" Sixth Edition

Database System
Concepts

Abraham Silberschatz « Henry F. Korth » S. Sudarshan

DATABASE

SYSTEM CONCEPTS

SIXTH EDITION

Abraham Silberschatz

Yale University

Henry F. Korth
Lehigh University

S. Sudarshan
Indian Institute of Technology, Bombay

“=\ Connect
Learn
Succeed”

~

The McGraw-Hill companies

“=\ Connect
Learn
Succeed”

~

DATABASE SYSTEM CONCEPTS, SIXTH EDITION

Published by McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc., 1221 Avenue
of the Americas, New York, NY 10020. Copyright © 2011 by The McGraw-Hill Companies, Inc.
All rights reserved. Previous editions © 2006, 2002, and 1999. No part of this publication may
be reproduced or distributed in any form or by any means, or stored in a database or retrieval

system, without the prior written consent of The McGraw-Hill Companies, Inc., including, but
not limited to, in any network or other electronic storage or transmission, or broadcast for dis-
tance learning.

Some ancillaries, including electronic and print components, may not be available to customers
outside the United States.

This book is printed on acid-free paper.
1234567890DOC/DOC109876543210

ISBN 978-0-07-352332-3
MHID 0-07-352332-1

Global Publisher: Raghothaman Srinivasan

Director of Development: Kristine Tibbetts

Senior Marketing Manager: Curt Reynolds

Project Manager: Melissa M. Leick

Senior Production Supervisor: Laura Fuller

Design Coordinator: Brenda A. Rolwes

Cover Designer: Studio Montage, St. Louis, Missouri
(USE) Cover Image: © Brand X Pictures/PunchStock
Compositor: Aptara®, Inc.

Typeface: 10/12 Palatino

Printer: R. R. Donnelley

All credits appearing on page or at the end of the book are considered to be an extension of the
copyright page.
Library of Congress Cataloging-in-Publication Data

Silberschatz, Abraham.
Database system concepts / Abraham Silberschatz. — 6th ed.
p- cm.
ISBN 978-0-07-352332-3 (alk. paper)
1. Database management. I. Title.
QA76.9.D355637 2011
005.74—dc22
2009039039

The Internet addresses listed in the text were accurate at the time of publication. The inclusion of
a Web site does not indicate an endorsement by the authors of McGraw-Hill, and McGraw-Hill
does not guarantee the accuracy of the information presented at these sites.

www.mhhe.com

In memory of my father Joseph Silberschatz
my mother Vera Silberschatz
and my grandparents Stepha and Aaron Rosenblum

Avi Silberschatz

To my wife, Joan
my children, Abigail and Joseph
and my parents, Henry and Frances

Hank Korth

To my wife, Sita
my children, Madhur and Advaith
and my mother, Indira

S. Sudarshan

This page intentionally left blank

Contents

Chapter1 Introduction

1.1 Database-System Applications 1 1.10 Data Mining and Information

1.2 Purpose of Database Systems 3 Retrieval 25

1.3 View of Data 6 1.11 Specialty Databases 26

1.4 Database Languages 9 1.12 Database Users and Administrators 27
1.5 Relational Databases 12 1.13 History of Database Systems 29

1.6 Database Design 15 1.14 Summary 31

1.7 Data Storage and Querying 20 Exercises 33

1.8 Transaction Management 22 Bibliographical Notes 35

1.9 Database Architecture 23

PART ONE E RELATIONAL DATABASES

Chapter2 Introduction to the Relational Model

2.1 Structure of Relational Databases 39 2.6 Relational Operations 48
2.2 Database Schema 42 2.7 Summary 52
2.3 Keys 45 Exercises 53
2.4 Schema Diagrams 46 Bibliographical Notes 55

2.5 Relational Query Languages 47

Chapter 3 Introduction to SQL

3.1 Overview of the SQL Query 3.7 Aggregate Functions 84
Language 57 3.8 Nested Subqueries 90

3.2 SQL Data Definition 58 3.9 Modification of the Database 98

3.3 Basic Structure of SQL Queries 63 3.10 Summary 104

3.4 Additional Basic Operations 74 Exercises 105

3.5 Set Operations 79 Bibliographical Notes 112

3.6 Null Values 83

vi Contents

Chapter4 Intermediate SQL

4.1 Join Expressions 113

4.2 Views 120

4.3 Transactions 127

4.4 Integrity Constraints 128

4.5 SQL Data Types and Schemas 136

Chapter 5 Advanced SQL

5.1 Accessing SQL From a Programming
Language 157

5.2 Functions and Procedures 173

5.3 Triggers 180

5.4 Recursive Queries** 187

4.6 Authorization 143

4.7 Summary 150
Exercises 152
Bibliographical Notes 156

5.5 Advanced Aggregation Features**
5.6 OLAP** 197
5.7 Summary 209

Exercises 211

Bibliographical Notes 216

Chapter 6 Formal Relational Query Languages

6.1 The Relational Algebra 217
6.2 The Tuple Relational Calculus 239
6.3 The Domain Relational Calculus 245

6.4 Summary 248
Exercises 249
Bibliographical Notes 254

PART TWO W DATABASE DESIGN

Chapter 7 Database Design and the E-R Model

7.1 Overview of the Design Process 259

7.2 The Entity-Relationship Model 262

7.3 Constraints 269

7.4 Removing Redundant Attributes in
Entity Sets 272

7.5 Entity-Relationship Diagrams 274

7.6 Reduction to Relational Schemas 283

7.7 Entity-Relationship Design Issues 290

7.8 Extended E-R Features 295
7.9 Alternative Notations for Modeling
Data 304

192

7.10 Other Aspects of Database Design 310

711 Summary 313
Exercises 315
Bibliographical Notes 321

Contents vii

Chapter 8 Relational Database Design

8.1 Features of Good Relational 8.6 Decomposition Using Multivalued
Designs 323 Dependencies 355

8.2 Atomic Domains and First Normal 8.7 More Normal Forms 360
Form 327 8.8 Database-Design Process 361

8.3 Decomposition Using Functional 8.9 Modeling Temporal Data 364
Dependencies 329 8.10 Summary 367

8.4 Functional-Dependency Theory 338 Exercises 368

8.5 Algorithms for Decomposition 348 Bibliographical Notes 374

Chapter 9 Application Design and Development

9.1 Application Programs and User 9.6 Application Performance 400
Interfaces 375 9.7 Application Security 402

9.2 Web Fundamentals 377 9.8 Encryption and Its Applications 411

9.3 Servlets and JSP 383 9.9 Summary 417

9.4 Application Architectures 391 Exercises 419

9.5 Rapid Application Development 396 Bibliographical Notes 426

PART THREE E DATA STORAGE AND QUERYING

Chapter 10 Storage and File Structure

10.1 Overview of Physical Storage 10.6 Organization of Records in Files 457
Media 429 10.7 Data-Dictionary Storage 462

10.2 Magnetic Disk and Flash Storage 432 10.8 Database Buffer 464

10.3 RAID 441 10.9 Summary 468

10.4 Tertiary Storage 449 Exercises 470

10.5 File Organization 451 Bibliographical Notes 473

Chapter 11 Indexing and Hashing

11.1 Basic Concepts 475 11.8 Comparison of Ordered Indexing and
11.2 Ordered Indices 476 Hashing 523

11.3 B*-Tree Index Files 485 11.9 Bitmap Indices 524

11.4 B*-Tree Extensions 500 11.10 Index Definition in SQL 528

11.5 Multiple-Key Access 506 11.11 Summary 529

11.6 Static Hashing 509 Exercises 532

11.7 Dynamic Hashing 515 Bibliographical Notes 536

viii

Contents

Chapter 12 Query Processing

12.1 Overview 537

12.2 Measures of Query Cost 540
12.3 Selection Operation 541
12.4 Sorting 546

12.5 Join Operation 549

Chapter 13 Query Optimization

13.1 Overview 579

13.2 Transformation of Relational
Expressions 582

13.3 Estimating Statistics of Expression
Results 590

13.4 Choice of Evaluation Plans 598

12.6 Other Operations 563
12.7 Evaluation of Expressions 567
12.8 Summary 572

Exercises 574

Bibliographical Notes 577

13.5 Materialized Views** 607

13.6 Advanced Topics in Query
Optimization** 612

13.7 Summary 615
Exercises 617
Bibliographical Notes 622

PART FOUR W TRANSACTION MANAGEMENT

Chapter 14 Transactions

14.1 Transaction Concept 627

14.2 A Simple Transaction Model 629

14.3 Storage Structure 632

14.4 Transaction Atomicity and
Durability 633

14.5 Transaction Isolation 635

14.6 Serializability 641

Chapter 15 Concurrency Control

15.1 Lock-Based Protocols 661

15.2 Deadlock Handling 674

15.3 Multiple Granularity 679

15.4 Timestamp-Based Protocols 682
15.5 Validation-Based Protocols 686
15.6 Multiversion Schemes 689

15.7 Snapshot Isolation 692

14.7 Transaction Isolation and

Atomicity 646
14.8 Transaction Isolation Levels 648
14.9 Implementation of Isolation Levels 650
14.10 Transactions as SQL Statements 653
14.11 Summary 655

Exercises 657

Bibliographical Notes 660

15.8 Insert Operations, Delete Operations,
and Predicate Reads 697
15.9 Weak Levels of Consistency in
Practice 701
15.10 Concurrency in Index Structures** 704
15.11 Summary 708
Exercises 712
Bibliographical Notes 718

Chapter 16 Recovery System

16.1 Failure Classification 721

16.2 Storage 722

16.3 Recovery and Atomicity 726

16.4 Recovery Algorithm 735

16.5 Buffer Management 738

16.6 Failure with Loss of Nonvolatile
Storage 743

Contents ix

16.7 Early Lock Release and Logical Undo

16.8
16.9
16.10

Operations 744

ARIES*™* 750

Remote Backup Systems 756
Summary 759

Exercises 762
Bibliographical Notes 766

PART FIVE B SYSTEM ARCHITECTURE

Chapter 17

17.1 Centralized and Client—Server
Architectures 769

17.2 Server System Architectures 772

17.3 Parallel Systems 777

17.4 Distributed Systems 784

Chapter 18 Parallel Databases

18.1 Introduction 797

18.2 1/O Parallelism 798

18.3 Interquery Parallelism 802
18.4 Intraquery Parallelism 803
18.5 Intraoperation Parallelism 804
18.6 Interoperation Parallelism 813
18.7 Query Optimization 814

17.5
17.6

18.8
18.9

18.10

Chapter 19 Distributed Databases

19.1 Homogeneous and Heterogeneous
Databases 825

19.2 Distributed Data Storage 826

19.3 Distributed Transactions 830

19.4 Commit Protocols 832

19.5 Concurrency Control in Distributed
Databases 839

19.6 Availability 847

19.7
19.8

19.9

19.10

19.11

Database-System Architectures

Network Types 788
Summary 791

Exercises 793
Bibliographical Notes 794

Design of Parallel Systems 815
Parallelism on Multicore
Processors 817

Summary 819

Exercises 821
Bibliographical Notes 824

Distributed Query Processing 854
Heterogeneous Distributed
Databases 857

Cloud-Based Databases 861
Directory Systems 870
Summary 875

Exercises 879

Bibliographical Notes 883

Contents

PART SIX W DATA WAREHOUSING, DATA
MINING, AND INFORMATION RETRIEVAL

Chapter 20 Data Warehousing and Mining

20.1 Decision-Support Systems 887 20.7 Clustering 907

20.2 Data Warehousing 889 20.8 Other Forms of Data Mining 908
20.3 Data Mining 893 20.9 Summary 909

20.4 Classification 894 Exercises 911

20.5 Association Rules 904 Bibliographical Notes 914

20.6 Other Types of Associations 906

Chapter 21 Information Retrieval

21.1 Overview 915 21.7 Crawling and Indexing the Web 930

21.2 Relevance Ranking Using Terms 917 21.8 Information Retrieval: Beyond Ranking

21.3 Relevance Using Hyperlinks 920 of Pages 931

21.4 Synonyms, Homonyms, and 21.9 Directories and Categories 935
Ontologies 925 21.10 Summary 937

21.5 Indexing of Documents 927 Exercises 939

21.6 Measuring Retrieval Effectiveness 929 Bibliographical Notes 941

PART SEVEN W SPECIALTY DATABASES
Chapter 22 Object-Based Databases

22.1 Overview 945 22.8 Persistent Programming

22.2 Complex Data Types 946 Languages 964

22.3 Structured Types and Inheritance in 22.9 Object-Relational Mapping 973
SQL 949 22.10 Object-Oriented versus

22.4 Table Inheritance 954 Object-Relational 973

22.5 Array and Multiset Types in SQL 956 22.11 Summary 975

22.6 Object-Identity and Reference Types in Exercises 976
SQL 961 Bibliographical Notes 980

22.7 Implementing O-R Features 963

Chapter23 XML

23.1 Motivation 981 23.6 Storage of XML Data 1009
23.2 Structure of XML Data 986 23.7 XML Applications 1016
23.3 XML Document Schema 990 23.8 Summary 1019

23.4 Querying and Transformation 998 Exercises 1021

23.5 Application Program Interfaces to Bibliographical Notes 1024

XML 1008

Contents xi

PART EIGHT B ADVANCED TOPICS
Chapter 24 Advanced Application Development

24.1 Performance Tuning 1029 244 Standardization 1051

24.2 Performance Benchmarks 1045 245 Summary 1056

24.3 Other Issues in Application Exercises 1057
Development 1048 Bibliographical Notes 1059

Chapter 25 Spatial and Temporal Data and Mobility

25.1 Motivation 1061 25.5 Mobility and Personal Databases 1079
25.2 Time in Databases 1062 25.6 Summary 1085

25.3 Spatial and Geographic Data 1064 Exercises 1087

25.4 Multimedia Databases 1076 Bibliographical Notes 1089

Chapter 26 Advanced Transaction Processing

26.1 Transaction-Processing Monitors 1091 26.6 Long-Duration Transactions 1109

26.2 Transactional Workflows 1096 26.7 Summary 1115
26.3 E-Commerce 1102 Exercises 1117
26.4 Main-Memory Databases 1105 Bibliographical Notes 1119

26.5 Real-Time Transaction Systems 1108

PART NINE B CASE STUDIES
Chapter 27 PostgreSQL

27.1 Introduction 1123 27.5 Storage and Indexing 1146

27.2 User Interfaces 1124 27.6 Query Processing and

27.3 SQL Variations and Extensions 1126 Optimization 1151

27.4 Transaction Management in 27.7 System Architecture 1154
PostgreSQL 1137 Bibliographical Notes 1155

Chapter 28 Oracle

28.1 Database Design and Querying 28.6 System Architecture 1183

Tools 1157 28.7 Replication, Distribution, and External
28.2 SQL Variations and Extensions 1158 Data 1188
28.3 Storage and Indexing 1162 28.8 Database Administration Tools 1189
28.4 Query Processing and 28.9 Data Mining 1191

Optimization 1172 Bibliographical Notes 1191

28.5 Concurrency Control and
Recovery 1180

xii

Contents

Chapter 29 1IBM DB2 Universal Database

29.1 Overview 1193 29.9 Tools and Utilities 1215
29.2 Database-Design Tools 1194 29.10 Concurrency Control and
29.3 SQL Variations and Extensions 1195 Recovery 1217
29.4 Storage and Indexing 1200 29.11 System Architecture 1219
29.5 Multidimensional Clustering 1203 29.12 Replication, Distribution, and External
29.6 Query Processing and Data 1220
Optimization 1207 29.13 Business Intelligence Features 1221
29.7 Materialized Query Tables 1212 Bibliographical Notes 1222

29.8 Autonomic Features in DB2 1214

Chapter 30 Microsoft SQL Server

30.1 Management, Design, and Querying 30.8 Distributed Heterogeneous Query
Tools 1223 Processing 1250
30.2 SQL Variations and Extensions 1228 30.9 Replication 1251
30.3 Storage and Indexing 1233 30.10 Server Programming in .NET 1253
30.4 Query Processing and 30.11 XML Support 1258
Optimization 1236 30.12 SQL Server Service Broker 1261
30.5 Concurrency and Recovery 1241 30.13 Business Intelligence 1263
30.6 System Architecture 1246 Bibliographical Notes 1267

30.7 Data Access 1248

PART TEN H APPENDICES

Appendix A Detailed University Schema

A.1 Full Schema 1271 A.3 Sample Data 1276
A2 DDL 1272

Appendix B Advanced Relational Design (contents online)

B.1 Multivalued Dependencies Bl Exercises B10
B.3 Domain-Key Normal Form B8 Bibliographical Notes B12
B.4 Summary B10

Appendix C Other Relational Query Languages (contents online)

C.1 Query-by-Example C1 C.4 Summary C25
C.2 Microsoft Access C9 Exercises C26
C.3 Datalog C11 Bibliographical Notes C30

Contents xiii

Appendix D Network Model (contents online)

D.1 Basic Concepts D1

D.2 Data-Structure Diagrams D2

D.3 The DBTG CODASYL Model D7
D.4 DBTG Data-Retrieval Facility D13
D.5 DBTG Update Facility D20

D.6 DBTG Set-Processing Facility D22
D.7 Mapping of Networks to Files D27
D.8 Summary D31

Exercises D32

Bibliographical Notes D35

Appendix E Hierarchical Model (contents online)

E.1 Basic Concepts El

E.2 Tree-Structure Diagrams E2
E.3 Data-Retrieval Facility E13
E.4 Update Facility E17

E.5 Virtual Records E20

Bibliography 1283
Index 1315

E.6 Mapping of Hierarchies to Files E22
E.7 The IMS Database System E24
E.8 Summary E25

Exercises E26

Bibliographical Notes E29

This page intentionally left blank

Preface

Database management has evolved from a specialized computer application to a
central component of a modern computing environment, and, as a result, knowl-
edge about database systems has become an essential part of an education in
computer science. In this text, we present the fundamental concepts of database
management. These concepts include aspects of database design, database lan-
guages, and database-system implementation.

This text is intended for a first course in databases at the junior or senior
undergraduate, or first-year graduate, level. In addition to basic material for
a first course, the text contains advanced material that can be used for course
supplements, or as introductory material for an advanced course.

We assume only a familiarity with basic data structures, computer organi-
zation, and a high-level programming language such as Java, C, or Pascal. We
present concepts as intuitive descriptions, many of which are based on our run-
ning example of a university. Important theoretical results are covered, but formal
proofs are omitted. In place of proofs, figures and examples are used to suggest
why a result is true. Formal descriptions and proofs of theoretical results may
be found in research papers and advanced texts that are referenced in the biblio-
graphical notes.

The fundamental concepts and algorithms covered in the book are often
based on those used in existing commercial or experimental database systems.
Our aim is to present these concepts and algorithms in a general setting that is
not tied to one particular database system. Details of particular database systems
are discussed in Part 9, “Case Studies.”

In this, the sixth edition of Database System Concepts, we have retained the
overall style of the prior editions while evolving the content and organization to
reflect the changes that are occurring in the way databases are designed, managed,
and used. We have also taken into account trends in the teaching of database
concepts and made adaptations to facilitate these trends where appropriate.

XV

Xvi

Preface

Organization

The text is organized in nine major parts, plus five appendices.

Overview (Chapter 1). Chapter 1 provides a general overview of the nature
and purpose of database systems. We explain how the concept of a database
system has developed, what the common features of database systems are,
what a database system does for the user, and how a database system in-
terfaces with operating systems. We also introduce an example database
application: a university organization consisting of multiple departments,
instructors, students, and courses. This application is used as a running ex-
ample throughout the book. This chapter is motivational, historical, and ex-
planatory in nature.

Part 1: Relational Databases (Chapters 2 through 6). Chapter 2 introduces
the relational model of data, covering basic concepts such as the structure
of relational databases, database schemas, keys, schema diagrams, relational
query languages, and relational operations. Chapters 3, 4, and 5 focus on the
most influential of the user-oriented relational languages: SQL. Chapter 6 cov-
ers the formal relational query languages: relational algebra, tuple relational
calculus, and domain relational calculus.

The chapters in this part describe data manipulation: queries, updates, in-
sertions, and deletions, assuming a schema design has been provided. Schema
design issues are deferred to Part 2.

Part 2: Database Design (Chapters 7 through 9). Chapter 7 provides an
overview of the database-design process, with major emphasis on database
design using the entity-relationship data model. The entity-relationship data
model provides a high-level view of the issues in database design, and of the
problems that we encounter in capturing the semantics of realistic applica-
tions within the constraints of a data model. UML class-diagram notation is
also covered in this chapter.

Chapter 8 introduces the theory of relational database design. The the-
ory of functional dependencies and normalization is covered, with emphasis
on the motivation and intuitive understanding of each normal form. This
chapter begins with an overview of relational design and relies on an intu-
itive understanding of logical implication of functional dependencies. This
allows the concept of normalization to be introduced prior to full coverage
of functional-dependency theory, which is presented later in the chapter. In-
structors may choose to use only this initial coverage in Sections 8.1 through
8.3 without loss of continuity. Instructors covering the entire chapter will ben-
efit from students having a good understanding of normalization concepts to
motivate some of the challenging concepts of functional-dependency theory.

Chapter 9 covers application design and development. This chapter empha-
sizes the construction of database applications with Web-based interfaces. In
addition, the chapter covers application security.

Preface xvii

e Part 3: Data Storage and Querying (Chapters 10 through 13). Chapter 10
deals with storage devices, files, and data-storage structures. A variety of
data-access techniques are presented in Chapter 11, including B*-tree indices
and hashing. Chapters 12 and 13 address query-evaluation algorithms and
query optimization. These chapters provide an understanding of the internals
of the storage and retrieval components of a database.

¢ Part 4: Transaction Management (Chapters 14 through 16). Chapter 14 fo-
cuses on the fundamentals of a transaction-processing system: atomicity,
consistency, isolation, and durability. It provides an overview of the methods
used to ensure these properties, including locking and snapshot isolation.
Chapter 15 focuses on concurrency control and presents several techniques
for ensuring serializability, including locking, timestamping, and optimistic
(validation) techniques. The chapter also covers deadlock issues. Alterna-
tives to serializability are covered, most notably the widely-used snapshot
isolation, which is discussed in detail.

Chapter 16 covers the primary techniques for ensuring correct transac-
tion execution despite system crashes and storage failures. These techniques
include logs, checkpoints, and database dumps. The widely-used ARIES al-
gorithm is presented.

e Part 5: System Architecture (Chapters 17 through 19). Chapter 17 covers
computer-system architecture, and describes the influence of the underly-
ing computer system on the database system. We discuss centralized sys-
tems, client—server systems, and parallel and distributed architectures in this
chapter.

Chapter 18, on parallel databases, explores a variety of parallelization
techniques, including 1/0 parallelism, interquery and intraquery parallelism,
and interoperation and intraoperation parallelism. The chapter also describes
parallel-system design.

Chapter 19 covers distributed database systems, revisiting the issues
of database design, transaction management, and query evaluation and op-
timization, in the context of distributed databases. The chapter also cov-
ers issues of system availability during failures, heterogeneous distributed
databases, cloud-based databases, and distributed directory systems.

e Part 6: Data Warehousing, Data Mining, and Information Retrieval (Chap-
ters 20 and 21). Chapter 20 introduces the concepts of data warehousing
and data mining. Chapter 21 describes information-retrieval techniques for
querying textual data, including hyperlink-based techniques used in Web
search engines.

Part 6 uses the modeling and language concepts from Parts 1 and 2, but
does not depend on Parts 3, 4, or 5. It can therefore be incorporated easily
into a course that focuses on SQL and on database design.

xviii

Preface

Part 7: Specialty Databases (Chapters 22 and 23). Chapter 22 covers object-
based databases. The chapter describes the object-relational data model,
which extends the relational data model to support complex data types, type
inheritance, and object identity. The chapter also describes database access
from object-oriented programming languages.

Chapter 23 covers the XML standard for data representation, which is seeing
increasing use in the exchange and storage of complex data. The chapter also
describes query languages for XML.

Part 8: Advanced Topics (Chapters 24 through 26). Chapter 24 covers ad-
vanced issues in application development, including performance tuning,
performance benchmarks, database-application testing, and standardization.
Chapter 25 covers spatial and geographic data, temporal data, multimedia
data, and issues in the management of mobile and personal databases.
Finally, Chapter 26 deals with advanced transaction processing. Top-
ics covered in the chapter include transaction-processing monitors, transac-
tional workflows, electronic commerce, high-performance transaction sys-
tems, real-time transaction systems, and long-duration transactions.

Part 9: Case Studies (Chapters 27 through 30). In this part, we present case
studies of four of the leading database systems, PostgreSQL, Oracle, IBM DB2,
and Microsoft SQL Server. These chapters outline unique features of each of
these systems, and describe their internal structure. They provide a wealth of
interesting information about the respective products, and help you see how
the various implementation techniques described in earlier parts are used
in real systems. They also cover several interesting practical aspects in the
design of real systems.

Appendices. We provide five appendices that cover material that is of histor-
ical nature or is advanced; these appendices are available only online on the
Web site of the book (http://www.db-book.com). An exception is Appendix A,
which presents details of our university schema including the full schema,
DDL, and all the tables. This appendix appears in the actual text.

Appendix B describes other relational query languages, including QBE
Microsoft Access, and Datalog.

Appendix C describes advanced relational database design, including the
theory of multivalued dependencies, join dependencies, and the project-join
and domain-key normal forms. This appendix is for the benefit of individuals
who wish to study the theory of relational database design in more detail,
and instructors who wish to do so in their courses. This appendix, too, is
available only online, on the Web site of the book.

Although most new database applications use either the relational model
or the object-relational model, the network and hierarchical data models are
still in use in some legacy applications. For the benefit of readers who wish to
learn about these data models, we provide appendices describing the network
and hierarchical data models, in Appendices D and E respectively.

Preface xix

The Sixth Edition

The production of this sixth edition has been guided by the many comments and
suggestions we received concerning the earlier editions, by our own observations
while teaching at Yale University, Lehigh University, and IIT Bombay, and by our
analysis of the directions in which database technology is evolving.

We have replaced the earlier running example of bank enterprise with a uni-
versity example. This example has an immediate intuitive connection to students
that assists not only in remembering the example, but, more importantly, in gain-
ing deeper insight into the various design decisions that need to be made.

We have reorganized the book so as to collect all of our SQL coverage together
and place it early in the book. Chapters 3, 4, and 5 present complete SQL coverage.
Chapter 3 presents the basics of the language, with more advanced features in
Chapter 4. In Chapter 5, we present JDBC along with other means of accessing
SQL from a general-purpose programming language. We present triggers and re-
cursion, and then conclude with coverage of online analytic processing (OLAP).
Introductory courses may choose to cover only certain sections of Chapter 5 or
defer sections until after the coverage of database design without loss of continu-
ity.

Beyond these two major changes, we revised the material in each chapter,
bringing the older material up-to-date, adding discussions on recent develop-
ments in database technology, and improving descriptions of topics that students
found difficult to understand. We have also added new exercises and updated
references. The list of specific changes includes the following:

e Earlier coverage of SQL. Many instructors use SQL as a key component of term
projects (see our Web site, www.db-book.com, for sample projects). In order to
give students ample time for the projects, particularly for universities and
colleges on the quarter system, it is essential to teach SQL as early as possible.
With this in mind, we have undertaken several changes in organization:

o A new chapter on the relational model (Chapter 2) precedes SQL, laying
the conceptual foundation, without getting lost in details of relational
algebra.

o Chapters 3, 4, and 5 provide detailed coverage of SQL. These chapters also
discuss variants supported by different database systems, to minimize
problems that students face when they execute queries on actual database
systems. These chapters cover all aspects of SQL, including queries, data
definition, constraint specification, OLAP, and the use of SQL from within
a variety of languages, including Java/JDBC.

o Formal languages (Chapter 6) have been postponed to after SQL, and can
be omitted without affecting the sequencing of other chapters. Only our
discussion of query optimization in Chapter 13 depends on the relational
algebra coverage of Chapter 6.

XX

Preface

New database schema. We adopted a new schema, which is based on uni-
versity data, as a running example throughout the book. This schema is
more intuitive and motivating for students than the earlier bank schema, and
illustrates more complex design trade-offs in the database-design chapters.

More support for a hands-on student experience. To facilitate following
our running example, we list the database schema and the sample relation
instances for our university database together in Appendix A as well as
where they are used in the various regular chapters. In addition, we provide,
on our Web site http://www.db-book.com, SQL data-definition statements for the
entire example, along with SQL statements to create our example relation
instances. This encourages students to run example queries directly on a
database system and to experiment with modifying those queries.

Revised coverage of E-R model. The E-R diagram notation in Chapter 7 has
been modified to make it more compatible with UML. The chapter also makes
good use of the new university database schema to illustrate more complex
design trade-offs.

Revised coverage of relational design. Chapter 8 now has a more readable
style, providing an intuitive understanding of functional dependencies and
normalization, before covering functional dependency theory; the theory is
motivated much better as a result.

Expanded material on application development and security. Chapter 9 has
new material on application development, mirroring rapid changes in the
field. In particular, coverage of security has been expanded, considering its
criticality in today’s interconnected world, with an emphasis on practical
issues over abstract concepts.

Revised and updated coverage of data storage, indexing and query op-
timization. Chapter 10 has been updated with new technology, including
expanded coverage of flash memory.

Coverage of Bf-trees in Chapter 11 has been revised to reflect practical
implementations, including coverage of bulk loading, and the presentation
has been improved. The Bf-tree examples in Chapter 11 have now been
revised with n = 4, to avoid the special case of empty nodes that arises with
the (unrealistic) value of n = 3.

Chapter 13 has new material on advanced query-optimization techniques.

Revised coverage of transaction management. Chapter 14 provides full cov-
erage of the basics for an introductory course, with advanced details follow-
ing in Chapters 15 and 16. Chapter 14 has been expanded to cover the practical
issues in transaction management faced by database users and database-
application developers. The chapter also includes an expanded overview of
topics covered in Chapters 15 and 16, ensuring that even if Chapters 15 and 16
are omitted, students have a basic knowledge of the concepts of concurrency
control and recovery.

Preface xxi

Chapters 14 and 15 now include detailed coverage of snapshot isolation,
which is widely supported and used today, including coverage of potential
hazards when using it.

Chapter 16 now has a simplified description of basic log-based recovery
leading up to coverage of the ARIES algorithm.

e Revised and expanded coverage of distributed databases. We now cover
cloud data storage, which is gaining significant interest for business appli-
cations. Cloud storage offers enterprises opportunities for improved cost-
management and increased storage scalability, particularly for Web-based
applications. We examine those advantages along with the potential draw-
backs and risks.

Multidatabases, which were earlier in the advanced transaction processing
chapter, are now covered earlier as part of the distributed database chapter.

* Postponed coverage of object databases and XML. Although object-oriented
languages and XML are widely used outside of databases, their use in data-
bases is still limited, making them appropriate for more advanced courses,
or as supplementary material for an introductory course. These topics have
therefore been moved to later in the book, in Chapters 22 and 23.

® OBE, Microsoft Access, and Datalog in an online appendix. These topics,
which were earlier part of a chapter on “other relational languages,” are now
covered in online Appendix C.

All topics not listed above are updated from the fifth edition, though their overall
organization is relatively unchanged.

Review Material and Exercises

Each chapter has a list of review terms, in addition to a summary, which can help
readers review key topics covered in the chapter.

The exercises are divided into two sets: practice exercises and exercises. The
solutions for the practice exercises are publicly available on the Web site of the
book. Students are encouraged to solve the practice exercises on their own, and
later use the solutions on the Web site to check their own solutions. Solutions
to the other exercises are available only to instructors (see “Instructor’s Note,”
below, for information on how to get the solutions).

Many chapters have a tools section at the end of the chapter that provides
information on software tools related to the topic of the chapter; some of these
tools can be used for laboratory exercises. SQL DDL and sample data for the
university database and other relations used in the exercises are available on the
Web site of the book, and can be used for laboratory exercises.

xxii Preface

Instructor’s Note

The book contains both basic and advanced material, which might not be cov-
ered in a single semester. We have marked several sections as advanced, using
the symbol “**”. These sections may be omitted if so desired, without a loss of
continuity. Exercises that are difficult (and can be omitted) are also marked using
the symbol “**”.

