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Preface

Database management has evolved from a specialized computer application to a
central component of a modern computing environment, and, as a result, knowl-
edge about database systems has become an essential part of an education in
computer science. In this text, we present the fundamental concepts of database
management. These concepts include aspects of database design, database lan-
guages, and database-system implementation.

This text is intended for a first course in databases at the junior or senior
undergraduate, or first-year graduate, level. In addition to basic material for
a first course, the text contains advanced material that can be used for course
supplements, or as introductory material for an advanced course.

We assume only a familiarity with basic data structures, computer organi-
zation, and a high-level programming language such as Java, C, or Pascal. We
present concepts as intuitive descriptions, many of which are based on our run-
ning example of a university. Important theoretical results are covered, but formal
proofs are omitted. In place of proofs, figures and examples are used to suggest
why a result is true. Formal descriptions and proofs of theoretical results may
be found in research papers and advanced texts that are referenced in the biblio-
graphical notes.

The fundamental concepts and algorithms covered in the book are often
based on those used in existing commercial or experimental database systems.
Our aim is to present these concepts and algorithms in a general setting that is
not tied to one particular database system. Details of particular database systems
are discussed in Part 9, “Case Studies.”

In this, the sixth edition of Database System Concepts, we have retained the
overall style of the prior editions while evolving the content and organization to
reflect the changes that are occurring in the way databases are designed, managed,
and used. We have also taken into account trends in the teaching of database
concepts and made adaptations to facilitate these trends where appropriate.

xv
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Organization

The text is organized in nine major parts, plus five appendices.

• Overview (Chapter 1). Chapter 1 provides a general overview of the nature
and purpose of database systems. We explain how the concept of a database
system has developed, what the common features of database systems are,
what a database system does for the user, and how a database system in-
terfaces with operating systems. We also introduce an example database
application: a university organization consisting of multiple departments,
instructors, students, and courses. This application is used as a running ex-
ample throughout the book. This chapter is motivational, historical, and ex-
planatory in nature.

• Part 1: Relational Databases (Chapters 2 through 6). Chapter 2 introduces
the relational model of data, covering basic concepts such as the structure
of relational databases, database schemas, keys, schema diagrams, relational
query languages, and relational operations. Chapters 3, 4, and 5 focus on the
most influential of the user-oriented relational languages: SQL. Chapter 6 cov-
ers the formal relational query languages: relational algebra, tuple relational
calculus, and domain relational calculus.

The chapters in this part describe data manipulation: queries, updates, in-
sertions, and deletions, assuming a schema design has been provided. Schema
design issues are deferred to Part 2.

• Part 2: Database Design (Chapters 7 through 9). Chapter 7 provides an
overview of the database-design process, with major emphasis on database
design using the entity-relationship data model. The entity-relationship data
model provides a high-level view of the issues in database design, and of the
problems that we encounter in capturing the semantics of realistic applica-
tions within the constraints of a data model. UML class-diagram notation is
also covered in this chapter.

Chapter 8 introduces the theory of relational database design. The the-
ory of functional dependencies and normalization is covered, with emphasis
on the motivation and intuitive understanding of each normal form. This
chapter begins with an overview of relational design and relies on an intu-
itive understanding of logical implication of functional dependencies. This
allows the concept of normalization to be introduced prior to full coverage
of functional-dependency theory, which is presented later in the chapter. In-
structors may choose to use only this initial coverage in Sections 8.1 through
8.3 without loss of continuity. Instructors covering the entire chapter will ben-
efit from students having a good understanding of normalization concepts to
motivate some of the challenging concepts of functional-dependency theory.

Chapter 9 covers application design and development. This chapter empha-
sizes the construction of database applications with Web-based interfaces. In
addition, the chapter covers application security.
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• Part 3: Data Storage and Querying (Chapters 10 through 13). Chapter 10
deals with storage devices, files, and data-storage structures. A variety of
data-access techniques are presented in Chapter 11, including B+-tree indices
and hashing. Chapters 12 and 13 address query-evaluation algorithms and
query optimization. These chapters provide an understanding of the internals
of the storage and retrieval components of a database.

• Part 4: Transaction Management (Chapters 14 through 16). Chapter 14 fo-
cuses on the fundamentals of a transaction-processing system: atomicity,
consistency, isolation, and durability. It provides an overview of the methods
used to ensure these properties, including locking and snapshot isolation.

Chapter 15 focuses on concurrency control and presents several techniques
for ensuring serializability, including locking, timestamping, and optimistic
(validation) techniques. The chapter also covers deadlock issues. Alterna-
tives to serializability are covered, most notably the widely-used snapshot
isolation, which is discussed in detail.

Chapter 16 covers the primary techniques for ensuring correct transac-
tion execution despite system crashes and storage failures. These techniques
include logs, checkpoints, and database dumps. The widely-used ARIES al-
gorithm is presented.

• Part 5: System Architecture (Chapters 17 through 19). Chapter 17 covers
computer-system architecture, and describes the influence of the underly-
ing computer system on the database system. We discuss centralized sys-
tems, client–server systems, and parallel and distributed architectures in this
chapter.

Chapter 18, on parallel databases, explores a variety of parallelization
techniques, including I/O parallelism, interquery and intraquery parallelism,
and interoperation and intraoperation parallelism. The chapter also describes
parallel-system design.

Chapter 19 covers distributed database systems, revisiting the issues
of database design, transaction management, and query evaluation and op-
timization, in the context of distributed databases. The chapter also cov-
ers issues of system availability during failures, heterogeneous distributed
databases, cloud-based databases, and distributed directory systems.

• Part 6: Data Warehousing, Data Mining, and Information Retrieval (Chap-
ters 20 and 21). Chapter 20 introduces the concepts of data warehousing
and data mining. Chapter 21 describes information-retrieval techniques for
querying textual data, including hyperlink-based techniques used in Web
search engines.

Part 6 uses the modeling and language concepts from Parts 1 and 2, but
does not depend on Parts 3, 4, or 5. It can therefore be incorporated easily
into a course that focuses on SQL and on database design.
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• Part 7: Specialty Databases (Chapters 22 and 23). Chapter 22 covers object-
based databases. The chapter describes the object-relational data model,
which extends the relational data model to support complex data types, type
inheritance, and object identity. The chapter also describes database access
from object-oriented programming languages.

Chapter 23 covers the XML standard for data representation, which is seeing
increasing use in the exchange and storage of complex data. The chapter also
describes query languages for XML.

• Part 8: Advanced Topics (Chapters 24 through 26). Chapter 24 covers ad-
vanced issues in application development, including performance tuning,
performance benchmarks, database-application testing, and standardization.

Chapter 25 covers spatial and geographic data, temporal data, multimedia
data, and issues in the management of mobile and personal databases.

Finally, Chapter 26 deals with advanced transaction processing. Top-
ics covered in the chapter include transaction-processing monitors, transac-
tional workflows, electronic commerce, high-performance transaction sys-
tems, real-time transaction systems, and long-duration transactions.

• Part 9: Case Studies (Chapters 27 through 30). In this part, we present case
studies of four of the leading database systems, PostgreSQL, Oracle, IBM DB2,
and Microsoft SQL Server. These chapters outline unique features of each of
these systems, and describe their internal structure. They provide a wealth of
interesting information about the respective products, and help you see how
the various implementation techniques described in earlier parts are used
in real systems. They also cover several interesting practical aspects in the
design of real systems.

• Appendices. We provide five appendices that cover material that is of histor-
ical nature or is advanced; these appendices are available only online on the
Web site of the book (http://www.db-book.com). An exception is Appendix A,
which presents details of our university schema including the full schema,
DDL, and all the tables. This appendix appears in the actual text.

Appendix B describes other relational query languages, including QBE
Microsoft Access, and Datalog.

Appendix C describes advanced relational database design, including the
theory of multivalued dependencies, join dependencies, and the project-join
and domain-key normal forms. This appendix is for the benefit of individuals
who wish to study the theory of relational database design in more detail,
and instructors who wish to do so in their courses. This appendix, too, is
available only online, on the Web site of the book.

Although most new database applications use either the relational model
or the object-relational model, the network and hierarchical data models are
still in use in some legacy applications. For the benefit of readers who wish to
learn about these data models, we provide appendices describing the network
and hierarchical data models, in Appendices D and E respectively.
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The Sixth Edition

The production of this sixth edition has been guided by the many comments and
suggestions we received concerning the earlier editions, by our own observations
while teaching at Yale University, Lehigh University, and IIT Bombay, and by our
analysis of the directions in which database technology is evolving.

We have replaced the earlier running example of bank enterprise with a uni-
versity example. This example has an immediate intuitive connection to students
that assists not only in remembering the example, but, more importantly, in gain-
ing deeper insight into the various design decisions that need to be made.

We have reorganized the book so as to collect all of our SQL coverage together
and place it early in the book. Chapters 3, 4, and 5 present complete SQL coverage.
Chapter 3 presents the basics of the language, with more advanced features in
Chapter 4. In Chapter 5, we present JDBC along with other means of accessing
SQL from a general-purpose programming language. We present triggers and re-
cursion, and then conclude with coverage of online analytic processing (OLAP).
Introductory courses may choose to cover only certain sections of Chapter 5 or
defer sections until after the coverage of database design without loss of continu-
ity.

Beyond these two major changes, we revised the material in each chapter,
bringing the older material up-to-date, adding discussions on recent develop-
ments in database technology, and improving descriptions of topics that students
found difficult to understand. We have also added new exercises and updated
references. The list of specific changes includes the following:

• Earlier coverage of SQL. Many instructors use SQL as a key component of term
projects (see our Web site, www.db-book.com, for sample projects). In order to
give students ample time for the projects, particularly for universities and
colleges on the quarter system, it is essential to teach SQL as early as possible.
With this in mind, we have undertaken several changes in organization:

◦ A new chapter on the relational model (Chapter 2) precedes SQL, laying
the conceptual foundation, without getting lost in details of relational
algebra.

◦ Chapters 3, 4, and 5 provide detailed coverage of SQL. These chapters also
discuss variants supported by different database systems, to minimize
problems that students face when they execute queries on actual database
systems. These chapters cover all aspects of SQL, including queries, data
definition, constraint specification, OLAP, and the use of SQL from within
a variety of languages, including Java/JDBC.

◦ Formal languages (Chapter 6) have been postponed to after SQL, and can
be omitted without affecting the sequencing of other chapters. Only our
discussion of query optimization in Chapter 13 depends on the relational
algebra coverage of Chapter 6.
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• New database schema. We adopted a new schema, which is based on uni-
versity data, as a running example throughout the book. This schema is
more intuitive and motivating for students than the earlier bank schema, and
illustrates more complex design trade-offs in the database-design chapters.

• More support for a hands-on student experience. To facilitate following
our running example, we list the database schema and the sample relation
instances for our university database together in Appendix A as well as
where they are used in the various regular chapters. In addition, we provide,
on our Web site http://www.db-book.com, SQL data-definition statements for the
entire example, along with SQL statements to create our example relation
instances. This encourages students to run example queries directly on a
database system and to experiment with modifying those queries.

• Revised coverage of E-R model. The E-R diagram notation in Chapter 7 has
been modified to make it more compatible with UML. The chapter also makes
good use of the new university database schema to illustrate more complex
design trade-offs.

• Revised coverage of relational design. Chapter 8 now has a more readable
style, providing an intuitive understanding of functional dependencies and
normalization, before covering functional dependency theory; the theory is
motivated much better as a result.

• Expanded material on application development and security. Chapter 9 has
new material on application development, mirroring rapid changes in the
field. In particular, coverage of security has been expanded, considering its
criticality in today’s interconnected world, with an emphasis on practical
issues over abstract concepts.

• Revised and updated coverage of data storage, indexing and query op-
timization. Chapter 10 has been updated with new technology, including
expanded coverage of flash memory.

Coverage of B+-trees in Chapter 11 has been revised to reflect practical
implementations, including coverage of bulk loading, and the presentation
has been improved. The B+-tree examples in Chapter 11 have now been
revised with n = 4, to avoid the special case of empty nodes that arises with
the (unrealistic) value of n = 3.

Chapter 13 has new material on advanced query-optimization techniques.

• Revised coverage of transaction management. Chapter 14 provides full cov-
erage of the basics for an introductory course, with advanced details follow-
ing in Chapters 15 and 16. Chapter 14 has been expanded to cover the practical
issues in transaction management faced by database users and database-
application developers. The chapter also includes an expanded overview of
topics covered in Chapters 15 and 16, ensuring that even if Chapters 15 and 16
are omitted, students have a basic knowledge of the concepts of concurrency
control and recovery.
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Chapters 14 and 15 now include detailed coverage of snapshot isolation,
which is widely supported and used today, including coverage of potential
hazards when using it.

Chapter 16 now has a simplified description of basic log-based recovery
leading up to coverage of the ARIES algorithm.

• Revised and expanded coverage of distributed databases. We now cover
cloud data storage, which is gaining significant interest for business appli-
cations. Cloud storage offers enterprises opportunities for improved cost-
management and increased storage scalability, particularly for Web-based
applications. We examine those advantages along with the potential draw-
backs and risks.

Multidatabases, which were earlier in the advanced transaction processing
chapter, are now covered earlier as part of the distributed database chapter.

• Postponed coverage of object databases and XML. Although object-oriented
languages and XML are widely used outside of databases, their use in data-
bases is still limited, making them appropriate for more advanced courses,
or as supplementary material for an introductory course. These topics have
therefore been moved to later in the book, in Chapters 22 and 23.

• QBE, Microsoft Access, and Datalog in an online appendix. These topics,
which were earlier part of a chapter on “other relational languages,” are now
covered in online Appendix C.

All topics not listed above are updated from the fifth edition, though their overall
organization is relatively unchanged.

Review Material and Exercises

Each chapter has a list of review terms, in addition to a summary, which can help
readers review key topics covered in the chapter.

The exercises are divided into two sets: practice exercises and exercises. The
solutions for the practice exercises are publicly available on the Web site of the
book. Students are encouraged to solve the practice exercises on their own, and
later use the solutions on the Web site to check their own solutions. Solutions
to the other exercises are available only to instructors (see “Instructor’s Note,”
below, for information on how to get the solutions).

Many chapters have a tools section at the end of the chapter that provides
information on software tools related to the topic of the chapter; some of these
tools can be used for laboratory exercises. SQL DDL and sample data for the
university database and other relations used in the exercises are available on the
Web site of the book, and can be used for laboratory exercises.
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Instructor’s Note

The book contains both basic and advanced material, which might not be cov-
ered in a single semester. We have marked several sections as advanced, using
the symbol “**”. These sections may be omitted if so desired, without a loss of
continuity. Exercises that are difficult (and can be omitted) are also marked using
the symbol “**”.

It is possible to design courses by using various subsets of the chapters. Some
of the chapters can also be covered in an order different from their order in the
book. We outline some of the possibilities here:

• Chapter 5 (Advanced SQL) can be skipped or deferred to later without loss of
continuity. We expect most courses will cover at least Section 5.1.1 early, as
JDBC is likely to be a useful tool in student projects.

• Chapter 6 (Formal Relational Query Languages) can be covered immediately
after Chapter 2, ahead of SQL. Alternatively, this chapter may be omitted from
an introductory course.

We recommend covering Section 6.1 (relational algebra) if the course also
covers query processing. However, Sections 6.2 and 6.3 can be omitted if
students will not be using relational calculus as part of the course.

• Chapter 7 (E-R Model) can be covered ahead of Chapters 3, 4 and 5 if you so
desire, since Chapter 7 does not have any dependency on SQL.

• Chapter 13 (Query Optimization) can be omitted from an introductory course
without affecting coverage of any other chapter.

• Both our coverage of transaction processing (Chapters 14 through 16) and
our coverage of system architecture (Chapters 17 through 19) consist of an
overview chapter (Chapters 14 and 17, respectively), followed by chapters
with details. You might choose to use Chapters 14 and 17, while omitting
Chapters 15, 16, 18 and 19, if you defer these latter chapters to an advanced
course.

• Chapters 20 and 21, covering data warehousing, data mining, and informa-
tion retrieval, can be used as self-study material or omitted from an introduc-
tory course.

• Chapters 22 (Object-Based Databases), and 23 (XML) can be omitted from an
introductory course.

• Chapters 24 through 26, covering advanced application development, spatial,
temporal and mobile data, and advanced transaction processing, are suitable
for an advanced course or for self-study by students.

• The case-study Chapters 27 through 30 are suitable for self-study by students.
Alternatively, they can be used as an illustration of concepts when the earlier
chapters are presented in class.

Model course syllabi, based on the text, can be found on the Web site of the book.
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Web Site and Teaching Supplements

A Web site for the book is available at the URL: http://www.db-book.com. The Web
site contains:

• Slides covering all the chapters of the book.

• Answers to the practice exercises.

• The five appendices.

• An up-to-date errata list.

• Laboratory material, including SQL DDL and sample data for the university
schema and other relations used in exercises, and instructions for setting up
and using various database systems and tools.

The following additional material is available only to faculty:

• An instructor manual containing solutions to all exercises in the book.

• A question bank containing extra exercises.

For more information about how to get a copy of the instructor manual and the
question bank, please send electronic mail to customer.service@mcgraw-hill.com.
In the United States, you may call 800-338-3987. The McGraw-Hill Web site for
this book is http://www.mhhe.com/silberschatz.

Contacting Us

We have endeavored to eliminate typos, bugs, and the like from the text. But, as
in new releases of software, bugs almost surely remain; an up-to-date errata list
is accessible from the book’s Web site. We would appreciate it if you would notify
us of any errors or omissions in the book that are not on the current list of errata.

We would be glad to receive suggestions on improvements to the book. We
also welcome any contributions to the book Web site that could be of use to
other readers, such as programming exercises, project suggestions, online labs
and tutorials, and teaching tips.

Email should be addressed to db-book-authors@cs.yale.edu. Any other corre-
spondence should be sent to Avi Silberschatz, Department of Computer Science,
Yale University, 51 Prospect Street, P.O. Box 208285, New Haven, CT 06520-8285
USA.
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C H A P T E R1
Introduction

A database-management system (DBMS) is a collection of interrelated data and
a set of programs to access those data. The collection of data, usually referred to
as the database, contains information relevant to an enterprise. The primary goal
of a DBMS is to provide a way to store and retrieve database information that is
both convenient and efficient.

Database systems are designed to manage large bodies of information. Man-
agement of data involves both defining structures for storage of information
and providing mechanisms for the manipulation of information. In addition, the
database system must ensure the safety of the information stored, despite system
crashes or attempts at unauthorized access. If data are to be shared among several
users, the system must avoid possible anomalous results.

Because information is so important in most organizations, computer scien-
tists have developed a large body of concepts and techniques for managing data.
These concepts and techniques form the focus of this book. This chapter briefly
introduces the principles of database systems.

1.1 Database-System Applications

Databases are widely used. Here are some representative applications:

• Enterprise Information

◦ Sales: For customer, product, and purchase information.

◦ Accounting: For payments, receipts, account balances, assets and other
accounting information.

◦ Human resources: For information about employees, salaries, payroll taxes,
and benefits, and for generation of paychecks.

◦ Manufacturing: For management of the supply chain and for tracking pro-
duction of items in factories, inventories of items in warehouses and stores,
and orders for items.

1
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◦ Online retailers: For sales data noted above plus online order tracking,
generation of recommendation lists, and maintenance of online product
evaluations.

• Banking and Finance

◦ Banking: For customer information, accounts, loans, and banking transac-
tions.

◦ Credit card transactions: For purchases on credit cards and generation of
monthly statements.

◦ Finance: For storing information about holdings, sales, and purchases of
financial instruments such as stocks and bonds; also for storing real-time
market data to enable online trading by customers and automated trading
by the firm.

• Universities: For student information, course registrations, and grades (in
addition to standard enterprise information such as human resources and
accounting).

• Airlines: For reservations and schedule information. Airlines were among the
first to use databases in a geographically distributed manner.

• Telecommunication: For keeping records of calls made, generating monthly
bills, maintaining balances on prepaid calling cards, and storing information
about the communication networks.

As the list illustrates, databases form an essential part of every enterprise today,
storing not only types of information that are common to most enterprises, but
also information that is specific to the category of the enterprise.

Over the course of the last four decades of the twentieth century, use of
databases grew in all enterprises. In the early days, very few people interacted di-
rectly with database systems, although without realizing it, they interacted with
databases indirectly—through printed reports such as credit card statements, or
through agents such as bank tellers and airline reservation agents. Then auto-
mated teller machines came along and let users interact directly with databases.
Phone interfaces to computers (interactive voice-response systems) also allowed
users to deal directly with databases—a caller could dial a number, and press
phone keys to enter information or to select alternative options, to find flight
arrival/departure times, for example, or to register for courses in a university.

The Internet revolution of the late 1990s sharply increased direct user access to
databases. Organizations converted many of their phone interfaces to databases
into Web interfaces, and made a variety of services and information available
online. For instance, when you access an online bookstore and browse a book or
music collection, you are accessing data stored in a database. When you enter an
order online, your order is stored in a database. When you access a bank Web site
and retrieve your bank balance and transaction information, the information is
retrieved from the bank’s database system. When you access a Web site, informa-
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tion about you may be retrieved from a database to select which advertisements
you should see. Furthermore, data about your Web accesses may be stored in a
database.

Thus, although user interfaces hide details of access to a database, and most
people are not even aware they are dealing with a database, accessing databases
forms an essential part of almost everyone’s life today.

The importance of database systems can be judged in another way—today,
database system vendors like Oracle are among the largest software companies
in the world, and database systems form an important part of the product line of
Microsoft and IBM.

1.2 Purpose of Database Systems

Database systems arose in response to early methods of computerized manage-
ment of commercial data. As an example of such methods, typical of the 1960s,
consider part of a university organization that, among other data, keeps infor-
mation about all instructors, students, departments, and course offerings. One
way to keep the information on a computer is to store it in operating system
files. To allow users to manipulate the information, the system has a number of
application programs that manipulate the files, including programs to:

• Add new students, instructors, and courses

• Register students for courses and generate class rosters

• Assign grades to students, compute grade point averages (GPA), and generate
transcripts

System programmers wrote these application programs to meet the needs of the
university.

New application programs are added to the system as the need arises. For
example, suppose that a university decides to create a new major (say, computer
science). As a result, the university creates a new department and creates new per-
manent files (or adds information to existing files) to record information about all
the instructors in the department, students in that major, course offerings, degree
requirements, etc. The university may have to write new application programs
to deal with rules specific to the new major. New application programs may also
have to be written to handle new rules in the university. Thus, as time goes by,
the system acquires more files and more application programs.

This typical file-processing system is supported by a conventional operat-
ing system. The system stores permanent records in various files, and it needs
different application programs to extract records from, and add records to, the ap-
propriate files. Before database management systems (DBMSs) were introduced,
organizations usually stored information in such systems.

Keeping organizational information in a file-processing system has a number
of major disadvantages:
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• Data redundancy and inconsistency. Since different programmers create
the files and application programs over a long period, the various files are
likely to have different structures and the programs may be written in several
programming languages. Moreover, the same information may be duplicated
in several places (files). For example, if a student has a double major (say,
music and mathematics) the address and telephone number of that student
may appear in a file that consists of student records of students in the Music
department and in a file that consists of student records of students in the
Mathematics department. This redundancy leads to higher storage and access
cost. In addition, it may lead to data inconsistency; that is, the various copies
of the same data may no longer agree. For example, a changed student address
may be reflected in the Music department records but not elsewhere in the
system.

• Difficulty in accessing data. Suppose that one of the university clerks needs
to find out the names of all students who live within a particular postal-code
area. The clerk asks the data-processing department to generate such a list.
Because the designers of the original system did not anticipate this request,
there is no application program on hand to meet it. There is, however, an
application program to generate the list of all students. The university clerk
has now two choices: either obtain the list of all students and extract the
needed information manually or ask a programmer to write the necessary
application program. Both alternatives are obviously unsatisfactory. Suppose
that such a program is written, and that, several days later, the same clerk
needs to trim that list to include only those students who have taken at least
60 credit hours. As expected, a program to generate such a list does not
exist. Again, the clerk has the preceding two options, neither of which is
satisfactory.

The point here is that conventional file-processing environments do not
allow needed data to be retrieved in a convenient and efficient manner. More
responsive data-retrieval systems are required for general use.

• Data isolation. Because data are scattered in various files, and files may
be in different formats, writing new application programs to retrieve the
appropriate data is difficult.

• Integrity problems. The data values stored in the database must satisfy cer-
tain types of consistency constraints. Suppose the university maintains an
account for each department, and records the balance amount in each ac-
count. Suppose also that the university requires that the account balance of a
department may never fall below zero. Developers enforce these constraints
in the system by adding appropriate code in the various application pro-
grams. However, when new constraints are added, it is difficult to change
the programs to enforce them. The problem is compounded when constraints
involve several data items from different files.

• Atomicity problems. A computer system, like any other device, is subject
to failure. In many applications, it is crucial that, if a failure occurs, the data
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be restored to the consistent state that existed prior to the failure. Consider
a program to transfer $500 from the account balance of department A to
the account balance of department B. If a system failure occurs during the
execution of the program, it is possible that the $500 was removed from the
balance of department A but was not credited to the balance of department B,
resulting in an inconsistent database state. Clearly, it is essential to database
consistency that either both the credit and debit occur, or that neither occur.
That is, the funds transfer must be atomic—it must happen in its entirety or
not at all. It is difficult to ensure atomicity in a conventional file-processing
system.

• Concurrent-access anomalies. For the sake of overall performance of the sys-
tem and faster response, many systems allow multiple users to update the
data simultaneously. Indeed, today, the largest Internet retailers may have
millions of accesses per day to their data by shoppers. In such an environ-
ment, interaction of concurrent updates is possible and may result in incon-
sistent data. Consider department A, with an account balance of $10,000. If
two department clerks debit the account balance (by say $500 and $100, re-
spectively) of department A at almost exactly the same time, the result of the
concurrent executions may leave the budget in an incorrect (or inconsistent)
state. Suppose that the programs executing on behalf of each withdrawal read
the old balance, reduce that value by the amount being withdrawn, and write
the result back. If the two programs run concurrently, they may both read the
value $10,000, and write back $9500 and $9900, respectively. Depending on
which one writes the value last, the account balance of department A may
contain either $9500 or $9900, rather than the correct value of $9400. To guard
against this possibility, the system must maintain some form of supervision.
But supervision is difficult to provide because data may be accessed by many
different application programs that have not been coordinated previously.

As another example, suppose a registration program maintains a count of
students registered for a course, in order to enforce limits on the number of
students registered. When a student registers, the program reads the current
count for the courses, verifies that the count is not already at the limit, adds
one to the count, and stores the count back in the database. Suppose two
students register concurrently, with the count at (say) 39. The two program
executions may both read the value 39, and both would then write back 40,
leading to an incorrect increase of only 1, even though two students suc-
cessfully registered for the course and the count should be 41. Furthermore,
suppose the course registration limit was 40; in the above case both students
would be able to register, leading to a violation of the limit of 40 students.

• Security problems. Not every user of the database system should be able
to access all the data. For example, in a university, payroll personnel need
to see only that part of the database that has financial information. They do
not need access to information about academic records. But, since applica-
tion programs are added to the file-processing system in an ad hoc manner,
enforcing such security constraints is difficult.
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These difficulties, among others, prompted the development of database sys-
tems. In what follows, we shall see the concepts and algorithms that enable
database systems to solve the problems with file-processing systems. In most of
this book, we use a university organization as a running example of a typical
data-processing application.

1.3 View of Data

A database system is a collection of interrelated data and a set of programs that
allow users to access and modify these data. A major purpose of a database
system is to provide users with an abstract view of the data. That is, the system
hides certain details of how the data are stored and maintained.

1.3.1 Data Abstraction

For the system to be usable, it must retrieve data efficiently. The need for efficiency
has led designers to use complex data structures to represent data in the database.
Since many database-system users are not computer trained, developers hide the
complexity from users through several levels of abstraction, to simplify users’
interactions with the system:

• Physical level. The lowest level of abstraction describes how the data are ac-
tually stored. The physical level describes complex low-level data structures
in detail.

• Logical level. The next-higher level of abstraction describes what data are
stored in the database, and what relationships exist among those data. The
logical level thus describes the entire database in terms of a small number of
relatively simple structures. Although implementation of the simple struc-
tures at the logical level may involve complex physical-level structures, the
user of the logical level does not need to be aware of this complexity. This
is referred to as physical data independence. Database administrators, who
must decide what information to keep in the database, use the logical level
of abstraction.

• View level. The highest level of abstraction describes only part of the entire
database. Even though the logical level uses simpler structures, complexity
remains because of the variety of information stored in a large database.
Many users of the database system do not need all this information; instead,
they need to access only a part of the database. The view level of abstraction
exists to simplify their interaction with the system. The system may provide
many views for the same database.

Figure 1.1 shows the relationship among the three levels of abstraction.
An analogy to the concept of data types in programming languages may

clarify the distinction among levels of abstraction. Many high-level programming
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Figure 1.1 The three levels of data abstraction.

languages support the notion of a structured type. For example, we may describe
a record as follows:1

type instructor = record
ID : char (5);
name : char (20);
dept name : char (20);
salary : numeric (8,2);

end;

This code defines a new record type called instructor with four fields. Each field
has a name and a type associated with it. A university organization may have
several such record types, including

• department, with fields dept name, building, and budget

• course, with fields course id, title, dept name, and credits

• student, with fields ID, name, dept name, and tot cred

At the physical level, an instructor, department, or student record can be de-
scribed as a block of consecutive storage locations. The compiler hides this level
of detail from programmers. Similarly, the database system hides many of the
lowest-level storage details from database programmers. Database administra-
tors, on the other hand, may be aware of certain details of the physical organiza-
tion of the data.

1The actual type declaration depends on the language being used. C and C++ use struct declarations. Java does not have
such a declaration, but a simple class can be defined to the same effect.
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At the logical level, each such record is described by a type definition, as
in the previous code segment, and the interrelationship of these record types is
defined as well. Programmers using a programming language work at this level
of abstraction. Similarly, database administrators usually work at this level of
abstraction.

Finally, at the view level, computer users see a set of application programs
that hide details of the data types. At the view level, several views of the database
are defined, and a database user sees some or all of these views. In addition
to hiding details of the logical level of the database, the views also provide a
security mechanism to prevent users from accessing certain parts of the database.
For example, clerks in the university registrar office can see only that part of the
database that has information about students; they cannot access information
about salaries of instructors.

1.3.2 Instances and Schemas

Databases change over time as information is inserted and deleted. The collection
of information stored in the database at a particular moment is called an instance
of the database. The overall design of the database is called the database schema.
Schemas are changed infrequently, if at all.

The concept of database schemas and instances can be understood by analogy
to a program written in a programming language. A database schema corresponds
to the variable declarations (along with associated type definitions) in a program.
Each variable has a particular value at a given instant. The values of the variables
in a program at a point in time correspond to an instance of a database schema.

Database systems have several schemas, partitioned according to the levels
of abstraction. The physical schema describes the database design at the physical
level, while the logical schema describes the database design at the logical level.
A database may also have several schemas at the view level, sometimes called
subschemas, that describe different views of the database.

Of these, the logical schema is by far the most important, in terms of its effect
on application programs, since programmers construct applications by using the
logical schema. The physical schema is hidden beneath the logical schema, and can
usually be changed easily without affecting application programs. Application
programs are said to exhibit physical data independence if they do not depend
on the physical schema, and thus need not be rewritten if the physical schema
changes.

We study languages for describing schemas after introducing the notion of
data models in the next section.

1.3.3 Data Models

Underlying the structure of a database is the data model: a collection of conceptual
tools for describing data, data relationships, data semantics, and consistency
constraints. A data model provides a way to describe the design of a database at
the physical, logical, and view levels.
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There are a number of different data models that we shall cover in the text.
The data models can be classified into four different categories:

• Relational Model. The relational model uses a collection of tables to repre-
sent both data and the relationships among those data. Each table has mul-
tiple columns, and each column has a unique name. Tables are also known
as relations. The relational model is an example of a record-based model.
Record-based models are so named because the database is structured in
fixed-format records of several types. Each table contains records of a par-
ticular type. Each record type defines a fixed number of fields, or attributes.
The columns of the table correspond to the attributes of the record type. The
relational data model is the most widely used data model, and a vast major-
ity of current database systems are based on the relational model. Chapters 2
through 8 cover the relational model in detail.

• Entity-Relationship Model. The entity-relationship (E-R) data model uses a
collection of basic objects, called entities, and relationships among these objects.
An entity is a “thing” or “object” in the real world that is distinguishable
from other objects. The entity-relationship model is widely used in database
design, and Chapter 7 explores it in detail.

• Object-Based Data Model. Object-oriented programming (especially in Java,
C++, or C#) has become the dominant software-development methodology.
This led to the development of an object-oriented data model that can be
seen as extending the E-R model with notions of encapsulation, methods
(functions), and object identity. The object-relational data model combines
features of the object-oriented data model and relational data model. Chap-
ter 22 examines the object-relational data model.

• Semistructured Data Model. The semistructured data model permits the
specification of data where individual data items of the same type may have
different sets of attributes. This is in contrast to the data models mentioned
earlier, where every data item of a particular type must have the same set
of attributes. The Extensible Markup Language (XML) is widely used to
represent semistructured data. Chapter 23 covers it.

Historically, the network data model and the hierarchical data model pre-
ceded the relational data model. These models were tied closely to the underlying
implementation, and complicated the task of modeling data. As a result they are
used little now, except in old database code that is still in service in some places.
They are outlined online in Appendices D and E for interested readers.

1.4 Database Languages

A database system provides a data-definition language to specify the database
schema and a data-manipulation language to express database queries and up-
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dates. In practice, the data-definition and data-manipulation languages are not
two separate languages; instead they simply form parts of a single database lan-
guage, such as the widely used SQL language.

1.4.1 Data-Manipulation Language

A data-manipulation language (DML) is a language that enables users to access
or manipulate data as organized by the appropriate data model. The types of
access are:

• Retrieval of information stored in the database

• Insertion of new information into the database

• Deletion of information from the database

• Modification of information stored in the database

There are basically two types:

• Procedural DMLs require a user to specify what data are needed and how to
get those data.

• Declarative DMLs (also referred to as nonprocedural DMLs) require a user to
specify what data are needed without specifying how to get those data.

Declarative DMLs are usually easier to learn and use than are procedural
DMLs. However, since a user does not have to specify how to get the data, the
database system has to figure out an efficient means of accessing data.

A query is a statement requesting the retrieval of information. The portion of
a DML that involves information retrieval is called a query language. Although
technically incorrect, it is common practice to use the terms query language and
data-manipulation language synonymously.

There are a number of database query languages in use, either commercially
or experimentally. We study the most widely used query language, SQL, in Chap-
ters 3, 4, and 5. We also study some other query languages in Chapter 6.

The levels of abstraction that we discussed in Section 1.3 apply not only
to defining or structuring data, but also to manipulating data. At the physical
level, we must define algorithms that allow efficient access to data. At higher
levels of abstraction, we emphasize ease of use. The goal is to allow humans
to interact efficiently with the system. The query processor component of the
database system (which we study in Chapters 12 and 13) translates DML queries
into sequences of actions at the physical level of the database system.

1.4.2 Data-Definition Language

We specify a database schema by a set of definitions expressed by a special
language called a data-definition language (DDL). The DDL is also used to specify
additional properties of the data.
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We specify the storage structure and access methods used by the database
system by a set of statements in a special type of DDL called a data storage and
definition language. These statements define the implementation details of the
database schemas, which are usually hidden from the users.

The data values stored in the database must satisfy certain consistency con-
straints. For example, suppose the university requires that the account balance
of a department must never be negative. The DDL provides facilities to specify
such constraints. The database system checks these constraints every time the
database is updated. In general, a constraint can be an arbitrary predicate per-
taining to the database. However, arbitrary predicates may be costly to test. Thus,
database systems implement integrity constraints that can be tested with minimal
overhead:

• Domain Constraints. A domain of possible values must be associated with
every attribute (for example, integer types, character types, date/time types).
Declaring an attribute to be of a particular domain acts as a constraint on the
values that it can take. Domain constraints are the most elementary form of
integrity constraint. They are tested easily by the system whenever a new
data item is entered into the database.

• Referential Integrity. There are cases where we wish to ensure that a value
that appears in one relation for a given set of attributes also appears in a cer-
tain set of attributes in another relation (referential integrity). For example,
the department listed for each course must be one that actually exists. More
precisely, the dept name value in a course record must appear in the dept name
attribute of some record of the department relation. Database modifications
can cause violations of referential integrity. When a referential-integrity con-
straint is violated, the normal procedure is to reject the action that caused the
violation.

• Assertions. An assertion is any condition that the database must always
satisfy. Domain constraints and referential-integrity constraints are special
forms of assertions. However, there are many constraints that we cannot
express by using only these special forms. For example, “Every department
must have at least five courses offered every semester” must be expressed as
an assertion. When an assertion is created, the system tests it for validity. If
the assertion is valid, then any future modification to the database is allowed
only if it does not cause that assertion to be violated.

• Authorization. We may want to differentiate among the users as far as the
type of access they are permitted on various data values in the database. These
differentiations are expressed in terms of authorization, the most common
being: read authorization, which allows reading, but not modification, of
data; insert authorization, which allows insertion of new data, but not mod-
ification of existing data; update authorization, which allows modification,
but not deletion, of data; and delete authorization, which allows deletion of
data. We may assign the user all, none, or a combination of these types of
authorization.
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The DDL, just like any other programming language, gets as input some
instructions (statements) and generates some output. The output of the DDL is
placed in the data dictionary, which contains metadata—that is, data about data.
The data dictionary is considered to be a special type of table that can only be
accessed and updated by the database system itself (not a regular user). The
database system consults the data dictionary before reading or modifying actual
data.

1.5 Relational Databases

A relational database is based on the relational model and uses a collection of
tables to represent both data and the relationships among those data. It also in-
cludes a DML and DDL. In Chapter 2 we present a gentle introduction to the
fundamentals of the relational model. Most commercial relational database sys-
tems employ the SQL language, which we cover in great detail in Chapters 3, 4,
and 5. In Chapter 6 we discuss other influential languages.

1.5.1 Tables

Each table has multiple columns and each column has a unique name. Figure 1.2
presents a sample relational database comprising two tables: one shows details
of university instructors and the other shows details of the various university
departments.

The first table, the instructor table, shows, for example, that an instructor
named Einstein with ID 22222 is a member of the Physics department and has an
annual salary of $95,000. The second table, department, shows, for example, that
the Biology department is located in the Watson building and has a budget of
$90,000. Of course, a real-world university would have many more departments
and instructors. We use small tables in the text to illustrate concepts. A larger
example for the same schema is available online.

The relational model is an example of a record-based model. Record-based
models are so named because the database is structured in fixed-format records
of several types. Each table contains records of a particular type. Each record type
defines a fixed number of fields, or attributes. The columns of the table correspond
to the attributes of the record type.

It is not hard to see how tables may be stored in files. For instance, a special
character (such as a comma) may be used to delimit the different attributes of a
record, and another special character (such as a new-line character) may be used
to delimit records. The relational model hides such low-level implementation
details from database developers and users.

We also note that it is possible to create schemas in the relational model that
have problems such as unnecessarily duplicated information. For example, sup-
pose we store the department budget as an attribute of the instructor record. Then,
whenever the value of a particular budget (say that one for the Physics depart-
ment) changes, that change must to be reflected in the records of all instructors
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ID name dept name salary

22222 Einstein Physics 95000
12121 Wu Finance 90000
32343 El Said History 60000
45565 Katz Comp. Sci. 75000
98345 Kim Elec. Eng. 80000
76766 Crick Biology 72000
10101 Srinivasan Comp. Sci. 65000
58583 Califieri History 62000
83821 Brandt Comp. Sci. 92000
15151 Mozart Music 40000
33456 Gold Physics 87000
76543 Singh Finance 80000

(a) The instructor table

dept name building budget

Comp. Sci. Taylor 100000
Biology Watson 90000
Elec. Eng. Taylor 85000
Music Packard 80000
Finance Painter 120000
History Painter 50000
Physics Watson 70000

(b) The department table

Figure 1.2 A sample relational database.

associated with the Physics department. In Chapter 8, we shall study how to
distinguish good schema designs from bad schema designs.

1.5.2 Data-Manipulation Language

The SQL query language is nonprocedural. A query takes as input several tables
(possibly only one) and always returns a single table. Here is an example of an
SQL query that finds the names of all instructors in the History department:

select instructor.name
from instructor
where instructor.dept name = ’History’;

The query specifies that those rows from the table instructor where the dept name is
History must be retrieved, and the name attribute of these rows must be displayed.
More specifically, the result of executing this query is a table with a single column
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labeled name, and a set of rows, each of which contains the name of an instructor
whose dept name, is History. If the query is run on the table in Figure 1.2, the result
will consist of two rows, one with the name El Said and the other with the name
Califieri.

Queries may involve information from more than one table. For instance, the
following query finds the instructor ID and department name of all instructors
associated with a department with budget of greater than $95,000.

select instructor.ID, department.dept name
from instructor, department
where instructor.dept name= department.dept name and

department.budget > 95000;

If the above query were run on the tables in Figure 1.2, the system would find
that there are two departments with budget of greater than $95,000—Computer
Science and Finance; there are five instructors in these departments. Thus, the
result will consist of a table with two columns (ID, dept name) and five rows:
(12121, Finance), (45565, Computer Science), (10101, Computer Science), (83821,
Computer Science), and (76543, Finance).

1.5.3 Data-Definition Language

SQL provides a rich DDL that allows one to define tables, integrity constraints,
assertions, etc.

For instance, the following SQL DDL statement defines the department table:

create table department
(dept name char (20),
building char (15),
budget numeric (12,2));

Execution of the above DDL statement creates the department table with three
columns: dept name, building, and budget, each of which has a specific data type
associated with it. We discuss data types in more detail in Chapter 3. In addition,
the DDL statement updates the data dictionary, which contains metadata (see
Section 1.4.2). The schema of a table is an example of metadata.

1.5.4 Database Access from Application Programs

SQL is not as powerful as a universal Turing machine; that is, there are some
computations that are possible using a general-purpose programming language
but are not possible using SQL. SQL also does not support actions such as input
from users, output to displays, or communication over the network. Such com-
putations and actions must be written in a host language, such as C, C++, or Java,
with embedded SQL queries that access the data in the database. Application
programs are programs that are used to interact with the database in this fashion.
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Examples in a university system are programs that allow students to register for
courses, generate class rosters, calculate student GPA, generate payroll checks, etc.

