors of a programming
language such as Java.

6.8. Using the generic model of a language processing system presented here, design the
architecture of a system that accepts natural language commands and translates these into
database queries in a language such as SQL.

6.9. Using the basic model of an information system, as presented in Figure 6.16, suggest the
components that might be part of an information system that allows users to view information
about flights arriving and departing from a particular airport.

6.10. Should there be a separate profession of ‘software architect’ whose role is to work
independently with a customer to design the software system architecture? A separate
software company would then implement the system. What might be the difficulties of
establishing such a profession?
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Design and
implementation

Objectives

The objectives of this chapter are to introduce object-oriented software
design using the UML and highlight important implementation concerns.
When you have read this chapter, you will:

m understand the most important activities in a general, object-
oriented design process;

m understand some of the different models that may be used to
document an object-oriented design;

m know about the idea of design patterns and how these are a way
of reusing design knowledge and experience;

m have been introduced to key issues that have to be considered when
implementing software, including software reuse and open-source
development.

Contents

7.1 Object-oriented design using the UML
7.2 Design patterns

7.3 Implementation issues

7.4 Open source development
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Software design and implementation is the stage in the software engineering process
at which an executable software system is developed. For some simple systems, soft-
ware design and implementation is software engineering, and all other activities are
merged with this process. However, for large systems, software design and imple-
mentation is only one of a set of processes (requirements engineering, verification
and validation, etc.) involved in software engineering.

Software design and implementation activities are invariably interleaved.
Software design is a creative activity in which you identify software components and
their relationships, based on a customer’s requirements. Implementation is the
process of realizing the design as a program. Sometimes, there is a separate design
stage and this design is modeled and documented. At other times, a design is in the
programmer’s head or roughly sketched on a whiteboard or sheets of paper. Design
is about how to solve a problem, so there is always a design process. However, it
isn’t always necessary or appropriate to describe the design in detail using the UML
or other design description language.

Design and implementation are closely linked and you should normally take
implementation issues into account when developing a design. For example, using
the UML to document a design may be the right thing to do if you are programming
in an object-oriented language such as Java or C#. It is less useful, I think, if you are
developing in a dynamically typed language like Python and makes no sense at all if
you are implementing your system by configuring an off-the-shelf package. As I dis-
cussed in Chapter 3, agile methods usually work from informal sketches of the
design and leave many design decisions to programmers.

One of the most important implementation decisions that has to be made at an
early stage of a software project is whether or not you should buy or build the appli-
cation software. In a wide range of domains, it is now possible to buy off-the-shelf
systems (COTS) that can be adapted and tailored to the users’ requirements. For
example, if you want to implement a medical records system, you can buy a package
that is already used in hospitals. It can be cheaper and faster to use this approach
rather than developing a system in a conventional programming language.

When you develop an application in this way, the design process becomes con-
cerned with how to use the configuration features of that system to deliver the sys-
tem requirements. You don’t usually develop design models of the system, such as
models of the system objects and their interactions. I discuss this COTS-based
approach to development in Chapter 16.

I assume that most readers of this book will have had experience of program
design and implementation. This is something that you acquire as you learn to pro-
gram and master the elements of a programming language like Java or Python. You
will have probably learned about good programming practice in the programming
languages that you have studied, as well as how to debug programs that you have
developed. Therefore, I don’t cover programming topics here. Instead, this chapter
has two aims:

1. To show how system modeling and architectural design (covered in Chapters 5
and 6) are put into practice in developing an object-oriented software design.
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@ Structured design methods

Structured design methods propose that software design should be tackled in a methodical way. Designing a
system involves following the steps of the method and refining the design of a system at increasingly detailed
levels. In the 1990s, there were a number of competing methods for object-oriented design. However, the
inventors of the most commonly used methods came together and invented the UML, which unified the
notations used in the different methods.

Rather than focus on methods, most discussions now are about processes where design is seen as part of the
overall software development process. The Rational Unified Process (RUP) is a good example of a generic
development process.

http://www.SoftwareEngineering-9.com/Web/Structured-methods/

2. To introduce important implementation issues that are not usually covered in
programming books. These include software reuse, configuration management,
and open source development.

As there are a vast number of different development platforms, the chapter is not
biased towards any particular programming language or implementation technology.
Therefore, I have presented all examples using the UML rather than in a program-
ming language such as Java or Python.

I XY Object-oriented design using the UML

An object-oriented system is made up of interacting objects that maintain their own
local state and provide operations on that state. The representation of the state is pri-
vate and cannot be accessed directly from outside the object. Object-oriented design
processes involve designing object classes and the relationships between these
classes. These classes define the objects in the system and their interactions. When
the design is realized as an executing program, the objects are created dynamically
from these class definitions.

Object-oriented systems are easier to change than systems developed using func-
tional approaches. Objects include both data and operations to manipulate that data.
They may therefore be understood and modified as stand-alone entities. Changing the
implementation of an object or adding services should not affect other system objects.
Because objects are associated with things, there is often a clear mapping between real-
world entities (such as hardware components) and their controlling objects in the sys-
tem. This improves the understandability, and hence the maintainability, of the design.

To develop a system design from concept to detailed, object-oriented design,
there are several things that you need to do:

1. Understand and define the context and the external interactions with the system.

2. Design the system architecture.
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7.1.1

3. Identify the principal objects in the system.
4. Develop design models.

5. Specity interfaces.

Like all creative activities, design is not a clear-cut, sequential process. You
develop a design by getting ideas, proposing solutions, and refining these solutions
as information becomes available. You inevitably have to backtrack and retry when
problems arise. Sometimes you explore options in detail to see if they work; at other
times you ignore details until late in the process. Consequently, I have deliberately
not illustrated this process as a simple diagram because that would imply design can
be thought of as a neat sequence of activities. In fact, all of the above activities are
interleaved and so influence each other.

I illustrate these process activities by designing part of the software for the wilder-
ness weather station that I introduced in Chapter 1. Wilderness weather stations are
deployed in remote areas. Each weather station records local weather information and
periodically transfers this to a weather information system, using a satellite link.

System context and interactions

The first stage in any software design process is to develop an understanding of the
relationships between the software that is being designed and its external environ-
ment. This is essential for deciding how to provide the required system functionality
and how to structure the system to communicate with its environment. Understanding
of the context also lets you establish the boundaries of the system.

Setting the system boundaries helps you decide what features are implemented
in the system being designed and what features are in other associated systems. In
this case, you need to decide how functionality is distributed between the control
system for all of the weather stations, and the embedded software in the weather
station itself.

System context models and interaction models present complementary views of
the relationships between a system and its environment:

1. A system context model is a structural model that demonstrates the other sys-
tems in the environment of the system being developed.

2. An interaction model is a dynamic model that shows how the system interacts
with its environment as it is used.

The context model of a system may be represented using associations. Associations
simply show that there are some relationships between the entities involved in the
association. The nature of the relationships is now specified. You may therefore docu-
ment the environment of the system using a simple block diagram, showing the entities
in the system and their associations. This is illustrated in Figure 7.1, which shows that
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Figure 7.1 System
context for the weather
station

@ Weather station use cases

Report weather—send weather data to the weather information system
Report status—send status information to the weather information system
Restart—if the weather station is shut down, restart the system
Shutdown—shut down the weather station

Reconfigure—reconfigure the weather station software

Powersave—put the weather station into power-saving mode

Remote control—send control commands to any weather station subsystem

http://www.SoftwareEngineering-9.com/Web/WS/Usecases.html

the systems in the environment of each weather station are a weather information sys-
tem, an onboard satellite system, and a control system. The cardinality information on
the link shows that there is one control system but several weather stations, one satellite,
and one general weather information system.

When you model the interactions of a system with its environment you should use
an abstract approach that does not include too much detail. One way to do this is to
use a use case model. As I discussed in Chapters 4 and 5, each use case represents an
interaction with the system. Each possible interaction is named in an ellipse and the
external entity involved in the interaction is represented by a stick figure.

The use case model for the weather station is shown in Figure 7.2. This shows
that the weather station interacts with the weather information system to report
weather data and the status of the weather station hardware. Other interactions are
with a control system that can issue specific weather station control commands. As I
explained in Chapter 5, a stick figure is used in the UML to represent other systems
as well as human users.

Each of these use cases should be described in structured natural language. This
helps designers identify objects in the system and gives them an understanding of
what the system is intended to do. I use a standard format for this description that
clearly identifies what information is exchanged, how the interaction is initiated, and

1 Control 1
System
1 1.n
Weathc-_zr 1 1.n Weather
Information i
Station
System

1 1.n

) Satellite 1
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Figure 7.2 Weather
station use cases
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so on. This is shown in Figure 7.3, which describes the Report weather use case from
Figure 7.2. Examples of some other use cases are on the Web.

Architectural design

Once the interactions between the software system and the system’s environment
have been defined, you use this information as a basis for designing the system
architecture. Of course, you need to combine this with your general knowledge of
the principles of architectural design and with more detailed domain knowledge.

Weather station
Report weather
Weather information system, Weather station

The weather station sends a summary of the weather data that has been collected from
the instruments in the collection period to the weather information system. The data sent
are the maximum, minimum, and average ground and air temperatures; the maximum,
minimum, and average air pressures; the maximum, minimum, and average wind speeds;
the total rainfall; and the wind direction as sampled at five-minute intervals.

The weather information system establishes a satellite communication link with the
weather station and requests transmission of the data.

The summarized data are sent to the weather information system.

Weather stations are usually asked to report once per hour but this frequency may differ
from one station to another and may be modified in the future.
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Figure 7.4 High-level
architecture of the

weather station
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You identify the major components that make up the system and their interactions,
and then may organize the components using an architectural pattern such as a lay-
ered or client—server model. However, this is not essential at this stage.

The high-level architectural design for the weather station software is shown in
Figure 7.4. The weather station is composed of independent subsystems that com-
municate by broadcasting messages on a common infrastructure, shown as the
Communication link in Figure 7.4. Each subsystem listens for messages on that
infrastructure and picks up the messages that are intended for them. This is
another commonly used architectural style in addition to those described in
Chapter 6.

For example, when the communications subsystem receives a control com-
mand, such as shutdown, the command is picked up by each of the other subsys-
tems, which then shut themselves down in the correct way. The key benefit of this
architecture is that it is easy to support different configurations of subsystems
because the sender of a message does not need to address the message to a partic-
ular subsystem.

Figure 7.5 shows the architecture of the data collection subsystem, which is
included in Figure 7.4. The Transmitter and Receiver objects are concerned with
managing communications and the WeatherData object encapsulates the information
that is collected from the instruments and transmitted to the weather information
system. This arrangement follows the producer-consumer pattern, discussed in
Chapter 20.

Object class identification

By this stage in the design process, you should have some ideas about the essen-
tial objects in the system that you are designing. As your understanding of the
design develops, you refine these ideas about the system objects. The use case
description helps to identify objects and operations in the system. From the
description of the Report weather use case, it is obvious that objects representing
the instruments that collect weather data will be required, as will an object
representing the summary of the weather data. You also usually need a high-level
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Figure 7.5 Architecture
of data collection
system
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system object or objects that encapsulate the system interactions defined in the
use cases. With these objects in mind, you can start to identify the object classes
in the system.

There have been various proposals made about how to identify object classes in
object-oriented systems:

1. Use a grammatical analysis of a natural language description of the system to be
constructed. Objects and attributes are nouns; operations or services are verbs
(Abbott, 1983).

2. Use tangible entities (things) in the application domain such as aircraft, roles
such as manager or doctor, events such as requests, interactions such as meet-
ings, locations such as offices, organizational units such as companies, and
so on (Coad and Yourdon, 1990; Shlaer and Mellor, 1988; Wirfs-Brock
et al., 1990).

3. Use a scenario-based analysis where various scenarios of system use are identi-
fied and analyzed in turn. As each scenario is analyzed, the team responsible for
the analysis must identify the required objects, attributes, and operations (Beck
and Cunningham, 1989).

In practice, you have to use several knowledge sources to discover object classes.
Object classes, attributes, and operations that are initially identified from the infor-
mal system description can be a starting point for the design. Further information
from application domain knowledge or scenario analysis may then be used to refine
and extend the initial objects. This information can be collected from requirements
documents, discussions with users, or from analyses of existing systems.

In the wilderness weather station, object identification is based on the tangible
hardware in the system. I don’t have space to include all the system objects here, but
I have shown five object classes in Figure 7.6. The Ground thermometer,
Anemometer, and Barometer objects are application domain objects, and the
WeatherStation and WeatherData objects have been identified from the system
description and the scenario (use case) description:

1. The WeatherStation object class provides the basic interface of the weather
station with its environment. Its operations reflect the interactions shown in
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Figure 7.6 Weather
station objects

identifier airTemperatures
groundTemperatures

reportWeather () windSpeeds

reportStatus () windDirections

powerSave (instruments) pressures

remoteControl (commands) rainfall

reconfigure (commands)

restart (instruments) collect ()

shutdown (instruments) summarize ()

- an_ldent bar_ldent
gt_Ident windSpeed pressure
temperature windDirection height
get() get() get()
test() test() test()

Figure 7.3. In this case, I use a single object class to encapsulate all of these
interactions, but in other designs you could design the system interface as sev-
eral different classes.

2. The WeatherData object class is responsible for processing the report weather
command. It sends the summarized data from the weather station instruments to
the weather information system.

3. The Ground thermometer, Anemometer, and Barometer object classes are
directly related to instruments in the system. They reflect tangible hardware
entities in the system and the operations are concerned with controlling that
hardware. These objects operate autonomously to collect data at the specified
frequency and store the collected data locally. This data is delivered to the
WeatherData object on request.

You use knowledge of the application domain to identify other objects, attributes,
and services. We know that weather stations are often located in remote places and
include various instruments that sometimes go wrong. Instrument failures should be
reported automatically. This implies that you need attributes and operations to check
the correct functioning of the instruments. There are many remote weather stations
so each weather station should have its own identifier.

At this stage in the design process, you should focus on the objects themselves, with-
out thinking about how these might be implemented. Once you have identified the
objects, you then refine the object design. You look for common features and then
design the inheritance hierarchy for the system. For example, you may identify an
Instrument superclass, which defines the common features of all instruments, such as an
identifier, and get and test operations. You may also add new attributes and operations to
the superclass, such as an attribute that maintains the frequency of data collection.



7.1 Object-oriented design using the UML 185

7.1.4 Design models

Design or system models, as I discussed in Chapter 5, show the objects or object classes
in a system. They also show the associations and relationships between these entities.
These models are the bridge between the system requirements and the implementation
of a system. They have to be abstract so that unnecessary detail doesn’t hide the rela-
tionships between them and the system requirements. However, they also have to
include enough detail for programmers to make implementation decisions.

Generally, you get around this type of conflict by developing models at different
levels of detail. Where there are close links between requirements engineers, design-
ers, and programmers, then abstract models may be all that are required. Specific
design decisions may be made as the system is implemented, with problems resolved
through informal discussions. When the links between system specifiers, designers,
and programmers are indirect (e.g., where a system is being designed in one part of
an organization but implemented elsewhere), then more detailed models are likely to
be needed.

An important step in the design process, therefore, is to decide on the design
models that you need and the level of detail required in these models. This depends
on the type of system that is being developed. You design a sequential data-process-
ing system in a different way from an embedded real-time system, so you will need
different design models. The UML supports 13 different types of models but, as I
discussed in Chapter 5, you rarely use all of these. Minimizing the number of mod-
els that are produced reduces the costs of the design and the time required to com-
plete the design process.

When you use the UML to develop a design, you will normally develop two kinds
of design model:

1. Structural models, which describe the static structure of the system using object
classes and their relationships. Important relationships that may be documented
at this stage are generalization (inheritance) relationships, uses/used-by rela-
tionships, and composition relationships.

2. Dynamic models, which describe the dynamic structure of the system and show
the interactions between the system objects. Interactions that may be docu-
mented include the sequence of service requests made by objects and the state
changes that are triggered by these object interactions.

In the early stages of the design process, I think there are three models that are
particularly useful for adding detail to use case and architectural models:

1. Subsystem models, which that show logical groupings of objects into coherent
subsystems. These are represented using a form of class diagram with each sub-
system shown as a package with enclosed objects. Subsystem models are static
(structural) models.
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Sequence models, which show the sequence of object interactions. These are
represented using a UML sequence or a collaboration diagram. Sequence
models are dynamic models.

3. State machine model, which show how individual objects change their state in
response to events. These are represented in the UML using state diagrams.
State machine models are dynamic models.

A subsystem model is a useful static model as it shows how a design is organized into
logically related groups of objects. I have already shown this type of model in Figure 7.4
to show the subsystems in the weather mapping system. As well as subsystem models,
you may also design detailed object models, showing all of the objects in the systems
and their associations (inheritance, generalization, aggregation, etc.). However, there is
a danger in doing too much modeling. You should not make detailed decisions about the
implementation that really should be left to the system programmers.