It is possible to design courses by using various subsets of the chapters. Some

of the chapters can also be covered in an order different from their order in the
book. We outline some of the possibilities here:

Chapter 5 (Advanced SQL) can be skipped or deferred to later without loss of
continuity. We expect most courses will cover at least Section 5.1.1 early, as
JDBC is likely to be a useful tool in student projects.

Chapter 6 (Formal Relational Query Languages) can be covered immediately
after Chapter 2, ahead of SQL. Alternatively, this chapter may be omitted from
an introductory course.

We recommend covering Section 6.1 (relational algebra) if the course also
covers query processing. However, Sections 6.2 and 6.3 can be omitted if
students will not be using relational calculus as part of the course.

Chapter 7 (E-R Model) can be covered ahead of Chapters 3, 4 and 5 if you so
desire, since Chapter 7 does not have any dependency on SQL.

Chapter 13 (Query Optimization) can be omitted from an introductory course
without affecting coverage of any other chapter.

Both our coverage of transaction processing (Chapters 14 through 16) and
our coverage of system architecture (Chapters 17 through 19) consist of an
overview chapter (Chapters 14 and 17, respectively), followed by chapters
with details. You might choose to use Chapters 14 and 17, while omitting
Chapters 15, 16, 18 and 19, if you defer these latter chapters to an advanced
course.

Chapters 20 and 21, covering data warehousing, data mining, and informa-
tion retrieval, can be used as self-study material or omitted from an introduc-
tory course.

Chapters 22 (Object-Based Databases), and 23 (XML) can be omitted from an
introductory course.

Chapters 24 through 26, covering advanced application development, spatial,
temporal and mobile data, and advanced transaction processing, are suitable
for an advanced course or for self-study by students.

The case-study Chapters 27 through 30 are suitable for self-study by students.
Alternatively, they can be used as an illustration of concepts when the earlier
chapters are presented in class.

Model course syllabi, based on the text, can be found on the Web site of the book.

Preface xxiii

Web Site and Teaching Supplements

A Web site for the book is available at the URL: http://www.db-book.com. The Web
site contains:

e Slides covering all the chapters of the book.
* Answers to the practice exercises.

¢ The five appendices.

® An up-to-date errata list.

¢ Laboratory material, including SQL DDL and sample data for the university
schema and other relations used in exercises, and instructions for setting up
and using various database systems and tools.

The following additional material is available only to faculty:

¢ An instructor manual containing solutions to all exercises in the book.

¢ A question bank containing extra exercises.

For more information about how to get a copy of the instructor manual and the
question bank, please send electronic mail to customer.service@mcgraw-hill.com.
In the United States, you may call 800-338-3987. The McGraw-Hill Web site for
this book is http://www.mhhe.com/silberschatz.

Contacting Us

We have endeavored to eliminate typos, bugs, and the like from the text. But, as
in new releases of software, bugs almost surely remain; an up-to-date errata list
is accessible from the book’s Web site. We would appreciate it if you would notify
us of any errors or omissions in the book that are not on the current list of errata.

We would be glad to receive suggestions on improvements to the book. We
also welcome any contributions to the book Web site that could be of use to
other readers, such as programming exercises, project suggestions, online labs
and tutorials, and teaching tips.

Email should be addressed to db-book-authors@cs.yale.edu. Any other corre-
spondence should be sent to Avi Silberschatz, Department of Computer Science,
Yale University, 51 Prospect Street, P.O. Box 208285, New Haven, CT 06520-8285
USA.

Acknowledgments

Many people have helped us with this sixth edition, as well as with the previous
five editions from which it is derived.

Xxiv

Preface

Sixth Edition

Anastassia Ailamaki, Sailesh Krishnamurthy, Spiros Papadimitriou, and
Bianca Schroeder (Carnegie Mellon University) for writing Chapter 27 de-
scribing the PostgreSQL database system.

Hakan Jakobsson (Oracle), for writing Chapter 28 on the Oracle database
system.

Sriram Padmanabhan (IBM), for writing Chapter 29 describing the IBM DB2
database system.

Sameet Agarwal, José A. Blakeley, Thierry D'Hers, Gerald Hinson, Dirk My-
ers, Vaqar Pirzada, Bill Ramos, Balaji Rathakrishnan, Michael Rys, Florian
Waas, and Michael Zwilling (all of Microsoft) for writing Chapter 30 de-
scribing the Microsoft SQL Server database system, and in particular José
Blakeley for coordinating and editing the chapter; César Galindo-Legaria,
Goetz Graefe, Kalen Delaney, and Thomas Casey (all of Microsoft) for their
contributions to the previous edition of the Microsoft SQL Server chapter.

Daniel Abadi for reviewing the table of contents of the fifth edition and
helping with the new organization.

Steve Dolins, University of Florida; Rolando Fernanez, George Washington
University; Frantisek Franek, McMaster University; Latifur Khan, University
of Texas - Dallas; Sanjay Madria, University of Missouri - Rolla; Aris Ouksel,
University of Illinois; and Richard Snodgrass, University of Waterloo; who
served as reviewers of the book and whose comments helped us greatly in
formulating this sixth edition.

Judi Paige for her help in generating figures and presentation slides.

Mark Wogahn for making sure that the software to produce the book, includ-
ing LaTeX macros and fonts, worked properly.

N. L. Sarda for feedback that helped us improve several chapters, in particular
Chapter 11; Vikram Pudi for motivating us to replace the earlier bank schema;
and Shetal Shah for feedback on several chapters.

Students at Yale, Lehigh, and IIT Bombay, for their comments on the fifth
edition, as well as on preprints of the sixth edition.

Previous Editions

Chen Li and Sharad Mehrotra for providing material on JDBC and security
for the fifth edition.

Marilyn Turnamian and Nandprasad Joshi provided secretarial assistance for
the fifth edition, and Marilyn also prepared an early draft of the cover design
for the fifth edition.

Preface xxv

Lyn Dupré copyedited the third edition and Sara Strandtman edited the text
of the third edition.

Nilesh Dalvi, Sumit Sanghai, Gaurav Bhalotia, Arvind Hulgeri K. V. Ragha-
van, Prateek Kapadia, Sara Strandtman, Greg Speegle, and Dawn Bezviner
helped to prepare the instructor’s manual for earlier editions.

The idea of using ships as part of the cover concept was originally suggested
to us by Bruce Stephan.

The following people pointed out errors in the fifth edition: Alex Coman,
Ravindra Guravannavar, Arvind Hulgeri, Rohit Kulshreshtha, Sang-Won
Lee, Joe H. C. Lu, Alex N. Napitupulu, H. K. Park, Jian Pei, Fernando Saenz
Perez, Donnie Pinkston, Yma Pinto, Rajarshi Rakshit, Sandeep Satpal, Amon
Seagull, Barry Soroka, Praveen Ranjan Srivastava, Hans Svensson, Moritz
Wiese, and Eyob Delele Yirdaw.

The following people offered suggestions and comments for the fifth and ear-
lier editions of the book. R. B. Abhyankar, Hani Abu-Salem, Jamel R. Alsab-
bagh, Raj Ashar, Don Batory, Phil Bernhard, Christian Breimann, Gavin M.
Bierman, Janek Bogucki, Haran Boral, Paul Bourgeois, Phil Bohannon, Robert
Brazile, Yuri Breitbart, Ramzi Bualuan, Michael Carey, Soumen Chakrabarti,
Tom Chappell, Zhengxin Chen, Y. C. Chin, Jan Chomicki, Laurens Damen,
Prasanna Dhandapani, Qin Ding, Valentin Dinu, J. Edwards, Christos Falout-
sos, Homma Farian, Alan Fekete, Frantisek Franek, Shashi Gadia, Hector
Garcia-Molina, Goetz Graefe, Jim Gray, Le Gruenwald, Eitan M. Gurari,
William Hankley, Bruce Hillyer, Ron Hitchens, Chad Hogg, Arvind Hulgeri,
Yannis Ioannidis, Zheng Jiaping, Randy M. Kaplan, Graham J. L. Kemp, Rami
Khouri, Hyoung-Joo Kim, Won Kim, Henry Korth (father of Henry E.), Carol
Kroll, Hae Choon Lee, Sang-Won Lee, Irwin Levinstein, Mark Llewellyn,
Gary Lindstrom, Ling Liu, Dave Maier, Keith Marzullo, Marty Maskarinec,
Fletcher Mattox, Sharad Mehrotra, Jim Melton, Alberto Mendelzon, Ami
Motro, Bhagirath Narahari, Yiu-Kai Dennis Ng, Thanh-Duy Nguyen, Anil
Nigam, Cyril Orji, Meral Ozsoyoglu, D. B. Phatak, Juan Altmayer Pizzorno,
Bruce Porter, Sunil Prabhakar, Jim Peterson, K. V. Raghavan, Nahid Rahman,
Rajarshi Rakshit, Krithi Ramamritham, Mike Reiter, Greg Riccardi, Odinaldo
Rodriguez, Mark Roth, Marek Rusinkiewicz, Michael Rys, Sunita Sarawagi,
N. L. Sarda, Patrick Schmid, Nikhil Sethi, S. Seshadri, Stewart Shen, Shashi
Shekhar, Amit Sheth, Max Smolens, Nandit Soparkar, Greg Speegle, Jeff
Storey, Dilys Thomas, Prem Thomas, Tim Wahls, Anita Whitehall, Christo-
pher Wilson, Marianne Winslett, Weining Zhang, and Liu Zhenming.

Book Production

The publisher was Raghu Srinivasan. The developmental editor was Melinda
D. Bilecki. The project manager was Melissa Leick. The marketing manager was

xxvi Preface

Curt Reynolds. The production supervisor was Laura Fuller. The book designer
was Brenda Rolwes. The cover designer was Studio Montage, St. Louis, Missouri.
The copyeditor was George Watson. The proofreader was Kevin Campbell. The
freelance indexer was Tobiah Waldron. The Aptara team consisted of Raman
Arora and Sudeshna Nandy

Personal Notes

Sudarshan would like to acknowledge his wife, Sita, for her love and support,
and children Madhur and Advaith for their love and joie de vivre. Hank would
like to acknowledge his wife, Joan, and his children, Abby and Joe, for their love
and understanding. Avi would like to acknowledge Valerie for her love, patience,
and support during the revision of this book.

aniie's

. S.
S.

wn

CHAPTER

Introduction

1.1

A database-management system (DBMS) is a collection of interrelated data and
a set of programs to access those data. The collection of data, usually referred to
as the database, contains information relevant to an enterprise. The primary goal
of a DBMS is to provide a way to store and retrieve database information that is
both convenient and efficient.

Database systems are designed to manage large bodies of information. Man-
agement of data involves both defining structures for storage of information
and providing mechanisms for the manipulation of information. In addition, the
database system must ensure the safety of the information stored, despite system
crashes or attempts at unauthorized access. If data are to be shared among several
users, the system must avoid possible anomalous results.

Because information is so important in most organizations, computer scien-
tists have developed a large body of concepts and techniques for managing data.
These concepts and techniques form the focus of this book. This chapter briefly
introduces the principles of database systems.

Database-System Applications

Databases are widely used. Here are some representative applications:

e Enterprise Information

o Sales: For customer, product, and purchase information.

o Accounting: For payments, receipts, account balances, assets and other
accounting information.

o Human resources: For information about employees, salaries, payroll taxes,
and benefits, and for generation of paychecks.

o Manufacturing: For management of the supply chain and for tracking pro-
duction of items in factories, inventories of items in warehouses and stores,
and orders for items.

Chapter1 Introduction

o Online retailers: For sales data noted above plus online order tracking,
generation of recommendation lists, and maintenance of online product
evaluations.

e Banking and Finance

o Banking: For customer information, accounts, loans, and banking transac-
tions.

o Credit card transactions: For purchases on credit cards and generation of
monthly statements.

o Finance: For storing information about holdings, sales, and purchases of
financial instruments such as stocks and bonds; also for storing real-time
market data to enable online trading by customers and automated trading
by the firm.

e Universities: For student information, course registrations, and grades (in
addition to standard enterprise information such as human resources and
accounting).

e Airlines: For reservations and schedule information. Airlines were among the
first to use databases in a geographically distributed manner.

o Telecommunication: For keeping records of calls made, generating monthly
bills, maintaining balances on prepaid calling cards, and storing information
about the communication networks.

As the list illustrates, databases form an essential part of every enterprise today,
storing not only types of information that are common to most enterprises, but
also information that is specific to the category of the enterprise.

Over the course of the last four decades of the twentieth century, use of
databases grew in all enterprises. In the early days, very few people interacted di-
rectly with database systems, although without realizing it, they interacted with
databases indirectly —through printed reports such as credit card statements, or
through agents such as bank tellers and airline reservation agents. Then auto-
mated teller machines came along and let users interact directly with databases.
Phone interfaces to computers (interactive voice-response systems) also allowed
users to deal directly with databases—a caller could dial a number, and press
phone keys to enter information or to select alternative options, to find flight
arrival/departure times, for example, or to register for courses in a university.

The Internet revolution of the late 1990s sharply increased direct user access to
databases. Organizations converted many of their phone interfaces to databases
into Web interfaces, and made a variety of services and information available
online. For instance, when you access an online bookstore and browse a book or
music collection, you are accessing data stored in a database. When you enter an
order online, your order is stored in a database. When you access a bank Web site
and retrieve your bank balance and transaction information, the information is
retrieved from the bank’s database system. When you access a Web site, informa-

1.2

1.2 Purpose of Database Systems 3

tion about you may be retrieved from a database to select which advertisements
you should see. Furthermore, data about your Web accesses may be stored in a
database.

Thus, although user interfaces hide details of access to a database, and most
people are not even aware they are dealing with a database, accessing databases
forms an essential part of almost everyone’s life today.

The importance of database systems can be judged in another way—today,
database system vendors like Oracle are among the largest software companies
in the world, and database systems form an important part of the product line of
Microsoft and IBM.

Purpose of Database Systems

Database systems arose in response to early methods of computerized manage-
ment of commercial data. As an example of such methods, typical of the 1960s,
consider part of a university organization that, among other data, keeps infor-
mation about all instructors, students, departments, and course offerings. One
way to keep the information on a computer is to store it in operating system
files. To allow users to manipulate the information, the system has a number of
application programs that manipulate the files, including programs to:

e Add new students, instructors, and courses
® Register students for courses and generate class rosters

® Assign grades to students, compute grade point averages (GPA), and generate
transcripts

System programmers wrote these application programs to meet the needs of the
university.

New application programs are added to the system as the need arises. For
example, suppose that a university decides to create a new major (say, computer
science). As a result, the university creates a new department and creates new per-
manent files (or adds information to existing files) to record information about all
the instructors in the department, students in that major, course offerings, degree
requirements, etc. The university may have to write new application programs
to deal with rules specific to the new major. New application programs may also
have to be written to handle new rules in the university. Thus, as time goes by,
the system acquires more files and more application programs.

This typical file-processing system is supported by a conventional operat-
ing system. The system stores permanent records in various files, and it needs
different application programs to extract records from, and add records to, the ap-
propriate files. Before database management systems (DBMSs) were introduced,
organizations usually stored information in such systems.

Keeping organizational information in a file-processing system has a number
of major disadvantages:

Chapter1 Introduction

* Data redundancy and inconsistency. Since different programmers create
the files and application programs over a long period, the various files are
likely to have different structures and the programs may be written in several
programming languages. Moreover, the same information may be duplicated
in several places (files). For example, if a student has a double major (say,
music and mathematics) the address and telephone number of that student
may appear in a file that consists of student records of students in the Music
department and in a file that consists of student records of students in the
Mathematics department. This redundancy leads to higher storage and access
cost. In addition, it may lead to data inconsistency; that is, the various copies
of the same data may no longer agree. For example, a changed student address
may be reflected in the Music department records but not elsewhere in the
system.

¢ Difficulty in accessing data. Suppose that one of the university clerks needs
to find out the names of all students who live within a particular postal-code
area. The clerk asks the data-processing department to generate such a list.
Because the designers of the original system did not anticipate this request,
there is no application program on hand to meet it. There is, however, an
application program to generate the list of all students. The university clerk
has now two choices: either obtain the list of all students and extract the
needed information manually or ask a programmer to write the necessary
application program. Both alternatives are obviously unsatisfactory. Suppose
that such a program is written, and that, several days later, the same clerk
needs to trim that list to include only those students who have taken at least
60 credit hours. As expected, a program to generate such a list does not
exist. Again, the clerk has the preceding two options, neither of which is
satisfactory.
The point here is that conventional file-processing environments do not
allow needed data to be retrieved in a convenient and efficient manner. More
responsive data-retrieval systems are required for general use.

* Data isolation. Because data are scattered in various files, and files may
be in different formats, writing new application programs to retrieve the
appropriate data is difficult.

¢ Integrity problems. The data values stored in the database must satisfy cer-
tain types of consistency constraints. Suppose the university maintains an
account for each department, and records the balance amount in each ac-
count. Suppose also that the university requires that the account balance of a
department may never fall below zero. Developers enforce these constraints
in the system by adding appropriate code in the various application pro-
grams. However, when new constraints are added, it is difficult to change
the programs to enforce them. The problem is compounded when constraints
involve several data items from different files.

* Atomicity problems. A computer system, like any other device, is subject
to failure. In many applications, it is crucial that, if a failure occurs, the data

1.2 Purpose of Database Systems 5

be restored to the consistent state that existed prior to the failure. Consider
a program to transfer $500 from the account balance of department A to
the account balance of department B. If a system failure occurs during the
execution of the program, it is possible that the $500 was removed from the
balance of department A but was not credited to the balance of department B,
resulting in an inconsistent database state. Clearly, it is essential to database
consistency that either both the credit and debit occur, or that neither occur.
That is, the funds transfer must be atomic—it must happen in its entirety or
not at all. It is difficult to ensure atomicity in a conventional file-processing
system.

Concurrent-access anomalies. For the sake of overall performance of the sys-
tem and faster response, many systems allow multiple users to update the
data simultaneously. Indeed, today, the largest Internet retailers may have
millions of accesses per day to their data by shoppers. In such an environ-
ment, interaction of concurrent updates is possible and may result in incon-
sistent data. Consider department A, with an account balance of $10,000. If
two department clerks debit the account balance (by say $500 and $100, re-
spectively) of department A at almost exactly the same time, the result of the
concurrent executions may leave the budget in an incorrect (or inconsistent)
state. Suppose that the programs executing on behalf of each withdrawal read
the old balance, reduce that value by the amount being withdrawn, and write
the result back. If the two programs run concurrently, they may both read the
value $10,000, and write back $9500 and $9900, respectively. Depending on
which one writes the value last, the account balance of department A may
contain either $9500 or $9900, rather than the correct value of $9400. To guard
against this possibility, the system must maintain some form of supervision.
But supervision is difficult to provide because data may be accessed by many
different application programs that have not been coordinated previously.
As another example, suppose a registration program maintains a count of
students registered for a course, in order to enforce limits on the number of
students registered. When a student registers, the program reads the current
count for the courses, verifies that the count is not already at the limit, adds
one to the count, and stores the count back in the database. Suppose two
students register concurrently, with the count at (say) 39. The two program
executions may both read the value 39, and both would then write back 40,
leading to an incorrect increase of only 1, even though two students suc-
cessfully registered for the course and the count should be 41. Furthermore,
suppose the course registration limit was 40; in the above case both students
would be able to register, leading to a violation of the limit of 40 students.

Security problems. Not every user of the database system should be able
to access all the data. For example, in a university, payroll personnel need
to see only that part of the database that has financial information. They do
not need access to information about academic records. But, since applica-
tion programs are added to the file-processing system in an ad hoc manner,
enforcing such security constraints is difficult.

1.3

Chapter1 Introduction

These difficulties, among others, prompted the development of database sys-
tems. In what follows, we shall see the concepts and algorithms that enable
database systems to solve the problems with file-processing systems. In most of
this book, we use a university organization as a running example of a typical
data-processing application.

View of Data

A database system is a collection of interrelated data and a set of programs that
allow users to access and modify these data. A major purpose of a database
system is to provide users with an abstract view of the data. That is, the system
hides certain details of how the data are stored and maintained.

1.3.1 Data Abstraction

For the system to be usable, it must retrieve data efficiently. The need for efficiency
has led designers to use complex data structures to represent data in the database.
Since many database-system users are not computer trained, developers hide the
complexity from users through several levels of abstraction, to simplify users’
interactions with the system:

e Physical level. The lowest level of abstraction describes how the data are ac-
tually stored. The physical level describes complex low-level data structures
in detail.

® Logical level. The next-higher level of abstraction describes what data are
stored in the database, and what relationships exist among those data. The
logical level thus describes the entire database in terms of a small number of
relatively simple structures. Although implementation of the simple struc-
tures at the logical level may involve complex physical-level structures, the
user of the logical level does not need to be aware of this complexity. This
is referred to as physical data independence. Database administrators, who
must decide what information to keep in the database, use the logical level
of abstraction.

e View level. The highest level of abstraction describes only part of the entire
database. Even though the logical level uses simpler structures, complexity
remains because of the variety of information stored in a large database.
Many users of the database system do not need all this information; instead,
they need to access only a part of the database. The view level of abstraction
exists to simplify their interaction with the system. The system may provide
many views for the same database.

Figure 1.1 shows the relationship among the three levels of abstraction.
An analogy to the concept of data types in programming languages may
clarify the distinction among levels of abstraction. Many high-level programming

1.3 View of Data 7

view level

view 1 view 2 cee view n

logical
level
|
physical
level

Figure 1.1 The three levels of data abstraction.

languages support the notion of a structured type. For example, we may describe
a record as follows:!

type instructor = record
ID : char (5);
name : char (20);
dept_name : char (20);
salary : numeric (8,2);
end;

This code defines a new record type called instructor with four fields. Each field
has a name and a type associated with it. A university organization may have
several such record types, including

o department, with fields dept_name, building, and budget
e course, with fields course_id, title, dept name, and credits

e student, with fields ID, name, dept_name, and tot_cred

At the physical level, an instructor, department, or student record can be de-
scribed as a block of consecutive storage locations. The compiler hides this level
of detail from programmers. Similarly, the database system hides many of the
lowest-level storage details from database programmers. Database administra-
tors, on the other hand, may be aware of certain details of the physical organiza-
tion of the data.

IThe actual type declaration depends on the language being used. C and C++ use struct declarations. Java does not have
such a declaration, but a simple class can be defined to the same effect.

Chapter1 Introduction

At the logical level, each such record is described by a type definition, as
in the previous code segment, and the interrelationship of these record types is
defined as well. Programmers using a programming language work at this level
of abstraction. Similarly, database administrators usually work at this level of
abstraction.

Finally, at the view level, computer users see a set of application programs
that hide details of the data types. At the view level, several views of the database
are defined, and a database user sees some or all of these views. In addition
to hiding details of the logical level of the database, the views also provide a
security mechanism to prevent users from accessing certain parts of the database.
For example, clerks in the university registrar office can see only that part of the
database that has information about students; they cannot access information
about salaries of instructors.

1.3.2 Instances and Schemas

Databases change over time as information is inserted and deleted. The collection
of information stored in the database at a particular moment is called an instance
of the database. The overall design of the database is called the database schema.
Schemas are changed infrequently, if at all.

The concept of database schemas and instances can be understood by analogy
toa program written in a programming language. A database schema corresponds
to the variable declarations (along with associated type definitions) in a program.
Each variable has a particular value at a given instant. The values of the variables
in a program at a point in time correspond to an instance of a database schema.

Database systems have several schemas, partitioned according to the levels
of abstraction. The physical schema describes the database design at the physical
level, while the logical schema describes the database design at the logical level.
A database may also have several schemas at the view level, sometimes called
subschemas, that describe different views of the database.

Of these, the logical schema is by far the most important, in terms of its effect
on application programs, since programmers construct applications by using the
logical schema. The physical schema is hidden beneath the logical schema, and can
usually be changed easily without affecting application programs. Application
programs are said to exhibit physical data independence if they do not depend
on the physical schema, and thus need not be rewritten if the physical schema
changes.

We study languages for describing schemas after introducing the notion of
data models in the next section.

1.3.3 Data Models

Underlying the structure of a database is the data model: a collection of conceptual
tools for describing data, data relationships, data semantics, and consistency
constraints. A data model provides a way to describe the design of a database at
the physical, logical, and view levels.

1.4

1.4 Database Languages 9

There are a number of different data models that we shall cover in the text.
The data models can be classified into four different categories:

e Relational Model. The relational model uses a collection of tables to repre-
sent both data and the relationships among those data. Each table has mul-
tiple columns, and each column has a unique name. Tables are also known
as relations. The relational model is an example of a record-based model.
Record-based models are so named because the database is structured in
fixed-format records of several types. Each table contains records of a par-
ticular type. Each record type defines a fixed number of fields, or attributes.
The columns of the table correspond to the attributes of the record type. The
relational data model is the most widely used data model, and a vast major-
ity of current database systems are based on the relational model. Chapters 2
through 8 cover the relational model in detail.

e Entity-Relationship Model. The entity-relationship (E-R) data model uses a
collection of basic objects, called entities, and relationships among these objects.
An entity is a “thing” or “object” in the real world that is distinguishable
from other objects. The entity-relationship model is widely used in database
design, and Chapter 7 explores it in detail.

® Object-Based Data Model. Object-oriented programming (especially in Java,
C++, or C#) has become the dominant software-development methodology.
This led to the development of an object-oriented data model that can be
seen as extending the E-R model with notions of encapsulation, methods
(functions), and object identity. The object-relational data model combines
features of the object-oriented data model and relational data model. Chap-
ter 22 examines the object-relational data model.

e Semistructured Data Model. The semistructured data model permits the
specification of data where individual data items of the same type may have
different sets of attributes. This is in contrast to the data models mentioned
earlier, where every data item of a particular type must have the same set
of attributes. The Extensible Markup Language (XML) is widely used to
represent semistructured data. Chapter 23 covers it.

Historically, the network data model and the hierarchical data model pre-
ceded the relational data model. These models were tied closely to the underlying
implementation, and complicated the task of modeling data. As a result they are
used little now, except in old database code that is still in service in some places.
They are outlined online in Appendices D and E for interested readers.

Database Languages

A database system provides a data-definition language to specify the database
schema and a data-manipulation language to express database queries and up-

10

Chapter1 Introduction

dates. In practice, the data-definition and data-manipulation languages are not
two separate languages; instead they simply form parts of a single database lan-
guage, such as the widely used SQL language.

1.4.1 Data-Manipulation Language

A data-manipulation language (DML) is a language that enables users to access
or manipulate data as organized by the appropriate data model. The types of
access are:

Retrieval of information stored in the database

e Insertion of new information into the database

Deletion of information from the database

Modification of information stored in the database
There are basically two types:

® Procedural DMLs require a user to specify what data are needed and how to
get those data.

e Declarative DMLs (also referred to as nonprocedural DMLs) require a user to
specify what data are needed without specifying how to get those data.

Declarative DMLs are usually easier to learn and use than are procedural
DMLs. However, since a user does not have to specify how to get the data, the
database system has to figure out an efficient means of accessing data.

A query is a statement requesting the retrieval of information. The portion of
a DML that involves information retrieval is called a query language. Although
technically incorrect, it is common practice to use the terms query language and
data-manipulation language synonymously.

There are a number of database query languages in use, either commercially
or experimentally. We study the most widely used query language, SQL, in Chap-
ters 3, 4, and 5. We also study some other query languages in Chapter 6.

The levels of abstraction that we discussed in Section 1.3 apply not only
to defining or structuring data, but also to manipulating data. At the physical
level, we must define algorithms that allow efficient access to data. At higher
levels of abstraction, we emphasize ease of use. The goal is to allow humans
to interact efficiently with the system. The query processor component of the
database system (which we study in Chapters 12 and 13) translates DML queries
into sequences of actions at the physical level of the database system.

1.4.2 Data-Definition Language

We specify a database schema by a set of definitions expressed by a special
language called a data-definition language (DDL). The DDL is also used to specify
additional properties of the data.

1.4 Database Languages 11

We specify the storage structure and access methods used by the database
system by a set of statements in a special type of DDL called a data storage and
definition language. These statements define the implementation details of the
database schemas, which are usually hidden from the users.

The data values stored in the database must satisfy certain consistency con-
straints. For example, suppose the university requires that the account balance
of a department must never be negative. The DDL provides facilities to specify
such constraints. The database system checks these constraints every time the
database is updated. In general, a constraint can be an arbitrary predicate per-
taining to the database. However, arbitrary predicates may be costly to test. Thus,
database systems implement integrity constraints that can be tested with minimal
overhead:

¢ Domain Constraints. A domain of possible values must be associated with
every attribute (for example, integer types, character types, date/time types).
Declaring an attribute to be of a particular domain acts as a constraint on the
values that it can take. Domain constraints are the most elementary form of
integrity constraint. They are tested easily by the system whenever a new
data item is entered into the database.

e Referential Integrity. There are cases where we wish to ensure that a value
that appears in one relation for a given set of attributes also appears in a cer-
tain set of attributes in another relation (referential integrity). For example,
the department listed for each course must be one that actually exists. More
precisely, the dept_name value in a course record must appear in the dept_name
attribute of some record of the department relation. Database modifications
can cause violations of referential integrity. When a referential-integrity con-
straint is violated, the normal procedure is to reject the action that caused the
violation.

e Assertions. An assertion is any condition that the database must always
satisfy. Domain constraints and referential-integrity constraints are special
forms of assertions. However, there are many constraints that we cannot
express by using only these special forms. For example, “Every department
must have at least five courses offered every semester” must be expressed as
an assertion. When an assertion is created, the system tests it for validity. If
the assertion is valid, then any future modification to the database is allowed
only if it does not cause that assertion to be violated.

e Authorization. We may want to differentiate among the users as far as the
type of access they are permitted on various data values in the database. These
differentiations are expressed in terms of authorization, the most common
being: read authorization, which allows reading, but not modification, of
data; insert authorization, which allows insertion of new data, but not mod-
ification of existing data; update authorization, which allows modification,
but not deletion, of data; and delete authorization, which allows deletion of
data. We may assign the user all, none, or a combination of these types of
authorization.

12

1.5

Chapter1 Introduction

The DDL, just like any other programming language, gets as input some
instructions (statements) and generates some output. The output of the DDL is
placed in the data dictionary, which contains metadata—that is, data about data.
The data dictionary is considered to be a special type of table that can only be
accessed and updated by the database system itself (not a regular user). The
database system consults the data dictionary before reading or modifying actual
data.

Relational Databases

A relational database is based on the relational model and uses a collection of
tables to represent both data and the relationships among those data. It also in-
cludes a DML and DDL. In Chapter 2 we present a gentle introduction to the
fundamentals of the relational model. Most commercial relational database sys-
tems employ the SQL language, which we cover in great detail in Chapters 3, 4,
and 5. In Chapter 6 we discuss other influential languages.

1.5.1 Tables

Each table has multiple columns and each column has a unique name. Figure 1.2
presents a sample relational database comprising two tables: one shows details
of university instructors and the other shows details of the various university
departments.

The first table, the instructor table, shows, for example, that an instructor
named Einstein with ID 22222 is a member of the Physics department and has an
annual salary of $95,000. The second table, department, shows, for example, that
the Biology department is located in the Watson building and has a budget of
$90,000. Of course, a real-world university would have many more departments
and instructors. We use small tables in the text to illustrate concepts. A larger
example for the same schema is available online.

The relational model is an example of a record-based model. Record-based
models are so named because the database is structured in fixed-format records
of several types. Each table contains records of a particular type. Each record type
defines a fixed number of fields, or attributes. The columns of the table correspond
to the attributes of the record type.

It is not hard to see how tables may be stored in files. For instance, a special
character (such as a comma) may be used to delimit the different attributes of a
record, and another special character (such as a new-line character) may be used
to delimit records. The relational model hides such low-level implementation
details from database developers and users.