To access the database, DML statements need to be executed from the host
language. There are two ways to do this:

• By providing an application program interface (set of procedures) that can
be used to send DML and DDL statements to the database and retrieve the
results.

The Open Database Connectivity (ODBC) standard for use with the C
language is a commonly used application program interface standard. The
Java Database Connectivity (JDBC) standard provides corresponding features
to the Java language.

• By extending the host language syntax to embed DML calls within the host
language program. Usually, a special character prefaces DML calls, and a
preprocessor, called the DML precompiler, converts the DML statements to
normal procedure calls in the host language.

1.6 Database Design

Database systems are designed to manage large bodies of information. These large
bodies of information do not exist in isolation. They are part of the operation of
some enterprise whose end product may be information from the database or
may be some device or service for which the database plays only a supporting
role.

Database design mainly involves the design of the database schema. The
design of a complete database application environment that meets the needs of
the enterprise being modeled requires attention to a broader set of issues. In
this text, we focus initially on the writing of database queries and the design of
database schemas. Chapter 9 discusses the overall process of application design.

1.6.1 Design Process

A high-level data model provides the database designer with a conceptual frame-
work in which to specify the data requirements of the database users, and how
the database will be structured to fulfill these requirements. The initial phase of
database design, then, is to characterize fully the data needs of the prospective
database users. The database designer needs to interact extensively with domain
experts and users to carry out this task. The outcome of this phase is a specification
of user requirements.

Next, the designer chooses a data model, and by applying the concepts of
the chosen data model, translates these requirements into a conceptual schema of
the database. The schema developed at this conceptual-design phase provides a
detailed overview of the enterprise. The designer reviews the schema to confirm
that all data requirements are indeed satisfied and are not in conflict with one
another. The designer can also examine the design to remove any redundant
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features. The focus at this point is on describing the data and their relationships,
rather than on specifying physical storage details.

In terms of the relational model, the conceptual-design process involves de-
cisions on what attributes we want to capture in the database and how to group
these attributes to form the various tables. The “what” part is basically a business
decision, and we shall not discuss it further in this text. The “how” part is mainly a
computer-science problem. There are principally two ways to tackle the problem.
The first one is to use the entity-relationship model (Section 1.6.3); the other is
to employ a set of algorithms (collectively known as normalization) that takes as
input the set of all attributes and generates a set of tables (Section 1.6.4).

A fully developed conceptual schema indicates the functional requirements
of the enterprise. In a specification of functional requirements, users describe the
kinds of operations (or transactions) that will be performed on the data. Example
operations include modifying or updating data, searching for and retrieving
specific data, and deleting data. At this stage of conceptual design, the designer
can review the schema to ensure it meets functional requirements.

The process of moving from an abstract data model to the implementation of
the database proceeds in two final design phases. In the logical-design phase, the
designer maps the high-level conceptual schema onto the implementation data
model of the database system that will be used. The designer uses the resulting
system-specific database schema in the subsequent physical-design phase, in
which the physical features of the database are specified. These features include
the form of file organization and the internal storage structures; they are discussed
in Chapter 10.

1.6.2 Database Design for a University Organization

To illustrate the design process, let us examine how a database for a university
could be designed. The initial specification of user requirements may be based
on interviews with the database users, and on the designer’s own analysis of
the organization. The description that arises from this design phase serves as the
basis for specifying the conceptual structure of the database. Here are the major
characteristics of the university.

• The university is organized into departments. Each department is identified
by a unique name (dept name), is located in a particular building, and has a
budget.

• Each department has a list of courses it offers. Each course has associated with
it a course id, title, dept name, and credits, and may also have have associated
prerequisites.

• Instructors are identified by their unique ID. Each instructor has name, asso-
ciated department (dept name), and salary.

• Students are identified by their unique ID. Each student has a name, an associ-
ated major department (dept name), and tot cred (total credit hours the student
earned thus far).



1.6 Database Design 17

• The university maintains a list of classrooms, specifying the name of the
building, room number, and room capacity.

• The university maintains a list of all classes (sections) taught. Each section is
identified by a course id, sec id, year, and semester, and has associated with it
a semester, year, building, room number, and time slot id (the time slot when the
class meets).

• The department has a list of teaching assignments specifying, for each in-
structor, the sections the instructor is teaching.

• The university has a list of all student course registrations, specifying, for
each student, the courses and the associated sections that the student has
taken (registered for).

A real university database would be much more complex than the preceding
design. However we use this simplified model to help you understand conceptual
ideas without getting lost in details of a complex design.

1.6.3 The Entity-Relationship Model

The entity-relationship (E-R) data model uses a collection of basic objects, called
entities, and relationships among these objects. An entity is a “thing” or “object”
in the real world that is distinguishable from other objects. For example, each
person is an entity, and bank accounts can be considered as entities.

Entities are described in a database by a set of attributes. For example, the
attributes dept name, building, and budget may describe one particular department
in a university, and they form attributes of the department entity set. Similarly,
attributes ID, name, and salary may describe an instructor entity.2

The extra attribute ID is used to identify an instructor uniquely (since it may
be possible to have two instructors with the same name and the same salary).
A unique instructor identifier must be assigned to each instructor. In the United
States, many organizations use the social-security number of a person (a unique
number the U.S. government assigns to every person in the United States) as a
unique identifier.

A relationship is an association among several entities. For example, a member
relationship associates an instructor with her department. The set of all entities
of the same type and the set of all relationships of the same type are termed an
entity set and relationship set, respectively.

The overall logical structure (schema) of a database can be expressed graph-
ically by an entity-relationship (E-R) diagram. There are several ways in which to
draw these diagrams. One of the most popular is to use the Unified Modeling
Language (UML). In the notation we use, which is based on UML, an E-R diagram
is represented as follows:

2The astute reader will notice that we dropped the attribute dept name from the set of attributes describing the instructor
entity set; this is not an error. In Chapter 7 we shall provide a detailed explanation of why this is the case.



18 Chapter 1 Introduction

instructor
ID
name
salary

department
dept_name
building
budget

member

Figure 1.3 A sample E-R diagram.

• Entity sets are represented by a rectangular box with the entity set name in
the header and the attributes listed below it.

• Relationship sets are represented by a diamond connecting a pair of related
entity sets. The name of the relationship is placed inside the diamond.

As an illustration, consider part of a university database consisting of instruc-
tors and the departments with which they are associated. Figure 1.3 shows the
corresponding E-R diagram. The E-R diagram indicates that there are two entity
sets, instructor and department, with attributes as outlined earlier. The diagram
also shows a relationship member between instructor and department.

In addition to entities and relationships, the E-R model represents certain
constraints to which the contents of a database must conform. One important
constraint is mapping cardinalities, which express the number of entities to
which another entity can be associated via a relationship set. For example, if each
instructor must be associated with only a single department, the E-R model can
express that constraint.

The entity-relationship model is widely used in database design, and Chapter
7 explores it in detail.

1.6.4 Normalization

Another method for designing a relational database is to use a process commonly
known as normalization. The goal is to generate a set of relation schemas that
allows us to store information without unnecessary redundancy, yet also allows
us to retrieve information easily. The approach is to design schemas that are in
an appropriate normal form. To determine whether a relation schema is in one of
the desirable normal forms, we need additional information about the real-world
enterprise that we are modeling with the database. The most common approach
is to use functional dependencies, which we cover in Section 8.4.

To understand the need for normalization, let us look at what can go wrong
in a bad database design. Among the undesirable properties that a bad design
may have are:

• Repetition of information

• Inability to represent certain information



1.6 Database Design 19

ID name salary dept name building budget

22222 Einstein 95000 Physics Watson 70000
12121 Wu 90000 Finance Painter 120000
32343 El Said 60000 History Painter 50000
45565 Katz 75000 Comp. Sci. Taylor 100000
98345 Kim 80000 Elec. Eng. Taylor 85000
76766 Crick 72000 Biology Watson 90000
10101 Srinivasan 65000 Comp. Sci. Taylor 100000
58583 Califieri 62000 History Painter 50000
83821 Brandt 92000 Comp. Sci. Taylor 100000
15151 Mozart 40000 Music Packard 80000
33456 Gold 87000 Physics Watson 70000
76543 Singh 80000 Finance Painter 120000

Figure 1.4 The faculty table.

We shall discuss these problems with the help of a modified database design for
our university example.

Suppose that instead of having the two separate tables instructor and depart-
ment, we have a single table, faculty, that combines the information from the two
tables (as shown in Figure 1.4). Notice that there are two rows in faculty that
contain repeated information about the History department, specifically, that
department’s building and budget. The repetition of information in our alterna-
tive design is undesirable. Repeating information wastes space. Furthermore, it
complicates updating the database. Suppose that we wish to change the budget
amount of the History department from $50,000 to $46,800. This change must
be reflected in the two rows; contrast this with the original design, where this
requires an update to only a single row. Thus, updates are more costly under the
alternative design than under the original design. When we perform the update
in the alternative database, we must ensure that every tuple pertaining to the His-
tory department is updated, or else our database will show two different budget
values for the History department.

Now, let us shift our attention to the issue of “inability to represent certain
information.” Suppose we are creating a new department in the university. In the
alternative design above, we cannot represent directly the information concerning
a department (dept name, building, budget) unless that department has at least one
instructor at the university. This is because rows in the faculty table require
values for ID, name, and salary. This means that we cannot record information
about the newly created department until the first instructor is hired for the new
department.

One solution to this problem is to introduce null values. The null value
indicates that the value does not exist (or is not known). An unknown value
may be either missing (the value does exist, but we do not have that information)
or not known (we do not know whether or not the value actually exists). As we
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shall see later, null values are difficult to handle, and it is preferable not to resort
to them. If we are not willing to deal with null values, then we can create a
particular item of department information only when the department has at least
one instructor associated with the department. Furthermore, we would have
to delete this information when the last instructor in the department departs.
Clearly, this situation is undesirable, since, under our original database design,
the department information would be available regardless of whether or not
there is an instructor associated with the department, and without resorting to
null values.

An extensive theory of normalization has been developed that helps formally
define what database designs are undesirable, and how to obtain desirable de-
signs. Chapter 8 covers relational-database design, including normalization.

1.7 Data Storage and Querying

A database system is partitioned into modules that deal with each of the re-
sponsibilities of the overall system. The functional components of a database
system can be broadly divided into the storage manager and the query processor
components.

The storage manager is important because databases typically require a large
amount of storage space. Corporate databases range in size from hundreds of
gigabytes to, for the largest databases, terabytes of data. A gigabyte is approxi-
mately 1000 megabytes (actually 1024) (1 billion bytes), and a terabyte is 1 million
megabytes (1 trillion bytes). Since the main memory of computers cannot store
this much information, the information is stored on disks. Data are moved be-
tween disk storage and main memory as needed. Since the movement of data
to and from disk is slow relative to the speed of the central processing unit, it is
imperative that the database system structure the data so as to minimize the need
to move data between disk and main memory.

The query processor is important because it helps the database system to
simplify and facilitate access to data. The query processor allows database users
to obtain good performance while being able to work at the view level and not be
burdened with understanding the physical-level details of the implementation of
the system. It is the job of the database system to translate updates and queries
written in a nonprocedural language, at the logical level, into an efficient sequence
of operations at the physical level.

1.7.1 Storage Manager

The storage manager is the component of a database system that provides the
interface between the low-level data stored in the database and the application
programs and queries submitted to the system. The storage manager is respon-
sible for the interaction with the file manager. The raw data are stored on the
disk using the file system provided by the operating system. The storage man-
ager translates the various DML statements into low-level file-system commands.
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Thus, the storage manager is responsible for storing, retrieving, and updating
data in the database.

The storage manager components include:

• Authorization and integrity manager, which tests for the satisfaction of
integrity constraints and checks the authority of users to access data.

• Transaction manager, which ensures that the database remains in a consis-
tent (correct) state despite system failures, and that concurrent transaction
executions proceed without conflicting.

• File manager, which manages the allocation of space on disk storage and the
data structures used to represent information stored on disk.

• Buffer manager, which is responsible for fetching data from disk storage into
main memory, and deciding what data to cache in main memory. The buffer
manager is a critical part of the database system, since it enables the database
to handle data sizes that are much larger than the size of main memory.

The storage manager implements several data structures as part of the phys-
ical system implementation:

• Data files, which store the database itself.

• Data dictionary, which stores metadata about the structure of the database,
in particular the schema of the database.

• Indices, which can provide fast access to data items. Like the index in this
textbook, a database index provides pointers to those data items that hold a
particular value. For example, we could use an index to find the instructor
record with a particular ID, or all instructor records with a particular name.
Hashing is an alternative to indexing that is faster in some but not all cases.

We discuss storage media, file structures, and buffer management in Chapter 10.
Methods of accessing data efficiently via indexing or hashing are discussed in
Chapter 11.

1.7.2 The Query Processor

The query processor components include:

• DDL interpreter, which interprets DDL statements and records the definitions
in the data dictionary.

• DML compiler, which translates DML statements in a query language into an
evaluation plan consisting of low-level instructions that the query evaluation
engine understands.
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A query can usually be translated into any of a number of alternative
evaluation plans that all give the same result. The DML compiler also performs
query optimization; that is, it picks the lowest cost evaluation plan from
among the alternatives.

• Query evaluation engine, which executes low-level instructions generated
by the DML compiler.

Query evaluation is covered in Chapter 12, while the methods by which the query
optimizer chooses from among the possible evaluation strategies are discussed
in Chapter 13.

1.8 Transaction Management

Often, several operations on the database form a single logical unit of work. An
example is a funds transfer, as in Section 1.2, in which one department account
(say A) is debited and another department account (say B) is credited. Clearly, it
is essential that either both the credit and debit occur, or that neither occur. That
is, the funds transfer must happen in its entirety or not at all. This all-or-none
requirement is called atomicity. In addition, it is essential that the execution of the
funds transfer preserve the consistency of the database. That is, the value of the
sum of the balances of A and B must be preserved. This correctness requirement
is called consistency. Finally, after the successful execution of a funds transfer,
the new values of the balances of accounts A and B must persist, despite the
possibility of system failure. This persistence requirement is called durability.

A transaction is a collection of operations that performs a single logical
function in a database application. Each transaction is a unit of both atomicity
and consistency. Thus, we require that transactions do not violate any database-
consistency constraints. That is, if the database was consistent when a transaction
started, the database must be consistent when the transaction successfully ter-
minates. However, during the execution of a transaction, it may be necessary
temporarily to allow inconsistency, since either the debit of A or the credit of B
must be done before the other. This temporary inconsistency, although necessary,
may lead to difficulty if a failure occurs.

It is the programmer’s responsibility to define properly the various transac-
tions, so that each preserves the consistency of the database. For example, the
transaction to transfer funds from the account of department A to the account of
department B could be defined to be composed of two separate programs: one
that debits account A, and another that credits account B. The execution of these
two programs one after the other will indeed preserve consistency. However, each
program by itself does not transform the database from a consistent state to a new
consistent state. Thus, those programs are not transactions.

Ensuring the atomicity and durability properties is the responsibility of the
database system itself—specifically, of the recovery manager. In the absence of
failures, all transactions complete successfully, and atomicity is achieved easily.
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However, because of various types of failure, a transaction may not always com-
plete its execution successfully. If we are to ensure the atomicity property, a failed
transaction must have no effect on the state of the database. Thus, the database
must be restored to the state in which it was before the transaction in question
started executing. The database system must therefore perform failure recovery,
that is, detect system failures and restore the database to the state that existed
prior to the occurrence of the failure.

Finally, when several transactions update the database concurrently, the con-
sistency of data may no longer be preserved, even though each individual transac-
tion is correct. It is the responsibility of the concurrency-control manager to con-
trol the interaction among the concurrent transactions, to ensure the consistency
of the database. The transaction manager consists of the concurrency-control
manager and the recovery manager.

The basic concepts of transaction processing are covered in Chapter 14. The
management of concurrent transactions is covered in Chapter 15. Chapter 16
covers failure recovery in detail.

The concept of a transaction has been applied broadly in database systems
and applications. While the initial use of transactions was in financial applica-
tions, the concept is now used in real-time applications in telecommunication, as
well as in the management of long-duration activities such as product design or
administrative workflows. These broader applications of the transaction concept
are discussed in Chapter 26.

1.9 Database Architecture

We are now in a position to provide a single picture (Figure 1.5) of the various
components of a database system and the connections among them.

The architecture of a database system is greatly influenced by the underlying
computer system on which the database system runs. Database systems can be
centralized, or client-server, where one server machine executes work on behalf
of multiple client machines. Database systems can also be designed to exploit par-
allel computer architectures. Distributed databases span multiple geographically
separated machines.

In Chapter 17 we cover the general structure of modern computer systems.
Chapter 18 describes how various actions of a database, in particular query pro-
cessing, can be implemented to exploit parallel processing. Chapter 19 presents a
number of issues that arise in a distributed database, and describes how to deal
with each issue. The issues include how to store data, how to ensure atomicity of
transactions that execute at multiple sites, how to perform concurrency control,
and how to provide high availability in the presence of failures. Distributed query
processing and directory systems are also described in this chapter.

Most users of a database system today are not present at the site of the
database system, but connect to it through a network. We can therefore differen-
tiate between client machines, on which remote database users work, and server
machines, on which the database system runs.
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Database applications are usually partitioned into two or three parts, as in
Figure 1.6. In a two-tier architecture, the application resides at the client machine,
where it invokes database system functionality at the server machine through
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Figure 1.6 Two-tier and three-tier architectures.

query language statements. Application program interface standards like ODBC
and JDBC are used for interaction between the client and the server.

In contrast, in a three-tier architecture, the client machine acts as merely a
front end and does not contain any direct database calls. Instead, the client end
communicates with an application server, usually through a forms interface.
The application server in turn communicates with a database system to access
data. The business logic of the application, which says what actions to carry out
under what conditions, is embedded in the application server, instead of being
distributed across multiple clients. Three-tier applications are more appropriate
for large applications, and for applications that run on the World Wide Web.

1.10 Data Mining and Information Retrieval

The term data mining refers loosely to the process of semiautomatically analyzing
large databases to find useful patterns. Like knowledge discovery in artificial
intelligence (also called machine learning) or statistical analysis, data mining
attempts to discover rules and patterns from data. However, data mining differs
from machine learning and statistics in that it deals with large volumes of data,
stored primarily on disk. That is, data mining deals with “knowledge discovery
in databases.”

Some types of knowledge discovered from a database can be represented by
a set of rules. The following is an example of a rule, stated informally: “Young
women with annual incomes greater than $50,000 are the most likely people to buy
small sports cars.” Of course such rules are not universally true, but rather have
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degrees of “support” and “confidence.” Other types of knowledge are represented
by equations relating different variables to each other, or by other mechanisms
for predicting outcomes when the values of some variables are known.

There are a variety of possible types of patterns that may be useful, and
different techniques are used to find different types of patterns. In Chapter 20 we
study a few examples of patterns and see how they may be automatically derived
from a database.

Usually there is a manual component to data mining, consisting of preprocess-
ing data to a form acceptable to the algorithms, and postprocessing of discovered
patterns to find novel ones that could be useful. There may also be more than
one type of pattern that can be discovered from a given database, and manual
interaction may be needed to pick useful types of patterns. For this reason, data
mining is really a semiautomatic process in real life. However, in our description
we concentrate on the automatic aspect of mining.

Businesses have begun to exploit the burgeoning data online to make better
decisions about their activities, such as what items to stock and how best to
target customers to increase sales. Many of their queries are rather complicated,
however, and certain types of information cannot be extracted even by using SQL.

Several techniques and tools are available to help with decision support.
Several tools for data analysis allow analysts to view data in different ways.
Other analysis tools precompute summaries of very large amounts of data, in
order to give fast responses to queries. The SQL standard contains additional
constructs to support data analysis.

Large companies have diverse sources of data that they need to use for making
business decisions. To execute queries efficiently on such diverse data, companies
have built data warehouses. Data warehouses gather data from multiple sources
under a unified schema, at a single site. Thus, they provide the user a single
uniform interface to data.

Textual data, too, has grown explosively. Textual data is unstructured, unlike
the rigidly structured data in relational databases. Querying of unstructured
textual data is referred to as information retrieval. Information retrieval systems
have much in common with database systems—in particular, the storage and
retrieval of data on secondary storage. However, the emphasis in the field of
information systems is different from that in database systems, concentrating on
issues such as querying based on keywords; the relevance of documents to the
query; and the analysis, classification, and indexing of documents. In Chapters 20
and 21, we cover decision support, including online analytical processing, data
mining, data warehousing, and information retrieval.

1.11 Specialty Databases

Several application areas for database systems are limited by the restrictions of the
relational data model. As a result, researchers have developed several data models
to deal with these application domains, including object-based data models and
semistructured data models.
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1.11.1 Object-Based Data Models

Object-oriented programming has become the dominant software-development
methodology. This led to the development of an object-oriented data model that
can be seen as extending the E-R model with notions of encapsulation, methods
(functions), and object identity. Inheritance, object identity, and encapsulation
(information hiding), with methods to provide an interface to objects, are among
the key concepts of object-oriented programming that have found applications in
data modeling. The object-oriented data model also supports a rich type system,
including structured and collection types. In the 1980s, several database systems
based on the object-oriented data model were developed.

The major database vendors presently support the object-relational data
model, a data model that combines features of the object-oriented data model and
relational data model. It extends the traditional relational model with a variety
of features such as structured and collection types, as well as object orientation.
Chapter 22 examines the object-relational data model.

1.11.2 Semistructured Data Models

Semistructured data models permit the specification of data where individual
data items of the same type may have different sets of attributes. This is in contrast
with the data models mentioned earlier, where every data item of a particular
type must have the same set of attributes.

The XML language was initially designed as a way of adding markup infor-
mation to text documents, but has become important because of its applications in
data exchange. XML provides a way to represent data that have nested structure,
and furthermore allows a great deal of flexibility in structuring of data, which is
important for certain kinds of nontraditional data. Chapter 23 describes the XML
language, different ways of expressing queries on data represented in XML, and
transforming XML data from one form to another.

1.12 Database Users and Administrators

A primary goal of a database system is to retrieve information from and store
new information into the database. People who work with a database can be
categorized as database users or database administrators.

1.12.1 Database Users and User Interfaces

There are four different types of database-system users, differentiated by the way
they expect to interact with the system. Different types of user interfaces have
been designed for the different types of users.

• Naı̈ve users are unsophisticated users who interact with the system by in-
voking one of the application programs that have been written previously.
For example, a clerk in the university who needs to add a new instructor to
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department A invokes a program called new hire. This program asks the clerk
for the name of the new instructor, her new ID, the name of the department
(that is, A), and the salary.

The typical user interface for naı̈ve users is a forms interface, where the
user can fill in appropriate fields of the form. Naı̈ve users may also simply
read reports generated from the database.

As another example, consider a student, who during class registration
period, wishes to register for a class by using a Web interface. Such a user
connects to a Web application program that runs at a Web server. The appli-
cation first verifies the identity of the user, and allows her to access a form
where she enters the desired information. The form information is sent back
to the Web application at the server, which then determines if there is room
in the class (by retrieving information from the database) and if so adds the
student information to the class roster in the database.

• Application programmers are computer professionals who write application
programs. Application programmers can choose from many tools to develop
user interfaces. Rapid application development (RAD) tools are tools that en-
able an application programmer to construct forms and reports with minimal
programming effort.

• Sophisticated users interact with the system without writing programs. In-
stead, they form their requests either using a database query language or by
using tools such as data analysis software. Analysts who submit queries to
explore data in the database fall in this category.

• Specialized users are sophisticated users who write specialized database
applications that do not fit into the traditional data-processing framework.
Among these applications are computer-aided design systems, knowledge-
base and expert systems, systems that store data with complex data types (for
example, graphics data and audio data), and environment-modeling systems.
Chapter 22 covers several of these applications.

1.12.2 Database Administrator

One of the main reasons for using DBMSs is to have central control of both the data
and the programs that access those data. A person who has such central control
over the system is called a database administrator (DBA). The functions of a DBA
include:

• Schema definition. The DBA creates the original database schema by execut-
ing a set of data definition statements in the DDL.

• Storage structure and access-method definition.

• Schema and physical-organization modification. The DBA carries out changes
to the schema and physical organization to reflect the changing needs of the
organization, or to alter the physical organization to improve performance.
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• Granting of authorization for data access. By granting different types of
authorization, the database administrator can regulate which parts of the
database various users can access. The authorization information is kept in a
special system structure that the database system consults whenever someone
attempts to access the data in the system.

• Routine maintenance. Examples of the database administrator’s routine
maintenance activities are:

◦ Periodically backing up the database, either onto tapes or onto remote
servers, to prevent loss of data in case of disasters such as flooding.

◦ Ensuring that enough free disk space is available for normal operations,
and upgrading disk space as required.

◦ Monitoring jobs running on the database and ensuring that performance
is not degraded by very expensive tasks submitted by some users.

1.13 History of Database Systems

Information processing drives the growth of computers, as it has from the earli-
est days of commercial computers. In fact, automation of data processing tasks
predates computers. Punched cards, invented by Herman Hollerith, were used
at the very beginning of the twentieth century to record U.S. census data, and
mechanical systems were used to process the cards and tabulate results. Punched
cards were later widely used as a means of entering data into computers.

Techniques for data storage and processing have evolved over the years:

• 1950s and early 1960s: Magnetic tapes were developed for data storage. Data
processing tasks such as payroll were automated, with data stored on tapes.
Processing of data consisted of reading data from one or more tapes and
writing data to a new tape. Data could also be input from punched card
decks, and output to printers. For example, salary raises were processed by
entering the raises on punched cards and reading the punched card deck in
synchronization with a tape containing the master salary details. The records
had to be in the same sorted order. The salary raises would be added to the
salary read from the master tape, and written to a new tape; the new tape
would become the new master tape.

Tapes (and card decks) could be read only sequentially, and data sizes were
much larger than main memory; thus, data processing programs were forced
to process data in a particular order, by reading and merging data from tapes
and card decks.

• Late 1960s and 1970s: Widespread use of hard disks in the late 1960s changed
the scenario for data processing greatly, since hard disks allowed direct access
to data. The position of data on disk was immaterial, since any location on
disk could be accessed in just tens of milliseconds. Data were thus freed from
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the tyranny of sequentiality. With disks, network and hierarchical databases
could be created that allowed data structures such as lists and trees to be
stored on disk. Programmers could construct and manipulate these data
structures.

A landmark paper by Codd [1970] defined the relational model and
nonprocedural ways of querying data in the relational model, and relational
databases were born. The simplicity of the relational model and the possibility
of hiding implementation details completely from the programmer were
enticing indeed. Codd later won the prestigious Association of Computing
Machinery Turing Award for his work.

• 1980s: Although academically interesting, the relational model was not used
in practice initially, because of its perceived performance disadvantages; rela-
tional databases could not match the performance of existing network and hi-
erarchical databases. That changed with System R, a groundbreaking project
at IBM Research that developed techniques for the construction of an efficient
relational database system. Excellent overviews of System R are provided by
Astrahan et al. [1976] and Chamberlin et al. [1981]. The fully functional Sys-
tem R prototype led to IBM’s first relational database product, SQL/DS. At
the same time, the Ingres system was being developed at the University of
California at Berkeley. It led to a commercial product of the same name. Ini-
tial commercial relational database systems, such as IBM DB2, Oracle, Ingres,
and DEC Rdb, played a major role in advancing techniques for efficient pro-
cessing of declarative queries. By the early 1980s, relational databases had
become competitive with network and hierarchical database systems even in
the area of performance. Relational databases were so easy to use that they
eventually replaced network and hierarchical databases; programmers using
such databases were forced to deal with many low-level implementation de-
tails, and had to code their queries in a procedural fashion. Most importantly,
they had to keep efficiency in mind when designing their programs, which
involved a lot of effort. In contrast, in a relational database, almost all these
low-level tasks are carried out automatically by the database, leaving the
programmer free to work at a logical level. Since attaining dominance in the
1980s, the relational model has reigned supreme among data models.

The 1980s also saw much research on parallel and distributed databases,
as well as initial work on object-oriented databases.

• Early 1990s: The SQL language was designed primarily for decision support
applications, which are query-intensive, yet the mainstay of databases in the
1980s was transaction-processing applications, which are update-intensive.
Decision support and querying re-emerged as a major application area for
databases. Tools for analyzing large amounts of data saw large growths in
usage.

Many database vendors introduced parallel database products in this
period. Database vendors also began to add object-relational support to their
databases.
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• 1990s: The major event of the 1990s was the explosive growth of the World
Wide Web. Databases were deployed much more extensively than ever before.
Database systems now had to support very high transaction-processing rates,
as well as very high reliability and 24 × 7 availability (availability 24 hours
a day, 7 days a week, meaning no downtime for scheduled maintenance
activities). Database systems also had to support Web interfaces to data.

• 2000s: The first half of the 2000s saw the emerging of XML and the associated
query language XQuery as a new database technology. Although XML is
widely used for data exchange, as well as for storing certain complex data
types, relational databases still form the core of a vast majority of large-scale
database applications. In this time period we have also witnessed the growth
in “autonomic-computing/auto-admin” techniques for minimizing system
administration effort. This period also saw a significant growth in use of
open-source database systems, particularly PostgreSQL and MySQL.

The latter part of the decade has seen growth in specialized databases for
data analysis, in particular column-stores, which in effect store each column
of a table as a separate array, and highly parallel database systems designed
for analysis of very large data sets. Several novel distributed data-storage
systems have been built to handle the data management requirements of very
large Web sites such as Amazon, Facebook, Google, Microsoft and Yahoo!,
and some of these are now offered as Web services that can be used by
application developers. There has also been substantial work on management
and analysis of streaming data, such as stock-market ticker data or computer
network monitoring data. Data-mining techniques are now widely deployed;
example applications include Web-based product-recommendation systems
and automatic placement of relevant advertisements on Web pages.

1.14 Summary

• A database-management system (DBMS) consists of a collection of interre-
lated data and a collection of programs to access that data. The data describe
one particular enterprise.

• The primary goal of a DBMS is to provide an environment that is both conve-
nient and efficient for people to use in retrieving and storing information.

• Database systems are ubiquitous today, and most people interact, either di-
rectly or indirectly, with databases many times every day.

• Database systems are designed to store large bodies of information. The man-
agement of data involves both the definition of structures for the storage of
information and the provision of mechanisms for the manipulation of infor-
mation. In addition, the database system must provide for the safety of the
information stored, in the face of system crashes or attempts at unauthorized
access. If data are to be shared among several users, the system must avoid
possible anomalous results.
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• A major purpose of a database system is to provide users with an abstract
view of the data. That is, the system hides certain details of how the data are
stored and maintained.

• Underlying the structure of a database is the data model: a collection of
conceptual tools for describing data, data relationships, data semantics, and
data constraints.

• The relational data model is the most widely deployed model for storing data
in databases. Other data models are the object-oriented model, the object-
relational model, and semistructured data models.

• A data-manipulation language (DML) is a language that enables users to
access or manipulate data. Nonprocedural DMLs, which require a user to
specify only what data are needed, without specifying exactly how to get
those data, are widely used today.

• A data-definition language (DDL) is a language for specifying the database
schema and as well as other properties of the data.

• Database design mainly involves the design of the database schema. The
entity-relationship (E-R) data model is a widely used data model for database
design. It provides a convenient graphical representation to view data, rela-
tionships, and constraints.

• A database system has several subsystems.

◦ The storage manager subsystem provides the interface between the low-
level data stored in the database and the application programs and queries
submitted to the system.

◦ The query processor subsystem compiles and executes DDL and DML
statements.

• Transaction management ensures that the database remains in a consistent
(correct) state despite system failures. The transaction manager ensures that
concurrent transaction executions proceed without conflicting.

• The architecture of a database system is greatly influenced by the underlying
computer system on which the database system runs. Database systems can
be centralized, or client-server, where one server machine executes work on
behalf of multiple client machines. Database systems can also be designed to
exploit parallel computer architectures. Distributed databases span multiple
geographically separated machines.

• Database applications are typically broken up into a front-end part that runs at
client machines and a part that runs at the back end. In two-tier architectures,
the front end directly communicates with a database running at the back
end. In three-tier architectures, the back end part is itself broken up into an
application server and a database server.
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• Knowledge-discovery techniques attempt to discover automatically statisti-
cal rules and patterns from data. The field of data mining combines knowledge-
discovery techniques invented by artificial intelligence researchers and sta-
tistical analysts, with efficient implementation techniques that enable them
to be used on extremely large databases.

• There are four different types of database-system users, differentiated by the
way they expect to interact with the system. Different types of user interfaces
have been designed for the different types of users.

Review Terms

• Database-management system
(DBMS)

• Database-system applications
• File-processing systems
• Data inconsistency
• Consistency constraints
• Data abstraction
• Instance
• Schema

◦ Physical schema

◦ Logical schema

• Physical data independence
• Data models

◦ Entity-relationship model

◦ Relational data model

◦ Object-based data model

◦ Semistructured data model

• Database languages

◦ Data-definition language

◦ Data-manipulation language

◦ Query language

• Metadata
• Application program
• Normalization
• Data dictionary
• Storage manager
• Query processor
• Transactions

◦ Atomicity

◦ Failure recovery

◦ Concurrency control

• Two- and three-tier database archi-
tectures

• Data mining
• Database administrator (DBA)

Practice Exercises

1.1 This chapter has described several major advantages of a database system.
What are two disadvantages?

1.2 List five ways in which the type declaration system of a language such as
Java or C++ differs from the data definition language used in a database.
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1.3 List six major steps that you would take in setting up a database for a
particular enterprise.

1.4 List at least 3 different types of information that a university would main-
tain, beyond those listed in Section 1.6.2.

1.5 Suppose you want to build a video site similar to YouTube. Consider each
of the points listed in Section 1.2, as disadvantages of keeping data in a
file-processing system. Discuss the relevance of each of these points to the
storage of actual video data, and to metadata about the video, such as title,
the user who uploaded it, tags, and which users viewed it.

1.6 Keyword queries used in Web search are quite different from database
queries. List key differences between the two, in terms of the way the
queries are specified, and in terms of what is the result of a query.

Exercises

1.7 List four applications you have used that most likely employed a database
system to store persistent data.

1.8 List four significant differences between a file-processing system and a
DBMS.

1.9 Explain the concept of physical data independence, and its importance in
database systems.

1.10 List five responsibilities of a database-management system. For each re-
sponsibility, explain the problems that would arise if the responsibility
were not discharged.

1.11 List at least two reasons why database systems support data manipulation
using a declarative query language such as SQL, instead of just providing
a a library of C or C++ functions to carry out data manipulation.

1.12 Explain what problems are caused by the design of the table in Figure 1.4.

1.13 What are five main functions of a database administrator?

1.14 Explain the difference between two-tier and three-tier architectures. Which
is better suited for Web applications? Why?

1.15 Describe at least 3 tables that might be used to store information in a
social-networking system such as Facebook.

Tools

There are a large number of commercial database systems in use today. The major
ones include: IBM DB2 (www.ibm.com/software/data/db2), Oracle (www.oracle.com),
Microsoft SQL Server (www.microsoft.com/sql), Sybase (www.sybase.com), and IBM
Informix (www.ibm.com/software/data/informix). Some of these systems are available
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free for personal or noncommercial use, or for development, but are not free for
actual deployment.

There are also a number of free/public domain database systems; widely
used ones include MySQL (www.mysql.com) and PostgreSQL (www.postgresql.org).

A more complete list of links to vendor Web sites and other information is
available from the home page of this book, at www.db-book.com.

Bibliographical Notes

We list below general-purpose books, research paper collections, and Web sites
on databases. Subsequent chapters provide references to material on each topic
outlined in this chapter.

Codd [1970] is the landmark paper that introduced the relational model.
Textbooks covering database systems include Abiteboul et al. [1995], O’Neil

and O’Neil [2000], Ramakrishnan and Gehrke [2002], Date [2003], Kifer et al.
[2005], Elmasri and Navathe [2006], and Garcia-Molina et al. [2008]. Textbook
coverage of transaction processing is provided by Bernstein and Newcomer [1997]
and Gray and Reuter [1993]. A book containing a collection of research papers on
database management is offered by Hellerstein and Stonebraker [2005].

A review of accomplishments in database management and an assessment
of future research challenges appears in Silberschatz et al. [1990], Silberschatz
et al. [1996], Bernstein et al. [1998], Abiteboul et al. [2003], and Agrawal et al.
[2009]. The home page of the ACM Special Interest Group on Management of Data
(www.acm.org/sigmod) provides a wealth of information about database research.
Database vendor Web sites (see the Tools section above) provide details about
their respective products.
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PART 1

RELATIONAL
DATABASES

A data model is a collection of conceptual tools for describing data, data relation-
ships, data semantics, and consistency constraints. In this part, we focus on the
relational model.

The relational model, which is covered in Chapter 2, uses a collection of tables
to represent both data and the relationships among those data. Its conceptual
simplicity has led to its widespread adoption; today a vast majority of database
products are based on the relational model. The relational model describes data at
the logical and view levels, abstracting away low-level details of data storage. The
entity-relationship model, discussed later in Chapter 7 (in Part 2), is a higher-level
data model which is widely used for database design.

To make data from a relational database available to users, we have to ad-
dress several issues. The most important issue is how users specify requests for
retrieving and updating data; several query languages have been developed for
this task. A second, but still important, issue is data integrity and protection;
databases need to protect data from damage by user actions, whether uninten-
tional or intentional.

Chapters 3, 4 and 5 cover the SQL language, which is the most widely used
query language today. Chapters 3 and 4 provide introductory and intermediate
level descriptions of SQL. Chapter 4 also covers integrity constraints which are
enforced by the database, and authorization mechanisms, which control what
access and update actions can be carried out by a user. Chapter 5 covers more
advanced topics, including access to SQL from programming languages, and the
use of SQL for data analysis.

Chapter 6 covers three formal query languages, the relational algebra, the
tuple relational calculus and the domain relational calculus, which are declarative
query languages based on mathematical logic. These formal languages form the
basis for SQL, and for two other user-friendly languages, QBE and Datalog, which
are described in Appendix B (available online at db-book.com).
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C H A P T E R2
Introduction to the Relational
Model

The relational model is today the primary data model for commercial data-
processing applications. It attained its primary position because of its simplicity,
which eases the job of the programmer, compared to earlier data models such as
the network model or the hierarchical model.

In this chapter, we first study the fundamentals of the relational model. A
substantial theory exists for relational databases. We study the part of this theory
dealing with queries in Chapter 6. In Chapters 7 through 8, we shall examine
aspects of database theory that help in the design of relational database schemas,
while in Chapters 12 and 13 we discuss aspects of the theory dealing with efficient
processing of queries.

2.1 Structure of Relational Databases

A relational database consists of a collection of tables, each of which is assigned a
unique name. For example, consider the instructor table of Figure 2.1, which stores
information about instructors. The table has four column headers: ID, name, dept
name, and salary. Each row of this table records information about an instructor,

consisting of the instructor’s ID, name, dept name, and salary. Similarly, the course
table of Figure 2.2 stores information about courses, consisting of a course id, title,
dept name, and credits, for each course. Note that each instructor is identified by
the value of the column ID, while each course is identified by the value of the
column course id.

Figure 2.3 shows a third table, prereq, which stores the prerequisite courses for
each course. The table has two columns, course id and prereq id. Each row consists
of a pair of course identifiers such that the second course is a prerequisite for the
first course.

Thus, a row in the prereq table indicates that two courses are related in the
sense that one course is a prerequisite for the other. As another example, we
consider the table instructor, a row in the table can be thought of as representing

39
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ID name dept name salary

10101 Srinivasan Comp. Sci. 65000
12121 Wu Finance 90000
15151 Mozart Music 40000
22222 Einstein Physics 95000
32343 El Said History 60000
33456 Gold Physics 87000
45565 Katz Comp. Sci. 75000
58583 Califieri History 62000
76543 Singh Finance 80000
76766 Crick Biology 72000
83821 Brandt Comp. Sci. 92000
98345 Kim Elec. Eng. 80000

Figure 2.1 The instructor relation.

the relationship between a specified ID and the corresponding values for name,
dept name, and salary values.

In general, a row in a table represents a relationship among a set of values.
Since a table is a collection of such relationships, there is a close correspondence
between the concept of table and the mathematical concept of relation, from which
the relational data model takes its name. In mathematical terminology, a tuple is
simply a sequence (or list) of values. A relationship between n values is repre-
sented mathematically by an n-tuple of values, i.e., a tuple with n values, which
corresponds to a row in a table.

course id title dept name credits

BIO-101 Intro. to Biology Biology 4
BIO-301 Genetics Biology 4
BIO-399 Computational Biology Biology 3
CS-101 Intro. to Computer Science Comp. Sci. 4
CS-190 Game Design Comp. Sci. 4
CS-315 Robotics Comp. Sci. 3
CS-319 Image Processing Comp. Sci. 3
CS-347 Database System Concepts Comp. Sci. 3
EE-181 Intro. to Digital Systems Elec. Eng. 3
FIN-201 Investment Banking Finance 3
HIS-351 World History History 3
MU-199 Music Video Production Music 3
PHY-101 Physical Principles Physics 4

Figure 2.2 The course relation.
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course id prereq id

BIO-301 BIO-101
BIO-399 BIO-101
CS-190 CS-101
CS-315 CS-101
CS-319 CS-101
CS-347 CS-101
EE-181 PHY-101

Figure 2.3 The prereq relation.

Thus, in the relational model the term relation is used to refer to a table, while
the term tuple is used to refer to a row. Similarly, the term attribute refers to a
column of a table.

Examining Figure 2.1, we can see that the relation instructor has four attributes:
ID, name, dept name, and salary.

We use the term relation instance to refer to a specific instance of a relation,
i.e., containing a specific set of rows. The instance of instructor shown in Figure 2.1
has 12 tuples, corresponding to 12 instructors.

In this chapter, we shall be using a number of different relations to illustrate the
various concepts underlying the relational data model. These relations represent
part of a university. They do not include all the data an actual university database
would contain, in order to simplify our presentation. We shall discuss criteria for
the appropriateness of relational structures in great detail in Chapters 7 and 8.