Sequence models are dynamic models that describe, for each mode of interaction,
the sequence of object interactions that take place. When documenting a design, you
should produce a sequence model for each significant interaction. If you have devel-
oped a use case model then there should be a sequence model for each use case that
you have identified.

Figure 7.7 is an example of a sequence model, shown as a UML sequence dia-
gram. This diagram shows the sequence of interactions that take place when an
external system requests the summarized data from the weather station. You read
sequence diagrams from top to bottom:

1. The SatComms object receives a request from the weather information system
to collect a weather report from a weather station. It acknowledges receipt of



7.1 Object-oriented design using the UML 187

this request. The stick arrowhead on the sent message indicates that the external
system does not wait for a reply but can carry on with other processing.

2. SatComms sends a message to WeatherStation, via a satellite link, to create a
summary of the collected weather data. Again, the stick arrowhead indicates
that SatComms does not suspend itself waiting for a reply.

3.  WeatherStation sends a message to a Commslink object to summarize the
weather data. In this case, the squared-off style of arrowhead indicates that the
instance of the WeatherStation object class waits for a reply.

4. Commslink calls the summarize method in the object WeatherData and waits for
a reply.

5. The weather data summary is computed and returned to WeatherStation via the
Commslink object.

6. WeatherStation then calls the SatComms object to transmit the summarized
data to the weather information system, through the satellite communications
system.

The SatComms and WeatherStation objects may be implemented as concurrent
processes, whose execution can be suspended and resumed. The SatComms object
instance listens for messages from the external system, decodes these messages and
initiates weather station operations.

Sequence diagrams are used to model the combined behavior of a group of
objects but you may also want to summarize the behavior of an object or a subsystem
in response to messages and events. To do this, you can use a state machine model
that shows how the object instance changes state depending on the messages that it
receives. The UML includes state diagrams, initially invented by Harel (1987) to
describe state machine models.

Figure 7.8 is a state diagram for the weather station system that shows how it
responds to requests for various services.

You can read this diagram as follows:

1. If the system state is Shutdown then it can respond to a restart(), a reconfigure(),
or a powerSave() message. The unlabeled arrow with the black blob indicates
that the Shutdown state is the initial state. A restart() message causes a transition
to normal operation. Both the powerSave() and reconfigure() messages cause a
transition to a state in which the system reconfigures itself. The state diagram
shows that reconfiguration is only allowed if the system has been shut down.

2. In the Running state, the system expects further messages. If a shutdown() mes-
sage is received, the object returns to the shutdown state.

3. If areportWeather() message is received, the system moves to the Summarizing
state. When the summary is complete, the system moves to a Transmitting state
where the information is transmitted to the remote system. It then returns to the
Running state.
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reconfigure ()
powerSave ()

configuration done

5. [If a signal from the clock is received, the system moves to the Collecting state,
where it collects data from the instruments. Each instrument is instructed in turn
to collect its data from the associated sensors.

6. If aremoteControl() message is received, the system moves to a controlled state
in which it responds to a different set of messages from the remote control
room. These are not shown on this diagram.

State diagrams are useful high-level models of a system or an object’s operation.
You don’t usually need a state diagram for all of the objects in the system. Many of
the objects in a system are relatively simple and a state model adds unnecessary
detail to the design.

7.1.5 Interface specification

An important part of any design process is the specification of the interfaces between
the components in the design. You need to specify interfaces so that objects and sub-
systems can be designed in parallel. Once an interface has been specified, the devel-
opers of other objects may assume that interface will be implemented.

Interface design is concerned with specifying the detail of the interface to an
object or to a group of objects. This means defining the signatures and semantics of
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Figure 7.9 Weather
station interfaces

startinstrument (instrument): iStatus
stopInstrument (instrument): iStatus
collectData (instrument): iStatus
provideData (instrument): string

weatherReport (WS-ldent): Wreport
statusReport (WS-ldent): Sreport

the services that are provided by the object or by a group of objects. Interfaces can be
specified in the UML using the same notation as a class diagram. However, there is
no attribute section and the UML stereotype «interface» should be included in the
name part. The semantics of the interface may be defined using the object constraint
language (OCL). I explain this in Chapter 17, where I cover component-based soft-
ware engineering. [ also show an alternative way to represent interfaces in the UML.

You should not include details of the data representation in an interface design,
as attributes are not defined in an interface specification. However, you should
include operations to access and update data. As the data representation is hidden, it
can be easily changed without affecting the objects that use that data. This leads to
a design that is inherently more maintainable. For example, an array representation
of a stack may be changed to a list representation without affecting other objects
that use the stack. By contrast, it often makes sense to expose the attributes in a
static design model, as this is the most compact way of illustrating essential charac-
teristics of the objects.

There is not a simple 1:1 relationship between objects and interfaces. The same
object may have several interfaces, each of which is a viewpoint on the methods that
it provides. This is supported directly in Java, where interfaces are declared sepa-
rately from objects and objects ‘implement’ interfaces. Equally, a group of objects
may all be accessed through a single interface.

Figure 7.9 shows two interfaces that may be defined for the weather station. The
left-hand interface is a reporting interface that defines the operation names that are
used to generate weather and status reports. These map directly to operations in the
WeatherStation object. The remote control interface provides four operations, which
map onto a single method in the WeatherStation object. In this case, the individual
operations are encoded in the command string associated with the remoteControl
method, shown in Figure 7.6.

I XN Design patterns

Design patterns were derived from ideas put forward by Christopher Alexander
(Alexander et al., 1977), who suggested that there were certain common patterns of
building design that were inherently pleasing and effective. The pattern is a description
of the problem and the essence of its solution, so that the solution may be reused in
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Pattern name: Observer

Description: Separates the display of the state of an object from the object itself and allows alternative displays
to be provided. When the object state changes, all displays are automatically notified and updated to reflect
the change.

Problem description: In many situations, you have to provide multiple displays of state information,
such as a graphical display and a tabular display. Not all of these may be known when the information is
specified. All alternative presentations should support interaction and, when the state is changed, all displays
must be updated.

This pattern may be used in all situations where more than one display format for state information is
required and where it is not necessary for the object that maintains the state information to know about the
specific display formats used.

Solution description: This involves two abstract objects, Subject and Observer, and two concrete objects,
ConcreteSubject and ConcreteObject, which inherit the attributes of the related abstract objects. The abstract
objects include general operations that are applicable in all situations. The state to be displayed is
maintained in ConcreteSubject, which inherits operations from Subject allowing it to add and remove
Observers (each observer corresponds to a display) and to issue a notification when the state has changed.
The ConcreteObserver maintains a copy of the state of ConcreteSubject and implements the Update()
interface of Observer that allows these copies to be kept in step. The ConcreteObserver automatically
displays the state and reflects changes whenever the state is updated.

The UML model of the pattern is shown in Figure 7.12.

Consequences: The subject only knows the abstract Observer and does not know details of the concrete class.
Therefore there is minimal coupling between these objects. Because of this lack of knowledge, optimizations
that enhance display performance are impractical. Changes to the subject may cause a set of linked updates
to observers to be generated, some of which may not be necessary.

different settings. The pattern is not a detailed specification. Rather, you can think of it
as a description of accumulated wisdom and experience, a well-tried solution to a com-
mon problem.

A quote from the Hillside Group web site (http://hillside.net), which is dedicated
to maintaining information about patterns, encapsulates their role in reuse:

Figure 7.10 The
Observer pattern

Patterns and Pattern Languages are ways to describe best practices, good
designs, and capture experience in a way that it is possible for others to reuse
this experience.

Patterns have made a huge impact on object-oriented software design. As well as
being tested solutions to common problems, they have become a vocabulary for talk-
ing about a design. You can therefore explain your design by describing the patterns
that you have used. This is particularly true for the best-known design patterns that
were originally described by the ‘Gang of Four’ in their patterns book, (Gamma et al.,
1995). Other particularly important pattern descriptions are those published in a series
of books by authors from Siemens, a large European technology company
(Buschmann et al., 1996; Buschmann et al., 2007a; Buschmann et al., 2007b; Kircher
and Jain, 2004; Schmidt et al., 2000).

Design patterns are usually associated with object-oriented design. Published
patterns often rely on object characteristics such as inheritance and polymorphism to
provide generality. However, the general principle of encapsulating experience in a
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pattern is one that is equally applicable to any kind of software design. So, you could
have configuration patterns for COTS systems. Patterns are a way of reusing the
knowledge and experience of other designers.

The four essential elements of design patterns were defined by the ‘Gang of Four’
in their patterns book:

1. A name that is a meaningful reference to the pattern.

2. A description of the problem area that explains when the pattern may be
applied.

3. A solution description of the parts of the design solution, their relationships, and
their responsibilities. This is not a concrete design description. It is a template
for a design solution that can be instantiated in different ways. This is often
expressed graphically and shows the relationships between the objects and
object classes in the solution.

4. A statement of the consequences—the results and trade-offs—of applying the
pattern. This can help designers understand whether or not a pattern can be used
in a particular situation.

Gamma and his co-authors break down the problem description into motivation
(a description of why the pattern is useful) and applicability (a description of situations
in which the pattern may be used). Under the description of the solution, they describe
the pattern structure, participants, collaborations, and implementation.

To illustrate pattern description, I use the Observer pattern, taken from the book
by Gamma et al. (Gamma et al., 1995). This is shown in Figure 7.10. In my descrip-
tion, I use the four essential description elements and also include a brief statement
of what the pattern can do. This pattern can be used in situations where different
presentations of an object’s state are required. It separates the object that must be
displayed from the different forms of presentation. This is illustrated in Figure 7.11,
which shows two graphical presentations of the same data set.

Graphical representations are normally used to illustrate the object classes in
patterns and their relationships. These supplement the pattern description and add
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detail to the solution description. Figure 7.12 is the representation in UML of the
Observer pattern.

To use patterns in your design, you need to recognize that any design problem
you are facing may have an associated pattern that can be applied. Examples of such
problems, documented in the ‘Gang of Four’s original patterns book, include:

1. Tell several objects that the state of some other object has changed (Observer
pattern).

2. Tidy up the interfaces to a number of related objects that have often been devel-
oped incrementally (Facade pattern).

3. Provide a standard way of accessing the elements in a collection, irrespective of
how that collection is implemented (Iterator pattern).

4. Allow for the possibility of extending the functionality of an existing class at
run-time (Decorator pattern).

Patterns support high-level, concept reuse. When you try to reuse executable
components you are inevitably constrained by detailed design decisions that have
been made by the implementers of these components. These range from the
particular algorithms that have been used to implement the components to the
objects and types in the component interfaces. When these design decisions con-
flict with your particular requirements, reusing the component is either
impossible or introduces inefficiencies into your system. Using patterns means
that you reuse the ideas but can adapt the implementation to suit the system that
you are developing.

When you start designing a system, it can be difficult to know, in advance, if you
will need a particular pattern. Therefore, using patterns in a design process often
involves developing a design, experiencing a problem, and then recognizing that a
pattern can be used. This is certainly possible if you focus on the 23 general-purpose
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patterns documented in the original patterns book. However, if your problem is a dif-
ferent one, you may find it difficult to find an appropriate pattern amongst the hun-
dreds of different patterns that have been proposed.

Patterns are a great idea but you need experience of software design to use them
effectively. You have to recognize situations where a pattern can be applied.
Inexperienced programmers, even if they have read the pattern books, will always
find it hard to decide whether they can reuse a pattern or need to develop a special-
purpose solution.

BN XY |mplementation issues

7.3.1

Software engineering includes all of the activities involved in software development
from the initial requirements of the system through to maintenance and manage-
ment of the deployed system. A critical stage of this process is, of course, system
implementation, where you create an executable version of the software.
Implementation may involve developing programs in high- or low-level programming
languages or tailoring and adapting generic, off-the-shelf systems to meet the specific
requirements of an organization.

I assume that most readers of this book will understand programming principles
and will have some programming experience. As this chapter is intended to offer a
language-independent approach, I haven’t focused on issues of good programming
practice as this has to use language-specific examples. Instead, I introduce some
aspects of implementation that are particularly important to software engineering
that are often not covered in programming texts. These are:

1. Reuse Most modern software is constructed by reusing existing components or
systems. When you are developing software, you should make as much use as
possible of existing code.

2. Configuration management During the development process, many different
versions of each software component are created. If you don’t keep track of
these versions in a configuration management system, you are liable to include
the wrong versions of these components in your system.

3. Host-target development Production software does not usually execute on the
same computer as the software development environment. Rather, you develop
it on one computer (the host system) and execute it on a separate computer (the
target system). The host and target systems are sometimes of the same type but,
often they are completely different.

Reuse

From the 1960s to the 1990s, most new software was developed from scratch, by
writing all code in a high-level programming language. The only significant reuse or
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software was the reuse of functions and objects in programming language libraries.
However, costs and schedule pressure meant that this approach became increasingly
unviable, especially for commercial and Internet-based systems. Consequently, an
approach to development based around the reuse of existing software emerged and is
now generally used for business systems, scientific software, and, increasingly, in
embedded systems engineering.

Software reuse is possible at a number of different levels:

1. The abstraction level At this level, you don’t reuse software directly but rather
use knowledge of successful abstractions in the design of your software. Design
patterns and architectural patterns (covered in Chapter 6) are ways of represent-
ing abstract knowledge for reuse.

2. The object level At this level, you directly reuse objects from a library rather
than writing the code yourself. To implement this type of reuse, you have to find
appropriate libraries and discover if the objects and methods offer the function-
ality that you need. For example, if you need to process mail messages in a Java
program, you may use objects and methods from a JavaMail library.

3. The component level Components are collections of objects and object classes
that operate together to provide related functions and services. You often have to
adapt and extend the component by adding some code of your own. An example
of component-level reuse is where you build your user interface using a frame-
work. This is a set of general object classes that implement event handling, dis-
play management, etc. You add connections to the data to be displayed and
write code to define specific display details such as screen layout and colors.

4. The system level At this level, you reuse entire application systems. This usually
involves some kind of configuration of these systems. This may be done by
adding and modifying code (if you are reusing a software product line) or by
using the system’s own configuration interface. Most commercial systems are
now built in this way where generic COTS (commercial off-the-shelf) systems
are adapted and reused. Sometimes this approach may involve reusing several
different systems and integrating these to create a new system.

By reusing existing software, you can develop new systems more quickly, with
fewer development risks and also lower costs. As the reused software has been tested
in other applications, it should be more reliable than new software. However, there
are costs associated with reuse:

1. The costs of the time spent in looking for software to reuse and assessing
whether or not it meets your needs. You may have to test the software to make
sure that it will work in your environment, especially if this is different from its
development environment.

2.  Where applicable, the costs of buying the reusable software. For large off-the-
shelf systems, these costs can be very high.
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7.3.2

3. The costs of adapting and configuring the reusable software components or sys-
tems to reflect the requirements of the system that you are developing.

4. The costs of integrating reusable software elements with each other (if you are
using software from different sources) and with the new code that you have
developed. Integrating reusable software from different providers can be diffi-
cult and expensive because the providers may make conflicting assumptions
about how their respective software will be reused.

How to reuse existing knowledge and software should be the first thing you should
think about when starting a software development project. You should consider the
possibilities of reuse before designing the software in detail, as you may wish to adapt
your design to reuse existing software assets. As I discussed in Chapter 2, in a reuse-
oriented development process, you search for reusable elements then modify your
requirements and design to make best use of these.

For a large number of application systems, software engineering really means
software reuse. I therefore devote several chapters in the software technologies sec-
tion of the book to this topic (Chapters 16, 17, and 19).

Configuration management

In software development, change happens all the time, so change management is
absolutely essential. When a team of people are developing software, you have to
make sure that team members don’t interfere with each others” work. That is, if two
people are working on a component, their changes have to be coordinated. Otherwise,
one programmer may make changes and overwrite the other’s work. You also have to
ensure that everyone can access the most up-to-date versions of software components,
otherwise developers may redo work that has already been done. When something
goes wrong with a new version of a system, you have to be able to go back to a work-
ing version of the system or component.

Configuration management is the name given to the general process of managing
a changing software system. The aim of configuration management is to support the
system integration process so that all developers can access the project code and doc-
uments in a controlled way, find out what changes have been made, and compile and
link components to create a system. There are, therefore, three fundamental configu-
ration management activities:

1. Version management, where support is provided to keep track of the different
versions of software components. Version management systems include facili-
ties to coordinate development by several programmers. They stop one devel-
oper overwriting code that has been submitted to the system by someone else.

2. System integration, where support is provided to help developers define what
versions of components are used to create each version of a system. This
description is then used to build a system automatically by compiling and link-
ing the required components.