We also note that it is possible to create schemas in the relational model that
have problems such as unnecessarily duplicated information. For example, sup-
pose we store the department budget as an attribute of the instructor record. Then,
whenever the value of a particular budget (say that one for the Physics depart-
ment) changes, that change must to be reflected in the records of all instructors

1.5 Relational Databases 13

‘ ID ‘ name dept_name ‘ salary ‘
22222 | Einstein Physics 95000
12121 | Wu Finance 90000
32343 | El Said History 60000
45565 | Katz Comp. Sci. | 75000
98345 | Kim Elec. Eng. | 80000
76766 | Crick Biology 72000

10101 | Srinivasan | Comp. Sci. | 65000
58583 | Califieri History 62000

83821 | Brandt Comp. Sci. | 92000
15151 | Mozart Music 40000
33456 | Gold Physics 87000
76543 | Singh Finance 80000

(a) The instructor table

‘ dept_name ‘ building | budget

Comp. Sci. | Taylor 100000
Biology Watson 90000
Elec. Eng. | Taylor 85000

Music Packard 80000
Finance Painter 120000
History Painter 50000
Physics Watson 70000

(b) The department table

Figure 1.2 A sample relational database.

associated with the Physics department. In Chapter 8, we shall study how to
distinguish good schema designs from bad schema designs.

1.5.2 Data-Manipulation Language

The SQL query language is nonprocedural. A query takes as input several tables
(possibly only one) and always returns a single table. Here is an example of an
SQL query that finds the names of all instructors in the History department:

select instructor.name
from instructor
where instructor.dept_-name = "History’;

The query specifies that those rows from the table instructor where the dept_name is
History must be retrieved, and the name attribute of these rows must be displayed.
More specifically, the result of executing this query is a table with a single column

14

Chapter1 Introduction

labeled name, and a set of rows, each of which contains the name of an instructor
whose dept_name, is History. If the query is run on the table in Figure 1.2, the result
will consist of two rows, one with the name El Said and the other with the name
Califieri.

Queries may involve information from more than one table. For instance, the
following query finds the instructor ID and department name of all instructors
associated with a department with budget of greater than $95,000.

select instructor.ID, department.dept_name

from instructor, department

where instructor.dept_name= department.dept_name and
department.budget > 95000;

If the above query were run on the tables in Figure 1.2, the system would find
that there are two departments with budget of greater than $95,000—Computer
Science and Finance; there are five instructors in these departments. Thus, the
result will consist of a table with two columns (ID, dept_name) and five rows:
(12121, Finance), (45565, Computer Science), (10101, Computer Science), (83821,
Computer Science), and (76543, Finance).

1.5.3 Data-Definition Language

SQL provides a rich DDL that allows one to define tables, integrity constraints,
assertions, etc.
For instance, the following SQL DDL statement defines the department table:

create table department
(deptname char (20),
building char (15),
budget numeric (12,2));

Execution of the above DDL statement creates the department table with three
columns: dept_name, building, and budget, each of which has a specific data type
associated with it. We discuss data types in more detail in Chapter 3. In addition,
the DDL statement updates the data dictionary, which contains metadata (see
Section 1.4.2). The schema of a table is an example of metadata.

1.5.4 Database Access from Application Programs

SQL is not as powerful as a universal Turing machine; that is, there are some
computations that are possible using a general-purpose programming language
but are not possible using SQL. SQL also does not support actions such as input
from users, output to displays, or communication over the network. Such com-
putations and actions must be written in a host language, such as C, C++, or Java,
with embedded SQL queries that access the data in the database. Application
programs are programs that are used to interact with the database in this fashion.

1.6

1.6 Database Design 15

Examples in a university system are programs that allow students to register for
courses, generate class rosters, calculate student GPA, generate payroll checks, etc.

To access the database, DML statements need to be executed from the host
language. There are two ways to do this:

® By providing an application program interface (set of procedures) that can
be used to send DML and DDL statements to the database and retrieve the
results.

The Open Database Connectivity (ODBC) standard for use with the C
language is a commonly used application program interface standard. The
Java Database Connectivity (JDBC) standard provides corresponding features
to the Java language.

® By extending the host language syntax to embed DML calls within the host
language program. Usually, a special character prefaces DML calls, and a
preprocessor, called the DML precompiler, converts the DML statements to
normal procedure calls in the host language.

Database Design

Database systems are designed to manage large bodies of information. These large
bodies of information do not exist in isolation. They are part of the operation of
some enterprise whose end product may be information from the database or
may be some device or service for which the database plays only a supporting
role.

Database design mainly involves the design of the database schema. The
design of a complete database application environment that meets the needs of
the enterprise being modeled requires attention to a broader set of issues. In
this text, we focus initially on the writing of database queries and the design of
database schemas. Chapter 9 discusses the overall process of application design.

1.6.1 Design Process

A high-level data model provides the database designer with a conceptual frame-
work in which to specify the data requirements of the database users, and how
the database will be structured to fulfill these requirements. The initial phase of
database design, then, is to characterize fully the data needs of the prospective
database users. The database designer needs to interact extensively with domain
experts and users to carry out this task. The outcome of this phase is a specification
of user requirements.

Next, the designer chooses a data model, and by applying the concepts of
the chosen data model, translates these requirements into a conceptual schema of
the database. The schema developed at this conceptual-design phase provides a
detailed overview of the enterprise. The designer reviews the schema to confirm
that all data requirements are indeed satisfied and are not in conflict with one
another. The designer can also examine the design to remove any redundant

16

Chapter1 Introduction

features. The focus at this point is on describing the data and their relationships,
rather than on specifying physical storage details.

In terms of the relational model, the conceptual-design process involves de-
cisions on what attributes we want to capture in the database and how to group
these attributes to form the various tables. The “what” part is basically a business
decision, and we shall not discuss it further in this text. The “how” part is mainly a
computer-science problem. There are principally two ways to tackle the problem.
The first one is to use the entity-relationship model (Section 1.6.3); the other is
to employ a set of algorithms (collectively known as normalization) that takes as
input the set of all attributes and generates a set of tables (Section 1.6.4).

A fully developed conceptual schema indicates the functional requirements
of the enterprise. Ina specification of functional requirements, users describe the
kinds of operations (or transactions) that will be performed on the data. Example
operations include modifying or updating data, searching for and retrieving
specific data, and deleting data. At this stage of conceptual design, the designer
can review the schema to ensure it meets functional requirements.

The process of moving from an abstract data model to the implementation of
the database proceeds in two final design phases. In the logical-design phase, the
designer maps the high-level conceptual schema onto the implementation data
model of the database system that will be used. The designer uses the resulting
system-specific database schema in the subsequent physical-design phase, in
which the physical features of the database are specified. These features include
the form of file organization and the internal storage structures; they are discussed
in Chapter 10.

1.6.2 Database Design for a University Organization

To illustrate the design process, let us examine how a database for a university
could be designed. The initial specification of user requirements may be based
on interviews with the database users, and on the designer’s own analysis of
the organization. The description that arises from this design phase serves as the
basis for specifying the conceptual structure of the database. Here are the major
characteristics of the university.

¢ The university is organized into departments. Each department is identified
by a unique name (dept_name), is located in a particular building, and has a
budget.

¢ FEachdepartmenthas alist of courses it offers. Each course has associated with
it a course_id, title, dept_name, and credits, and may also have have associated
prerequisites.

¢ Instructors are identified by their unique ID. Each instructor has name, asso-
ciated department (dept_name), and salary.

¢ Students are identified by their unique ID. Each student has a name, an associ-
ated major department (dept_name), and tot_cred (total credit hours the student
earned thus far).

1.6 Database Design 17

¢ The university maintains a list of classrooms, specifying the name of the
building, room_number, and room capacity.

¢ The university maintains a list of all classes (sections) taught. Each section is
identified by a course_id, sec_id, year, and semester, and has associated with it
a semester, year, building, room_number, and time_slot_id (the time slot when the
class meets).

¢ The department has a list of teaching assignments specifying, for each in-
structor, the sections the instructor is teaching.

¢ The university has a list of all student course registrations, specifying, for
each student, the courses and the associated sections that the student has
taken (registered for).

A real university database would be much more complex than the preceding
design. However we use this simplified model to help you understand conceptual
ideas without getting lost in details of a complex design.

1.6.3 The Entity-Relationship Model

The entity-relationship (E-R) data model uses a collection of basic objects, called
entities, and relationships among these objects. An entity is a “thing” or “object”
in the real world that is distinguishable from other objects. For example, each
person is an entity, and bank accounts can be considered as entities.

Entities are described in a database by a set of attributes. For example, the
attributes dept_name, building, and budget may describe one particular department
in a university, and they form attributes of the department entity set. Similarly,
attributes ID, name, and salary may describe an instructor entity.?

The extra attribute ID is used to identify an instructor uniquely (since it may
be possible to have two instructors with the same name and the same salary).
A unique instructor identifier must be assigned to each instructor. In the United
States, many organizations use the social-security number of a person (a unique
number the U.S. government assigns to every person in the United States) as a
unique identifier.

A relationship is an association among several entities. For example, a member
relationship associates an instructor with her department. The set of all entities
of the same type and the set of all relationships of the same type are termed an
entity set and relationship set, respectively.

The overall logical structure (schema) of a database can be expressed graph-
ically by an entity-relationship (E-R) diagram. There are several ways in which to
draw these diagrams. One of the most popular is to use the Unified Modeling
Language (UML). In the notation we use, which is based on UML, an E-R diagram
is represented as follows:

2The astute reader will notice that we dropped the attribute dept name from the set of attributes describing the instructor
entity set; this is not an error. In Chapter 7 we shall provide a detailed explanation of why this is the case.

18

Chapter1 Introduction

instructor department
ID dept_name
name building
salary budget

Figure 1.3 A sample E-R diagram.

¢ Entity sets are represented by a rectangular box with the entity set name in
the header and the attributes listed below it.

® Relationship sets are represented by a diamond connecting a pair of related
entity sets. The name of the relationship is placed inside the diamond.

As an illustration, consider part of a university database consisting of instruc-
tors and the departments with which they are associated. Figure 1.3 shows the
corresponding E-R diagram. The E-R diagram indicates that there are two entity
sets, instructor and department, with attributes as outlined earlier. The diagram
also shows a relationship member between instructor and department.

In addition to entities and relationships, the E-R model represents certain
constraints to which the contents of a database must conform. One important
constraint is mapping cardinalities, which express the number of entities to
which another entity can be associated via a relationship set. For example, if each
instructor must be associated with only a single department, the E-R model can
express that constraint.

The entity-relationship model is widely used in database design, and Chapter
7 explores it in detail.

1.6.4 Normalization

Another method for designing a relational database is to use a process commonly
known as normalization. The goal is to generate a set of relation schemas that
allows us to store information without unnecessary redundancy, yet also allows
us to retrieve information easily. The approach is to design schemas that are in
an appropriate normal form. To determine whether a relation schema is in one of
the desirable normal forms, we need additional information about the real-world
enterprise that we are modeling with the database. The most common approach
is to use functional dependencies, which we cover in Section 8.4.

To understand the need for normalization, let us look at what can go wrong
in a bad database design. Among the undesirable properties that a bad design
may have are:

® Repetition of information

¢ Inability to represent certain information

1.6 Database Design 19

ID name salary | dept_name building budget
22222 | Einstein 95000 | Physics Watson 70000
12121 Wu 90000 | Finance Painter 120000
32343 | ElSaid 60000 | History Painter 50000
45565 | Katz 75000 | Comp. Sci. | Taylor 100000
98345 Kim 80000 | Elec. Eng. Taylor 85000
76766 | Crick 72000 | Biology Watson 90000
10101 | Srinivasan | 65000 | Comp. Sci. | Taylor 100000
58583 | Califieri 62000 | History Painter 50000
83821 | Brandt 92000 | Comp. Sci. | Taylor 100000
15151 Mozart 40000 | Music Packard 80000
33456 | Gold 87000 | Physics Watson 70000
76543 | Singh 80000 | Finance Painter 120000

Figure 1.4 The faculty table.

We shall discuss these problems with the help of a modified database design for
our university example.

Suppose that instead of having the two separate tables instructor and depart-
ment, we have a single table, faculty, that combines the information from the two
tables (as shown in Figure 1.4). Notice that there are two rows in faculty that
contain repeated information about the History department, specifically, that
department’s building and budget. The repetition of information in our alterna-
tive design is undesirable. Repeating information wastes space. Furthermore, it
complicates updating the database. Suppose that we wish to change the budget
amount of the History department from $50,000 to $46,800. This change must
be reflected in the two rows; contrast this with the original design, where this
requires an update to only a single row. Thus, updates are more costly under the
alternative design than under the original design. When we perform the update
in the alternative database, we must ensure that every tuple pertaining to the His-
tory department is updated, or else our database will show two different budget
values for the History department.

Now, let us shift our attention to the issue of “inability to represent certain
information.” Suppose we are creating a new department in the university. In the
alternative design above, we cannot represent directly the information concerning
a department (dept_name, building, budget) unless that department has at least one
instructor at the university. This is because rows in the faculty table require
values for ID, name, and salary. This means that we cannot record information
about the newly created department until the first instructor is hired for the new
department.

One solution to this problem is to introduce null values. The null value
indicates that the value does not exist (or is not known). An unknown value
may be either missing (the value does exist, but we do not have that information)
or not known (we do not know whether or not the value actually exists). As we

20

1.7

Chapter1 Introduction

shall see later, null values are difficult to handle, and it is preferable not to resort
to them. If we are not willing to deal with null values, then we can create a
particular item of department information only when the department has at least
one instructor associated with the department. Furthermore, we would have
to delete this information when the last instructor in the department departs.
Clearly, this situation is undesirable, since, under our original database design,
the department information would be available regardless of whether or not
there is an instructor associated with the department, and without resorting to
null values.

An extensive theory of normalization has been developed that helps formally
define what database designs are undesirable, and how to obtain desirable de-
signs. Chapter 8 covers relational-database design, including normalization.

Data Storage and Querying

A database system is partitioned into modules that deal with each of the re-
sponsibilities of the overall system. The functional components of a database
system can be broadly divided into the storage manager and the query processor
components.

The storage manager is important because databases typically require a large
amount of storage space. Corporate databases range in size from hundreds of
gigabytes to, for the largest databases, terabytes of data. A gigabyte is approxi-
mately 1000 megabytes (actually 1024) (1 billion bytes), and a terabyte is 1 million
megabytes (1 trillion bytes). Since the main memory of computers cannot store
this much information, the information is stored on disks. Data are moved be-
tween disk storage and main memory as needed. Since the movement of data
to and from disk is slow relative to the speed of the central processing unit, it is
imperative that the database system structure the data so as to minimize the need
to move data between disk and main memory.

The query processor is important because it helps the database system to
simplify and facilitate access to data. The query processor allows database users
to obtain good performance while being able to work at the view level and not be
burdened with understanding the physical-level details of the implementation of
the system. It is the job of the database system to translate updates and queries
written in a nonprocedural language, at the logical level, into an efficient sequence
of operations at the physical level.

1.7.1 Storage Manager

The storage manager is the component of a database system that provides the
interface between the low-level data stored in the database and the application
programs and queries submitted to the system. The storage manager is respon-
sible for the interaction with the file manager. The raw data are stored on the
disk using the file system provided by the operating system. The storage man-
ager translates the various DML statements into low-level file-system commands.

1.7 Data Storage and Querying 21

Thus, the storage manager is responsible for storing, retrieving, and updating
data in the database.
The storage manager components include:

e Authorization and integrity manager, which tests for the satisfaction of
integrity constraints and checks the authority of users to access data.

e Transaction manager, which ensures that the database remains in a consis-
tent (correct) state despite system failures, and that concurrent transaction
executions proceed without conflicting.

¢ File manager, which manages the allocation of space on disk storage and the
data structures used to represent information stored on disk.

e Buffer manager, which is responsible for fetching data from disk storage into
main memory, and deciding what data to cache in main memory. The buffer
manager is a critical part of the database system, since it enables the database
to handle data sizes that are much larger than the size of main memory.

The storage manager implements several data structures as part of the phys-
ical system implementation:

e Data files, which store the database itself.

e Data dictionary, which stores metadata about the structure of the database,
in particular the schema of the database.

¢ Indices, which can provide fast access to data items. Like the index in this
textbook, a database index provides pointers to those data items that hold a
particular value. For example, we could use an index to find the instructor
record with a particular ID, or all instructor records with a particular name.
Hashing is an alternative to indexing that is faster in some but not all cases.

We discuss storage media, file structures, and buffer management in Chapter 10.
Methods of accessing data efficiently via indexing or hashing are discussed in
Chapter 11.

1.7.2 The Query Processor

The query processor components include:

® DDL interpreter, which interprets DDL statements and records the definitions
in the data dictionary.

e DML compiler, which translates DML statements in a query language into an
evaluation plan consisting of low-level instructions that the query evaluation
engine understands.

22

1.8

Chapter1 Introduction

A query can usually be translated into any of a number of alternative
evaluation plans that all give the same result. The DML compiler also performs
query optimization; that is, it picks the lowest cost evaluation plan from
among the alternatives.

® Query evaluation engine, which executes low-level instructions generated
by the DML compiler.

Query evaluation is covered in Chapter 12, while the methods by which the query
optimizer chooses from among the possible evaluation strategies are discussed
in Chapter 13.

Transaction Management

Often, several operations on the database form a single logical unit of work. An
example is a funds transfer, as in Section 1.2, in which one department account
(say A) is debited and another department account (say B) is credited. Clearly, it
is essential that either both the credit and debit occur, or that neither occur. That
is, the funds transfer must happen in its entirety or not at all. This all-or-none
requirement is called atomicity. In addition, it is essential that the execution of the
funds transfer preserve the consistency of the database. That is, the value of the
sum of the balances of Aand B must be preserved. This correctness requirement
is called consistency. Finally, after the successful execution of a funds transfer,
the new values of the balances of accounts A and B must persist, despite the
possibility of system failure. This persistence requirement is called durability.

A transaction is a collection of operations that performs a single logical
function in a database application. Each transaction is a unit of both atomicity
and consistency. Thus, we require that transactions do not violate any database-
consistency constraints. That is, if the database was consistent when a transaction
started, the database must be consistent when the transaction successfully ter-
minates. However, during the execution of a transaction, it may be necessary
temporarily to allow inconsistency, since either the debit of A or the credit of B
must be done before the other. This temporary inconsistency, although necessary,
may lead to difficulty if a failure occurs.

It is the programmer’s responsibility to define properly the various transac-
tions, so that each preserves the consistency of the database. For example, the
transaction to transfer funds from the account of department A to the account of
department B could be defined to be composed of two separate programs: one
that debits account A, and another that credits account B. The execution of these
two programs one after the other will indeed preserve consistency. However, each
program by itself does not transform the database from a consistent state to a new
consistent state. Thus, those programs are not transactions.

Ensuring the atomicity and durability properties is the responsibility of the
database system itself—specifically, of the recovery manager. In the absence of
failures, all transactions complete successfully, and atomicity is achieved easily.

1.9

1.9 Database Architecture 23

However, because of various types of failure, a transaction may not always com-
plete its execution successfully. If we are to ensure the atomicity property, a failed
transaction must have no effect on the state of the database. Thus, the database
must be restored to the state in which it was before the transaction in question
started executing. The database system must therefore perform failure recovery,
that is, detect system failures and restore the database to the state that existed
prior to the occurrence of the failure.

Finally, when several transactions update the database concurrently, the con-
sistency of data may no longer be preserved, even though each individual transac-
tion is correct. It is the responsibility of the concurrency-control manager to con-
trol the interaction among the concurrent transactions, to ensure the consistency
of the database. The transaction manager consists of the concurrency-control
manager and the recovery manager.

The basic concepts of transaction processing are covered in Chapter 14. The
management of concurrent transactions is covered in Chapter 15. Chapter 16
covers failure recovery in detail.

The concept of a transaction has been applied broadly in database systems
and applications. While the initial use of transactions was in financial applica-
tions, the concept is now used in real-time applications in telecommunication, as
well as in the management of long-duration activities such as product design or
administrative workflows. These broader applications of the transaction concept
are discussed in Chapter 26.

Database Architecture

We are now in a position to provide a single picture (Figure 1.5) of the various
components of a database system and the connections among them.

The architecture of a database system is greatly influenced by the underlying
computer system on which the database system runs. Database systems can be
centralized, or client-server, where one server machine executes work on behalf
of multiple client machines. Database systems can also be designed to exploit par-
allel computer architectures. Distributed databases span multiple geographically
separated machines.

In Chapter 17 we cover the general structure of modern computer systems.
Chapter 18 describes how various actions of a database, in particular query pro-
cessing, can be implemented to exploit parallel processing. Chapter 19 presents a
number of issues that arise in a distributed database, and describes how to deal
with each issue. The issues include how to store data, how to ensure atomicity of
transactions that execute at multiple sites, how to perform concurrency control,
and how to provide high availability in the presence of failures. Distributed query
processing and directory systems are also described in this chapter.

Most users of a database system today are not present at the site of the
database system, but connect to it through a network. We can therefore differen-
tiate between client machines, on which remote database users work, and server
machines, on which the database system runs.

24 Chapter1 Introduction

Database applications are usually partitioned into two or three parts, as in
Figure 1.6. In a two-tier architecture, the application resides at the client machine,
where it invokes database system functionality at the server machine through

naive users . sophisticated

(tellers, agents application —— database
web {lsgrs) ’ programmers (analysts) administrators
use write use use

application application query administration
interfaces rograms tools tools

compiler and DML queries | |DDL interpreter
/ linker

[i
I I
I I
I I
I I
: | :
! application I
: program DML compiler !
I I
I I
I I
I i
I I
I I
I I
I I
L

object code and organizer

query evaluation J

engine

query processor

buffer manager | | file manager | authorization transaction
] and integrity manager
manager

storage manager

disk storage

\
indices

data statistical data

data dictionary

Figure 1.5 System structure.

1.10

1.10 Data Mining and Information Retrieval 25

| | i }
| | | |
: | client ! !
l l ! !
: : | i
L | |
! application | I | application client | !
\ / N /
network network
// L > // D \\I
i i i application server !
| | database system | | | | |
server |
: i i database system | |
|
\\ ________________ /I \\ ________________ /l
(a) Two-tier architecture (b) Three-tier architecture

Figure 1.6 Two-tier and three-tier architectures.

query language statements. Application program interface standards like ODBC
and JDBC are used for interaction between the client and the server.

In contrast, in a three-tier architecture, the client machine acts as merely a
front end and does not contain any direct database calls. Instead, the client end
communicates with an application server, usually through a forms interface.
The application server in turn communicates with a database system to access
data. The business logic of the application, which says what actions to carry out
under what conditions, is embedded in the application server, instead of being
distributed across multiple clients. Three-tier applications are more appropriate
for large applications, and for applications that run on the World Wide Web.

Data Mining and Information Retrieval

The term data mining refers loosely to the process of semiautomatically analyzing
large databases to find useful patterns. Like knowledge discovery in artificial
intelligence (also called machine learning) or statistical analysis, data mining
attempts to discover rules and patterns from data. However, data mining differs
from machine learning and statistics in that it deals with large volumes of data,
stored primarily on disk. That is, data mining deals with “knowledge discovery
in databases.”

Some types of knowledge discovered from a database can be represented by
a set of rules. The following is an example of a rule, stated informally: “Young
women with annual incomes greater than $50,000 are the most likely people to buy
small sports cars.” Of course such rules are not universally true, but rather have

26

1.1

Chapter1 Introduction

degrees of “support” and “confidence.” Other types of knowledge are represented
by equations relating different variables to each other, or by other mechanisms
for predicting outcomes when the values of some variables are known.

There are a variety of possible types of patterns that may be useful, and
different techniques are used to find different types of patterns. In Chapter 20 we
study a few examples of patterns and see how they may be automatically derived
from a database.

Usually there is a manual component to data mining, consisting of preprocess-
ing data to a form acceptable to the algorithms, and postprocessing of discovered
patterns to find novel ones that could be useful. There may also be more than
one type of pattern that can be discovered from a given database, and manual
interaction may be needed to pick useful types of patterns. For this reason, data
mining is really a semiautomatic process in real life. However, in our description
we concentrate on the automatic aspect of mining.

Businesses have begun to exploit the burgeoning data online to make better
decisions about their activities, such as what items to stock and how best to
target customers to increase sales. Many of their queries are rather complicated,
however, and certain types of information cannot be extracted even by using SQL.

Several techniques and tools are available to help with decision support.
Several tools for data analysis allow analysts to view data in different ways.
Other analysis tools precompute summaries of very large amounts of data, in
order to give fast responses to queries. The SQL standard contains additional
constructs to support data analysis.

Large companies have diverse sources of data that they need to use for making
business decisions. To execute queries efficiently on such diverse data, companies
have built data warehouses. Data warehouses gather data from multiple sources
under a unified schema, at a single site. Thus, they provide the user a single
uniform interface to data.

Textual data, too, has grown explosively. Textual data is unstructured, unlike
the rigidly structured data in relational databases. Querying of unstructured
textual data is referred to as information retrieval. Information retrieval systems
have much in common with database systems—in particular, the storage and
retrieval of data on secondary storage. However, the emphasis in the field of
information systems is different from that in database systems, concentrating on
issues such as querying based on keywords; the relevance of documents to the
query; and the analysis, classification, and indexing of documents. In Chapters 20
and 21, we cover decision support, including online analytical processing, data
mining, data warehousing, and information retrieval.

Specialty Databases

Several application areas for database systems are limited by the restrictions of the
relational data model. As aresult, researchers have developed several data models
to deal with these application domains, including object-based data models and
semistructured data models.

1.12

1.12 Database Users and Administrators 27

1.11.1 Object-Based Data Models

Object-oriented programming has become the dominant software-development
methodology. This led to the development of an object-oriented data model that
can be seen as extending the E-R model with notions of encapsulation, methods
(functions), and object identity. Inheritance, object identity, and encapsulation
(information hiding), with methods to provide an interface to objects, are among
the key concepts of object-oriented programming that have found applications in
data modeling. The object-oriented data model also supports a rich type system,
including structured and collection types. In the 1980s, several database systems
based on the object-oriented data model were developed.

The major database vendors presently support the object-relational data
model, a data model that combines features of the object-oriented data model and
relational data model. It extends the traditional relational model with a variety
of features such as structured and collection types, as well as object orientation.
Chapter 22 examines the object-relational data model.

1.11.2 Semistructured Data Models

Semistructured data models permit the specification of data where individual
data items of the same type may have different sets of attributes. This is in contrast
with the data models mentioned earlier, where every data item of a particular
type must have the same set of attributes.

The XML language was initially designed as a way of adding markup infor-
mation to text documents, but has become important because of its applications in
data exchange. XML provides a way to represent data that have nested structure,
and furthermore allows a great deal of flexibility in structuring of data, which is
important for certain kinds of nontraditional data. Chapter 23 describes the XML
language, different ways of expressing queries on data represented in XML, and
transforming XML data from one form to another.

Database Users and Administrators

A primary goal of a database system is to retrieve information from and store
new information into the database. People who work with a database can be
categorized as database users or database administrators.

1.12.1 Database Users and User Interfaces

There are four different types of database-system users, differentiated by the way
they expect to interact with the system. Different types of user interfaces have
been designed for the different types of users.

* Naive users are unsophisticated users who interact with the system by in-
voking one of the application programs that have been written previously.
For example, a clerk in the university who needs to add a new instructor to

28

Chapter1 Introduction

department A invokes a program called new_hire. This program asks the clerk
for the name of the new instructor, her new ID, the name of the department
(thatis, A), and the salary.

The typical user interface for naive users is a forms interface, where the
user can fill in appropriate fields of the form. Naive users may also simply
read reports generated from the database.

As another example, consider a student, who during class registration
period, wishes to register for a class by using a Web interface. Such a user
connects to a Web application program that runs at a Web server. The appli-
cation first verifies the identity of the user, and allows her to access a form
where she enters the desired information. The form information is sent back
to the Web application at the server, which then determines if there is room
in the class (by retrieving information from the database) and if so adds the
student information to the class roster in the database.

Application programmers are computer professionals who write application
programs. Application programmers can choose from many tools to develop
user interfaces. Rapid application development (RAD) tools are tools that en-
able an application programmer to construct forms and reports with minimal
programming effort.

Sophisticated users interact with the system without writing programs. In-
stead, they form their requests either using a database query language or by
using tools such as data analysis software. Analysts who submit queries to
explore data in the database fall in this category.

Specialized users are sophisticated users who write specialized database
applications that do not fit into the traditional data-processing framework.
Among these applications are computer-aided design systems, knowledge-
base and expert systems, systems that store data with complex data types (for
example, graphics data and audio data), and environment-modeling systems.
Chapter 22 covers several of these applications.

1.12.2 Database Administrator

One of the main reasons for using DBMSs is to have central control of both the data
and the programs that access those data. A person who has such central control
over the system is called a database administrator (DBA). The functions of a DBA
include:

Schema definition. The DBA creates the original database schema by execut-
ing a set of data definition statements in the DDL.

Storage structure and access-method definition.

Schema and physical-organization modification. The DBA carries out changes
to the schema and physical organization to reflect the changing needs of the
organization, or to alter the physical organization to improve performance.

1.13

1.13 History of Database Systems 29

¢ Granting of authorization for data access. By granting different types of

authorization, the database administrator can regulate which parts of the
database various users can access. The authorization information is kept in a
special system structure that the database system consults whenever someone
attempts to access the data in the system.

Routine maintenance. Examples of the database administrator’s routine
maintenance activities are:

o Periodically backing up the database, either onto tapes or onto remote
servers, to prevent loss of data in case of disasters such as flooding.

o Ensuring that enough free disk space is available for normal operations,
and upgrading disk space as required.

© Monitoring jobs running on the database and ensuring that performance
is not degraded by very expensive tasks submitted by some users.

History of Database Systems

Information processing drives the growth of computers, as it has from the earli-
est days of commercial computers. In fact, automation of data processing tasks
predates computers. Punched cards, invented by Herman Hollerith, were used
at the very beginning of the twentieth century to record U.S. census data, and
mechanical systems were used to process the cards and tabulate results. Punched
cards were later widely used as a means of entering data into computers.

Techniques for data storage and processing have evolved over the years:

® 1950s and early 1960s: Magnetic tapes were developed for data storage. Data

processing tasks such as payroll were automated, with data stored on tapes.
Processing of data consisted of reading data from one or more tapes and
writing data to a new tape. Data could also be input from punched card
decks, and output to printers. For example, salary raises were processed by
entering the raises on punched cards and reading the punched card deck in
synchronization with a tape containing the master salary details. The records
had to be in the same sorted order. The salary raises would be added to the
salary read from the master tape, and written to a new tape; the new tape
would become the new master tape.

Tapes (and card decks) could be read only sequentially, and data sizes were
much larger than main memory; thus, data processing programs were forced
to process data in a particular order, by reading and merging data from tapes
and card decks.

Late 1960s and 1970s: Widespread use of hard disks in the late 1960s changed
the scenario for data processing greatly, since hard disks allowed direct access
to data. The position of data on disk was immaterial, since any location on
disk could be accessed in just tens of milliseconds. Data were thus freed from

30

Chapter1 Introduction

the tyranny of sequentiality. With disks, network and hierarchical databases
could be created that allowed data structures such as lists and trees to be
stored on disk. Programmers could construct and manipulate these data
structures.

A landmark paper by Codd [1970] defined the relational model and
nonprocedural ways of querying data in the relational model, and relational
databases were born. The simplicity of the relational model and the possibility
of hiding implementation details completely from the programmer were
enticing indeed. Codd later won the prestigious Association of Computing
Machinery Turing Award for his work.

1980s: Although academically interesting, the relational model was not used
in practice initially, because of its perceived performance disadvantages; rela-
tional databases could not match the performance of existing network and hi-
erarchical databases. That changed with System R, a groundbreaking project
at IBM Research that developed techniques for the construction of an efficient
relational database system. Excellent overviews of System R are provided by
Astrahan et al. [1976] and Chamberlin et al. [1981]. The fully functional Sys-
tem R prototype led to IBM’s first relational database product, SQL/DS. At
the same time, the Ingres system was being developed at the University of
California at Berkeley. It led to a commercial product of the same name. Ini-
tial commercial relational database systems, such as IBM DB2, Oracle, Ingres,
and DEC Rdb, played a major role in advancing techniques for efficient pro-
cessing of declarative queries. By the early 1980s, relational databases had
become competitive with network and hierarchical database systems even in
the area of performance. Relational databases were so easy to use that they
eventually replaced network and hierarchical databases; programmers using
such databases were forced to deal with many low-level implementation de-
tails, and had to code their queries in a procedural fashion. Most importantly,
they had to keep efficiency in mind when designing their programs, which
involved a lot of effort. In contrast, in a relational database, almost all these
low-level tasks are carried out automatically by the database, leaving the
programmer free to work at a logical level. Since attaining dominance in the
1980s, the relational model has reigned supreme among data models.