The order in which tuples appear in a relation is irrelevant, since a relation
is a set of tuples. Thus, whether the tuples of a relation are listed in sorted order,
as in Figure 2.1, or are unsorted, as in Figure 2.4, does not matter; the relations in

ID name dept name salary

22222 Einstein Physics 95000
12121 Wu Finance 90000
32343 El Said History 60000
45565 Katz Comp. Sci. 75000
98345 Kim Elec. Eng. 80000
76766 Crick Biology 72000
10101 Srinivasan Comp. Sci. 65000
58583 Califieri History 62000
83821 Brandt Comp. Sci. 92000
15151 Mozart Music 40000
33456 Gold Physics 87000
76543 Singh Finance 80000

Figure 2.4 Unsorted display of the instructor relation.
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the two figures are the same, since both contain the same set of tuples. For ease
of exposition, we will mostly show the relations sorted by their first attribute.

For each attribute of a relation, there is a set of permitted values, called the
domain of that attribute. Thus, the domain of the salary attribute of the instructor
relation is the set of all possible salary values, while the domain of the name
attribute is the set of all possible instructor names.

We require that, for all relations r, the domains of all attributes of r be atomic.
A domain is atomic if elements of the domain are considered to be indivisible
units. For example, suppose the table instructor had an attribute phone number,
which can store a set of phone numbers corresponding to the instructor. Then the
domain of phone number would not be atomic, since an element of the domain is a
set of phone numbers, and it has subparts, namely the individual phone numbers
in the set.

The important issue is not what the domain itself is, but rather how we use
domain elements in our database. Suppose now that the phone number attribute
stores a single phone number. Even then, if we split the value from the phone
number attribute into a country code, an area code and a local number, we would
be treating it as a nonatomic value. If we treat each phone number as a single
indivisible unit, then the attribute phone number would have an atomic domain.

In this chapter, as well as in Chapters 3 through 6, we assume that all attributes
have atomic domains. In Chapter 22, we shall discuss extensions to the relational
data model to permit nonatomic domains.

The null value is a special value that signifies that the value is unknown or
does not exist. For example, suppose as before that we include the attribute phone
number in the instructor relation. It may be that an instructor does not have a

phone number at all, or that the telephone number is unlisted. We would then
have to use the null value to signify that the value is unknown or does not exist.
We shall see later that null values cause a number of difficulties when we access
or update the database, and thus should be eliminated if at all possible. We shall
assume null values are absent initially, and in Section 3.6 we describe the effect
of nulls on different operations.

2.2 Database Schema

When we talk about a database, we must differentiate between the database
schema, which is the logical design of the database, and the database instance,
which is a snapshot of the data in the database at a given instant in time.

The concept of a relation corresponds to the programming-language no-
tion of a variable, while the concept of a relation schema corresponds to the
programming-language notion of type definition.

In general, a relation schema consists of a list of attributes and their corre-
sponding domains. We shall not be concerned about the precise definition of the
domain of each attribute until we discuss the SQL language in Chapter 3.

The concept of a relation instance corresponds to the programming-language
notion of a value of a variable. The value of a given variable may change with time;
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dept name building budget

Biology Watson 90000
Comp. Sci. Taylor 100000
Elec. Eng. Taylor 85000
Finance Painter 120000
History Painter 50000
Music Packard 80000
Physics Watson 70000

Figure 2.5 The department relation.

similarly the contents of a relation instance may change with time as the relation
is updated. In contrast, the schema of a relation does not generally change.

Although it is important to know the difference between a relation schema
and a relation instance, we often use the same name, such as instructor, to refer
to both the schema and the instance. Where required, we explicitly refer to the
schema or to the instance, for example “the instructor schema,” or “an instance of
the instructor relation.” However, where it is clear whether we mean the schema
or the instance, we simply use the relation name.

Consider the department relation of Figure 2.5. The schema for that relation is

department (dept name, building, budget)

Note that the attribute dept name appears in both the instructor schema and the
department schema. This duplication is not a coincidence. Rather, using common
attributes in relation schemas is one way of relating tuples of distinct relations.
For example, suppose we wish to find the information about all the instructors
who work in the Watson building. We look first at the department relation to
find the dept name of all the departments housed in Watson. Then, for each such
department, we look in the instructor relation to find the information about the
instructor associated with the corresponding dept name.

Let us continue with our university database example.
Each course in a university may be offered multiple times, across different

semesters, or even within a semester. We need a relation to describe each individ-
ual offering, or section, of the class. The schema is

section (course id, sec id, semester, year, building, room number, time slot id)

Figure 2.6 shows a sample instance of the section relation.
We need a relation to describe the association between instructors and the

class sections that they teach. The relation schema to describe this association is

teaches (ID, course id, sec id, semester, year)
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course id sec id semester year building room number time slot id

BIO-101 1 Summer 2009 Painter 514 B
BIO-301 1 Summer 2010 Painter 514 A
CS-101 1 Fall 2009 Packard 101 H
CS-101 1 Spring 2010 Packard 101 F
CS-190 1 Spring 2009 Taylor 3128 E
CS-190 2 Spring 2009 Taylor 3128 A
CS-315 1 Spring 2010 Watson 120 D
CS-319 1 Spring 2010 Watson 100 B
CS-319 2 Spring 2010 Taylor 3128 C
CS-347 1 Fall 2009 Taylor 3128 A
EE-181 1 Spring 2009 Taylor 3128 C
FIN-201 1 Spring 2010 Packard 101 B
HIS-351 1 Spring 2010 Painter 514 C
MU-199 1 Spring 2010 Packard 101 D
PHY-101 1 Fall 2009 Watson 100 A

Figure 2.6 The section relation.

Figure 2.7 shows a sample instance of the teaches relation.
As you can imagine, there are many more relations maintained in a real uni-

versity database. In addition to those relations we have listed already, instructor,
department, course, section, prereq, and teaches, we use the following relations in this
text:

ID course id sec id semester year

10101 CS-101 1 Fall 2009
10101 CS-315 1 Spring 2010
10101 CS-347 1 Fall 2009
12121 FIN-201 1 Spring 2010
15151 MU-199 1 Spring 2010
22222 PHY-101 1 Fall 2009
32343 HIS-351 1 Spring 2010
45565 CS-101 1 Spring 2010
45565 CS-319 1 Spring 2010
76766 BIO-101 1 Summer 2009
76766 BIO-301 1 Summer 2010
83821 CS-190 1 Spring 2009
83821 CS-190 2 Spring 2009
83821 CS-319 2 Spring 2010
98345 EE-181 1 Spring 2009

Figure 2.7 The teaches relation.
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• student (ID, name, dept name, tot cred)

• advisor (s id, i id)

• takes (ID, course id, sec id, semester, year, grade)

• classroom (building, room number, capacity)

• time slot (time slot id, day, start time, end time)

2.3 Keys

We must have a way to specify how tuples within a given relation are distin-
guished. This is expressed in terms of their attributes. That is, the values of the
attribute values of a tuple must be such that they can uniquely identify the tuple.
In other words, no two tuples in a relation are allowed to have exactly the same
value for all attributes.

A superkey is a set of one or more attributes that, taken collectively, allow us
to identify uniquely a tuple in the relation. For example, the ID attribute of the
relation instructor is sufficient to distinguish one instructor tuple from another.
Thus, ID is a superkey. The name attribute of instructor, on the other hand, is not
a superkey, because several instructors might have the same name.

Formally, let R denote the set of attributes in the schema of relation r . If we
say that a subset K of R is a superkey for r , we are restricting consideration to
instances of relations r in which no two distinct tuples have the same values on
all attributes in K. That is, if t1 and t2 are in r and t1 �= t2, then t1.K �= t2.K .

A superkey may contain extraneous attributes. For example, the combination
of ID and name is a superkey for the relation instructor. If K is a superkey, then so
is any superset of K. We are often interested in superkeys for which no proper
subset is a superkey. Such minimal superkeys are called candidate keys.

It is possible that several distinct sets of attributes could serve as a candidate
key. Suppose that a combination of name and dept name is sufficient to distinguish
among members of the instructor relation. Then, both {ID} and {name, dept name}
are candidate keys. Although the attributes ID and name together can distinguish
instructor tuples, their combination, {ID, name}, does not form a candidate key,
since the attribute ID alone is a candidate key.

We shall use the term primary key to denote a candidate key that is chosen
by the database designer as the principal means of identifying tuples within a
relation. A key (whether primary, candidate, or super) is a property of the entire
relation, rather than of the individual tuples. Any two individual tuples in the
relation are prohibited from having the same value on the key attributes at the
same time. The designation of a key represents a constraint in the real-world
enterprise being modeled.

Primary keys must be chosen with care. As we noted, the name of a person is
obviously not sufficient, because there may be many people with the same name.
In the United States, the social-security number attribute of a person would be
a candidate key. Since non-U.S. residents usually do not have social-security



46 Chapter 2 Introduction to the Relational Model

numbers, international enterprises must generate their own unique identifiers.
An alternative is to use some unique combination of other attributes as a key.

The primary key should be chosen such that its attribute values are never,
or very rarely, changed. For instance, the address field of a person should not be
part of the primary key, since it is likely to change. Social-security numbers, on
the other hand, are guaranteed never to change. Unique identifiers generated by
enterprises generally do not change, except if two enterprises merge; in such a case
the same identifier may have been issued by both enterprises, and a reallocation
of identifiers may be required to make sure they are unique.

It is customary to list the primary key attributes of a relation schema before
the other attributes; for example, the dept name attribute of department is listed
first, since it is the primary key. Primary key attributes are also underlined.

A relation, say r1, may include among its attributes the primary key of an-
other relation, say r2. This attribute is called a foreign key from r1, referencing r2.
The relation r1 is also called the referencing relation of the foreign key depen-
dency, and r2 is called the referenced relation of the foreign key. For example, the
attribute dept name in instructor is a foreign key from instructor, referencing depart-
ment, since dept name is the primary key of department. In any database instance,
given any tuple, say ta , from the instructor relation, there must be some tuple, say
tb , in the department relation such that the value of the dept name attribute of ta is
the same as the value of the primary key, dept name, of tb .

Now consider the section and teaches relations. It would be reasonable to
require that if a section exists for a course, it must be taught by at least one
instructor; however, it could possibly be taught by more than one instructor.
To enforce this constraint, we would require that if a particular (course id, sec id,
semester, year) combination appears in section, then the same combination must
appear in teaches. However, this set of values does not form a primary key for
teaches, since more than one instructor may teach one such section. As a result,
we cannot declare a foreign key constraint from section to teaches (although we
can define a foreign key constraint in the other direction, from teaches to section).

The constraint from section to teaches is an example of a referential integrity
constraint; a referential integrity constraint requires that the values appearing in
specified attributes of any tuple in the referencing relation also appear in specified
attributes of at least one tuple in the referenced relation.

2.4 Schema Diagrams

A database schema, along with primary key and foreign key dependencies, can
be depicted by schema diagrams. Figure 2.8 shows the schema diagram for our
university organization. Each relation appears as a box, with the relation name at
the top in blue, and the attributes listed inside the box. Primary key attributes are
shown underlined. Foreign key dependencies appear as arrows from the foreign
key attributes of the referencing relation to the primary key of the referenced
relation.
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ID
course_id
sec_id
semester
year
grade

ID
name
dept_name
tot_cred

building
room_no
capacity

s_id
i_id

ID
course_id
sec_id
semester
year

takes

section

classroom

teaches

prereq
course_id
prereq_id

course_id
title
dept_name
credits

course

student

dept_name
building
budget

department

instructor
ID
name
dept_name
salary

advisor

time_slot
time_slot_id
day
start_time
end_time

course_id
sec_id
semester
year
building
room_no
time_slot_id

Figure 2.8 Schema diagram for the university database.

Referential integrity constraints other than foreign key constraints are not
shown explicitly in schema diagrams. We will study a different diagrammatic
representation called the entity-relationship diagram later, in Chapter 7. Entity-
relationship diagrams let us represent several kinds of constraints, including
general referential integrity constraints.

Many database systems provide design tools with a graphical user interface
for creating schema diagrams. We shall discuss diagrammatic representation of
schemas at length in Chapter 7.

The enterprise that we use in the examples in later chapters is a university.
Figure 2.9 gives the relational schema that we use in our examples, with primary-
key attributes underlined. As we shall see in Chapter 3, this corresponds to the
approach to defining relations in the SQL data-definition language.

2.5 Relational Query Languages

A query language is a language in which a user requests information from the
database. These languages are usually on a level higher than that of a standard
programming language. Query languages can be categorized as either procedural
or nonprocedural. In a procedural language, the user instructs the system to
perform a sequence of operations on the database to compute the desired result.
In a nonprocedural language, the user describes the desired information without
giving a specific procedure for obtaining that information.
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classroom(building, room number, capacity)
department(dept name, building, budget)
course(course id, title, dept name, credits)
instructor(ID, name, dept name, salary)
section(course id, sec id, semester, year, building, room number, time slot id)
teaches(ID, course id, sec id, semester, year)
student(ID, name, dept name, tot cred)
takes(ID, course id, sec id, semester, year, grade)
advisor(s ID, i ID)
time slot(time slot id, day, start time, end time)
prereq(course id, prereq id)

Figure 2.9 Schema of the university database.

Query languages used in practice include elements of both the procedural and
the nonprocedural approaches. We study the very widely used query language
SQL in Chapters 3 through 5.

There are a number of “pure” query languages: The relational algebra is pro-
cedural, whereas the tuple relational calculus and domain relational calculus are
nonprocedural. These query languages are terse and formal, lacking the “syntactic
sugar” of commercial languages, but they illustrate the fundamental techniques
for extracting data from the database. In Chapter 6, we examine in detail the rela-
tional algebra and the two versions of the relational calculus, the tuple relational
calculus and domain relational calculus. The relational algebra consists of a set
of operations that take one or two relations as input and produce a new relation
as their result. The relational calculus uses predicate logic to define the result
desired without giving any specific algebraic procedure for obtaining that result.

2.6 Relational Operations

All procedural relational query languages provide a set of operations that can be
applied to either a single relation or a pair of relations. These operations have
the nice and desired property that their result is always a single relation. This
property allows one to combine several of these operations in a modular way.
Specifically, since the result of a relational query is itself a relation, relational
operations can be applied to the results of queries as well as to the given set of
relations.

The specific relational operations are expressed differently depending on the
language, but fit the general framework we describe in this section. In Chapter 3,
we show the specific way the operations are expressed in SQL.

The most frequent operation is the selection of specific tuples from a sin-
gle relation (say instructor) that satisfies some particular predicate (say salary >

$85,000). The result is a new relation that is a subset of the original relation (in-
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ID name dept name salary

12121 Wu Finance 90000
22222 Einstein Physics 95000
33456 Gold Physics 87000
83821 Brandt Comp. Sci. 92000

Figure 2.10 Result of query selecting instructor tuples with salary greater than $85000.

structor). For example, if we select tuples from the instructor relation of Figure 2.1,
satisfying the predicate “salary is greater than $85000”, we get the result shown in
Figure 2.10.

Another frequent operation is to select certain attributes (columns) from a
relation. The result is a new relation having only those selected attributes. For
example, suppose we want a list of instructor IDs and salaries without listing
the name and dept name values from the instructor relation of Figure 2.1, then the
result, shown in Figure 2.11, has the two attributes ID and salary. Each tuple in
the result is derived from a tuple of the instructor relation but with only selected
attributes shown.

The join operation allows the combining of two relations by merging pairs of
tuples, one from each relation, into a single tuple. There are a number of different
ways to join relations (as we shall see in Chapter 3). Figure 2.12 shows an example
of joining the tuples from the instructor and department tables with the new tuples
showing the information about each instructor and the department in which she
is working. This result was formed by combining each tuple in the instructor
relation with the tuple in the department relation for the instructor’s department.

In the form of join shown in Figure 2.12, which is called a natural join, a tuple
from the instructor relation matches a tuple in the department relation if the values

ID salary

10101 65000
12121 90000
15151 40000
22222 95000
32343 60000
33456 87000
45565 75000
58583 62000
76543 80000
76766 72000
83821 92000
98345 80000

Figure 2.11 Result of query selecting attributes ID and salary from the instructor relation.
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ID name salary dept name building budget

10101 Srinivasan 65000 Comp. Sci. Taylor 100000
12121 Wu 90000 Finance Painter 120000
15151 Mozart 40000 Music Packard 80000
22222 Einstein 95000 Physics Watson 70000
32343 El Said 60000 History Painter 50000
33456 Gold 87000 Physics Watson 70000
45565 Katz 75000 Comp. Sci. Taylor 100000
58583 Califieri 62000 History Painter 50000
76543 Singh 80000 Finance Painter 120000
76766 Crick 72000 Biology Watson 90000
83821 Brandt 92000 Comp. Sci. Taylor 100000
98345 Kim 80000 Elec. Eng. Taylor 85000

Figure 2.12 Result of natural join of the instructor and department relations.

of their dept name attributes are the same. All such matching pairs of tuples are
present in the join result. In general, the natural join operation on two relations
matches tuples whose values are the same on all attribute names that are common
to both relations.

The Cartesian product operation combines tuples from two relations, but unlike
the join operation, its result contains all pairs of tuples from the two relations,
regardless of whether their attribute values match.

Because relations are sets, we can perform normal set operations on relations.
The union operation performs a set union of two “similarly structured” tables
(say a table of all graduate students and a table of all undergraduate students).
For example, one can obtain the set of all students in a department. Other set
operations, such as intersection and set difference can be performed as well.

As we noted earlier, we can perform operations on the results of queries. For
example, if we want to find the ID and salary for those instructors who have salary
greater than $85,000, we would perform the first two operations in our example
above. First we select those tuples from the instructor relation where the salary
value is greater than $85,000 and then, from that result, select the two attributes
ID and salary, resulting in the relation shown in Figure 2.13 consisting of the ID

ID salary

12121 90000
22222 95000
33456 87000
83821 92000

Figure 2.13 Result of selecting attributes ID and salary of instructors with salary greater
than $85,000.
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RELATIONAL ALGEBRA

The relational algebra defines a set of operations on relations, paralleling the
usual algebraic operations such as addition, subtraction or multiplication, which
operate on numbers. Just as algebraic operations on numbers take one or more
numbers as input and return a number as output, the relational algebra op-
erations typically take one or two relations as input and return a relation as
output.

Relational algebra is covered in detail in Chapter 6, but we outline a few of
the operations below.

Symbol (Name) Example of Use
� �salary>=85000(instructor )

(Selection) Return rows of the input relation that satisfy
the predicate.

� �ID,salary (instructor)
(Projection) Output specified attributes from all rows of

the input relation. Remove duplicate tuples
from the output.

� instructor � department
(Natural join) Output pairs of rows from the two input rela-

tions that have the same value on all attributes
that have the same name.

× instructor × department
(Cartesian product) Output all pairs of rows from the two input

relations (regardless of whether or not they
have the same values on common attributes)

∪ �name (instructor ) ∪ �name (student )
(Union) Output the union of tuples from the two input

relations.

and salary. In this example, we could have performed the operations in either
order, but that is not the case for all situations, as we shall see.

Sometimes, the result of a query contains duplicate tuples. For example, if we
select the dept name attribute from the instructor relation, there are several cases
of duplication, including “Comp. Sci.”, which shows up three times. Certain rela-
tional languages adhere strictly to the mathematical definition of a set and remove
duplicates. Others, in consideration of the relatively large amount of processing
required to remove duplicates from large result relations, retain duplicates. In
these latter cases, the relations are not truly relations in the pure mathematical
sense of the term.

Of course, data in a database must be changed over time. A relation can be
updated by inserting new tuples, deleting existing tuples, or modifying tuples by
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changing the values of certain attributes. Entire relations can be deleted and new
ones created.

We shall discuss relational queries and updates using the SQL language in
Chapters 3 through 5.

2.7 Summary

• The relational data model is based on a collection of tables. The user of the
database system may query these tables, insert new tuples, delete tuples,
and update (modify) tuples. There are several languages for expressing these
operations.

• The schema of a relation refers to its logical design, while an instance of the
relation refers to its contents at a point in time. The schema of a database and
an instance of a database are similarly defined. The schema of a relation in-
cludes its attributes, and optionally the types of the attributes and constraints
on the relation such as primary and foreign key constraints.

• A superkey of a relation is a set of one or more attributes whose values are
guaranteed to identify tuples in the relation uniquely. A candidate key is a
minimal superkey, that is, a set of attributes that forms a superkey, but none
of whose subsets is a superkey. One of the candidate keys of a relation is
chosen as its primary key.

• A foreign key is a set of attributes in a referencing relation, such that for each
tuple in the referencing relation, the values of the foreign key attributes are
guaranteed to occur as the primary key value of a tuple in the referenced
relation.

• A schema diagram is a pictorial depiction of the schema of a database that
shows the relations in the database, their attributes, and primary keys and
foreign keys.

• The relational query languages define a set of operations that operate on
tables, and output tables as their results. These operations can be combined
to get expressions that express desired queries.

• The relational algebra provides a set of operations that take one or more
relations as input and return a relation as an output. Practical query languages
such as SQL are based on the relational algebra, but add a number of useful
syntactic features.

Review Terms

• Table
• Relation
• Tuple

• Attribute
• Domain
• Atomic domain
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• Null value
• Database schema
• Database instance
• Relation schema
• Relation instance
• Keys

◦ Superkey

◦ Candidate key

◦ Primary key

• Foreign key

◦ Referencing relation

◦ Referenced relation

• Referential integrity constraint
• Schema diagram
• Query language

◦ Procedural language

◦ Nonprocedural language

• Operations on relations

◦ Selection of tuples

◦ Selection of attributes

◦ Natural join

◦ Cartesian product

◦ Set operations

• Relational algebra

Practice Exercises

2.1 Consider the relational database of Figure 2.14. What are the appropriate
primary keys?

2.2 Consider the foreign key constraint from the dept name attribute of instructor
to the department relation. Give examples of inserts and deletes to these
relations, which can cause a violation of the foreign key constraint.

2.3 Consider the time slot relation. Given that a particular time slot can meet
more than once in a week, explain why day and start time are part of the
primary key of this relation, while end time is not.

2.4 In the instance of instructor shown in Figure 2.1, no two instructors have
the same name. From this, can we conclude that name can be used as a
superkey (or primary key) of instructor?

2.5 What is the result of first performing the cross product of student and
advisor, and then performing a selection operation on the result with the
predicate s id = ID? (Using the symbolic notation of relational algebra, this
query can be written as �s id=I D(student × advisor ).)

employee (person name, street, city)
works (person name, company name, salary)
company (company name, city)

Figure 2.14 Relational database for Exercises 2.1, 2.7, and 2.12.
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branch(branch name, branch city, assets)
customer (customer name, customer street, customer city)
loan (loan number, branch name, amount)
borrower (customer name, loan number)
account (account number, branch name, balance)
depositor (customer name, account number)

Figure 2.15 Banking database for Exercises 2.8, 2.9, and 2.13.

2.6 Consider the following expressions, which use the result of a relational
algebra operation as the input to another operation. For each expression,
explain in words what the expression does.

a. �year≥2009(takes) � student

b. �year≥2009(takes � student)

c. �ID,name,course id (student � takes)

2.7 Consider the relational database of Figure 2.14. Give an expression in the
relational algebra to express each of the following queries:

a. Find the names of all employees who live in city “Miami”.

b. Find the names of all employees whose salary is greater than $100,000.

c. Find the names of all employees who live in “Miami” and whose
salary is greater than $100,000.

2.8 Consider the bank database of Figure 2.15. Give an expression in the rela-
tional algebra for each of the following queries.

a. Find the names of all branches located in “Chicago”.

b. Find the names of all borrowers who have a loan in branch “Down-
town”.

Exercises

2.9 Consider the bank database of Figure 2.15.

a. What are the appropriate primary keys?

b. Given your choice of primary keys, identify appropriate foreign keys.

2.10 Consider the advisor relation shown in Figure 2.8, with s id as the primary
key of advisor. Suppose a student can have more than one advisor. Then,
would s id still be a primary key of the advisor relation? If not, what should
the primary key of advisor be?

2.11 Describe the differences in meaning between the terms relation and relation
schema.
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2.12 Consider the relational database of Figure 2.14. Give an expression in the
relational algebra to express each of the following queries:

a. Find the names of all employees who work for “First Bank Corpora-
tion”.

b. Find the names and cities of residence of all employees who work for
“First Bank Corporation”.

c. Find the names, street address, and cities of residence of all employees
who work for “First Bank Corporation” and earn more than $10,000.

2.13 Consider the bank database of Figure 2.15. Give an expression in the rela-
tional algebra for each of the following queries:

a. Find all loan numbers with a loan value greater than $10,000.

b. Find the names of all depositors who have an account with a value
greater than $6,000.

c. Find the names of all depositors who have an account with a value
greater than $6,000 at the “Uptown” branch.

2.14 List two reasons why null values might be introduced into the database.

2.15 Discuss the relative merits of procedural and nonprocedural languages.
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C H A P T E R3
Introduction to SQL

There are a number of database query languages in use, either commercially or
experimentally. In this chapter, as well as in Chapters 4 and 5, we study the most
widely used query language, SQL.

Although we refer to the SQL language as a “query language,” it can do much
more than just query a database. It can define the structure of the data, modify
data in the database, and specify security constraints.

It is not our intention to provide a complete users’ guide for SQL. Rather, we
present SQL’s fundamental constructs and concepts. Individual implementations
of SQL may differ in details, or may support only a subset of the full language.

3.1 Overview of the SQL Query Language

IBM developed the original version of SQL, originally called Sequel, as part of the
System R project in the early 1970s. The Sequel language has evolved since then,
and its name has changed to SQL (Structured Query Language). Many products
now support the SQL language. SQL has clearly established itself as the standard
relational database language.

In 1986, the American National Standards Institute (ANSI) and the Interna-
tional Organization for Standardization (ISO) published an SQL standard, called
SQL-86. ANSI published an extended standard for SQL, SQL-89, in 1989. The next ver-
sion of the standard was SQL-92 standard, followed by SQL:1999, SQL:2003, SQL:2006,
and most recently SQL:2008. The bibliographic notes provide references to these
standards.

The SQL language has several parts:

• Data-definition language (DDL). The SQL DDL provides commands for defin-
ing relation schemas, deleting relations, and modifying relation schemas.

• Data-manipulation language (DML). The SQL DML provides the ability to
query information from the database and to insert tuples into, delete tuples
from, and modify tuples in the database.
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• Integrity. The SQL DDL includes commands for specifying integrity con-
straints that the data stored in the database must satisfy. Updates that violate
integrity constraints are disallowed.

• View definition. The SQL DDL includes commands for defining views.

• Transaction control. SQL includes commands for specifying the beginning
and ending of transactions.

• Embedded SQL and dynamic SQL. Embedded and dynamic SQL define how
SQL statements can be embedded within general-purpose programming lan-
guages, such as C, C++, and Java.

• Authorization. The SQL DDL includes commands for specifying access rights
to relations and views.

In this chapter, we present a survey of basic DML and the DDL features of SQL.
Features described here have been part of the SQL standard since SQL-92.

In Chapter 4, we provide a more detailed coverage of the SQL query language,
including (a) various join expressions; (b) views; (c) transactions; (d) integrity
constraints; (e) type system; and (f) authorization.

In Chapter 5, we cover more advanced features of the SQL language, including
(a) mechanisms to allow accessing SQL from a programming language; (b) SQL
functions and procedures; (c) triggers; (d) recursive queries; (e) advanced aggre-
gation features; and (f) several features designed for data analysis, which were
introduced in SQL:1999, and subsequent versions of SQL. Later, in Chapter 22, we
outline object-oriented extensions to SQL, which were introduced in SQL:1999.

Although most SQL implementations support the standard features we de-
scribe here, you should be aware that there are differences between implementa-
tions. Most implementations support some nonstandard features, while omitting
support for some of the more advanced features. In case you find that some lan-
guage features described here do not work on the database system that you use,
consult the user manuals for your database system to find exactly what features
it supports.

3.2 SQL Data Definition

The set of relations in a database must be specified to the system by means of a
data-definition language (DDL). The SQL DDL allows specification of not only a
set of relations, but also information about each relation, including:

• The schema for each relation.

• The types of values associated with each attribute.

• The integrity constraints.

• The set of indices to be maintained for each relation.
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• The security and authorization information for each relation.

• The physical storage structure of each relation on disk.

We discuss here basic schema definition and basic types; we defer discussion of
the other SQL DDL features to Chapters 4 and 5.

3.2.1 Basic Types

The SQL standard supports a variety of built-in types, including:

• char(n): A fixed-length character string with user-specified length n. The full
form, character, can be used instead.

• varchar(n): A variable-length character string with user-specified maximum
length n. The full form, character varying, is equivalent.

• int: An integer (a finite subset of the integers that is machine dependent). The
full form, integer, is equivalent.

• smallint: A small integer (a machine-dependent subset of the integer type).

• numeric(p, d): A fixed-point number with user-specified precision. The num-
ber consists of p digits (plus a sign), and d of the p digits are to the right of
the decimal point. Thus, numeric(3,1) allows 44.5 to be stored exactly, but
neither 444.5 or 0.32 can be stored exactly in a field of this type.

• real, double precision: Floating-point and double-precision floating-point
numbers with machine-dependent precision.

• float(n): A floating-point number, with precision of at least n digits.

Additional types are covered in Section 4.5.
Each type may include a special value called the null value. A null value

indicates an absent value that may exist but be unknown or that may not exist at
all. In certain cases, we may wish to prohibit null values from being entered, as
we shall see shortly.

The char data type stores fixed length strings. Consider, for example, an
attribute A of type char(10). If we store a string “Avi” in this attribute, 7 spaces
are appended to the string to make it 10 characters long. In contrast, if attribute B
were of type varchar(10), and we store “Avi” in attribute B, no spaces would be
added. When comparing two values of type char, if they are of different lengths
extra spaces are automatically added to the shorter one to make them the same
size, before comparison.

When comparing a char type with a varchar type, one may expect extra spaces
to be added to the varchar type to make the lengths equal, before comparison;
however, this may or may not be done, depending on the database system. As a
result, even if the same value “Avi” is stored in the attributes A and B above, a
comparison A=B may return false. We recommend you always use the varchar
type instead of the char type to avoid these problems.
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SQL also provides the nvarchar type to store multilingual data using the
Unicode representation. However, many databases allow Unicode (in the UTF-8
representation) to be stored even in varchar types.

3.2.2 Basic Schema Definition

We define an SQL relation by using the create table command. The following
command creates a relation department in the database.

create table department
(dept name varchar (20),
building varchar (15),
budget numeric (12,2),
primary key (dept name));

The relation created above has three attributes, dept name, which is a character
string of maximum length 20, building, which is a character string of maximum
length 15, and budget, which is a number with 12 digits in total, 2 of which are
after the decimal point. The create table command also specifies that the dept
name attribute is the primary key of the department relation.

The general form of the create table command is:

create table r
(A1 D1,
A2 D2,
. . . ,
An Dn,
〈integrity-constraint1〉,
. . . ,

〈integrity-constraintk〉);

where r is the name of the relation, each Ai is the name of an attribute in the
schema of relation r, and Di is the domain of attribute Ai ; that is, Di specifies the
type of attribute Ai along with optional constraints that restrict the set of allowed
values for Ai .

The semicolon shown at the end of the create table statements, as well as
at the end of other SQL statements later in this chapter, is optional in many SQL
implementations.

SQL supports a number of different integrity constraints. In this section, we
discuss only a few of them:

• primary key (Aj1 , Aj2, . . . , Ajm ): The primary-key specification says that at-
tributes Aj1 , Aj2 , . . . , Ajm form the primary key for the relation. The primary-
key attributes are required to be nonnull and unique; that is, no tuple can have
a null value for a primary-key attribute, and no two tuples in the relation
can be equal on all the primary-key attributes. Although the primary-key
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specification is optional, it is generally a good idea to specify a primary key
for each relation.

• foreign key (Ak1, Ak2, . . . , Akn) references s: The foreign key specification says
that the values of attributes (Ak1, Ak2, . . . , Akn) for any tuple in the relation
must correspond to values of the primary key attributes of some tuple in
relation s.

Figure 3.1 presents a partial SQL DDL definition of the university database we
use in the text. The definition of the course table has a declaration “foreign key
(dept name) references department”. This foreign-key declaration specifies that
for each course tuple, the department name specified in the tuple must exist
in the primary key attribute (dept name) of the department relation. Without
this constraint, it is possible for a course to specify a nonexistent department
name. Figure 3.1 also shows foreign key constraints on tables section, instructor
and teaches.

• not null: The not null constraint on an attribute specifies that the null value
is not allowed for that attribute; in other words, the constraint excludes the
null value from the domain of that attribute. For example, in Figure 3.1, the
not null constraint on the name attribute of the instructor relation ensures that
the name of an instructor cannot be null.

More details on the foreign-key constraint, as well as on other integrity constraints
that the create table command may include, are provided later, in Section 4.4.

SQL prevents any update to the database that violates an integrity constraint.
For example, if a newly inserted or modified tuple in a relation has null values for
any primary-key attribute, or if the tuple has the same value on the primary-key
attributes as does another tuple in the relation, SQL flags an error and prevents the
update. Similarly, an insertion of a course tuple with a dept name value that does
not appear in the department relation would violate the foreign-key constraint on
course, and SQL prevents such an insertion from taking place.

A newly created relation is empty initially. We can use the insert command
to load data into the relation. For example, if we wish to insert the fact that there
is an instructor named Smith in the Biology department with instructor id 10211
and a salary of $66,000, we write:

insert into instructor
values (10211, ’Smith’, ’Biology’, 66000);

The values are specified in the order in which the corresponding attributes are
listed in the relation schema. The insert command has a number of useful features,
and is covered in more detail later, in Section 3.9.2.

We can use the delete command to delete tuples from a relation. The command

delete from student;
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create table department
(dept name varchar (20),
building varchar (15),
budget numeric (12,2),
primary key (dept name));

create table course
(course id varchar (7),
title varchar (50),
dept name varchar (20),
credits numeric (2,0),
primary key (course id),
foreign key (dept name) references department);

create table instructor
(ID varchar (5),
name varchar (20) not null,
dept name varchar (20),
salary numeric (8,2),
primary key (ID),
foreign key (dept name) references department);

create table section
(course id varchar (8),
sec id varchar (8),
semester varchar (6),
year numeric (4,0),
building varchar (15),
room number varchar (7),
time slot id varchar (4),
primary key (course id, sec id, semester, year),
foreign key (course id) references course);

create table teaches
(ID varchar (5),
course id varchar (8),
sec id varchar (8),
semester varchar (6),
year numeric (4,0),
primary key (ID, course id, sec id, semester, year),
foreign key (course id, sec id, semester, year) references section,
foreign key (ID) references instructor);

Figure 3.1 SQL data definition for part of the university database.
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would delete all tuples from the student relation. Other forms of the delete com-
mand allow specific tuples to be deleted; the delete command is covered in more
detail later, in Section 3.9.1.

To remove a relation from an SQL database, we use the drop table command.
The drop table command deletes all information about the dropped relation from
the database. The command

drop table r;

is a more drastic action than

delete from r;

The latter retains relation r, but deletes all tuples in r. The former deletes not only
all tuples of r, but also the schema for r. After r is dropped, no tuples can be
inserted into r unless it is re-created with the create table command.

We use the alter table command to add attributes to an existing relation. All
tuples in the relation are assigned null as the value for the new attribute. The form
of the alter table command is

alter table r add A D;

where r is the name of an existing relation, A is the name of the attribute to be
added, and D is the type of the added attribute. We can drop attributes from a
relation by the command

alter table r drop A;

where r is the name of an existing relation, and A is the name of an attribute of the
relation. Many database systems do not support dropping of attributes, although
they will allow an entire table to be dropped.

3.3 Basic Structure of SQL Queries

The basic structure of an SQL query consists of three clauses: select, from, and
where. The query takes as its input the relations listed in the from clause, operates
on them as specified in the where and select clauses, and then produces a relation
as the result. We introduce the SQL syntax through examples, and describe the
general structure of SQL queries later.

3.3.1 Queries on a Single Relation

Let us consider a simple query using our university example, “Find the names
of all instructors.” Instructor names are found in the instructor relation, so we
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name

Srinivasan
Wu
Mozart
Einstein
El Said
Gold
Katz
Califieri
Singh
Crick
Brandt
Kim

Figure 3.2 Result of “select name from instructor”.

put that relation in the from clause. The instructor’s name appears in the name
attribute, so we put that in the select clause.

select name
from instructor;

The result is a relation consisting of a single attribute with the heading name. If
the instructor relation is as shown in Figure 2.1, then the relation that results from
the preceding query is shown in Figure 3.2.

Now consider another query, “Find the department names of all instructors,”
which can be written as:

select dept name
from instructor;

Since more than one instructor can belong to a department, a department name
could appear more than once in the instructor relation. The result of the above
query is a relation containing the department names, shown in Figure 3.3.

In the formal, mathematical definition of the relational model, a relation is a
set. Thus, duplicate tuples would never appear in relations. In practice, duplicate
elimination is time-consuming. Therefore, SQL allows duplicates in relations as
well as in the results of SQL expressions. Thus, the preceding SQL query lists
each department name once for every tuple in which it appears in the instructor
relation.

In those cases where we want to force the elimination of duplicates, we insert
the keyword distinct after select. We can rewrite the preceding query as:

select distinct dept name
from instructor;
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dept name

Comp. Sci.
Finance
Music
Physics
History
Physics
Comp. Sci.
History
Finance
Biology
Comp. Sci.
Elec. Eng.

Figure 3.3 Result of “select dept name from instructor”.

if we want duplicates removed. The result of the above query would contain each
department name at most once.

SQL allows us to use the keyword all to specify explicitly that duplicates are
not removed:

select all dept name
from instructor;

Since duplicate retention is the default, we shall not use all in our examples. To
ensure the elimination of duplicates in the results of our example queries, we
shall use distinct whenever it is necessary.

The select clause may also contain arithmetic expressions involving the op-
erators +, −, ∗, and / operating on constants or attributes of tuples. For example,
the query:

select ID, name, dept name, salary * 1.1
from instructor;

returns a relation that is the same as the instructor relation, except that the attribute
salary is multiplied by 1.1. This shows what would result if we gave a 10% raise
to each instructor; note, however, that it does not result in any change to the
instructor relation.

SQL also provides special data types, such as various forms of the date type,
and allows several arithmetic functions to operate on these types. We discuss this
further in Section 4.5.1.

The where clause allows us to select only those rows in the result relation of
the from clause that satisfy a specified predicate. Consider the query “Find the
names of all instructors in the Computer Science department who have salary
greater than $70,000.” This query can be written in SQL as:
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name

Katz
Brandt

Figure 3.4 Result of “Find the names of all instructors in the Computer Science department
who have salary greater than $70,000.”

select name
from instructor
where dept name = ’Comp. Sci.’ and salary > 70000;

If the instructor relation is as shown in Figure 2.1, then the relation that results
from the preceding query is shown in Figure 3.4.

SQL allows the use of the logical connectives and, or, and not in the where
clause. The operands of the logical connectives can be expressions involving
the comparison operators <, <=, >, >=, =, and <>. SQL allows us to use the
comparison operators to compare strings and arithmetic expressions, as well as
special types, such as date types.

We shall explore other features of where clause predicates later in this chapter.

3.3.2 Queries on Multiple Relations

So far our example queries were on a single relation. Queries often need to access
information from multiple relations. We now study how to write such queries.

An an example, suppose we want to answer the query “Retrieve the names
of all instructors, along with their department names and department building
name.”

Looking at the schema of the relation instructor, we realize that we can get
the department name from the attribute dept name, but the department building
name is present in the attribute building of the relation department. To answer the
query, each tuple in the instructor relation must be matched with the tuple in
the department relation whose dept name value matches the dept name value of the
instructor tuple.

In SQL, to answer the above query, we list the relations that need to be accessed
in the from clause, and specify the matching condition in the where clause. The
above query can be written in SQL as

select name, instructor.dept name, building
from instructor, department
where instructor.dept name= department.dept name;

If the instructor and department relations are as shown in Figures 2.1 and 2.5
respectively, then the result of this query is shown in Figure 3.5.

Note that the attribute dept name occurs in both the relations instructor and
department, and the relation name is used as a prefix (in instructor.dept name, and
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name dept name building

Srinivasan Comp. Sci. Taylor
Wu Finance Painter
Mozart Music Packard
Einstein Physics Watson
El Said History Painter
Gold Physics Watson
Katz Comp. Sci. Taylor
Califieri History Painter
Singh Finance Painter
Crick Biology Watson
Brandt Comp. Sci. Taylor
Kim Elec. Eng. Taylor

Figure 3.5 The result of “Retrieve the names of all instructors, along with their department
names and department building name.”

department.dept name) to make clear to which attribute we are referring. In contrast,
the attributes name and building appear in only one of the relations, and therefore
do not need to be prefixed by the relation name.

This naming convention requires that the relations that are present in the from
clause have distinct names. This requirement causes problems in some cases,
such as when information from two different tuples in the same relation needs to
be combined. In Section 3.4.1, we see how to avoid these problems by using the
rename operation.

We now consider the general case of SQL queries involving multiple relations.
As we have seen earlier, an SQL query can contain three types of clauses, the
select clause, the from clause, and the where clause. The role of each clause is as
follows:

• The select clause is used to list the attributes desired in the result of a query.

• The from clause is a list of the relations to be accessed in the evaluation of
the query.

• The where clause is a predicate involving attributes of the relation in the
from clause.

A typical SQL query has the form

select A1, A2, . . . , An
from r1, r2, . . . , rm
where P;

Each Ai represents an attribute, and each ri a relation. P is a predicate. If the where
clause is omitted, the predicate P is true.
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Although the clauses must be written in the order select, from, where, the
easiest way to understand the operations specified by the query is to consider the
clauses in operational order: first from, then where, and then select.1

The from clause by itself defines a Cartesian product of the relations listed
in the clause. It is defined formally in terms of set theory, but is perhaps best
understood as an iterative process that generates tuples for the result relation of
the from clause.

for each tuple t1 in relation r1
for each tuple t2 in relation r2

. . .

for each tuple tm in relation rm
Concatenate t1, t2, . . . , tm into a single tuple t
Add t into the result relation

The result relation has all attributes from all the relations in the from clause.
Since the same attribute name may appear in both ri and r j , as we saw earlier,
we prefix the the name of the relation from which the attribute originally came,
before the attribute name.