196 Chapter7

Design and implementation

733

3. Problem tracking, where support is provided to allow users to report bugs and
other problems, and to allow all developers to see who is working on these prob-
lems and when they are fixed.

Software configuration management tools support each of the above activities.
These tools may be designed to work together in a comprehensive change management
system, such as ClearCase (Bellagio and Milligan, 2005). In integrated configuration
management systems, version management, system integration, and problem-tracking
tools are designed together. They share a user interface style and are integrated through
a common code repository.

Alternatively, separate tools, installed in an integrated development environment,
may be used. Version management may be supported using a version management
system such as Subversion (Pilato et al., 2008), which can support multi-site, multi-
team development. System integration support may be built into the language or rely
on a separate toolset such as the GNU build system. This includes what is perhaps
the best-known integration tool, Unix make. Bug tracking or issue tracking systems,
such as Bugzilla, are used to report bugs and other issues and to keep track of
whether or not these have been fixed.

Because of its importance in professional software engineering, I discuss change
and configuration management in more detail in Chapter 25.

Host-target development

Most software development is based on a host-target model. Software is developed on
one computer (the host), but runs on a separate machine (the target). More generally,
we can talk about a development platform and an execution platform. A platform is
more than just hardware. It includes the installed operating system plus other support-
ing software such as a database management system or, for development platforms,
an interactive development environment.

Sometimes, the development and execution platforms are the same, making it possi-
ble to develop the software and test it on the same machine. More commonly, however,
they are different so that you need to either move your developed software to the execu-
tion platform for testing or run a simulator on your development machine.

Simulators are often used when developing embedded systems. You simulate hard-
ware devices, such as sensors, and the events in the environment in which the system
will be deployed. Simulators speed up the development process for embedded systems
as each developer can have their own execution platform with no need to download the
software to the target hardware. However, simulators are expensive to develop and so
are only usually available for the most popular hardware architectures.

If the target system has installed middleware or other software that you need to
use, then you need to be able to test the system using that software. It may be imprac-
tical to install that software on your development machine, even if it is the same as
the target platform, because of license restrictions. In those circumstances, you need
to transfer your developed code to the execution platform to test the system.
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@ UML deployment diagrams

UML deployment diagrams show how software components are physically deployed on processors; that
is, the deployment diagram shows the hardware and software in the system and the middleware used
to connect the different components in the system. Essentially, you can think of deployment diagrams as
a way of defining and documenting the target environment.

http://www.SoftwareEngineering-9.com/Web/Deployment/

A software development platform should provide a range of tools to support soft-
ware engineering processes. These may include:

1. An integrated compiler and syntax-directed editing system that allows you to
create, edit, and compile code.

2. A language debugging system.
3. Graphical editing tools, such as tools to edit UML models.

4. Testing tools, such as JUnit (Massol, 2003) that can automatically run a set of
tests on a new version of a program.

5. Project support tools that help you organize the code for different development
projects.

As well as these standard tools, your development system may include more special-
ized tools such as static analyzers (discussed in Chapter 15). Normally, development
environments for teams also include a shared server that runs a change and con-
figuration management system and, perhaps, a system to support requirements
management.

Software development tools are often grouped to create an integrated develop-
ment environment (IDE). An IDE is a set of software tools that supports different
aspects of software development, within some common framework and user inter-
face. Generally, IDEs are created to support development in a specific programming
language such as Java. The language IDE may be developed specially, or may be an
instantiation of a general-purpose IDE, with specific language-support tools.

A general-purpose IDE is a framework for hosting software tools that provides data
management facilities for the software being developed, and integration mechanisms,
that allow tools to work together. The best-known general-purpose IDE is the Eclipse
environment (Carlson, 2005). This environment is based on a plug-in architecture so
that it can be specialized for different languages and application domains (Clayberg and
Rubel, 2006). Therefore, you can install Eclipse and tailor it for your specific needs by
adding plug-ins. For example, you may add a set of plug-ins to support networked sys-
tems development in Java or embedded systems engineering using C.

As part of the development process, you need to make decisions about how the
developed software will be deployed on the target platform. This is straightforward



198 Chapter7

Design and implementation

for embedded systems, where the target is usually a single computer. However, for
distributed systems, you need to decide on the specific platforms where the compo-
nents will be deployed. Issues that you have to consider in making this decision are:

1. The hardware and software requirements of a component If a component is
designed for a specific hardware architecture, or relies on some other software
system, it must obviously be deployed on a platform that provides the required
hardware and software support.

2. The availability requirements of the system High-availability systems may
require components to be deployed on more than one platform. This means that,
in the event of platform failure, an alternative implementation of the component
is available.

3.  Component communications If there is a high level of communications traffic
between components, it usually makes sense to deploy them on the same plat-
form or on platforms that are physically close to one other. This reduces
communications latency, the delay between the time a message is sent by one
component and received by another.

You can document your decisions on hardware and software deployment using UML
deployment diagrams, which show how software components are distributed across
hardware platforms.

If you are developing an embedded system, you may have to take into account
target characteristics, such as its physical size, power capabilities, the need for real-
time responses to sensor events, the physical characteristics of actuators, and its real-
time operating system. I discuss embedded systems engineering in Chapter 20.

I A Open source development

Open source development is an approach to software development in which the
source code of a software system is published and volunteers are invited to partici-
pate in the development process (Raymond, 2001). Its roots are in the Free Software
Foundation (http://www.fsf.org), which advocates that source code should not be
proprietary but rather should always be available for users to examine and modify as
they wish. There was an assumption that the code would be controlled and devel-
oped by a small core group, rather than users of the code.

Open source software extended this idea by using the Internet to recruit a much
larger population of volunteer developers. Many of them are also users of the code.
In principle at least, any contributor to an open source project may report and fix
bugs and propose new features and functionality. However, in practice, successful
open source systems still rely on a core group of developers who control changes to
the software.
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The best-known open source product is, of course, the Linux operating system
which is widely used as a server system and, increasingly, as a desktop environment.
Other important open source products are Java, the Apache web server, and the
mySQL database management system. Major players in the computer industry such
as IBM and Sun support the open source movement and base their software on open
source products. There are thousands of other, lesser known open source systems
and components that may also be used.

It is usually fairly cheap or free to acquire open source software. You can nor-
mally download open source software without charge. However, if you want docu-
mentation and support, then you may have to pay for this, but costs are usually fairly
low. The other key benefit of using open source products is that mature open source
systems are usually very reliable. The reason for this is that they have a large popu-
lation of users who are willing to fix problems themselves rather than report these
problems to the developer and wait for a new release of the system. Bugs are discov-
ered and repaired more quickly than is usually possible with proprietary software.

For a company involved in software development, there are two open source
issues that have to be considered:

1. Should the product that is being developed make use of open source components?

2. Should an open source approach be used for the software’s development?

The answers to these questions depend on the type of software that is being devel-
oped and the background and experience of the development team.

If you are developing a software product for sale, then time to market and reduced
costs are critical. If you are developing in a domain in which there are high-quality
open source systems available, you can save time and money by using these systems.
However, if you are developing software to a specific set of organizational require-
ments, then using open source components may not be an option. You may have to
integrate your software with existing systems that are incompatible with available
open source systems. Even then, however, it could be quicker and cheaper to modify
the open source system rather than redevelop the functionality that you need.

More and more product companies are using an open source approach to develop-
ment. Their business model is not reliant on selling a software product but rather on
selling support for that product. They believe that involving the open source commu-
nity will allow software to be developed more cheaply, more quickly, and will create
a community of users for the software. Again, however, this is really only applicable
for general software products rather than specific organizational applications.

Many companies believe that adopting an open source approach will reveal confi-
dential business knowledge to their competitors and so are reluctant to adopt this
development model. However, if you are working in a small company and you open
source your software, this may reassure customers that they will be able to support
the software if your company goes out of business.

Publishing the source code of a system does not mean that people from the wider
community will necessarily help with its development. Most successful open source
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products have been platform products rather than application systems. There are a
limited number of developers who might be interested in specialized application sys-
tems. As such, making a software system open source does not guarantee commu-
nity involvement.

7.4.1 Open source licensing

Although a fundamental principle of open-source development is that source code
should be freely available, this does not mean that anyone can do as they wish with
that code. Legally, the developer of the code (either a company or an individual) still
owns the code. They can place restrictions on how it is used by including legally
binding conditions in an open source software license (St. Laurent, 2004). Some
open source developers believe that if an open source component is used to develop
a new system, then that system should also be open source. Others are willing to
allow their code to be used without this restriction. The developed systems may be
proprietary and sold as closed source systems.
Most open source licenses are derived from one of three general models:

1. The GNU General Public License (GPL). This is a so-called ‘reciprocal’ license
that, simplistically, means that if you use open source software that is licensed
under the GPL license, then you must make that software open source.

2.  The GNU Lesser General Public License (LGPL). This is a variant of the GPL
license where you can write components that link to open source code without
having to publish the source of these components. However, if you change the
licensed component, then you must publish this as open source.

3. The Berkley Standard Distribution (BSD) License. This is a non-reciprocal
license, which means you are not obliged to republish any changes or modifica-
tions made to open source code. You can include the code in proprietary systems
that are sold. If you use open source components, you must acknowledge the
original creator of the code.

Licensing issues are important because if you use open-source software as part of
a software product, then you may be obliged by the terms of the license to make your
own product open source. If you are trying to sell your software, you may wish to
keep it secret. This means that you may wish to avoid using GPL-licensed open
source software in its development.

If you are building software that runs on an open source platform, such as Linux,
then licenses are not a problem. However, as soon as you start including open source
components in your software you need to set up processes and databases to keep
track of what’s been used and their license conditions. Bayersdorfer (2007) suggests
that companies managing projects that use open source should:

1. Establish a system for maintaining information about open source components
that are downloaded and used. You have to keep a copy of the license for each
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component that was valid at the time the component was used. Licenses may
change so you need to know the conditions that you have agreed to.

Be aware of the different types of licenses and understand how a component is
licensed before it is used. You may decide to use a component in one system but
not in another because you plan to use these systems in different ways.

Be aware of evolution pathways for components. You need to know a bit about
the open source project where components are developed to understand how
they might change in future.

Educate people about open source. It’s not enough to have procedures in place
to ensure compliance with license conditions. You also need to educate develop-
ers about open source and open source licensing.

Have auditing systems in place. Developers, under tight deadlines, might be
tempted to break the terms of a license. If possible, you should have software in
place to detect and stop this.

Participate in the open source community. If you rely on open source products,
you should participate in the community and help support their development.

The business model of software is changing. It is becoming increasingly difficult

to build a business by selling specialized software systems. Many companies prefer
to make their software open source and then sell support and consultancy to software
users. This trend is likely to accelerate, with increasing use of open source software
and with more and more software available in this form.

Software design and implementation are interleaved activities. The level of detail in the design
depends on the type of system being developed and whether you are using a plan-driven or

agile approach.

The process of object-oriented design includes activities to design the system architecture,
identify objects in the system, describe the design using different object models, and document
the component interfaces.

A range of different models may be produced during an object-oriented design process. These
include static models (class models, generalization models, association models) and dynamic
models (sequence models, state machine models).

Component interfaces must be defined precisely so that other objects can use them. A UML
interface stereotype may be used to define interfaces.

When developing software, you should always consider the possibility of reusing existing
software, either as components, services, or complete systems.
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Configuration management is the process of managing changes to an evolving software system.
It is essential when a team of people are cooperating to develop software.

Most software development is host-target development. You use an IDE on a host machine to
develop the software, which is transferred to a target machine for execution.

Open source development involves making the source code of a system publicly available. This
means that many people can propose changes and improvements to the software.

FURTHER READING

Design Patterns: Elements of Reusable Object-oriented Software. This is the original software
patterns handbook that introduced software patterns to a wide community. (E. Gamma, R. Helm,
R. Johnson and J. Vlissides, Addison-Wesley, 1995.)

Applying UML and Patterns: An Introduction to Object-oriented Analysis and Design and Iterative
Development, 3rd edition. Larman writes clearly on object-oriented design and, as well as
discussing the use of the UML. This is a good introduction to using patterns in the design process.
(C. Larman, Prentice Hall, 2004.)

Producing Open Source Software: How to Run a Successful Free Software Project. His book is a
comprehensive guide to the background to open source software, licensing issues, and the
practicalities of running an open source development project. (K. Fogel, O’Reilly Media Inc., 2008.)

Further reading on software reuse is suggested in Chapter 16 and on configuration management
in Chapter 25.

EXERCISES

7.1. Using the structured notation shown in Figure 7.3, specify the weather station use cases for
Report status and Reconfigure. You should make reasonable assumptions about the
functionality that is required here.

7.2. Assume that the MHC-PMS is being developed using an object-oriented approach. Draw a use
case diagram showing at least six possible use cases for this system.

7.3. Using the UML graphical notation for object classes, design the following object classes,
identifying attributes and operations. Use your own experience to decide on the attributes
and operations that should be associated with these objects.

a telephone

a printer for a personal computer
a personal stereo system

a bank account

a library catalog



Chapter 7 = References 203

7.4. Using the weather station objects identified in Figure 7.6 as a starting point, identify further
objects that may be used in this system. Design an inheritance hierarchy for the objects that
you have identified.

7.5. Develop the design of the weather station to show the interaction between the data collection
subsystem and the instruments that collect weather data. Use sequence diagrams to show
this interaction.

7.6. Identify possible objects in the following systems and develop an object-oriented design for
them. You may make any reasonable assumptions about the systems when deriving the design.

A group diary and time management system is intended to support the timetabling of
meetings and appointments across a group of co-workers. When an appointment is to be
made that involves a number of people, the system finds a common slot in each of their
diaries and arranges the appointment for that time. If no common slots are available, it
interacts with the user to rearrange his or her personal diary to make room for the
appointment.

Afilling station (gas station) is to be set up for fully automated operation. Drivers

swipe their credit card through a reader connected to the pump; the card is verified by
communication with a credit company computer, and a fuel limit is established. The driver
may then take the fuel required. When fuel delivery is complete and the pump hose is
returned to its holster, the driver’s credit card account is debited with the cost of the fuel
taken. The credit card is returned after debiting. If the card is invalid, the pump returns it
before fuel is dispensed.

7.7. Draw a sequence diagram showing the interactions of objects in a group diary system when a
group of people are arranging a meeting.

7.8. Draw a UML state diagram showing the possible state changes in either the group diary or the
filling station system.

7.9. Using examples, explain why configuration management is important when a team of people
are developing a software product.

7.10. A small company has developed a specialized product that it configures specially for each
customer. New customers usually have specific requirements to be incorporated into their
system, and they pay for these to be developed. The company has an opportunity to bid for a new
contract, which would more than double its customer base. The new customer also wishes to
have some involvement in the configuration of the system. Explain why, in these circumstances, it
might be a good idea for the company owning the software to make it open source.
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Software testing

Objectives

The objective of this chapter is to introduce software testing and
software testing processes. When you have read the chapter, you will:

m understand the stages of testing from testing, during development
to acceptance testing by system customers;

m have been introduced to techniques that help you choose test
cases that are geared to discovering program defects;

m understand test-first development, where you design tests before
writing code and run these tests automatically;

m know the important differences between component, system,
and release testing and be aware of user testing processes and
techniques.

Contents

8.1 Development testing
8.2 Test-driven development
8.3 Release testing

8.4 User testing
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Testing is intended to show that a program does what it is intended to do and to dis-
cover program defects before it is put into use. When you test software, you execute
a program using artificial data. You check the results of the test run for errors, anom-
alies, or information about the program’s non-functional attributes.

The testing process has two distinct goals:

1. To demonstrate to the developer and the customer that the software meets its
requirements. For custom software, this means that there should be at least one
test for every requirement in the requirements document. For generic software
products, it means that there should be tests for all of the system features, plus
combinations of these features, that will be incorporated in the product release.

2. To discover situations in which the behavior of the software is incorrect, unde-
sirable, or does not conform to its specification. These are a consequence of
software defects. Defect testing is concerned with rooting out undesirable sys-
tem behavior such as system crashes, unwanted interactions with other systems,
incorrect computations, and data corruption.

The first goal leads to validation testing, where you expect the system to perform
correctly using a given set of test cases that reflect the system’s expected use. The
second goal leads to defect testing, where the test cases are designed to expose
defects. The test cases in defect testing can be deliberately obscure and need not
reflect how the system is normally used. Of course, there is no definite boundary
between these two approaches to testing. During validation testing, you will find
defects in the system; during defect testing, some of the tests will show that the pro-
gram meets its requirements.