The 1980s also saw much research on parallel and distributed databases,
as well as initial work on object-oriented databases.

Early 1990s: The SQL language was designed primarily for decision support
applications, which are query-intensive, yet the mainstay of databases in the
1980s was transaction-processing applications, which are update-intensive.
Decision support and querying re-emerged as a major application area for
databases. Tools for analyzing large amounts of data saw large growths in
usage.

Many database vendors introduced parallel database products in this
period. Database vendors also began to add object-relational support to their
databases.

1.14 Summary 31

® 1990s: The major event of the 1990s was the explosive growth of the World
Wide Web. Databases were deployed much more extensively than ever before.
Database systems now had to support very high transaction-processing rates,
as well as very high reliability and 24 x 7 availability (availability 24 hours
a day, 7 days a week, meaning no downtime for scheduled maintenance
activities). Database systems also had to support Web interfaces to data.

® 2000s: The first half of the 2000s saw the emerging of XML and the associated
query language XQuery as a new database technology. Although XML is
widely used for data exchange, as well as for storing certain complex data
types, relational databases still form the core of a vast majority of large-scale
database applications. In this time period we have also witnessed the growth
in “autonomic-computing/auto-admin” techniques for minimizing system
administration effort. This period also saw a significant growth in use of
open-source database systems, particularly PostgreSQL and MySQL.

The latter part of the decade has seen growth in specialized databases for
data analysis, in particular column-stores, which in effect store each column
of a table as a separate array, and highly parallel database systems designed
for analysis of very large data sets. Several novel distributed data-storage
systems have been built to handle the data management requirements of very
large Web sites such as Amazon, Facebook, Google, Microsoft and Yahoo!,
and some of these are now offered as Web services that can be used by
application developers. There has also been substantial work on management
and analysis of streaming data, such as stock-market ticker data or computer
network monitoring data. Data-mining techniques are now widely deployed;
example applications include Web-based product-recommendation systems
and automatic placement of relevant advertisements on Web pages.

1.14 Summary

e A database-management system (DBMS) consists of a collection of interre-
lated data and a collection of programs to access that data. The data describe
one particular enterprise.

¢ The primary goal of a DBMS is to provide an environment that is both conve-
nient and efficient for people to use in retrieving and storing information.

¢ Database systems are ubiquitous today, and most people interact, either di-
rectly or indirectly, with databases many times every day.

¢ Database systems are designed to store large bodies of information. The man-
agement of data involves both the definition of structures for the storage of
information and the provision of mechanisms for the manipulation of infor-
mation. In addition, the database system must provide for the safety of the
information stored, in the face of system crashes or attempts at unauthorized
access. If data are to be shared among several users, the system must avoid
possible anomalous results.

32

Chapter1 Introduction

* A major purpose of a database system is to provide users with an abstract

view of the data. That is, the system hides certain details of how the data are
stored and maintained.

Underlying the structure of a database is the data model: a collection of
conceptual tools for describing data, data relationships, data semantics, and
data constraints.

The relational data model is the most widely deployed model for storing data
in databases. Other data models are the object-oriented model, the object-
relational model, and semistructured data models.

A data-manipulation language (DML) is a language that enables users to
access or manipulate data. Nonprocedural DMLs, which require a user to
specify only what data are needed, without specifying exactly how to get
those data, are widely used today.

A data-definition language (DDL) is a language for specifying the database
schema and as well as other properties of the data.

Database design mainly involves the design of the database schema. The
entity-relationship (E-R) data model is a widely used data model for database
design. It provides a convenient graphical representation to view data, rela-
tionships, and constraints.

A database system has several subsystems.

o The storage manager subsystem provides the interface between the low-
level data stored in the database and the application programs and queries
submitted to the system.

o The query processor subsystem compiles and executes DDL and DML
statements.

Transaction management ensures that the database remains in a consistent
(correct) state despite system failures. The transaction manager ensures that
concurrent transaction executions proceed without conflicting.

The architecture of a database system is greatly influenced by the underlying
computer system on which the database system runs. Database systems can
be centralized, or client-server, where one server machine executes work on
behalf of multiple client machines. Database systems can also be designed to
exploit parallel computer architectures. Distributed databases span multiple
geographically separated machines.

Database applications are typically broken up into a front-end part that runs at
client machines and a part that runs at the back end. In two-tier architectures,
the front end directly communicates with a database running at the back
end. In three-tier architectures, the back end part is itself broken up into an
application server and a database server.

Practice Exercises 33

Knowledge-discovery techniques attempt to discover automatically statisti-
cal rules and patterns from data. The field of data mining combines knowledge-
discovery techniques invented by artificial intelligence researchers and sta-
tistical analysts, with efficient implementation techniques that enable them
to be used on extremely large databases.

There are four different types of database-system users, differentiated by the
way they expect to interact with the system. Different types of user interfaces
have been designed for the different types of users.

Review Terms

Database-management system o Data-definition language
(DBMS)

o o Data-manipulation language
Database-system applications

File-processing systems ° Query language

Data inconsistency e Metadata
Consistency constraints e Application program
Data abstraction e Normalization
Instance ¢ Data dictionary
Schema e Storage manager

o Physical schema ® Query processor

o Logical schema * Transactions
Physical data independence o Atomicity

Data models .
o Failure recovery

o Entity-relationship model o Concurrency control

o Relational data model

o Object-based data model e Two- and three-tier database archi-

tectures
o Semistructured data model o Data mining
Database languages ¢ Database administrator (DBA)

Practice Exercises

1.1

1.2

This chapter has described several major advantages of a database system.
What are two disadvantages?

List five ways in which the type declaration system of a language such as
Java or C++ differs from the data definition language used in a database.

34

Chapter1 Introduction

1.3

14

1.5

1.6

Exercises

Tools

1.7

1.8

1.9

1.10

1.11

1.12
1.13
1.14

1.15

List six major steps that you would take in setting up a database for a
particular enterprise.

List at least 3 different types of information that a university would main-
tain, beyond those listed in Section 1.6.2.

Suppose you want to build a video site similar to YouTube. Consider each
of the points listed in Section 1.2, as disadvantages of keeping data in a
file-processing system. Discuss the relevance of each of these points to the
storage of actual video data, and to metadata about the video, such as title,
the user who uploaded it, tags, and which users viewed it.

Keyword queries used in Web search are quite different from database
queries. List key differences between the two, in terms of the way the
queries are specified, and in terms of what is the result of a query.

List four applications you have used that most likely employed a database
system to store persistent data.

List four significant differences between a file-processing system and a
DBMS.

Explain the concept of physical data independence, and its importance in
database systems.

List five responsibilities of a database-management system. For each re-
sponsibility, explain the problems that would arise if the responsibility
were not discharged.

List at least two reasons why database systems support data manipulation
using a declarative query language such as SQL, instead of just providing
a a library of C or C++ functions to carry out data manipulation.

Explain what problems are caused by the design of the table in Figure 1.4.
What are five main functions of a database administrator?

Explain the difference between two-tier and three-tier architectures. Which
is better suited for Web applications? Why?

Describe at least 3 tables that might be used to store information in a
social-networking system such as Facebook.

There are a large number of commercial database systems in use today. The major
ones include: IBM DB2 (www.ibm.com/software/data/db2), Oracle (www.oracle.com),
Microsoft SQL Server (www.microsoft.com/sql), Sybase (www.sybase.com), and IBM
Informix (www.ibm.com/software/data/informix). Some of these systems are available

Bibliographical Notes 35

free for personal or noncommercial use, or for development, but are not free for
actual deployment.
There are also a number of free/public domain database systems; widely
used ones include MySQL (www.mysgl.com) and PostgreSQL (www.postgresgl.org).
A more complete list of links to vendor Web sites and other information is
available from the home page of this book, at www.db-book.com.

Bibliographical Notes

We list below general-purpose books, research paper collections, and Web sites
on databases. Subsequent chapters provide references to material on each topic
outlined in this chapter.

Codd [1970] is the landmark paper that introduced the relational model.

Textbooks covering database systems include Abiteboul et al. [1995], O’Neil
and O’Neil [2000], Ramakrishnan and Gehrke [2002], Date [2003], Kifer et al.
[2005], Elmasri and Navathe [2006], and Garcia-Molina et al. [2008]. Textbook
coverage of transaction processing is provided by Bernstein and Newcomer [1997]
and Gray and Reuter [1993]. A book containing a collection of research papers on
database management is offered by Hellerstein and Stonebraker [2005].

A review of accomplishments in database management and an assessment
of future research challenges appears in Silberschatz et al. [1990], Silberschatz
et al. [1996], Bernstein et al. [1998], Abiteboul et al. [2003], and Agrawal et al.
[2009]. The home page of the ACM Special Interest Group on Management of Data
(www.acm.org/sigmod) provides a wealth of information about database research.
Database vendor Web sites (see the Tools section above) provide details about
their respective products.

This page intentionally left blank

RELATIONAL
DATABASES

A data model is a collection of conceptual tools for describing data, data relation-
ships, data semantics, and consistency constraints. In this part, we focus on the
relational model.

The relational model, which is covered in Chapter 2, uses a collection of tables
to represent both data and the relationships among those data. Its conceptual
simplicity has led to its widespread adoption; today a vast majority of database
products are based on the relational model. The relational model describes data at
the logical and view levels, abstracting away low-level details of data storage. The
entity-relationship model, discussed later in Chapter 7 (in Part 2), is a higher-level
data model which is widely used for database design.

To make data from a relational database available to users, we have to ad-
dress several issues. The most important issue is how users specify requests for
retrieving and updating data; several query languages have been developed for
this task. A second, but still important, issue is data integrity and protection;
databases need to protect data from damage by user actions, whether uninten-
tional or intentional.

Chapters 3, 4 and 5 cover the SQL language, which is the most widely used
query language today. Chapters 3 and 4 provide introductory and intermediate
level descriptions of SQL. Chapter 4 also covers integrity constraints which are
enforced by the database, and authorization mechanisms, which control what
access and update actions can be carried out by a user. Chapter 5 covers more
advanced topics, including access to SQL from programming languages, and the
use of SQL for data analysis.

Chapter 6 covers three formal query languages, the relational algebra, the
tuple relational calculus and the domain relational calculus, which are declarative
query languages based on mathematical logic. These formal languages form the
basis for SQL, and for two other user-friendly languages, QBE and Datalog, which
are described in Appendix B (available online at db-book.com).

37

This page intentionally left blank

CHAPTER

Introduction to the Relational
Model

2.1

The relational model is today the primary data model for commercial data-
processing applications. It attained its primary position because of its simplicity,
which eases the job of the programmer, compared to earlier data models such as
the network model or the hierarchical model.

In this chapter, we first study the fundamentals of the relational model. A
substantial theory exists for relational databases. We study the part of this theory
dealing with queries in Chapter 6. In Chapters 7 through 8, we shall examine
aspects of database theory that help in the design of relational database schemas,
while in Chapters 12 and 13 we discuss aspects of the theory dealing with efficient
processing of queries.

Structure of Relational Databases

A relational database consists of a collection of tables, each of which is assigned a
unique name. For example, consider the instructor table of Figure 2.1, which stores
information about instructors. The table has four column headers: ID, name, dept
_name, and salary. Each row of this table records information about an instructor,
consisting of the instructor’s ID, name, dept_name, and salary. Similarly, the course
table of Figure 2.2 stores information about courses, consisting of a course_id, title,
dept-name, and credits, for each course. Note that each instructor is identified by
the value of the column ID, while each course is identified by the value of the
column course_id.

Figure 2.3 shows a third table, prereq, which stores the prerequisite courses for
each course. The table has two columns, course_id and prereq_id. Each row consists
of a pair of course identifiers such that the second course is a prerequisite for the
first course.

Thus, a row in the prereq table indicates that two courses are related in the
sense that one course is a prerequisite for the other. As another example, we
consider the table instructor, a row in the table can be thought of as representing

39

40

Chapter 2 Introduction to the Relational Model

‘ ID ‘ name dept_name ‘ salary
10101 | Srinivasan | Comp. Sci. | 65000
12121 | Wu Finance 90000
15151 | Mozart Music 40000
22222 | Einstein Physics 95000
32343 | El Said History 60000
33456 | Gold Physics 87000
45565 | Katz Comp. Sci. | 75000
58583 | Califieri History 62000
76543 | Singh Finance 80000
76766 | Crick Biology 72000
83821 | Brandt Comp. Sci. | 92000
98345 | Kim Elec. Eng. 80000

Figure 2.1 The instructor relation.

the relationship between a specified ID and the corresponding values for name,
dept_name, and salary values.

In general, a row in a table represents a relationship among a set of values.
Since a table is a collection of such relationships, there is a close correspondence
between the concept of table and the mathematical concept of relation, from which
the relational data model takes its name. In mathematical terminology, a tuple is
simply a sequence (or list) of values. A relationship between 7 values is repre-
sented mathematically by an n-fuple of values, i.e., a tuple with n values, which
corresponds to a row in a table.

courseid | title dept_name | credits
BIO-101 | Intro. to Biology Biology 4
BIO-301 | Genetics Biology 4
BIO-399 | Computational Biology Biology 3
CS-101 Intro. to Computer Science | Comp. Sci. 4
CS-190 Game Design Comp. Sci. 4
CS-315 Robotics Comp. Sci. 3
CS-319 Image Processing Comp. Sci. 3
CS-347 Database System Concepts | Comp. Sci. 3
EE-181 Intro. to Digital Systems Elec. Eng. 3
FIN-201 | Investment Banking Finance 3
HIS-351 | World History History 3
MU-199 | Music Video Production Music 3
PHY-101 | Physical Principles Physics 4

Figure 2.2 The course relation.

2.1 Structure of Relational Databases 41

course_id | prereq_id

BIO-301 | BIO-101
BIO-399 | BIO-101
CS-190 CSs-101
CS-315 CS-101
CS-319 CS-101
CS-347 CS-101
EE-181 PHY-101

Figure 2.3 The prereq relation.

Thus, in the relational model the term relation is used to refer to a table, while
the term tuple is used to refer to a row. Similarly, the term attribute refers to a
column of a table.

Examining Figure 2.1, we can see that the relation instructor has four attributes:
ID, name, dept_name, and salary.

We use the term relation instance to refer to a specific instance of a relation,
i.e., containing a specific set of rows. The instance of instructor shown in Figure 2.1
has 12 tuples, corresponding to 12 instructors.

In this chapter, we shall be using anumber of different relations to illustrate the
various concepts underlying the relational data model. These relations represent
part of a university. They do not include all the data an actual university database
would contain, in order to simplify our presentation. We shall discuss criteria for
the appropriateness of relational structures in great detail in Chapters 7 and 8.

The order in which tuples appear in a relation is irrelevant, since a relation
is a set of tuples. Thus, whether the tuples of a relation are listed in sorted order,
as in Figure 2.1, or are unsorted, as in Figure 2.4, does not matter; the relations in

‘ ID ‘ name dept_name ‘ salary ‘
22222 | Einstein Physics 95000
12121 | Wu Finance 90000
32343 | El Said History 60000
45565 | Katz Comp. Sci. | 75000
98345 | Kim Elec. Eng. | 80000
76766 | Crick Biology 72000

10101 | Srinivasan | Comp. Sci. | 65000
58583 | Califieri History 62000

83821 | Brandt Comp. Sci. | 92000
15151 | Mozart Music 40000
33456 | Gold Physics 87000
76543 | Singh Finance 80000

Figure 2.4 Unsorted display of the instructor relation.

42

2.2

Chapter 2 Introduction to the Relational Model

the two figures are the same, since both contain the same set of tuples. For ease
of exposition, we will mostly show the relations sorted by their first attribute.

For each attribute of a relation, there is a set of permitted values, called the
domain of that attribute. Thus, the domain of the salary attribute of the instructor
relation is the set of all possible salary values, while the domain of the name
attribute is the set of all possible instructor names.

We require that, for all relations r, the domains of all attributes of r be atomic.
A domain is atomic if elements of the domain are considered to be indivisible
units. For example, suppose the table instructor had an attribute phone_number,
which can store a set of phone numbers corresponding to the instructor. Then the
domain of phone_number would not be atomic, since an element of the domain is a
set of phone numbers, and it has subparts, namely the individual phone numbers
in the set.

The important issue is not what the domain itself is, but rather how we use
domain elements in our database. Suppose now that the phone_number attribute
stores a single phone number. Even then, if we split the value from the phone
number attribute into a country code, an area code and a local number, we would
be treating it as a nonatomic value. If we treat each phone number as a single
indivisible unit, then the attribute phone_number would have an atomic domain.

In this chapter, as well as in Chapters 3 through 6, we assume that all attributes
have atomic domains. In Chapter 22, we shall discuss extensions to the relational
data model to permit nonatomic domains.

The null value is a special value that signifies that the value is unknown or
does not exist. For example, suppose as before that we include the attribute phone
_number in the instructor relation. It may be that an instructor does not have a
phone number at all, or that the telephone number is unlisted. We would then
have to use the null value to signify that the value is unknown or does not exist.
We shall see later that null values cause a number of difficulties when we access
or update the database, and thus should be eliminated if at all possible. We shall
assume null values are absent initially, and in Section 3.6 we describe the effect
of nulls on different operations.

Database Schema

When we talk about a database, we must differentiate between the database
schema, which is the logical design of the database, and the database instance,
which is a snapshot of the data in the database at a given instant in time.

The concept of a relation corresponds to the programming-language no-
tion of a variable, while the concept of a relation schema corresponds to the
programming-language notion of type definition.

In general, a relation schema consists of a list of attributes and their corre-
sponding domains. We shall not be concerned about the precise definition of the
domain of each attribute until we discuss the SQL language in Chapter 3.

The concept of a relation instance corresponds to the programming-language
notion of a value of a variable. The value of a given variable may change with time;

2.2 Database Schema 43

dept_name building | budget

Biology Watson 90000
Comp. Sci. | Taylor 100000
Elec. Eng. | Taylor 85000
Finance Painter | 120000

History Painter 50000
Music Packard | 80000
Physics Watson 70000

Figure 2.5 The department relation.

similarly the contents of a relation instance may change with time as the relation
is updated. In contrast, the schema of a relation does not generally change.

Although it is important to know the difference between a relation schema
and a relation instance, we often use the same name, such as instructor, to refer
to both the schema and the instance. Where required, we explicitly refer to the
schema or to the instance, for example “the instructor schema,” or “an instance of
the instructor relation.” However, where it is clear whether we mean the schema
or the instance, we simply use the relation name.

Consider the department relation of Figure 2.5. The schema for that relation is

department (dept_-name, building, budget)

Note that the attribute dept_name appears in both the instructor schema and the
department schema. This duplication is not a coincidence. Rather, using common
attributes in relation schemas is one way of relating tuples of distinct relations.
For example, suppose we wish to find the information about all the instructors
who work in the Watson building. We look first at the department relation to
find the dept_name of all the departments housed in Watson. Then, for each such
department, we look in the instructor relation to find the information about the
instructor associated with the corresponding dept_name.

Let us continue with our university database example.

Each course in a university may be offered multiple times, across different
semesters, or even within a semester. We need a relation to describe each individ-
ual offering, or section, of the class. The schema is

section (course_id, sec_id, semester, year, building, room_number, time_slot_id)

Figure 2.6 shows a sample instance of the section relation.
We need a relation to describe the association between instructors and the
class sections that they teach. The relation schema to describe this association is

teaches (ID, course_id, sec_id, semester, year)

44 Chapter 2 Introduction to the Relational Model

course_id ‘ sec_id ‘ semester ‘ year ‘ building

room_number

time_slot_id

BIO-101
BIO-301
CSs-101
CSs-101
CS5-190
CS5-190
CS-315
CS-319
CS-319
CS-347
EE-181
FIN-201
HIS-351
MU-199
PHY-101

PR R PP PR NRRRNR R PR e

Summer | 2009
Summer | 2010
Fall
Spring 2010
Spring 2009
Spring 2009
Spring 2010
Spring 2010
Spring 2010
Fall
Spring 2009
Spring 2010
Spring 2010
Spring 2010
Fall

2009

2009

2009

Painter
Painter
Packard
Packard
Taylor
Taylor
Watson
Watson
Taylor
Taylor
Taylor
Packard
Painter
Packard
Watson

514
514
101
101
3128
3128
120
100
3128
3128
3128
101
514
101
100

>ONwWNP NI IP>HAHI >

Figure 2.6 The section relation.

Figure 2.7 shows a sample instance of the teaches relation.

As you can imagine, there are many more relations maintained in a real uni-
versity database. In addition to those relations we have listed already, instructor,
department, course, section, prereq, and teaches, we use the following relations in this

text:

‘ D ‘ course_id ‘ sec_id ‘ semester ‘ year
10101 | CS-101 1 Fall 2009
10101 | CS-315 1 Spring 2010
10101 | CS-347 1 Fall 2009
12121 | FIN-201 1 Spring 2010
15151 | MU-199 1 Spring 2010
22222 | PHY-101 1 Fall 2009
32343 | HIS-351 1 Spring 2010
45565 | CS-101 1 Spring 2010
45565 | CS-319 1 Spring 2010
76766 | BIO-101 1 Summer | 2009
76766 | BIO-301 1 Summer | 2010
83821 | CS-190 1 Spring 2009
83821 | CS-190 2 Spring 2009
83821 | CS-319 2 Spring 2010
98345 | EE-181 1 Spring 2009

Figure 2.7 The teaches relation.

2.3

2.3 Keys 45

e student (ID, name, dept_name, tot_cred)

e advisor (s_id, i_id)

e takes (ID, course_id, sec_id, semester, year, grade)
e classroom (building, room_number, capacity)

e time_slot (time_slot_id, day, start_time, end_time)

Keys

We must have a way to specify how tuples within a given relation are distin-
guished. This is expressed in terms of their attributes. That is, the values of the
attribute values of a tuple must be such that they can uniquely identify the tuple.
In other words, no two tuples in a relation are allowed to have exactly the same
value for all attributes.

A superkey is a set of one or more attributes that, taken collectively, allow us
to identify uniquely a tuple in the relation. For example, the ID attribute of the
relation instructor is sufficient to distinguish one instructor tuple from another.
Thus, ID is a superkey. The name attribute of instructor, on the other hand, is not
a superkey, because several instructors might have the same name.

Formally, let R denote the set of attributes in the schema of relation r. If we
say that a subset K of R is a superkey for r, we are restricting consideration to
instances of relations r in which no two distinct tuples have the same values on
all attributes in K. That is, if f; and t, are inr and # # t, then 1. K # £.K.

A superkey may contain extraneous attributes. For example, the combination
of ID and name is a superkey for the relation instructor. If K is a superkey, then so
is any superset of K. We are often interested in superkeys for which no proper
subset is a superkey. Such minimal superkeys are called candidate keys.

It is possible that several distinct sets of attributes could serve as a candidate
key. Suppose that a combination of name and dept name is sufficient to distinguish
among members of the instructor relation. Then, both {ID} and {name, dept_-name}
are candidate keys. Although the attributes ID and name together can distinguish
instructor tuples, their combination, {ID, name}, does not form a candidate key,
since the attribute ID alone is a candidate key.

We shall use the term primary key to denote a candidate key that is chosen
by the database designer as the principal means of identifying tuples within a
relation. A key (whether primary, candidate, or super) is a property of the entire
relation, rather than of the individual tuples. Any two individual tuples in the
relation are prohibited from having the same value on the key attributes at the
same time. The designation of a key represents a constraint in the real-world
enterprise being modeled.

Primary keys must be chosen with care. As we noted, the name of a person is
obviously not sufficient, because there may be many people with the same name.
In the United States, the social-security number attribute of a person would be
a candidate key. Since non-U.S. residents usually do not have social-security

46

24

Chapter 2 Introduction to the Relational Model

numbers, international enterprises must generate their own unique identifiers.
An alternative is to use some unique combination of other attributes as a key.

The primary key should be chosen such that its attribute values are never,
or very rarely, changed. For instance, the address field of a person should not be
part of the primary key, since it is likely to change. Social-security numbers, on
the other hand, are guaranteed never to change. Unique identifiers generated by
enterprises generally do not change, except if two enterprises merge; in such a case
the same identifier may have been issued by both enterprises, and a reallocation
of identifiers may be required to make sure they are unique.

It is customary to list the primary key attributes of a relation schema before
the other attributes; for example, the dept_name attribute of department is listed
first, since it is the primary key. Primary key attributes are also underlined.

A relation, say r1, may include among its attributes the primary key of an-
other relation, say r,. This attribute is called a foreign key from ry, referencing r,.
The relation r is also called the referencing relation of the foreign key depen-
dency, and r; is called the referenced relation of the foreign key. For example, the
attribute dept_name in instructor is a foreign key from instructor, referencing depart-
ment, since dept_name is the primary key of department. In any database instance,
given any tuple, say t,, from the instructor relation, there must be some tuple, say
tp, in the department relation such that the value of the dept_name attribute of ¢, is
the same as the value of the primary key, dept_name, of t,.

Now consider the section and teaches relations. It would be reasonable to
require that if a section exists for a course, it must be taught by at least one
instructor; however, it could possibly be taught by more than one instructor.
To enforce this constraint, we would require that if a particular (course_id, sec_id,
semester, year) combination appears in section, then the same combination must
appear in teaches. However, this set of values does not form a primary key for
teaches, since more than one instructor may teach one such section. As a result,
we cannot declare a foreign key constraint from section to teaches (although we
can define a foreign key constraint in the other direction, from teaches to section).

The constraint from section to teaches is an example of a referential integrity
constraint; a referential integrity constraint requires that the values appearing in
specified attributes of any tuple in the referencing relation also appear in specified
attributes of at least one tuple in the referenced relation.

Schema Diagrams

A database schema, along with primary key and foreign key dependencies, can
be depicted by schema diagrams. Figure 2.8 shows the schema diagram for our
university organization. Each relation appears as a box, with the relation name at
the top in blue, and the attributes listed inside the box. Primary key attributes are
shown underlined. Foreign key dependencies appear as arrows from the foreign
key attributes of the referencing relation to the primary key of the referenced
relation.

2.5

2.5 Relational Query Languages 47

s student
D b N
course_id name
sec id dept_name
tot_cred
semester
year
grade
section course
b course id course_id department advisor
Lp| sec_id title s id
L s?;fsfer dept_name —> ﬁ%e iid
« - i =
M lblﬁding time_slot credits budget
1 | room_no time_slot_id
time_slot_id [] day
start_time
end_time
prereq instructor
classroom L course id D
L»| building | prereq_id name
Lyl room no dept_name
capacity teaches salary
1D
L course_id
L sec_id
L semester
year

Figure 2.8 Schema diagram for the university database.

Referential integrity constraints other than foreign key constraints are not
shown explicitly in schema diagrams. We will study a different diagrammatic
representation called the entity-relationship diagram later, in Chapter 7. Entity-
relationship diagrams let us represent several kinds of constraints, including
general referential integrity constraints.

Many database systems provide design tools with a graphical user interface
for creating schema diagrams. We shall discuss diagrammatic representation of
schemas at length in Chapter 7.

The enterprise that we use in the examples in later chapters is a university.
Figure 2.9 gives the relational schema that we use in our examples, with primary-
key attributes underlined. As we shall see in Chapter 3, this corresponds to the
approach to defining relations in the SQL data-definition language.

Relational Query Languages

A query language is a language in which a user requests information from the
database. These languages are usually on a level higher than that of a standard
programming language. Query languages can be categorized as either procedural
or nonprocedural. In a procedural language, the user instructs the system to
perform a sequence of operations on the database to compute the desired result.
In a nonprocedural language, the user describes the desired information without
giving a specific procedure for obtaining that information.

48

2.6

Chapter 2 Introduction to the Relational Model

classroom(building, room_number, capacity)
department(dept_name, building, budget)
course(course_id, title, dept_name, credits)
instructor(ID, name, dept_name, salary)
section(course_id, sec_id, semester, year, building, room_number, time_slot_id)
teaches(ID, course_id, sec_id, semester, 1 year)
student(ID, name, dept name, tot cred)
takes(ID, course_id, sec_id, semester, year, grade)
advisor(s_ID, i_ID) -
time_slot(time_slot_id, day, start_time, end_time)
prereq(course_id, prereq_id)

Figure 2.9 Schema of the university database.

Query languages used in practice include elements of both the procedural and
the nonprocedural approaches. We study the very widely used query language
SQL in Chapters 3 through 5.

There are a number of “pure” query languages: The relational algebra is pro-
cedural, whereas the tuple relational calculus and domain relational calculus are
nonprocedural. These query languages are terse and formal, lacking the “syntactic
sugar” of commercial languages, but they illustrate the fundamental techniques
for extracting data from the database. In Chapter 6, we examine in detail the rela-
tional algebra and the two versions of the relational calculus, the tuple relational
calculus and domain relational calculus. The relational algebra consists of a set
of operations that take one or two relations as input and produce a new relation
as their result. The relational calculus uses predicate logic to define the result
desired without giving any specific algebraic procedure for obtaining that result.

Relational Operations

All procedural relational query languages provide a set of operations that can be
applied to either a single relation or a pair of relations. These operations have
the nice and desired property that their result is always a single relation. This
property allows one to combine several of these operations in a modular way.
Specifically, since the result of a relational query is itself a relation, relational
operations can be applied to the results of queries as well as to the given set of
relations.

The specific relational operations are expressed differently depending on the
language, but fit the general framework we describe in this section. In Chapter 3,
we show the specific way the operations are expressed in SQL.

The most frequent operation is the selection of specific tuples from a sin-
gle relation (say instructor) that satisfies some particular predicate (say salary >
$85,000). The result is a new relation that is a subset of the original relation (in-

2.6 Relational Operations 49

‘ ID ‘ name dept_name ‘ salary ‘
12121 | Wu Finance 90000
22222 | Einstein | Physics 95000
33456 | Gold Physics 87000
83821 | Brandt | Comp. Sci. | 92000

Figure 2.10 Result of query selecting instructor tuples with salary greater than $85000.

structor). For example, if we select tuples from the instructor relation of Figure 2.1,
satisfying the predicate “salary is greater than $85000”, we get the result shown in
Figure 2.10.

Another frequent operation is to select certain attributes (columns) from a
relation. The result is a new relation having only those selected attributes. For
example, suppose we want a list of instructor IDs and salaries without listing
the name and dept_name values from the instructor relation of Figure 2.1, then the
result, shown in Figure 2.11, has the two attributes ID and salary. Each tuple in
the result is derived from a tuple of the instructor relation but with only selected
attributes shown.

The join operation allows the combining of two relations by merging pairs of
tuples, one from each relation, into a single tuple. There are a number of different
ways to join relations (as we shall see in Chapter 3). Figure 2.12 shows an example
of joining the tuples from the instructor and department tables with the new tuples
showing the information about each instructor and the department in which she
is working. This result was formed by combining each tuple in the instructor
relation with the tuple in the department relation for the instructor’s department.

In the form of join shown in Figure 2.12, which is called a natural join, a tuple
from the instructor relation matches a tuple in the department relation if the values

| 1D | salary |

10101 | 65000
12121 | 90000
15151 | 40000
22222 | 95000
32343 | 60000
33456 | 87000
45565 | 75000
58583 | 62000
76543 | 80000
76766 | 72000
83821 | 92000
98345 | 80000

Figure 2.11 Result of query selecting attributes ID and salary from the instructor relation.

50

Chapter 2 Introduction to the Relational Model

ID name salary | dept_name building budget
10101 | Srinivasan | 65000 | Comp. Sci. | Taylor 100000
12121 | Wu 90000 | Finance Painter 120000
15151 | Mozart 40000 | Music Packard 80000
22222 | Einstein 95000 | Physics Watson 70000
32343 | ElSaid 60000 | History Painter 50000
33456 | Gold 87000 | Physics Watson 70000
45565 | Katz 75000 | Comp. Sci. | Taylor 100000
58583 | Califieri 62000 | History Painter 50000
76543 | Singh 80000 | Finance Painter 120000
76766 | Crick 72000 | Biology Watson 90000
83821 | Brandt 92000 | Comp. Sci. | Taylor 100000
98345 | Kim 80000 | Elec. Eng. Taylor 85000

Figure 2.12 Result of natural join of the instructor and department relations.

of their dept_name attributes are the same. All such matching pairs of tuples are
present in the join result. In general, the natural join operation on two relations
matches tuples whose values are the same on all attribute names that are common
to both relations.