For example, the relation schema for the Cartesian product of relations in-
structor and teaches is:

(instructor.ID, instructor.name, instructor.dept name, instructor.salary
teaches.ID, teaches.course id, teaches.sec id, teaches.semester, teaches.year)

With this schema, we can distinguish instructor.ID from teaches.ID. For those at-
tributes that appear in only one of the two schemas, we shall usually drop the
relation-name prefix. This simplification does not lead to any ambiguity. We can
then write the relation schema as:

(instructor.ID, name, dept name, salary
teaches.ID, course id, sec id, semester, year)

To illustrate, consider the instructor relation in Figure 2.1 and the teaches
relation in Figure 2.7. Their Cartesian product is shown in Figure 3.6, which
includes only a portion of the tuples that make up the Cartesian product result.2

The Cartesian product by itself combines tuples from instructor and teaches
that are unrelated to each other. Each tuple in instructor is combined with every
tuple in teaches, even those that refer to a different instructor. The result can be
an extremely large relation, and it rarely makes sense to create such a Cartesian
product.

1In practice, SQL may convert the expression into an equivalent form that can be processed more efficiently. However,
we shall defer concerns about efficiency to Chapters 12 and 13.
2Note that we renamed instructor.ID as inst.ID to reduce the width of the table in Figure 3.6.
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inst.ID name dept name salary teaches.ID course id sec id semester year

10101 Srinivasan Physics 95000 10101 CS-101 1 Fall 2009
10101 Srinivasan Physics 95000 10101 CS-315 1 Spring 2010
10101 Srinivasan Physics 95000 10101 CS-347 1 Fall 2009
10101 Srinivasan Physics 95000 10101 FIN-201 1 Spring 2010
10101 Srinivasan Physics 95000 15151 MU-199 1 Spring 2010
10101 Srinivasan Physics 95000 22222 PHY-101 1 Fall 2009

... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... ...
12121 Wu Physics 95000 10101 CS-101 1 Fall 2009
12121 Wu Physics 95000 10101 CS-315 1 Spring 2010
12121 Wu Physics 95000 10101 CS-347 1 Fall 2009
12121 Wu Physics 95000 10101 FIN-201 1 Spring 2010
12121 Wu Physics 95000 15151 MU-199 1 Spring 2010
12121 Wu Physics 95000 22222 PHY-101 1 Fall 2009

... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... ...
15151 Mozart Physics 95000 10101 CS-101 1 Fall 2009
15151 Mozart Physics 95000 10101 CS-315 1 Spring 2010
15151 Mozart Physics 95000 10101 CS-347 1 Fall 2009
15151 Mozart Physics 95000 10101 FIN-201 1 Spring 2010
15151 Mozart Physics 95000 15151 MU-199 1 Spring 2010
15151 Mozart Physics 95000 22222 PHY-101 1 Fall 2009

... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... ...
22222 Einstein Physics 95000 10101 CS-101 1 Fall 2009
22222 Einstein Physics 95000 10101 CS-315 1 Spring 2010
22222 Einstein Physics 95000 10101 CS-347 1 Fall 2009
22222 Einstein Physics 95000 10101 FIN-201 1 Spring 2010
22222 Einstein Physics 95000 15151 MU-199 1 Spring 2010
22222 Einstein Physics 95000 22222 PHY-101 1 Fall 2009

... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... ...

Figure 3.6 The Cartesian product of the instructor relation with the teaches relation.

Instead, the predicate in the where clause is used to restrict the combinations
created by the Cartesian product to those that are meaningful for the desired
answer. We would expect a query involving instructor and teaches to combine a
particular tuple t in instructor with only those tuples in teaches that refer to the
same instructor to which t refers. That is, we wish only to match teaches tuples with
instructor tuples that have the same ID value. The following SQL query ensures
this condition, and outputs the instructor name and course identifiers from such
matching tuples.



70 Chapter 3 Introduction to SQL

select name, course id
from instructor, teaches
where instructor.ID= teaches.ID;

Note that the above query outputs only instructors who have taught some course.
Instructors who have not taught any course are not output; if we wish to output
such tuples, we could use an operation called the outer join, which is described in
Section 4.1.2.

If the instructor relation is as shown in Figure 2.1 and the teaches relation is
as shown in Figure 2.7, then the relation that results from the preceding query
is shown in Figure 3.7. Observe that instructors Gold, Califieri, and Singh, who
have not taught any course, do not appear in the above result.

If we only wished to find instructor names and course identifiers for instruc-
tors in the Computer Science department, we could add an extra predicate to the
where clause, as shown below.

select name, course id
from instructor, teaches
where instructor.ID= teaches.ID and instructor.dept name = ’Comp. Sci.’;

Note that since the dept name attribute occurs only in the instructor relation, we
could have used just dept name, instead of instructor.dept name in the above query.

In general, the meaning of an SQL query can be understood as follows:

name course id

Srinivasan CS-101
Srinivasan CS-315
Srinivasan CS-347
Wu FIN-201
Mozart MU-199
Einstein PHY-101
El Said HIS-351
Katz CS-101
Katz CS-319
Crick BIO-101
Crick BIO-301
Brandt CS-190
Brandt CS-190
Brandt CS-319
Kim EE-181

Figure 3.7 Result of “For all instructors in the university who have taught some course, find
their names and the course ID of all courses they taught.”
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1. Generate a Cartesian product of the relations listed in the from clause

2. Apply the predicates specified in the where clause on the result of Step 1.

3. For each tuple in the result of Step 2, output the attributes (or results of
expressions) specified in the select clause.

The above sequence of steps helps make clear what the result of an SQL query
should be, not how it should be executed. A real implementation of SQL would
not execute the query in this fashion; it would instead optimize evaluation by
generating (as far as possible) only elements of the Cartesian product that satisfy
the where clause predicates. We study such implementation techniques later, in
Chapters 12 and 13.

When writing queries, you should be careful to include appropriate where
clause conditions. If you omit the where clause condition in the preceding SQL
query, it would output the Cartesian product, which could be a huge relation.
For the example instructor relation in Figure 2.1 and the example teaches relation
in Figure 2.7, their Cartesian product has 12 ∗ 13 = 156 tuples — more than we
can show in the text! To make matters worse, suppose we have a more realistic
number of instructors than we show in our sample relations in the figures, say 200
instructors. Let’s assume each instructor teaches 3 courses, so we have 600 tuples
in the teaches relation. Then the above iterative process generates 200 ∗ 600 =
120,000 tuples in the result.

3.3.3 The Natural Join

In our example query that combined information from the instructor and teaches
table, the matching condition required instructor.ID to be equal to teaches.ID. These
are the only attributes in the two relations that have the same name. In fact this
is a common case; that is, the matching condition in the from clause most often
requires all attributes with matching names to be equated.

To make the life of an SQL programmer easier for this common case, SQL
supports an operation called the natural join, which we describe below. In fact SQL
supports several other ways in which information from two or more relations
can be joined together. We have already seen how a Cartesian product along
with a where clause predicate can be used to join information from multiple
relations. Other ways of joining information from multiple relations are discussed
in Section 4.1.

The natural join operation operates on two relations and produces a relation
as the result. Unlike the Cartesian product of two relations, which concatenates
each tuple of the first relation with every tuple of the second, natural join considers
only those pairs of tuples with the same value on those attributes that appear in
the schemas of both relations. So, going back to the example of the relations
instructor and teaches, computing instructor natural join teaches considers only
those pairs of tuples where both the tuple from instructor and the tuple from
teaches have the same value on the common attribute, ID.
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ID name dept name salary course id sec id semester year

10101 Srinivasan Comp. Sci. 65000 CS-101 1 Fall 2009
10101 Srinivasan Comp. Sci. 65000 CS-315 1 Spring 2010
10101 Srinivasan Comp. Sci. 65000 CS-347 1 Fall 2009
12121 Wu Finance 90000 FIN-201 1 Spring 2010
15151 Mozart Music 40000 MU-199 1 Spring 2010
22222 Einstein Physics 95000 PHY-101 1 Fall 2009
32343 El Said History 60000 HIS-351 1 Spring 2010
45565 Katz Comp. Sci. 75000 CS-101 1 Spring 2010
45565 Katz Comp. Sci. 75000 CS-319 1 Spring 2010
76766 Crick Biology 72000 BIO-101 1 Summer 2009
76766 Crick Biology 72000 BIO-301 1 Summer 2010
83821 Brandt Comp. Sci. 92000 CS-190 1 Spring 2009
83821 Brandt Comp. Sci. 92000 CS-190 2 Spring 2009
83821 Brandt Comp. Sci. 92000 CS-319 2 Spring 2010
98345 Kim Elec. Eng. 80000 EE-181 1 Spring 2009

Figure 3.8 The natural join of the instructor relation with the teaches relation.

The result relation, shown in Figure 3.8, has only 13 tuples, the ones that
give information about an instructor and a course that that instructor actually
teaches. Notice that we do not repeat those attributes that appear in the schemas
of both relations; rather they appear only once. Notice also the order in which the
attributes are listed: first the attributes common to the schemas of both relations,
second those attributes unique to the schema of the first relation, and finally, those
attributes unique to the schema of the second relation.

Consider the query “For all instructors in the university who have taught
some course, find their names and the course ID of all courses they taught”,
which we wrote earlier as:

select name, course id
from instructor, teaches
where instructor.ID= teaches.ID;

This query can be written more concisely using the natural-join operation in
SQL as:

select name, course id
from instructor natural join teaches;

Both of the above queries generate the same result.
As we saw earlier, the result of the natural join operation is a relation. Concep-

tually, expression “instructor natural join teaches” in the from clause is replaced
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by the relation obtained by evaluating the natural join.3 The where and select
clauses are then evaluated on this relation, as we saw earlier in Section 3.3.2.

A from clause in an SQL query can have multiple relations combined using
natural join, as shown here:

select A1, A2, . . . , An
from r1 natural join r2 natural join . . . natural join rm
where P;

More generally, a from clause can be of the form

from E1, E2, . . . , En

where each Ei can be a single relation or an expression involving natural joins.
For example, suppose we wish to answer the query “List the names of instructors
along with the the titles of courses that they teach.” The query can be written in
SQL as follows:

select name, title
from instructor natural join teaches, course
where teaches.course id= course.course id;

The natural join of instructor and teaches is first computed, as we saw earlier, and
a Cartesian product of this result with course is computed, from which the where
clause extracts only those tuples where the course identifier from the join result
matches the course identifier from the course relation. Note that teaches.course id
in the where clause refers to the course id field of the natural join result, since this
field in turn came from the teaches relation.

In contrast the following SQL query does not compute the same result:

select name, title
from instructor natural join teaches natural join course;

To see why, note that the natural join of instructor and teaches contains the attributes
(ID, name, dept name, salary, course id, sec id), while the course relation contains the
attributes (course id, title, dept name, credits). As a result, the natural join of these
two would require that the dept name attribute values from the two inputs be the
same, in addition to requiring that the course id values be the same. This query
would then omit all (instructor name, course title) pairs where the instructor
teaches a course in a department other than the instructor’s own department.
The previous query, on the other hand, correctly outputs such pairs.

3As a consequence, it is not possible to use attribute names containing the original relation names, for instance instruc-
tor.nameor teaches.course id, to refer to attributes in the natural join result; we can, however, use attribute names such as
name and course id, without the relation names.
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To provide the benefit of natural join while avoiding the danger of equating
attributes erroneously, SQL provides a form of the natural join construct that
allows you to specify exactly which columns should be equated. This feature is
illustrated by the following query:

select name, title
from (instructor natural join teaches) join course using (course id);

The operation join . . . using requires a list of attribute names to be specified. Both
inputs must have attributes with the specified names. Consider the operation r1
join r2 using(A1, A2). The operation is similar to r1 natural join r2, except that a
pair of tuples t1 from r1 and t2 from r2 match if t1.A1 = t2.A1 and t1.A2 = t2.A2; even
if r1 and r2 both have an attribute named A3, it is not required that t1.A3 = t2.A3.

Thus, in the preceding SQL query, the join construct permits teaches.dept name
and course.dept name to differ, and the SQL query gives the correct answer.

3.4 Additional Basic Operations

There are number of additional basic operations that are supported in SQL.

3.4.1 The Rename Operation

Consider again the query that we used earlier:

select name, course id
from instructor, teaches
where instructor.ID= teaches.ID;

The result of this query is a relation with the following attributes:

name, course id

The names of the attributes in the result are derived from the names of the
attributes in the relations in the from clause.

We cannot, however, always derive names in this way, for several reasons:
First, two relations in the from clause may have attributes with the same name,
in which case an attribute name is duplicated in the result. Second, if we used an
arithmetic expression in the select clause, the resultant attribute does not have
a name. Third, even if an attribute name can be derived from the base relations
as in the preceding example, we may want to change the attribute name in the
result. Hence, SQL provides a way of renaming the attributes of a result relation.
It uses the as clause, taking the form:

old-name as new-name
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The as clause can appear in both the select and from clauses.4
For example, if we want the attribute name name to be replaced with the name

instructor name, we can rewrite the preceding query as:

select name as instructor name, course id
from instructor, teaches
where instructor.ID= teaches.ID;

The as clause is particularly useful in renaming relations. One reason to
rename a relation is to replace a long relation name with a shortened version that
is more convenient to use elsewhere in the query. To illustrate, we rewrite the
query “For all instructors in the university who have taught some course, find
their names and the course ID of all courses they taught.”

select T.name, S.course id
from instructor as T, teaches as S
where T.ID= S.ID;

Another reason to rename a relation is a case where we wish to compare
tuples in the same relation. We then need to take the Cartesian product of a
relation with itself and, without renaming, it becomes impossible to distinguish
one tuple from the other. Suppose that we want to write the query “Find the
names of all instructors whose salary is greater than at least one instructor in the
Biology department.” We can write the SQL expression:

select distinct T.name
from instructor as T, instructor as S
where T.salary > S.salary and S.dept name = ’Biology’;

Observe that we could not use the notation instructor.salary, since it would not be
clear which reference to instructor is intended.

In the above query, T and S can be thought of as copies of the relation instructor,
but more precisely, they are declared as aliases, that is as alternative names, for the
relation instructor. An identifier, such as T and S, that is used to rename a relation
is referred to as a correlation name in the SQL standard, but is also commonly
referred to as a table alias, or a correlation variable, or a tuple variable.

Note that a better way to phrase the previous query in English would be “Find
the names of all instructors who earn more than the lowest paid instructor in the
Biology department.” Our original wording fits more closely with the SQL that
we wrote, but the latter wording is more intuitive, and can in fact be expressed
directly in SQL as we shall see in Section 3.8.2.

4Early versions of SQL did not include the keyword as. As a result, some implementations of SQL, notably Oracle, do
not permit the keyword as in the from clause. In Oracle, “old-name as new-name” is written instead as “old-name new-name”
in the from clause. The keyword as is permitted for renaming attributes in the select clause, but it is optional and may
be omitted in Oracle.
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3.4.2 String Operations

SQL specifies strings by enclosing them in single quotes, for example, ’Computer’.
A single quote character that is part of a string can be specified by using two single
quote characters; for example, the string “It’s right” can be specified by “It”s right”.

The SQL standard specifies that the equality operation on strings is case sen-
sitive; as a result the expression “’comp. sci.’ = ’Comp. Sci.’” evaluates to false.
However, some database systems, such as MySQL and SQL Server, do not distin-
guish uppercase from lowercase when matching strings; as a result “’comp. sci.’
= ’Comp. Sci.’” would evaluate to true on these databases. This default behavior
can, however, be changed, either at the database level or at the level of specific
attributes.

SQL also permits a variety of functions on character strings, such as concate-
nating (using “‖”), extracting substrings, finding the length of strings, converting
strings to uppercase (using the function upper(s) where s is a string) and low-
ercase (using the function lower(s)), removing spaces at the end of the string
(using trim(s)) and so on. There are variations on the exact set of string functions
supported by different database systems. See your database system’s manual for
more details on exactly what string functions it supports.

Pattern matching can be performed on strings, using the operator like. We
describe patterns by using two special characters:

• Percent (%): The % character matches any substring.

• Underscore ( ): The character matches any character.

Patterns are case sensitive; that is, uppercase characters do not match lowercase
characters, or vice versa. To illustrate pattern matching, we consider the following
examples:

• ’Intro%’ matches any string beginning with “Intro”.

• ’%Comp%’ matches any string containing “Comp” as a substring, for exam-
ple, ’Intro. to Computer Science’, and ’Computational Biology’.

• ’ ’ matches any string of exactly three characters.

• ’ %’ matches any string of at least three characters.

SQL expresses patterns by using the like comparison operator. Consider the query
“Find the names of all departments whose building name includes the substring
‘Watson’.” This query can be written as:

select dept name
from department
where building like ’%Watson%’;
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For patterns to include the special pattern characters (that is, % and ), SQL allows
the specification of an escape character. The escape character is used immediately
before a special pattern character to indicate that the special pattern character
is to be treated like a normal character. We define the escape character for a
like comparison using the escape keyword. To illustrate, consider the following
patterns, which use a backslash (\) as the escape character:

• like ’ab\%cd%’ escape ’\’ matches all strings beginning with “ab%cd”.

• like ’ab\\cd%’ escape ’\’ matches all strings beginning with “ab\cd”.

SQL allows us to search for mismatches instead of matches by using the not
like comparison operator. Some databases provide variants of the like operation
which do not distinguish lower and upper case.

SQL:1999 also offers a similar to operation, which provides more powerful
pattern matching than the like operation; the syntax for specifying patterns is
similar to that used in Unix regular expressions.

3.4.3 Attribute Specification in Select Clause

The asterisk symbol “ * ” can be used in the select clause to denote “all attributes.”
Thus, the use of instructor.* in the select clause of the query:

select instructor.*
from instructor, teaches
where instructor.ID= teaches.ID;

indicates that all attributes of instructor are to be selected. A select clause of the
form select * indicates that all attributes of the result relation of the from clause
are selected.

3.4.4 Ordering the Display of Tuples

SQL offers the user some control over the order in which tuples in a relation
are displayed. The order by clause causes the tuples in the result of a query to
appear in sorted order. To list in alphabetic order all instructors in the Physics
department, we write:

select name
from instructor
where dept name = ’Physics’
order by name;

By default, the order by clause lists items in ascending order. To specify the
sort order, we may specify desc for descending order or asc for ascending order.
Furthermore, ordering can be performed on multiple attributes. Suppose that we
wish to list the entire instructor relation in descending order of salary. If several
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instructors have the same salary, we order them in ascending order by name. We
express this query in SQL as follows:

select *
from instructor
order by salary desc, name asc;

3.4.5 Where Clause Predicates

SQL includes a between comparison operator to simplify where clauses that
specify that a value be less than or equal to some value and greater than or
equal to some other value. If we wish to find the names of instructors with salary
amounts between $90,000 and $100,000, we can use the between comparison to
write:

select name
from instructor
where salary between 90000 and 100000;

instead of:

select name
from instructor
where salary <= 100000 and salary >= 90000;

Similarly, we can use the not between comparison operator.
We can extend the preceding query that finds instructor names along with

course identifiers, which we saw earlier, and consider a more complicated case
in which we require also that the instructors be from the Biology department:
“Find the instructor names and the courses they taught for all instructors in the
Biology department who have taught some course.” To write this query, we can
modify either of the SQL queries we saw earlier, by adding an extra condition in
the where clause. We show below the modified form of the SQL query that does
not use natural join.

select name, course id
from instructor, teaches
where instructor.ID= teaches.ID and dept name = ’Biology’;

SQL permits us to use the notation (v1, v2, . . . , vn) to denote a tuple of arity n
containing values v1, v2, . . . , vn. The comparison operators can be used on tuples,
and the ordering is defined lexicographically. For example, (a1, a2) <= (b1, b2)



3.5 Set Operations 79

course id

CS-101
CS-347
PHY-101

Figure 3.9 The c1 relation, listing courses taught in Fall 2009.

is true if a1 <= b1 and a2 <= b2; similarly, the two tuples are equal if all their
attributes are equal. Thus, the preceding SQL query can be rewritten as follows:5

select name, course id
from instructor, teaches
where (instructor.ID, dept name) = (teaches.ID, ’Biology’);

3.5 Set Operations

The SQL operations union, intersect, and except operate on relations and cor-
respond to the mathematical set-theory operations ∪, ∩, and −. We shall now
construct queries involving the union, intersect, and except operations over two
sets.

• The set of all courses taught in the Fall 2009 semester:

select course id
from section
where semester = ’Fall’ and year= 2009;

• The set of all courses taught in the Spring 2010 semester:

select course id
from section
where semester = ’Spring’ and year= 2010;

In our discussion that follows, we shall refer to the relations obtained as the result
of the preceding queries as c1 and c2, respectively, and show the results when
these queries are run on the section relation of Figure 2.6 in Figures 3.9 and 3.10.
Observe that c2 contains two tuples corresponding to course id CS-319, since two
sections of the course have been offered in Spring 2010.

5Although it is part of the SQL-92 standard, some SQL implementations may not support this syntax.
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course id
CS-101
CS-315
CS-319
CS-319
FIN-201
HIS-351
MU-199

Figure 3.10 The c2 relation, listing courses taught in Spring 2010.

3.5.1 The Union Operation

To find the set of all courses taught either in Fall 2009 or in Spring 2010, or both,
we write:6

(select course id
from section
where semester = ’Fall’ and year= 2009)
union
(select course id
from section
where semester = ’Spring’ and year= 2010);

The union operation automatically eliminates duplicates, unlike the select clause.
Thus, using the section relation of Figure 2.6, where two sections of CS-319 are
offered in Spring 2010, and a section of CS-101 is offered in the Fall 2009 as well as
in the Fall 2010 semester, CS-101 and CS-319 appear only once in the result, shown
in Figure 3.11.

If we want to retain all duplicates, we must write union all in place of union:

(select course id
from section
where semester = ’Fall’ and year= 2009)
union all
(select course id
from section
where semester = ’Spring’ and year= 2010);

The number of duplicate tuples in the result is equal to the total number of
duplicates that appear in both c1 and c2. So, in the above query, each of CS-319
and CS-101 would be listed twice. As a further example, if it were the case that 4
sections of ECE-101 were taught in the Fall 2009 semester and 2 sections of ECE-101

6The parentheses we include around each select-from-where statement are optional, but useful for ease of reading.
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course id

CS-101
CS-315
CS-319
CS-347
FIN-201
HIS-351
MU-199
PHY-101

Figure 3.11 The result relation for c1 union c2.

were taught in the Fall 2010 semester, then there would be 6 tuples with ECE-101
in the result.

3.5.2 The Intersect Operation

To find the set of all courses taught in the Fall 2009 as well as in Spring 2010 we
write:

(select course id
from section
where semester = ’Fall’ and year= 2009)

intersect
(select course id
from section
where semester = ’Spring’ and year= 2010);

The result relation, shown in Figure 3.12, contains only one tuple with CS-101. The
intersect operation automatically eliminates duplicates. For example, if it were
the case that 4 sections of ECE-101 were taught in the Fall 2009 semester and 2
sections of ECE-101 were taught in the Spring 2010 semester, then there would be
only 1 tuple with ECE-101 in the result.

If we want to retain all duplicates, we must write intersect all in place of
intersect:

course id

CS-101

Figure 3.12 The result relation for c1 intersect c2.
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(select course id
from section
where semester = ’Fall’ and year= 2009)
intersect all
(select course id
from section
where semester = ’Spring’ and year= 2010);

The number of duplicate tuples that appear in the result is equal to the minimum
number of duplicates in both c1 and c2. For example, if 4 sections of ECE-101
were taught in the Fall 2009 semester and 2 sections of ECE-101 were taught in the
Spring 2010 semester, then there would be 2 tuples with ECE-101 in the result.

3.5.3 The Except Operation

To find all courses taught in the Fall 2009 semester but not in the Spring 2010
semester, we write:

(select course id
from section
where semester = ’Fall’ and year= 2009)
except
(select course id
from section
where semester = ’Spring’ and year= 2010);

The result of this query is shown in Figure 3.13. Note that this is exactly relation
c1 of Figure 3.9 except that the tuple for CS-101 does not appear. The except
operation7 outputs all tuples from its first input that do not occur in the second
input; that is, it performs set difference. The operation automatically eliminates
duplicates in the inputs before performing set difference. For example, if 4 sections
of ECE-101 were taught in the Fall 2009 semester and 2 sections of ECE-101 were
taught in the Spring 2010 semester, the result of the except operation would not
have any copy of ECE-101.

If we want to retain duplicates, we must write except all in place of except:

(select course id
from section
where semester = ’Fall’ and year= 2009)
except all
(select course id
from section
where semester = ’Spring’ and year= 2010);

7Some SQL implementations, notably Oracle, use the keyword minus in place of except.
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course id

CS-347
PHY-101

Figure 3.13 The result relation for c1 except c2.

The number of duplicate copies of a tuple in the result is equal to the number of
duplicate copies in c1 minus the number of duplicate copies in c2, provided that
the difference is positive. Thus, if 4 sections of ECE-101 were taught in the Fall
2009 semester and 2 sections of ECE-101 were taught in Spring 2010, then there are
2 tuples with ECE-101 in the result. If, however, there were two or fewer sections
of ECE-101 in the the Fall 2009 semester, and two sections of ECE-101 in the Spring
2010 semester, there is no tuple with ECE-101 in the result.

3.6 Null Values

Null values present special problems in relational operations, including arith-
metic operations, comparison operations, and set operations.

The result of an arithmetic expression (involving, for example +, −, ∗, or /) is
null if any of the input values is null. For example, if a query has an expression
r.A+ 5, and r.A is null for a particular tuple, then the expression result must also
be null for that tuple.

Comparisons involving nulls are more of a problem. For example, consider
the comparison “1 < null”. It would be wrong to say this is true since we do not
know what the null value represents. But it would likewise be wrong to claim this
expression is false; if we did, “not (1 < null)” would evaluate to true, which does
not make sense. SQL therefore treats as unknown the result of any comparison
involving a null value (other than predicates is null and is not null, which are
described later in this section). This creates a third logical value in addition to true
and false.

Since the predicate in a where clause can involve Boolean operations such
as and, or, and not on the results of comparisons, the definitions of the Boolean
operations are extended to deal with the value unknown.

• and: The result of true and unknown is unknown, false and unknown is false,
while unknown and unknown is unknown.

• or: The result of true or unknown is true, false or unknown is unknown, while
unknown or unknown is unknown.

• not: The result of not unknown is unknown.

You can verify that if r.A is null, then “1 < r.A” as well as “not (1 < r.A)”
evaluate to unknown.



84 Chapter 3 Introduction to SQL

If the where clause predicate evaluates to either false or unknown for a tuple,
that tuple is not added to the result.

SQL uses the special keyword null in a predicate to test for a null value. Thus,
to find all instructors who appear in the instructor relation with null values for
salary, we write:

select name
from instructor
where salary is null;

The predicate is not null succeeds if the value on which it is applied is not null.
Some implementations of SQL also allow us to test whether the result of a com-

parison is unknown, rather than true or false, by using the clauses is unknown
and is not unknown.

When a query uses the select distinct clause, duplicate tuples must be elim-
inated. For this purpose, when comparing values of corresponding attributes
from two tuples, the values are treated as identical if either both are non-null and
equal in value, or both are null. Thus two copies of a tuple, such as {(’A’,null),
(’A’,null)}, are treated as being identical, even if some of the attributes have a
null value. Using the distinct clause then retains only one copy of such identical
tuples. Note that the treatment of null above is different from the way nulls are
treated in predicates, where a comparison “null=null” would return unknown,
rather than true.

The above approach of treating tuples as identical if they have the same
values for all attributes, even if some of the values are null, is also used for the
set operations union, intersection and except.

3.7 Aggregate Functions

Aggregate functions are functions that take a collection (a set or multiset) of values
as input and return a single value. SQL offers five built-in aggregate functions:

• Average: avg

• Minimum: min

• Maximum: max

• Total: sum

• Count: count

The input to sum and avg must be a collection of numbers, but the other operators
can operate on collections of nonnumeric data types, such as strings, as well.
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3.7.1 Basic Aggregation

Consider the query “Find the average salary of instructors in the Computer Sci-
ence department.” We write this query as follows:

select avg (salary)
from instructor
where dept name= ’Comp. Sci.’;

The result of this query is a relation with a single attribute, containing a single
tuple with a numerical value corresponding to the average salary of instructors
in the Computer Science department. The database system may give an arbitrary
name to the result relation attribute that is generated by aggregation; however,
we can give a meaningful name to the attribute by using the as clause as follows:

select avg (salary) as avg salary
from instructor
where dept name= ’Comp. Sci.’;

In the instructor relation of Figure 2.1, the salaries in the Computer Science
department are $75,000, $65,000, and $92,000. The average balance is $232,000/3
= $77,333.33.

Retaining duplicates is important in computing an average. Suppose the
Computer Science department adds a fourth instructor whose salary happens to
be $75,000. If duplicates were eliminated, we would obtain the wrong answer
($232,000/4 = $58.000) rather than the correct answer of $76,750.

There are cases where we must eliminate duplicates before computing an
aggregate function. If we do want to eliminate duplicates, we use the keyword
distinct in the aggregate expression. An example arises in the query “Find the
total number of instructors who teach a course in the Spring 2010 semester.”
In this case, an instructor counts only once, regardless of the number of course
sections that the instructor teaches. The required information is contained in the
relation teaches, and we write this query as follows:

select count (distinct ID)
from teaches
where semester = ’Spring’ and year = 2010;

Because of the keyword distinct preceding ID, even if an instructor teaches more
than one course, she is counted only once in the result.

We use the aggregate function count frequently to count the number of tuples
in a relation. The notation for this function in SQL is count (*). Thus, to find the
number of tuples in the course relation, we write

select count (*)
from course;
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ID name dept name salary

76766 Crick Biology 72000
45565 Katz Comp. Sci. 75000
10101 Srinivasan Comp. Sci. 65000
83821 Brandt Comp. Sci. 92000
98345 Kim Elec. Eng. 80000
12121 Wu Finance 90000
76543 Singh Finance 80000
32343 El Said History 60000
58583 Califieri History 62000
15151 Mozart Music 40000
33456 Gold Physics 87000
22222 Einstein Physics 95000

Figure 3.14 Tuples of the instructor relation, grouped by the dept name attribute.

SQL does not allow the use of distinct with count (*). It is legal to use distinct
with max and min, even though the result does not change. We can use the
keyword all in place of distinct to specify duplicate retention, but, since all is the
default, there is no need to do so.

3.7.2 Aggregation with Grouping

There are circumstances where we would like to apply the aggregate function
not only to a single set of tuples, but also to a group of sets of tuples; we specify
this wish in SQL using the group by clause. The attribute or attributes given in
the group by clause are used to form groups. Tuples with the same value on all
attributes in the group by clause are placed in one group.

As an illustration, consider the query “Find the average salary in each depart-
ment.” We write this query as follows:

select dept name, avg (salary) as avg salary
from instructor
group by dept name;

Figure 3.14 shows the tuples in the instructor relation grouped by the dept
name attribute, which is the first step in computing the query result. The specified

aggregate is computed for each group, and the result of the query is shown in
Figure 3.15.

In contrast, consider the query “Find the average salary of all instructors.” We
write this query as follows:

select avg (salary)
from instructor;
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dept name avg salary

Biology 72000
Comp. Sci. 77333
Elec. Eng. 80000
Finance 85000
History 61000
Music 40000
Physics 91000

Figure 3.15 The result relation for the query “Find the average salary in each department”.

In this case the group by clause has been omitted, so the entire relation is treated
as a single group.

As another example of aggregation on groups of tuples, consider the query
“Find the number of instructors in each department who teach a course in the
Spring 2010 semester.” Information about which instructors teach which course
sections in which semester is available in the teaches relation. However, this in-
formation has to be joined with information from the instructor relation to get the
department name of each instructor. Thus, we write this query as follows:

select dept name, count (distinct ID) as instr count
from instructor natural join teaches
where semester = ’Spring’ and year = 2010
group by dept name;

The result is shown in Figure 3.16.
When an SQL query uses grouping, it is important to ensure that the only

attributes that appear in the select statement without being aggregated are those
that are present in the group by clause. In other words, any attribute that is not
present in the group by clause must appear only inside an aggregate function if
it appears in the select clause, otherwise the query is treated as erroneous. For
example, the following query is erroneous since ID does not appear in the group
by clause, and yet it appears in the select clause without being aggregated:

dept name instr count

Comp. Sci. 3
Finance 1
History 1
Music 1

Figure 3.16 The result relation for the query “Find the number of instructors in each
department who teach a course in the Spring 2010 semester.”



88 Chapter 3 Introduction to SQL

/* erroneous query */
select dept name, ID, avg (salary)
from instructor
group by dept name;

Each instructor in a particular group (defined by dept name) can have a different
ID, and since only one tuple is output for each group, there is no unique way of
choosing which ID value to output. As a result, such cases are disallowed by SQL.

3.7.3 The Having Clause

At times, it is useful to state a condition that applies to groups rather than to
tuples. For example, we might be interested in only those departments where the
average salary of the instructors is more than $42,000. This condition does not
apply to a single tuple; rather, it applies to each group constructed by the group
by clause. To express such a query, we use the having clause of SQL. SQL applies
predicates in the having clause after groups have been formed, so aggregate
functions may be used. We express this query in SQL as follows:

select dept name, avg (salary) as avg salary
from instructor
group by dept name
having avg (salary) > 42000;

The result is shown in Figure 3.17.
As was the case for the select clause, any attribute that is present in the having

clause without being aggregated must appear in the group by clause, otherwise
the query is treated as erroneous.

The meaning of a query containing aggregation, group by, or having clauses
is defined by the following sequence of operations:

1. As was the case for queries without aggregation, the from clause is first
evaluated to get a relation.

dept name avg(avg salary)

Physics 91000
Elec. Eng. 80000
Finance 85000
Comp. Sci. 77333
Biology 72000
History 61000

Figure 3.17 The result relation for the query “Find the average salary of instructors in those
departments where the average salary is more than $42,000.”
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2. If a where clause is present, the predicate in the where clause is applied on
the result relation of the from clause.

3. Tuples satisfying the where predicate are then placed into groups by the
group by clause if it is present. If the group by clause is absent, the entire
set of tuples satisfying the where predicate is treated as being in one group.

4. The having clause, if it is present, is applied to each group; the groups that
do not satisfy the having clause predicate are removed.

5. The select clause uses the remaining groups to generate tuples of the result
of the query, applying the aggregate functions to get a single result tuple for
each group.

To illustrate the use of both a having clause and a where clause in the same
query, we consider the query “For each course section offered in 2009, find the
average total credits (tot cred) of all students enrolled in the section, if the section
had at least 2 students.”

select course id, semester, year, sec id, avg (tot cred)
from takes natural join student
where year = 2009
group by course id, semester, year, sec id
having count (ID) >= 2;

Note that all the required information for the preceding query is available from
the relations takes and student, and that although the query pertains to sections, a
join with section is not needed.

3.7.4 Aggregation with Null and Boolean Values

Null values, when they exist, complicate the processing of aggregate operators.
For example, assume that some tuples in the instructor relation have a null value
for salary. Consider the following query to total all salary amounts:

select sum (salary)
from instructor;

The values to be summed in the preceding query include null values, since some
tuples have a null value for salary. Rather than say that the overall sum is itself
null, the SQL standard says that the sum operator should ignore null values in its
input.

In general, aggregate functions treat nulls according to the following rule: All
aggregate functions except count (*) ignore null values in their input collection.
As a result of null values being ignored, the collection of values may be empty. The
count of an empty collection is defined to be 0, and all other aggregate operations
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return a value of null when applied on an empty collection. The effect of null
values on some of the more complicated SQL constructs can be subtle.

A Boolean data type that can take values true, false, and unknown, was
introduced in SQL:1999. The aggregate functions some and every, which mean
exactly what you would intuitively expect, can be applied on a collection of
Boolean values.

3.8 Nested Subqueries

SQL provides a mechanism for nesting subqueries. A subquery is a select-from-
where expression that is nested within another query. A common use of sub-
queries is to perform tests for set membership, make set comparisons, and deter-
mine set cardinality, by nesting subqueries in the where clause. We study such
uses of nested subqueries in the where clause in Sections 3.8.1 through 3.8.4. In
Section 3.8.5, we study nesting of subqueries in the from clause. In Section 3.8.7,
we see how a class of subqueries called scalar subqueries can appear wherever
an expression returning a value can occur.

3.8.1 Set Membership

SQL allows testing tuples for membership in a relation. The in connective tests
for set membership, where the set is a collection of values produced by a select
clause. The not in connective tests for the absence of set membership.

As an illustration, reconsider the query “Find all the courses taught in the
both the Fall 2009 and Spring 2010 semesters.” Earlier, we wrote such a query by
intersecting two sets: the set of courses taught in Fall 2009 and the set of courses
taught in Spring 2010. We can take the alternative approach of finding all courses
that were taught in Fall 2009 and that are also members of the set of courses
taught in Spring 2010. Clearly, this formulation generates the same results as the
previous one did, but it leads us to write our query using the in connective of SQL.
We begin by finding all courses taught in Spring 2010, and we write the subquery

(select course id
from section
where semester = ’Spring’ and year= 2010)

We then need to find those courses that were taught in the Fall 2009 and that
appear in the set of courses obtained in the subquery. We do so by nesting the
subquery in the where clause of an outer query. The resulting query is

select distinct course id
from section
where semester = ’Fall’ and year= 2009 and

course id in (select course id
from section
where semester = ’Spring’ and year= 2010);
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This example shows that it is possible to write the same query several ways in
SQL. This flexibility is beneficial, since it allows a user to think about the query in
the way that seems most natural. We shall see that there is a substantial amount
of redundancy in SQL.

We use the not in construct in a way similar to the in construct. For example,
to find all the courses taught in the Fall 2009 semester but not in the Spring 2010
semester, we can write:

select distinct course id
from section
where semester = ’Fall’ and year= 2009 and
course id not in (select course id

from section
where semester = ’Spring’ and year= 2010);

The in and not in operators can also be used on enumerated sets. The follow-
ing query selects the names of instructors whose names are neither “Mozart” nor
“Einstein”.

select distinct name
from instructor
where name not in (’Mozart’, ’Einstein’);

In the preceding examples, we tested membership in a one-attribute relation.
It is also possible to test for membership in an arbitrary relation in SQL. For
example, we can write the query “find the total number of (distinct) students who
have taken course sections taught by the instructor with ID 110011” as follows:

select count (distinct ID)
from takes
where (course id, sec id, semester, year) in (select course id, sec id, semester, year

from teaches
where teaches.ID= 10101);

3.8.2 Set Comparison

As an example of the ability of a nested subquery to compare sets, consider the
query “Find the names of all instructors whose salary is greater than at least one
instructor in the Biology department.” In Section 3.4.1, we wrote this query as
follows:

select distinct T.name
from instructor as T, instructor as S
where T.salary > S.salary and S.dept name = ’Biology’;
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SQL does, however, offer an alternative style for writing the preceding query. The
phrase “greater than at least one” is represented in SQL by > some. This construct
allows us to rewrite the query in a form that resembles closely our formulation
of the query in English.

select name
from instructor
where salary > some (select salary

from instructor
where dept name = ’Biology’);

The subquery:

(select salary
from instructor
where dept name = ’Biology’)

generates the set of all salary values of all instructors in the Biology department.
The > some comparison in the where clause of the outer select is true if the salary
value of the tuple is greater than at least one member of the set of all salary values
for instructors in Biology.

SQL also allows < some, <= some, >= some, = some, and <> some com-
parisons. As an exercise, verify that = some is identical to in, whereas <> some
is not the same as not in.8

Now we modify our query slightly. Let us find the names of all instructors
that have a salary value greater than that of each instructor in the Biology depart-
ment. The construct > all corresponds to the phrase “greater than all.” Using this
construct, we write the query as follows:

select name
from instructor
where salary > all (select salary

from instructor
where dept name = ’Biology’);

As it does for some, SQL also allows < all, <= all, >= all, = all, and <> all
comparisons. As an exercise, verify that <> all is identical to not in, whereas =
all is not the same as in.

As another example of set comparisons, consider the query “Find the depart-
ments that have the highest average salary.” We begin by writing a query to find
all average salaries, and then nest it as a subquery of a larger query that finds

8The keyword any is synonymous to some in SQL. Early versions of SQL allowed only any. Later versions added the
alternative some to avoid the linguistic ambiguity of the word any in English.
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those departments for which the average salary is greater than or equal to all
average salaries:

select dept name
from instructor
group by dept name
having avg (salary) >= all (select avg (salary)

from instructor
group by dept name);

3.8.3 Test for Empty Relations

SQL includes a feature for testing whether a subquery has any tuples in its result.
The exists construct returns the value true if the argument subquery is nonempty.
Using the exists construct, we can write the query “Find all courses taught in both
the Fall 2009 semester and in the Spring 2010 semester” in still another way:

select course id
from section as S
where semester = ’Fall’ and year= 2009 and

exists (select *
from section as T
where semester = ’Spring’ and year= 2010 and

S.course id= T.course id);

The above query also illustrates a feature of SQL where a correlation name
from an outer query (S in the above query), can be used in a subquery in the
where clause. A subquery that uses a correlation name from an outer query is
called a correlated subquery.

In queries that contain subqueries, a scoping rule applies for correlation
names. In a subquery, according to the rule, it is legal to use only correlation
names defined in the subquery itself or in any query that contains the subquery.
If a correlation name is defined both locally in a subquery and globally in a
containing query, the local definition applies. This rule is analogous to the usual
scoping rules used for variables in programming languages.

We can test for the nonexistence of tuples in a subquery by using the not exists
construct. We can use the not exists construct to simulate the set containment (that
is, superset) operation: We can write “relation Acontains relation B” as “not exists
(B except A).” (Although it is not part of the current SQL standards, the contains
operator was present in some early relational systems.) To illustrate the not exists
operator, consider the query “Find all students who have taken all courses offered
in the Biology department.” Using the except construct, we can write the query
as follows:
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select distinct S.ID, S.name
from student as S
where not exists ((select course id

from course
where dept name = ’Biology’)
except
(select T.course id
from takes as T
where S.ID = T.ID));

Here, the subquery:

(select course id
from course
where dept name = ’Biology’)

finds the set of all courses offered in the Biology department. The subquery:

(select T.course id
from takes as T
where S.ID = T.ID)

finds all the courses that student S.ID has taken. Thus, the outer select takes each
student and tests whether the set of all courses that the student has taken contains
the set of all courses offered in the Biology department.