The diagram shown in Figure 8.1 may help to explain the differences between
validation testing and defect testing. Think of the system being tested as a black
box. The system accepts inputs from some input set I and generates outputs in an
output set O. Some of the outputs will be erroneous. These are the outputs in set O,
that are generated by the system in response to inputs in the set I.. The priority in
defect testing is to find those inputs in the set I, because these reveal problems with
the system. Validation testing involves testing with correct inputs that are outside I..
These stimulate the system to generate the expected correct outputs.

Testing cannot demonstrate that the software is free of defects or that it will
behave as specified in every circumstance. It is always possible that a test that you
have overlooked could discover further problems with the system. As Edsger
Dijkstra, an early contributor to the development of software engineering, eloquently
stated (Dijkstra et al., 1972):

Testing can only show the presence of errors, not their absence

Testing is part of a broader process of software verification and validation (V & V).
Verification and validation are not the same thing, although they are often confused.
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Figure 8.1 An
input-output model
of program testing

Inputs Causing
Anomalous
Behavior

Input Test Data

Output Test Results © Outputs Which Reveal
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Defects

Barry Boehm, a pioneer of software engineering, succinctly expressed the difference
between them (Boehm, 1979):

m ‘Validation: Are we building the right product?’

m ‘Verification: Are we building the product right?’

Verification and validation processes are concerned with checking that software
being developed meets its specification and delivers the functionality expected by the
people paying for the software. These checking processes start as soon as requirements
become available and continue through all stages of the development process.

The aim of verification is to check that the software meets its stated functional and
non-functional requirements. Validation, however, is a more general process. The aim
of validation is to ensure that the software meets the customer’s expectations. It goes
beyond simply checking conformance with the specification to demonstrating that the
software does what the customer expects it to do. Validation is essential because, as
I discussed in Chapter 4, requirements specifications do not always reflect the real
wishes or needs of system customers and users.

The ultimate goal of verification and validation processes is to establish confi-
dence that the software system is ‘fit for purpose’. This means that the system must
be good enough for its intended use. The level of required confidence depends on the
system’s purpose, the expectations of the system users, and the current marketing
environment for the system:

1. Software purpose The more critical the software, the more important that it is
reliable. For example, the level of confidence required for software used to con-
trol a safety-critical system is much higher than that required for a prototype
that has been developed to demonstrate new product ideas.

2. User expectations Because of their experiences with buggy, unreliable software,
many users have low expectations of software quality. They are not surprised
when their software fails. When a new system is installed, users may tolerate
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failures because the benefits of use outweigh the costs of failure recovery.
In these situations, you may not need to devote as much time to testing the soft-
ware. However, as software matures, users expect it to become more reliable so
more thorough testing of later versions may be required.

Marketing environment When a system is marketed, the sellers of the system
must take into account competing products, the price that customers are willing
to pay for a system, and the required schedule for delivering that system. In a
competitive environment, a software company may decide to release a program
before it has been fully tested and debugged because they want to be the first
into the market. If a software product is very cheap, users may be willing to tol-
erate a lower level of reliability.

As well as software testing, the verification and validation process may involve

software inspections and reviews. Inspections and reviews analyze and check the
system requirements, design models, the program source code, and even proposed
system tests. These are so-called ‘static’ V & V techniques in which you don’t need
to execute the software to verify it. Figure 8.2 shows that software inspections and
testing support V & V at different stages in the software process. The arrows indicate
the stages in the process where the techniques may be used.

Inspections mostly focus on the source code of a system but any readable repre-

sentation of the software, such as its requirements or a design model, can be
inspected. When you inspect a system, you use knowledge of the system, its applica-
tion domain, and the programming or modeling language to discover errors.

There are three advantages of software inspection over testing:

During testing, errors can mask (hide) other errors. When an error leads to
unexpected outputs, you can never be sure if later output anomalies are due to
a new error or are side effects of the original error. Because inspection is a
static process, you don’t have to be concerned with interactions between
errors. Consequently, a single inspection session can discover many errors in a
system.



Chapter 8 m Software testing 209

@ Test planning

Test planning is concerned with scheduling and resourcing all of the activities in the testing process. It involves
defining the testing process, taking into account the people and the time available. Usually, a test plan will be
created, which defines what is to be tested, the predicted testing schedule, and how tests will be recorded. For
critical systems, the test plan may also include details of the tests to be run on the software.

http://www.SoftwareEngineering-9.com/Web/Testing/Planning.html

2. Incomplete versions of a system can be inspected without additional costs. If
a program is incomplete, then you need to develop specialized test harnesses
to test the parts that are available. This obviously adds to the system develop-
ment costs.

3. As well as searching for program defects, an inspection can also consider
broader quality attributes of a program, such as compliance with standards,
portability, and maintainability. You can look for inefficiencies, inappropriate
algorithms, and poor programming style that could make the system difficult to
maintain and update.

Program inspections are an old idea and there have been several studies and
experiments that have demonstrated that inspections are more effective for defect
discovery than program testing. Fagan (1986) reported that more than 60% of the
errors in a program can be detected using informal program inspections. In the
Cleanroom process (Prowell et al., 1999), it is claimed that more than 90% of defects
can be discovered in program inspections.

However, inspections cannot replace software testing. Inspections are not good
for discovering defects that arise because of unexpected interactions between dif-
ferent parts of a program, timing problems, or problems with system perfor-
mance. Furthermore, especially in small companies or development groups, it can
be difficult and expensive to put together a separate inspection team as all poten-
tial members of the team may also be software developers. I discuss reviews and
inspections in more detail in Chapter 24 (Quality Management). Automated static
analysis, where the source text of a program is automatically analyzed to discover
anomalies, is explained in Chapter 15. In this chapter, I focus on testing and
testing processes.

Figure 8.3 is an abstract model of the ‘traditional’ testing process, as used in plan-
driven development. Test cases are specifications of the inputs to the test and the
expected output from the system (the test results), plus a statement of what is being
tested. Test data are the inputs that have been devised to test a system. Test data can
sometimes be generated automatically, but automatic test case generation is impossi-
ble, as people who understand what the system is supposed to do must be involved to
specify the expected test results. However, test execution can be automated. The
expected results are automatically compared with the predicted results so there is no
need for a person to look for errors and anomalies in the test run.
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Typically, a commercial software system has to go through three stages of testing:

Development testing, where the system is tested during development to discover
bugs and defects. System designers and programmers are likely to be involved
in the testing process.

2. Release testing, where a separate testing team tests a complete version of the
system before it is released to users. The aim of release testing is to check that
the system meets the requirements of system stakeholders.

3. User testing, where users or potential users of a system test the system in their
own environment. For software products, the ‘user’ may be an internal market-
ing group who decide if the software can be marketed, released, and sold.
Acceptance testing is one type of user testing where the customer formally tests
a system to decide if it should be accepted from the system supplier or if further
development is required.

In practice, the testing process usually involves a mixture of manual and auto-
mated testing. In manual testing, a tester runs the program with some test data and
compares the results to their expectations. They note and report discrepancies to the
program developers. In automated testing, the tests are encoded in a program that is
run each time the system under development is to be tested. This is usually faster
than manual testing, especially when it involves regression testing—re-running pre-
vious tests to check that changes to the program have not introduced new bugs.

The use of automated testing has increased considerably over the past few years.
However, testing can never be completely automated as automated tests can only
check that a program does what it is supposed to do. It is practically impossible to use
automated testing to test systems that depend on how things look (e.g., a graphical
user interface), or to test that a program does not have unwanted side effects.

I XU Development testing

Development testing includes all testing activities that are carried out by the team
developing the system. The tester of the software is usually the programmer who
developed that software, although this is not always the case. Some development
processes use programmer/tester pairs (Cusamano and Selby, 1998) where each



8.1 Development testing 211

@ Debugging

Debugging is the process of fixing errors and problems that have been discovered by testing. Using information
from the program tests, debuggers use their knowledge of the programming language and the intended
outcome of the test to locate and repair the program error. This process is often supported by interactive
debugging tools that provide extra information about program execution.

http://www.SoftwareEngineering-9.com/Web/Testing/Debugging.html

programmer has an associated tester who develops tests and assists with the testing
process. For critical systems, a more formal process may be used, with a separate
testing group within the development team. They are responsible for developing tests
and maintaining detailed records of test results.

During development, testing may be carried out at three levels of granularity:

1. Unit testing, where individual program units or object classes are tested. Unit
testing should focus on testing the functionality of objects or methods.

2. Component testing, where several individual units are integrated to create com-
posite components. Component testing should focus on testing component
interfaces.

3. System testing, where some or all of the components in a system are integrated
and the system is tested as a whole. System testing should focus on testing com-
ponent interactions.

Development testing is primarily a defect testing process, where the aim of testing
is to discover bugs in the software. It is therefore usually interleaved with debugging—
the process of locating problems with the code and changing the program to fix these
problems.

8.1.1 Unit testing

Unit testing is the process of testing program components, such as methods or object
classes. Individual functions or methods are the simplest type of component. Your
tests should be calls to these routines with different input parameters. You can use
the approaches to test case design discussed in Section 8.1.2, to design the function
or method tests.

When you are testing object classes, you should design your tests to provide cov-
erage of all of the features of the object. This means that you should:

* test all operations associated with the object;

» set and check the value of all attributes associated with the object;

e put the object into all possible states. This means that you should simulate all
events that cause a state change.
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Figure 8.4 The weather
station object interface
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Consider, for example, the weather station object from the example that I discussed
in Chapter 7. The interface of this object is shown in Figure 8.4. It has a single attribute,
which is its identifier. This is a constant that is set when the weather station is installed.
You therefore only need a test that checks if it has been properly set up. You need to
define test cases for all of the methods associated with the object such as reportWeather,
reportStatus, etc. Ideally, you should test methods in isolation but, in some cases, some
test sequences are necessary. For example, to test the method that shuts down the
weather station instruments (shutdown), you need to have executed the restart method.

Generalization or inheritance makes object class testing more complicated. You
can’t simply test an operation in the class where it is defined and assume that it will
work as expected in the subclasses that inherit the operation. The operation that is
inherited may make assumptions about other operations and attributes. These may
not be valid in some subclasses that inherit the operation. You therefore have to test
the inherited operation in all of the contexts where it is used.

To test the states of the weather station, you use a state model, such as the one
shown in Figure 7.8 in the previous chapter. Using this model, you can identify
sequences of state transitions that have to be tested and define event sequences to
force these transitions. In principle, you should test every possible state transition
sequence, although in practice this may be too expensive. Examples of state
sequences that should be tested in the weather station include:

Shutdown — Running — Shutdown
Configuring = Running — Testing — Transmitting — Running
Running — Collecting — Running — Summarizing — Transmitting — Running

Whenever possible, you should automate unit testing. In automated unit testing,
you make use of a test automation framework (such as JUnit) to write and run your
program tests. Unit testing frameworks provide generic test classes that you extend
to create specific test cases. They can then run all of the tests that you have imple-
mented and report, often through some GUI, on the success or failure of the tests. An
entire test suite can often be run in a few seconds so it is possible to execute all the
tests every time you make a change to the program.

An automated test has three parts:

1. A setup part, where you initialize the system with the test case, namely the
inputs and expected outputs.
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2. A call part, where you call the object or method to be tested.

3. An assertion part where you compare the result of the call with the expected
result. If the assertion evaluates to true, the test has been successful; if false,
then it has failed.

Sometimes the object that you are testing has dependencies on other objects that
may not have been written or which slow down the testing process if they are used.
For example, if your object calls a database, this may involve a slow setup process
before it can be used. In these cases, you may decide to use mock objects. Mock
objects are objects with the same interface as the external objects being used that
simulate its functionality. Therefore, a mock object simulating a database may have
only a few data items that are organized in an array. They can therefore be accessed
quickly, without the overheads of calling a database and accessing disks. Similarly,
mock objects can be used to simulate abnormal operation or rare events. For exam-
ple, if your system is intended to take action at certain times of day, your mock
object can simply return those times, irrespective of the actual clock time.

Choosing unit test cases

Testing is expensive and time consuming, so it is important that you choose effective
unit test cases. Effectiveness, in this case, means two things:

1. The test cases should show that, when used as expected, the component that you
are testing does what it is supposed to do.

2. [If there are defects in the component, these should be revealed by test cases.

You should therefore write two kinds of test case. The first of these should reflect
normal operation of a program and should show that the component works. For
example, if you are testing a component that creates and initializes a new patient
record, then your test case should show that the record exists in a database and that
its fields have been set as specified. The other kind of test case should be based on
testing experience of where common problems arise. It should use abnormal inputs
to check that these are properly processed and do not crash the component.

I discuss two possible strategies here that can be effective in helping you choose
test cases. These are:

1. Partition testing, where you identify groups of inputs that have common charac-
teristics and should be processed in the same way. You should choose tests from
within each of these groups.

2. Guideline-based testing, where you use testing guidelines to choose test cases.
These guidelines reflect previous experience of the kinds of errors that program-
mers often make when developing components.
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Figure 8.5 Equivalence
partitioning
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The input data and output results of a program often fall into a number of differ-
ent classes with common characteristics. Examples of these classes are positive
numbers, negative numbers, and menu selections. Programs normally behave in a
comparable way for all members of a class. That is, if you test a program that does a
computation and requires two positive numbers, then you would expect the program
to behave in the same way for all positive numbers.

Because of this equivalent behavior, these classes are sometimes called equiva-
lence partitions or domains (Bezier, 1990). One systematic approach to test case
design is based on identifying all input and output partitions for a system or compo-
nent. Test cases are designed so that the inputs or outputs lie within these partitions.
Partition testing can be used to design test cases for both systems and components.

In Figure 8.5, the large shaded ellipse on the left represents the set of all possible
inputs to the program that is being tested. The smaller unshaded ellipses represent
equivalence partitions. A program being tested should process all of the members of
an input equivalence partitions in the same way. Output equivalence partitions are
partitions within which all of the outputs have something in common. Sometimes
there is a 1:1 mapping between input and output equivalence partitions. However,
this is not always the case; you may need to define a separate input equivalence par-
tition, where the only common characteristic of the inputs is that they generate out-
puts within the same output partition. The shaded area in the left ellipse represents
inputs that are invalid. The shaded area in the right ellipse represents exceptions that
may occur (i.e., responses to invalid inputs).

Once you have identified a set of partitions, you choose test cases from each of
these partitions. A good rule of thumb for test case selection is to choose test cases
on the boundaries of the partitions, plus cases close to the midpoint of the partition.
The reason for this is that designers and programmers tend to consider typical values
of inputs when developing a system. You test these by choosing the midpoint of the
partition. Boundary values are often atypical (e.g., zero may behave differently from
other non-negative numbers) so are sometimes overlooked by developers. Program
failures often occur when processing these atypical values.
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Figure 8.6 Equivalence
partitions
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You identify partitions by using the program specification or user documentation
and from experience where you predict the classes of input value that are likely to
detect errors. For example, say a program specification states that the program
accepts 4 to 8 inputs which are five-digit integers greater than 10,000. You use this
information to identify the input partitions and possible test input values. These are
shown in Figure 8.6.

When you use the specification of a system to identify equivalence partitions, this
is called ‘black-box testing’. Here, you don’t need any knowledge of how the system
works. However, it may be helpful to supplement the black-box tests with ‘white-
box testing’, where you look at the code of the program to find other possible tests.
For example, your code may include exceptions to handle incorrect inputs. You can
use this knowledge to identify ‘exception partitions’—different ranges where the
same exception handling should be applied.

Equivalence partitioning is an effective approach to testing because it helps
account for errors that programmers often make when processing inputs at the edges
of partitions. You can also use testing guidelines to help choose test cases.
Guidelines encapsulate knowledge of what kinds of test cases are effective for dis-
covering errors. For example, when you are testing programs with sequences, arrays,
or lists, guidelines that could help reveal defects include:

1. Test software with sequences that have only a single value. Programmers natu-
rally think of sequences as made up of several values and sometimes they embed
this assumption in their programs. Consequently, if presented with a single-
value sequence, a program may not work properly.

2. Use different sequences of different sizes in different tests. This decreases the
chances that a program with defects will accidentally produce a correct output
because of some accidental characteristics of the input.

3. Derive tests so that the first, middle, and last elements of the sequence are
accessed. This approach is reveals problems at partition boundaries.



216 Chapter8

Software testing

8.1.3

@ Path testing

Path testing is a testing strategy that aims to exercise every independent execution path through a component
or program. If every independent path is executed, then all statements in the component must have been
executed at least once. All conditional statements are tested for both true and false cases. In an object-oriented
development process, path testing may be used when testing the methods associated with objects.

http://www.SoftwareEngineering-9.com/Web/Testing/PathTest.html

Whittaker’s book (2002) includes many examples of guidelines that can be used
in test case design. Some of the most general guidelines that he suggests are:

Choose inputs that force the system to generate all error messages;

Design inputs that cause input buffers to overflow;

Repeat the same input or series of inputs numerous times;

m Force invalid outputs to be generated;

Force computation results to be too large or too small.
As you gain experience with testing, you can develop your own guidelines about

how to choose effective test cases. I give more examples of testing guidelines in the
next section of this chapter.