The Cartesian product operation combines tuples from two relations, but unlike
the join operation, its result contains all pairs of tuples from the two relations,
regardless of whether their attribute values match.

Because relations are sets, we can perform normal set operations on relations.
The wunion operation performs a set union of two “similarly structured” tables
(say a table of all graduate students and a table of all undergraduate students).
For example, one can obtain the set of all students in a department. Other set
operations, such as intersection and set difference can be performed as well.

As we noted earlier, we can perform operations on the results of queries. For
example, if we want to find the ID and salary for those instructors who have salary
greater than $85,000, we would perform the first two operations in our example
above. First we select those tuples from the instructor relation where the salary
value is greater than $85,000 and then, from that result, select the two attributes
ID and salary, resulting in the relation shown in Figure 2.13 consisting of the ID

‘ ID ‘salary‘

12121 | 90000
22222 | 95000
33456 | 87000
83821 | 92000

Figure 2.13 Result of selecting attributes ID and salary of instructors with salary greater
than $85,000.

2.6 Relational Operations 51

RELATIONAL ALGEBRA

The relational algebra defines a set of operations on relations, paralleling the
usual algebraic operations such as addition, subtraction or multiplication, which
operate on numbers. Just as algebraic operations on numbers take one or more
numbers as input and return a number as output, the relational algebra op-
erations typically take one or two relations as input and return a relation as
output.

Relational algebra is covered in detail in Chapter 6, but we outline a few of
the operations below.

| Symbol (Name) | Example of Use |
o Gsalary>=85000(m‘gtmcwr)
(Selection) Return rows of the input relation that satisfy
the predicate.
I1 1D satary(instructor)
(Projection) Output specified attributes from all rows of

the input relation. Remove duplicate tuples
from the output.

X instructor X department

(Natural join) Output pairs of rows from the two input rela-
tions that have the same value on all attributes
that have the same name.

X instructor x department

(Cartesian product) | Output all pairs of rows from the two input
relations (regardless of whether or not they
have the same values on common attributes)

U I, 4me (instructor) U T, (student)
(Union) Output the union of tuples from the two input
relations.

and salary. In this example, we could have performed the operations in either
order, but that is not the case for all situations, as we shall see.

Sometimes, the result of a query contains duplicate tuples. For example, if we
select the dept_name attribute from the instructor relation, there are several cases
of duplication, including “Comp. Sci.”, which shows up three times. Certain rela-
tional languages adhere strictly to the mathematical definition of a set and remove
duplicates. Others, in consideration of the relatively large amount of processing
required to remove duplicates from large result relations, retain duplicates. In
these latter cases, the relations are not truly relations in the pure mathematical
sense of the term.

Of course, data in a database must be changed over time. A relation can be
updated by inserting new tuples, deleting existing tuples, or modifying tuples by

52 Chapter 2 Introduction to the Relational Model

changing the values of certain attributes. Entire relations can be deleted and new
ones created.

We shall discuss relational queries and updates using the SQL language in

Chapters 3 through 5.

2.7 Summary

The relational data model is based on a collection of tables. The user of the
database system may query these tables, insert new tuples, delete tuples,
and update (modify) tuples. There are several languages for expressing these
operations.

The schema of a relation refers to its logical design, while an instance of the
relation refers to its contents at a point in time. The schema of a database and
an instance of a database are similarly defined. The schema of a relation in-
cludes its attributes, and optionally the types of the attributes and constraints
on the relation such as primary and foreign key constraints.

A superkey of a relation is a set of one or more attributes whose values are
guaranteed to identify tuples in the relation uniquely. A candidate key is a
minimal superkey, that is, a set of attributes that forms a superkey, but none
of whose subsets is a superkey. One of the candidate keys of a relation is
chosen as its primary key.

A foreign key is a set of attributes in a referencing relation, such that for each
tuple in the referencing relation, the values of the foreign key attributes are
guaranteed to occur as the primary key value of a tuple in the referenced
relation.

A schema diagram is a pictorial depiction of the schema of a database that
shows the relations in the database, their attributes, and primary keys and
foreign keys.

The relational query languages define a set of operations that operate on
tables, and output tables as their results. These operations can be combined
to get expressions that express desired queries.

The relational algebra provides a set of operations that take one or more
relations as input and return a relation as an output. Practical query languages
such as SQL are based on the relational algebra, but add a number of useful
syntactic features.

Review Terms

Table e Attribute
Relation e Domain
Tuple ¢ Atomic domain

Practice Exercises 53

Null value Referential integrity constraint

Database schema Schema diagram

Database instance Query language

Relation schema o Procedural language

Relation instance o Nonprocedural language

Keys
Y e Operations on relations
o Superkey

o Candidate key

o Selection of tuples

o Selection of attributes

o Primary key o Natural join

Foreign key o Cartesian product
o Referencing relation o Set operations
o Referenced relation ® Relational algebra

Practice Exercises

2.1

2.2

2.3

24

2.5

Consider the relational database of Figure 2.14. What are the appropriate
primary keys?

Consider the foreign key constraint from the dept_name attribute of instructor
to the department relation. Give examples of inserts and deletes to these
relations, which can cause a violation of the foreign key constraint.

Consider the time_slot relation. Given that a particular time slot can meet
more than once in a week, explain why day and start_time are part of the
primary key of this relation, while end_time is not.

In the instance of instructor shown in Figure 2.1, no two instructors have
the same name. From this, can we conclude that name can be used as a
superkey (or primary key) of instructor?

What is the result of first performing the cross product of student and
advisor, and then performing a selection operation on the result with the
predicate s_id = ID? (Using the symbolic notation of relational algebra, this
query can be written as oy ;41 p(student x advisor).)

employee (person_name, street, city)
works (person_name, company_name, salary)
company (company_name, city)

Figure 2.14 Relational database for Exercises 2.1, 2.7, and 2.12.

54 Chapter 2 Introduction to the Relational Model

2.6

2.7

2.8

Exercises

2.9

2.10

211

branch(branch_name, branch_city, assets)

customer (customer_name, customer_street, customer_city)
loan (loan_number, branch_name, amount)

borrower (customer_name, loan_number)

account (account_number, branch_name, balance)
depositor (customer_name, account_number)

Figure 2.15 Banking database for Exercises 2.8, 2.9, and 2.13.

Consider the following expressions, which use the result of a relational
algebra operation as the input to another operation. For each expression,
explain in words what the expression does.

a. Oyear=2009(takes) X student
b. Oyear=2000(takes X student)
C. H[D,na,m,e,(:ou7'se_i(l(8tUdent X takes)

Consider the relational database of Figure 2.14. Give an expression in the
relational algebra to express each of the following queries:

a. Find the names of all employees who live in city “Miami”.
b. Find the names of all employees whose salary is greater than $100,000.

c. Find the names of all employees who live in “Miami” and whose
salary is greater than $100,000.

Consider the bank database of Figure 2.15. Give an expression in the rela-
tional algebra for each of the following queries.

a. Find the names of all branches located in “Chicago”.

b. Find the names of all borrowers who have a loan in branch “Down-
town”.

Consider the bank database of Figure 2.15.
a. What are the appropriate primary keys?
b. Given your choice of primary keys, identify appropriate foreign keys.

Consider the advisor relation shown in Figure 2.8, with s_id as the primary
key of advisor. Suppose a student can have more than one advisor. Then,
would s_id still be a primary key of the advisor relation? If not, what should
the primary key of advisor be?

Describe the differences in meaning between the terms relation and relation
schema.

Bibliographical Notes 55

212 Consider the relational database of Figure 2.14. Give an expression in the
relational algebra to express each of the following queries:

a. Find the names of all employees who work for “First Bank Corpora-
tion”.

b. Find the names and cities of residence of all employees who work for
“First Bank Corporation”.

c. Find the names, street address, and cities of residence of all employees
who work for “First Bank Corporation” and earn more than $10,000.

2.13 Consider the bank database of Figure 2.15. Give an expression in the rela-
tional algebra for each of the following queries:

a. Find all loan numbers with a loan value greater than $10,000.

b. Find the names of all depositors who have an account with a value
greater than $6,000.

c. Find the names of all depositors who have an account with a value
greater than $6,000 at the “Uptown” branch.

2.14 List two reasons why null values might be introduced into the database.

215 Discuss the relative merits of procedural and nonprocedural languages.

Bibliographical Notes

E. F. Codd of the IBM San Jose Research Laboratory proposed the relational model
in the late 1960s (Codd [1970]). This work led to the prestigious ACM Turing
Award to Codd in 1981 (Codd [1982]).

After Codd published his original paper, several research projects were formed
with the goal of constructing practical relational database systems, including
System R at the IBM San Jose Research Laboratory, Ingres at the University of
California at Berkeley, and Query-by-Example at the IBM T.]. Watson Research
Center.

Many relational database products are now commercially available. These
include IBM’s DB2 and Informix, Oracle, Sybase, and Microsoft SQL Server. Open
source relational database systems include MySQL and PostgreSQL. Microsoft
Access is a single-user database product that is part of the Microsoft Office suite.

Atzeni and Antonellis [1993], Maier [1983], and Abiteboul et al. [1995] are
texts devoted exclusively to the theory of the relational data model.

This page intentionally left blank

CHAPTER

Introduction to SQL

3.1

There are a number of database query languages in use, either commercially or
experimentally. In this chapter, as well as in Chapters 4 and 5, we study the most
widely used query language, SQL.

Although we refer to the SQL language as a “query language,” it can do much
more than just query a database. It can define the structure of the data, modify
data in the database, and specify security constraints.

It is not our intention to provide a complete users’ guide for SQL. Rather, we
present SQL’s fundamental constructs and concepts. Individual implementations
of SQL may differ in details, or may support only a subset of the full language.

Overview of the SQL Query Language

IBM developed the original version of SQL, originally called Sequel, as part of the
System R project in the early 1970s. The Sequel language has evolved since then,
and its name has changed to SQL (Structured Query Language). Many products
now support the SQL language. SQL has clearly established itself as the standard
relational database language.

In 1986, the American National Standards Institute (ANSI) and the Interna-
tional Organization for Standardization (ISO) published an SQL standard, called
SQL-86. ANSI published an extended standard for SQL, SQL-89, in 1989. The next ver-
sion of the standard was SQL-92 standard, followed by SQL:1999, SQL:2003, SQL:2006,
and most recently SQL:2008. The bibliographic notes provide references to these
standards.

The SQL language has several parts:

¢ Data-definition language (DDL). The SQL DDL provides commands for defin-
ing relation schemas, deleting relations, and modifying relation schemas.

¢ Data-manipulation language (DML). The SQL DML provides the ability to
query information from the database and to insert tuples into, delete tuples
from, and modify tuples in the database.

57

58

3.2

Chapter 3 Introduction to SOL

¢ Integrity. The SQL DDL includes commands for specifying integrity con-
straints that the data stored in the database must satisfy. Updates that violate
integrity constraints are disallowed.

® View definition. The SQL DDL includes commands for defining views.

® Transaction control. SQL includes commands for specifying the beginning
and ending of transactions.

¢ Embedded SQL and dynamic SQL. Embedded and dynamic SQL define how
SQL statements can be embedded within general-purpose programming lan-
guages, such as C, C++, and Java.

¢ Authorization. The SQL DDL includes commands for specifying access rights
to relations and views.

In this chapter, we present a survey of basic DML and the DDL features of SQL.
Features described here have been part of the SQL standard since SQL-92.

In Chapter 4, we provide a more detailed coverage of the SQL query language,
including (a) various join expressions; (b) views; (c) transactions; (d) integrity
constraints; (e) type system; and (f) authorization.

In Chapter 5, we cover more advanced features of the SQL language, including
(a) mechanisms to allow accessing SQL from a programming language; (b) SQL
functions and procedures; (c) triggers; (d) recursive queries; (e) advanced aggre-
gation features; and (f) several features designed for data analysis, which were
introduced in SQL:1999, and subsequent versions of SQL. Later, in Chapter 22, we
outline object-oriented extensions to SQL, which were introduced in SQL:1999.

Although most SQL implementations support the standard features we de-
scribe here, you should be aware that there are differences between implementa-
tions. Most implementations support some nonstandard features, while omitting
support for some of the more advanced features. In case you find that some lan-
guage features described here do not work on the database system that you use,
consult the user manuals for your database system to find exactly what features
it supports.

SQL Data Definition

The set of relations in a database must be specified to the system by means of a
data-definition language (DDL). The SQL DDL allows specification of not only a
set of relations, but also information about each relation, including:

¢ The schema for each relation.
* The types of values associated with each attribute.

* The integrity constraints.

e The set of indices to be maintained for each relation.

3.2 SQL Data Definition 59

¢ The security and authorization information for each relation.

¢ The physical storage structure of each relation on disk.

We discuss here basic schema definition and basic types; we defer discussion of
the other SQL DDL features to Chapters 4 and 5.

3.2.1 Basic Types
The SQL standard supports a variety of built-in types, including:

¢ char(n): A fixed-length character string with user-specified length n. The full
form, character, can be used instead.

e varchar(n): A variable-length character string with user-specified maximum
length n. The full form, character varying, is equivalent.

¢ int: Aninteger (a finite subset of the integers that is machine dependent). The
full form, integer, is equivalent.

¢ smallint: A small integer (a machine-dependent subset of the integer type).

® numeric(p, d): A fixed-point number with user-specified precision. The num-
ber consists of p digits (plus a sign), and d of the p digits are to the right of
the decimal point. Thus, numeric(3,1) allows 44.5 to be stored exactly, but
neither 444.5 or 0.32 can be stored exactly in a field of this type.

¢ real, double precision: Floating-point and double-precision floating-point
numbers with machine-dependent precision.

¢ float(n): A floating-point number, with precision of at least n digits.

Additional types are covered in Section 4.5.

Each type may include a special value called the null value. A null value
indicates an absent value that may exist but be unknown or that may not exist at
all. In certain cases, we may wish to prohibit null values from being entered, as
we shall see shortly.

The char data type stores fixed length strings. Consider, for example, an
attribute A of type char(10). If we store a string “Avi” in this attribute, 7 spaces
are appended to the string to make it 10 characters long. In contrast, if attribute B
were of type varchar(10), and we store “Avi” in attribute B, no spaces would be
added. When comparing two values of type char, if they are of different lengths
extra spaces are automatically added to the shorter one to make them the same
size, before comparison.

When comparing a char type with a varchar type, one may expect extra spaces
to be added to the varchar type to make the lengths equal, before comparison;
however, this may or may not be done, depending on the database system. As a
result, even if the same value “Avi” is stored in the attributes A and B above, a
comparison A=B may return false. We recommend you always use the varchar
type instead of the char type to avoid these problems.

60

Chapter 3 Introduction to SOL

SQL also provides the nvarchar type to store multilingual data using the
Unicode representation. However, many databases allow Unicode (in the UTF-8
representation) to be stored even in varchar types.

3.2.2 Basic Schema Definition

We define an SQL relation by using the create table command. The following
command creates a relation department in the database.

create table department
(dept_name varchar (20),
building varchar (15),
budget numeric (12,2),
primary key (dept_name));

The relation created above has three attributes, dept name, which is a character
string of maximum length 20, building, which is a character string of maximum
length 15, and budget, which is a number with 12 digits in total, 2 of which are
after the decimal point. The create table command also specifies that the dept
_name attribute is the primary key of the department relation.

The general form of the create table command is:

create table r
(A1 Dy,
Ay Dy,
Aﬂ D nr
(integrity-constraint,),

ey

(integrity-constraint,));

where 7 is the name of the relation, each A; is the name of an attribute in the
schema of relation r, and D; is the domain of attribute A;; that is, D; specifies the
type of attribute A; along with optional constraints that restrict the set of allowed
values for A;.

The semicolon shown at the end of the create table statements, as well as
at the end of other SQL statements later in this chapter, is optional in many SQL
implementations.

SQL supports a number of different integrity constraints. In this section, we
discuss only a few of them:

* primary key (A;, Aj,, ..., A;,): The primary-key specification says that at-
tributes A;, Aj,, ..., Aj, form the primary key for the relation. The primary-
key attributes are required to be nonnull and unique; that is, no tuple can have
a null value for a primary-key attribute, and no two tuples in the relation
can be equal on all the primary-key attributes. Although the primary-key

3.2 SQL Data Definition 61

specification is optional, it is generally a good idea to specify a primary key
for each relation.

e foreignkey (Ay,, Ax,, ..., Ax,) referencess: The foreign key specification says
that the values of attributes (A,, A,, Ak,) for any tuple in the relation
must correspond to values of the primary key attributes of some tuple in
relation s.

Figure 3.1 presents a partial SQL DDL definition of the university database we
use in the text. The definition of the course table has a declaration “foreign key
(dept_name) references department”. This foreign-key declaration specifies that
for each course tuple, the department name specified in the tuple must exist
in the primary key attribute (dept_name) of the department relation. Without
this constraint, it is possible for a course to specify a nonexistent department
name. Figure 3.1 also shows foreign key constraints on tables section, instructor
and teaches.

¢ not null: The not null constraint on an attribute specifies that the null value
is not allowed for that attribute; in other words, the constraint excludes the
null value from the domain of that attribute. For example, in Figure 3.1, the
not null constraint on the name attribute of the instructor relation ensures that
the name of an instructor cannot be null.

More details on the foreign-key constraint, as well as on other integrity constraints
that the create table command may include, are provided later, in Section 4.4.

SQL prevents any update to the database that violates an integrity constraint.
For example, if a newly inserted or modified tuple in a relation has null values for
any primary-key attribute, or if the tuple has the same value on the primary-key
attributes as does another tuple in the relation, SQL flags an error and prevents the
update. Similarly, an insertion of a course tuple with a dept_name value that does
not appear in the department relation would violate the foreign-key constraint on
course, and SQL prevents such an insertion from taking place.

A newly created relation is empty initially. We can use the insert command
to load data into the relation. For example, if we wish to insert the fact that there
is an instructor named Smith in the Biology department with instructor_id 10211
and a salary of $66,000, we write:

insert into instructor
values (10211, "Smith’, ‘Biology’, 66000);

The values are specified in the order in which the corresponding attributes are
listed in the relation schema. The insert command has a number of useful features,
and is covered in more detail later, in Section 3.9.2.

We can use the delete command to delete tuples from a relation. The command

delete from student;

62

Chapter 3 Introduction to SOL

create table department

(dept-name varchar (20),
building varchar (15),
budget numeric (12,2),
primary key (dept_name));

create table course

(course_id varchar (7),
title varchar (50),
dept_name varchar (20),
credits numeric (2,0),

primary key (course_id),
foreign key (dept_name) references department);

create table instructor

(ID varchar (5),

name varchar (20) not null,
dept-name varchar (20),

salary numeric (8,2),
primary key (ID),

foreign key (dept_name) references department);

create table section

(course_id varchar (8),
sec_id varchar (8),
semester varchar (6),
year numeric (4,0),

building varchar (15),

room_number varchar (7),

timeslot_id varchar (4),

primary key (course_id, sec_id, semester, year),
foreign key (course_id) references course);

create table teaches

(ID varchar (5),
course_id varchar (8),
sec_id varchar (8),
semester varchar (6),
year numeric (4,0),

primary key (ID, course_id, sec_id, semester, year),
foreign key (course.id, sec_id, semester, year) references section,
foreign key (ID) references instructor);

Figure 3.1 SQL data definition for part of the university database.

3.3

3.3 Basic Structure of SQL Queries 63

would delete all tuples from the student relation. Other forms of the delete com-
mand allow specific tuples to be deleted; the delete command is covered in more
detail later, in Section 3.9.1.

To remove a relation from an SQL database, we use the drop table command.
The drop table command deletes all information about the dropped relation from
the database. The command

drop table 7;
is a more drastic action than
delete from r;

The latter retains relation r, but deletes all tuples in 7. The former deletes not only
all tuples of r, but also the schema for r. After r is dropped, no tuples can be
inserted into r unless it is re-created with the create table command.

We use the alter table command to add attributes to an existing relation. All
tuples in the relation are assigned null as the value for the new attribute. The form
of the alter table command is

alter table r add A D;

where r is the name of an existing relation, A is the name of the attribute to be
added, and D is the type of the added attribute. We can drop attributes from a
relation by the command

alter table r drop A;

where 7 is the name of an existing relation, and A is the name of an attribute of the
relation. Many database systems do not support dropping of attributes, although
they will allow an entire table to be dropped.

Basic Structure of SQL Queries

The basic structure of an SQL query consists of three clauses: select, from, and
where. The query takes as its input the relations listed in the from clause, operates
on them as specified in the where and select clauses, and then produces a relation
as the result. We introduce the SQL syntax through examples, and describe the
general structure of SQL queries later.

3.3.1 Queries on a Single Relation

Let us consider a simple query using our university example, “Find the names
of all instructors.” Instructor names are found in the instructor relation, so we

64 Chapter 3 Introduction to SOL

namie

Srinivasan
Wu
Mozart
Einstein
El Said
Gold
Katz
Califieri
Singh
Crick
Brandt
Kim

Figure 3.2 Result of “select name from instructor”.

put that relation in the from clause. The instructor’s name appears in the name
attribute, so we put that in the select clause.

select name
from instructor;

The result is a relation consisting of a single attribute with the heading name. If
the instructor relation is as shown in Figure 2.1, then the relation that results from
the preceding query is shown in Figure 3.2.

Now consider another query, “Find the department names of all instructors,”
which can be written as:

select dept_name
from instructor;

Since more than one instructor can belong to a department, a department name
could appear more than once in the instructor relation. The result of the above
query is a relation containing the department names, shown in Figure 3.3.

In the formal, mathematical definition of the relational model, a relation is a
set. Thus, duplicate tuples would never appear in relations. In practice, duplicate
elimination is time-consuming. Therefore, SQL allows duplicates in relations as
well as in the results of SQL expressions. Thus, the preceding SQL query lists
each department name once for every tuple in which it appears in the instructor
relation.

In those cases where we want to force the elimination of duplicates, we insert
the keyword distinct after select. We can rewrite the preceding query as:

select distinct dept_name
from instructor;

3.3 Basic Structure of SQL Queries 65

Comp. Sci.
Finance
Music
Physics
History
Physics
Comp. Sci.
History
Finance
Biology
Comp. Sci.
Elec. Eng.

Figure 3.3 Result of “select dept_name from instructor”.

if we want duplicates removed. The result of the above query would contain each
department name at most once.

SQL allows us to use the keyword all to specify explicitly that duplicates are
not removed:

select all dept_name
from instructor;

Since duplicate retention is the default, we shall not use all in our examples. To
ensure the elimination of duplicates in the results of our example queries, we
shall use distinct whenever it is necessary.

The select clause may also contain arithmetic expressions involving the op-
erators +, —, *, and / operating on constants or attributes of tuples. For example,
the query:

select ID, name, dept_-name, salary * 1.1
from instructor;

returns a relation that is the same as the instructor relation, except that the attribute
salary is multiplied by 1.1. This shows what would result if we gave a 10% raise
to each instructor; note, however, that it does not result in any change to the
instructor relation.

SQL also provides special data types, such as various forms of the date type,
and allows several arithmetic functions to operate on these types. We discuss this
further in Section 4.5.1.

The where clause allows us to select only those rows in the result relation of
the from clause that satisfy a specified predicate. Consider the query “Find the
names of all instructors in the Computer Science department who have salary
greater than $70,000.” This query can be written in SQL as:

66

Chapter 3 Introduction to SOL

name

Katz
Brandt

Figure 3.4 Result of “Find the names of all instructors in the Computer Science department
who have salary greater than $70,000.”

select name
from instructor
where dept_name = 'Comp. Sci.” and salary > 70000;

If the instructor relation is as shown in Figure 2.1, then the relation that results
from the preceding query is shown in Figure 3.4.

SQL allows the use of the logical connectives and, or, and not in the where
clause. The operands of the logical connectives can be expressions involving
the comparison operators <, <=, >, >=, =, and <>. SQL allows us to use the
comparison operators to compare strings and arithmetic expressions, as well as
special types, such as date types.

We shall explore other features of where clause predicates later in this chapter.

3.3.2 Queries on Multiple Relations

So far our example queries were on a single relation. Queries often need to access
information from multiple relations. We now study how to write such queries.

An an example, suppose we want to answer the query “Retrieve the names
of all instructors, along with their department names and department building
name.”

Looking at the schema of the relation instructor, we realize that we can get
the department name from the attribute dept_name, but the department building
name is present in the attribute building of the relation department. To answer the
query, each tuple in the instructor relation must be matched with the tuple in
the department relation whose dept_name value matches the dept_name value of the
instructor tuple.

In SQL, to answer the above query, we list the relations that need to be accessed
in the from clause, and specify the matching condition in the where clause. The
above query can be written in SQL as

select name, instructor.dept_name, building
from instructor, department
where instructor.dept_name= department.dept_name;

If the instructor and department relations are as shown in Figures 2.1 and 2.5
respectively, then the result of this query is shown in Figure 3.5.

Note that the attribute dept_name occurs in both the relations instructor and
department, and the relation name is used as a prefix (in instructor.dept_name, and

3.3 Basic Structure of SQL Queries

67

name dept_name building ‘
Srinivasan | Comp. Sci. | Taylor
Wu Finance Painter
Mozart Music Packard
Einstein Physics Watson
El Said History Painter
Gold Physics Watson
Katz Comp. Sci. | Taylor
Califieri History Painter
Singh Finance Painter
Crick Biology Watson
Brandt Comp. Sci. | Taylor
Kim Elec. Eng. Taylor

Figure 3.5 The result of “Retrieve the names of all instructors, along with their department
names and department building name.”

department.dept_name) to make clear to which attribute we are referring. In contrast,
the attributes name and building appear in only one of the relations, and therefore
do not need to be prefixed by the relation name.

This naming convention requires that the relations that are present in the from
clause have distinct names. This requirement causes problems in some cases,
such as when information from two different tuples in the same relation needs to
be combined. In Section 3.4.1, we see how to avoid these problems by using the
rename operation.

We now consider the general case of SQL queries involving multiple relations.
As we have seen earlier, an SQL query can contain three types of clauses, the
select clause, the from clause, and the where clause. The role of each clause is as
follows:

¢ The select clause is used to list the attributes desired in the result of a query.

e The from clause is a list of the relations to be accessed in the evaluation of
the query.

¢ The where clause is a predicate involving attributes of the relation in the
from clause.

A typical SQL query has the form

select A1, Ay, ..., A,
fromry, 7o, ..., "m
where P;

Each A; represents an attribute, and each r; a relation. P is a predicate. If the where
clause is omitted, the predicate P is true.

68 Chapter 3 Introduction to SOL

Although the clauses must be written in the order select, from, where, the
easiest way to understand the operations specified by the query is to consider the
clauses in operational order: first from, then where, and then select.!

The from clause by itself defines a Cartesian product of the relations listed
in the clause. It is defined formally in terms of set theory, but is perhaps best
understood as an iterative process that generates tuples for the result relation of
the from clause.

for each tuple t; in relation rq
for each tuple t, in relation r,

for each tuple £, in relation r,,
Concatenate t;, f, ..., t, into a single tuple ¢
Add t into the result relation

The result relation has all attributes from all the relations in the from clause.
Since the same attribute name may appear in both r; and r;, as we saw earlier,
we prefix the the name of the relation from which the attribute originally came,
before the attribute name.

For example, the relation schema for the Cartesian product of relations in-
structor and teaches is:

(instructor.ID, instructor.name, instructor.dept_name, instructor.salary
teaches.ID, teaches.course_id, teaches.sec_id, teaches.semester, teaches.year)

With this schema, we can distinguish instructor.ID from teaches.ID. For those at-
tributes that appear in only one of the two schemas, we shall usually drop the
relation-name prefix. This simplification does not lead to any ambiguity. We can
then write the relation schema as:

(instructor.ID, name, dept_name, salary
teaches.ID, course_id, sec_id, semester, year)

To illustrate, consider the instructor relation in Figure 2.1 and the teaches
relation in Figure 2.7. Their Cartesian product is shown in Figure 3.6, which
includes only a portion of the tuples that make up the Cartesian product result.?

The Cartesian product by itself combines tuples from instructor and teaches
that are unrelated to each other. Each tuple in instructor is combined with every
tuple in teaches, even those that refer to a different instructor. The result can be
an extremely large relation, and it rarely makes sense to create such a Cartesian
product.

n practice, SQL may convert the expression into an equivalent form that can be processed more efficiently. However,
we shall defer concerns about efficiency to Chapters 12 and 13.
ZNote that we renamed instructor.ID as inst.ID to reduce the width of the table in Figure 3.6.

3.3 Basic Structure of SQL Queries

69

‘ inst.ID ‘ name

dept_name ‘ salary ‘ teaches.ID | course_id ‘ sec_id ‘ semester ‘ year ‘

10101
10101
10101
10101
10101
10101

12121
12121
12121
12121
12121
12121

15151
15151
15151
15151
15151
15151

22222
22222
22222
22222
22222
22222

Srinivasan
Srinivasan
Srinivasan
Srinivasan
Srinivasan
Srinivasan

Wu

Mozart
Mozart
Mozart
Mozart
Mozart
Mozart

Einstein
Einstein
Einstein
Einstein
Einstein
Einstein

Physics
Physics
Physics
Physics
Physics
Physics

Physics
Physics
Physics
Physics
Physics
Physics

Physics
Physics
Physics
Physics
Physics
Physics

Physics
Physics
Physics
Physics
Physics
Physics

95000
95000
95000
95000
95000
95000

95000
95000
95000
95000
95000
95000

95000
95000
95000
95000
95000
95000

95000
95000
95000
95000
95000
95000

10101
10101
10101
10101
15151
22222

10101
10101
10101
10101
15151
22222

10101
10101
10101
10101
15151
22222

10101
10101
10101
10101
15151
22222

Cs-101
Cs-315
Cs-347
FIN-201
MU-199
PHY-101

Cs-101
Cs-315
Cs-347
FIN-201
MU-199
PHY-101

Cs-101
Cs-315
Cs-347
FIN-201
MU-199
PHY-101

Cs-101
Cs-315
Cs-347
FIN-201
MU-199
PHY-101

1

_ e e R e —_ = =

il el e

_ e e R e

Fall
Spring
Fall
Spring
Spring
Fall

Fall
Spring
Fall
Spring
Spring
Fall

Fall
Spring
Fall
Spring
Spring
Fall

Fall
Spring
Fall
Spring
Spring
Fall

2009
2010
2009
2010
2010
2009

2009
2010
2009
2010
2010
2009

2009
2010
2009
2010
2010
2009

2009
2010
2009
2010
2010
2009

Figure 3.6 The Cartesian product of the instructor relation with the teaches relation.

Instead, the predicate in the where clause is used to restrict the combinations
created by the Cartesian product to those that are meaningful for the desired
answer. We would expect a query involving instructor and teaches to combine a
particular tuple t in instructor with only those tuples in teaches that refer to the
same instructor to which ¢ refers. That is, we wish only to match teaches tuples with
instructor tuples that have the same ID value. The following SQL query ensures
this condition, and outputs the instructor name and course identifiers from such
matching tuples.

70

Chapter 3 Introduction to SOL

select name, course_id
from instructor, teaches
where instructor.ID= teaches.ID;

Note that the above query outputs only instructors who have taught some course.
Instructors who have not taught any course are not output; if we wish to output
such tuples, we could use an operation called the outer join, which is described in
Section 4.1.2.

If the instructor relation is as shown in Figure 2.1 and the teaches relation is
as shown in Figure 2.7, then the relation that results from the preceding query
is shown in Figure 3.7. Observe that instructors Gold, Califieri, and Singh, who
have not taught any course, do not appear in the above result.

If we only wished to find instructor names and course identifiers for instruc-
tors in the Computer Science department, we could add an extra predicate to the
where clause, as shown below.

select name, course_id
from instructor, teaches
where instructor.ID= teaches.ID and instructor.dept_-name = 'Comp. Sci.’;

Note that since the dept_name attribute occurs only in the instructor relation, we
could have used just dept_name, instead of instructor.dept_name in the above query.
In general, the meaning of an SQL query can be understood as follows:

name course_id
Srinivasan | CS-101
Srinivasan | CS-315
Srinivasan | CS-347
Wu FIN-201
Mozart MU-199
Einstein PHY-101
El Said HIS-351
Katz Cs-101
Katz CS-319
Crick BIO-101
Crick BIO-301
Brandt Cs-190
Brandt Cs-190
Brandt Cs-319
Kim EE-181

Figure 3.7 Result of “For all instructors in the university who have taught some course, find
their names and the course ID of all courses they taught.”