3.8.4 Test for the Absence of Duplicate Tuples

SQL includes a boolean function for testing whether a subquery has duplicate
tuples in its result. The unique construct9 returns the value true if the argument
subquery contains no duplicate tuples. Using the unique construct, we can write
the query “Find all courses that were offered at most once in 2009” as follows:

select T.course id
from course as T
where unique (select R.course id

from section as R
where T.course id= R.course id and

R.year = 2009);

Note that if a course is not offered in 2009, the subquery would return an empty
result, and the unique predicate would evaluate to true on the empty set.

An equivalent version of the above query not using the unique construct is:

9This construct is not yet widely implemented.
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select T.course id
from course as T
where 1 <= (select count(R.course id)

from section as R
where T.course id= R.course id and

R.year = 2009);

We can test for the existence of duplicate tuples in a subquery by using the
not unique construct. To illustrate this construct, consider the query “Find all
courses that were offered at least twice in 2009” as follows:

select T.course id
from course as T
where not unique (select R.course id

from section as R
where T.course id= R.course id and

R.year = 2009);

Formally, the unique test on a relation is defined to fail if and only if the
relation contains two tuples t1 and t2 such that t1 = t2. Since the test t1 = t2 fails
if any of the fields of t1 or t2 are null, it is possible for unique to be true even if
there are multiple copies of a tuple, as long as at least one of the attributes of the
tuple is null.

3.8.5 Subqueries in the From Clause

SQL allows a subquery expression to be used in the from clause. The key concept
applied here is that any select-from-where expression returns a relation as a result
and, therefore, can be inserted into another select-from-where anywhere that a
relation can appear.

Consider the query “Find the average instructors’ salaries of those depart-
ments where the average salary is greater than $42,000.” We wrote this query in
Section 3.7 by using the having clause. We can now rewrite this query, without
using the having clause, by using a subquery in the from clause, as follows:

select dept name, avg salary
from (select dept name, avg (salary) as avg salary

from instructor
group by dept name)

where avg salary > 42000;

The subquery generates a relation consisting of the names of all departments and
their corresponding average instructors’ salaries. The attributes of the subquery
result can be used in the outer query, as can be seen in the above example.
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Note that we do not need to use the having clause, since the subquery in
the from clause computes the average salary, and the predicate that was in the
having clause earlier is now in the where clause of the outer query.

We can give the subquery result relation a name, and rename the attributes,
using the as clause, as illustrated below.

select dept name, avg salary
from (select dept name, avg (salary)

from instructor
group by dept name)
as dept avg (dept name, avg salary)

where avg salary > 42000;

The subquery result relation is named dept avg, with the attributes dept name and
avg salary.

Nested subqueries in the from clause are supported by most but not all SQL
implementations. However, some SQL implementations, notably Oracle, do not
support renaming of the result relation in the from clause.

As another example, suppose we wish to find the maximum across all de-
partments of the total salary at each department. The having clause does not help
us in this task, but we can write this query easily by using a subquery in the from
clause, as follows:

select max (tot salary)
from (select dept name, sum(salary)

from instructor
group by dept name) as dept total (dept name, tot salary);

We note that nested subqueries in the from clause cannot use correlation
variables from other relations in the from clause. However, SQL:2003 allows a
subquery in the from clause that is prefixed by the lateral keyword to access
attributes of preceding tables or subqueries in the from clause. For example, if
we wish to print the names of each instructor, along with their salary and the
average salary in their department, we could write the query as follows:

select name, salary, avg salary
from instructor I1, lateral (select avg(salary) as avg salary

from instructor I2
where I2.dept name= I1.dept name);

Without the lateral clause, the subquery cannot access the correlation variable
I1 from the outer query. Currently, only a few SQL implementations, such as IBM
DB2, support the lateral clause.
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3.8.6 The with Clause

The with clause provides a way of defining a temporary relation whose definition
is available only to the query in which the with clause occurs. Consider the
following query, which finds those departments with the maximum budget.

with max budget (value) as
(select max(budget)
from department)

select budget
from department, max budget
where department.budget = max budget.value;

The with clause defines the temporary relation max budget, which is used in
the immediately following query. The with clause, introduced in SQL:1999, is
supported by many, but not all, database systems.

We could have written the above query by using a nested subquery in either
the from clause or the where clause. However, using nested subqueries would
have made the query harder to read and understand. The with clause makes the
query logic clearer; it also permits a view definition to be used in multiple places
within a query.

For example, suppose we want to find all departments where the total salary
is greater than the average of the total salary at all departments. We can write the
query using the with clause as follows.

with dept total (dept name, value) as
(select dept name, sum(salary)
from instructor
group by dept name),

dept total avg(value) as
(select avg(value)
from dept total)

select dept name
from dept total, dept total avg
where dept total.value >= dept total avg.value;

We can, of course, create an equivalent query without the with clause, but it would
be more complicated and harder to understand. You can write the equivalent
query as an exercise.

3.8.7 Scalar Subqueries

SQL allows subqueries to occur wherever an expression returning a value is
permitted, provided the subquery returns only one tuple containing a single
attribute; such subqueries are called scalar subqueries. For example, a subquery



98 Chapter 3 Introduction to SQL

can be used in the select clause as illustrated in the following example that lists
all departments along with the number of instructors in each department:

select dept name,
(select count(*)
from instructor
where department.dept name = instructor.dept name)

as num instructors
from department;

The subquery in the above example is guaranteed to return only a single value
since it has a count(*) aggregate without a group by. The example also illustrates
the usage of correlation variables, that is, attributes of relations in the from clause
of the outer query, such as department.dept name in the above example.

Scalar subqueries can occur in select, where, and having clauses. Scalar sub-
queries may also be defined without aggregates. It is not always possible to figure
out at compile time if a subquery can return more than one tuple in its result;
if the result has more than one tuple when the subquery is executed, a run-time
error occurs.

Note that technically the type of a scalar subquery result is still a relation,
even if it contains a single tuple. However, when a scalar subquery is used in an
expression where a value is expected, SQL implicitly extracts the value from the
single attribute of the single tuple in the relation, and returns that value.

3.9 Modification of the Database

We have restricted our attention until now to the extraction of information from
the database. Now, we show how to add, remove, or change information with SQL.

3.9.1 Deletion

A delete request is expressed in much the same way as a query. We can delete only
whole tuples; we cannot delete values on only particular attributes. SQL expresses
a deletion by

delete from r
where P;

where P represents a predicate and r represents a relation. The delete statement
first finds all tuples t in r for which P(t) is true, and then deletes them from r. The
where clause can be omitted, in which case all tuples in r are deleted.

Note that a delete command operates on only one relation. If we want to delete
tuples from several relations, we must use one delete command for each relation.
The predicate in the where clause may be as complex as a select command’s
where clause. At the other extreme, the where clause may be empty. The request
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delete from instructor;

deletes all tuples from the instructor relation. The instructor relation itself still
exists, but it is empty.

Here are examples of SQL delete requests:

• Delete all tuples in the instructor relation pertaining to instructors in the
Finance department.

delete from instructor
where dept name= ’Finance’;

• Delete all instructors with a salary between $13,000 and $15,000.

delete from instructor
where salary between 13000 and 15000;

• Delete all tuples in the instructor relation for those instructors associated with
a department located in the Watson building.

delete from instructor
where dept name in (select dept name

from department
where building = ’Watson’);

This delete request first finds all departments located in Watson, and then
deletes all instructor tuples pertaining to those departments.

Note that, although we may delete tuples from only one relation at a time,
we may reference any number of relations in a select-from-where nested in the
where clause of a delete. The delete request can contain a nested select that
references the relation from which tuples are to be deleted. For example, suppose
that we want to delete the records of all instructors with salary below the average
at the university. We could write:

delete from instructor
where salary< (select avg (salary)

from instructor);

The delete statement first tests each tuple in the relation instructor to check
whether the salary is less than the average salary of instructors in the univer-
sity. Then, all tuples that fail the test—that is, represent an instructor with a
lower-than-average salary—are deleted. Performing all the tests before perform-
ing any deletion is important—if some tuples are deleted before other tuples
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have been tested, the average salary may change, and the final result of the delete
would depend on the order in which the tuples were processed!

3.9.2 Insertion

To insert data into a relation, we either specify a tuple to be inserted or write a
query whose result is a set of tuples to be inserted. Obviously, the attribute values
for inserted tuples must be members of the corresponding attribute’s domain.
Similarly, tuples inserted must have the correct number of attributes.

The simplest insert statement is a request to insert one tuple. Suppose that
we wish to insert the fact that there is a course CS-437 in the Computer Science
department with title “Database Systems”, and 4 credit hours. We write:

insert into course
values (’CS-437’, ’Database Systems’, ’Comp. Sci.’, 4);

In this example, the values are specified in the order in which the corresponding
attributes are listed in the relation schema. For the benefit of users who may not
remember the order of the attributes, SQL allows the attributes to be specified as
part of the insert statement. For example, the following SQL insert statements are
identical in function to the preceding one:

insert into course (course id, title, dept name, credits)
values (’CS-437’, ’Database Systems’, ’Comp. Sci.’, 4);

insert into course (title, course id, credits, dept name)
values (’Database Systems’, ’CS-437’, 4, ’Comp. Sci.’);

More generally, we might want to insert tuples on the basis of the result of a
query. Suppose that we want to make each student in the Music department who
has earned more than 144 credit hours, an instructor in the Music department,
with a salary of $18,000. We write:

insert into instructor
select ID, name, dept name, 18000
from student
where dept name = ’Music’ and tot cred > 144;

Instead of specifying a tuple as we did earlier in this section, we use a select to
specify a set of tuples. SQL evaluates the select statement first, giving a set of
tuples that is then inserted into the instructor relation. Each tuple has an ID, a
name, a dept name (Music), and an salary of $18,000.

It is important that we evaluate the select statement fully before we carry
out any insertions. If we carry out some insertions even as the select statement is
being evaluated, a request such as:
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insert into student
select *
from student;

might insert an infinite number of tuples, if the primary key constraint on student
were absent. Without the primary key constraint, the request would insert the
first tuple in student again, creating a second copy of the tuple. Since this second
copy is part of student now, the select statement may find it, and a third copy
would be inserted into student. The select statement may then find this third
copy and insert a fourth copy, and so on, forever. Evaluating the select statement
completely before performing insertions avoids such problems. Thus, the above
insert statement would simply duplicate every tuple in the student relation, if the
relation did not have a primary key constraint.

Our discussion of the insert statement considered only examples in which
a value is given for every attribute in inserted tuples. It is possible for inserted
tuples to be given values on only some attributes of the schema. The remaining
attributes are assigned a null value denoted by null. Consider the request:

insert into student
values (’3003’, ’Green’, ’Finance’, null);

The tuple inserted by this request specified that a student with ID “3003” is in the
Finance department, but the tot cred value for this student is not known. Consider
the query:

select student
from student
where tot cred > 45;

Since the tot cred value of student “3003” is not known, we cannot determine
whether it is greater than 45.

Most relational database products have special “bulk loader” utilities to insert
a large set of tuples into a relation. These utilities allow data to be read from
formatted text files, and can execute much faster than an equivalent sequence of
insert statements.

3.9.3 Updates

In certain situations, we may wish to change a value in a tuple without changing
all values in the tuple. For this purpose, the update statement can be used. As we
could for insert and delete, we can choose the tuples to be updated by using a
query.

Suppose that annual salary increases are being made, and salaries of all in-
structors are to be increased by 5 percent. We write:
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update instructor
set salary= salary * 1.05;

The preceding update statement is applied once to each of the tuples in instructor
relation.

If a salary increase is to be paid only to instructors with salary of less than
$70,000, we can write:

update instructor
set salary = salary * 1.05
where salary < 70000;

In general, the where clause of the update statement may contain any construct
legal in the where clause of the select statement (including nested selects). As
with insert and delete, a nested select within an update statement may reference
the relation that is being updated. As before, SQL first tests all tuples in the relation
to see whether they should be updated, and carries out the updates afterward.
For example, we can write the request “Give a 5 percent salary raise to instructors
whose salary is less than average” as follows:

update instructor
set salary = salary * 1.05
where salary < (select avg (salary)

from instructor);

Let us now suppose that all instructors with salary over $100,000 receive a
3 percent raise, whereas all others receive a 5 percent raise. We could write two
update statements:

update instructor
set salary = salary * 1.03
where salary > 100000;

update instructor
set salary = salary * 1.05
where salary <= 100000;

Note that the order of the two update statements is important. If we changed the
order of the two statements, an instructor with a salary just under $100,000 would
receive an over 8 percent raise.

SQL provides a case construct that we can use to perform both the updates
with a single update statement, avoiding the problem with the order of updates.
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update instructor
set salary = case

when salary <= 100000 then salary * 1.05
else salary * 1.03

end

The general form of the case statement is as follows.

case
when pred1 then result1
when pred2 then result2
. . .

when predn then resultn
else result0

end

The operation returns resulti , where i is the first of pred1, pred2, . . . , predn that is
satisfied; if none of the predicates is satisfied, the operation returns result0. Case
statements can be used in any place where a value is expected.

Scalar subqueries are also useful in SQL update statements, where they can be
used in the set clause. Consider an update where we set the tot cred attribute of
each student tuple to the sum of the credits of courses successfully completed by
the student. We assume that a course is successfully completed if the student has
a grade that is not ’F’ or null. To specify this update, we need to use a subquery
in the set clause, as shown below:

update student S
set tot cred = (

select sum(credits)
from takes natural join course
where S.ID= takes.ID and

takes.grade <> ’F’ and
takes.grade is not null);

Observe that the subquery uses a correlation variable S from the update statement.
In case a student has not successfully completed any course, the above update
statement would set the tot cred attribute value to null. To set the value to 0
instead, we could use another update statement to replace null values by 0; a
better alternative is to replace the clause “select sum(credits)” in the preceding
subquery by the following select clause using a case expression:

select case
when sum(credits) is not null then sum(credits)
else 0
end
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3.10 Summary

• SQL is the most influential commercially marketed relational query language.
The SQL language has several parts:

◦ Data-definition language (DDL), which provides commands for defining
relation schemas, deleting relations, and modifying relation schemas.

◦ Data-manipulation language (DML), which includes a query language
and commands to insert tuples into, delete tuples from, and modify tuples
in the database.

• The SQL data-definition language is used to create relations with specified
schemas. In addition to specifying the names and types of relation attributes,
SQL also allows the specification of integrity constraints such as primary-key
constraints and foreign-key constraints.

• SQL includes a variety of language constructs for queries on the database.
These include the select, from, and where clauses, and support for the natural
join operation.

• SQL also provides mechanisms to rename both attributes and relations, and
to order query results by sorting on specified attributes.

• SQL supports basic set operations on relations including union, intersect,
and except, which correspond to the mathematical set-theory operations ∪,
∩, and −.

• SQL handles queries on relations containing null values by adding the truth
value “unknown” to the usual truth values of true and false.

• SQL supports aggregation, including the ability to divide a relation into
groups, applying aggregation separately on each group. SQL also supports
set operations on groups.

• SQL supports nested subqueries in the where, and from clauses of an outer
query. It also supports scalar subqueries, wherever an expression returning
a value is permitted.

• SQL provides constructs for updating, inserting, and deleting information.

Review Terms

• Data-definition language
• Data-manipulation language
• Database schema
• Database instance
• Relation schema

• Relation instance
• Primary key
• Foreign key

◦ Referencing relation

◦ Referenced relation
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• Null value
• Query language
• SQL query structure

◦ select clause

◦ from clause

◦ where clause

• Natural join operation
• as clause
• order by clause
• Correlation name (correlation vari-

able, tuple variable)
• Set operations

◦ union

◦ intersect

◦ except

• Null values

◦ Truth value “unknown”

• Aggregate functions

◦ avg, min, max, sum, count

◦ group by

◦ having

• Nested subqueries
• Set comparisons

◦ {<, <=, >, >=} { some, all }
◦ exists

◦ unique

• lateral clause
• with clause
• Scalar subquery
• Database modification

◦ Deletion

◦ Insertion

◦ Updating

Practice Exercises

3.1 Write the following queries in SQL, using the university schema. (We sug-
gest you actually run these queries on a database, using the sample data
that we provide on the Web site of the book, db-book.com. Instructions for
setting up a database, and loading sample data, are provided on the above
Web site.)

a. Find the titles of courses in the Comp. Sci. department that have 3
credits.

b. Find the IDs of all students who were taught by an instructor named
Einstein; make sure there are no duplicates in the result.

c. Find the highest salary of any instructor.

d. Find all instructors earning the highest salary (there may be more
than one with the same salary).

e. Find the enrollment of each section that was offered in Autumn 2009.

f. Find the maximum enrollment, across all sections, in Autumn 2009.

g. Find the sections that had the maximum enrollment in Autumn 2009.
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person (driver id, name, address)
car (license, model, year)
accident (report number, date, location)
owns (driver id, license)
participated (report number, license, driver id, damage amount)

Figure 3.18 Insurance database for Exercises 3.4 and 3.14.

3.2 Suppose you are given a relation grade points(grade, points), which provides
a conversion from letter grades in the takes relation to numeric scores; for
example an “A” grade could be specified to correspond to 4 points, an “A−”
to 3.7 points, a “B+” to 3.3 points, a “B” to 3 points, and so on. The grade
points earned by a student for a course offering (section) is defined as the
number of credits for the course multiplied by the numeric points for the
grade that the student received.

Given the above relation, and our university schema, write each of the
following queries in SQL. You can assume for simplicity that no takes tuple
has the null value for grade.

a. Find the total grade-points earned by the student with ID 12345, across
all courses taken by the student.

b. Find the grade-point average (GPA) for the above student, that is,
the total grade-points divided by the total credits for the associated
courses.

c. Find the ID and the grade-point average of every student.

3.3 Write the following inserts, deletes or updates in SQL, using the university
schema.

a. Increase the salary of each instructor in the Comp. Sci. department
by 10%.

b. Delete all courses that have never been offered (that is, do not occur
in the section relation).

c. Insert every student whose tot cred attribute is greater than 100 as an
instructor in the same department, with a salary of $10,000.

3.4 Consider the insurance database of Figure 3.18, where the primary keys
are underlined. Construct the following SQL queries for this relational
database.

a. Find the total number of people who owned cars that were involved
in accidents in 2009.

b. Add a new accident to the database; assume any values for required
attributes.

c. Delete the Mazda belonging to “John Smith”.
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branch(branch name, branch city, assets)
customer (customer name, customer street, customer city)
loan (loan number, branch name, amount)
borrower (customer name, loan number)
account (account number, branch name, balance )
depositor (customer name, account number)

Figure 3.19 Banking database for Exercises 3.8 and 3.15.

3.5 Suppose that we have a relation marks(ID, score) and we wish to assign
grades to students based on the score as follows: grade F if score < 40,
grade C if 40 ≤ score < 60, grade B if 60 ≤ score < 80, and grade A if 80 ≤
score. Write SQL queries to do the following:

a. Display the grade for each student, based on the marks relation.

b. Find the number of students with each grade.

3.6 The SQL like operator is case sensitive, but the lower() function on strings
can be used to perform case insensitive matching. To show how, write a
query that finds departments whose names contain the string “sci” as a
substring, regardless of the case.

3.7 Consider the SQL query

select distinct p.a1
from p, r1, r2
where p.a1 = r1.a1 or p.a1 = r2.a1

Under what conditions does the preceding query select values of p.a1 that
are either in r1 or in r2? Examine carefully the cases where one of r1 or r2
may be empty.

3.8 Consider the bank database of Figure 3.19, where the primary keys are un-
derlined. Construct the following SQL queries for this relational database.

a. Find all customers of the bank who have an account but not a loan.

b. Find the names of all customers who live on the same street and in
the same city as “Smith”.

c. Find the names of all branches with customers who have an account
in the bank and who live in “Harrison”.

3.9 Consider the employee database of Figure 3.20, where the primary keys are
underlined. Give an expression in SQL for each of the following queries.

a. Find the names and cities of residence of all employees who work for
“First Bank Corporation”.
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employee (employee name, street, city)
works (employee name, company name, salary)
company (company name, city)
manages (employee name, manager name)

Figure 3.20 Employee database for Exercises 3.9, 3.10, 3.16, 3.17, and 3.20.

b. Find the names, street addresses, and cities of residence of all em-
ployees who work for “First Bank Corporation” and earn more than
$10,000.

c. Find all employees in the database who do not work for “First Bank
Corporation”.

d. Find all employees in the database who earn more than each employee
of “Small Bank Corporation”.

e. Assume that the companies may be located in several cities. Find all
companies located in every city in which “Small Bank Corporation”
is located.

f. Find the company that has the most employees.

g. Find those companies whose employees earn a higher salary, on av-
erage, than the average salary at “First Bank Corporation”.

3.10 Consider the relational database of Figure 3.20. Give an expression in SQL
for each of the following queries.

a. Modify the database so that “Jones” now lives in “Newtown”.

b. Give all managers of “First Bank Corporation” a 10 percent raise
unless the salary becomes greater than $100,000; in such cases, give
only a 3 percent raise.

Exercises

3.11 Write the following queries in SQL, using the university schema.

a. Find the names of all students who have taken at least one Comp. Sci.
course; make sure there are no duplicate names in the result.

b. Find the IDs and names of all students who have not taken any course
offering before Spring 2009.

c. For each department, find the maximum salary of instructors in that
department. You may assume that every department has at least one
instructor.

d. Find the lowest, across all departments, of the per-department maxi-
mum salary computed by the preceding query.



Exercises 109

3.12 Write the following queries in SQL, using the university schema.

a. Create a new course “CS-001”, titled “Weekly Seminar”, with 0 credits.

b. Create a section of this course in Autumn 2009, with sec id of 1.

c. Enroll every student in the Comp. Sci. department in the above sec-
tion.

d. Delete enrollments in the above section where the student’s name is
Chavez.

e. Delete the course CS-001. What will happen if you run this delete
statement without first deleting offerings (sections) of this course.

f. Delete all takes tuples corresponding to any section of any course with
the word “database” as a part of the title; ignore case when matching
the word with the title.

3.13 Write SQL DDL corresponding to the schema in Figure 3.18. Make any
reasonable assumptions about data types, and be sure to declare primary
and foreign keys.

3.14 Consider the insurance database of Figure 3.18, where the primary keys
are underlined. Construct the following SQL queries for this relational
database.

a. Find the number of accidents in which the cars belonging to “John
Smith” were involved.

b. Update the damage amount for the car with the license number
“AABB2000” in the accident with report number “AR2197” to $3000.

3.15 Consider the bank database of Figure 3.19, where the primary keys are un-
derlined. Construct the following SQL queries for this relational database.

a. Find all customers who have an account at all the branches located in
“Brooklyn”.

b. Find out the total sum of all loan amounts in the bank.

c. Find the names of all branches that have assets greater than those of
at least one branch located in “Brooklyn”.

3.16 Consider the employee database of Figure 3.20, where the primary keys are
underlined. Give an expression in SQL for each of the following queries.

a. Find the names of all employees who work for “First Bank Corpora-
tion”.

b. Find all employees in the database who live in the same cities as the
companies for which they work.

c. Find all employees in the database who live in the same cities and on
the same streets as do their managers.
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d. Find all employees who earn more than the average salary of all
employees of their company.

e. Find the company that has the smallest payroll.

3.17 Consider the relational database of Figure 3.20. Give an expression in SQL
for each of the following queries.

a. Give all employees of “First Bank Corporation” a 10 percent raise.

b. Give all managers of “First Bank Corporation” a 10 percent raise.

c. Delete all tuples in the works relation for employees of “Small Bank
Corporation”.

3.18 List two reasons why null values might be introduced into the database.

3.19 Show that, in SQL, <> all is identical to not in.

3.20 Give an SQL schema definition for the employee database of Figure 3.20.
Choose an appropriate domain for each attribute and an appropriate pri-
mary key for each relation schema.

3.21 Consider the library database of Figure 3.21. Write the following queries in
SQL.

a. Print the names of members who have borrowed any book published
by “McGraw-Hill”.

b. Print the names of members who have borrowed all books published
by “McGraw-Hill”.

c. For each publisher, print the names of members who have borrowed
more than five books of that publisher.

d. Print the average number of books borrowed per member. Take into
account that if an member does not borrow any books, then that
member does not appear in the borrowed relation at all.

3.22 Rewrite the where clause

where unique (select title from course)

without using the unique construct.

member(memb no, name, age)
book(isbn, title, authors, publisher)
borrowed(memb no, isbn, date)

Figure 3.21 Library database for Exercise 3.21.
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3.23 Consider the query:

select course id, semester, year, sec id, avg (tot cred)
from takes natural join student
where year = 2009
group by course id, semester, year, sec id
having count (ID) >= 2;

Explain why joining section as well in the from clause would not change
the result.

3.24 Consider the query:

with dept total (dept name, value) as
(select dept name, sum(salary)
from instructor
group by dept name),

dept total avg(value) as
(select avg(value)
from dept total)

select dept name
from dept total, dept total avg
where dept total.value >= dept total avg.value;

Rewrite this query without using the with construct.

Tools

A number of relational database systems are available commercially, including
IBM DB2, IBM Informix, Oracle, Sybase, and Microsoft SQL Server. In addition
several database systems can be downloaded and used free of charge, including
PostgreSQL, MySQL (free except for certain kinds of commercial use), and Oracle
Express edition.

Most database systems provide a command line interface for submitting SQL
commands. In addition, most databases also provide graphical user interfaces
(GUIs), which simplify the task of browsing the database, creating and submitting
queries, and administering the database. Commercial IDEs for SQLthat work across
multiple database platforms, include Embarcadero’s RAD Studio and Aqua Data
Studio.

For PostgreSQL, the pgAdmin tool provides GUI functionality, while for MySQL,
phpMyAdmin provides GUI functionality. The NetBeans IDE provides a GUI front
end that works with a number of different databases, but with limited functional-
ity, while the Eclipse IDE supports similar functionality through several different
plugins such as the Data Tools Platform (DTP) and JBuilder.

SQL schema definitions and sample data for the university schema are pro-
vided on the Web site for this book, db-book.com. The Web site also contains
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instructions on how to set up and access some popular database systems. The
SQL constructs discussed in this chapter are part of the SQL standard, but certain
features are not supported by some databases. The Web site lists these incom-
patibilities, which you will need to take into account when executing queries on
those databases.

Bibliographical Notes

The original version of SQL, called Sequel 2, is described by Chamberlin et al.
[1976]. Sequel 2 was derived from the language Square (Boyce et al. [1975] and
Chamberlin and Boyce [1974]). The American National Standard SQL-86 is de-
scribed in ANSI [1986]. The IBM Systems Application Architecture definition of
SQL is defined by IBM [1987]. The official standards for SQL-89 and SQL-92 are
available as ANSI [1989] and ANSI [1992], respectively.

Textbook descriptions of the SQL-92 language include Date and Darwen [1997],
Melton and Simon [1993], and Cannan and Otten [1993]. Date and Darwen [1997]
and Date [1993a] include a critique of SQL-92 from a programming-languages
perspective.

Textbooks on SQL:1999 include Melton and Simon [2001] and Melton [2002].
Eisenberg and Melton [1999] provide an overview of SQL:1999. Donahoo and
Speegle [2005] covers SQL from a developers’ perspective. Eisenberg et al. [2004]
provides an overview of SQL:2003.

The SQL:1999, SQL:2003, SQL:2006 and SQL:2008 standards are published as a
collection of ISO/IEC standards documents, which are described in more detail
in Section 24.4. The standards documents are densely packed with information
and hard to read, and of use primarily for database system implementers. The
standards documents are available from the Web site http://webstore.ansi.org, but
only for purchase.

Many database products support SQL features beyond those specified in the
standard, and may not support some features of the standard. More information
on these features may be found in the SQL user manuals of the respective products.

The processing of SQL queries, including algorithms and performance issues,
is discussed in Chapters 12 and 13. Bibliographic references on these matters
appear in those chapters.



C H A P T E R4
Intermediate SQL

In this chapter, we continue our study of SQL. We consider more complex forms
of SQL queries, view definition, transactions, integrity constraints, more details
regarding SQL data definition, and authorization.

4.1 Join Expressions

In Section 3.3.3, we introduced the natural join operation. SQL provides other
forms of the join operation, including the ability to specify an explicit join pred-
icate, and the ability to include in the result tuples that are excluded by natural
join. We shall discuss these forms of join in this section.

The examples in this section involve the two relations student and takes, shown
in Figures 4.1 and 4.2, respectively. Observe that the attribute grade has a value
null for the student with ID 98988, for the course BIO-301, section 1, taken in
Summer 2010. The null value indicates that the grade has not been awarded yet.

ID name dept name tot cred

00128 Zhang Comp. Sci. 102
12345 Shankar Comp. Sci. 32
19991 Brandt History 80
23121 Chavez Finance 110
44553 Peltier Physics 56
45678 Levy Physics 46
54321 Williams Comp. Sci. 54
55739 Sanchez Music 38
70557 Snow Physics 0
76543 Brown Comp. Sci. 58
76653 Aoi Elec. Eng. 60
98765 Bourikas Elec. Eng. 98
98988 Tanaka Biology 120

Figure 4.1 The student relation.

113
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ID course id sec id semester year grade

00128 CS-101 1 Fall 2009 A
00128 CS-347 1 Fall 2009 A-
12345 CS-101 1 Fall 2009 C
12345 CS-190 2 Spring 2009 A
12345 CS-315 1 Spring 2010 A
12345 CS-347 1 Fall 2009 A
19991 HIS-351 1 Spring 2010 B
23121 FIN-201 1 Spring 2010 C+
44553 PHY-101 1 Fall 2009 B-
45678 CS-101 1 Fall 2009 F
45678 CS-101 1 Spring 2010 B+
45678 CS-319 1 Spring 2010 B
54321 CS-101 1 Fall 2009 A-
54321 CS-190 2 Spring 2009 B+
55739 MU-199 1 Spring 2010 A-
76543 CS-101 1 Fall 2009 A
76543 CS-319 2 Spring 2010 A
76653 EE-181 1 Spring 2009 C
98765 CS-101 1 Fall 2009 C-
98765 CS-315 1 Spring 2010 B
98988 BIO-101 1 Summer 2009 A
98988 BIO-301 1 Summer 2010 null

Figure 4.2 The takes relation.

4.1.1 Join Conditions

In Section 3.3.3, we saw how to express natural joins, and we saw the join . . .

using clause, which is a form of natural join that only requires values to match
on specified attributes. SQL supports another form of join, in which an arbitrary
join condition can be specified.

The on condition allows a general predicate over the relations being joined.
This predicate is written like a where clause predicate except for the use of the
keyword on rather than where. Like the using condition, the on condition appears
at the end of the join expression.

Consider the following query, which has a join expression containing the on
condition.

select *
from student join takes on student.ID= takes.ID;

The on condition above specifies that a tuple from student matches a tuple from
takes if their ID values are equal. The join expression in this case is almost the same
as the join expression student natural join takes, since the natural join operation
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also requires that for a student tuple and a takes tuple to match. The one difference
is that the result has the ID attribute listed twice, in the join result, once for student
and once for takes, even though their ID values must be the same.

In fact, the above query is equivalent to the following query (in other words,
they generate exactly the same results):

select *
from student, takes
where student.ID= takes.ID;

As we have seen earlier, the relation name is used to disambiguate the attribute
name ID, and thus the two occurrences can be referred to as student.ID and takes.ID
respectively. A version of this query that displays the ID value only once is as
follows:

select student.ID as ID, name, dept name, tot cred,
course id, sec id, semester, year, grade

from student join takes on student.ID= takes.ID;

The result of the above query is shown in Figure 4.3.
The on condition can express any SQL predicate, and thus a join expressions

using the on condition can express a richer class of join conditions than natural
join. However, as illustrated by our preceding example, a query using a join
expression with an on condition can be replaced by an equivalent expression
without the on condition, with the predicate in the on clause moved to the where
clause. Thus, it may appear that the on condition is a redundant feature of SQL.

However, there are two good reasons for introducing the on condition. First,
we shall see shortly that for a kind of join called an outer join, on conditions do
behave in a manner different from where conditions. Second, an SQL query is
often more readable by humans if the join condition is specified in the on clause
and the rest of the conditions appear in the where clause.

4.1.2 Outer Joins

Suppose we wish to display a list of all students, displaying their ID, and name,
dept name, and tot cred, along with the courses that they have taken. The following
SQL query may appear to retrieve the required information:

select *
from student natural join takes;

Unfortunately, the above query does not work quite as intended. Suppose that
there is some student who takes no courses. Then the tuple in the student relation
for that particular student would not satisfy the condition of a natural join with
any tuple in the takes relation, and that student’s data would not appear in the
result. We would thus not see any information about students who have not taken
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ID name dept name tot cred course id sec id semester year grade
00128 Zhang Comp. Sci. 102 CS-101 1 Fall 2009 A
00128 Zhang Comp. Sci. 102 CS-347 1 Fall 2009 A-
12345 Shankar Comp. Sci. 32 CS-101 1 Fall 2009 C
12345 Shankar Comp. Sci. 32 CS-190 2 Spring 2009 A
12345 Shankar Comp. Sci. 32 CS-315 1 Spring 2010 A
12345 Shankar Comp. Sci. 32 CS-347 1 Fall 2009 A
19991 Brandt History 80 HIS-351 1 Spring 2010 B
23121 Chavez Finance 110 FIN-201 1 Spring 2010 C+
44553 Peltier Physics 56 PHY-101 1 Fall 2009 B-
45678 Levy Physics 46 CS-101 1 Fall 2009 F
45678 Levy Physics 46 CS-101 1 Spring 2010 B+
45678 Levy Physics 46 CS-319 1 Spring 2010 B
54321 Williams Comp. Sci. 54 CS-101 1 Fall 2009 A-
54321 Williams Comp. Sci. 54 CS-190 2 Spring 2009 B+
55739 Sanchez Music 38 MU-199 1 Spring 2010 A-
76543 Brown Comp. Sci. 58 CS-101 1 Fall 2009 A
76543 Brown Comp. Sci. 58 CS-319 2 Spring 2010 A
76653 Aoi Elec. Eng. 60 EE-181 1 Spring 2009 C
98765 Bourikas Elec. Eng. 98 CS-101 1 Fall 2009 C-
98765 Bourikas Elec. Eng. 98 CS-315 1 Spring 2010 B
98988 Tanaka Biology 120 BIO-101 1 Summer 2009 A
98988 Tanaka Biology 120 BIO-301 1 Summer 2010 null

Figure 4.3 The result of student join takes on student.ID= takes.ID with second occurrence
of ID omitted.

any courses. For example, in the student and takes relations of Figures 4.1 and 4.2,
note that student Snow, with ID 70557, has not taken any courses. Snow appears
in student, but Snow’s ID number does not appear in the ID column of takes. Thus,
Snow does not appear in the result of the natural join.

More generally, some tuples in either or both of the relations being joined may
be “lost” in this way. The outer join operation works in a manner similar to the
join operations we have already studied, but preserve those tuples that would be
lost in a join, by creating tuples in the result containing null values.

For example, to ensure that the student named Snow from our earlier example
appears in the result, a tuple could be added to the join result with all attributes
from the student relation set to the corresponding values for the student Snow,
and all the remaining attributes which come from the takes relation, namely course
id, sec id, semester, and year, set to null. Thus the tuple for the student Snow is

preserved in the result of the outer join.
There are in fact three forms of outer join:

• The left outer join preserves tuples only in the relation named before (to the
left of) the left outer join operation.
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• The right outer join preserves tuples only in the relation named after (to the
right of) the right outer join operation.

• The full outer join preserves tuples in both relations.

In contrast, the join operations we studied earlier that do not preserve nonmatched
tuples are called inner join operations, to distinguish them from the outer-join
operations.

We now explain exactly how each form of outer join operates. We can compute
the left outer-join operation as follows. First, compute the result of the inner join
as before. Then, for every tuple t in the left-hand-side relation that does not match
any tuple in the right-hand-side relation in the inner join, add a tuple r to the
result of the join constructed as follows:

• The attributes of tuple r that are derived from the left-hand-side relation are
filled in with the values from tuple t.

• The remaining attributes of r are filled with null values.

Figure 4.4 shows the result of:

select *
from student natural left outer join takes;

That result includes student Snow (ID 70557), unlike the result of an inner join,
but the tuple for Snow includes nulls for the attributes that appear only in the
schema of the takes relation.

As another example of the use of the outer-join operation, we can write the
query “Find all students who have not taken a course” as:

select ID
from student natural left outer join takes
where course id is null;

The right outer join is symmetric to the left outer join. Tuples from the right-
hand-side relation that do not match any tuple in the left-hand-side relation are
padded with nulls and are added to the result of the right outer join. Thus, if we
rewrite our above query using a right outer join and swapping the order in which
we list the relations as follows:

select *
from takes natural right outer join student;

we get the same result except for the order in which the attributes appear in the
result (see Figure 4.5).

The full outer join is a combination of the left and right outer-join types.
After the operation computes the result of the inner join, it extends with nulls
those tuples from the left-hand-side relation that did not match with any from the



118 Chapter 4 Intermediate SQL

ID name dept name tot cred course id sec id semester year grade
00128 Zhang Comp. Sci. 102 CS-101 1 Fall 2009 A
00128 Zhang Comp. Sci. 102 CS-347 1 Fall 2009 A-
12345 Shankar Comp. Sci. 32 CS-101 1 Fall 2009 C
12345 Shankar Comp. Sci. 32 CS-190 2 Spring 2009 A
12345 Shankar Comp. Sci. 32 CS-315 1 Spring 2010 A
12345 Shankar Comp. Sci. 32 CS-347 1 Fall 2009 A
19991 Brandt History 80 HIS-351 1 Spring 2010 B
23121 Chavez Finance 110 FIN-201 1 Spring 2010 C+
44553 Peltier Physics 56 PHY-101 1 Fall 2009 B-
45678 Levy Physics 46 CS-101 1 Fall 2009 F
45678 Levy Physics 46 CS-101 1 Spring 2010 B+
45678 Levy Physics 46 CS-319 1 Spring 2010 B
54321 Williams Comp. Sci. 54 CS-101 1 Fall 2009 A-
54321 Williams Comp. Sci. 54 CS-190 2 Spring 2009 B+
55739 Sanchez Music 38 MU-199 1 Spring 2010 A-
70557 Snow Physics 0 null null null null null
76543 Brown Comp. Sci. 58 CS-101 1 Fall 2009 A
76543 Brown Comp. Sci. 58 CS-319 2 Spring 2010 A
76653 Aoi Elec. Eng. 60 EE-181 1 Spring 2009 C
98765 Bourikas Elec. Eng. 98 CS-101 1 Fall 2009 C-
98765 Bourikas Elec. Eng. 98 CS-315 1 Spring 2010 B
98988 Tanaka Biology 120 BIO-101 1 Summer 2009 A
98988 Tanaka Biology 120 BIO-301 1 Summer 2010 null

Figure 4.4 Result of student natural left outer join takes.

right-hand side relation, and adds them to the result. Similarly, it extends with
nulls those tuples from the right-hand-side relation that did not match with any
tuples from the left-hand-side relation and adds them to the result.

As an example of the use of full outer join, consider the following query:
“Display a list of all students in the Comp. Sci. department, along with the course
sections, if any, that they have taken in Spring 2009; all course sections from Spring
2009 must be displayed, even if no student from the Comp. Sci. department has
taken the course section.” This query can be written as:

select *
from (select *

from student
where dept name= ’Comp. Sci’)

natural full outer join
(select *
from takes
where semester = ’Spring’ and year = 2009);
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ID course id sec id semester year grade name dept name tot cred
00128 CS-101 1 Fall 2009 A Zhang Comp. Sci. 102
00128 CS-347 1 Fall 2009 A- Zhang Comp. Sci. 102
12345 CS-101 1 Fall 2009 C Shankar Comp. Sci. 32
12345 CS-190 2 Spring 2009 A Shankar Comp. Sci. 32
12345 CS-315 1 Spring 2010 A Shankar Comp. Sci. 32
12345 CS-347 1 Fall 2009 A Shankar Comp. Sci. 32
19991 HIS-351 1 Spring 2010 B Brandt History 80
23121 FIN-201 1 Spring 2010 C+ Chavez Finance 110
44553 PHY-101 1 Fall 2009 B- Peltier Physics 56
45678 CS-101 1 Fall 2009 F Levy Physics 46
45678 CS-101 1 Spring 2010 B+ Levy Physics 46
45678 CS-319 1 Spring 2010 B Levy Physics 46
54321 CS-101 1 Fall 2009 A- Williams Comp. Sci. 54
54321 CS-190 2 Spring 2009 B+ Williams Comp. Sci. 54
55739 MU-199 1 Spring 2010 A- Sanchez Music 38
70557 null null null null null Snow Physics 0
76543 CS-101 1 Fall 2009 A Brown Comp. Sci. 58
76543 CS-319 2 Spring 2010 A Brown Comp. Sci. 58
76653 EE-181 1 Spring 2009 C Aoi Elec. Eng. 60
98765 CS-101 1 Fall 2009 C- Bourikas Elec. Eng. 98
98765 CS-315 1 Spring 2010 B Bourikas Elec. Eng. 98
98988 BIO-101 1 Summer 2009 A Tanaka Biology 120
98988 BIO-301 1 Summer 2010 null Tanaka Biology 120

Figure 4.5 The result of takes natural right outer join student.

The on clause can be used with outer joins. The following query is identical
to the first query we saw using “student natural left outer join takes,” except that
the attribute ID appears twice in the result.

select *
from student left outer join takes on student.ID= takes.ID;

As we noted earlier, on and where behave differently for outer join. The reason
for this is that outer join adds null-padded tuples only for those tuples that do not
contribute to the result of the corresponding inner join. The on condition is part
of the outer join specification, but a where clause is not. In our example, the case
of the student tuple for student “Snow” with ID 70557, illustrates this distinction.
Suppose we modify the preceding query by moving the on clause predicate to
the where clause, and instead using an on condition of true.

select *
from student left outer join takes on true
where student.ID= takes.ID;
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Join types
inner join
le� outer join
right outer join
full outer join

Join conditions
natural
on < predicate>
using (A1, A2, . . ., An)

Figure 4.6 Join types and join conditions.