Component testing

Software components are often composite components that are made up of several
interacting objects. For example, in the weather station system, the reconfiguration
component includes objects that deal with each aspect of the reconfiguration. You
access the functionality of these objects through the defined component interface.
Testing composite components should therefore focus on showing that the compo-
nent interface behaves according to its specification. You can assume that unit tests
on the individual objects within the component have been completed.

Figure 8.7 illustrates the idea of component interface testing. Assume that compo-
nents A, B, and C have been integrated to create a larger component or subsystem.
The test cases are not applied to the individual components but rather to the interface
of the composite component created by combining these components. Interface errors
in the composite component may not be detectable by testing the individual objects
because these errors result from interactions between the objects in the component.

There are different types of interface between program components and, conse-
quently, different types of interface error that can occur:

1. Parameter interfaces These are interfaces in which data or sometimes function
references are passed from one component to another. Methods in an object
have a parameter interface.
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2. Shared memory interfaces These are interfaces in which a block of memory is
shared between components. Data is placed in the memory by one subsystem
and retrieved from there by other sub-systems. This type of interface is often
used in embedded systems, where sensors create data that is retrieved and
processed by other system components.

3. Procedural interfaces These are interfaces in which one component encapsu-
lates a set of procedures that can be called by other components. Objects and
reusable components have this form of interface.

4. Message passing interfaces These are interfaces in which one component
requests a service from another component by passing a message to it. A return
message includes the results of executing the service. Some object-oriented sys-
tems have this form of interface, as do client—server systems.

Interface errors are one of the most common forms of error in complex systems
(Lutz, 1993). These errors fall into three classes:

m Interface misuse A calling component calls some other component and makes an
error in the use of its interface. This type of error is common with parameter inter-
faces, where parameters may be of the wrong type or be passed in the wrong
order, or the wrong number of parameters may be passed.

m [nterface misunderstanding A calling component misunderstands the specifica-
tion of the interface of the called component and makes assumptions about its
behavior. The called component does not behave as expected which then causes
unexpected behavior in the calling component. For example, a binary search
method may be called with a parameter that is an unordered array. The search
would then fail.

m Timing errors These occur in real-time systems that use a shared memory or a
message-passing interface. The producer of data and the consumer of data may
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operate at different speeds. Unless particular care is taken in the interface design,
the consumer can access out-of-date information because the producer of the
information has not updated the shared interface information.

Testing for interface defects is difficult because some interface faults may only
manifest themselves under unusual conditions. For example, say an object imple-
ments a queue as a fixed-length data structure. A calling object may assume that the
queue is implemented as an infinite data structure and may not check for queue over-
flow when an item is entered. This condition can only be detected during testing by
designing test cases that force the queue to overflow and cause that overflow to cor-
rupt the object behavior in some detectable way.

A further problem may arise because of interactions between faults in different
modules or objects. Faults in one object may only be detected when some other object
behaves in an unexpected way. For example, an object may call another object to
receive some service and assume that the response is correct. If the called service is
faulty in some way, the returned value may be valid but incorrect. This is not immedi-
ately detected but only becomes obvious when some later computation goes wrong.

Some general guidelines for interface testing are:

1. Examine the code to be tested and explicitly list each call to an external compo-
nent. Design a set of tests in which the values of the parameters to the external
components are at the extreme ends of their ranges. These extreme values are
most likely to reveal interface inconsistencies.

2. Where pointers are passed across an interface, always test the interface with null
pointer parameters.

3. Where a component is called through a procedural interface, design tests that
deliberately cause the component to fail. Differing failure assumptions are one
of the most common specification misunderstandings.

4. Use stress testing in message passing systems. This means that you should
design tests that generate many more messages than are likely to occur in prac-
tice. This is an effective way of revealing timing problems.

5. Where several components interact through shared memory, design tests that
vary the order in which these components are activated. These tests may reveal
implicit assumptions made by the programmer about the order in which the
shared data is produced and consumed.

Inspections and reviews can sometimes be more cost effective than testing for
discovering interface errors. Inspections can concentrate on component interfaces
and questions about the assumed interface behavior asked during the inspection
process. A strongly typed language such as Java allows many interface errors to be
trapped by the compiler. Static analyzers (see Chapter 15) can detect a wide range
of interface errors.
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@ Incremental integration and testing

System testing involves integrating different components then testing the integrated system that you have created.
You should always use an incremental approach to integration and testing (i.e., you should integrate a component,
test the system, integrate another component, test again, and so on). This means that if problems occur, it is probably
due to interactions with the most recently integrated component.

Incremental integration and testing is fundamental to agile methods such as XP, where regression tests (see Section
8.2) are run every time a new increment is integrated.

http://www.SoftwareEngineering-9.com/Web/Testing/Integration.html

8.1.4 System testing

System testing during development involves integrating components to create a ver-
sion of the system and then testing the integrated system. System testing checks that
components are compatible, interact correctly and transfer the right data at the right
time across their interfaces. It obviously overlaps with component testing but there
are two important differences:

1. During system testing, reusable components that have been separately devel-
oped and off-the-shelf systems may be integrated with newly developed compo-
nents. The complete system is then tested.

2. Components developed by different team members or groups may be integrated
at this stage. System testing is a collective rather than an individual process. In
some companies, system testing may involve a separate testing team with no
involvement from designers and programmers.

When you integrate components to create a system, you get emergent behavior.
This means that some elements of system functionality only become obvious when
you put the components together. This may be planned emergent behavior, which
has to be tested. For example, you may integrate an authentication component with a
component that updates information. You then have a system feature that restricts
information updating to authorized users. Sometimes, however, the emergent
behavior is unplanned and unwanted. You have to develop tests that check that the
system is only doing what it is supposed to do.

Therefore system testing should focus on testing the interactions between the
components and objects that make up a system. You may also test reusable compo-
nents or systems to check that they work as expected when they are integrated with
new components. This interaction testing should discover those component bugs that
are only revealed when a component is used by other components in the system.
Interaction testing also helps find misunderstandings, made by component develop-
ers, about other components in the system.

Because of its focus on interactions, use case—based testing is an effective
approach to system testing. Typically, each use case is implemented by several com-
ponents or objects in the system. Testing the use case forces these interactions to



220 Chapter8

Software testing

Weather
Information System

Figure 8.8 Collect
weather data
sequence chart

% | SatComms | | WeatherStation | | Commslink | | WeatherData
I [ I I
| request (report) | I I I
I I I
acknowledge | I I
[~ T reportWeather () | | |
| acknowledge | get (summary) I summarise () I
i D
send (Report) I :
acknowledge | |
reply(report) | - —-—-—-~-~—+ "T I I
| _acknowledge _ | | |
T || I I I
I I I

occur. If you have developed a sequence diagram to model the use case implementa-
tion, you can see the objects or components that are involved in the interaction.

To illustrate this, I use an example from the wilderness weather station system
where the weather station is asked to report summarized weather data to a remote
computer. The use case for this is described in Figure 7.3 (see previous chapter).
Figure 8.8 (which is a copy of Figure 7.7) shows the sequence of operations in the
weather station when it responds to a request to collect data for the mapping system.
You can use this diagram to identify operations that will be tested and to help design
the test cases to execute the tests. Therefore, issuing a request for a report will result
in the execution of the following thread of methods:

SatComms:request — WeatherStation:reportWeather — Commslink:Get(summary)
— WeatherData:summarize

The sequence diagram helps you design the specific test cases that you need as it
shows what inputs are required and what outputs are created:

1. An input of a request for a report should have an associated acknowledgment.
A report should ultimately be returned from the request. During testing, you
should create summarized data that can be used to check that the report is
correctly organized.

2. An input request for a report to WeatherStation results in a summarized report
being generated. You can test this in isolation by creating raw data corre-
sponding to the summary that you have prepared for the test of SatComms and
checking that the WeatherStation object correctly produces this summary. This
raw data is also used to test the WeatherData object.
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Of course, I have simplified the sequence diagram in Figure 8.8 so that it does not
show exceptions. A complete use case/scenario test must also take these into account
and ensure that objects correctly handle exceptions.

For most systems, it is difficult to know how much system testing is essential and
when you should to stop testing. Exhaustive testing, where every possible program
execution sequence is tested, is impossible. Testing, therefore, has to be based on a
subset of possible test cases. Ideally, software companies should have policies for
choosing this subset. These policies might be based on general testing policies, such
as a policy that all program statements should be executed at least once.
Alternatively, they may be based on experience of system usage and focus on testing
the features of the operational system. For example:

1. All system functions that are accessed through menus should be tested.

2. Combinations of functions (e.g., text formatting) that are accessed through the
same menu must be tested.

3. Where user input is provided, all functions must be tested with both correct and
incorrect input.

It is clear from experience with major software products such as word processors
or spreadsheets that similar guidelines are normally used during product testing.
When features of the software are used in isolation, they normally work. Problems
arise, as Whittaker (2002) explains, when combinations of less commonly used fea-
tures have not been tested together. He gives the example of how, in a commonly
used word processor, using footnotes with a multicolumn layout causes incorrect
layout of the text.

Automated system testing is usually more difficult than automated unit or compo-
nent testing. Automated unit testing relies on predicting the outputs then encoding
these predictions in a program. The prediction is then compared with the result.
However, the point of implementing a system may be to generate outputs that are
large or cannot be easily predicted. You may be able to examine an output and check
its credibility without necessarily being able to create it in advance.

I - ¥ ) Test-driven development

Test-driven development (TDD) is an approach to program development in which
you interleave testing and code development (Beck, 2002; Jeffries and Melnik,
2007). Essentially, you develop the code incrementally, along with a test for that
increment. You don’t move on to the next increment until the code that you have
developed passes its test. Test-driven development was introduced as part of agile
methods such as Extreme Programming. However, it can also be used in plan-driven
development processes.
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Figure 8.9 Test-driven
development
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The fundamental TDD process is shown in Figure 8.9. The steps in the process
are as follows:

Implement
Functionality and
Refactor

1. You start by identifying the increment of functionality that is required. This
should normally be small and implementable in a few lines of code.

2. You write a test for this functionality and implement this as an automated test.
This means that the test can be executed and will report whether or not it has
passed or failed.

3. You then run the test, along with all other tests that have been implemented.
Initially, you have not implemented the functionality so the new test will fail.
This is deliberate as it shows that the test adds something to the test set.

4. You then implement the functionality and re-run the test. This may involve
refactoring existing code to improve it and add new code to what'’s already there.

5. Once all tests run successfully, you move on to implementing the next chunk of
functionality.

An automated testing environment, such as the JUnit environment that supports
Java program testing (Massol and Husted, 2003), is essential for TDD. As the code
is developed in very small increments, you have to be able to run every test each time
that you add functionality or refactor the program. Therefore, the tests are embedded
in a separate program that runs the tests and invokes the system that is being tested.
Using this approach, it is possible to run hundreds of separate tests in a few seconds.

A strong argument for test-driven development is that it helps programmers clarify
their ideas of what a code segment is actually supposed to do. To write a test, you need
to understand what is intended, as this understanding makes it easier to write the
required code. Of course, if you have incomplete knowledge or understanding, then
test-driven development won’t help. If you don’t know enough to write the tests, you
won’t develop the required code. For example, if your computation involves division,
you should check that you are not dividing the numbers by zero. If you forget to write
a test for this, then the code to check will never be included in the program.

As well as better problem understanding, other benefits of test-driven develop-
ment are:

1. Code coverage In principle, every code segment that you write should have at
least one associated test. Therefore, you can be confident that all of the code in
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the system has actually been executed. Code is tested as it is written so defects
are discovered early in the development process.

2. Regression testing A test suite is developed incrementally as a program is devel-
oped. You can always run regression tests to check that changes to the program
have not introduced new bugs.

3.  Simplified debugging When a test fails, it should be obvious where the problem
lies. The newly written code needs to be checked and modified. You do not need
to use debugging tools to locate the problem. Reports of the use of test-driven
development suggest that it is hardly ever necessary to use an automated debug-
ger in test-driven development (Martin, 2007).

4.  System documentation The tests themselves act as a form of documentation that
describe what the code should be doing. Reading the tests can make it easier to
understand the code.

One of the most important benefits of test-driven development is that it reduces
the costs of regression testing. Regression testing involves running test sets that have
successfully executed after changes have been made to a system. The regression test
checks that these changes have not introduced new bugs into the system and that the
new code interacts as expected with the existing code. Regression testing is very
expensive and often impractical when a system is manually tested, as the costs in
time and effort are very high. In such situations, you have to try and choose the most
relevant tests to re-run and it is easy to miss important tests.

However, automated testing, which is fundamental to test-first development, dra-
matically reduces the costs of regression testing. Existing tests may be re-run
quickly and cheaply. After making a change to a system in test-first development, all
existing tests must run successfully before any further functionality is added. As a
programmer, you can be confident that the new functionality that you have added has
not caused or revealed problems with existing code.

Test-driven development is of most use in new software development where the
functionality is either implemented in new code or by using well-tested standard
libraries. If you are reusing large code components or legacy systems then you need
to write tests for these systems as a whole. Test-driven development may also be
ineffective with multi-threaded systems. The different threads may be interleaved at
different times in different test runs, and so may produce different results.

If you use test-driven development, you still need a system testing process to val-
idate the system; that is, to check that it meets the requirements of all of the system
stakeholders. System testing also tests performance, reliability, and checks that the
system does not do things that it shouldn’t do, such as produce unwanted outputs,
etc. Andrea (2007) suggests how testing tools can be extended to integrate some
aspects of system testing with TDD.

Test-driven development has proved to be a successful approach for small and
medium-sized projects. Generally, programmers who have adopted this approach are
happy with it and find it a more productive way to develop software (Jeffries and
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Melnik, 2007). In some trials, it has been shown to lead to improved code quality; in
others, the results have been inconclusive. However, there is no evidence that TDD
leads to poorer quality code.

I - XN Release testing

8.3.1

Release testing is the process of testing a particular release of a system that is
intended for use outside of the development team. Normally, the system release is for
customers and users. In a complex project, however, the release could be for other
teams that are developing related systems. For software products, the release could
be for product management who then prepare it for sale.

There are two important distinctions between release testing and system testing
during the development process:

1. A separate team that has not been involved in the system development should be
responsible for release testing.

2. System testing by the development team should focus on discovering bugs in the
system (defect testing). The objective of release testing is to check that the system
meets its requirements and is good enough for external use (validation testing).

The primary goal of the release testing process is to convince the supplier of the
system that it is good enough for use. If so, it can be released as a product or deliv-
ered to the customer. Release testing, therefore, has to show that the system delivers
its specified functionality, performance, and dependability, and that it does not fail
during normal use. It should take into account all of the system requirements, not
just the requirements of the end-users of the system.

Release testing is usually a black-box testing process where tests are derived from
the system specification. The system is treated as a black box whose behavior can
only be determined by studying its inputs and the related outputs. Another name for
this is ‘functional testing’, so-called because the tester is only concerned with func-
tionality and not the implementation of the software.

Requirements-based testing

A general principle of good requirements engineering practice is that requirements
should be testable; that is, the requirement should be written so that a test can be
designed for that requirement. A tester can then check that the requirement has been
satisfied. Requirements-based testing, therefore, is a systematic approach to test case
design where you consider each requirement and derive a set of tests for it.
Requirements-based testing is validation rather than defect testing—you are trying
to demonstrate that the system has properly implemented its requirements.
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8.3.2

For example, consider related requirements for the MHC-PMS (introduced in
Chapter 1), which are concerned with checking for drug allergies:

If a patient is known to be allergic to any particular medication, then prescrip-
tion of that medication shall result in a warning message being issued to the
system user.

If a prescriber chooses to ignore an allergy warning, they shall provide a
reason why this has been ignored.

To check if these requirements have been satisfied, you may need to develop sev-
eral related tests:

1. Set up a patient record with no known allergies. Prescribe medication for aller-
gies that are known to exist. Check that a warning message is not issued by the
system.

2. Setup a patient record with a known allergy. Prescribe the medication to that the
patient is allergic to, and check that the warning is issued by the system.

3. Set up a patient record in which allergies to two or more drugs are recorded.
Prescribe both of these drugs separately and check that the correct warning for
each drug is issued.

4. Prescribe two drugs that the patient is allergic to. Check that two warnings are
correctly issued.

5. Prescribe a drug that issues a warning and overrule that warning. Check that the
system requires the user to provide information explaining why the warning was
overruled.