3.3 Basic Structure of SQL Queries 71

1. Generate a Cartesian product of the relations listed in the from clause
2. Apply the predicates specified in the where clause on the result of Step 1.

3. For each tuple in the result of Step 2, output the attributes (or results of
expressions) specified in the select clause.

The above sequence of steps helps make clear what the result of an SQL query
should be, not how it should be executed. A real implementation of SQL would
not execute the query in this fashion; it would instead optimize evaluation by
generating (as far as possible) only elements of the Cartesian product that satisfy
the where clause predicates. We study such implementation techniques later, in
Chapters 12 and 13.

When writing queries, you should be careful to include appropriate where
clause conditions. If you omit the where clause condition in the preceding SQL
query, it would output the Cartesian product, which could be a huge relation.
For the example instructor relation in Figure 2.1 and the example teaches relation
in Figure 2.7, their Cartesian product has 12 % 13 = 156 tuples — more than we
can show in the text! To make matters worse, suppose we have a more realistic
number of instructors than we show in our sample relations in the figures, say 200
instructors. Let’s assume each instructor teaches 3 courses, so we have 600 tuples
in the teaches relation. Then the above iterative process generates 200 % 600 =
120,000 tuples in the result.

3.3.3 The Natural Join

In our example query that combined information from the instructor and teaches
table, the matching condition required instructor.ID to be equal to teaches.ID. These
are the only attributes in the two relations that have the same name. In fact this
is a common case; that is, the matching condition in the from clause most often
requires all attributes with matching names to be equated.

To make the life of an SQL programmer easier for this common case, SQL
supports an operation called the natural join, which we describe below. In fact SQL
supports several other ways in which information from two or more relations
can be joined together. We have already seen how a Cartesian product along
with a where clause predicate can be used to join information from multiple
relations. Other ways of joining information from multiple relations are discussed
in Section 4.1.

The natural join operation operates on two relations and produces a relation
as the result. Unlike the Cartesian product of two relations, which concatenates
each tuple of the first relation with every tuple of the second, natural join considers
only those pairs of tuples with the same value on those attributes that appear in
the schemas of both relations. So, going back to the example of the relations
instructor and teaches, computing instructor natural join teaches considers only
those pairs of tuples where both the tuple from instructor and the tuple from
teaches have the same value on the common attribute, ID.

72

Chapter 3 Introduction to SOL

‘ ID ‘ name ‘ dept_name ‘ salary ‘ course_id ‘ sec_id ‘ semester ‘ year ‘
10101 | Srinivasan | Comp. Sci. | 65000 | CS-101 1 Fall 2009
10101 | Srinivasan | Comp. Sci. | 65000 | CS-315 1 Spring | 2010
10101 | Srinivasan | Comp. Sci. | 65000 | CS-347 1 Fall 2009
12121 | Wu Finance 90000 | FIN-201 1 Spring | 2010
15151 | Mozart Music 40000 | MU-199 1 Spring | 2010
22222 | Einstein Physics 95000 | PHY-101 1 Fall 2009
32343 | El Said History 60000 | HIS-351 1 Spring | 2010
45565 | Katz Comp. Sci. | 75000 | Cs-101 1 Spring | 2010
45565 | Katz Comp. Sci. | 75000 | Cs-319 1 Spring | 2010
76766 | Crick Biology 72000 | BIO-101 1 Summer | 2009
76766 | Crick Biology 72000 | BIO-301 1 Summer | 2010
83821 | Brandt Comp. Sci. | 92000 | Cs-190 1 Spring | 2009
83821 | Brandt Comp. Sci. | 92000 | CS-190 2 Spring | 2009
83821 | Brandt Comp. Sci. | 92000 | CS-319 2 Spring | 2010
98345 | Kim Elec. Eng. | 80000 | EE-181 1 Spring | 2009

Figure 3.8 The natural join of the instructor relation with the teaches relation.

The result relation, shown in Figure 3.8, has only 13 tuples, the ones that
give information about an instructor and a course that that instructor actually
teaches. Notice that we do not repeat those attributes that appear in the schemas
of both relations; rather they appear only once. Notice also the order in which the
attributes are listed: first the attributes common to the schemas of both relations,
second those attributes unique to the schema of the first relation, and finally, those
attributes unique to the schema of the second relation.

Consider the query “For all instructors in the university who have taught
some course, find their names and the course ID of all courses they taught”,
which we wrote earlier as:

select name, course_id
from instructor, teaches
where instructor.ID= teaches.ID;

This query can be written more concisely using the natural-join operation in
SQL as:

select name, course_id
from instructor natural join teaches;

Both of the above queries generate the same result.
As we saw earlier, the result of the natural join operation is a relation. Concep-
tually, expression “instructor natural join feaches” in the from clause is replaced

3.3 Basic Structure of SQL Queries 73

by the relation obtained by evaluating the natural join.> The where and select
clauses are then evaluated on this relation, as we saw earlier in Section 3.3.2.

A from clause in an SQL query can have multiple relations combined using
natural join, as shown here:

select Ay, Ay, ..., A,
from rq natural join r; natural join ... natural join r,
where P;

More generally, a from clause can be of the form
from Eq, E,, ..., E,

where each E; can be a single relation or an expression involving natural joins.
For example, suppose we wish to answer the query “List the names of instructors
along with the the titles of courses that they teach.” The query can be written in
SQL as follows:

select name, title
from instructor natural join teaches, course
where teaches.course_id= course.course_id;

The natural join of instructor and teaches is first computed, as we saw earlier, and
a Cartesian product of this result with course is computed, from which the where
clause extracts only those tuples where the course identifier from the join result
matches the course identifier from the course relation. Note that feaches.course_id
in the where clause refers to the course_id field of the natural join result, since this
field in turn came from the teaches relation.

In contrast the following SQL query does not compute the same result:

select name, title
from instructor natural join teaches natural join course;

To see why, note that the natural join of instructor and teaches contains the attributes
(ID, name, dept_name, salary, course_id, sec_id), while the course relation contains the
attributes (course_id, title, dept_name, credits). As a result, the natural join of these
two would require that the dept_name attribute values from the two inputs be the
same, in addition to requiring that the course_id values be the same. This query
would then omit all (instructor name, course title) pairs where the instructor
teaches a course in a department other than the instructor’s own department.
The previous query, on the other hand, correctly outputs such pairs.

3 As a consequence, it is not possible to use attribute names containing the original relation names, for instance instruic-
tor.nameor teaches.course_id, to refer to attributes in the natural join result; we can, however, use attribute names such as
name and course_id, without the relation names.

74

3.4

Chapter 3 Introduction to SOL

To provide the benefit of natural join while avoiding the danger of equating
attributes erroneously, SQL provides a form of the natural join construct that
allows you to specify exactly which columns should be equated. This feature is
illustrated by the following query:

select name, title
from (instructor natural join teaches) join course using (course_id);

The operation join . . . using requires a list of attribute names to be specified. Both
inputs must have attributes with the specified names. Consider the operation rq
join o using(A;, Ay). The operation is similar to r1 natural join r,, except that a
pair of tuples t; from r; and t, from r, matchif 1. Ay = t,. Ajand 1. Ay = t. Ay; even
if r1 and r; both have an attribute named A3, it is not required that t;. A3 = t,. A;3.

Thus, in the preceding SQL query, the join construct permits teaches.dept_name
and course.dept_name to differ, and the SQL query gives the correct answer.

Additional Basic Operations

There are number of additional basic operations that are supported in SQL.

3.4.1 The Rename Operation

Consider again the query that we used earlier:

select name, course_id
from instructor, teaches
where instructor.ID= teaches.ID;

The result of this query is a relation with the following attributes:
name, course_id

The names of the attributes in the result are derived from the names of the
attributes in the relations in the from clause.

We cannot, however, always derive names in this way, for several reasons:
First, two relations in the from clause may have attributes with the same name,
in which case an attribute name is duplicated in the result. Second, if we used an
arithmetic expression in the select clause, the resultant attribute does not have
a name. Third, even if an attribute name can be derived from the base relations
as in the preceding example, we may want to change the attribute name in the
result. Hence, SQL provides a way of renaming the attributes of a result relation.
It uses the as clause, taking the form:

old-name as new-name

3.4 Additional Basic Operations 75

The as clause can appear in both the select and from clauses.*
For example, if we want the attribute name name to be replaced with the name
instructor-name, we can rewrite the preceding query as:

select name as instructor_-name, course_id
from instructor, teaches
where instructor.ID= teaches.ID;

The as clause is particularly useful in renaming relations. One reason to
rename a relation is to replace a long relation name with a shortened version that
is more convenient to use elsewhere in the query. To illustrate, we rewrite the
query “For all instructors in the university who have taught some course, find
their names and the course ID of all courses they taught.”

select T.name, S.course_id
from instructor as T, teaches as S
where T.ID= S.ID;

Another reason to rename a relation is a case where we wish to compare
tuples in the same relation. We then need to take the Cartesian product of a
relation with itself and, without renaming, it becomes impossible to distinguish
one tuple from the other. Suppose that we want to write the query “Find the
names of all instructors whose salary is greater than at least one instructor in the
Biology department.” We can write the SQL expression:

select distinct T.name
from instructor as T, instructor as S
where T.salary > S.salary and S.dept_name = "Biology’;

Observe that we could not use the notation instructor.salary, since it would not be
clear which reference to instructor is intended.

In the above query, T and S can be thought of as copies of the relation instructor,
but more precisely, they are declared as aliases, that is as alternative names, for the
relation instructor. An identifier, such as T and S, that is used to rename a relation
is referred to as a correlation name in the SQL standard, but is also commonly
referred to as a table alias, or a correlation variable, or a tuple variable.

Note that a better way to phrase the previous query in English would be “Find
the names of all instructors who earn more than the lowest paid instructor in the
Biology department.” Our original wording fits more closely with the SQL that
we wrote, but the latter wording is more intuitive, and can in fact be expressed
directly in SQL as we shall see in Section 3.8.2.

“Early versions of SQL did not include the keyword as. As a result, some implementations of SQL, notably Oracle, do
not permit the keyword as in the from clause. In Oracle, “old-name as new-name” is written instead as “old-name new-name”
in the from clause. The keyword as is permitted for renaming attributes in the select clause, but it is optional and may
be omitted in Oracle.

76

Chapter 3 Introduction to SOL

3.4.2 String Operations

SQL specifies strings by enclosing them in single quotes, for example, ‘Computer’.
A single quote character thatis part of a string can be specified by using two single
quote characters; for example, the string “It’s right” can be specified by “It”s right™.

The SQL standard specifies that the equality operation on strings is case sen-
sitive; as a result the expression ““comp. sci.” = "Comp. Sci.”” evaluates to false.
However, some database systems, such as MySQL and SQL Server, do not distin-
guish uppercase from lowercase when matching strings; as a result *““comp. sci.”
=’Comp. Sci.”” would evaluate to true on these databases. This default behavior
can, however, be changed, either at the database level or at the level of specific
attributes.

SQL also permits a variety of functions on character strings, such as concate-
nating (using “||”), extracting substrings, finding the length of strings, converting
strings to uppercase (using the function upper(s) where s is a string) and low-
ercase (using the function lower(s)), removing spaces at the end of the string
(using trim(s)) and so on. There are variations on the exact set of string functions
supported by different database systems. See your database system’s manual for
more details on exactly what string functions it supports.

Pattern matching can be performed on strings, using the operator like. We
describe patterns by using two special characters:

1134

e Percent (%): The % character matches any substring.

¢ Underscore (_): The - character matches any character.

Patterns are case sensitive; that is, uppercase characters do not match lowercase
characters, or vice versa. To illustrate pattern matching, we consider the following
examples:

* ’Intro%’ matches any string beginning with “Intro”.

* "%Comp%’ matches any string containing “Comp” as a substring, for exam-
ple, 'Intro. to Computer Science’, and ‘Computational Biology’.

’___ matches any string of exactly three characters.

e ’___% matches any string of at least three characters.

SQL expresses patterns by using the like comparison operator. Consider the query
“Find the names of all departments whose building name includes the substring
‘Watson’.” This query can be written as:

select dept_name
from department
where building like "“%oWatson%’;

3.4 Additional Basic Operations 77

For patterns to include the special pattern characters (that is, % and _), SQL allows
the specification of an escape character. The escape character is used immediately
before a special pattern character to indicate that the special pattern character
is to be treated like a normal character. We define the escape character for a
like comparison using the escape keyword. To illustrate, consider the following
patterns, which use a backslash (\) as the escape character:

¢ like "ab\%cd%" escape "\’ matches all strings beginning with “ab%cd”.
e like "ab\\cd%’ escape "\" matches all strings beginning with “ab\cd”.

SQL allows us to search for mismatches instead of matches by using the not
like comparison operator. Some databases provide variants of the like operation
which do not distinguish lower and upper case.

SQL:1999 also offers a similar to operation, which provides more powerful
pattern matching than the like operation; the syntax for specifying patterns is
similar to that used in Unix regular expressions.

3.4.3 Attribute Specification in Select Clause

The asterisk symbol *“ * ” can be used in the select clause to denote “all attributes.”
Thus, the use of instructor.* in the select clause of the query:

select instructor.*
from instructor, teaches
where instructor.ID= teaches.ID,

indicates that all attributes of instructor are to be selected. A select clause of the
form select * indicates that all attributes of the result relation of the from clause
are selected.

3.4.4 Ordering the Display of Tuples

SQL offers the user some control over the order in which tuples in a relation
are displayed. The order by clause causes the tuples in the result of a query to
appear in sorted order. To list in alphabetic order all instructors in the Physics
department, we write:

select name

from instructor

where dept name = 'Physics’
order by name;

By default, the order by clause lists items in ascending order. To specify the
sort order, we may specify desc for descending order or asc for ascending order.
Furthermore, ordering can be performed on multiple attributes. Suppose that we
wish to list the entire instructor relation in descending order of salary. If several

78

Chapter 3 Introduction to SOL

instructors have the same salary, we order them in ascending order by name. We
express this query in SQL as follows:

select *
from instructor
order by salary desc, name asc;

3.4.5 Where Clause Predicates

SQL includes a between comparison operator to simplify where clauses that
specify that a value be less than or equal to some value and greater than or
equal to some other value. If we wish to find the names of instructors with salary
amounts between $90,000 and $100,000, we can use the between comparison to
write:

select name
from instructor
where salary between 90000 and 100000;

instead of:

select name
from instructor
where salary <= 100000 and salary >= 90000;

Similarly, we can use the not between comparison operator.

We can extend the preceding query that finds instructor names along with
course identifiers, which we saw earlier, and consider a more complicated case
in which we require also that the instructors be from the Biology department:
“Find the instructor names and the courses they taught for all instructors in the
Biology department who have taught some course.” To write this query, we can
modify either of the SQL queries we saw earlier, by adding an extra condition in
the where clause. We show below the modified form of the SQL query that does
not use natural join.

select name, course_id
from instructor, teaches
where instructor.ID= teaches.ID and dept_name = 'Biology’;

SQL permits us to use the notation (vq, va, ..., v,) to denote a tuple of arity n
containing values vy, v, . .., v,. The comparison operators can be used on tuples,
and the ordering is defined lexicographically. For example, (a1, a2) <= (b1, b2)

3.5

3.5 Set Operations 79

course_id

Cs-101
CSs-347
PHY-101

Figure 3.9 The c1 relation, listing courses taught in Fall 2009.

is true if a1 <= by and a, <= by; similarly, the two tuples are equal if all their
attributes are equal. Thus, the preceding SQL query can be rewritten as follows:”

select name, course_id
from instructor, teaches
where (instructor.ID, dept_name) = (teaches.ID, 'Biology”);

Set Operations

The SQL operations union, intersect, and except operate on relations and cor-
respond to the mathematical set-theory operations U, N, and —. We shall now
construct queries involving the union, intersect, and except operations over two
sets.

¢ The set of all courses taught in the Fall 2009 semester:

select course_id
from section
where semester = 'Fall” and year= 2009;

¢ The set of all courses taught in the Spring 2010 semester:

select course_id
from section
where semester = 'Spring’ and year= 2010;

In our discussion that follows, we shall refer to the relations obtained as the result
of the preceding queries as cI and c2, respectively, and show the results when
these queries are run on the section relation of Figure 2.6 in Figures 3.9 and 3.10.
Observe that c2 contains two tuples corresponding to course_id CS-319, since two
sections of the course have been offered in Spring 2010.

5Although it is part of the SQL-92 standard, some SQL implementations may not support this syntax.

80 Chapter 3 Introduction to SOL

Cs-101
CS-315
CS-319
CS-319
FIN-201
HIS-351
MU-199

Figure 3.10 The ¢2 relation, listing courses taught in Spring 2010.

3.5.1 The Union Operation

To find the set of all courses taught either in Fall 2009 or in Spring 2010, or both,
we write:®

(select course_id

from section

where semester = ‘Fall” and year= 2009)
union

(select course_id

from section

where semester = 'Spring’” and year= 2010);

The union operation automatically eliminates duplicates, unlike the select clause.
Thus, using the section relation of Figure 2.6, where two sections of CS-319 are
offered in Spring 2010, and a section of CS-101 is offered in the Fall 2009 as well as
in the Fall 2010 semester, CS-101 and CS-319 appear only once in the result, shown
in Figure 3.11.

If we want to retain all duplicates, we must write union all in place of union:

(select course_id

from section

where semester = ‘Fall” and year= 2009)
union all

(select course_id

from section

where semester = 'Spring’ and year= 2010);

The number of duplicate tuples in the result is equal to the total number of
duplicates that appear in both c1 and c2. So, in the above query, each of CS-319
and CS-101 would be listed twice. As a further example, if it were the case that 4
sections of ECE-101 were taught in the Fall 2009 semester and 2 sections of ECE-101

®The parentheses we include around each select-from-where statement are optional, but useful for ease of reading.

3.5 Set Operations 81

course_id

Cs-101
Cs-315
Cs-319
Cs-347
FIN-201
HIS-351
MU-199
PHY-101

Figure 3.11 The result relation for cI union c2.

were taught in the Fall 2010 semester, then there would be 6 tuples with ECE-101
in the result.

3.5.2 The Intersect Operation

To find the set of all courses taught in the Fall 2009 as well as in Spring 2010 we
write:

(select course_id

from section

where semester = "Fall” and year= 2009)
intersect

(select course_id

from section

where semester = 'Spring” and year= 2010);

The result relation, shown in Figure 3.12, contains only one tuple with CS-101. The
intersect operation automatically eliminates duplicates. For example, if it were
the case that 4 sections of ECE-101 were taught in the Fall 2009 semester and 2
sections of ECE-101 were taught in the Spring 2010 semester, then there would be
only 1 tuple with ECE-101 in the result.

If we want to retain all duplicates, we must write intersect all in place of
intersect:

Figure 3.12 The result relation for c1 intersect c2.

82

Chapter 3 Introduction to SOL

(select course_id

from section

where semester = ‘Fall” and year= 2009)
intersect all

(select course_id

from section

where semester = 'Spring’ and year= 2010);

The number of duplicate tuples that appear in the result is equal to the minimum
number of duplicates in both cI and c2. For example, if 4 sections of ECE-101
were taught in the Fall 2009 semester and 2 sections of ECE-101 were taught in the
Spring 2010 semester, then there would be 2 tuples with ECE-101 in the result.

3.5.3 The Except Operation

To find all courses taught in the Fall 2009 semester but not in the Spring 2010
semester, we write:

(select course_id

from section

where semester = ‘Fall” and year= 2009)
except

(select course_id

from section

where semester = 'Spring’ and year= 2010);

The result of this query is shown in Figure 3.13. Note that this is exactly relation
c1 of Figure 3.9 except that the tuple for CS-101 does not appear. The except
operation” outputs all tuples from its first input that do not occur in the second
input; that is, it performs set difference. The operation automatically eliminates
duplicates in the inputs before performing set difference. For example, if 4 sections
of ECE-101 were taught in the Fall 2009 semester and 2 sections of ECE-101 were
taught in the Spring 2010 semester, the result of the except operation would not
have any copy of ECE-101.
If we want to retain duplicates, we must write except all in place of except:

(select course_id

from section

where semester = ‘Fall” and year= 2009)
except all

(select course_id

from section

where semester = ’Spring’” and year= 2010);

’Some SQL implementations, notably Oracle, use the keyword minus in place of except.

3.6

3.6 Null Values 83

course_id

Cs-347
PHY-101

Figure 3.13 The result relation for c1 except c2.

The number of duplicate copies of a tuple in the result is equal to the number of
duplicate copies in cI minus the number of duplicate copies in c2, provided that
the difference is positive. Thus, if 4 sections of ECE-101 were taught in the Fall
2009 semester and 2 sections of ECE-101 were taught in Spring 2010, then there are
2 tuples with ECE-101 in the result. If, however, there were two or fewer sections
of ECE-101 in the the Fall 2009 semester, and two sections of ECE-101 in the Spring
2010 semester, there is no tuple with ECE-101 in the result.

Null Values

Null values present special problems in relational operations, including arith-
metic operations, comparison operations, and set operations.

The result of an arithmetic expression (involving, for example +, —, , or /) is
null if any of the input values is null. For example, if a query has an expression
r.A+5, and r.Ais null for a particular tuple, then the expression result must also
be null for that tuple.

Comparisons involving nulls are more of a problem. For example, consider
the comparison “1 < null”. It would be wrong to say this is true since we do not
know what the null value represents. But it would likewise be wrong to claim this
expression is false; if we did, “not (1 < null)” would evaluate to true, which does
not make sense. SQL therefore treats as unknown the result of any comparison
involving a null value (other than predicates is null and is not null, which are
described later in this section). This creates a third logical value in addition to true
and false.

Since the predicate in a where clause can involve Boolean operations such
as and, or, and not on the results of comparisons, the definitions of the Boolean
operations are extended to deal with the value unknown.

¢ and: The result of true and unknown is unknown, false and unknown is false,
while unknown and unknown is unknown.

e or: The result of true or unknown is true, false or unknown is unknown, while
unknown or unknown is unknown.

e not: The result of not unknown is unknown.

You can verify that if r.A is null, then “1 < r.A” as well as “not (1 < r.A)”
evaluate to unknown.

84

3.7

Chapter 3 Introduction to SOL

If the where clause predicate evaluates to either false or unknown for a tuple,
that tuple is not added to the result.

SQL uses the special keyword null in a predicate to test for a null value. Thus,
to find all instructors who appear in the instructor relation with null values for
salary, we write:

select name
from instructor
where salary is null;

The predicate is not null succeeds if the value on which it is applied is not null.

Some implementations of SQL also allow us to test whether the result of a com-
parison is unknown, rather than true or false, by using the clauses is unknown
and is not unknown.

When a query uses the select distinct clause, duplicate tuples must be elim-
inated. For this purpose, when comparing values of corresponding attributes
from two tuples, the values are treated as identical if either both are non-null and
equal in value, or both are null. Thus two copies of a tuple, such as {("A’,null),
("A’,null)}, are treated as being identical, even if some of the attributes have a
null value. Using the distinct clause then retains only one copy of such identical
tuples. Note that the treatment of null above is different from the way nulls are
treated in predicates, where a comparison “null=null” would return unknown,
rather than true.

The above approach of treating tuples as identical if they have the same
values for all attributes, even if some of the values are null, is also used for the
set operations union, intersection and except.

Aggregate Functions

Aggregate functions are functions that take a collection (a set or multiset) of values
as input and return a single value. SQL offers five built-in aggregate functions:

® Average: avg

e Minimum: min
* Maximum: max
e Total: sum

e Count: count

The input to sum and avg must be a collection of numbers, but the other operators
can operate on collections of nonnumeric data types, such as strings, as well.

3.7 Aggregate Functions 85

3.7.1 Basic Aggregation

Consider the query “Find the average salary of instructors in the Computer Sci-
ence department.” We write this query as follows:

select avg (salary)
from instructor
where dept_name="Comp. Sci.’;

The result of this query is a relation with a single attribute, containing a single
tuple with a numerical value corresponding to the average salary of instructors
in the Computer Science department. The database system may give an arbitrary
name to the result relation attribute that is generated by aggregation; however,
we can give a meaningful name to the attribute by using the as clause as follows:

select avg (salary) as avg_salary
from instructor
where dept_name="Comp. Sci.’;

In the instructor relation of Figure 2.1, the salaries in the Computer Science
department are $75,000, $65,000, and $92,000. The average balance is $232,000/3
= $77,333.33.

Retaining duplicates is important in computing an average. Suppose the
Computer Science department adds a fourth instructor whose salary happens to
be $75,000. If duplicates were eliminated, we would obtain the wrong answer
($232,000/4 = $58.000) rather than the correct answer of $76,750.

There are cases where we must eliminate duplicates before computing an
aggregate function. If we do want to eliminate duplicates, we use the keyword
distinct in the aggregate expression. An example arises in the query “Find the
total number of instructors who teach a course in the Spring 2010 semester.”
In this case, an instructor counts only once, regardless of the number of course
sections that the instructor teaches. The required information is contained in the
relation feaches, and we write this query as follows:

select count (distinct ID)
from teaches
where semester = 'Spring’ and year = 2010;

Because of the keyword distinct preceding ID, even if an instructor teaches more
than one course, she is counted only once in the result.

We use the aggregate function count frequently to count the number of tuples
in a relation. The notation for this function in SQL is count (*). Thus, to find the
number of tuples in the course relation, we write

select count (*)
from course;

86

Chapter 3 Introduction to SOL

‘ ID ‘ name dept_name ‘ salary ‘
76766 | Crick Biology 72000
45565 | Katz Comp. Sci. | 75000
10101 | Srinivasan | Comp. Sci. | 65000
83821 | Brandt Comp. Sci. | 92000
98345 | Kim Elec. Eng. | 80000
12121 | Wu Finance 90000
76543 | Singh Finance 80000
32343 | El Said History 60000
58583 | Califieri History 62000
15151 | Mozart Music 40000
33456 | Gold Physics 87000
22222 | Einstein Physics 95000

Figure 3.14 Tuples of the instructor relation, grouped by the dept_name attribute.

SQL does not allow the use of distinct with count (*). It is legal to use distinct
with max and min, even though the result does not change. We can use the
keyword all in place of distinct to specify duplicate retention, but, since all is the
default, there is no need to do so.

3.7.2 Aggregation with Grouping

There are circumstances where we would like to apply the aggregate function
not only to a single set of tuples, but also to a group of sets of tuples; we specify
this wish in SQL using the group by clause. The attribute or attributes given in
the group by clause are used to form groups. Tuples with the same value on all
attributes in the group by clause are placed in one group.

As an illustration, consider the query “Find the average salary in each depart-
ment.” We write this query as follows:

select dept_name, avg (salary) as avg_salary
from instructor
group by dept_name;

Figure 3.14 shows the tuples in the instructor relation grouped by the dept
_name attribute, which is the first step in computing the query result. The specified
aggregate is computed for each group, and the result of the query is shown in
Figure 3.15.

In contrast, consider the query “Find the average salary of all instructors.” We
write this query as follows:

select avg (salary)
from instructor;

3.7 Aggregate Functions 87

deptname | avg_salary

Biology 72000
Comp. Sci. | 77333
Elec. Eng. | 80000
Finance 85000
History 61000
Music 40000
Physics 91000

Figure 3.15 The result relation for the query “Find the average salary in each department”.

In this case the group by clause has been omitted, so the entire relation is treated
as a single group.

As another example of aggregation on groups of tuples, consider the query
“Find the number of instructors in each department who teach a course in the
Spring 2010 semester.” Information about which instructors teach which course
sections in which semester is available in the feaches relation. However, this in-
formation has to be joined with information from the instructor relation to get the
department name of each instructor. Thus, we write this query as follows:

select dept_name, count (distinct ID) as instr_count
from instructor natural join teaches

where semester = 'Spring” and year = 2010

group by dept_name;

The result is shown in Figure 3.16.

When an SQL query uses grouping, it is important to ensure that the only
attributes that appear in the select statement without being aggregated are those
that are present in the group by clause. In other words, any attribute that is not
present in the group by clause must appear only inside an aggregate function if
it appears in the select clause, otherwise the query is treated as erroneous. For
example, the following query is erroneous since ID does not appear in the group
by clause, and yet it appears in the select clause without being aggregated:

| dept_name \ instr_count |

Comp. Sci. 3
Finance 1
History 1
Music 1

Figure 3.16 The result relation for the query “Find the number of instructors in each
department who teach a course in the Spring 2010 semester.”

88

Chapter 3 Introduction to SOL

/* erroneous query */

select dept_name, ID, avg (salary)
from instructor

group by dept_name;

Each instructor in a particular group (defined by dept_name) can have a different
ID, and since only one tuple is output for each group, there is no unique way of
choosing which ID value to output. As a result, such cases are disallowed by SQL.

3.7.3 The Having Clause

At times, it is useful to state a condition that applies to groups rather than to
tuples. For example, we might be interested in only those departments where the
average salary of the instructors is more than $42,000. This condition does not
apply to a single tuple; rather, it applies to each group constructed by the group
by clause. To express such a query, we use the having clause of SQL. SQL applies
predicates in the having clause after groups have been formed, so aggregate
functions may be used. We express this query in SQL as follows:

select dept_name, avg (salary) as avg_salary
from instructor

group by dept_name

having avg (salary) > 42000;

The result is shown in Figure 3.17.

Aswas the case for the select clause, any attribute that is present in the having
clause without being aggregated must appear in the group by clause, otherwise
the query is treated as erroneous.

The meaning of a query containing aggregation, group by, or having clauses
is defined by the following sequence of operations:

1. As was the case for queries without aggregation, the from clause is first
evaluated to get a relation.

dept_name ‘ avg(avg_salary) ‘

Physics 91000
Elec. Eng. 80000
Finance 85000
Comp. Sci. 77333
Biology 72000
History 61000

Figure 3.17 The result relation for the query “Find the average salary of instructors in those
departments where the average salary is more than $42,000.”

3.7 Aggregate Functions 89

2. If a where clause is present, the predicate in the where clause is applied on
the result relation of the from clause.

3. Tuples satisfying the where predicate are then placed into groups by the
group by clause if it is present. If the group by clause is absent, the entire
set of tuples satisfying the where predicate is treated as being in one group.

4. The having clause, if it is present, is applied to each group; the groups that
do not satisfy the having clause predicate are removed.

5. The select clause uses the remaining groups to generate tuples of the result
of the query, applying the aggregate functions to get a single result tuple for
each group.

To illustrate the use of both a having clause and a where clause in the same
query, we consider the query “For each course section offered in 2009, find the
average total credits (tot_cred) of all students enrolled in the section, if the section
had at least 2 students.”

select course_id, semester, year, sec_id, avg (tot_cred)
from takes natural join student

where year = 2009

group by course_id, semester, year, sec_id

having count (ID) >=2;

Note that all the required information for the preceding query is available from
the relations takes and student, and that although the query pertains to sections, a
join with section is not needed.

3.7.4 Aggregation with Null and Boolean Values

Null values, when they exist, complicate the processing of aggregate operators.
For example, assume that some tuples in the instructor relation have a null value
for salary. Consider the following query to total all salary amounts:

select sum (salary)
from instructor;

The values to be summed in the preceding query include null values, since some
tuples have a null value for salary. Rather than say that the overall sum is itself
null, the SQL standard says that the sum operator should ignore null values in its
input.

In general, aggregate functions treat nulls according to the following rule: All
aggregate functions except count (*) ignore null values in their input collection.
Asaresult of null values being ignored, the collection of values may be empty. The
count of an empty collection is defined to be 0, and all other aggregate operations

90

3.8

Chapter 3 Introduction to SOL

return a value of null when applied on an empty collection. The effect of null
values on some of the more complicated SQL constructs can be subtle.

A Boolean data type that can take values true, false, and unknown, was
introduced in SQL:1999. The aggregate functions some and every, which mean
exactly what you would intuitively expect, can be applied on a collection of
Boolean values.