The earlier query, using the left outer join with the on condition, includes a tuple
(70557, Snow, Physics, 0, null, null, null, null, null, null ), because there is no tuple
in takes with ID = 70557. In the latter query, however, every tuple satisfies the join
condition true, so no null-padded tuples are generated by the outer join. The outer
join actually generates the Cartesian product of the two relations. Since there is
no tuple in takes with ID = 70557, every time a tuple appears in the outer join with
name = “Snow”, the values for student.ID and takes.ID must be different, and such
tuples would be eliminated by the where clause predicate. Thus student Snow
never appears in the result of the latter query.

4.1.3 Join Types and Conditions

To distinguish normal joins from outer joins, normal joins are called inner joins in
SQL. A join clause can thus specify inner join instead of outer join to specify that
a normal join is to be used. The keyword inner is, however, optional. The default
join type, when the join clause is used without the outer prefix is the inner join.
Thus,

select *
from student join takes using (ID);

is equivalent to:

select *
from student inner join takes using (ID);

Similarly, natural join is equivalent to natural inner join.
Figure 4.6 shows a full list of the various types of join that we have discussed.

As can be seen from the figure, any form of join (inner, left outer, right outer, or
full outer) can be combined with any join condition (natural, using, or on).

4.2 Views

In our examples up to this point, we have operated at the logical-model level.
That is, we have assumed that the relations in the collection we are given are the
actual relations stored in the database.
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It is not desirable for all users to see the entire logical model. Security con-
siderations may require that certain data be hidden from users. Consider a clerk
who needs to know an instructor’s ID, name and department name, but does not
have authorization to see the instructor’s salary amount. This person should see
a relation described in SQL, by:

select ID, name, dept name
from instructor;

Aside from security concerns, we may wish to create a personalized collection
of relations that is better matched to a certain user’s intuition than is the logical
model. We may want to have a list of all course sections offered by the Physics
department in the Fall 2009 semester, with the building and room number of each
section. The relation that we would create for obtaining such a list is:

select course.course id, sec id, building, room number
from course, section
where course.course id = section.course id

and course.dept name = ’Physics’
and section.semester = ’Fall’
and section.year = ’2009’;

It is possible to compute and store the results of the above queries and then
make the stored relations available to users. However, if we did so, and the
underlying data in the relations instructor, course, or section changes, the stored
query results would then no longer match the result of reexecuting the query on
the relations. In general, it is a bad idea to compute and store query results such
as those in the above examples (although there are some exceptions, which we
study later).

Instead, SQL allows a “virtual relation” to be defined by a query, and the
relation conceptually contains the result of the query. The virtual relation is not
precomputed and stored, but instead is computed by executing the query when-
ever the virtual relation is used.

Any such relation that is not part of the logical model, but is made visible to a
user as a virtual relation, is called a view. It is possible to support a large number
of views on top of any given set of actual relations.

4.2.1 View Definition

We define a view in SQL by using the create view command. To define a view, we
must give the view a name and must state the query that computes the view. The
form of the create view command is:

create view v as <query expression>;
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where <query expression> is any legal query expression. The view name is
represented by v.

Consider again the clerk who needs to access all data in the instructor relation,
except salary. The clerk should not be authorized to access the instructor relation
(we see later, in Section 4.6, how authorizations can be specified). Instead, a
view relation faculty can be made available to the clerk, with the view defined as
follows:

create view faculty as
select ID, name, dept name
from instructor;

As explained earlier, the view relation conceptually contains the tuples in the
query result, but is not precomputed and stored. Instead, the database system
stores the query expression associated with the view relation. Whenever the view
relation is accessed, its tuples are created by computing the query result. Thus,
the view relation is created whenever needed, on demand.

To create a view that lists all course sections offered by the Physics department
in the Fall 2009 semester with the building and room number of each section, we
write:

create view physics fall 2009 as
select course.course id, sec id, building, room number
from course, section
where course.course id = section.course id

and course.dept name = ’Physics’
and section.semester = ’Fall’
and section.year = ’2009’;

4.2.2 Using Views in SQL Queries

Once we have defined a view, we can use the view name to refer to the virtual
relation that the view generates. Using the view physics fall 2009, we can find
all Physics courses offered in the Fall 2009 semester in the Watson building by
writing:

select course id
from physics fall 2009
where building= ’Watson’;

View names may appear in a query any place where a relation name may appear,
The attribute names of a view can be specified explicitly as follows:

create view departments total salary(dept name, total salary) as
select dept name, sum (salary)
from instructor
group by dept name;
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The preceding view gives for each department the sum of the salaries of all the
instructors at that department. Since the expression sum(salary) does not have a
name, the attribute name is specified explicitly in the view definition.

Intuitively, at any given time, the set of tuples in the view relation is the
result of evaluation of the query expression that defines the view. Thus, if a view
relation is computed and stored, it may become out of date if the relations used to
define it are modified. To avoid this, views are usually implemented as follows.
When we define a view, the database system stores the definition of the view
itself, rather than the result of evaluation of the query expression that defines the
view. Wherever a view relation appears in a query, it is replaced by the stored
query expression. Thus, whenever we evaluate the query, the view relation is
recomputed.

One view may be used in the expression defining another view. For example,
we can define a view physics fall 2009 watson that lists the course ID and room
number of all Physics courses offered in the Fall 2009 semester in the Watson
building as follows:

create view physics fall 2009 watson as
select course id, room number
from physics fall 2009
where building= ’Watson’;

where physics fall 2009 watson is itself a view relation. This is equivalent to:

create view physics fall 2009 watson as
(select course id, room number
from (select course.course id, building, room number

from course, section
where course.course id = section.course id

and course.dept name = ’Physics’
and section.semester = ’Fall’
and section.year = ’2009’)

where building= ’Watson’;

4.2.3 Materialized Views

Certain database systems allow view relations to be stored, but they make sure
that, if the actual relations used in the view definition change, the view is kept
up-to-date. Such views are called materialized views.

For example, consider the view departments total salary. If the above view is
materialized, its results would be stored in the database. However, if an instructor
tuple is added to or deleted from the instructor relation, the result of the query
defining the view would change, and as a result the materialized view’s contents
must be updated. Similarly, if an instructor’s salary is updated, the tuple in
departments total salary corresponding to that instructor’s department must be
updated.
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The process of keeping the materialized view up-to-date is called material-
ized view maintenance (or often, just view maintenance) and is covered in Sec-
tion 13.5. View maintenance can be done immediately when any of the relations
on which the view is defined is updated. Some database systems, however, per-
form view maintenance lazily, when the view is accessed. Some systems update
materialized views only periodically; in this case, the contents of the materialized
view may be stale, that is, not up-to-date, when it is used, and should not be used
if the application needs up-to-date data. And some database systems permit the
database administrator to control which of the above methods is used for each
materialized view.

Applications that use a view frequently may benefit if the view is materi-
alized. Applications that demand fast response to certain queries that compute
aggregates over large relations can also benefit greatly by creating materialized
views corresponding to the queries. In this case, the aggregated result is likely to
be much smaller than the large relations on which the view is defined; as a result
the materialized view can be used to answer the query very quickly, avoiding
reading the large underlying relations. Of course, the benefits to queries from
the materialization of a view must be weighed against the storage costs and the
added overhead for updates.

SQL does not define a standard way of specifying that a view is material-
ized, but many database systems provide their own SQL extensions for this task.
Some database systems always keep materialized views up-to-date when the un-
derlying relations change, while others permit them to become out of date, and
periodically recompute them.

4.2.4 Update of a View

Although views are a useful tool for queries, they present serious problems if
we express updates, insertions, or deletions with them. The difficulty is that a
modification to the database expressed in terms of a view must be translated to a
modification to the actual relations in the logical model of the database.

Suppose the view faculty, which we saw earlier, is made available to a clerk.
Since we allow a view name to appear wherever a relation name is allowed, the
clerk can write:

insert into faculty
values (’30765’, ’Green’, ’Music’);

This insertion must be represented by an insertion into the relation instructor, since
instructor is the actual relation from which the database system constructs the view
faculty. However, to insert a tuple into instructor, we must have some value for
salary. There are two reasonable approaches to dealing with this insertion:

• Reject the insertion, and return an error message to the user.

• Insert a tuple (’30765’, ’Green’, ’Music’, null) into the instructor relation.
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Another problem with modification of the database through views occurs
with a view such as:

create view instructor info as
select ID, name, building
from instructor, department
where instructor.dept name= department.dept name;

This view lists the ID, name, and building-name of each instructor in the university.
Consider the following insertion through this view:

insert into instructor info
values (’69987’, ’White’, ’Taylor’);

Suppose there is no instructor with ID 69987, and no department in the Taylor
building. Then the only possible method of inserting tuples into the instructor
and department relations is to insert (’69987’, ’White’, null, null) into instructor
and (null, ’Taylor’, null) into department. Then, we obtain the relations shown in
Figure 4.7. However, this update does not have the desired effect, since the view
relation instructor info still does not include the tuple (’69987’, ’White’, ’Taylor’).
Thus, there is no way to update the relations instructor and department by using
nulls to get the desired update on instructor info.

Because of problems such as these, modifications are generally not permit-
ted on view relations, except in limited cases. Different database systems specify
different conditions under which they permit updates on view relations; see the
database system manuals for details. The general problem of database modifica-
tion through views has been the subject of substantial research, and the biblio-
graphic notes provide pointers to some of this research.

In general, an SQL view is said to be updatable (that is, inserts, updates or
deletes can be applied on the view) if the following conditions are all satisfied by
the query defining the view:

• The from clause has only one database relation.

• The select clause contains only attribute names of the relation, and does not
have any expressions, aggregates, or distinct specification.

• Any attribute not listed in the select clause can be set to null; that is, it does
not have a not null constraint and is not part of a primary key.

• The query does not have a group by or having clause.

Under these constraints, the update, insert, and delete operations would be
allowed on the following view:

create view history instructors as
select *
from instructor
where dept name= ’History’;
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ID name dept name salary
10101 Srinivasan Comp. Sci. 65000
12121 Wu Finance 90000
15151 Mozart Music 40000
22222 Einstein Physics 95000
32343 El Said History 60000
33456 Gold Physics 87000
45565 Katz Comp. Sci. 75000
58583 Califieri History 62000
76543 Singh Finance 80000
76766 Crick Biology 72000
83821 Brandt Comp. Sci. 92000
98345 Kim Elec. Eng. 80000
69987 White null null

instructor

dept name building budget
Biology Watson 90000
Comp. Sci. Taylor 100000
Electrical Eng. Taylor 85000
Finance Painter 120000
History Painter 50000
Music Packard 80000
Physics Watson 70000
null Painter null

department

Figure 4.7 Relations instructor and department after insertion of tuples.

Even with the conditions on updatability, the following problem still remains.
Suppose that a user tries to insert the tuple (’25566’, ’Brown’, ’Biology’, 100000)
into the history instructors view. This tuple can be inserted into the instructor
relation, but it would not appear in the history instructors view since it does not
satisfy the selection imposed by the view.

By default, SQL would allow the above update to proceed. However, views
can be defined with a with check option clause at the end of the view definition;
then, if a tuple inserted into the view does not satisfy the view’s where clause
condition, the insertion is rejected by the database system. Updates are similarly
rejected if the new value does not satisfy the where clause conditions.

SQL:1999 has a more complex set of rules about when inserts, updates, and
deletes can be executed on a view, that allows updates through a larger class of
views; however, the rules are too complex to be discussed here.
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4.3 Transactions

A transaction consists of a sequence of query and/or update statements. The SQL
standard specifies that a transaction begins implicitly when an SQL statement is
executed. One of the following SQL statements must end the transaction:

• Commit work commits the current transaction; that is, it makes the updates
performed by the transaction become permanent in the database. After the
transaction is committed, a new transaction is automatically started.

• Rollback work causes the current transaction to be rolled back; that is, it
undoes all the updates performed by the SQL statements in the transaction.
Thus, the database state is restored to what it was before the first statement
of the transaction was executed.

The keyword work is optional in both the statements.
Transaction rollback is useful if some error condition is detected during ex-

ecution of a transaction. Commit is similar, in a sense, to saving changes to a
document that is being edited, while rollback is similar to quitting the edit ses-
sion without saving changes. Once a transaction has executed commit work, its
effects can no longer be undone by rollback work. The database system guaran-
tees that in the event of some failure, such as an error in one of the SQL statements,
a power outage, or a system crash, a transaction’s effects will be rolled back if it
has not yet executed commit work. In the case of power outage or other system
crash, the rollback occurs when the system restarts.

For instance, consider a banking application, where we need to transfer money
from one bank account to another in the same bank. To do so, we need to update
two account balances, subtracting the amount transferred from one, and adding
it to the other. If the system crashes after subtracting the amount from the first
account, but before adding it to the second account, the bank balances would be
inconsistent. A similar problem would occur, if the second account is credited
before subtracting the amount from the first account, and the system crashes just
after crediting the amount.

As another example, consider our running example of a university applica-
tion. We assume that the attribute tot cred of each tuple in the student relation
is kept up-to-date by modifying it whenever the student successfully completes
a course. To do so, whenever the takes relation is updated to record successful
completion of a course by a student (by assigning an appropriate grade) the corre-
sponding student tuple must also be updated. If the application performing these
two updates crashes after one update is performed, but before the second one is
performed, the data in the database would be inconsistent.

By either committing the actions of a transaction after all its steps are com-
pleted, or rolling back all its actions in case the transaction could not complete
all its actions successfully, the database provides an abstraction of a transaction
as being atomic, that is, indivisible. Either all the effects of the transaction are
reflected in the database, or none are (after rollback).
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Applying the notion of transactions to the above applications, the update
statements should be executed as a single transaction. An error while a transaction
executes one of its statements would result in undoing of the effects of the earlier
statements of the transaction, so that the database is not left in a partially updated
state.

If a program terminates without executing either of these commands, the
updates are either committed or rolled back. The standard does not specify which
of the two happens, and the choice is implementation dependent.

In many SQL implementations, by default each SQL statement is taken to be a
transaction on its own, and gets committed as soon as it is executed. Automatic
commit of individual SQL statements must be turned off if a transaction consisting
of multiple SQL statements needs to be executed. How to turn off automatic
commit depends on the specific SQL implementation, although there is a standard
way of doing this using application program interfaces such as JDBC or ODBC,
which we study later, in Sections 5.1.1 and 5.1.2, respectively.

A better alternative, which is part of the SQL:1999 standard (but supported by
only some SQL implementations currently), is to allow multiple SQL statements
to be enclosed between the keywords begin atomic . . . end. All the statements
between the keywords then form a single transaction.

We study further properties of transactions in Chapter 14; issues in imple-
menting transactions in a single database are addressed in Chapters 15 and 16,
while Chapter 19 addresses issues in implementing transactions across multiple
databases, to deal with problems such as transfer of money across accounts in
different banks, which have different databases.

4.4 Integrity Constraints

Integrity constraints ensure that changes made to the database by authorized
users do not result in a loss of data consistency. Thus, integrity constraints guard
against accidental damage to the database.

Examples of integrity constraints are:

• An instructor name cannot be null.

• No two instructors can have the same instructor ID.

• Every department name in the course relation must have a matching depart-
ment name in the department relation.

• The budget of a department must be greater than $0.00.

In general, an integrity constraint can be an arbitrary predicate pertaining
to the database. However, arbitrary predicates may be costly to test. Thus, most
database systems allow one to specify integrity constraints that can be tested with
minimal overhead.

We have already seen some forms of integrity constraints in Section 3.2.2. We
study some more forms of integrity constraints in this section. In Chapter 8, we
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study another form of integrity constraint, called functional dependencies, that
is used primarily in the process of schema design.

Integrity constraints are usually identified as part of the database schema
design process, and declared as part of the create table command used to create
relations. However, integrity constraints can also be added to an existing relation
by using the command alter table table-name add constraint, where constraint
can be any constraint on the relation. When such a command is executed, the
system first ensures that the relation satisfies the specified constraint. If it does,
the constraint is added to the relation; if not, the command is rejected.

4.4.1 Constraints on a Single Relation

We described in Section 3.2 how to define tables using the create table command.
The create table command may also include integrity-constraint statements. In
addition to the primary-key constraint, there are a number of other ones that
can be included in the create table command. The allowed integrity constraints
include

• not null

• unique

• check(<predicate>)

We cover each of these types of constraints in the following sections.

4.4.2 Not Null Constraint

As we discussed in Chapter 3, the null value is a member of all domains, and
as a result is a legal value for every attribute in SQL by default. For certain
attributes, however, null values may be inappropriate. Consider a tuple in the
student relation where name is null. Such a tuple gives student information for
an unknown student; thus, it does not contain useful information. Similarly, we
would not want the department budget to be null. In cases such as this, we wish
to forbid null values, and we can do so by restricting the domain of the attributes
name and budget to exclude null values, by declaring it as follows:

name varchar(20) not null
budget numeric(12,2) not null

The not null specification prohibits the insertion of a null value for the attribute.
Any database modification that would cause a null to be inserted in an attribute
declared to be not null generates an error diagnostic.

There are many situations where we want to avoid null values. In particular,
SQL prohibits null values in the primary key of a relation schema. Thus, in our
university example, in the department relation, if the attribute dept name is declared
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as the primary key for department, it cannot take a null value. As a result it would
not need to be declared explicitly to be not null.

4.4.3 Unique Constraint

SQL also supports an integrity constraint:

unique (Aj1 , Aj2 , . . . , Ajm )

The unique specification says that attributes Aj1 , Aj2, . . . , Ajm form a candidate
key; that is, no two tuples in the relation can be equal on all the listed attributes.
However, candidate key attributes are permitted to be null unless they have
explicitly been declared to be not null. Recall that a null value does not equal
any other value. (The treatment of nulls here is the same as that of the unique
construct defined in Section 3.8.4.)

4.4.4 The check Clause

When applied to a relation declaration, the clause check(P) specifies a predicate
P that must be satisfied by every tuple in a relation.

A common use of the check clause is to ensure that attribute values satisfy
specified conditions, in effect creating a powerful type system. For instance, a
clause check (budget > 0) in the create table command for relation department
would ensure that the value of budget is nonnegative.

As another example, consider the following:

create table section
(course id varchar (8),
sec id varchar (8),
semester varchar (6),
year numeric (4,0),
building varchar (15),
room number varchar (7),
time slot id varchar (4),
primary key (course id, sec id, semester, year),
check (semester in (’Fall’, ’Winter’, ’Spring’, ’Summer’)));

Here, we use the check clause to simulate an enumerated type, by specifying that
semester must be one of ’Fall’, ’Winter’, ’Spring’, or ’Summer’. Thus, the check
clause permits attribute domains to be restricted in powerful ways that most
programming-language type systems do not permit.

The predicate in the check clause can, according to the SQL standard, be an
arbitrary predicate that can include a subquery. However, currently none of the
widely used database products allows the predicate to contain a subquery.
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4.4.5 Referential Integrity

Often, we wish to ensure that a value that appears in one relation for a given set
of attributes also appears for a certain set of attributes in another relation. This
condition is called referential integrity.

Foreign keys can be specified as part of the SQL create table statement by using
the foreign key clause, as we saw earlier in Section 3.2.2. We illustrate foreign-key
declarations by using the SQL DDL definition of part of our university database,
shown in Figure 4.8. The definition of the course table has a declaration “foreign
key (dept name) references department”. This foreign-key declaration specifies that
for each course tuple, the department name specified in the tuple must exist in the
department relation. Without this constraint, it is possible for a course to specify a
nonexistent department name.

More generally, let r1 and r2 be relations whose set of attributes are R1 and
R2, respectively, with primary keys K1 and K2. We say that a subset � of R2 is a
foreign key referencing K1 in relation r1 if it is required that, for every tuple t2 in
r2, there must be a tuple t1 in r1 such that t1.K1 = t2.�.

Requirements of this form are called referential-integrity constraints, or
subset dependencies. The latter term arises because the preceding referential-
integrity constraint can be stated as a requirement that the set of values on � in
r2 must be a subset of the values on K1 in r1. Note that, for a referential-integrity
constraint to make sense, � and K1 must be compatible sets of attributes; that is,
either � must be equal to K1, or they must contain the same number of attributes,
and the types of corresponding attributes must be compatible (we assume here
that � and K1 are ordered). Unlike foreign-key constraints, in general a referential
integrity constraint does not require K1 to be a primary key of r1; as a result, more
than one tuple in r1 can have the same value for attributes K1.

By default, in SQL a foreign key references the primary-key attributes of the
referenced table. SQL also supports a version of the references clause where a list
of attributes of the referenced relation can be specified explicitly. The specified
list of attributes must, however, be declared as a candidate key of the referenced
relation, using either a primary key constraint, or a unique constraint. A more
general form of a referential-integrity constraint, where the referenced columns
need not be a candidate key, cannot be directly specified in SQL. The SQL standard
specifies other constructs that can be used to implement such constraints; they
are described in Section 4.4.7.

We can use the following short form as part of an attribute definition to declare
that the attribute forms a foreign key:

dept name varchar(20) references department

When a referential-integrity constraint is violated, the normal procedure is to
reject the action that caused the violation (that is, the transaction performing the
update action is rolled back). However, a foreign key clause can specify that if
a delete or update action on the referenced relation violates the constraint, then,



132 Chapter 4 Intermediate SQL

create table classroom
(building varchar (15),
room number varchar (7),
capacity numeric (4,0),
primary key (building, room number))

create table department
(dept name varchar (20),
building varchar (15),
budget numeric (12,2) check (budget > 0),
primary key (dept name))

create table course
(course id varchar (8),
title varchar (50),
dept name varchar (20),
credits numeric (2,0) check (credits > 0),
primary key (course id),
foreign key (dept name) references department)

create table instructor
(ID varchar (5),
name varchar (20), not null
dept name varchar (20),
salary numeric (8,2), check (salary > 29000),
primary key (ID),
foreign key (dept name) references department)

create table section
(course id varchar (8),
sec id varchar (8),
semester varchar (6), check (semester in

(’Fall’, ’Winter’, ’Spring’, ’Summer’),
year numeric (4,0), check (year > 1759 and year < 2100)
building varchar (15),
room number varchar (7),
time slot id varchar (4),
primary key (course id, sec id, semester, year),
foreign key (course id) references course,
foreign key (building, room number) references classroom)

Figure 4.8 SQL data definition for part of the university database.

instead of rejecting the action, the system must take steps to change the tuple in
the referencing relation to restore the constraint. Consider this definition of an
integrity constraint on the relation course:
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create table course
( . . .

foreign key (dept name) references department
on delete cascade
on update cascade,

. . . );

Because of the clause on delete cascade associated with the foreign-key dec-
laration, if a delete of a tuple in department results in this referential-integrity
constraint being violated, the system does not reject the delete. Instead, the delete
“cascades” to the course relation, deleting the tuple that refers to the department
that was deleted. Similarly, the system does not reject an update to a field refer-
enced by the constraint if it violates the constraint; instead, the system updates
the field dept name in the referencing tuples in course to the new value as well.
SQL also allows the foreign key clause to specify actions other than cascade, if
the constraint is violated: The referencing field (here, dept name) can be set to null
(by using set null in place of cascade), or to the default value for the domain (by
using set default).

If there is a chain of foreign-key dependencies across multiple relations, a
deletion or update at one end of the chain can propagate across the entire chain.
An interesting case where the foreign key constraint on a relation references
the same relation appears in Practice Exercises 4.9. If a cascading update or
delete causes a constraint violation that cannot be handled by a further cascading
operation, the system aborts the transaction. As a result, all the changes caused
by the transaction and its cascading actions are undone.

Null values complicate the semantics of referential-integrity constraints in
SQL. Attributes of foreign keys are allowed to be null, provided that they have
not otherwise been declared to be not null. If all the columns of a foreign key
are nonnull in a given tuple, the usual definition of foreign-key constraints is
used for that tuple. If any of the foreign-key columns is null, the tuple is defined
automatically to satisfy the constraint.

This definition may not always be the right choice, so SQL also provides
constructs that allow you to change the behavior with null values; we do not
discuss the constructs here.

4.4.6 Integrity Constraint Violation During a Transaction

Transactions may consist of several steps, and integrity constraints may be vio-
lated temporarily after one step, but a later step may remove the violation. For
instance, suppose we have a relation person with primary key name, and an at-
tribute spouse, and suppose that spouse is a foreign key on person. That is, the
constraint says that the spouse attribute must contain a name that is present in the
person table. Suppose we wish to note the fact that John and Mary are married to
each other by inserting two tuples, one for John and one for Mary, in the above re-
lation, with the spouse attributes set to Mary and John, respectively. The insertion
of the first tuple would violate the foreign-key constraint, regardless of which of
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the two tuples is inserted first. After the second tuple is inserted the foreign-key
constraint would hold again.

To handle such situations, the SQL standard allows a clause initially deferred
to be added to a constraint specification; the constraint would then be checked
at the end of a transaction, and not at intermediate steps. A constraint can alter-
natively be specified as deferrable, which means it is checked immediately by
default, but can be deferred when desired. For constraints declared as deferrable,
executing a statement set constraints constraint-list deferred as part of a transac-
tion causes the checking of the specified constraints to be deferred to the end of
that transaction.

However, you should be aware that the default behavior is to check constraints
immediately, and many database implementations do not support deferred con-
straint checking.

We can work around the problem in the above example in another way, if
the spouse attribute can be set to null: We set the spouse attributes to null when
inserting the tuples for John and Mary, and we update them later. However, this
technique requires more programming effort, and does not work if the attributes
cannot be set to null.

4.4.7 Complex Check Conditions and Assertions

The SQL standard supports additional constructs for specifying integrity con-
straints that are described in this section. However, you should be aware that
these constructs are not currently supported by most database systems.

As defined by the SQL standard, the predicate in the check clause can be
an arbitrary predicate, which can include a subquery. If a database implemen-
tation supports subqueries in the check clause, we could specify the following
referential-integrity constraint on the relation section:

check (time slot id in (select time slot id from time slot))

The check condition verifies that the time slot id in each tuple in the section relation
is actually the identifier of a time slot in the time slot relation. Thus, the condition
has to be checked not only when a tuple is inserted or modified in section, but
also when the relation time slot changes (in this case, when a tuple is deleted or
modified in relation time slot).

Another natural constraint on our university schema would be to require that
every section has at least one instructor teaching the section. In an attempt to
enforce this, we may try to declare that the attributes (course id, sec id, semester,
year) of the section relation form a foreign key referencing the corresponding
attributes of the teaches relation. Unfortunately, these attributes do not form a
candidate key of the relation teaches. A check constraint similar to that for the
time slot attribute can be used to enforce this constraint, if check constraints with
subqueries were supported by a database system.

Complex check conditions can be useful when we want to ensure integrity
of data, but may be costly to test. For example, the predicate in the check clause
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create assertion credits earned constraint check
(not exists (select ID

from student
where tot cred <> (select sum(credits)
from takes natural join course
where student.ID= takes.ID

and grade is not null and grade<> ’F’ )

Figure 4.9 An assertion example.

would not only have to be evaluated when a modification is made to the section
relation, but may have to be checked if a modification is made to the time slot
relation because that relation is referenced in the subquery.

An assertion is a predicate expressing a condition that we wish the database
always to satisfy. Domain constraints and referential-integrity constraints are
special forms of assertions. We have paid substantial attention to these forms of
assertions because they are easily tested and apply to a wide range of database
applications. However, there are many constraints that we cannot express by
using only these special forms. Two examples of such constraints are:

• For each tuple in the student relation, the value of the attribute tot cred must
equal the sum of credits of courses that the student has completed success-
fully.

• An instructor cannot teach in two different classrooms in a semester in the
same time slot.1

An assertion in SQL takes the form:

create assertion <assertion-name> check <predicate>;

In Figure 4.9, we show how the first example of constraints can be written
in SQL. Since SQL does not provide a “for all X, P(X)” construct (where P is a
predicate), we are forced to implement the constraint by an equivalent construct,
“not exists X such that not P(X)”, that can be expressed in SQL.

We leave the specification of the second constraint as an exercise.
When an assertion is created, the system tests it for validity. If the assertion

is valid, then any future modification to the database is allowed only if it does
not cause that assertion to be violated. This testing may introduce a significant
amount of overhead if complex assertions have been made. Hence, assertions
should be used with great care. The high overhead of testing and maintaining
assertions has led some system developers to omit support for general assertions,
or to provide specialized forms of assertion that are easier to test.

1We assume that lectures are not displayed remotely in a second classroom! An alternative constraint that specifies
that “an instructor cannot teach two courses in a given semester in the same time slot” may not hold since courses are
sometimes cross-listed; that is, the same course is given two identifiers and titles.
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Currently, none of the widely used database systems supports either sub-
queries in the check clause predicate, or the create assertion construct. However,
equivalent functionality can be implemented using triggers, which are described
in Section 5.3, if they are supported by the database system. Section 5.3 also de-
scribes how the referential integrity constraint on time slot id can be implemented
using triggers.

4.5 SQL Data Types and Schemas

In Chapter 3, we covered a number of built-in data types supported in SQL, such
as integer types, real types, and character types. There are additional built-in data
types supported by SQL, which we describe below. We also describe how to create
basic user-defined types in SQL.

4.5.1 Date and Time Types in SQL

In addition to the basic data types we introduced in Section 3.2, the SQL standard
supports several data types relating to dates and times:

• date: A calendar date containing a (four-digit) year, month, and day of the
month.

• time: The time of day, in hours, minutes, and seconds. A variant, time(p),
can be used to specify the number of fractional digits for seconds (the default
being 0). It is also possible to store time-zone information along with the time
by specifying time with timezone.

• timestamp: A combination of date and time. A variant, timestamp(p), can be
used to specify the number of fractional digits for seconds (the default here
being 6). Time-zone information is also stored if with timezone is specified.

Date and time values can be specified like this:

date ’2001-04-25’
time ’09:30:00’
timestamp ’2001-04-25 10:29:01.45’

Dates must be specified in the format year followed by month followed by day,
as shown. The seconds field of time or timestamp can have a fractional part, as
in the timestamp above.

We can use an expression of the form cast e as t to convert a character string
(or string valued expression) e to the type t, where t is one of date, time, or
timestamp. The string must be in the appropriate format as illustrated at the
beginning of this paragraph. When required, time-zone information is inferred
from the system settings.

To extract individual fields of a date or time value d, we can use extract (field
from d), where field can be one of year, month, day, hour, minute, or second. Time-
zone information can be extracted using timezone hour and timezone minute.
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SQL defines several functions to get the current date and time. For example,
current date returns the current date, current time returns the current time (with
time zone), and localtime returns the current local time (without time zone).
Timestamps (date plus time) are returned by current timestamp (with time zone)
and localtimestamp (local date and time without time zone).

SQL allows comparison operations on all the types listed here, and it allows
both arithmetic and comparison operations on the various numeric types. SQL
also provides a data type called interval, and it allows computations based on
dates and times and on intervals. For example, if x and y are of type date, then
x − y is an interval whose value is the number of days from date x to date y.
Similarly, adding or subtracting an interval to a date or time gives back a date or
time, respectively.

4.5.2 Default Values

SQL allows a default value to be specified for an attribute as illustrated by the
following create table statement:

create table student
(ID varchar (5),
name varchar (20) not null,
dept name varchar (20),
tot cred numeric (3,0) default 0,
primary key (ID));

The default value of the tot cred attribute is declared to be 0. As a result, when a
tuple is inserted into the student relation, if no value is provided for the tot cred
attribute, its value is set to 0. The following insert statement illustrates how an
insertion can omit the value for the tot cred attribute.

insert into student(ID, name, dept name)
values (’12789’, ’Newman’, ’Comp. Sci.’);

4.5.3 Index Creation

Many queries reference only a small proportion of the records in a file. For exam-
ple, a query like “Find all instructors in the Physics department” or “Find the tot
cred value of the student with ID 22201” references only a fraction of the student

records. It is inefficient for the system to read every record and to check ID field
for the ID “32556,” or the building field for the value “Physics”.

An index on an attribute of a relation is a data structure that allows the
database system to find those tuples in the relation that have a specified value for
that attribute efficiently, without scanning through all the tuples of the relation.
For example, if we create in index on attribute ID of relation student, the database
system can find the record with any specified ID value, such as 22201, or 44553,
directly, without reading all the tuples of the student relation. An index can also



138 Chapter 4 Intermediate SQL

be created on a list of attributes, for example on attributes name, and dept name of
student.

We study later, in Chapter 11, how indices are actually implemented, includ-
ing a particularly widely used kind of index called a B+-tree index.

Although the SQL language does not formally define any syntax for creating
indices, many databases support index creation using the syntax illustrated below.

create index studentID index on student(ID);

The above statement creates an index named studentID index on the attribute ID
of the relation student.

When a user submits an SQL query that can benefit from using an index, the
SQL query processor automatically uses the index. For example, given an SQL
query that selects the student tuple with ID 22201, the SQL query processor would
use the index studentID index defined above to find the required tuple without
reading the whole relation.

4.5.4 Large-Object Types

Many current-generation database applications need to store attributes that can
be large (of the order of many kilobytes), such as a photograph, or very large
(of the order of many megabytes or even gigabytes), such as a high-resolution
medical image or video clip. SQL therefore provides large-object data types for
character data (clob) and binary data (blob). The letters “lob” in these data types
stand for “Large OBject.” For example, we may declare attributes

book review clob(10KB)
image blob(10MB)
movie blob(2GB)

For result tuples containing large objects (multiple megabytes to gigabytes), it
is inefficient or impractical to retrieve an entire large object into memory. Instead,
an application would usually use an SQL query to retrieve a “locator” for a large
object and then use the locator to manipulate the object from the host language in
which the application itself is written. For instance, the JDBC application program
interface (described in Section 5.1.1) permits a locator to be fetched instead of the
entire large object; the locator can then be used to fetch the large object in small
pieces, rather than all at once, much like reading data from an operating system
file using a read function call.

4.5.5 User-Defined Types

SQL supports two forms of user-defined data types. The first form, which we
cover here, is called distinct types. The other form, called structured data types,
allows the creation of complex data types with nested record structures, arrays,
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and multisets. We do not cover structured data types in this chapter, but describe
them later, in Chapter 22.

It is possible for several attributes to have the same data type. For example,
the name attributes for student name and instructor name might have the same
domain: the set of all person names. However, the domains of budget and dept name
certainly ought to be distinct. It is perhaps less clear whether name and dept name
should have the same domain. At the implementation level, both instructor names
and department names are character strings. However, we would normally not
consider the query “Find all instructors who have the same name as a department”
to be a meaningful query. Thus, if we view the database at the conceptual, rather
than the physical, level, name and dept name should have distinct domains.

More importantly, at a practical level, assigning an instructor’s name to a
department name is probably a programming error; similarly, comparing a mon-
etary value expressed in dollars directly with a monetary value expressed in
pounds is also almost surely a programming error. A good type system should
be able to detect such assignments or comparisons. To support such checks, SQL
provides the notion of distinct types.

The create type clause can be used to define new types. For example, the
statements:

create type Dollars as numeric(12,2) final;
create type Pounds as numeric(12,2) final;

define the user-defined types Dollars and Pounds to be decimal numbers with a
total of 12 digits, two of which are placed after the decimal point. (The keyword
final isn’t really meaningful in this context but is required by the SQL:1999 standard
for reasons we won’t get into here; some implementations allow the final keyword
to be omitted.) The newly created types can then be used, for example, as types
of attributes of relations. For example, we can declare the department table as:

create table department
(dept name varchar (20),
building varchar (15),
budget Dollars);

An attempt to assign a value of type Dollars to a variable of type Pounds results
in a compile-time error, although both are of the same numeric type. Such an
assignment is likely to be due to a programmer error, where the programmer
forgot about the differences in currency. Declaring different types for different
currencies helps catch such errors.

As a result of strong type checking, the expression (department.budget+20)
would not be accepted since the attribute and the integer constant 20 have differ-
ent types. Values of one type can be cast (that is, converted) to another domain,
as illustrated below:

cast (department.budget to numeric(12,2))



140 Chapter 4 Intermediate SQL

We could do addition on the numeric type, but to save the result back to an
attribute of type Dollars we would have to use another cast expression to convert
the type back to Dollars.

SQL provides drop type and alter type clauses to drop or modify types that
have been created earlier.

Even before user-defined types were added to SQL (in SQL:1999), SQL had a
similar but subtly different notion of domain (introduced in SQL-92), which can
add integrity constraints to an underlying type. For example, we could define a
domain DDollars as follows.

create domain DDollars as numeric(12,2) not null;

The domain DDollars can be used as an attribute type, just as we used the type
Dollars. However, there are two significant differences between types and do-
mains:

1. Domains can have constraints, such as not null, specified on them, and can
have default values defined for variables of the domain type, whereas user-
defined types cannot have constraints or default values specified on them.
User-defined types are designed to be used not just for specifying attribute
types, but also in procedural extensions to SQL where it may not be possible
to enforce constraints.

2. Domains are not strongly typed. As a result, values of one domain type
can be assigned to values of another domain type as long as the underlying
types are compatible.

When applied to a domain, the check clause permits the schema designer to
specify a predicate that must be satisfied by any attribute declared to be from
this domain. For instance, a check clause can ensure that an instructor’s salary
domain allows only values greater than a specified value:

create domain YearlySalary numeric(8,2)
constraint salary value test check(value >= 29000.00);

The domain YearlySalary has a constraint that ensures that the YearlySalary is
greater than or equal to $29,000.00. The clause constraint salary value test is op-
tional, and is used to give the name salary value test to the constraint. The name is
used by the system to indicate the constraint that an update violated.

As another example, a domain can be restricted to contain only a specified
set of values by using the in clause:

create domain degree level varchar(10)
constraint degree level test

check (value in (’Bachelors’, ’Masters’, or ’Doctorate’));
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SUPPORT FOR TYPES AND DOMAINS IN DATABASE IMPLEMENTATIONS

Although the create type and create domain constructs described in this section
are part of the SQL standard, the forms of these constructs described here are
not fully supported by most database implementations. PostgreSQL supports
the create domain construct, but its create type construct has a different syntax
and interpretation.

IBM DB2 supports a version of the create type that uses the syntax create
distinct type, but does not support create domain. Microsoft SQL Server im-
plements a version of create type construct that supports domain constraints,
similar to the SQL create domain construct.

Oracle does not support either construct as described here. However, SQL
also defines a more complex object-oriented type system, which we study later
in Chapter 22. Oracle, IBM DB2, PostgreSQL, and SQL Server all support object-
oriented type systems using different forms of the create type construct.

4.5.6 Create Table Extensions

Applications often require creation of tables that have the same schema as an
existing table. SQL provides a create table like extension to support this task:

create table temp instructor like instructor;

The above statement creates a new table temp instructor that has the same schema
as instructor.

When writing a complex query, it is often useful to store the result of a
query as a new table; the table is usually temporary. Two statements are required,
one to create the table (with appropriate columns) and the second to insert the
query result into the table. SQL:2003 provides a simpler technique to create a table
containing the results of a query. For example the following statement creates a
table t1 containing the results of a query.

create table t1 as
(select *
from instructor
where dept name= ’Music’)

with data;

By default, the names and data types of the columns are inferred from the query
result. Names can be explicitly given to the columns by listing the column names
after the relation name.

As defined by the SQL:2003 standard, if the with data clause is omitted, the
table is created but not populated with data. However many implementations
populate the table with data by default even if the with data clause is omitted.
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Note that several implementations support the functionality of create table . . .

like and create table . . . as using different syntax; see the respective system
manuals for further details.

The above create table . . . as statement closely resembles the create view
statement and both are defined by using queries. The main difference is that the
contents of the table are set when the table is created, whereas the contents of a
view always reflect the current query result.

4.5.7 Schemas, Catalogs, and Environments

To understand the motivation for schemas and catalogs, consider how files are
named in a file system. Early file systems were flat; that is, all files were stored
in a single directory. Current file systems, of course, have a directory (or, syn-
onymously, folder) structure, with files stored within subdirectories. To name
a file uniquely, we must specify the full path name of the file, for example,
/users/avi/db-book/chapter3.tex.

Like early file systems, early database systems also had a single name space
for all relations. Users had to coordinate to make sure they did not try to use
the same name for different relations. Contemporary database systems provide a
three-level hierarchy for naming relations. The top level of the hierarchy consists
of catalogs, each of which can contain schemas. SQL objects such as relations and
views are contained within a schema. (Some database implementations use the
term “database” in place of the term catalog.)

In order to perform any actions on a database, a user (or a program) must
first connect to the database. The user must provide the user name and usually,
a password for verifying the identity of the user. Each user has a default catalog
and schema, and the combination is unique to the user. When a user connects to
a database system, the default catalog and schema are set up for the connection;
this corresponds to the current directory being set to the user’s home directory
when the user logs into an operating system.

To identify a relation uniquely, a three-part name may be used, for example,

catalog5.univ schema.course

We may omit the catalog component, in which case the catalog part of the name
is considered to be the default catalog for the connection. Thus if catalog5 is
the default catalog, we can use univ schema.course to identify the same relation
uniquely.

If a user wishes to access a relation that exists in a different schema than the
default schema for that user, the name of the schema must be specified. However,
if a relation is in the default schema for a particular user, then even the schema
name may be omitted. Thus we can use just course if the default catalog is catalog5
and the default schema is univ schema.

With multiple catalogs and schemas available, different applications and
different users can work independently without worrying about name clashes.
Moreover, multiple versions of an application—one a production version, other
test versions—can run on the same database system.
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The default catalog and schema are part of an SQL environment that is set
up for each connection. The environment additionally contains the user identi-
fier (also referred to as the authorization identifier). All the usual SQL statements,
including the DDL and DML statements, operate in the context of a schema.

We can create and drop schemas by means of create schema and drop schema
statements. In most database systems, schemas are also created automatically
when user accounts are created, with the schema name set to the user account
name. The schema is created in either a default catalog, or a catalog specified in
creating the user account. The newly created schema becomes the default schema
for the user account.

Creation and dropping of catalogs is implementation dependent and not part
of the SQL standard.

4.6 Authorization

We may assign a user several forms of authorizations on parts of the database.
Authorizations on data include:

• Authorization to read data.

• Authorization to insert new data.

• Authorization to update data.

• Authorization to delete data.