You can see from this that testing a requirement does not mean just writing a sin-
gle test. You normally have to write several tests to ensure that you have coverage of
the requirement. You should also maintain traceability records of your requirements-
based testing, which link the tests to the specific requirements that are being tested.

Scenario testing

Scenario testing is an approach to release testing where you devise typical scenarios
of use and use these to develop test cases for the system. A scenario is a story that
describes one way in which the system might be used. Scenarios should be realistic
and real system users should be able to relate to them. If you have used scenarios as
part of the requirements engineering process (described in Chapter 4), then you may
be able to reuse these as testing scenarios.

In a short paper on scenario testing, Kaner (2003) suggests that a scenario test
should be a narrative story that is credible and fairly complex. It should motivate
stakeholders; that is, they should relate to the scenario and believe that it is important
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Kate is a nurse who specializes in mental health care. One of her responsibilities is to visit patients at home to
check that their treatment is effective and that they are not suffering from medication side effects.

On a day for home visits, Kate logs into the MHC-PMS and uses it to print her schedule of home visits for that
day, along with summary information about the patients to be visited. She requests that the records for these
patients be downloaded to her laptop. She is prompted for her key phrase to encrypt the records on the laptop.

One of the patients that she visits is Jim, who is being treated with medication for depression. Jim feels that
the medication is helping him but believes that it has the side effect of keeping him awake at night. Kate looks
up Jim's record and is prompted for her key phrase to decrypt the record. She checks the drug prescribed and
queries its side effects. Sleeplessness is a known side effect so she notes the problem in Jim's record and
suggests that he visits the clinic to have his medication changed. He agrees so Kate enters a prompt to call him
when she gets back to the clinic to make an appointment with a physician. She ends the consultation and the
system re-encrypts Jim's record.

After, finishing her consultations, Kate returns to the clinic and uploads the records of patients visited to the
database. The system generates a call list for Kate of those patients who she has to contact for follow-up
information and make clinic appointments.

Fieure 8.10 A Usage that the system passes the test. He also suggests that it should be easy to evaluate.
scin ario for the 8 If there are problems with the system, then the release testing team should recognize
MHC-PMS them. As an example of a possible scenario from the MHC-PMS, Figure 8.10
describes one way that the system may be used on a home visit.
It tests a number of features of the MHC-PMS:

1. Authentication by logging on to the system.

Downloading and uploading of specified patient records to a laptop.
Home visit scheduling.

Encryption and decryption of patient records on a mobile device.
Record retrieval and modification.

Links with the drugs database that maintains side-effect information.

A A e

The system for call prompting.

If you are a release tester, you run through this scenario, playing the role of
Kate and observing how the system behaves in response to different inputs. As
‘Kate’, you may make deliberate mistakes, such as inputting the wrong key
phrase to decode records. This checks the response of the system to errors. You
should carefully note any problems that arise, including performance problems. If
a system is too slow, this will change the way that it is used. For example, if it
takes too long to encrypt a record, then users who are short of time may skip this
stage. If they then lose their laptop, an unauthorized person could then view the
patient records.

When you use a scenario-based approach, you are normally testing several require-
ments within the same scenario. Therefore, as well as checking individual requirements,
you are also checking that combinations of requirements do not cause problems.
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8.3.3 Performance testing

Once a system has been completely integrated, it is possible to test for emergent prop-
erties, such as performance and reliability. Performance tests have to be designed to
ensure that the system can process its intended load. This usually involves running a
series of tests where you increase the load until the system performance becomes
unacceptable.

As with other types of testing, performance testing is concerned both with
demonstrating that the system meets its requirements and discovering problems and
defects in the system. To test whether performance requirements are being
achieved, you may have to construct an operational profile. An operational profile
(see Chapter 15) is a set of tests that reflect the actual mix of work that will be han-
dled by the system. Therefore, if 90% of the transactions in a system are of type A;
5% of type B; and the remainder of types C, D, and E, then you have to design the
operational profile so that the vast majority of tests are of type A. Otherwise, you
will not get an accurate test of the operational performance of the system.

This approach, of course, is not necessarily the best approach for defect testing.
Experience has shown that an effective way to discover defects is to design tests
around the limits of the system. In performance testing, this means stressing the sys-
tem by making demands that are outside the design limits of the software. This is
known as ‘stress testing’. For example, say you are testing a transaction processing
system that is designed to process up to 300 transactions per second. You start by
testing this system with fewer than 300 transactions per second. You then gradually
increase the load on the system beyond 300 transactions per second until it is well
beyond the maximum design load of the system and the system fails. This type of
testing has two functions:

1. It tests the failure behavior of the system. Circumstances may arise through an
unexpected combination of events where the load placed on the system exceeds
the maximum anticipated load. In these circumstances, it is important that sys-
tem failure should not cause data corruption or unexpected loss of user services.
Stress testing checks that overloading the system causes it to ‘fail-soft’ rather
than collapse under its load.

2. It stresses the system and may cause defects to come to light that would not nor-
mally be discovered. Although it can be argued that these defects are unlikely to
cause system failures in normal usage, there may be unusual combinations of
normal circumstances that the stress testing replicates.

Stress testing is particularly relevant to distributed systems based on a network of
processors. These systems often exhibit severe degradation when they are heavily
loaded. The network becomes swamped with coordination data that the different
processes must exchange. The processes become slower and slower as they wait for
the required data from other processes. Stress testing helps you discover when the
degradation begins so that you can add checks to the system to reject transactions
beyond this point.
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I - W7 User testing

User or customer testing is a stage in the testing process in which users or customers
provide input and advice on system testing. This may involve formally testing a sys-
tem that has been commissioned from an external supplier, or could be an informal
process where users experiment with a new software product to see if they like it and
that it does what they need. User testing is essential, even when comprehensive sys-
tem and release testing have been carried out. The reason for this is that influences
from the user’s working environment have a major effect on the reliability, perfor-
mance, usability, and robustness of a system.

It is practically impossible for a system developer to replicate the system’s work-
ing environment, as tests in the developer’s environment are inevitably artificial. For
example, a system that is intended for use in a hospital is used in a clinical environ-
ment where other things are going on, such as patient emergencies, conversations
with relatives, etc. These all affect the use of a system, but developers cannot include
them in their testing environment.

In practice, there are three different types of user testing:

1. Alpha testing, where users of the software work with the development team to
test the software at the developer’s site.

2. Beta testing, where a release of the software is made available to users to allow
them to experiment and to raise problems that they discover with the system
developers.

3. Acceptance testing, where customers test a system to decide whether or not it is
ready to be accepted from the system developers and deployed in the customer
environment.

In alpha testing, users and developers work together to test a system as it is being
developed. This means that the users can identify problems and issues that are not
readily apparent to the development testing team. Developers can only really work
from the requirements but these often do not reflect other factors that affect the prac-
tical use of the software. Users can therefore provide information about practice that
helps with the design of more realistic tests.

Alpha testing is often used when developing software products that are sold as
shrink-wrapped systems. Users of these products may be willing to get involved in
the alpha testing process because this gives them early information about new sys-
tem features that they can exploit. It also reduces the risk that unanticipated changes
to the software will have disruptive effects on their business. However, alpha testing
may also be used when custom software is being developed. Agile methods, such as
XP, advocate user involvement in the development process and that users should
play a key role in designing tests for the system.

Beta testing takes place when an early, sometimes unfinished, release of a soft-
ware system is made available to customers and users for evaluation. Beta testers
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may be a selected group of customers who are early adopters of the system.
Alternatively, the software may be made publicly available for use by anyone who is
interested in it. Beta testing is mostly used for software products that are used in
many different environments (as opposed to custom systems which are generally
used in a defined environment). It is impossible for product developers to know and
replicate all the environments in which the software will be used. Beta testing is
therefore essential to discover interaction problems between the software and fea-
tures of the environment where it is used. Beta testing is also a form of marketing—
customers learn about their system and what it can do for them.

Acceptance testing is an inherent part of custom systems development. It takes
place after release testing. It involves a customer formally testing a system to decide
whether or not it should be accepted from the system developer. Acceptance implies
that payment should be made for the system.

There are six stages in the acceptance testing process, as shown in Figure 8.11.
They are:

1. Define acceptance criteria This stage should, ideally, take place early in the
process before the contract for the system is signed. The acceptance criteria
should be part of the system contract and be agreed between the customer and
the developer. In practice, however, it can be difficult to define criteria so early
in the process. Detailed requirements may not be available and there may be sig-
nificant requirements change during the development process.

2. Plan acceptance testing This involves deciding on the resources, time, and
budget for acceptance testing and establishing a testing schedule. The accep-
tance test plan should also discuss the required coverage of the requirements and
the order in which system features are tested. It should define risks to the testing
process, such as system crashes and inadequate performance, and discuss how
these risks can be mitigated.

3. Derive acceptance tests Once acceptance criteria have been established, tests
have to be designed to check whether or not a system is acceptable. Acceptance
tests should aim to test both the functional and non-functional characteristics
(e.g., performance) of the system. They should, ideally, provide complete cover-
age of the system requirements. In practice, it is difficult to establish completely
objective acceptance criteria. There is often scope for argument about whether
or not a test shows that a criterion has definitely been met.
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4.  Run acceptance tests The agreed acceptance tests are executed on the system.
Ideally, this should take place in the actual environment where the system will
be used, but this may be disruptive and impractical. Therefore, a user testing
environment may have to be set up to run these tests. It is difficult to automate
this process as part of the acceptance tests may involve testing the interactions
between end-users and the system. Some training of end-users may be required.

5. Negotiate test results It is very unlikely that all of the defined acceptance tests will
pass and that there will be no problems with the system. If this is the case, then
acceptance testing is complete and the system can be handed over. More com-
monly, some problems will be discovered. In such cases, the developer and the
customer have to negotiate to decide if the system is good enough to be put into
use. They must also agree on the developer’s response to identified problems.

6. Reject/accept system This stage involves a meeting between the developers
and the customer to decide on whether or not the system should be accepted. If
the system is not good enough for use, then further development is required
to fix the identified problems. Once complete, the acceptance testing phase is
repeated.

In agile methods, such as XP, acceptance testing has a rather different meaning. In
principle, it shares the notion that users should decide whether or not the system is
acceptable. However, in XP, the user is part of the development team (i.e., he or she
is an alpha tester) and provides the system requirements in terms of user stories.
He or she is also responsible for defining the tests, which decide whether or not the
developed software supports the user story. The tests are automated and development
does not proceed until the story acceptance tests have passed. There is, therefore, no
separate acceptance testing activity.

As I have discussed in Chapter 3, one problem with user involvement is ensuring
that the user who is embedded in the development team is a ‘typical’ user with gen-
eral knowledge of how the system will be used. It can be difficult to find such a user,
and so the acceptance tests may actually not be a true reflection of practice.
Furthermore, the requirement for automated testing severely limits the flexibility of
testing interactive systems. For such systems, acceptance testing may require groups
of end-users to use the system as if it was part of their everyday work.

You might think that acceptance testing is a clear-cut contractual issue. If a sys-
tem does not pass its acceptance tests, then it should not be accepted and payment
should not be made. However, the reality is more complex. Customers want to use
the software as soon as they can because of the benefits of its immediate deploy-
ment. They may have bought new hardware, trained staff, and changed their
processes. They may be willing to accept the software, irrespective of problems,
because the costs of not using the software are greater than the costs of working
around the problems. Therefore, the outcome of negotiations may be conditional
acceptance of the system. The customer may accept the system so that deployment
can begin. The system provider agrees to repair urgent problems and deliver a new
version to the customer as quickly as possible.
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KEY POINTS

Testing can only show the presence of errors in a program. It cannot demonstrate that there are
no remaining faults.

Development testing is the responsibility of the software development team. A separate team
should be responsible for testing a system before it is released to customers. In the user testing
process, customers or system users provide test data and check that tests are successful.

Development testing includes unit testing, in which you test individual objects and methods;
component testing, in which you test related groups of objects; and system testing, in which
you test partial or complete systems.

When testing software, you should try to ‘break’ the software by using experience and guidelines
to choose types of test cases that have been effective in discovering defects in other systems.

Wherever possible, you should write automated tests. The tests are embedded in a program that
can be run every time a change is made to a system.

Test-first development is an approach to development where tests are written before the code to
be tested. Small code changes are made and the code is refactored until all tests execute
successfully.

Scenario testing is useful because it replicates the practical use of the system. It involves
inventing a typical usage scenario and using this to derive test cases.

Acceptance testing is a user testing process where the aim is to decide if the software is good
enough to be deployed and used in its operational environment.

FURTHER READING

‘How to design practical test cases’. A how-to article on test case design by an author from a
Japanese company that has a very good reputation for delivering software with very few faults.
(T. Yamaura, /EEE Software, 15(6), November 1998.) http://dx.doi.org/10.1109/52.730835.

How to Break Software: A Practical Guide to Testing. This is a practical, rather than theoretical, book
on software testing in which the author presents a set of experience-based guidelines on designing
tests that are likely to be effective in discovering system faults. (J. A. Whittaker, Addison-Wesley,
2002.)

‘Software Testing and Verification’. This special issue of the IBM Systems Journal includes a number
of papers on testing, including a good general overview, papers on test metrics, and test
automation. (IBM Systems Journal, 41(1), January 2002.)

‘Test-driven development’. This special issue on test-driven development includes a good general
overview of TDD as well as experience papers on how TDD has been used for different types of
software. (/EEE Software, 24 (3) May/June 2007.)
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EXERCISES

8.1. Explain why it is not necessary for a program to be completely free of defects before it is
delivered to its customers.

8.2. Explain why testing can only detect the presence of errors, not their absence.

8.3. Some people argue that developers should not be involved in testing their own code but that
all testing should be the responsibility of a separate team. Give arguments for and against
testing by the developers themselves.

8.4. You have been asked to test a method called ‘catWhiteSpace’ in a ‘Paragraph’ object that,
within the paragraph, replaces sequences of blank characters with a single blank character.
Identify testing partitions for this example and derive a set of tests for the ‘catWhiteSpace’
method.

8.5. What is regression testing? Explain how the use of automated tests and a testing framework
such as JUnit simplifies regression testing.

8.6. The MHC-PMS is constructed by adapting an off-the-shelf information system. What do you
think are the differences between testing such a system and testing software that is
developed using an object-oriented language such as Java?

8.7. Write a scenario that could be used to help design tests for the wilderness weather station
system.

8.8. What do you understand by the term ‘stress testing’? Suggest how you might stress test the
MHC-PMS.

8.9. What are the benefits of involving users in release testing at an early stage in the testing
process? Are there disadvantages in user involvement?

8.10. A common approach to system testing is to test the system until the testing budget is
exhausted and then deliver the system to customers. Discuss the ethics of this approach
for systems that are delivered to external customers.
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Software evolution

Objectives

The objectives of this chapter are to explain why software evolution is
an important part of software engineering and to describe software
evolution processes. When you have read this chapter, you will:

m understand that change is inevitable if software systems are to
remain useful and that software development and evolution may
be integrated in a spiral model;

m understand software evolution processes and influences on these
processes;

m have learned about different types of software maintenance and
the factors that affect maintenance costs; and

m understand how legacy systems can be assessed to decide
whether they should be scrapped, maintained, reengineered,
or replaced.

Contents

9.1 Evolution processes

9.2 Program evolution dynamics
9.3 Software maintenance

9.4 Legacy system management
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Software development does not stop when a system is delivered but continues
throughout the lifetime of the system. After a system has been deployed, it inevitably
has to change if it is to remain useful. Business changes and changes to user expec-
tations generate new requirements for the existing software. Parts of the software
may have to be modified to correct errors that are found in operation, to adapt it for
changes to its hardware and software platform, and to improve its performance or
other non-functional characteristics.

Software evolution is important because organizations have invested large
amounts of money in their software and are now completely dependent on these sys-
tems. Their systems are critical business assets and they have to invest in system
change to maintain the value of these assets. Consequently, most large companies
spend more on maintaining existing systems than on new systems development.
Based on an informal industry poll, Erlikh (2000) suggests that 85-90% of organiza-
tional software costs are evolution costs. Other surveys suggest that about two-thirds
of software costs are evolution costs. For sure, the costs of software change are a
large part of the IT budget for all companies.

Software evolution may be triggered by changing business requirements, by
reports of software defects, or by changes to other systems in a software system’s
environment. Hopkins and Jenkins (2008) have coined the term ‘brownfield software
development’ to describe situations in which software systems have to be developed
and managed in an environment where they are dependent on many other software
systems.

Therefore, the evolution of a system can rarely be considered in isolation.
Changes to the environment lead to system change that may then trigger further
environmental changes. Of course, the fact that systems have to evolve in a ‘systems-
rich’ environment often increases the difficulties and costs of evolution. As well as
understanding and analyzing an impact of a proposed change on the system itself,
you may also have to assess how this may affect other systems in the operational
environment.