Nested Subqueries

SQL provides a mechanism for nesting subqueries. A subquery is a select-from-
where expression that is nested within another query. A common use of sub-
queries is to perform tests for set membership, make set comparisons, and deter-
mine set cardinality, by nesting subqueries in the where clause. We study such
uses of nested subqueries in the where clause in Sections 3.8.1 through 3.8.4. In
Section 3.8.5, we study nesting of subqueries in the from clause. In Section 3.8.7,
we see how a class of subqueries called scalar subqueries can appear wherever
an expression returning a value can occur.

3.8.1 Set Membership

SQL allows testing tuples for membership in a relation. The in connective tests
for set membership, where the set is a collection of values produced by a select
clause. The not in connective tests for the absence of set membership.

As an illustration, reconsider the query “Find all the courses taught in the
both the Fall 2009 and Spring 2010 semesters.” Earlier, we wrote such a query by
intersecting two sets: the set of courses taught in Fall 2009 and the set of courses
taught in Spring 2010. We can take the alternative approach of finding all courses
that were taught in Fall 2009 and that are also members of the set of courses
taught in Spring 2010. Clearly, this formulation generates the same results as the
previous one did, but it leads us to write our query using the in connective of SQL.
We begin by finding all courses taught in Spring 2010, and we write the subquery

(select course_id
from section
where semester = 'Spring” and year= 2010)

We then need to find those courses that were taught in the Fall 2009 and that
appear in the set of courses obtained in the subquery. We do so by nesting the
subquery in the where clause of an outer query. The resulting query is

select distinct course_id
from section
where semester = 'Fall” and year= 2009 and
course_id in (select course_id
from section
where semester = 'Spring” and year= 2010);

3.8 Nested Subqueries 91

This example shows that it is possible to write the same query several ways in
SQL. This flexibility is beneficial, since it allows a user to think about the query in
the way that seems most natural. We shall see that there is a substantial amount
of redundancy in SQL.

We use the not in construct in a way similar to the in construct. For example,
to find all the courses taught in the Fall 2009 semester but not in the Spring 2010
semester, we can write:

select distinct course id
from section
where semester = ‘Fall” and year= 2009 and
course_id not in (select course_id
from section
where semester = 'Spring’ and year= 2010);

The in and not in operators can also be used on enumerated sets. The follow-
ing query selects the names of instructors whose names are neither “Mozart” nor
“Einstein”.

select distinct name
from instructor
where name not in ('Mozart’, 'Einstein’);

In the preceding examples, we tested membership in a one-attribute relation.
It is also possible to test for membership in an arbitrary relation in SQL. For
example, we can write the query “find the total number of (distinct) students who
have taken course sections taught by the instructor with ID 110011” as follows:

select count (distinct ID)

from takes

where (course_id, sec_id, semester, year) in (select course_id, sec_id, semester, year
from teaches
where teaches.ID= 10101);

3.8.2 Set Comparison

As an example of the ability of a nested subquery to compare sets, consider the
query “Find the names of all instructors whose salary is greater than at least one
instructor in the Biology department.” In Section 3.4.1, we wrote this query as
follows:

select distinct T.name
from instructor as T, instructor as S
where T.salary > S.salary and S.dept_name = "Biology’;

92

Chapter 3 Introduction to SOL

SQL does, however, offer an alternative style for writing the preceding query. The
phrase “greater than at least one” is represented in SQL by > some. This construct
allows us to rewrite the query in a form that resembles closely our formulation
of the query in English.

select name
from instructor
where salary > some (select salary
from instructor
where dept name = 'Biology’);

The subquery:

(select salary
from instructor
where dept_name = 'Biology’)

generates the set of all salary values of all instructors in the Biology department.
The > some comparison in the where clause of the outer select is true if the salary
value of the tuple is greater than at least one member of the set of all salary values
for instructors in Biology.

SQL also allows < some, <= some, >= some, = some, and <> some com-
parisons. As an exercise, verify that = some is identical to in, whereas <> some
is not the same as not in.®

Now we modify our query slightly. Let us find the names of all instructors
that have a salary value greater than that of each instructor in the Biology depart-
ment. The construct > all corresponds to the phrase “greater than all.” Using this
construct, we write the query as follows:

select name
from instructor
where salary > all (select salary
from instructor
where dept_name = 'Biology’);

As it does for some, SQL also allows < all, <= all, >= all, = all, and <> all
comparisons. As an exercise, verify that <> all is identical to not in, whereas =
all is not the same as in.

As another example of set comparisons, consider the query “Find the depart-
ments that have the highest average salary.” We begin by writing a query to find
all average salaries, and then nest it as a subquery of a larger query that finds

8The keyword any is synonymous to some in SQL. Early versions of SQL allowed only any. Later versions added the
alternative some to avoid the linguistic ambiguity of the word any in English.

3.8 Nested Subqueries 93

those departments for which the average salary is greater than or equal to all
average salaries:

select dept_name

from instructor

group by dept name

having avg (salary) >= all (select avg (salary)
from instructor
group by dept_name);

3.8.3 Test for Empty Relations

SQL includes a feature for testing whether a subquery has any tuples in its result.
The exists construct returns the value true if the argument subquery is nonempty.
Using the exists construct, we can write the query “Find all courses taught in both
the Fall 2009 semester and in the Spring 2010 semester” in still another way:

select course_id
from section as S
where semester = ‘Fall” and year= 2009 and
exists (select *
from section as T
where semester = 'Spring” and year= 2010 and
S.course_id= T.course_id);

The above query also illustrates a feature of SQL where a correlation name
from an outer query (S in the above query), can be used in a subquery in the
where clause. A subquery that uses a correlation name from an outer query is
called a correlated subquery.

In queries that contain subqueries, a scoping rule applies for correlation
names. In a subquery, according to the rule, it is legal to use only correlation
names defined in the subquery itself or in any query that contains the subquery.
If a correlation name is defined both locally in a subquery and globally in a
containing query, the local definition applies. This rule is analogous to the usual
scoping rules used for variables in programming languages.

We can test for the nonexistence of tuples in a subquery by using the not exists
construct. We can use the not exists construct to simulate the set containment (that
is, superset) operation: We can write “relation A contains relation B” as “not exists
(B except A).” (Although it is not part of the current SQL standards, the contains
operator was present in some early relational systems.) To illustrate the not exists
operator, consider the query “Find all students who have taken all courses offered
in the Biology department.” Using the except construct, we can write the query
as follows:

94 Chapter 3 Introduction to SOL

select distinct S.ID, S.name
from student as S
where not exists ((select course_id
from course
where dept_name = "Biology’)
except
(select T.course id
from takes as T
where S.ID = T.ID));

Here, the subquery:

(select course_id
from course
where dept_name = 'Biology”’)

finds the set of all courses offered in the Biology department. The subquery:

(select T.course_id
from takes as T
where S.ID = T.ID)

finds all the courses that student S.ID has taken. Thus, the outer select takes each
student and tests whether the set of all courses that the student has taken contains
the set of all courses offered in the Biology department.

3.8.4 Test for the Absence of Duplicate Tuples

SQL includes a boolean function for testing whether a subquery has duplicate
tuples in its result. The unique construct’ returns the value true if the argument
subquery contains no duplicate tuples. Using the unique construct, we can write
the query “Find all courses that were offered at most once in 2009” as follows:

select T.course_id
from course as T
where unique (select R.course_id
from section as R
where T.course_id= R.course_id and
R.year = 2009);

Note that if a course is not offered in 2009, the subquery would return an empty
result, and the unique predicate would evaluate to true on the empty set.
An equivalent version of the above query not using the unique construct is:

This construct is not yet widely implemented.

3.8 Nested Subqueries 95

select T.course_id
from course as T
where 1 <= (select count(R.course_id)
from section as R
where T.course_id= R.course_id and
R.year = 2009);

We can test for the existence of duplicate tuples in a subquery by using the
not unique construct. To illustrate this construct, consider the query “Find all
courses that were offered at least twice in 2009 as follows:

select T.course_id
from course as T
where not unique (select R.course_id
from section as R
where T.course_id= R.course_id and
R.year = 2009);

Formally, the unique test on a relation is defined to fail if and only if the
relation contains two tuples t; and t, such that t; = t,. Since the test t; = t, fails
if any of the fields of #; or t, are null, it is possible for unique to be true even if
there are multiple copies of a tuple, as long as at least one of the attributes of the
tuple is null.

3.8.5 Subqueries in the From Clause

SQL allows a subquery expression to be used in the from clause. The key concept
applied here is that any select-from-where expression returns a relation as a result
and, therefore, can be inserted into another select-from-where anywhere that a
relation can appear.

Consider the query “Find the average instructors’ salaries of those depart-
ments where the average salary is greater than $42,000.” We wrote this query in
Section 3.7 by using the having clause. We can now rewrite this query, without
using the having clause, by using a subquery in the from clause, as follows:

select dept_name, avg_salary

from (select dept_name, avg (salary) as avg_salary
from instructor
group by dept_name)

where avg salary > 42000;

The subquery generates a relation consisting of the names of all departments and
their corresponding average instructors’ salaries. The attributes of the subquery
result can be used in the outer query, as can be seen in the above example.

96

Chapter 3 Introduction to SOL

Note that we do not need to use the having clause, since the subquery in
the from clause computes the average salary, and the predicate that was in the
having clause earlier is now in the where clause of the outer query.

We can give the subquery result relation a name, and rename the attributes,
using the as clause, as illustrated below.

select dept_name, avg_salary
from (select dept_name, avg (salary)
from instructor
group by dept_name)
as dept_avg (dept_name, avg_salary)
where avg_salary > 42000;

The subquery result relation is named dept_avg, with the attributes dept name and
avg_salary.

Nested subqueries in the from clause are supported by most but not all SQL
implementations. However, some SQL implementations, notably Oracle, do not
support renaming of the result relation in the from clause.

As another example, suppose we wish to find the maximum across all de-
partments of the total salary at each department. The having clause does not help
us in this task, but we can write this query easily by using a subquery in the from
clause, as follows:

select max (fot_salary)
from (select dept_name, sum(salary)
from instructor
group by dept_name) as dept_total (dept_name, tot_salary);

We note that nested subqueries in the from clause cannot use correlation
variables from other relations in the from clause. However, SQL:2003 allows a
subquery in the from clause that is prefixed by the lateral keyword to access
attributes of preceding tables or subqueries in the from clause. For example, if
we wish to print the names of each instructor, along with their salary and the
average salary in their department, we could write the query as follows:

select name, salary, avg salary

from instructor I1, lateral (select avg(salary) as avg_salary
from instructor 12
where [2.dept_name= I1.dept_name);

Without the lateral clause, the subquery cannot access the correlation variable
I1 from the outer query. Currently, only a few SQL implementations, such as IBM
DB2, support the lateral clause.

3.8 Nested Subqueries 97

3.8.6 The with Clause

The with clause provides a way of defining a temporary relation whose definition
is available only to the query in which the with clause occurs. Consider the
following query, which finds those departments with the maximum budget.

with max_budget (value) as
(select max(budget)
from department)
select budget
from department, max_budget
where department.budget = max_budget.value;

The with clause defines the temporary relation max_budget, which is used in
the immediately following query. The with clause, introduced in SQL:1999, is
supported by many, but not all, database systems.

We could have written the above query by using a nested subquery in either
the from clause or the where clause. However, using nested subqueries would
have made the query harder to read and understand. The with clause makes the
query logic clearer; it also permits a view definition to be used in multiple places
within a query.

For example, suppose we want to find all departments where the total salary
is greater than the average of the total salary at all departments. We can write the
query using the with clause as follows.

with dept total (dept_name, value) as
(select dept_name, sum(salary)
from instructor
group by dept_name),
dept_total_avg(value) as
(select avg(value)
from dept_total)
select dept_name
from dept_total, dept_total_avg
where dept_total.value >= dept_total_avg.value;

We can, of course, create an equivalent query without the with clause, but it would
be more complicated and harder to understand. You can write the equivalent
query as an exercise.

3.8.7 Scalar Subqueries

SQL allows subqueries to occur wherever an expression returning a value is
permitted, provided the subquery returns only one tuple containing a single
attribute; such subqueries are called scalar subqueries. For example, a subquery

98

3.9

Chapter 3 Introduction to SOL

can be used in the select clause as illustrated in the following example that lists
all departments along with the number of instructors in each department:

select dept_name,
(select count(*)
from instructor
where department.dept name = instructor.dept_name)
as num_instructors
from department;

The subquery in the above example is guaranteed to return only a single value
since it has a count(*) aggregate without a group by. The example also illustrates
the usage of correlation variables, that is, attributes of relations in the from clause
of the outer query, such as department.dept_name in the above example.

Scalar subqueries can occur in select, where, and having clauses. Scalar sub-
queries may also be defined without aggregates. It is not always possible to figure
out at compile time if a subquery can return more than one tuple in its result;
if the result has more than one tuple when the subquery is executed, a run-time
erTor occurs.

Note that technically the type of a scalar subquery result is still a relation,
even if it contains a single tuple. However, when a scalar subquery is used in an
expression where a value is expected, SQL implicitly extracts the value from the
single attribute of the single tuple in the relation, and returns that value.

Modification of the Database

We have restricted our attention until now to the extraction of information from
the database. Now, we show how to add, remove, or change information with SQL.

3.9.1 Deletion

A delete request is expressed in much the same way as a query. We can delete only
whole tuples; we cannot delete values on only particular attributes. SQL expresses
a deletion by

delete from r
where P;

where P represents a predicate and r represents a relation. The delete statement
first finds all tuples t in r for which P(f) is true, and then deletes them from r. The
where clause can be omitted, in which case all tuples in r are deleted.

Note that a delete command operates on only one relation. If we want to delete
tuples from several relations, we must use one delete command for each relation.
The predicate in the where clause may be as complex as a select command’s
where clause. At the other extreme, the where clause may be empty. The request

3.9 Modification of the Database 99

delete from instructor;

deletes all tuples from the instructor relation. The instructor relation itself still
exists, but it is empty.
Here are examples of SQL delete requests:

¢ Delete all tuples in the instructor relation pertaining to instructors in the
Finance department.

delete from instructor
where dept_name= "Finance’;

¢ Delete all instructors with a salary between $13,000 and $15,000.

delete from instructor
where salary between 13000 and 15000;

¢ Delete all tuples in the instructor relation for those instructors associated with
a department located in the Watson building.

delete from instructor
where dept_name in (select dept_name
from department
where building = "Watson’);

This delete request first finds all departments located in Watson, and then
deletes all instructor tuples pertaining to those departments.

Note that, although we may delete tuples from only one relation at a time,
we may reference any number of relations in a select-from-where nested in the
where clause of a delete. The delete request can contain a nested select that
references the relation from which tuples are to be deleted. For example, suppose
that we want to delete the records of all instructors with salary below the average
at the university. We could write:

delete from instructor
where salary< (select avg (salary)
from instructor);

The delete statement first tests each tuple in the relation instructor to check
whether the salary is less than the average salary of instructors in the univer-
sity. Then, all tuples that fail the test—that is, represent an instructor with a
lower-than-average salary—are deleted. Performing all the tests before perform-
ing any deletion is important—if some tuples are deleted before other tuples

100

Chapter 3 Introduction to SOL

have been tested, the average salary may change, and the final result of the delete
would depend on the order in which the tuples were processed!

3.9.2 Insertion

To insert data into a relation, we either specify a tuple to be inserted or write a
query whose result is a set of tuples to be inserted. Obviously, the attribute values
for inserted tuples must be members of the corresponding attribute’s domain.
Similarly, tuples inserted must have the correct number of attributes.

The simplest insert statement is a request to insert one tuple. Suppose that
we wish to insert the fact that there is a course CS-437 in the Computer Science
department with title “Database Systems”, and 4 credit hours. We write:

insert into course
values ('CS-437’, 'Database Systems’, ‘Comp. Sci.’, 4);

In this example, the values are specified in the order in which the corresponding
attributes are listed in the relation schema. For the benefit of users who may not
remember the order of the attributes, SQL allows the attributes to be specified as
part of the insert statement. For example, the following SQL insert statements are
identical in function to the preceding one:

insert into course (course_id, title, dept name, credits)
values ('CS-437, 'Database Systems’, "Comp. Sci.’, 4);

insert into course (title, course_id, credits, dept_name)
values ('Database Systems’, 'CS-437’, 4, Comp. Sci.”);

More generally, we might want to insert tuples on the basis of the result of a
query. Suppose that we want to make each student in the Music department who
has earned more than 144 credit hours, an instructor in the Music department,
with a salary of $18,000. We write:

insert into instructor
select ID, name, dept_name, 18000
from student
where dept name = "Music” and tot_cred > 144;

Instead of specifying a tuple as we did earlier in this section, we use a select to
specify a set of tuples. SQL evaluates the select statement first, giving a set of
tuples that is then inserted into the instructor relation. Each tuple has an ID, a
name, a dept_name (Music), and an salary of $18,000.

It is important that we evaluate the select statement fully before we carry
out any insertions. If we carry out some insertions even as the select statement is
being evaluated, a request such as:

3.9 Modification of the Database 101

insert into student
select *
from student;

might insert an infinite number of tuples, if the primary key constraint on student
were absent. Without the primary key constraint, the request would insert the
first tuple in student again, creating a second copy of the tuple. Since this second
copy is part of student now, the select statement may find it, and a third copy
would be inserted into student. The select statement may then find this third
copy and insert a fourth copy, and so on, forever. Evaluating the select statement
completely before performing insertions avoids such problems. Thus, the above
insert statement would simply duplicate every tuple in the student relation, if the
relation did not have a primary key constraint.

Our discussion of the insert statement considered only examples in which
a value is given for every attribute in inserted tuples. It is possible for inserted
tuples to be given values on only some attributes of the schema. The remaining
attributes are assigned a null value denoted by null. Consider the request:

insert into student
values ("3003’, ‘Green’, "Finance’, null);

The tuple inserted by this request specified that a student with ID “3003” is in the
Finance department, but the tot_cred value for this student is not known. Consider
the query:

select student
from student
where fof_cred > 45;

Since the fot_cred value of student “3003” is not known, we cannot determine
whether it is greater than 45.

Most relational database products have special “bulk loader” utilities to insert
a large set of tuples into a relation. These utilities allow data to be read from
formatted text files, and can execute much faster than an equivalent sequence of
insert statements.

3.9.3 Updates

In certain situations, we may wish to change a value in a tuple without changing
all values in the tuple. For this purpose, the update statement can be used. As we
could for insert and delete, we can choose the tuples to be updated by using a
query.

Suppose that annual salary increases are being made, and salaries of all in-
structors are to be increased by 5 percent. We write:

102

Chapter 3 Introduction to SOL

update instructor
set salary= salary * 1.05;

The preceding update statement is applied once to each of the tuples in instructor
relation.

If a salary increase is to be paid only to instructors with salary of less than
$70,000, we can write:

update instructor
set salary = salary * 1.05
where salary < 70000;

In general, the where clause of the update statement may contain any construct
legal in the where clause of the select statement (including nested selects). As
with insert and delete, a nested select within an update statement may reference
the relation that is being updated. As before, SQL first tests all tuples in the relation
to see whether they should be updated, and carries out the updates afterward.
For example, we can write the request “Give a 5 percent salary raise to instructors
whose salary is less than average” as follows:

update instructor

set salary = salary * 1.05

where salary < (select avg (salary)
from instructor);

Let us now suppose that all instructors with salary over $100,000 receive a
3 percent raise, whereas all others receive a 5 percent raise. We could write two
update statements:

update instructor
set salary = salary * 1.03
where salary > 100000;

update instructor
set salary = salary * 1.05
where salary <= 100000;

Note that the order of the two update statements is important. If we changed the
order of the two statements, an instructor with a salary just under $100,000 would
receive an over 8 percent raise.

SQL provides a case construct that we can use to perform both the updates
with a single update statement, avoiding the problem with the order of updates.

3.9 Modification of the Database 103

update instructor
set salary = case
when salary <= 100000 then salary * 1.05
else salary * 1.03
end

The general form of the case statement is as follows.

case
when pred; then result
when pred, then result,

when pred, then result,
else result
end

The operation returns result;, where i is the first of pred;, pred,, ..., pred, that is
satisfied; if none of the predicates is satisfied, the operation returns result,. Case
statements can be used in any place where a value is expected.

Scalar subqueries are also useful in SQL update statements, where they can be
used in the set clause. Consider an update where we set the tot_cred attribute of
each student tuple to the sum of the credits of courses successfully completed by
the student. We assume that a course is successfully completed if the student has

a grade that is not 'F” or null. To specify this update, we need to use a subquery
in the set clause, as shown below:

update student S
set tot cred = (
select sum(credits)
from takes natural join course
where S.ID= takes.ID and
takes.grade <> 'F” and
takes.grade is not null);

Observe that the subquery uses a correlation variable S from the update statement.
In case a student has not successfully completed any course, the above update
statement would set the tot_cred attribute value to null. To set the value to 0
instead, we could use another update statement to replace null values by 0; a
better alternative is to replace the clause “select sum(credits)” in the preceding
subquery by the following select clause using a case expression:

select case
when sum(credits) is not null then sum(credits)
else 0
end

104 Chapter3 Introduction to SOL

3.10 Summary

SQL is the most influential commercially marketed relational query language.
The SQL language has several parts:

o Data-definition language (DDL), which provides commands for defining
relation schemas, deleting relations, and modifying relation schemas.

o Data-manipulation language (DML), which includes a query language
and commands to insert tuples into, delete tuples from, and modify tuples
in the database.

The SQL data-definition language is used to create relations with specified
schemas. In addition to specifying the names and types of relation attributes,
SQL also allows the specification of integrity constraints such as primary-key
constraints and foreign-key constraints.

SQL includes a variety of language constructs for queries on the database.
These include the select, from, and where clauses, and support for the natural
join operation.

SQL also provides mechanisms to rename both attributes and relations, and
to order query results by sorting on specified attributes.

SQL supports basic set operations on relations including union, intersect,
and except, which correspond to the mathematical set-theory operations U,
N, and —.

SQL handles queries on relations containing null values by adding the truth
value “unknown” to the usual truth values of true and false.

SQL supports aggregation, including the ability to divide a relation into
groups, applying aggregation separately on each group. SQL also supports
set operations on groups.

SQL supports nested subqueries in the where, and from clauses of an outer
query. It also supports scalar subqueries, wherever an expression returning
a value is permitted.

SQL provides constructs for updating, inserting, and deleting information.

Review Terms

Data-definition language ¢ Relation instance
Data-manipulation language ¢ Primary key
Database schema * Foreign key

Database instan . .
S¢ mstance o Referencing relation

Relation schema .
o Referenced relation

Null value
Query language
SQL query structure
o select clause
o from clause
o where clause

Natural join operation
as clause
order by clause

Correlation name (correlation vari-
able, tuple variable)

Set operations
© union
o intersect
° except
Null values

o Truth value “unknown”

Practice Exercises

Practice Exercises 105

Aggregate functions
© avg, min, max, sum, count
o group by
o having

Nested subqueries

Set comparisons
o {<,<=,>,>=}{some,all }
o exists
© unique

lateral clause

with clause

Scalar subquery
Database modification

o Deletion
o Insertion

o Updating

3.1 Write the following queries in SQL, using the university schema. (We sug-

gest you actually run these queries on a database, using the sample data
that we provide on the Web site of the book, db-book.com. Instructions for
setting up a database, and loading sample data, are provided on the above

Web site.)

a. Find the titles of courses in the Comp. Sci. department that have 3

credits.

b. Find the IDs of all students who were taught by an instructor named
Einstein; make sure there are no duplicates in the result.

c. Find the highest salary of any instructor.

d. Find all instructors earning the highest salary (there may be more

than one with the same salary).

e. Find the enrollment of each section that was offered in Autumn 2009.

f. Find the maximum enrollment, across all sections, in Autumn 2009.

g. Find the sections that had the maximum enrollment in Autumn 2009.

106

Chapter 3 Introduction to SOL

person (driver_id, name, address)

car (license, model, year)

accident (report_number, date, location)

owns (driver_id, license)

participated (report-number, license, driver_id, damage_amount)

Figure 3.18 Insurance database for Exercises 3.4 and 3.14.

3.2 Suppose you are given a relation grade_points(grade, points), which provides

a conversion from letter grades in the fakes relation to numeric scores; for
example an “A” grade could be specified to correspond to 4 points, an “A—"
to 3.7 points, a “B+” to 3.3 points, a “B” to 3 points, and so on. The grade
points earned by a student for a course offering (section) is defined as the
number of credits for the course multiplied by the numeric points for the
grade that the student received.

Given the above relation, and our university schema, write each of the

following queries in SQL. You can assume for simplicity that no takes tuple
has the null value for grade.

a.

C.

Find the total grade-points earned by the student with ID 12345, across
all courses taken by the student.

Find the grade-point average (GPA) for the above student, that is,
the total grade-points divided by the total credits for the associated
courses.

Find the ID and the grade-point average of every student.

3.3 Write the following inserts, deletes or updates in SQL, using the university
schema.

a.

Increase the salary of each instructor in the Comp. Sci. department
by 10%.

Delete all courses that have never been offered (that is, do not occur
in the section relation).

Insert every student whose tof_cred attribute is greater than 100 as an
instructor in the same department, with a salary of $10,000.

3.4 Consider the insurance database of Figure 3.18, where the primary keys
are underlined. Construct the following SQL queries for this relational
database.

a.

b.

Find the total number of people who owned cars that were involved
in accidents in 2009.

Add a new accident to the database; assume any values for required
attributes.

Delete the Mazda belonging to “John Smith”.

3.5

3.6

3.7

3.8

3.9

Practice Exercises 107

branch(branch_name, branch_city, assets)

customer (customer_name, customer_street, customer_city)
loan (loan_number, branch_name, amount)

borrower (customer_name, loan_number)

account (account_number, branch_name, balance)
depositor (customer_name, account_number)

Figure 3.19 Banking database for Exercises 3.8 and 3.15.

Suppose that we have a relation marks(ID, score) and we wish to assign
grades to students based on the score as follows: grade F if score < 40,
grade C if 40 < score < 60, grade B if 60 < score < 80, and grade A if 80 <
score. Write SQL queries to do the following:

a. Display the grade for each student, based on the marks relation.
b. Find the number of students with each grade.

The SQL like operator is case sensitive, but the lower() function on strings
can be used to perform case insensitive matching. To show how, write a
query that finds departments whose names contain the string “sci” as a
substring, regardless of the case.

Consider the SQL query

select distinct p.al
fromp, 11, 12
where p.al =rl.al or p.al =r2.al

Under what conditions does the preceding query select values of p.a1 that
are either in r1 or in 72? Examine carefully the cases where one of 71 or 2
may be empty.

Consider the bank database of Figure 3.19, where the primary keys are un-
derlined. Construct the following SQL queries for this relational database.

Find all customers of the bank who have an account but not a loan.

Find the names of all customers who live on the same street and in
the same city as “Smith”.

c. Find the names of all branches with customers who have an account
in the bank and who live in “Harrison”.
Consider the employee database of Figure 3.20, where the primary keys are

underlined. Give an expression in SQL for each of the following queries.

a. Find the names and cities of residence of all employees who work for
“First Bank Corporation”.

108 Chapter 3 Introduction to SOL

employee (employee_name, street, city)

works (employee_name, company_name, salary)
company (company_name, city)

manages (employee_name, manager_name)

Figure 3.20 Employee database for Exercises 3.9, 3.10, 3.16, 3.17, and 3.20.

b.

f.
g.

Find the names, street addresses, and cities of residence of all em-
ployees who work for “First Bank Corporation” and earn more than

$10,000.

Find all employees in the database who do not work for “First Bank
Corporation”.

Find all employees in the database who earn more than each employee
of “Small Bank Corporation”.

Assume that the companies may be located in several cities. Find all
companies located in every city in which “Small Bank Corporation”
is located.

Find the company that has the most employees.

Find those companies whose employees earn a higher salary, on av-
erage, than the average salary at “First Bank Corporation”.

3.10 Consider the relational database of Figure 3.20. Give an expression in SQL
for each of the following queries.

a.
b.

Exercises

Modify the database so that “Jones” now lives in “Newtown”.

Give all managers of “First Bank Corporation” a 10 percent raise
unless the salary becomes greater than $100,000; in such cases, give
only a 3 percent raise.

3.11 Write the following queries in SQL, using the university schema.

a.

Find the names of all students who have taken at least one Comp. Sci.
course; make sure there are no duplicate names in the result.

Find the IDs and names of all students who have not taken any course
offering before Spring 2009.

For each department, find the maximum salary of instructors in that
department. You may assume that every department has at least one
instructor.

Find the lowest, across all departments, of the per-department maxi-
mum salary computed by the preceding query.

3.12

3.13

3.14

3.15

3.16

Exercises 109

Write the following queries in SQL, using the university schema.
Create anew course “CS-001”, titled “Weekly Seminar”, with O credits.
b. Create a section of this course in Autumn 2009, with sec_id of 1.

c. Enroll every student in the Comp. Sci. department in the above sec-
tion.

d. Delete enrollments in the above section where the student’s name is
Chavez.

e. Delete the course CS-001. What will happen if you run this delete
statement without first deleting offerings (sections) of this course.

f. Delete all takes tuples corresponding to any section of any course with
the word “database” as a part of the title; ignore case when matching
the word with the title.

Write SQL DDL corresponding to the schema in Figure 3.18. Make any
reasonable assumptions about data types, and be sure to declare primary
and foreign keys.

Consider the insurance database of Figure 3.18, where the primary keys
are underlined. Construct the following SQL queries for this relational
database.

a. Find the number of accidents in which the cars belonging to “John
Smith” were involved.

b. Update the damage amount for the car with the license number
“AABB2000” in the accident with report number “AR2197” to $3000.

Consider the bank database of Figure 3.19, where the primary keys are un-
derlined. Construct the following SQL queries for this relational database.

a. Find all customers who have an account at all the branches located in
“Brooklyn”.

b. Find out the total sum of all loan amounts in the bank.

c. Find the names of all branches that have assets greater than those of
at least one branch located in “Brooklyn”.

Consider the employee database of Figure 3.20, where the primary keys are
underlined. Give an expression in SQL for each of the following queries.

a. Find the names of all employees who work for “First Bank Corpora-
tion”.

b. Find all employees in the database who live in the same cities as the
companies for which they work.

c. Find all employees in the database who live in the same cities and on
the same streets as do their managers.

110 Chapter 3 Introduction to SOL

3.17

3.18
3.19
3.20

3.21

d.

e.

Find all employees who earn more than the average salary of all
employees of their company.

Find the company that has the smallest payroll.

Consider the relational database of Figure 3.20. Give an expression in SQL
for each of the following queries.

a.
b.

C.

Give all employees of “First Bank Corporation” a 10 percent raise.
Give all managers of “First Bank Corporation” a 10 percent raise.

Delete all tuples in the works relation for employees of “Small Bank
Corporation”.

List two reasons why null values might be introduced into the database.

Show that, in SQL, <> all is identical to not in.

Give an SQL schema definition for the employee database of Figure 3.20.
Choose an appropriate domain for each attribute and an appropriate pri-
mary key for each relation schema.

Consider the library database of Figure 3.21. Write the following queries in

SQL.

a.

b.

Print the names of members who have borrowed any book published
by “McGraw-Hill”.

Print the names of members who have borrowed all books published
by “McGraw-Hill”.

For each publisher, print the names of members who have borrowed
more than five books of that publisher.

Print the average number of books borrowed per member. Take into
account that if an member does not borrow any books, then that
member does not appear in the borrowed relation at all.

3.22 Rewrite the where clause

where unique (select title from course)

without using the unique construct.

member(memb_no, name, age)
book(isbn, title, authors, publisher)
borrowed(memb_no, isbn, date)

Figure 3.21 Library database for Exercise 3.21.

Tools

Tools 111

3.23 Consider the query:

select course_id, semester, year, sec_id, avg (tot_cred)
from takes natural join student

where year = 2009

group by course_id, semester, year, sec_id

having count (ID) >=2;

Explain why joining section as well in the from clause would not change
the result.

3.24 Consider the query:

with dept_total (dept_name, value) as
(select dept_name, sum(salary)
from instructor
group by dept_name),
dept_total_avg(value) as
(select avg(value)
from dept _total)
select dept_name
from dept_total, dept_total_avg
where dept_total.value >= dept_total_avg.value;

Rewrite this query without using the with construct.