Each of these types of authorizations is called a privilege. We may authorize the
user all, none, or a combination of these types of privileges on specified parts of
a database, such as a relation or a view.

When a user submits a query or an update, the SQL implementation first
checks if the query or update is authorized, based on the authorizations that the
user has been granted. If the query or update is not authorized, it is rejected.

In addition to authorizations on data, users may also be granted authoriza-
tions on the database schema, allowing them, for example, to create, modify, or
drop relations. A user who has some form of authorization may be allowed to
pass on (grant) this authorization to other users, or to withdraw (revoke) an au-
thorization that was granted earlier. In this section, we see how each of these
authorizations can be specified in SQL.

The ultimate form of authority is that given to the database administrator. The
database administrator may authorize new users, restructure the database, and so
on. This form of authorization is analogous to that of a superuser, administrator,
or operator for an operating system.

4.6.1 Granting and Revoking of Privileges

The SQL standard includes the privileges select, insert, update, and delete. The
privilege all privileges can be used as a short form for all the allowable privi-
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leges. A user who creates a new relation is given all privileges on that relation
automatically.

The SQL data-definition language includes commands to grant and revoke
privileges. The grant statement is used to confer authorization. The basic form of
this statement is:

grant <privilege list>
on <relation name or view name>

to <user/role list>;

The privilege list allows the granting of several privileges in one command. The
notion of roles is covered later, in Section 4.6.2.

The select authorization on a relation is required to read tuples in the relation.
The following grant statement grants database users Amit and Satoshi select
authorization on the department relation:

grant select on department to Amit, Satoshi;

This allows those users to run queries on the department relation.
The update authorization on a relation allows a user to update any tuple

in the relation. The update authorization may be given either on all attributes
of the relation or on only some. If update authorization is included in a grant
statement, the list of attributes on which update authorization is to be granted
optionally appears in parentheses immediately after the update keyword. If the
list of attributes is omitted, the update privilege will be granted on all attributes
of the relation.

This grant statement gives users Amit and Satoshi update authorization on
the budget attribute of the department relation:

grant update (budget) on department to Amit, Satoshi;

The insert authorization on a relation allows a user to insert tuples into the
relation. The insert privilege may also specify a list of attributes; any inserts to
the relation must specify only these attributes, and the system either gives each
of the remaining attributes default values (if a default is defined for the attribute)
or sets them to null.

The delete authorization on a relation allows a user to delete tuples from a
relation.

The user name public refers to all current and future users of the system.
Thus, privileges granted to public are implicitly granted to all current and future
users.

By default, a user/role that is granted a privilege is not authorized to grant
that privilege to another user/role. SQL allows a privilege grant to specify that the
recipient may further grant the privilege to another user. We describe this feature
in more detail in Section 4.6.5.
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It is worth noting that the SQL authorization mechanism grants privileges on
an entire relation, or on specified attributes of a relation. However, it does not
permit authorizations on specific tuples of a relation.

To revoke an authorization, we use the revoke statement. It takes a form
almost identical to that of grant:

revoke <privilege list>
on <relation name or view name>

from <user/role list>;

Thus, to revoke the privileges that we granted previously, we write

revoke select on department from Amit, Satoshi;
revoke update (budget) on department from Amit, Satoshi;

Revocation of privileges is more complex if the user from whom the privilege
is revoked has granted the privilege to another user. We return to this issue in
Section 4.6.5.

4.6.2 Roles

Consider the real-world roles of various people in a university. Each instructor
must have the same types of authorizations on the same set of relations. Whenever
a new instructor is appointed, she will have to be given all these authorizations
individually.

A better approach would be to specify the authorizations that every instructor
is to be given, and to identify separately which database users are instructors. The
system can use these two pieces of information to determine the authorizations of
each instructor. When a new instructor is hired, a user identifier must be allocated
to him, and he must be identified as an instructor. Individual permissions given
to instructors need not be specified again.

The notion of roles captures this concept. A set of roles is created in the
database. Authorizations can be granted to roles, in exactly the same fashion as
they are granted to individual users. Each database user is granted a set of roles
(which may be empty) that she is authorized to perform.

In our university database, examples of roles could include instructor, teaching
assistant, student, dean, and department chair.

A less preferable alternative would be to create an instructor userid, and
permit each instructor to connect to the database using the instructor userid. The
problem with this approach is that it would not be possible to identify exactly
which instructor carried out a database update, leading to security risks. The use
of roles has the benefit of requiring users to connect to the database with their
own userid.

Any authorization that can be granted to a user can be granted to a role. Roles
are granted to users just as authorizations are.
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Roles can be created in SQL as follows:

create role instructor;

Roles can then be granted privileges just as the users can, as illustrated in this
statement:

grant select on takes
to instructor;

Roles can be granted to users, as well as to other roles, as these statements show:

grant dean to Amit;
create role dean;
grant instructor to dean;
grant dean to Satoshi;

Thus the privileges of a user or a role consist of:

• All privileges directly granted to the user/role.

• All privileges granted to roles that have been granted to the user/role.

Note that there can be a chain of roles; for example, the role teaching assistant
may be granted to all instructors. In turn the role instructor is granted to all deans.
Thus, the dean role inherits all privileges granted to the roles instructor and to
teaching assistant in addition to privileges granted directly to dean.

When a user logs in to the database system, the actions executed by the user
during that session have all the privileges granted directly to the user, as well
as all privileges granted to roles that are granted (directly or indirectly via other
roles) to that user. Thus, if a user Amit has been granted the role dean, user Amit
holds all privileges granted directly to Amit, as well as privileges granted to dean,
plus privileges granted to instructor, and teaching assistant if, as above, those roles
were granted (directly or indirectly) to the role dean.

It is worth noting that the concept of role-based authorization is not specific
to SQL, and role-based authorization is used for access control in a wide variety
of shared applications.

4.6.3 Authorization on Views

In our university example, consider a staff member who needs to know the
salaries of all faculty in a particular department, say the Geology department.
This staff member is not authorized to see information regarding faculty in other
departments. Thus, the staff member must be denied direct access to the instructor
relation. But, if he is to have access to the information for the Geology department,
he might be granted access to a view that we shall call geo instructor, consisting
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of only those instructor tuples pertaining to the Geology department. This view
can be defined in SQL as follows:

create view geo instructor as
(select *
from instructor
where dept name = ’Geology’);

Suppose that the staff member issues the following SQL query:

select *
from geo instructor;

Clearly, the staff member is authorized to see the result of this query. However,
when the query processor translates it into a query on the actual relations in
the database, it produces a query on instructor. Thus, the system must check
authorization on the clerk’s query before it begins query processing.

A user who creates a view does not necessarily receive all privileges on that
view. She receives only those privileges that provide no additional authorization
beyond those that she already had. For example, a user who creates a view cannot
be given update authorization on a view without having update authorization
on the relations used to define the view. If a user creates a view on which no
authorization can be granted, the system will deny the view creation request.
In our geo instructor view example, the creator of the view must have select
authorization on the instructor relation.

As we will see later, in Section 5.2, SQL supports the creation of functions
and procedures, which may in turn contain queries and updates. The execute
privilege can be granted on a function or procedure, enabling a user to execute
the function/procedure. By default, just like views, functions and procedures
have all the privileges that the creator of the function or procedure had. In effect,
the function or procedure runs as if it were invoked by the user who created the
function.

Although this behavior is appropriate in many situations, it is not always
appropriate. Starting with SQL:2003, if the function definition has an extra clause
sql security invoker, then it is executed under the privileges of the user who
invokes the function, rather than the privileges of the definer of the function.
This allows the creation of libraries of functions that can run under the same
authorization as the invoker.

4.6.4 Authorizations on Schema

The SQL standard specifies a primitive authorization mechanism for the database
schema: Only the owner of the schema can carry out any modification to the
schema, such as creating or deleting relations, adding or dropping attributes of
relations, and adding or dropping indices.
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However, SQL includes a references privilege that permits a user to declare
foreign keys when creating relations. The SQL references privilege is granted on
specific attributes in a manner like that for the update privilege. The following
grant statement allows user Mariano to create relations that reference the key
branch name of the branch relation as a foreign key:

grant references (dept name) on department to Mariano;

Initially, it may appear that there is no reason ever to prevent users from
creating foreign keys referencing another relation. However, recall that foreign-
key constraints restrict deletion and update operations on the referenced relation.
Suppose Mariano creates a foreign key in a relation r referencing the dept name
attribute of the department relation and then inserts a tuple into r pertaining to the
Geology department. It is no longer possible to delete the Geology department
from the department relation without also modifying relation r . Thus, the definition
of a foreign key by Mariano restricts future activity by other users; therefore, there
is a need for the references privilege.

Continuing to use the example of the department relation, the references priv-
ilege on department is also required to create a check constraint on a relation r if
the constraint has a subquery referencing department. This is reasonable for the
same reason as the one we gave for foreign-key constraints; a check constraint
that references a relation limits potential updates to that relation.

4.6.5 Transfer of Privileges

A user who has been granted some form of authorization may be allowed to
pass on this authorization to other users. By default, a user/role that is granted a
privilege is not authorized to grant that privilege to another user/role. If we wish
to grant a privilege and to allow the recipient to pass the privilege on to other
users, we append the with grant option clause to the appropriate grant command.
For example, if we wish to allow Amit the select privilege on department and allow
Amit to grant this privilege to others, we write:

grant select on department to Amit with grant option;

The creator of an object (relation/view/role) holds all privileges on the object,
including the privilege to grant privileges to others.

Consider, as an example, the granting of update authorization on the teaches
relation of the university database. Assume that, initially, the database adminis-
trator grants update authorization on teaches to users U1, U2, and U3, who may in
turn pass on this authorization to other users. The passing of a specific authoriza-
tion from one user to another can be represented by an authorization graph. The
nodes of this graph are the users.

Consider the graph for update authorization on teaches. The graph includes
an edge Ui → Uj if user Ui grants update authorization on teaches to Uj . The root
of the graph is the database administrator. In the sample graph in Figure 4.10,
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U3

DBA

U1

U5U2

U4

Figure 4.10 Authorization-grant graph (U1,U2, . . . , U5 are users and DBA refers to the
database administrator).

observe that user U5 is granted authorization by both U1 and U2; U4 is granted
authorization by only U1.

A user has an authorization if and only if there is a path from the root of the
authorization graph (the node representing the database administrator) down to
the node representing the user.

4.6.6 Revoking of Privileges

Suppose that the database administrator decides to revoke the authorization of
user U1. Since U4 has authorization from U1, that authorization should be revoked
as well. However, U5 was granted authorization by both U1 and U2. Since the
database administrator did not revoke update authorization on teaches from U2,
U5 retains update authorization on teaches. If U2 eventually revokes authorization
from U5, then U5 loses the authorization.

A pair of devious users might attempt to defeat the rules for revocation
of authorization by granting authorization to each other. For example, if U2 is
initially granted an authorization by the database administrator, and U2 further
grants it to U3. Suppose U3 now grants the privilege back to U2. If the database
administrator revokes authorization from U2, it might appear that U2 retains
authorization through U3. However, note that once the administrator revokes
authorization from U2, there is no path in the authorization graph from the root
to either U2 or to U3. Thus, SQL ensures that the authorization is revoked from
both the users.

As we just saw, revocation of a privilege from a user/role may cause other
users/roles also to lose that privilege. This behavior is called cascading revocation.
In most database systems, cascading is the default behavior. However, the revoke
statement may specify restrict in order to prevent cascading revocation:

revoke select on department from Amit, Satoshi restrict;
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In this case, the system returns an error if there are any cascading revocations,
and does not carry out the revoke action.

The keyword cascade can be used instead of restrict to indicate that revocation
should cascade; however, it can be omitted, as we have done in the preceding
examples, since it is the default behavior.

The following revoke statement revokes only the grant option, rather than
the actual select privilege:

revoke grant option for select on department from Amit;

Note that some database implementations do not support the above syntax; in-
stead, the privilege itself can be revoked, and then granted again without the
grant option.

Cascading revocation is inappropriate in many situations. Suppose Satoshi
has the role of dean, grants instructor to Amit, and later the role dean is revoked
from Satoshi (perhaps because Satoshi leaves the university); Amit continues to
be employed on the faculty, and should retain the instructor role.

To deal with the above situation, SQL permits a privilege to be granted by a
role rather than by a user. SQL has a notion of the current role associated with
a session. By default, the current role associated with a session is null (except
in some special cases). The current role associated with a session can be set by
executing set role role name. The specified role must have been granted to the
user, else the set role statement fails.

To grant a privilege with the grantor set to the current role associated with a
session, we can add the clause:

granted by current role

to the grant statement, provided the current role is not null.
Suppose the granting of the role instructor (or other privileges) to Amit is

done using the granted by current role clause, with the current role set to dean),
instead of the grantor being the user Satoshi. Then, revoking of roles/privileges
(including the role dean) from Satoshi will not result in revoking of privileges that
had the grantor set to the role dean, even if Satoshi was the user who executed the
grant; thus, Amit would retain the instructor role even after Satoshi’s privileges
are revoked.

4.7 Summary

• SQL supports several types of joins including inner and outer joins and several
types of join conditions.

• View relations can be defined as relations containing the result of queries.
Views are useful for hiding unneeded information, and for collecting together
information from more than one relation into a single view.
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• Transactions are a sequence of queries and updates that together carry out
a task. Transactions can be committed, or rolled back; when a transaction
is rolled back, the effects of all updates performed by the transaction are
undone.

• Integrity constraints ensure that changes made to the database by authorized
users do not result in a loss of data consistency.

• Referential-integrity constraints ensure that a value that appears in one rela-
tion for a given set of attributes also appears for a certain set of attributes in
another relation.

• Domain constraints specify the set of possible values that may be associated
with an attribute. Such constraints may also prohibit the use of null values
for particular attributes.

• Assertions are declarative expressions that state predicates that we require
always to be true.

• The SQL data-definition language provides support for defining built-in do-
main types such as date and time, as well as user-defined domain types.

• SQL authorization mechanisms allow one to differentiate among the users of
the database as far as the type of access they are permitted on various data
values in the database.

• A user who has been granted some form of authority may be allowed to
pass on this authority to other users. However, we must be careful about
how authorization can be passed among users if we are to ensure that such
authorization can be revoked at some future time.

• Roles help to assign a set of privileges to a user according to the role that the
user plays in the organization.

Review Terms

• Join types

◦ Inner and outer join

◦ Left, right and full outer join

◦ Natural, using, and on

• View definition
• Materialized views
• View update
• Transactions

◦ Commit work

◦ Rollback work

◦ Atomic transaction

• Integrity constraints
• Domain constraints
• Unique constraint
• Check clause
• Referential integrity

◦ Cascading deletes

◦ Cascading updates
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• Assertions
• Date and time types
• Default values
• Indices
• Large objects
• User-defined types
• Domains
• Catalogs
• Schemas
• Authorization
• Privileges

◦ select

◦ insert

◦ update

◦ all privileges

◦ Granting of privileges

◦ Revoking of privileges

◦ Privilege to grant privileges

◦ Grant option

• Roles
• Authorization on views
• Execute authorization
• Invoker privileges
• Row-level authorization

Practice Exercises

4.1 Write the following queries in SQL:

a. Display a list of all instructors, showing their ID, name, and the num-
ber of sections that they have taught. Make sure to show the number
of sections as 0 for instructors who have not taught any section. Your
query should use an outerjoin, and should not use scalar subqueries.

b. Write the same query as above, but using a scalar subquery, without
outerjoin.

c. Display the list of all course sections offered in Spring 2010, along
with the names of the instructors teaching the section. If a section has
more than one instructor, it should appear as many times in the result
as it has instructors. If it does not have any instructor, it should still
appear in the result with the instructor name set to “—”.

d. Display the list of all departments, with the total number of instructors
in each department, without using scalar subqueries. Make sure to
correctly handle departments with no instructors.

4.2 Outer join expressions can be computed in SQL without using the SQL
outer join operation. To illustrate this fact, show how to rewrite each of the
following SQL queries without using the outer join expression.

a. select* from student natural left outer join takes

b. select* from student natural full outer join takes
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4.3 Suppose we have three relations r (A, B), s(B, C), and t(B, D), with all
attributes declared as not null. Consider the expressions

• r natural left outer join (s natural left outer join t), and

• (r natural left outer join s) natural left outer join t

a. Give instances of relations r , s and t such that in the result of the
second expression, attribute C has a null value but attribute D has a
non-null value.

b. Is the above pattern, with C null and D not null possible in the result
of the first expression? Explain why or why not.

4.4 Testing SQL queries: To test if a query specified in English has been cor-
rectly written in SQL, the SQL query is typically executed on multiple test
databases, and a human checks if the SQL query result on each test database
matches the intention of the specification in English.

a. In Section 3.3.3 we saw an example of an erroneous SQL query which
was intended to find which courses had been taught by each instruc-
tor; the query computed the natural join of instructor, teaches, and
course, and as a result unintentionally equated the dept name attribute
of instructor and course. Give an example of a dataset that would help
catch this particular error.

b. When creating test databases, it is important to create tuples in refer-
enced relations that do not have any matching tuple in the referencing
relation, for each foreign key. Explain why, using an example query
on the university database.

c. When creating test databases, it is important to create tuples with null
values for foreign key attributes, provided the attribute is nullable
(SQL allows foreign key attributes to take on null values, as long as
they are not part of the primary key, and have not been declared as
not null). Explain why, using an example query on the university
database.

Hint: use the queries from Exercise 4.1.

4.5 Show how to define the view student grades (ID, GPA) giving the grade-
point average of each student, based on the query in Exercise 3.2; recall
that we used a relation grade points(grade, points) to get the numeric points
associated with a letter grade. Make sure your view definition correctly
handles the case of null values for the grade attribute of the takes relation.

4.6 Complete the SQL DDL definition of the university database of Figure 4.8
to include the relations student, takes, advisor, and prereq.
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employee (employee name, street, city)
works (employee name, company name, salary)
company (company name, city)
manages (employee name, manager name)

Figure 4.11 Employee database for Figure 4.7 and 4.12.

4.7 Consider the relational database of Figure 4.11. Give an SQL DDL definition
of this database. Identify referential-integrity constraints that should hold,
and include them in the DDL definition.

4.8 As discussed in Section 4.4.7, we expect the constraint “an instructor cannot
teach sections in two different classrooms in a semester in the same time
slot” to hold.

a. Write an SQL query that returns all (instructor, section) combinations
that violate this constraint.

b. Write an SQL assertion to enforce this constraint (as discussed in
Section 4.4.7, current generation database systems do not support
such assertions, although they are part of the SQL standard).

4.9 SQL allows a foreign-key dependency to refer to the same relation, as in the
following example:

create table manager
(employee name varchar(20) not null
manager name varchar(20) not null,
primary key employee name,
foreign key (manager name) references manager

on delete cascade )

Here, employee name is a key to the table manager, meaning that each em-
ployee has at most one manager. The foreign-key clause requires that every
manager also be an employee. Explain exactly what happens when a tuple
in the relation manager is deleted.

4.10 SQL provides an n-ary operation called coalesce, which is defined as
follows: coalesce(A1, A2, . . . , An) returns the first nonnull Ai in the list
A1, A2, . . . , An, and returns null if all of A1, A2, . . . , An are null.

Let a and b be relations with the schemas A(name, address, title), and
B(name, address, salary), respectively. Show how to express a natural full
outer join b using the full outer-join operation with an on condition and
the coalesce operation. Make sure that the result relation does not contain
two copies of the attributes name and address, and that the solution is correct
even if some tuples in a and b have null values for attributes name or address.
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salaried worker (name, office, phone, salary)
hourly worker (name, hourly wage)
address (name, street, city)

Figure 4.12 Employee database for Exercise 4.16.

4.11 Some researchers have proposed the concept of marked nulls. A marked
null ⊥i is equal to itself, but if i �= j , then ⊥i �= ⊥ j . One application of
marked nulls is to allow certain updates through views. Consider the view
instructor info (Section 4.2). Show how you can use marked nulls to allow
the insertion of the tuple (99999, “Johnson”, “Music”) through instructor
info.

Exercises

4.12 For the database of Figure 4.11, write a query to find those employees with
no manager. Note that an employee may simply have no manager listed or
may have a null manager. Write your query using an outer join and then
write it again using no outer join at all.

4.13 Under what circumstances would the query

select *
from student natural full outer join takes natural full outer join course

include tuples with null values for the title attribute?

4.14 Show how to define a view tot credits (year, num credits), giving the total
number of credits taken by students in each year.

4.15 Show how to express the coalesce operation from Exercise 4.10 using the
case operation.

4.16 Referential-integrity constraints as defined in this chapter involve exactly
two relations. Consider a database that includes the relations shown in
Figure 4.12. Suppose that we wish to require that every name that appears in
address appears in either salaried worker or hourly worker, but not necessarily
in both.

a. Propose a syntax for expressing such constraints.

b. Discuss the actions that the system must take to enforce a constraint
of this form.

4.17 Explain why, when a manager, say Satoshi, grants an authorization, the
grant should be done by the manager role, rather than by the user Satoshi.



156 Chapter 4 Intermediate SQL

4.18 Suppose user A, who has all authorizations on a relation r , grants select on
relation r to public with grant option. Suppose user B then grants select
on r to A. Does this cause a cycle in the authorization graph? Explain why.

4.19 Database systems that store each relation in a separate operating-system file
may use the operating system’s authorization scheme, instead of defining
a special scheme themselves. Discuss an advantage and a disadvantage of
such an approach.

Bibliographical Notes

See the bibliographic notes of Chapter 3 for SQL reference material.
The rules used by SQL to determine the updatability of a view, and how

updates are reflected on the underlying database relations, are defined by the
SQL:1999 standard, and are summarized in Melton and Simon [2001].



C H A P T E R5
Advanced SQL

In Chapters 3 and 4, we provided detailed coverage of the basic structure of SQL.
In this chapter, we cover some of the more advanced features of SQL.1 We address
the issue of how to access SQL from a general-purpose programming language,
which is very important for building applications that use a database to store
and retrieve data. We describe how procedural code can be executed within the
database, either by extending the SQL language to support procedural actions,
or by allowing functions defined in procedural languages to be executed within
the database. We describe triggers, which can be used to specify actions that
are to be carried out automatically on certain events such as insertion, deletion,
or update of tuples in a specified relation. We discuss recursive queries and
advanced aggregation features supported by SQL. Finally, we describe online
analytic processing (OLAP) systems, which support interactive analysis of very
large datasets.

5.1 Accessing SQL From a Programming Language

SQL provides a powerful declarative query language. Writing queries in SQL is
usually much easier than coding the same queries in a general-purpose pro-
gramming language. However, a database programmer must have access to a
general-purpose programming language for at least two reasons:

1. Not all queries can be expressed in SQL, since SQL does not provide the full
expressive power of a general-purpose language. That is, there exist queries
that can be expressed in a language such as C, Java, or Cobol that cannot be
expressed in SQL. To write such queries, we can embed SQL within a more
powerful language.

1Note regarding chapter and section sequencing: Database design—Chapters 7 and 8—can be studied independently
of the material in this chapter. It is quite possible to study database design first, and study this chapter later. However,
for courses with a programming emphasis, a richer variety of laboratory exercises is possible after studying Section 5.1,
and we recommend that it be covered before database design for such courses.

157
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2. Nondeclarative actions—such as printing a report, interacting with a user,
or sending the results of a query to a graphical user interface—cannot
be done from within SQL. Applications usually have several components,
and querying or updating data is only one component; other components
are written in general-purpose programming languages. For an integrated
application, there must be a means to combine SQL with a general-purpose
programming language.

There are two approaches to accessing SQL from a general-purpose program-
ming language:

• Dynamic SQL: A general-purpose program can connect to and communicate
with a database server using a collection of functions (for procedural lan-
guages) or methods (for object-oriented languages). Dynamic SQL allows the
program to construct an SQL query as a character string at runtime, submit
the query, and then retrieve the result into program variables a tuple at a
time. The dynamic SQL component of SQL allows programs to construct and
submit SQL queries at runtime.

In this chapter, we look at two standards for connecting to an SQL database
and performing queries and updates. One, JDBC (Section 5.1.1), is an applica-
tion program interface for the Java language. The other, ODBC (Section 5.1.2),
is an application program interface originally developed for the C language,
and subsequently extended to other languages such as C++, C#, and Visual
Basic.

• Embedded SQL: Like dynamic SQL, embedded SQL provides a means by
which a program can interact with a database server. However, under em-
bedded SQL, the SQL statements are identified at compile time using a prepro-
cessor. The preprocessor submits the SQL statements to the database system
for precompilation and optimization; then it replaces the SQL statements in
the application program with appropriate code and function calls before in-
voking the programming-language compiler. Section 5.1.3 covers embedded
SQL.

A major challenge in mixing SQL with a general-purpose language is the
mismatch in the ways these languages manipulate data. In SQL, the primary type
of data is the relation. SQL statements operate on relations and return relations as
a result. Programming languages normally operate on a variable at a time, and
those variables correspond roughly to the value of an attribute in a tuple in a
relation. Thus, integrating these two types of languages into a single application
requires providing a mechanism to return the result of a query in a manner that
the program can handle.

5.1.1 JDBC

The JDBC standard defines an application program interface (API) that Java
programs can use to connect to database servers. (The word JDBC was originally
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public static void JDBCexample(String userid, String passwd)
{

try
{

Class.forName ("oracle.jdbc.driver.OracleDriver");
Connection conn = DriverManager.getConnection(

"jdbc:oracle:thin:@db.yale.edu:1521:univdb",
userid, passwd);

Statement stmt = conn.createStatement();
try {

stmt.executeUpdate(
"insert into instructor values(’77987’, ’Kim’, ’Physics’, 98000)");

} catch (SQLException sqle)
{

System.out.println("Could not insert tuple. " + sqle);
}
ResultSet rset = stmt.executeQuery(

"select dept name, avg (salary) "+
" from instructor "+
" group by dept name");

while (rset.next()) {
System.out.println(rset.getString("dept name") + " " +

rset.getFloat(2));
}
stmt.close();
conn.close();

}
catch (Exception sqle)
{

System.out.println("Exception : " + sqle);
}

}

Figure 5.1 An example of JDBC code.

an abbreviation for Java Database Connectivity, but the full form is no longer
used.)

Figure 5.1 shows an example Java program that uses the JDBC interface. It
illustrates how connections are opened, how statements are executed and results
processed, and how connections are closed. We discuss this example in detail
in this section. The Java program must import java.sql.*, which contains the
interface definitions for the functionality provided by JDBC.

5.1.1.1 Connecting to the Database

The first step in accessing a database from a Java program is to open a connection
to the database. This step is required to select which database to use, for example,
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an instance of Oracle running on your machine, or a PostgreSQL database running
on another machine. Only after opening a connection can a Java program execute
SQL statements.

A connection is opened using the getConnection method of the Driver-
Manager class (within java.sql). This method takes three parameters.2

• The first parameter to the getConnection call is a string that specifies the
URL, or machine name, where the server runs (in our example, db.yale.edu),
along with possibly some other information such as the protocol to be used
to communicate with the database (in our example, jdbc:oracle:thin:; we
shall shortly see why this is required), the port number the database system
uses for communication (in our example, 2000), and the specific database on
the server to be used (in our example, univdb). Note that JDBC specifies only
the API, not the communication protocol. A JDBC driver may support multiple
protocols, and we must specify one supported by both the database and the
driver. The protocol details are vendor specific.

• The second parameter to getConnection is a database user identifier, which
is a string.

• The third parameter is a password, which is also a string. (Note that the
need to specify a password within the JDBC code presents a security risk if an
unauthorized person accesses your Java code.)

In our example in the figure, we have created a Connection object whose handle
is conn.

Each database product that supports JDBC (all the major database vendors
do) provides a JDBC driver that must be dynamically loaded in order to access
the database from Java. In fact, loading the driver must be done first, before
connecting to the database.

This is done by invoking Class.forName with one argument specifying a
concrete class implementing the java.sql.Driver interface, in the first line of
the program in Figure 5.1. This interface provides for the translation of product-
independent JDBC calls into the product-specific calls needed by the specific
database management system being used. The example in the figure shows the
Oracle driver, oracle.jdbc.driver.OracleDriver.3 The driver is available in
a .jar file at vendor Web sites and should be placed within the classpath so
that the Java compiler can access it.

The actual protocol used to exchange information with the database de-
pends on the driver that is used, and is not defined by the JDBC standard. Some

2There are multiple versions of the getConnection method, which differ in the parameters that they accept. We
present the most commonly used version.
3The equivalent driver names for other products are as follows: IBM DB2: com.ibm.db2.jdbc.app.DB2Driver; Mi-
crosoft SQL Server: com.microsoft.sqlserver.jdbc.SQLServerDriver; PostgreSQL: org.postgresql.Driver; and MySQL:
com.mysql.jdbc.Driver. Sun also offers a “bridge driver” that converts JDBC calls to ODBC. This should be used only
for vendors that support ODBC but not JDBC.
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drivers support more than one protocol, and a suitable protocol must be cho-
sen depending on what protocol the database that you are connecting to sup-
ports. In our example, when opening a connection with the database, the string
jdbc:oracle:thin: specifies a particular protocol supported by Oracle.

5.1.1.2 Shipping SQL Statements to the Database System

Once a database connection is open, the program can use it to send SQL statements
to the database system for execution. This is done via an instance of the class
Statement. A Statement object is not the SQL statement itself, but rather an
object that allows the Java program to invoke methods that ship an SQL statement
given as an argument for execution by the database system. Our example creates
a Statement handle (stmt) on the connection conn.

To execute a statement, we invoke either the executeQuery method or the
executeUpdate method, depending on whether the SQL statement is a query
(and, thus, returns a result set) or nonquery statement such as update, insert,
delete, create table, etc. In our example, stmt.executeUpdate executes an up-
date statement that inserts into the instructor relation. It returns an integer giving
the number of tuples inserted, updated, or deleted. For DDL statements, the return
value is zero. The try { . . . } catch { . . . } construct permits us to catch any
exceptions (error conditions) that arise when JDBC calls are made, and print an
appropriate message to the user.

5.1.1.3 Retrieving the Result of a Query

The example program executes a query by using stmt.executeQuery. It retrieves
the set of tuples in the result into a ResultSet object rset and fetches them one
tuple at a time. The next method on the result set tests whether or not there
remains at least one unfetched tuple in the result set and if so, fetches it. The
return value of the next method is a Boolean indicating whether it fetched a
tuple. Attributes from the fetched tuple are retrieved using various methods
whose names begin with get. The method getString can retrieve any of the
basic SQL data types (converting the value to a Java String object), but more
restrictive methods such as getFloat can be used as well. The argument to the
various get methods can either be an attribute name specified as a string, or an
integer indicating the position of the desired attribute within the tuple. Figure 5.1
shows two ways of retrieving the values of attributes in a tuple: using the name
of the attribute (dept name) and using the position of the attribute (2, to denote the
second attribute).

The statement and connection are both closed at the end of the Java program.
Note that it is important to close the connection because there is a limit imposed
on the number of connections to the database; unclosed connections may cause
that limit to be exceeded. If this happens, the application cannot open any more
connections to the database.
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PreparedStatement pStmt = conn.prepareStatement(
"insert into instructor values(?,?,?,?)");

pStmt.setString(1, "88877");
pStmt.setString(2, "Perry");
pStmt.setString(3, "Finance");
pStmt.setInt(4, 125000);
pStmt.executeUpdate();
pStmt.setString(1, "88878");
pStmt.executeUpdate();

Figure 5.2 Prepared statements in JDBC code.

5.1.1.4 Prepared Statements

We can create a prepared statement in which some values are replaced by “?”,
thereby specifying that actual values will be provided later. The database system
compiles the query when it is prepared. Each time the query is executed (with
new values to replace the “?”s), the database system can reuse the previously
compiled form of the query and apply the new values. The code fragment in
Figure 5.2 shows how prepared statements can be used.

The prepareStatement method of the Connection class submits an SQL
statement for compilation. It returns an object of class PreparedStatement. At
this point, no SQL statement has been executed. The executeQuery and execu-
teUpdate methods of PreparedStatement class do that. But before they can be
invoked, we must use methods of class PreparedStatement that assign values
for the “?” parameters. The setStringmethod and other similar methods such as
setInt for other basic SQL types allow us to specify the values for the parameters.
The first argument specifies the “?” parameter for which we are assigning a value
(the first parameter is 1, unlike most other Java constructs, which start with 0).
The second argument specifies the value to be assigned.

In the example in the figure, we prepare an insert statement, set the “?” pa-
rameters, and then invoke executeUpdate. The final two lines of our example
show that parameter assignments remain unchanged until we specifically reas-
sign them. Thus, the final statement, which invokes executeUpdate, inserts the
tuple (“88878”, “Perry”, “Finance”, 125000).

Prepared statements allow for more efficient execution in cases where the
same query can be compiled once and then run multiple times with different
parameter values. However, there is an even more significant advantage to pre-
pared statements that makes them the preferred method of executing SQL queries
whenever a user-entered value is used, even if the query is to be run only once.
Suppose that we read in a user-entered value and then use Java string manipu-
lation to construct the SQL statement. If the user enters certain special characters,
such as a single quote, the resulting SQL statement may be syntactically incorrect
unless we take extraordinary care in checking the input. The setString method
does this for us automatically and inserts the needed escape characters to ensure
syntactic correctness.
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In our example, suppose that the values for the variables ID, name, dept name,
and salary have been entered by a user, and a corresponding row is to be inserted
into the instructor relation. Suppose that, instead of using a prepared statement,
a query is constructed by concatenating the strings using the following Java
expression:

"insert into instructor values(’ " + ID + " ’, ’ " + name + " ’, " +
" ’ + dept name + " ’, " ’ balance + ")"

and the query is executed directly using the executeQuery method of a State-
ment object. Now, if the user typed a single quote in the ID or name fields, the
query string would have a syntax error. It is quite possible that an instructor name
may have a quotation mark in its name (for example, “O’Henry”).

While the above example might be considered an annoyance, the situation
can be much worse. A technique called SQL injection can be used by malicious
hackers to steal data or damage the database.

Suppose a Java program inputs a string name and constructs the query:

"select * from instructor where name = ’" + name + "’"

If the user, instead of entering a name, enters:

X’ or ’Y’ = ’Y

then the resulting statement becomes:

"select * from instructor where name = ’" + "X’ or ’Y’ = ’Y" + "’"

which is:

select * from instructor where name = ’X’ or ’Y’ = ’Y’

In the resulting query, the where clause is always true and the entire instructor
relation is returned. More clever malicious users could arrange to output even
more data. Use of a prepared statement would prevent this problem because
the input string would have escape characters inserted, so the resulting query
becomes:

"select * from instructor where name = ’X\’ or \’Y\’ = \’Y’

which is harmless and returns the empty relation.
Older systems allow multiple statements to be executed in a single call, with

statements separated by a semicolon. This feature is being eliminated because
the SQL injection technique was used by malicious hackers to insert whole SQL
statements. Because these statements run with the privileges of the owner of the
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Java program, devastating SQL statements such as drop table could be executed.
Developers of SQL applications need to be wary of such potential security holes.

5.1.1.5 Callable Statements

JDBC also provides a CallableStatement interface that allows invocation of SQL
stored procedures and functions (described later, in Section 5.2). These play the
same role for functions and procedures as prepareStatement does for queries.

CallableStatement cStmt1 = conn.prepareCall("{? = call some function(?)}");
CallableStatement cStmt2 = conn.prepareCall("{call some procedure(?,?)}");

The data types of function return values and out parameters of procedures must
be registered using the method registerOutParameter(), and can be retrieved
using get methods similar to those for result sets. See a JDBC manual for more
details.

5.1.1.6 Metadata Features

As we noted earlier, a Java application program does not include declarations for
data stored in the database. Those declarations are part of the SQL DDL statements.
Therefore, a Java program that uses JDBC must either have assumptions about the
database schema hard-coded into the program or determine that information
directly from the database system at runtime. The latter approach is usually
preferable, since it makes the application program more robust to changes in the
database schema.

Recall that when we submit a query using the executeQuery method, the
result of the query is contained in a ResultSet object. The interface ResultSet
has a method, getMetaData(), that returns a ResultSetMetaData object that
contains metadata about the result set. ResultSetMetaData, in turn, has methods
to find metadata information, such as the number of columns in the result, the
name of a specified column, or the type of a specified column. In this way, we can
execute a query even if we have no idea of the schema of the result.

The Java code segment below uses JDBC to print out the names and types of
all columns of a result set. The variable rs in the code below is assumed to refer
to a ResultSet instance obtained by executing a query.

ResultSetMetaData rsmd = rs.getMetaData();
for(int i = 1; i <= rsmd.getColumnCount(); i++) {

System.out.println(rsmd.getColumnName(i));
System.out.println(rsmd.getColumnTypeName(i));

}

The getColumnCount method returns the arity (number of attributes) of the
result relation. That allows us to iterate through each attribute (note that we start
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DatabaseMetaData dbmd = conn.getMetaData();
ResultSet rs = dbmd.getColumns(null, "univdb", "department", "%");

// Arguments to getColumns: Catalog, Schema-pattern, Table-pattern,
// and Column-Pattern
// Returns: One row for each column; row has a number of attributes
// such as COLUMN NAME, TYPE NAME

while( rs.next()) {
System.out.println(rs.getString("COLUMN NAME"),

rs.getString("TYPE NAME");
}

Figure 5.3 Finding column information in JDBC using DatabaseMetaData.

at 1, as is conventional in JDBC). For each attribute, we retrieve its name and data
type using the methods getColumnName and getColumnTypeName, respectively.

The DatabaseMetaData interface provides a way to find metadata about the
database. The interface Connection has a method getMetaData that returns a
DatabaseMetaData object. The DatabaseMetaData interface in turn has a very
large number of methods to get metadata about the database and the database
system to which the application is connected.

For example, there are methods that return the product name and version
number of the database system. Other methods allow the application to query
the database system about its supported features.

Still other methods return information about the database itself. The code
in Figure 5.3 illustrates how to find information about columns (attributes) of
relations in a database. The variable conn is assumed to be a handle for an already
opened database connection. The method getColumns takes four arguments: a
catalog name (null signifies that the catalog name is to be ignored), a schema
name pattern, a table name pattern, and a column name pattern. The schema
name, table name, and column name patterns can be used to specify a name or
a pattern. Patterns can use the SQL string matching special characters “%” and
“ ”; for instance, the pattern “%” matches all names. Only columns of tables of
schemas satisfying the specified name or pattern are retrieved. Each row in the
result set contains information about one column. The rows have a number of
columns such as the name of the catalog, schema, table and column, the type of
the column, and so on.

Examples of other methods provided by DatabaseMetaData that provide
information about the database include those for retrieval of metadata about
relations (getTables()), foreign-key references (getCrossReference()), au-
thorizations, database limits such as maximum number of connections, and so
on.

The metadata interfaces can be used for a variety of tasks. For example, they
can be used to write a database browser that allows a user to find the tables in
a database, examine their schema, examine rows in a table, apply selections to
see desired rows, and so on. The metadata information can be used to make code
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used for these tasks generic; for example, code to display the rows in a relation can
be written in such a way that it would work on all possible relations regardless
of their schema. Similarly, it is possible to write code that takes a query string,
executes the query, and prints out the results as a formatted table; the code can
work regardless of the actual query submitted.

5.1.1.7 Other Features

JDBC provides a number of other features, such as updatable result sets. It can
create an updatable result set from a query that performs a selection and/or a
projection on a database relation. An update to a tuple in the result set then results
in an update to the corresponding tuple of the database relation.

Recall from Section 4.3 that a transaction allows multiple actions to be treated
as a single atomic unit which can be committed or rolled back.

By default, each SQL statement is treated as a separate transaction that is com-
mitted automatically. The method setAutoCommit() in the JDBC Connection
interface allows this behavior to be turned on or off. Thus, if conn is an open con-
nection, conn.setAutoCommit(false) turns off automatic commit. Transactions
must then be committed or rolled back explicitly using either conn.commit() or
conn.rollback(). conn.setAutoCommit(true) turns on automatic commit.

JDBC provides interfaces to deal with large objects without requiring an en-
tire large object to be created in memory. To fetch large objects, the ResultSet
interface provides methods getBlob() and getClob() that are similar to the
getString() method, but return objects of type Blob and Clob, respectively.
These objects do not store the entire large object, but instead store “locators” for
the large objects, that is, logical pointers to the actual large object in the database.
Fetching data from these objects is very much like fetching data from a file or
an input stream, and can be performed using methods such as getBytes and
getSubString.

Conversely, to store large objects in the database, the PreparedStatement
class permits a database column whose type is blob to be linked to an input
stream (such as a file that has been opened) using the method setBlob(int
parameterIndex, InputStream inputStream). When the prepared statement
is executed, data are read from the input stream, and written to the blob in the
database. Similarly, a clob column can be set using the setClob method, which
takes as arguments a parameter index and a character stream.

JDBC includes a row set feature that allows result sets to be collected and
shipped to other applications. Row sets can be scanned both backward and for-
ward and can be modified. Because row sets are not part of the database itself
once they are downloaded, we do not cover details of their use here.

5.1.2 ODBC

The Open Database Connectivity (ODBC) standard defines an API that applica-
tions can use to open a connection with a database, send queries and updates, and
get back results. Applications such as graphical user interfaces, statistics pack-
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void ODBCexample()
{

RETCODE error;
HENV env; /* environment */
HDBC conn; /* database connection */

SQLAllocEnv(&env);
SQLAllocConnect(env, &conn);
SQLConnect(conn, "db.yale.edu", SQL NTS, "avi", SQL NTS,

"avipasswd", SQL NTS);
{

char deptname[80];
float salary;
int lenOut1, lenOut2;
HSTMT stmt;

char * sqlquery = "select dept name, sum (salary)
from instructor
group by dept name";

SQLAllocStmt(conn, &stmt);
error = SQLExecDirect(stmt, sqlquery, SQL NTS);
if (error == SQL SUCCESS) {

SQLBindCol(stmt, 1, SQL C CHAR, deptname , 80, &lenOut1);
SQLBindCol(stmt, 2, SQL C FLOAT, &salary, 0 , &lenOut2);
while (SQLFetch(stmt) == SQL SUCCESS) {

printf (" %s %g\n", depthname, salary);
}

}
SQLFreeStmt(stmt, SQL DROP);

}
SQLDisconnect(conn);
SQLFreeConnect(conn);
SQLFreeEnv(env);

}

Figure 5.4 ODBC code example.

ages, and spreadsheets can make use of the same ODBC API to connect to any
database server that supports ODBC.