Useful software systems often have a very long lifetime. For example, large mili-
tary or infrastructure systems, such as air traffic control systems, may have a lifetime
of 30 years or more. Business systems are often more than 10 years old. Software
cost a lot of money so a company has to use a software system for many years to get
a return on its investment. Obviously, the requirements of the installed systems
change as the business and its environment change. Therefore, new releases of the
systems, incorporating changes, and updates, are usually created at regular intervals.

You should, therefore, think of software engineering as a spiral process with
requirements, design, implementation, and testing going on throughout the lifetime
of the system (Figure 9.1). You start by creating release 1 of the system. Once deliv-
ered, changes are proposed and the development of release 2 starts almost immedi-
ately. In fact, the need for evolution may become obvious even before the system is
deployed so that later releases of the software may be under development before the
current version has been released.

This model of software evolution implies that a single organization is responsible
for both the initial software development and the evolution of the software. Most
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Figure 9.1 A spiral
model of development
and evolution
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packaged software products are developed using this approach. For custom software,
a different approach is commonly used. A software company develops software for a
customer and the customer’s own development staff then take over the system. They
are responsible for software evolution. Alternatively, the software customer might
issue a separate contract to a different company for system support and evolution.

In this case, there are likely to be discontinuities in the spiral process. Requirements
and design documents may not be passed from one company to another. Companies
may merge or reorganize and inherit software from other companies, and then find
that this has to be changed. When the transition from development to evolution is not
seamless, the process of changing the software after delivery is often called ‘soft-
ware maintenance’. As I discuss later in this chapter, maintenance involves extra
process activities, such as program understanding, in addition to the normal activi-
ties of software development.

Rajlich and Bennett (2000) proposed an alternative view of the software evolution
life cycle, as shown in Figure 9.2. In this model, they distinguish between evolution
and servicing. Evolution is the phase in which significant changes to the software
architecture and functionality may be made. During servicing, the only changes that
are made are relatively small, essential changes.

During evolution, the software is used successfully and there is a constant stream
of proposed requirements changes. However, as the software is modified, its struc-
ture tends to degrade and changes become more and more expensive. This often hap-
pens after a few years of use when other environmental changes, such as hardware
and operating systems, are also often required. At some stage in the life cycle, the
software reaches a transition point where significant changes, implementing new
requirements, become less and less cost effective.

Initial Evolution Servicing Phaseout

Development
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At that stage, the software moves from evolution to servicing. During the servic-
ing phase, the software is still useful and used but only small tactical changes are
made to it. During this stage, the company is usually considering how the software
can be replaced. In the final stage, phase-out, the software may still be used but no
further changes are being implemented. Users have to work around any problems
that they discover.

KXW Evolution processes

Software evolution processes vary depending on the type of software being main-
tained, the development processes used in an organization and the skills of the peo-
ple involved. In some organizations, evolution may be an informal process where
change requests mostly come from conversations between the system users and
developers. In other companies, it is a formalized process with structured documen-
tation produced at each stage in the process.

System change proposals are the driver for system evolution in all organizations.
Change proposals may come from existing requirements that have not been imple-
mented in the released system, requests for new requirements, bug reports from system
stakeholders, and new ideas for software improvement from the system development
team. The processes of change identification and system evolution are cyclic and
continue throughout the lifetime of a system (Figure 9.3).

Change proposals should be linked to the components of the system that have to
be modified to implement these proposals. This allows the cost and the impact of the
change to be assessed. This is part of the general process of change management,
which also should ensure that the correct versions of components are included in
each system release. I cover change and configuration management in Chapter 25.
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Figure 9.4, adapted from Arthur (1988), shows an overview of the evolution process.
The process includes the fundamental activities of change analysis, release planning,
system implementation, and releasing a system to customers. The cost and impact of
these changes are assessed to see how much of the system is affected by the change and
how much it might cost to implement the change. If the proposed changes are accepted,
a new release of the system is planned. During release planning, all proposed changes
(fault repair, adaptation, and new functionality) are considered. A decision is then made
on which changes to implement in the next version of the system. The changes are
implemented and validated, and a new version of the system is released. The process
then iterates with a new set of changes proposed for the next release.

You can think of change implementation as an iteration of the development
process, where the revisions to the system are designed, implemented, and tested.
However, a critical difference is that the first stage of change implementation may
involve program understanding, especially if the original system developers are not
responsible for change implementation. During this program understanding phase,
you have to understand how the program is structured, how it delivers functionality,
and how the proposed change might affect the program. You need this understanding
to make sure that the implemented change does not cause new problems when it is
introduced into the existing system.

Ideally, the change implementation stage of this process should modify the sys-
tem specification, design, and implementation to reflect the changes to the system
(Figure 9.5). New requirements that reflect the system changes are proposed, ana-
lyzed, and validated. System components are redesigned and implemented and the
system is retested. If appropriate, prototyping of the proposed changes may be car-
ried out as part of the change analysis process.

During the evolution process, the requirements are analyzed in detail and implica-
tions of the changes emerge that were not apparent in the earlier change analysis
process. This means that the proposed changes may be modified and further cus-
tomer discussions may be required before they are implemented.

Change requests sometimes relate to system problems that have to be tackled
urgently. These urgent changes can arise for three reasons:

1. If a serious system fault occurs that has to be repaired to allow normal operation
to continue.
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2. If changes to the systems operating environment have unexpected effects that
disrupt normal operation.

3. If there are unanticipated changes to the business running the system, such as
the emergence of new competitors or the introduction of new legislation that
affects the system.

In these cases, the need to make the change quickly means that you may not be
able to follow the formal change analysis process. Rather than modify the require-
ments and design, you make an emergency fix to the program to solve the immedi-
ate problem (Figure 9.6). However, the danger is that the requirements, the software
design, and the code become inconsistent. Although you may intend to document
the change in the requirements and design, additional emergency fixes to the soft-
ware may then be needed. These take priority over documentation. Eventually, the
original change is forgotten and the system documentation and code are never
realigned.

Emergency system repairs usually have to be completed as quickly as possible.
You chose a quick and workable solution rather than the best solution as far as sys-
tem structure is concerned. This accelerates the process of software ageing so that
future changes become progressively more difficult and maintenance costs increase.

Ideally, when emergency code repairs are made the change request should remain
outstanding after the code faults have been fixed. It can then be reimplemented more
carefully after further analysis. Of course, the code of the repair may be reused. An
alternative, better solution to the problem may be discovered when more time is
available for analysis. In practice, however, it is almost inevitable that these improve-
ments will have a low priority. They are often forgotten and, if further system
changes are made, it then becomes unrealistic to redo the emergency repairs.

Agile methods and processes, discussed in Chapter 3, may be used for program
evolution as well as program development. In fact, because these methods are based
on incremental development, making the transition from agile development to post-
delivery evolution should be seamless. Techniques such as automated regression testing
are useful when system changes are made. Changes may be expressed as user stories
and customer involvement can prioritize changes that are required in an operational
system. In short, evolution simply involves continuing the agile development process.
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However, problems may arise in situations in which there is a handover from a
development team to a separate team responsible for evolution. There are two poten-
tially problematic situations:

1. Where the development team has used an agile approach but the evolution team
is unfamiliar with agile methods and prefers a plan-based approach. The evolu-
tion team may expect detailed documentation to support evolution and this is
rarely produced in agile processes. There may be no definitive statement of the
system requirements that can be modified as changes are made to the system.

2.  Where a plan-based approach has been used for development but the evolution
team prefers to use agile methods. In this case, the evolution team may have to
start from scratch developing automated tests and the code in the system may
not have been refactored and simplified as is expected in agile development. In
this case, some reengineering may be required to improve the code before it can
be used in an agile development process.

Poole and Huisman (2001) report on their experiences in using Extreme Programming
for maintaining a large system that was originally developed using a plan-based
approach. After reengineering the system to improve its structure, XP was used very
successfully in the maintenance process.

I ¥ 2 Program evolution dynamics

Program evolution dynamics is the study of system change. In the 1970s and 1980s,
Lehman and Belady (1985) carried out several empirical studies of system change
with a view to understanding more about characteristics of software evolution. The
work continued in the 1990s as Lehman and others investigated the significance of
feedback in evolution processes (Lehman, 1996; Lehman et al., 1998; Lehman et al.,
2001). From these studies, they proposed ‘Lehman’s laws’ concerning system change
(Figure 9.7).

Lehman and Belady claim these laws are likely to be true for all types of large
organizational software systems (what they call E-type systems). These are systems
in which the requirements are changing to reflect changing business needs. New
releases of the system are essential for the system to provide business value.

The first law states that system maintenance is an inevitable process. As the sys-
tem’s environment changes, new requirements emerge and the system must be mod-
ified. When the modified system is reintroduced to the environment, this promotes
more environmental changes, so the evolution process starts again.

The second law states that, as a system is changed, its structure is degraded. The only
way to avoid this happening is to invest in preventative maintenance. You spend time
improving the software structure without adding to its functionality. Obviously, this
means additional costs, over and above those of implementing required system changes.
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Law

Continuing change

Description

A program that is used in a real-world environment must necessarily
change, or else become progressively less useful in that environment.

Increasing complexity As an evolving program changes, its structure tends to become more

complex. Extra resources must be devoted to preserving and simplifying
the structure.

Large program evolution Program evolution is a self-regulating process. System attributes such

as size, time between releases, and the number of reported errors is
approximately invariant for each system release.

Organizational stability Over a program'’s lifetime, its rate of development is approximately constant

and independent of the resources devoted to system development.

Conservation of familiarity Over the lifetime of a system, the incremental change in each release is

Continuing growth

Declining quality

Feedback system

approximately constant.

The functionality offered by systems has to continually increase to
maintain user satisfaction.

The quality of systems will decline unless they are modified to reflect
changes in their operational environment.

Evolution processes incorporate multiagent, multiloop feedback systems
and you have to treat them as feedback systems to achieve significant
product improvement.

Figure 9.7 Lehman's
laws

The third law is, perhaps, the most interesting and the most contentious of
Lehman’s laws. It suggests that large systems have a dynamic of their own that is
established at an early stage in the development process. This determines the gross
trends of the system maintenance process and limits the number of possible system
changes. Lehman and Belady suggest that this law is a consequence of structural fac-
tors that influence and constrain system change, and organizational factors that
affect the evolution process.

The structural factors that affect the third law come from the complexity of large
systems. As you change and extend a program, its structure tends to degrade. This is
true of all types of system (not just software) and it occurs because you are adapting
a structure intended for one purpose for a different purpose. This degradation, if
unchecked, makes it more and more difficult to make further changes to the pro-
gram. Making small changes reduces the extent of structural degradation and so
lessens the risks of causing serious system dependability problems. If you try and
make large changes, there is a high probability that these will introduce new faults.
These then inhibit further program changes.

The organizational factors that affect the third law reflect the fact that large sys-
tems are usually produced by large organizations. These companies have internal
bureaucracies that set the change budget for each system and control the decision-
making process. Companies have to make decisions on the risks and value of the
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changes and the costs involved. Such decisions take time to make and, sometimes, it
takes longer to decide on the changes to be made than change implementation. The
speed of the organization’s decision-making processes therefore governs the rate of
change of the system.

Lehman’s fourth law suggests that most large programming projects work in a
‘saturated’ state. That is, a change to resources or staffing has imperceptible effects
on the long-term evolution of the system. This is consistent with the third law, which
suggests that program evolution is largely independent of management decisions.
This law confirms that large software development teams are often unproductive
because communication overheads dominate the work of the team.

Lehman’s fifth law is concerned with the change increments in each system
release. Adding new functionality to a system inevitably introduces new system
faults. The more functionality added in each release, the more faults there will be.
Therefore, a large increment in functionality in one system release means that this
will have to be followed by a further release in which the new system faults are
repaired. Relatively little new functionality should be included in this release. This
law suggests that you should not budget for large functionality increments in each
release without taking into account the need for fault repair.

The first five laws were in Lehman’s initial proposals; the remaining laws were
added after further work. The sixth and seventh laws are similar and essentially say
that users of software will become increasingly unhappy with it unless it is main-
tained and new functionality is added to it. The final law reflects the most recent
work on feedback processes, although it is not yet clear how this can be applied in
practical software development.

Lehman’s observations seem generally sensible. They should be taken into
account when planning the maintenance process. It may be that business considera-
tions require them to be ignored at any one time. For example, for marketing rea-
sons, it may be necessary to make several major system changes in a single release.
The likely consequences of this are that one or more releases devoted to error repair
are likely to be required. You often see this in personal computer software when a
major new release of an application is often quickly followed by a bug repair update.

I X) Software maintenance

Software maintenance is the general process of changing a system after it has been
delivered. The term is usually applied to custom software in which separate develop-
ment groups are involved before and after delivery. The changes made to the software
may be simple changes to correct coding errors, more extensive changes to correct
design errors, or significant enhancements to correct specification errors or accom-
modate new requirements. Changes are implemented by modifying existing system
components and, where necessary, by adding new components to the system.
There are three different types of software maintenance:
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1. Fault repairs Coding errors are usually relatively cheap to correct; design errors
are more expensive as they may involve rewriting several program components.
Requirements errors are the most expensive to repair because of the extensive
system redesign which may be necessary.

2. Environmental adaptation This type of maintenance is required when some
aspect of the system’s environment such as the hardware, the platform operating
system, or other support software changes. The application system must be
modified to adapt it to cope with these environmental changes.

3. Functionality addition This type of maintenance is necessary when the system
requirements change in response to organizational or business change. The scale
of the changes required to the software is often much greater than for the other
types of maintenance.

In practice, there is not a clear-cut distinction between these types of mainte-
nance. When you adapt the system to a new environment, you may add functionality
to take advantage of new environmental features. Software faults are often exposed
because users use the system in unanticipated ways. Changing the system to accom-
modate their way of working is the best way to fix these faults.

These types of maintenance are generally recognized but different people some-
times give them different names. ‘Corrective maintenance’ is universally used to
refer to maintenance for fault repair. However, ‘adaptive maintenance’ sometimes
means adapting to a new environment and sometimes means adapting the software to
new requirements. ‘Perfective maintenance’ sometimes means perfecting the soft-
ware by implementing new requirements; in other cases it means maintaining the
functionality of the system but improving its structure and its performance. Because
of this naming uncertainty, I have avoided the use of all of these terms in this chapter.

There have been several studies of software maintenance which have looked at
the relationships between maintenance and development and between different
maintenance activities (Krogstie et al., 2005; Lientz and Swanson, 1980; Nosek and
Palvia, 1990; Sousa, 1998). Because of differences in terminology, the details of
these studies cannot be compared. In spite of changes in technology and different
application domains, it seems that there has been remarkably little change in the dis-
tribution of evolution effort since the 1980s.

The surveys broadly agree that software maintenance takes up a higher proportion
of IT budgets than new development (roughly two-thirds maintenance, one-third
development). They also agree that more of the maintenance budget is spent on
implementing new requirements than on fixing bugs. Figure 9.8 shows an approxi-
mate distribution of maintenance costs. The specific percentages will obviously vary
from one organization to another but, universally, repairing system faults is not the
most expensive maintenance activity. Evolving the system to cope with new environ-
ments and new or changed requirements consumes most maintenance effort.

The relative costs of maintenance and new development vary from one applica-
tion domain to another. Guimaraes (1983) found that the maintenance costs for busi-
ness application systems are broadly comparable with system development costs.
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For embedded real-time systems, maintenance costs were up to four times more than
development costs. The high reliability and performance requirements of these sys-
tems mean that modules have to be tightly linked and hence difficult to change.
Although these estimates are more than 25 years old, it is unlikely that the cost dis-
tributions for different types of system have significantly changed.

It is usually cost effective to invest effort in designing and implementing a system to
reduce the costs of future changes. Adding new functionality after delivery is expensive
because you have to spend time learning the system and analyzing the impact of the pro-
posed changes. Therefore, work done during development to make the software easier
to understand and change is likely to reduce evolution costs. Good software engineering
techniques, such as precise specification, the use of object-oriented development, and
configuration management, contribute to maintenance cost reduction.

Figure 9.9 shows how overall lifetime costs may decrease as more effort is
expended during system development to produce a maintainable system. Because of
the potential reduction in costs of understanding, analysis, and testing, there is a sig-
nificant multiplier effect when the system is developed for maintainability. For
System 1, extra development costs of $25,000 are invested in making the system
more maintainable. This results in a savings of $100,000 in maintenance costs over

System 1 |

System 2 |

T T T T T T T T T T
0 50 100 150 200 250 300 350 400 450 500 $
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@ Legacy systems

Legacy systems are old systems that are still useful and are sometimes critical to business operation. They may
be implemented using outdated languages and technology or may use other systems that are expensive to
maintain. Often their structure has been degraded by change and documentation is missing or out of date.
Nevertheless, it may not be cost effective to replace these systems. They may only be used at certain times

of the year or it may be too risky to replace them because the specification has been lost.

http://www.SoftwareEngineering-9.com/Web/LegacySys/

the lifetime of the system. This assumes that a percentage increase in development
costs results in a comparable percentage decrease in overall system costs.