A number of relational database systems are available commercially, including
IBM DB2, IBM Informix, Oracle, Sybase, and Microsoft SQL Server. In addition
several database systems can be downloaded and used free of charge, including
PostgreSQL, MySQL (free except for certain kinds of commercial use), and Oracle
Express edition.

Most database systems provide a command line interface for submitting SQL
commands. In addition, most databases also provide graphical user interfaces
(GUIs), which simplify the task of browsing the database, creating and submitting
queries, and administering the database. Commercial IDEs for SQLthat work across
multiple database platforms, include Embarcadero’s RAD Studio and Aqua Data
Studio.

For PostgreSQL, the pg Admin tool provides GUI functionality, while for MySQL,
phpMyAdmin provides GUI functionality. The NetBeans IDE provides a GUI front
end that works with a number of different databases, but with limited functional-
ity, while the Eclipse IDE supports similar functionality through several different
plugins such as the Data Tools Platform (DTP) and JBuilder.

SQL schema definitions and sample data for the university schema are pro-
vided on the Web site for this book, db-book.com. The Web site also contains

112

Chapter 3 Introduction to SOL

instructions on how to set up and access some popular database systems. The
SQL constructs discussed in this chapter are part of the SQL standard, but certain
features are not supported by some databases. The Web site lists these incom-
patibilities, which you will need to take into account when executing queries on
those databases.

Bibliographical Notes

The original version of SQL, called Sequel 2, is described by Chamberlin et al.
[1976]. Sequel 2 was derived from the language Square (Boyce et al. [1975] and
Chamberlin and Boyce [1974]). The American National Standard SQL-86 is de-
scribed in ANSI [1986]. The IBM Systems Application Architecture definition of
SQL is defined by IBM [1987]. The official standards for SQL-89 and SQL-92 are
available as ANSI [1989] and ANSI [1992], respectively.

Textbook descriptions of the SQL-92language include Date and Darwen [1997],
Melton and Simon [1993], and Cannan and Otten [1993]. Date and Darwen [1997]
and Date [1993a] include a critique of SQL-92 from a programming-languages
perspective.

Textbooks on SQL:1999 include Melton and Simon [2001] and Melton [2002].
Eisenberg and Melton [1999] provide an overview of SQL:1999. Donahoo and
Speegle [2005] covers SQL from a developers’ perspective. Eisenberg et al. [2004]
provides an overview of SQL:2003.

The SQL:1999, SQL:2003, SQL:2006 and SQL:2008 standards are published as a
collection of ISO/IEC standards documents, which are described in more detail
in Section 24.4. The standards documents are densely packed with information
and hard to read, and of use primarily for database system implementers. The
standards documents are available from the Web site http://webstore.ansi.org, but
only for purchase.

Many database products support SQL features beyond those specified in the
standard, and may not support some features of the standard. More information
on these features may be found in the SQL user manuals of the respective products.

The processing of SQL queries, including algorithms and performance issues,
is discussed in Chapters 12 and 13. Bibliographic references on these matters
appear in those chapters.

CHAPTER

Intermediate SQL

4.1

In this chapter, we continue our study of SQL. We consider more complex forms
of SQL queries, view definition, transactions, integrity constraints, more details
regarding SQL data definition, and authorization.

Join Expressions

In Section 3.3.3, we introduced the natural join operation. SQL provides other
forms of the join operation, including the ability to specify an explicit join pred-
icate, and the ability to include in the result tuples that are excluded by natural
join. We shall discuss these forms of join in this section.

The examples in this section involve the two relations student and takes, shown
in Figures 4.1 and 4.2, respectively. Observe that the attribute grade has a value
null for the student with ID 98988, for the course BIO-301, section 1, taken in
Summer 2010. The null value indicates that the grade has not been awarded yet.

‘ ID ‘ name ‘ dept name | tot_cred
00128 | Zhang Comp. Sci. 102
12345 | Shankar | Comp. Sci. 32
19991 | Brandt History 80
23121 | Chavez Finance 110
44553 | Peltier Physics 56
45678 | Levy Physics 46
54321 | Williams | Comp. Sci. 54
55739 | Sanchez | Music 38
70557 | Snow Physics 0
76543 | Brown Comp. Sci. 58
76653 | Aoi Elec. Eng. 60
98765 | Bourikas | Elec. Eng. 98
98988 | Tanaka Biology 120

Figure 4.1 The student relation.

113

114

Chapter 4 Intermediate SOL

‘ ID ‘ course_id ‘ sec_id ‘ semester ‘ year ‘ grade ‘
00128 | CS-101 Fall 2009 | A
00128 | CS-347 Fall 2009 | A-
12345 | CS-101 Fall 2009

12345 | CS-190
12345 | CS-315
12345 | CS-347
19991 | HIS-351
23121 | FIN-201
44553 | PHY-101
45678 | CS-101
45678 | CS-101
45678 | CS-319
54321 | CS5-101
54321 | CS-190
55739 | MU-199
76543 | CS-101
76543 | CS-319
76653 | EE-181
98765 | CS-101
98765 | CS-315
98988 | BIO-101
98988 | BIO-301

C
Spring 2009 | A
Spring 2010 | A
Fall 2009 | A
Spring 2010 | B
Spring 2010 | C
Fall 2009 | B-
Fall 2009 | F
Spring 2010 | B+
Spring 2010 | B
Fall 2009 | A-
Spring 2009 | B+
Spring 2010 | A-
Fall 2009 | A
Spring 2010 | A
Spring 2009 | C
Fall 2009 | C-
Spring 2010 | B
Summer | 2009 | A
Summer | 2010 | null

= L R, N R R NP R R REREREREREEREEEREND R

Figure 4.2 The takes relation.

4.1.1 Join Conditions

In Section 3.3.3, we saw how to express natural joins, and we saw the join ...
using clause, which is a form of natural join that only requires values to match
on specified attributes. SQL supports another form of join, in which an arbitrary
join condition can be specified.

The on condition allows a general predicate over the relations being joined.
This predicate is written like a where clause predicate except for the use of the
keyword on rather than where. Like the using condition, the on condition appears
at the end of the join expression.

Consider the following query, which has a join expression containing the on
condition.

select *
from student join takes on student.ID= takes.ID;

The on condition above specifies that a tuple from student matches a tuple from
takes if their ID values are equal. The join expression in this case is almost the same
as the join expression student natural join takes, since the natural join operation

4.1 Join Expressions 115

also requires that for a student tuple and a takes tuple to match. The one difference
is that the result has the ID attribute listed twice, in the join result, once for student
and once for takes, even though their ID values must be the same.

In fact, the above query is equivalent to the following query (in other words,
they generate exactly the same results):

select *
from student, takes
where student.ID= takes.ID;

Aswe have seen earlier, the relation name is used to disambiguate the attribute
name ID, and thus the two occurrences can be referred to as student.ID and takes.ID
respectively. A version of this query that displays the ID value only once is as
follows:

select student.ID as ID, name, dept_name, tot_cred,
course_id, sec_id, semester, year, grade
from student join takes on student.ID= takes.ID;

The result of the above query is shown in Figure 4.3.

The on condition can express any SQL predicate, and thus a join expressions
using the on condition can express a richer class of join conditions than natural
join. However, as illustrated by our preceding example, a query using a join
expression with an on condition can be replaced by an equivalent expression
without the on condition, with the predicate in the on clause moved to the where
clause. Thus, it may appear that the on condition is a redundant feature of SQL.

However, there are two good reasons for introducing the on condition. First,
we shall see shortly that for a kind of join called an outer join, on conditions do
behave in a manner different from where conditions. Second, an SQL query is
often more readable by humans if the join condition is specified in the on clause
and the rest of the conditions appear in the where clause.

4.1.2 Outer Joins

Suppose we wish to display a list of all students, displaying their ID, and name,
dept_name, and tot_cred, along with the courses that they have taken. The following
SQL query may appear to retrieve the required information:

select *
from student natural join takes;

Unfortunately, the above query does not work quite as intended. Suppose that
there is some student who takes no courses. Then the tuple in the student relation
for that particular student would not satisfy the condition of a natural join with
any tuple in the takes relation, and that student’s data would not appear in the
result. We would thus not see any information about students who have not taken

116

Chapter 4 Intermediate SOL

| ID [name |deptname |totcred|courseid |sec_id | semester |year |grade|
00128 | Zhang | Comp. Sci. 102 | CS-101 1 |Fall 2009 | A
00128 | Zhang | Comp. Sci. 102 | CS-347 1 |Fall 2009 | A-
12345 | Shankar | Comp. Sci. 32 CS-101 1 |Fall 2009 |C
12345 | Shankar | Comp. Sci. 32| CS5-190 2 | Spring |2009|A
12345 | Shankar | Comp. Sci. 32| CS-315 1 |Spring (2010 A
12345 | Shankar | Comp. Sci. 32 | CS-347 1 |Fall 2009 [A
19991 | Brandt | History 80 | HIS-351 1 |Spring |2010|B
23121 | Chavez | Finance 110 | FIN-201 1 |Spring |2010|C+
44553 | Peltier | Physics 56| PHY-101| 1 |Fall 2009 | B-
45678 | Levy Physics 46 | CS-101 1 |Fall 2009 | F
45678 | Levy Physics 46 | CS-101 1 |Spring |2010|B+
45678 | Levy Physics 46 | CS-319 1 |Spring |2010|B
54321 | Williams | Comp. Sci. 54 | C5-101 1 |Fall 2009 | A-
54321 | Williams | Comp. Sci. 54 | CS-190 2 |Spring |2009 |B+
55739 | Sanchez | Music 38 MU-199 | 1 |Spring |2010|A-
76543 | Brown | Comp. Sci. 58 | CS-101 1 |Fall 2009 [A
76543 | Brown | Comp. Sci. 58 | CS-319 2 | Spring |2010|A
76653 | Aoi Elec. Eng. 60 | EE-181 1 |Spring |2009|C
98765 | Bourikas | Elec. Eng. 98 | CS-101 1 |Fall 2009 | C-
98765 | Bourikas | Elec. Eng. 98 | CS-315 1 |Spring |2010|B
98988 | Tanaka | Biology 120 | BIO-101 | 1 |Summer |2009 | A
98988 | Tanaka | Biology 120 | BIO-301 | 1 |Summer |2010 | null

Figure 4.3 The result of student join takes on student.ID= takes.ID with second occurrence
of ID omitted.

any courses. For example, in the student and takes relations of Figures 4.1 and 4.2,
note that student Snow, with ID 70557, has not taken any courses. Snow appears
in student, but Snow’s ID number does not appear in the ID column of takes. Thus,
Snow does not appear in the result of the natural join.

More generally, some tuples in either or both of the relations being joined may
be “lost” in this way. The outer join operation works in a manner similar to the
join operations we have already studied, but preserve those tuples that would be
lost in a join, by creating tuples in the result containing null values.

For example, to ensure that the student named Snow from our earlier example
appears in the result, a tuple could be added to the join result with all attributes
from the student relation set to the corresponding values for the student Snow,
and all the remaining attributes which come from the takes relation, namely course
_id, sec_id, semester, and year, set to null. Thus the tuple for the student Snow is
preserved in the result of the outer join.

There are in fact three forms of outer join:

® The left outer join preserves tuples only in the relation named before (to the
left of) the left outer join operation.

4.1 Join Expressions 117

¢ The right outer join preserves tuples only in the relation named after (to the
right of) the right outer join operation.

¢ The full outer join preserves tuples in both relations.

In contrast, the join operations we studied earlier that do not preserve nonmatched
tuples are called inner join operations, to distinguish them from the outer-join
operations.

We now explain exactly how each form of outer join operates. We can compute
the left outer-join operation as follows. First, compute the result of the inner join
as before. Then, for every tuple t in the left-hand-side relation that does not match
any tuple in the right-hand-side relation in the inner join, add a tuple r to the
result of the join constructed as follows:

¢ The attributes of tuple r that are derived from the left-hand-side relation are
filled in with the values from tuple ¢.

¢ The remaining attributes of r are filled with null values.

Figure 4.4 shows the result of:

select *
from student natural left outer join takes;

That result includes student Snow (ID 70557), unlike the result of an inner join,
but the tuple for Snow includes nulls for the attributes that appear only in the
schema of the takes relation.

As another example of the use of the outer-join operation, we can write the
query “Find all students who have not taken a course” as:

select ID
from student natural left outer join takes
where course_id is null;

The right outer join is symmetric to the left outer join. Tuples from the right-
hand-side relation that do not match any tuple in the left-hand-side relation are
padded with nulls and are added to the result of the right outer join. Thus, if we
rewrite our above query using a right outer join and swapping the order in which
we list the relations as follows:

select *
from takes natural right outer join student;

we get the same result except for the order in which the attributes appear in the
result (see Figure 4.5).

The full outer join is a combination of the left and right outer-join types.
After the operation computes the result of the inner join, it extends with nulls
those tuples from the left-hand-side relation that did not match with any from the

118

Chapter 4 Intermediate SOL

| ID [name |deptname |totcred|courseid |sec_id | semester |year |grade|
00128 | Zhang | Comp. Sci. 102 | CS-101 1 |Fall 2009 | A
00128 | Zhang | Comp. Sci. 102 | CS-347 1 |Fall 2009 | A-
12345 | Shankar | Comp. Sci. 32 CS-101 1 |Fall 2009 |C
12345 | Shankar | Comp. Sci. 32| CS5-190 2 | Spring |2009|A
12345 | Shankar | Comp. Sci. 32| CS-315 1 |Spring (2010 A
12345 | Shankar | Comp. Sci. 32 | CS-347 1 |Fall 2009 [A
19991 | Brandt | History 80 | HIS-351 1 |Spring |2010|B
23121 | Chavez | Finance 110 | FIN-201 1 |Spring |2010|C+
44553 | Peltier | Physics 56| PHY-101| 1 |Fall 2009 | B-
45678 | Levy Physics 46 | CS-101 1 |Fall 2009 | F
45678 | Levy Physics 46 | CS-101 1 |Spring |2010|B+
45678 | Levy Physics 46 | CS-319 1 |Spring |2010|B
54321 | Williams | Comp. Sci. 54 | C5-101 1 |Fall 2009 | A-
54321 | Williams | Comp. Sci. 54 | CS-190 2 |Spring |2009 |B+
55739 | Sanchez | Music 38 MU-199 | 1 |Spring |2010|A-
70557 | Snow Physics 0| null null | null null | null
76543 | Brown | Comp. Sci. 58 | C5-101 1 |Fall 2009 | A
76543 | Brown | Comp. Sci. 58 | CS-319 2 | Spring |2010|A
76653 | Aoi Elec. Eng. 60 | EE-181 1 |Spring |2009|C
98765 | Bourikas | Elec. Eng. 98 | CS-101 1 |Fall 2009 | C-
98765 | Bourikas | Elec. Eng. 98 | CS-315 1 |Spring |2010|B
98988 | Tanaka | Biology 120 | BIO-101 | 1 |Summer |2009 | A
98988 | Tanaka | Biology 120 | BIO-301 1 | Summer | 2010 | null

Figure 4.4 Result of student natural left outer join takes.

right-hand side relation, and adds them to the result. Similarly, it extends with
nulls those tuples from the right-hand-side relation that did not match with any
tuples from the left-hand-side relation and adds them to the result.

As an example of the use of full outer join, consider the following query:
“Display a list of all students in the Comp. Sci. department, along with the course
sections, if any, that they have taken in Spring 2009; all course sections from Spring
2009 must be displayed, even if no student from the Comp. Sci. department has
taken the course section.” This query can be written as:

select *
from (select *
from student
where dept_name="Comp. Sci’)
natural full outer join
(select *
from takes
where semester = ‘Spring” and year = 2009);

4.1 Join Expressions 119

| ID [courseid |secid|semester |year |grade|[name |deptname | tot.cred |
00128 | CS-101 1 |Fall 2009 | A Zhang | Comp. Sci. 102
00128 | CS-347 1 |Fall 2009 | A- | Zhang |Comp. Sci. 102
12345 | CS-101 1 |Fall 2009 | C Shankar | Comp. Sci. 32
12345 C5-190 2 | Spring |2009|A Shankar | Comp. Sci. 32
12345 | CS-315 1 |Spring (2010 A Shankar | Comp. Sci. 32
12345 | CS-347 1 |Fall 2009 [A Shankar | Comp. Sci. 32
19991 | HIS-351 1 |Spring |2010|B Brandt | History 80
23121 | FIN-201 1 |Spring |2010|C+ |Chavez |Finance 110
44553 | PHY-101| 1 |Fall 2009 | B- | Peltier |Physics 56
45678 | CS-101 1 |Fall 2009 |F Levy Physics 46
45678 | CS-101 1 |Spring |2010|B+ |Levy Physics 46
45678 | CS-319 1 |Spring |2010|B Levy Physics 46
54321 | CS-101 1 |Fall 2009 | A- | Williams | Comp. Sci. 54
54321 | CS-190 2 |Spring |2009 |B+ | Williams | Comp. Sci. 54
55739 | MU-199 | 1 |Spring |2010|A- |Sanchez |Music 38
70557 | null null | null null | null | Snow Physics 0
76543 | CS-101 1 |Fall 2009 A Brown | Comp. Sci. 58
76543 | CS-319 2 | Spring |2010|A Brown | Comp. Sci. 58
76653 | EE-181 1 |Spring |2009|C Aoi Elec. Eng. 60
98765 | CS-101 1 |Fall 2009 | C- | Bourikas | Elec. Eng. 98
98765 | CS-315 1 |Spring |2010|B Bourikas | Elec. Eng. 98
98988 | BIO-101 | 1 |Summer |2009|A Tanaka | Biology 120
98988 | BIO-301 | 1 |Summer |2010|null |Tanaka |Biology 120

Figure 4.5 The result of takes natural right outer join student.

The on clause can be used with outer joins. The following query is identical
to the first query we saw using “student natural left outer join takes,” except that
the attribute ID appears twice in the result.

select *
from student left outer join takes on student.ID= takes.ID;

Aswenoted earlier, on and where behave differently for outer join. The reason
for this is that outer join adds null-padded tuples only for those tuples that do not
contribute to the result of the corresponding inner join. The on condition is part
of the outer join specification, but a where clause is not. In our example, the case
of the student tuple for student “Snow” with ID 70557, illustrates this distinction.
Suppose we modify the preceding query by moving the on clause predicate to
the where clause, and instead using an on condition of true.

select *
from student left outer join takes on true
where student.ID= takes.ID;

120

4.2

Chapter 4 Intermediate SOL

Join types Join conditions

inner join natural

left outer join on <predicate>
right outer join using (A, Ay, ..., A)
full outer join

Figure 4.6 Join types and join conditions.

The earlier query, using the left outer join with the on condition, includes a tuple
(70557, Snow, Physics, 0, null, null, null, null, null, null), because there is no tuple
in takes with ID = 70557. In the latter query, however, every tuple satisfies the join
condition true, sono null-padded tuples are generated by the outer join. The outer
join actually generates the Cartesian product of the two relations. Since there is
no tuple in takes with ID = 70557, every time a tuple appears in the outer join with
name = “Snow”, the values for student.ID and takes.ID must be different, and such
tuples would be eliminated by the where clause predicate. Thus student Snow
never appears in the result of the latter query.

4.1.3 Join Types and Conditions

To distinguish normal joins from outer joins, normal joins are called inner joins in
SQL. A join clause can thus specify inner join instead of outer join to specify that
a normal join is to be used. The keyword inner is, however, optional. The default
join type, when the join clause is used without the outer prefix is the inner join.
Thus,

select *
from student join takes using (ID);

is equivalent to:

select *
from student inner join takes using (ID);

Similarly, natural join is equivalent to natural inner join.

Figure 4.6 shows a full list of the various types of join that we have discussed.
As can be seen from the figure, any form of join (inner, left outer, right outer, or
full outer) can be combined with any join condition (natural, using, or on).

Views
In our examples up to this point, we have operated at the logical-model level.

That is, we have assumed that the relations in the collection we are given are the
actual relations stored in the database.

4.2 Views 121

It is not desirable for all users to see the entire logical model. Security con-
siderations may require that certain data be hidden from users. Consider a clerk
who needs to know an instructor’s ID, name and department name, but does not
have authorization to see the instructor’s salary amount. This person should see
a relation described in SQL, by:

select ID, name, dept_name
from instructor;

Aside from security concerns, we may wish to create a personalized collection
of relations that is better matched to a certain user’s intuition than is the logical
model. We may want to have a list of all course sections offered by the Physics
department in the Fall 2009 semester, with the building and room number of each
section. The relation that we would create for obtaining such a list is:

select course.course_id, sec_id, building, room_number
from course, section
where course.course_id = section.course_id

and course.dept name = "Physics’

and section.semester = "Fall’

and section.year = "2009’;

It is possible to compute and store the results of the above queries and then
make the stored relations available to users. However, if we did so, and the
underlying data in the relations instructor, course, or section changes, the stored
query results would then no longer match the result of reexecuting the query on
the relations. In general, it is a bad idea to compute and store query results such
as those in the above examples (although there are some exceptions, which we
study later).

Instead, SQL allows a “virtual relation” to be defined by a query, and the
relation conceptually contains the result of the query. The virtual relation is not
precomputed and stored, but instead is computed by executing the query when-
ever the virtual relation is used.

Any such relation that is not part of the logical model, but is made visible to a
user as a virtual relation, is called a view. It is possible to support a large number
of views on top of any given set of actual relations.

4.2.1 View Definition

We define a view in SQL by using the create view command. To define a view, we
must give the view a name and must state the query that computes the view. The
form of the create view command is:

create view v as <query expression>;

122

Chapter 4 Intermediate SOL

where <query expression> is any legal query expression. The view name is
represented by v.

Consider again the clerk who needs to access all data in the instructor relation,
except salary. The clerk should not be authorized to access the instructor relation
(we see later, in Section 4.6, how authorizations can be specified). Instead, a
view relation faculty can be made available to the clerk, with the view defined as
follows:

create view faculty as
select ID, name, dept_name
from instructor;

As explained earlier, the view relation conceptually contains the tuples in the
query result, but is not precomputed and stored. Instead, the database system
stores the query expression associated with the view relation. Whenever the view
relation is accessed, its tuples are created by computing the query result. Thus,
the view relation is created whenever needed, on demand.

To create a view that lists all course sections offered by the Physics department
in the Fall 2009 semester with the building and room number of each section, we
write:

create view physics_fall 2009 as
select course.course_id, sec_id, building, room_number
from course, section
where course.course_id = section.course_id
and course.dept_name = "Physics’
and section.semester = "Fall’
and section.year = "2009’;

4.2.2 Using Views in SQL Queries

Once we have defined a view, we can use the view name to refer to the virtual
relation that the view generates. Using the view physics_fall 2009, we can find
all Physics courses offered in the Fall 2009 semester in the Watson building by
writing:

select course_id
from physics_fall_2009
where building= "Watson’;

View names may appear in a query any place where a relation name may appear,
The attribute names of a view can be specified explicitly as follows:

create view departments_total_salary(dept_-name, total_salary) as
select dept name, sum (salary)
from instructor
group by dept_name;

4.2 Views 123

The preceding view gives for each department the sum of the salaries of all the
instructors at that department. Since the expression sum(salary) does not have a
name, the attribute name is specified explicitly in the view definition.

Intuitively, at any given time, the set of tuples in the view relation is the
result of evaluation of the query expression that defines the view. Thus, if a view
relation is computed and stored, it may become out of date if the relations used to
define it are modified. To avoid this, views are usually implemented as follows.
When we define a view, the database system stores the definition of the view
itself, rather than the result of evaluation of the query expression that defines the
view. Wherever a view relation appears in a query, it is replaced by the stored
query expression. Thus, whenever we evaluate the query, the view relation is
recomputed.

One view may be used in the expression defining another view. For example,
we can define a view physics_fall 2009_watson that lists the course ID and room
number of all Physics courses offered in the Fall 2009 semester in the Watson
building as follows:

create view physics_fall_2009_watson as
select course_id, room_number
from physics_fall 2009
where building= "Watson’;

where physics_fall 2009 watson is itself a view relation. This is equivalent to:

create view physics_fall_ 2009_watson as
(select course_id, room_number
from (select course.course_id, building, room_number
from course, section
where course.course_id = section.course_id
and course.dept_name = 'Physics’
and section.semester = "Fall’
and section.year = "2009)
where building= "Watson’;

4.2.3 Materialized Views

Certain database systems allow view relations to be stored, but they make sure
that, if the actual relations used in the view definition change, the view is kept
up-to-date. Such views are called materialized views.

For example, consider the view departments_total_salary. If the above view is
materialized, its results would be stored in the database. However, if an instructor
tuple is added to or deleted from the instructor relation, the result of the query
defining the view would change, and as a result the materialized view’s contents
must be updated. Similarly, if an instructor’s salary is updated, the tuple in
departments_total_salary corresponding to that instructor’s department must be
updated.

124

Chapter 4 Intermediate SOL

The process of keeping the materialized view up-to-date is called material-
ized view maintenance (or often, just view maintenance) and is covered in Sec-
tion 13.5. View maintenance can be done immediately when any of the relations
on which the view is defined is updated. Some database systems, however, per-
form view maintenance lazily, when the view is accessed. Some systems update
materialized views only periodically; in this case, the contents of the materialized
view may be stale, that is, not up-to-date, when it is used, and should not be used
if the application needs up-to-date data. And some database systems permit the
database administrator to control which of the above methods is used for each
materialized view.

Applications that use a view frequently may benefit if the view is materi-
alized. Applications that demand fast response to certain queries that compute
aggregates over large relations can also benefit greatly by creating materialized
views corresponding to the queries. In this case, the aggregated result is likely to
be much smaller than the large relations on which the view is defined; as a result
the materialized view can be used to answer the query very quickly, avoiding
reading the large underlying relations. Of course, the benefits to queries from
the materialization of a view must be weighed against the storage costs and the
added overhead for updates.

SQL does not define a standard way of specifying that a view is material-
ized, but many database systems provide their own SQL extensions for this task.
Some database systems always keep materialized views up-to-date when the un-
derlying relations change, while others permit them to become out of date, and
periodically recompute them.

4.2.4 Update of a View

Although views are a useful tool for queries, they present serious problems if
we express updates, insertions, or deletions with them. The difficulty is that a
modification to the database expressed in terms of a view must be translated to a
modification to the actual relations in the logical model of the database.

Suppose the view faculty, which we saw earlier, is made available to a clerk.
Since we allow a view name to appear wherever a relation name is allowed, the
clerk can write:

insert into faculty
values ("30765’, ‘Green’, 'Music’);

This insertion must be represented by an insertion into the relation instructor, since
instructor is the actual relation from which the database system constructs the view
faculty. However, to insert a tuple into instructor, we must have some value for
salary. There are two reasonable approaches to dealing with this insertion:

® Reject the insertion, and return an error message to the user.

¢ Insert a tuple ("30765’, ‘Green’, "Music’, null) into the instructor relation.

4.2 Views 125

Another problem with modification of the database through views occurs
with a view such as:

create view instructor_info as

select ID, name, building

from instructor, department

where instructor.dept_name= department.dept_name;

This view lists the ID, name, and building-name of each instructor in the university.
Consider the following insertion through this view:

insert into instructor_info
values ('69987’, "White’, "Taylor’);

Suppose there is no instructor with ID 69987, and no department in the Taylor
building. Then the only possible method of inserting tuples into the instructor
and department relations is to insert ('69987’, "White’, null, null) into instructor
and (null, "Taylor’, null) into department. Then, we obtain the relations shown in
Figure 4.7. However, this update does not have the desired effect, since the view
relation instructor_info still does not include the tuple ('69987’, "White’, "Taylor’).
Thus, there is no way to update the relations instructor and department by using
nulls to get the desired update on instructor_info.

Because of problems such as these, modifications are generally not permit-
ted on view relations, except in limited cases. Different database systems specify
different conditions under which they permit updates on view relations; see the
database system manuals for details. The general problem of database modifica-
tion through views has been the subject of substantial research, and the biblio-
graphic notes provide pointers to some of this research.

In general, an SQL view is said to be updatable (that is, inserts, updates or
deletes can be applied on the view) if the following conditions are all satisfied by
the query defining the view:

¢ The from clause has only one database relation.

¢ The select clause contains only attribute names of the relation, and does not
have any expressions, aggregates, or distinct specification.

® Any attribute not listed in the select clause can be set to null; that is, it does
not have a not null constraint and is not part of a primary key.

¢ The query does not have a group by or having clause.

Under these constraints, the update, insert, and delete operations would be
allowed on the following view:

create view history_instructors as
select *

from instructor

where dept_name= "History’;

126

Chapter 4 Intermediate SOL

| ID | name | deptname | salary
10101 | Srinivasan | Comp. Sci. | 65000
12121 | Wu Finance 90000
15151 | Mozart Music 40000
22222 | Einstein Physics 95000
32343 | El Said History 60000
33456 | Gold Physics 87000
45565 | Katz Comp. Sci. | 75000
58583 | Califieri History 62000
76543 | Singh Finance 80000
76766 | Crick Biology 72000
83821 | Brandt Comp. Sci. | 92000
98345 | Kim Elec. Eng. | 80000
69987 | White null null
instructor
| dept name | building | budget |
Biology Watson 90000
Comp. Sci. Taylor 100000
Electrical Eng. | Taylor 85000
Finance Painter | 120000
History Painter 50000
Music Packard | 80000
Physics Watson 70000
null Painter null
department

Figure 4.7 Relations instructor and department after insertion of tuples.

Even with the conditions on updatability, the following problem still remains.
Suppose that a user tries to insert the tuple ("25566’, ‘Brown’, "Biology’, 100000)
into the history_instructors view. This tuple can be inserted into the instructor
relation, but it would not appear in the history instructors view since it does not
satisfy the selection imposed by the view.

By default, SQL would allow the above update to proceed. However, views
can be defined with a with check option clause at the end of the view definition;
then, if a tuple inserted into the view does not satisfy the view’s where clause
condition, the insertion is rejected by the database system. Updates are similarly
rejected if the new value does not satisfy the where clause conditions.

SQL:1999 has a more complex set of rules about when inserts, updates, and
deletes can be executed on a view, that allows updates through a larger class of
views; however, the rules are too complex to be discussed here.

4.3

4.3 Transactions 127

Transactions

A transaction consists of a sequence of query and/or update statements. The SQL
standard specifies that a transaction begins implicitly when an SQL statement is
executed. One of the following SQL statements must end the transaction:

¢ Commit work commits the current transaction; that is, it makes the updates
performed by the transaction become permanent in the database. After the
transaction is committed, a new transaction is automatically started.

e Rollback work causes the current transaction to be rolled back; that is, it
undoes all the updates performed by the SQL statements in the transaction.
Thus, the database state is restored to what it was before the first statement
of the transaction was executed.

The keyword work is optional in both the statements.

Transaction rollback is useful if some error condition is detected during ex-
ecution of a transaction. Commit is similar, in a sense, to saving changes to a
document that is being edited, while rollback is similar to quitting the edit ses-
sion without saving changes. Once a transaction has executed commit work, its
effects can no longer be undone by rollback work. The database system guaran-
tees that in the event of some failure, such as an error in one of the SQL statements,
a power outage, or a system crash, a transaction’s effects will be rolled back if it
has not yet executed commit work. In the case of power outage or other system
crash, the rollback occurs when the system restarts.

Forinstance, consider a banking application, where we need to transfer money
from one bank account to another in the same bank. To do so, we need to update
two account balances, subtracting the amount transferred from one, and adding
it to the other. If the system crashes after subtracting the amount from the first
account, but before adding it to the second account, the bank balances would be
inconsistent. A similar problem would occur, if the second account is credited
before subtracting the amount from the first account, and the system crashes just
after crediting the amount.

As another example, consider our running example of a university applica-
tion. We assume that the attribute tot.cred of each tuple in the student relation
is kept up-to-date by modifying it whenever the student successfully completes
a course. To do so, whenever the fakes relation is updated to record successful
completion of a course by a student (by assigning an appropriate grade) the corre-
sponding student tuple must also be updated. If the application performing these
two updates crashes after one update is performed, but before the second one is
performed, the data in the database would be inconsistent.

By either committing the actions of a transaction after all its steps are com-
pleted, or rolling back all its actions in case the transaction could not complete
all its actions successfully,