These estimates are hypothetical but there is no doubt that developing software to
make it more maintainable is cost effective, when the whole life costs of the software
are taken into account. This is the rationale for refactoring in agile development.
Without refactoring, the code becomes more and more difficult and expensive to
change. However, in plan-based development, the reality is that additional invest-
ment in code improvement is rarely made during development. This is mostly due to
the ways most organizations run their budgets. Investing in maintainability leads to
short-term cost increases, which are measurable. Unfortunately, the long-term gains
can’t be measured at the same time so companies are reluctant to spend money for an
unknown future return.

It is usually more expensive to add functionality after a system is in operation than
it is to implement the same functionality during development. The reasons for this are:

1. Team stability After a system has been delivered, it is normal for the develop-
ment team to be broken up and for people to work on new projects. The new
team or the individuals responsible for system maintenance do not understand
the system or the background to system design decisions. They need to spend
time understanding the existing system before implementing changes to it.

2. Poor development practice The contract to maintain a system is usually separate
from the system development contract. The maintenance contract may be given
to a different company rather than the original system developer. This factor,
along with the lack of team stability, means that there is no incentive for a devel-
opment team to write maintainable software. If a development team can cut cor-
ners to save effort during development it is worthwhile for them to do so, even if
this means that the software is more difficult to change in the future.

3. Staff skills Maintenance staff are often relatively inexperienced and unfamiliar with
the application domain. Maintenance has a poor image among software engineers.
Itis seen as a less-skilled process than system development and is often allocated to
the most junior staff. Furthermore, old systems may be written in obsolete program-
ming languages. The maintenance staff may not have much experience of develop-
ment in these languages and must learn these languages to maintain the system.
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9.3.1

@ Documentation

System documentation can help the maintenance process by providing maintainers with information about the
structure and organization of the system and the features that it offers to system users. Although proponents of
agile approaches such as XP suggest that the code should be the principal documentation, higher-level design
models and information about dependencies and constraints can make it easier to understand and make
changes to the code.

I have written a separate chapter on documentation that you can download.

http://www.SoftwareEngineering-9.com/Web/ExtraChaps/Documentation.pdf

4. Program age and structure As changes are made to programs, their structure
tends to degrade. Consequently, as programs age, they become harder to under-
stand and change. Some systems have been developed without modern software
engineering techniques. They may never have been well structured and were
perhaps optimized for efficiency rather than understandability. System docu-
mentation may be lost or inconsistent. Old systems may not have been subject to
stringent configuration management so time is often wasted finding the right
versions of system components to change.

The first three of these problems stem from the fact that many organizations still
consider development and maintenance to be separate activities. Maintenance is seen
as a second-class activity and there is no incentive to spend money during development
to reduce the costs of system change. The only long-term solution to this problem is to
accept that systems rarely have a defined lifetime but continue in use, in some form,
for an indefinite period. As I suggested in the introduction, you should think of sys-
tems as evolving throughout their lifetime through a continual development process.

The fourth issue, the problem of degraded system structure, is the easiest problem
to address. Software reengineering techniques (described later in this chapter) may
be applied to improve the system structure and understandability. Architectural
transformations can adapt the system to new hardware. Refactoring can improve the
quality of the system code and make it easier to change.

Maintenance prediction

Managers hate surprises, especially if these result in unexpectedly high costs. You
should therefore try to predict what system changes might be proposed and what
parts of the system are likely to be the most difficult to maintain. You should also
try to estimate the overall maintenance costs for a system in a given time period.
Figure 9.10 shows these predictions and associated questions.

Predicting the number of change requests for a system requires an understanding
of the relationship between the system and its external environment. Some systems
have a very complex relationship with their external environment and changes to that
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environment inevitably result in changes to the system. To evaluate the relationships

Figure 9.10 . .
8 between a system and its environment, you should assess:

Maintenance prediction

1. The number and complexity of system interfaces The larger the number of inter-
faces and the more complex these interfaces, the more likely it is that interface
changes will be required as new requirements are proposed.

2. The number of inherently volatile system requirements As I discussed in Chapter 4,
requirements that reflect organizational policies and procedures are likely to be
more volatile than requirements that are based on stable domain characteristics.

3. The business processes in which the system is used As business processes
evolve, they generate system change requests. The more business processes that
use a system, the more the demands for system change.

For many years, researchers have looked at the relationships between program com-
plexity, as measured by metrics such as cyclomatic complexity (McCabe, 1976), and
maintainability (Banker et al., 1993; Coleman et al., 1994; Kafura and Reddy, 1987;
Kozlov et al., 2008). It is not surprising that these studies have found that the more
complex a system or component, the more expensive it is to maintain. Complexity
measurements are particularly useful in identifying program components that are
likely to be expensive to maintain. Kafura and Reddy (1987) examined a number of
system components and found that maintenance effort tended to be focused on a small
number of complex components. To reduce maintenance costs, therefore, you should
try to replace complex system components with simpler alternatives.

After a system has been put into service, you may be able to use process data to
help predict maintainability. Examples of process metrics that can be used for
assessing maintainability are as follows:
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9.3.2

1. Number of requests for corrective maintenance An increase in the number of
bug and failure reports may indicate that more errors are being introduced into
the program than are being repaired during the maintenance process. This may
indicate a decline in maintainability.

2. Average time required for impact analysis This reflects the number of program
components that are affected by the change request. If this time increases, it implies
more and more components are affected and maintainability is decreasing.

3. Average time taken to implement a change request This is not the same as the
time for impact analysis although it may correlate with it. This is the amount of
time that you need to modify the system and its documentation, after you have
assessed which components are affected. An increase in the time needed to
implement a change may indicate a decline in maintainability.

4.  Number of outstanding change requests An increase in this number over time
may imply a decline in maintainability.

You use predicted information about change requests and predictions about sys-
tem maintainability to predict maintenance costs. Most managers combine this infor-
mation with intuition and experience to estimate costs. The COCOMO 2 model of
cost estimation (Boehm et al., 2000), discussed in Chapter 24, suggests that an esti-
mate for software maintenance effort can be based on the effort to understand exist-
ing code and the effort to develop the new code.

Software reengineering

As I discussed in the previous section, the process of system evolution involves
understanding the program that has to be changed and then implementing these
changes. However, many systems, especially older legacy systems, are difficult to
understand and change. The programs may have been optimized for performance or
space utilization at the expense of understandability, or, over time, the initial pro-
gram structure may have been corrupted by a series of changes.

To make legacy software systems easier to maintain, you can reengineer these
systems to improve their structure and understandability. Reengineering may involve
redocumenting the system, refactoring the system architecture, translating programs
to a modern programming language, and modifying and updating the structure and
values of the system’s data. The functionality of the software is not changed and,
normally, you should try to avoid making major changes to the system architecture.

There are two important benefits from reengineering rather than replacement:

1. Reduced risk There is a high risk in redeveloping business-critical software.
Errors may be made in the system specification or there may be development
problems. Delays in introducing the new software may mean that business is
lost and extra costs are incurred.
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Reduced cost The cost of reengineering may be significantly less than the cost
of developing new software. Ulrich (1990) quotes an example of a commercial
system for which the reimplementation costs were estimated at $50 million. The
system was successfully reengineered for $12 million. I suspect that, with mod-
ern software technology, the relative cost of reimplementation is probably less
than this but will still considerably exceed the costs of reengineering.

Figure 9.11 is a general model of the reengineering process. The input to the
process is a legacy program and the output is an improved and restructured version
of the same program. The activities in this reengineering process are as follows:

1. Source code translation Using a translation tool, the program is converted from
an old programming language to a more modern version of the same language
or to a different language.

2. Reverse engineering The program is analyzed and information extracted from it.
This helps to document its organization and functionality. Again, this process is
usually completely automated.

3. Program structure improvement The control structure of the program is ana-
lyzed and modified to make it easier to read and understand. This can be par-
tially automated but some manual intervention is usually required.

4. Program modularization Related parts of the program are grouped together and,
where appropriate, redundancy is removed. In some cases, this stage may
involve architectural refactoring (e.g., a system that uses several different data
stores may be refactored to use a single repository). This is a manual process.

5. Data reengineering The data processed by the program is changed to reflect
program changes. This may mean redefining database schemas and converting
existing databases to the new structure. You should usually also clean up the
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data. This involves finding and correcting mistakes, removing duplicate records,
etc. Tools are available to support data reengineering.

Program reengineering may not necessarily require all of the steps in Figure 9.11.
You don’t need source code translation if you still use the application’s programming
language. If you can do all reengineering automatically, then recovering documenta-
tion through reverse engineering may be unnecessary. Data reengineering is only
required if the data structures in the program change during system reengineering.

To make the reengineered system interoperate with the new software, you may
have to develop adaptor services, as discussed in Chapter 19. These hide the original
interfaces of the software system and present new, better-structured interfaces that
can be used by other components. This process of legacy system wrapping is an
important technique for developing large-scale reusable services.

The costs of reengineering obviously depend on the extent of the work that is
carried out. There is a spectrum of possible approaches to reengineering, as shown
in Figure 9.12. Costs increase from left to right so that source code translation is
the cheapest option. Reengineering as part of architectural migration is the most
expensive.

The problem with software reengineering is that there are practical limits to how
much you can improve a system by reengineering. It isn’t possible, for example, to con-
vert a system written using a functional approach to an object-oriented system. Major
architectural changes or radical reorganizing of the system data management cannot be
carried out automatically, so they are very expensive. Although reengineering can
improve maintainability, the reengineered system will probably not be as maintainable
as a new system developed using modern software engineering methods.

9.3.3 Preventative maintenance by refactoring

Refactoring is the process of making improvements to a program to slow down degra-
dation through change (Opdyke and Johnson, 1990). It means modifying a program to
improve its structure, to reduce its complexity, or to make it easier to understand.
Refactoring is sometimes considered to be limited to object-oriented development but
the principles can be applied to any development approach. When you refactor a pro-
gram, you should not add functionality but should concentrate on program improve-
ment. You can therefore think of refactoring as ‘preventative maintenance’ that reduces
the problems of future change.
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Although reengineering and refactoring are both intended to make software easier
to understand and change, they are not the same thing. Reengineering takes place
after a system has been maintained for some time and maintenance costs are increas-
ing. You use automated tools to process and reengineer a legacy system to create a
new system that is more maintainable. Refactoring is a continuous process of
improvement throughout the development and evolution process. It is intended to
avoid the structure and code degradation that increases the costs and difficulties of
maintaining a system.

Refactoring is an inherent part of agile methods such as extreme programming
because these methods are based around change. Program quality is therefore liable to
degrade quickly so agile developers frequently refactor their programs to avoid this
degradation. The emphasis on regression testing in agile methods lowers the risk of
introducing new errors through refactoring. Any errors that are introduced should be
detectable as previously successful tests should then fail. However, refactoring is not
dependent on other ‘agile activities’ and can be used with any approach to development.

Fowler et al. (1999) suggest that there are stereotypical situations (he calls them
‘bad smells’) in which the code of a program can be improved. Examples of bad
smells that can be improved through refactoring include:

1. Duplicate code The same of very similar code may be included at different
places in a program. This can be removed and implemented as a single method
or function that is called as required.

2. Long methods If a method is too long, it should be redesigned as a number of
shorter methods.

3. Switch (case) statements These often involve duplication, where the switch
depends on the type of some value. The switch statements may be scattered
around a program. In object-oriented languages, you can often use polymor-
phism to achieve the same thing.

4. Data clumping Data clumps occur when the same group of data items (fields in
classes, parameters in methods) reoccur in several places in a program. These
can often be replaced with an object encapsulating all of the data.

5. Speculative generality This occurs when developers include generality in a
program in case it is required in future. This can often simply be removed.

Fowler, in his book and website, also suggests some primitive refactoring trans-
formations that can be used singly or together to deal with the bad smells. Examples
of these transformations include Extract method, where you remove duplication and
create a new method; Consolidate conditional expression, where you replace a
sequence of tests with a single test; and Pull up method, where you replace similar
methods in subclasses with a single method in a super class. Interactive development
environments, such as Eclipse, include refactoring support in their editors. This
makes it easier to find dependent parts of a program that have to be changed to
implement the refactoring.
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Refactoring, carried out during program development, is an effective way to
reduce the long-term maintenance costs of a program. However, if you take over a
program for maintenance whose structure has been significantly degraded, then it
may be practically impossible to refactor the code alone. You may also have to think
about design refactoring, which is likely to be a more expensive and difficult prob-
lem. Design refactoring involves identifying relevant design patterns (discussed in
Chapter 7) and replacing existing code with code that implements these design pat-
terns (Kerievsky, 2004). I don’t have space to discuss this here.

I WY Legacy system management

For new software systems developed using modern software engineering processes,
such as incremental development and CBSE, it is possible to plan how to integrate
system development and evolution. More and more companies are starting to under-
stand that the system development process is a whole life-cycle process and that an
artificial separation between software development and software maintenance is
unhelpful. However, there are still many legacy systems that are critical business sys-
tems. These have to be extended and adapted to changing e-business practices.

Most organizations usually have a portfolio of legacy systems that they use, with
a limited budget for maintaining and upgrading these systems. They have to decide
how to get the best return on their investment. This involves making a realistic
assessment of their legacy systems and then deciding on the most appropriate strat-
egy for evolving these systems. There are four strategic options:

1. Scrap the system completely This option should be chosen when the system is
not making an effective contribution to business processes. This commonly
occurs when business processes have changed since the system was installed
and are no longer reliant on the legacy system.

2. Leave the system unchanged and continue with regular maintenance This
option should be chosen when the system is still required but is fairly stable and
the system users make relatively few change requests.

3. Reengineer the system to improve its maintainability This option should be
chosen when the system quality has been degraded by change and where a new
change to the system is still being proposed. This process may include develop-
ing new interface components so that the original system can work with other,
newer systems.

4. Replace all or part of the system with a new system This option should be cho-
sen when factors, such as new hardware, mean that the old system cannot con-
tinue in operation or where off-the-shelf systems would allow the new system to
be developed at a reasonable cost. In many cases, an evolutionary replacement
strategy can be adopted in which major system components are replaced by off-
the-shelf systems with other components reused wherever possible.
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Naturally, these options are not exclusive. When a system is composed of several
programs, different options may be applied to each program.

When you are assessing a legacy system, you have to look at it from a business
perspective and a technical perspective (Warren, 1998). From a business perspective,
you have to decide whether or not the business really needs the system. From a tech-
nical perspective, you have to assess the quality of the application software and the
system’s support software and hardware. You then use a combination of the business
value and the system quality to inform your decision on what to do with the legacy
system.

For example, assume that an organization has 10 legacy systems. You should
assess the quality and the business value of each of these systems. You may then cre-
ate a chart showing relative business value and system quality. This is shown in
Figure 9.13.

From Figure 9.13, you can see that there are four clusters of systems:

1. Low quality, low business value Keeping these systems in operation will be
expensive and the rate of the return to the business will be fairly small. These
systems should be scrapped.

2. Low quality, high business value These systems are making an important busi-
ness contribution so they cannot be scrapped. However, their low quality means
that it is expensive to maintain them. These systems should be reengineered to
improve their quality. They may be replaced, if a suitable off-the-shelf system is
available.

3. High quality, low business value These are systems that don’t contribute much
to the business but which may not be very expensive to maintain. It is not worth
replacing these systems so normal system maintenance may be continued if
expensive changes are not required and the system hardware remains in use.
If expensive changes become necessary, the software should be scrapped.
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4. High quality, high business value These systems have to be kept in operation.
However, their high quality means that you don’t have to invest in transforma-
tion or system replacement. Normal system maintenance should be continued.

To assess the business value of a system, you have to identify system stakehold-
ers, such as end-users of the system and their managers, and ask a series of questions
about the system. There are four basic issues that you have to discuss:

1. The use of the system If systems are only used occasionally or by a small num-
ber of people, they may have a low business value. A legacy system may have
been developed to meet a business need that has either changed or that can now
be met more effectively in other ways. You have to be careful, however, about
occasional but important use of systems. For example, in a university, a student
registration system may only be used at the beginning of each academic year.
However, it is an essential system with a high business value.

2. The business processes that are supported When a system is introduced, busi-
ness processes are designed to exploit the system’s capabilities. If the system is
inflexible, changing these business processes may be impossible. However, as
the environment changes, the original business processes may become obsolete.
Therefore, a system may h