Each database system supporting ODBC provides a library that must be linked
with the client program. When the client program makes an ODBC API call, the
code in the library communicates with the server to carry out the requested action,
and fetch results.

Figure 5.4 shows an example of C code using the ODBC API. The first step
in using ODBC to communicate with a server is to set up a connection with
the server. To do so, the program first allocates an SQL environment, then a
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database connection handle. ODBC defines the types HENV, HDBC, and RETCODE.
The program then opens the database connection by using SQLConnect. This call
takes several parameters, including the connection handle, the server to which
to connect, the user identifier, and the password for the database. The constant
SQL NTS denotes that the previous argument is a null-terminated string.

Once the connection is set up, the program can send SQL commands to the
database by using SQLExecDirect. C language variables can be bound to attributes
of the query result, so that when a result tuple is fetched using SQLFetch, its
attribute values are stored in corresponding C variables. TheSQLBindCol function
does this task; the second argument identifies the position of the attribute in the
query result, and the third argument indicates the type conversion required from
SQL to C. The next argument gives the address of the variable. For variable-length
types like character arrays, the last two arguments give the maximum length of
the variable and a location where the actual length is to be stored when a tuple
is fetched. A negative value returned for the length field indicates that the value
is null. For fixed-length types such as integer or float, the maximum length field
is ignored, while a negative value returned for the length field indicates a null
value.

The SQLFetch statement is in a while loop that is executed until SQLFetch
returns a value other than SQL SUCCESS. On each fetch, the program stores the
values in C variables as specified by the calls on SQLBindCol and prints out these
values.

At the end of the session, the program frees the statement handle, disconnects
from the database, and frees up the connection and SQL environment handles.
Good programming style requires that the result of every function call must be
checked to make sure there are no errors; we have omitted most of these checks
for brevity.

It is possible to create an SQL statement with parameters; for example, consider
the statement insert into department values(?,?,?). The question marks
are placeholders for values which will be supplied later. The above statement
can be “prepared,” that is, compiled at the database, and repeatedly executed
by providing actual values for the placeholders—in this case, by providing an
department name, building, and budget for the relation department.

ODBC defines functions for a variety of tasks, such as finding all the relations
in the database and finding the names and types of columns of a query result or
a relation in the database.

By default, each SQL statement is treated as a separate transaction that is
committed automatically. The SQLSetConnectOption(conn, SQL AUTOCOMMIT, 0)
turns off automatic commit on connection conn, and transactions must then be
committed explicitly by SQLTransact(conn, SQL COMMIT) or rolled back by
SQLTransact(conn, SQL ROLLBACK).

The ODBC standard defines conformance levels, which specify subsets of the
functionality defined by the standard. An ODBC implementation may provide
only core level features, or it may provide more advanced (level 1 or level 2)
features. Level 1 requires support for fetching information about the catalog, such
as information about what relations are present and the types of their attributes.
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ADO.NET

The ADO.NET API, designed for the Visual Basic .NET and C# languages, pro-
vides functions to access data, which at a high level are not dissimilar to the JDBC
functions, although details differ. Like JDBC and ODBC, the ADO.NET API allows
access to results of SQL queries, as well as to metadata, but is considerably sim-
pler to use than ODBC. A database that supports ODBC can be accessed using
the ADO.NET API, and the ADO.NET calls are translated into ODBC calls. The
ADO.NET API can also be used with some kinds of nonrelational data sources
such as Microsoft’s OLE-DB, XML (covered in Chapter 23), and more recently,
the Entity Framework developed by Microsoft. See the bibliographic notes for
more information on ADO.NET.

Level 2 requires further features, such as the ability to send and retrieve arrays of
parameter values and to retrieve more detailed catalog information.

The SQL standard defines a call level interface (CLI) that is similar to the
ODBC interface.

5.1.3 Embedded SQL

The SQL standard defines embeddings of SQL in a variety of programming lan-
guages, such as C, C++, Cobol, Pascal, Java, PL/I, and Fortran. A language in
which SQL queries are embedded is referred to as a host language, and the SQL
structures permitted in the host language constitute embedded SQL.

Programs written in the host language can use the embedded SQL syntax to
access and update data stored in a database. An embedded SQL program must
be processed by a special preprocessor prior to compilation. The preprocessor
replaces embedded SQL requests with host-language declarations and procedure
calls that allow runtime execution of the database accesses. Then, the resulting
program is compiled by the host-language compiler. This is the main distinction
between embedded SQL and JDBC or ODBC.

In JDBC, SQL statements are interpreted at runtime (even if they are prepared
first using the prepared statement feature). When embedded SQL is used, some
SQL-related errors (including data-type errors) may be caught at compile time.

To identify embedded SQL requests to the preprocessor, we use the EXEC SQL
statement; it has the form:

EXEC SQL <embedded SQL statement >;

The exact syntax for embedded SQL requests depends on the language in
which SQL is embedded. In some languages, such as Cobol, the semicolon is
replaced with END-EXEC.
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We place the statement SQL INCLUDE SQLCA in the program to identify the
place where the preprocessor should insert the special variables used for com-
munication between the program and the database system.

Before executing any SQL statements, the program must first connect to the
database. This is done using:

EXEC SQL connect to server user user-name using password;

Here, server identifies the server to which a connection is to be established.
Variables of the host language can be used within embedded SQL statements,

but they must be preceded by a colon (:) to distinguish them from SQL variables.
Variables used as above must be declared within a DECLARE section, as illustrated
below. The syntax for declaring the variables, however, follows the usual host
language syntax.

EXEC SQL BEGIN DECLARE SECTION;
int credit amount;

EXEC SQL END DECLARE SECTION;

Embedded SQL statements are similar in form to regular SQL statements. There
are, however, several important differences, as we note here.

To write a relational query, we use the declare cursor statement. The result of
the query is not yet computed. Rather, the program must use the open and fetch
commands (discussed later in this section) to obtain the result tuples. As we shall
see, use of a cursor is analogous to iterating through a result set in JDBC.

Consider the university schema. Assume that we have a host-language vari-
able credit amount in our program, declared as we saw earlier, and that we wish
to find the names of all students who have taken more than credit amount credit
hours. We can write this query as follows:

EXEC SQL
declare c cursor for
select ID, name
from student
where tot cred > :credit amount;

The variable c in the preceding expression is called a cursor for the query. We use
this variable to identify the query. We then use the open statement, which causes
the query to be evaluated.

The open statement for our sample query is as follows:

EXEC SQL open c;

This statement causes the database system to execute the query and to save the
results within a temporary relation. The query uses the value of the host-language
variable (credit amount) at the time the open statement is executed.
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If the SQL query results in an error, the database system stores an error diag-
nostic in the SQL communication-area (SQLCA) variables.

We then use a series of fetch statements, each of which causes the values of one
tuple to be placed in host-language variables. The fetch statement requires one
host-language variable for each attribute of the result relation. For our example
query, we need one variable to hold the ID value and another to hold the name
value. Suppose that those variables are si and sn, respectively, and have been
declared within a DECLARE section. Then the statement:

EXEC SQL fetch c into :si, :sn;

produces a tuple of the result relation. The program can then manipulate the
variables si and sn by using the features of the host programming language.

A single fetch request returns only one tuple. To obtain all tuples of the result,
the program must contain a loop to iterate over all tuples. Embedded SQL assists
the programmer in managing this iteration. Although a relation is conceptually
a set, the tuples of the result of a query are in some fixed physical order. When
the program executes an open statement on a cursor, the cursor is set to point to
the first tuple of the result. Each time it executes a fetch statement, the cursor is
updated to point to the next tuple of the result. When no further tuples remain to
be processed, the character array variable SQLSTATE in the SQLCA is set to ’02000’
(meaning “no more data”); the exact syntax for accessing this variable depends on
the specific database system you use. Thus, we can use a while loop (or equivalent
loop) to process each tuple of the result.

We must use the close statement to tell the database system to delete the tem-
porary relation that held the result of the query. For our example, this statement
takes the form

EXEC SQL close c;

Embedded SQL expressions for database modification (update, insert, and
delete) do not return a result. Thus, they are somewhat simpler to express. A
database-modification request takes the form

EXEC SQL < any valid update, insert, or delete>;

Host-language variables, preceded by a colon, may appear in the SQL database-
modification expression. If an error condition arises in the execution of the state-
ment, a diagnostic is set in the SQLCA.

Database relations can also be updated through cursors. For example, if we
want to add 100 to the salary attribute of every instructor in the Music department,
we could declare a cursor as follows.
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SQLJ

The Java embedding of SQL, called SQLJ, provides the same features as other
embedded SQL implementations, but using a different syntax that more closely
matches features already present in Java, such as iterators. For example, SQLJ
uses the syntax #sql instead of EXEC SQL, and instead of cursors, uses the Java
iterator interface to fetch query results. Thus the result of executing a query is a
Java iterator, and the next() method of the Java iterator interface can be used to
step through the result tuples, just as the preceding examples use fetch on the
cursor. The iterator must have attributes declared, whose types match the types
of the attributes in the SQL query result. The code snippet below illustrates the
use of iterators.

#sql iterator deptInfoIter ( String dept name, int avgSal);
deptInfoIter iter = null;

#sql iter = { select dept name, avg(salary)
from instructor
group by dept name };

while (iter.next()) {
String deptName = iter.dept name();
int avgSal = iter.avgSal();
System.out.println(deptName + " " + avgSal);

}
iter.close();

SQLJ is supported by IBM DB2 and Oracle; both provide translators that
convert SQLJ code into JDBC code. The translator can connect to the database
in order to check the syntactic correctness of queries at compile time, and to
ensure that the SQL types of query results are compatible with the Java types of
variables they are assigned to. As of early 2009, SQLJ is not supported by other
database systems.

We do not describe SQLJ in detail here; see the bibliographic notes for more
information.

EXEC SQL
declare c cursor for
select *
from instructor
where dept name= ‘Music’
for update;

We then iterate through the tuples by performing fetch operations on the cursor
(as illustrated earlier), and after fetching each tuple we execute the following code:
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EXEC SQL
update instructor
set salary = salary + 100
where current of c;

Transactions can be committed using EXEC SQL COMMIT, or rolled back using
EXEC SQL ROLLBACK.

Queries in embedded SQL are normally defined when the program is written.
There are rare situations where a query needs to be defined at runtime. For
example, an application interface may allow a user to specify selection conditions
on one or more attributes of a relation, and may construct the where clause of an
SQL query at runtime, with conditions on only those attributes for which the user
specifies selections. In such cases, a query string can be constructed and prepared
at runtime, using a statement of the form EXEC SQL PREPARE <query-name>

FROM :<variable>, and a cursor can be opened on the query name.

5.2 Functions and Procedures

We have already seen several functions that are built into the SQL language. In this
section, we show how developers can write their own functions and procedures,
store them in the database, and then invoke them from SQL statements. Functions
are particularly useful with specialized data types such as images and geometric
objects. For instance, a line-segment data type used in a map database may have an
associated function that checks whether two line segments overlap, and an image
data type may have associated functions to compare two images for similarity.

Procedures and functions allow “business logic” to be stored in the database,
and executed from SQL statements. For example, universities usually have many
rules about how many courses a student can take in a given semester, the mini-
mum number of courses a full-time instructor must teach in a year, the maximum
number of majors a student can be enrolled in, and so on. While such business
logic can be encoded as programming-language procedures stored entirely out-
side the database, defining them as stored procedures in the database has several
advantages. For example, it allows multiple applications to access the procedures,
and it allows a single point of change in case the business rules change, without
changing other parts of the application. Application code can then call the stored
procedures, instead of directly updating database relations.

SQL allows the definition of functions, procedures, and methods. These can be
defined either by the procedural component of SQL, or by an external program-
ming language such as Java, C, or C++. We look at definitions in SQL first, and
then see how to use definitions in external languages in Section 5.2.3.

Although the syntax we present here is defined by the SQL standard, most
databases implement nonstandard versions of this syntax. For example, the pro-
cedural languages supported by Oracle (PL/SQL), Microsoft SQL Server (Trans-
actSQL), and PostgreSQL (PL/pgSQL) all differ from the standard syntax we present
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create function dept count(dept name varchar(20))
returns integer
begin
declare d count integer;

select count(*) into d count
from instructor
where instructor.dept name= dept name

return d count;
end

Figure 5.5 Function defined in SQL.

here. We illustrate some of the differences, for the case of Oracle, later (page 178).
See the respective system manuals for further details. Although parts of the syn-
tax we present here may not be supported on such systems, the concepts we
describe are applicable across implementations, although with a different syntax.

5.2.1 Declaring and Invoking SQL Functions and Procedures

Suppose that we want a function that, given the name of a department, returns
the count of the number of instructors in that department. We can define the
function as shown in Figure 5.5.4 This function can be used in a query that returns
names and budgets of all departments with more than 12 instructors:

select dept name, budget
from instructor
where dept count(dept name) > 12;

The SQL standard supports functions that can return tables as results; such
functions are called table functions.5 Consider the function defined in Figure 5.6.
The function returns a table containing all the instructors of a particular depart-
ment. Note that the function’s parameter is referenced by prefixing it with the
name of the function (instructor of.dept name).

The function can be used in a query as follows:

select *
from table(instructor of (’Finance’));

This query returns all instructors of the ’Finance’ department. In the above simple
case it is straightforward to write this query without using table-valued functions.
In general, however, table-valued functions can be thought of as parameterized
views that generalize the regular notion of views by allowing parameters.

4If you are entering your own functions or procedures, you should write “create or replace” rather than create so that it
is easy to modify your code (by replacing the function) during debugging.
5This feature first appeared in SQL:2003.
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create function instructors of (dept name varchar(20))
returns table (

ID varchar (5),
name varchar (20),
dept name varchar (20),
salary numeric (8,2))

return table
(select ID, name, dept name, salary
from instructor
where instructor.dept name = instructor of.dept name);

Figure 5.6 Table function in SQL.

SQL also supports procedures. The dept count function could instead be written
as a procedure:

create procedure dept count proc(in dept name varchar(20),
out d count integer)

begin
select count(*) into d count
from instructor
where instructor.dept name= dept count proc.dept name

end

The keywords in and out indicate, respectively, parameters that are expected
to have values assigned to them and parameters whose values are set in the
procedure in order to return results.

Procedures can be invoked either from an SQL procedure or from embedded
SQL by the call statement:

declare d count integer;
call dept count proc(’Physics’, d count);

Procedures and functions can be invoked from dynamic SQL, as illustrated by the
JDBC syntax in Section 5.1.1.4.

SQL permits more than one procedure of the same name, so long as the num-
ber of arguments of the procedures with the same name is different. The name,
along with the number of arguments, is used to identify the procedure. SQL also
permits more than one function with the same name, so long as the different
functions with the same name either have different numbers of arguments, or for
functions with the same number of arguments, they differ in the type of at least
one argument.
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5.2.2 Language Constructs for Procedures and Functions

SQL supports constructs that give it almost all the power of a general-purpose pro-
gramming language. The part of the SQL standard that deals with these constructs
is called the Persistent Storage Module (PSM).

Variables are declared using a declare statement and can have any valid SQL
data type. Assignments are performed using a set statement.

A compound statement is of the form begin . . . end, and it may contain
multiple SQL statements between the begin and the end. Local variables can
be declared within a compound statement, as we have seen in Section 5.2.1.
A compound statement of the form begin atomic . . . end ensures that all the
statements contained within it are executed as a single transaction.

SQL:1999 supports the while statements and the repeat statements by the
following syntax:

while boolean expression do
sequence of statements;

end while

repeat
sequence of statements;

until boolean expression
end repeat

There is also a for loop that permits iteration over all results of a query:

declare n integer default 0;
for r as

select budget from department
where dept name = ‘Music‘

do
set n = n− r.budget

end for

The program fetches the query results one row at a time into the for loop variable
(r, in the above example). The statement leave can be used to exit the loop, while
iterate starts on the next tuple, from the beginning of the loop, skipping the
remaining statements.

The conditional statements supported by SQL include if-then-else statements
by using this syntax:

if boolean expression
then statement or compound statement

elseif boolean expression
then statement or compound statement

else statement or compound statement
end if
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– – Registers a student after ensuring classroom capacity is not exceeded
– – Returns 0 on success, and -1 if capacity is exceeded.
create function registerStudent(

in s id varchar(5),
in s courseid varchar (8),
in s secid varchar (8),
in s semester varchar (6),
in s year numeric (4,0),
out errorMsg varchar(100)

returns integer
begin

declare currEnrol int;
select count(*) into currEnrol

from takes
where course id = s courseid and sec id = s secid

and semester = s semester and year = s year;
declare limit int;
select capacity into limit

from classroom natural join section
where course id = s courseid and sec id = s secid

and semester = s semester and year = s year;
if (currEnrol < limit)

begin
insert into takes values

(s id, s courseid, s secid, s semester, s year, null);
return(0);

end
– – Otherwise, section capacity limit already reached
set errorMsg = ’Enrollment limit reached for course ’ || s courseid

|| ’ section ’ || s secid;
return(-1);

end;

Figure 5.7 Procedure to register a student for a course section.

SQL also supports a case statement similar to the C/C++ language case state-
ment (in addition to case expressions, which we saw in Chapter 3).

Figure 5.7 provides a larger example of the use of procedural constructs in
SQL. The function registerStudent defined in the figure, registers a student in a
course section, after verifying that the number of students in the section does
not exceed the capacity of the room allocated to the section. The function returns
an error code, with a value greater than or equal to 0 signifying success, and a
negative value signifying an error condition, and a message indicating the reason
for the failure is returned as an out parameter.
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NONSTANDARD SYNTAX FOR PROCEDURES AND FUNCTIONS

Although the SQL standard defines the syntax for procedures and functions,
most databases do not follow the standard strictly, and there is considerable
variation in the syntax supported. One of the reasons for this situation is that
these databases typically introduced support for procedures and functions be-
fore the syntax was standardized, and they continue to support their original
syntax. It is not possible to list the syntax supported by each database here, but
we illustrate a few of the differences in the case of Oracle’s PL/SQL, by show-
ing below a version of the function from Figure 5.5, as it would be defined in
PL/SQL.

create or replace function dept count(dept name in instructor.dept name%type)
return integer
as

d count integer;
begin

select count(*) into d count
from instructor
where instructor.dept name = dept name;
return d count;

end;

While the two versions are similar in concept, there are a number of minor syn-
tactic differences, some of which are evident when comparing the two versions
of the function. Although not shown here, the syntax for control flow in PL/SQL
also has several differences from the syntax presented here.

Observe that PL/SQL allows a type to be specified as the type of an attribute
of a relation, by adding the suffix %type. On the other hand, PL/SQL does not
directly support the ability to return a table, although there is an indirect way
of implementing this functionality by creating a table type. The procedural
languages supported by other databases also have a number of syntactic and
semantic differences. See the respective language references for more informa-
tion.

The SQL procedural language also supports the signaling of exception condi-
tions, and declaring of handlers that can handle the exception, as in this code:

declare out of classroom seats condition
declare exit handler for out of classroom seats
begin
sequence of statements
end
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The statements between the begin and the end can raise an exception by executing
signal out of classroom seats. The handler says that if the condition arises, the action
to be taken is to exit the enclosing begin end statement. Alternative actions would
be continue, which continues execution from the next statement following the
one that raised the exception. In addition to explicitly defined conditions, there
are also predefined conditions such as sqlexception, sqlwarning, and not found.

5.2.3 External Language Routines

Although the procedural extensions to SQL can be very useful, they are unfortu-
nately not supported in a standard way across databases. Even the most basic
features have different syntax or semantics in different database products. As a
result, programmers have to essentially learn a new language for each database
product. An alternative that is gaining in support is to define procedures in an im-
perative programming language, but allow them to be invoked from SQL queries
and trigger definitions.

SQL allows us to define functions in a programming language such as Java, C#,
C or C++. Functions defined in this fashion can be more efficient than functions
defined in SQL, and computations that cannot be carried out in SQL can be executed
by these functions.

External procedures and functions can be specified in this way (note that the
exact syntax depends on the specific database system you use):

create procedure dept count proc( in dept name varchar(20),
out count integer)

language C
external name ’/usr/avi/bin/dept count proc’

create function dept count (dept name varchar(20))
returns integer
language C
external name ’/usr/avi/bin/dept count’

In general, the external language procedures need to deal with null values in
parameters (both in and out) and return values. They also need to communicate
failure/success status, to deal with exceptions. This information can be commu-
nicated by extra parameters: an sqlstate value to indicate failure/success status,
a parameter to store the return value of the function, and indicator variables for
each parameter/function result to indicate if the value is null. Other mechanisms
are possible to handle null values, for example by passing pointers instead of
values. The exact mechanisms depend on the database. However, if a function
does not deal with these situations, an extra line parameter style general can be
added to the declaration to indicate that the external procedures/functions take
only the arguments shown and do not handle null values or exceptions.

Functions defined in a programming language and compiled outside the
database system may be loaded and executed with the database-system code.
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However, doing so carries the risk that a bug in the program can corrupt the
database internal structures, and can bypass the access-control functionality of the
database system. Database systems that are concerned more about efficient per-
formance than about security may execute procedures in such a fashion. Database
systems that are concerned about security may execute such code as part of a sep-
arate process, communicate the parameter values to it, and fetch results back,
via interprocess communication. However, the time overhead of interprocess
communication is quite high; on typical CPU architectures, tens to hundreds of
thousands of instructions can execute in the time taken for one interprocess com-
munication.

If the code is written in a “safe” language such as Java or C#, there is another
possibility: executing the code in a sandbox within the database query execution
process itself. The sandbox allows the Java or C# code to access its own memory
area, but prevents the code from reading or updating the memory of the query
execution process, or accessing files in the file system. (Creating a sandbox is not
possible for a language such as C, which allows unrestricted access to memory
through pointers.) Avoiding interprocess communication reduces function call
overhead greatly.

Several database systems today support external language routines running
in a sandbox within the query execution process. For example, Oracle and IBM
DB2 allow Java functions to run as part of the database process. Microsoft SQL
Server allows procedures compiled into the Common Language Runtime (CLR)
to execute within the database process; such procedures could have been written,
for example, in C# or Visual Basic. PostgreSQL allows functions defined in several
languages, such as Perl, Python, and Tcl.

5.3 Triggers

A trigger is a statement that the system executes automatically as a side effect
of a modification to the database. To design a trigger mechanism, we must meet
two requirements:

1. Specify when a trigger is to be executed. This is broken up into an event that
causes the trigger to be checked and a condition that must be satisfied for
trigger execution to proceed.

2. Specify the actions to be taken when the trigger executes.

Once we enter a trigger into the database, the database system takes on the respon-
sibility of executing it whenever the specified event occurs and the corresponding
condition is satisfied.

5.3.1 Need for Triggers

Triggers can be used to implement certain integrity constraints that cannot be
specified using the constraint mechanism of SQL. Triggers are also useful mecha-
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nisms for alerting humans or for starting certain tasks automatically when certain
conditions are met. As an illustration, we could design a trigger that, whenever
a tuple is inserted into the takes relation, updates the tuple in the student relation
for the student taking the course by adding the number of credits for the course
to the student’s total credits. As another example, suppose a warehouse wishes
to maintain a minimum inventory of each item; when the inventory level of an
item falls below the minimum level, an order can be placed automatically. On
an update of the inventory level of an item, the trigger compares the current
inventory level with the minimum inventory level for the item, and if the level is
at or below the minimum, a new order is created.

Note that trigger systems cannot usually perform updates outside the database,
and hence, in the inventory replenishment example, we cannot use a trigger to
place an order in the external world. Instead, we add an order to a relation hold-
ing reorders. We must create a separate permanently running system process that
periodically scans that relation and places orders. Some database systems provide
built-in support for sending email from SQL queries and triggers, using the above
approach.

5.3.2 Triggers in SQL

We now consider how to implement triggers in SQL. The syntax we present here is
defined by the SQL standard, but most databases implement nonstandard versions
of this syntax. Although the syntax we present here may not be supported on
such systems, the concepts we describe are applicable across implementations.
We discuss nonstandard trigger implementations later in this section (page 184).

Figure 5.8 shows how triggers can be used to ensure referential integrity on the
time slot id attribute of the section relation. The first trigger definition in the figure
specifies that the trigger is initiated after any insert on the relation section and it
ensures that the time slot id value being inserted is valid. An SQL insert statement
could insert multiple tuples of the relation, and the for each row clause in the
trigger code would then explicitly iterate over each inserted row. The referencing
new row as clause creates a variable nrow (called a transition variable) that stores
the value of an inserted row after the insertion.

The when statement specifies a condition. The system executes the rest of
the trigger body only for tuples that satisfy the condition. The begin atomic . . .

end clause can serve to collect multiple SQL statements into a single compound
statement. In our example, though, there is only one statement, which rolls back
the transaction that caused the trigger to get executed. Thus any transaction that
violates the referential integrity constraint gets rolled back, ensuring the data in
the database satisfies the constraint.

It is not sufficient to check referential integrity on inserts alone, we also need to
consider updates of section, as well as deletes and updates to the referenced table
time slot. The second trigger definition in Figure 5.8 considers the case of deletes
to time slot. This trigger checks that the time slot id of the tuple being deleted is
either still present in time slot, or that no tuple in section contains that particular
time slot id value; otherwise, referential integrity would be violated.



182 Chapter 5 Advanced SQL

create trigger timeslot check1 after insert on section
referencing new row as nrow
for each row
when (nrow.time slot id not in (

select time slot id
from time slot)) /* time slot id not present in time slot */

begin
rollback

end;

create trigger timeslot check2 after delete on timeslot
referencing old row as orow
for each row
when (orow.time slot id not in (

select time slot id
from time slot) /* last tuple for time slot id deleted from time slot */

and orow.time slot id in (
select time slot id
from section)) /* and time slot id still referenced from section*/

begin
rollback

end;

Figure 5.8 Using triggers to maintain referential integrity.

To ensure referential integrity, we would also have to create triggers to handle
updates to section and time slot; we describe next how triggers can be executed on
updates, but leave the definition of these triggers as an exercise to the reader.

For updates, the trigger can specify attributes whose update causes the trigger
to execute; updates to other attributes would not cause it to be executed. For
example, to specify that a trigger executes after an update to the grade attribute
of the takes relation, we write:

after update of takes on grade

The referencing old row as clause can be used to create a variable storing the
old value of an updated or deleted row. The referencing new row as clause can
be used with updates in addition to inserts.

Figure 5.9 shows how a trigger can be used to keep the tot cred attribute value
of student tuples up-to-date when the grade attribute is updated for a tuple in the
takes relation. The trigger is executed only when the grade attribute is updated
from a value that is either null or ’F’, to a grade that indicates the course is
successfully completed. The update statement is normal SQL syntax except for
the use of the variable nrow.
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create trigger credits earned after update of takes on (grade)
referencing new row as nrow
referencing old row as orow
for each row
when nrow.grade <> ’F’ and nrow.grade is not null

and (orow.grade = ’F’ or orow.grade is null)
begin atomic

update student
set tot cred= tot cred+

(select credits
from course
where course.course id= nrow.course id)

where student.id = nrow.id;
end;

Figure 5.9 Using a trigger to maintain credits earned values.

A more realistic implementation of this example trigger would also handle
grade corrections that change a successful completion grade to a fail grade, and
handle insertions into the takes relation where the grade indicates successful com-
pletion. We leave these as an exercise for the reader.

As another example of the use of a trigger, the action on delete of a student
tuple could be to check if the student has any entries in the takes relation, and if
so, to delete them.

Many database systems support a variety of other triggering events, such as
when a user (application) logs on to the database (that is, opens a connection),
the system shuts down, or changes are made to system settings.

Triggers can be activated before the event (insert, delete, or update) instead of
after the event. Triggers that execute before an event can serve as extra constraints
that can prevent invalid updates, inserts, or deletes. Instead of letting the invalid
action proceed and cause an error, the trigger might take action to correct the
problem so that the update, insert, or delete becomes valid. For example, if we
attempt to insert an instructor into a department whose name does not appear in
the department relation, the trigger could insert a tuple into the department relation
for that department name before the insertion generates a foreign-key violation.
As another example, suppose the value of an inserted grade is blank, presumably
to indicate the absence of a grade. We can define a trigger that replaces the value
by the null value. The set statement can be used to carry out such modifications.
An example of such a trigger appears in Figure 5.10.

Instead of carrying out an action for each affected row, we can carry out a
single action for the entire SQL statement that caused the insert, delete, or update.
To do so, we use the for each statement clause instead of the for each row
clause. The clauses referencing old table as or referencing new table as can then
be used to refer to temporary tables (called transition tables) containing all the
affected rows. Transition tables cannot be used with before triggers, but can be
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create trigger setnull before update on takes
referencing new row as nrow
for each row
when (nrow.grade = ’ ’)
begin atomic

set nrow.grade = null;
end;

Figure 5.10 Example of using set to change an inserted value.

used with after triggers, regardless of whether they are statement triggers or row
triggers. A single SQL statement can then be used to carry out multiple actions on
the basis of the transition tables.

NONSTANDARD TRIGGER SYNTAX

Although the trigger syntax we describe here is part of the SQL standard, and is
supported by IBM DB2, most other database systems have nonstandard syntax
for specifying triggers, and may not implement all features in the SQL standard.
We outline a few of the differences below; see the respective system manuals for
further details.

For example, in the Oracle syntax, unlike the SQL standard syntax, the key-
word row does not appear in the referencing statement. The keyword atomic
does not appear after begin. The reference to nrow in the select statement nested
in the update statement must begin with a colon (:) to inform the system that
the variable nrow is defined externally from the SQL statement. Further, sub-
queries are not allowed in the when and if clauses. It is possible to work around
this problem by moving complex predicates from the when clause into a sep-
arate query that saves the result into a local variable, and then reference that
variable in an if clause, and the body of the trigger then moves into the cor-
responding then clause. Further, in Oracle, triggers are not allowed to execute
a transaction rollback directly; however, they can instead use a function called
raise application error to not only roll back the transaction, but also return an
error message to the user/application that performed the update.

As another example, in Microsoft SQL Server the keyword on is used instead
of after. The referencing clause is omitted, and old and new rows are referenced
by the tuple variables deleted and inserted. Further, the for each row clause is
omitted, and when is replaced by if. The before specification is not supported,
but an instead of specification is supported.

In PostgreSQL, triggers do not have a body, but instead invoke a procedure
for each row, which can access variables new and old containing the old and
new values of the row. Instead of performing a rollback, the trigger can raise an
exception, with an associated error message.
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create trigger reorder after update of amount on inventory
referencing old row as orow, new row as nrow
for each row
when nrow.level <= (select level

from minlevel
where minlevel.item = orow.item)

and orow.level > (select level
from minlevel
where minlevel.item = orow.item)

begin atomic
insert into orders

(select item, amount
from reorder
where reorder.item = orow.item);

end;

Figure 5.11 Example of trigger for reordering an item.

Triggers can be disabled or enabled; by default they are enabled when they
are created, but can be disabled by using alter trigger trigger name disable (some
databases use alternative syntax such as disable trigger trigger name). A trigger
that has been disabled can be enabled again. A trigger can instead be dropped,
which removes it permanently, by using the command drop trigger trigger name.

Returning to our warehouse inventory example, suppose we have the follow-
ing relations:

• inventory (item, level), which notes the current amount of the item in the
warehouse.

• minlevel (item, level), which notes the minimum amount of the item to be
maintained.

• reorder (item, amount), which notes the amount of the item to be ordered when
its level falls below the minimum.

• orders (item, amount), which notes the amount of the item to be ordered.

Note that we have been careful to place an order only when the amount falls
from above the minimum level to below the minimum level. If we check only
that the new value after an update is below the minimum level, we may place
an order erroneously when the item has already been reordered. We can then use
the trigger shown in Figure 5.11 for reordering the item.

SQL-based database systems use triggers widely, although before SQL:1999
they were not part of the SQL standard. Unfortunately, each database system
implemented its own syntax for triggers, leading to incompatibilities. The SQL:1999
syntax for triggers that we use here is similar, but not identical, to the syntax in
the IBM DB2 and Oracle database systems.
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5.3.3 When Not to Use Triggers

There are many good uses for triggers, such as those we have just seen in Sec-
tion 5.3.2, but some uses are best handled by alternative techniques. For example,
we could implement the on delete cascade feature of a foreign-key constraint
by using a trigger, instead of using the cascade feature. Not only would this be
more work to implement, but also, it would be much harder for a database user
to understand the set of constraints implemented in the database.

As another example, triggers can be used to maintain materialized views. For
instance, if we wished to support very fast access to the total number of students
registered for each course section, we could do this by creating a relation

section registration(course id, sec id, semester, year, total students)

defined by the query

select course id, sec id, semester, year, count(ID) as total students
from takes
group by course id, sec id, semester, year;

The value of total students for each course must be maintained up-to-date by
triggers on insert, delete, or update of the takes relation. Such maintenance may
require insertion, update or deletion of tuples from section registration, and triggers
must be written accordingly.

However, many database systems now support materialized views, which
are automatically maintained by the database system (see Section 4.2.3). As a
result, there is no need to write trigger code for maintaining such materialized
views.

Triggers have been used for maintaining copies, or replicas, of databases. A
collection of triggers on insert, delete, or update can be created on each relation
to record the changes in relations called change or delta relations. A separate
process copies over the changes to the replica of the database. Modern database
systems, however, provide built-in facilities for database replication, making trig-
gers unnecessary for replication in most cases. Replicated databases are discussed
in detail in Chapter 19.

Another problem with triggers lies in unintended execution of the triggered
action when data are loaded from a backup copy,6 or when database updates at a
site are replicated on a backup site. In such cases, the triggered action has already
been executed, and typically should not be executed again. When loading data,
triggers can be disabled explicitly. For backup replica systems that may have to
take over from the primary system, triggers would have to be disabled initially,
and enabled when the backup site takes over processing from the primary system.
As an alternative, some database systems allow triggers to be specified as not

6We discuss database backup and recovery from failures in detail in Chapter 16.
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course id prereq id

BIO-301 BIO-101
BIO-399 BIO-101
CS-190 CS-101
CS-315 CS-101
CS-319 CS-101
CS-347 CS-101
EE-181 PHY-101

Figure 5.12 The prereq relation.

for replication, which ensures that they are not executed on the backup site
during database replication. Other database systems provide a system variable
that denotes that the database is a replica on which database actions are being
replayed; the trigger body should check this variable and exit if it is true. Both
solutions remove the need for explicit disabling and enabling of triggers.

Triggers should be written with great care, since a trigger error detected at
runtime causes the failure of the action statement that set off the trigger. Further-
more, the action of one trigger can set off another trigger. In the worst case, this
could even lead to an infinite chain of triggering. For example, suppose an insert
trigger on a relation has an action that causes another (new) insert on the same
relation. The insert action then triggers yet another insert action, and so on ad
infinitum. Some database systems limit the length of such chains of triggers (for
example, to 16 or 32) and consider longer chains of triggering an error. Other
systems flag as an error any trigger that attempts to reference the relation whose
modification caused the trigger to execute in the first place.

Triggers can serve a very useful purpose, but they are best avoided when
alternatives exist. Many trigger applications can be substituted by appropriate
use of stored procedures, which we discussed in Section 5.2.

5.4 Recursive Queries **

Consider the instance of the relation prereq shown in Figure 5.12 containing infor-
mation about the various courses offered at the university and the prerequisite
for each course.7

Suppose now that we want to find out which courses are a prerequisite
whether directly or indirectly, for a specific course—say, CS-347. That is, we wish
to find a course that is a direct prerequisite for CS-347, or is a prerequisite for a
course that is a prerequisite for CS-347, and so on.

7This instance of prereq differs from that used earlier for reasons that will become apparent as we use it to explain
recursive queries.
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Thus, if CS-301 is a prerequisite for CS-347, and CS-201 is a prerequisite for
CS-301, and CS-101 is a prerequisite for CS-201, then CS-301, CS-201, and CS-101
are all prerequisites for CS-347.

The transitive closure of the relation prereq is a relation that contains all
pairs (cid, pre) such that pre is a direct or indirect prerequisite of cid. There are
numerous applications that require computation of similar transitive closures
on hierarchies. For instance, organizations typically consist of several levels of
organizational units. Machines consist of parts that in turn have subparts, and so
on; for example, a bicycle may have subparts such as wheels and pedals, which
in turn have subparts such as tires, rims, and spokes. Transitive closure can be
used on such hierarchies to find, for example, all parts in a bicycle.

5.4.1 Transitive Closure Using Iteration

One way to write the above query is to use iteration: First find those courses
that are a direct prerequisite of CS-347, then those courses that are a prerequisite
of all the courses under the first set, and so on. This iterative process continues
until we reach an iteration where no courses are added. Figure 5.13 shows a
function findAllPrereqs(cid) to carry out this task; the function takes the course
id of the course as a parameter (cid), computes the set of all direct and indirect

prerequisites of that course, and returns the set.
The procedure uses three temporary tables:

• c prereq: stores the set of tuples to be returned.

• new c prereq: stores the courses found in the previous iteration.

• temp: used as temporary storage while sets of courses are manipulated.

Note that SQL allows the creation of temporary tables using the command create
temporary table; such tables are available only within the transaction executing
the query, and are dropped when the transaction finishes. Moreover, if two in-
stances of findAllPrereqs run concurrently, each gets its own copy of the temporary
tables; if they shared a copy, their result could be incorrect.

The procedure inserts all direct prerequisites of course cid into new c prereq
before the repeat loop. The repeat loop first adds all courses in new c prereq to
c prereq. Next, it computes prerequisites of all those courses in new c prereq, except
those that have already been found to be prerequisites of cid, and stores them in
the temporary table temp. Finally, it replaces the contents of new c prereq by the
contents of temp. The repeat loop terminates when it finds no new (indirect)
prerequisites.

Figure 5.14 shows the prerequisites that would be found in each iteration, if
the procedure were called for the course named CS-347.

We note that the use of the except clause in the function ensures that the
function works even in the (abnormal) case where there is a cycle of prerequisites.
For example, if a is a prerequisite for b, b is a prerequisite for c, and c is a prerequisite
for a, there is a cycle.
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create function findAllPrereqs(cid varchar(8))
– – Finds all courses that are prerequisite (directly or indirectly) for cid

returns table (course id varchar(8))
– – The relation prereq(course id, prereq id) specifies which course is
– – directly a prerequisite for another course.

begin
create temporary table c prereq (course id varchar(8));

– – table c prereq stores the set of courses to be returned
create temporary table new c prereq (course id varchar(8));

– – table new c prereq contains courses found in the previous iteration
create temporary table temp (course id varchar(8));

– – table temp is used to store intermediate results
insert into new c prereq

select prereq id
from prereq
where course id = cid;

repeat
insert into c prereq

select course id
from new c prereq;

insert into temp
(select prereq.course id

from new c prereq, prereq
where new c prereq.course id = prereq.prereq id

)
except (

select course id
from c prereq

);
delete from new c prereq;
insert into new c prereq

select *
from temp;

delete from temp;

until not exists (select * from new c prereq)
end repeat;
return table c prereq;

end

Figure 5.13 Finding all prerequisites of a course.

While cycles may be unrealistic in course prerequisites, cycles are possible in
other applications. For instance, suppose we have a relation flights(to, from) that
says which cities can be reached from which other cities by a direct flight. We can
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Iteration Number Tuples in c1
0
1 (CS-301)
2 (CS-301), (CS-201)
3 (CS-301), (CS-201)
4 (CS-301), (CS-201), (CS-101)
5 (CS-301), (CS-201), (CS-101)

Figure 5.14 Prerequisites of CS-347 in iterations of function findAllPrereqs.

write code similar to that in the findAllPrereqs function, to find all cities that are
reachable by a sequence of one or more flights from a given city. All we have to
do is to replace prereq by flight and replace attribute names correspondingly. In
this situation, there can be cycles of reachability, but the function would work
correctly since it would eliminate cities that have already been seen.

5.4.2 Recursion in SQL

It is rather inconvenient to specify transitive closure using iteration. There is an
alternative approach, using recursive view definitions, that is easier to use.

We can use recursion to define the set of courses that are prerequisites of
a particular course, say CS-347, as follows. The courses that are prerequisites
(directly or indirectly) of CS-347 are:

1. Courses that are prerequisites for CS-347.

2. Courses that are prerequisites for those courses that are prerequisites (di-
rectly or indirectly) for CS-347.

Note that case 2 is recursive, since it defines the set of courses that are prerequisites
of CS-347 in terms of the set of courses that are prerequisites of CS-347. Other
examples of transitive closure, such as finding all subparts (direct or indirect) of
a given part can also be defined in a similar manner, recursively.

Since the SQL:1999 version, the SQL standard supports a limited form of re-
cursion, using the with recursive clause, where a view (or temporary view) is
expressed in terms of itself. Recursive queries can be used, for example, to express
transitive closure concisely. Recall that the with clause is used to define a tempo-
rary view whose definition is available only to the query in which it is defined.
The additional keyword recursive specifies that the view is recursive.

For example, we can find every pair (cid,pre) such that pre is directly or in-
directly a prerequisite for course cid, using the recursive SQL view shown in
Figure 5.15.

Any recursive view must be defined as the union of two subqueries: a base
query that is nonrecursive and a recursive query that uses the recursive view.
In the example in Figure 5.15, the base query is the select on prereq while the
recursive query computes the join of prereq and rec prereq.
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with recursive c prereq(course id, prereq id) as (
select course id, prereq id
from prereq

union
select prereq.prereq id, c prereq.course id
from prereq, c prereq
where prereq.course id = c prereq.prereq id

)
select ∗
from c prereq;

Figure 5.15 Recursive query in SQL.

The meaning of a recursive view is best understood as follows. First compute
the base query and add all the resultant tuples to the recursively defined view
relation rec prereq (which is initially empty). Next compute the recursive query
using the current contents of the view relation, and add all the resulting tuples
back to the view relation. Keep repeating the above step until no new tuples are
added to the view relation. The resultant view relation instance is called a fixed
point of the recursive view definition. (The term “fixed” refers to the fact that
there is no further change.) The view relation is thus defined to contain exactly
the tuples in the fixed-point instance.

Applying the above logic to our example, we first find all direct prerequisites
of each course by executing the base query. The recursive query adds one more
level of courses in each iteration, until the maximum depth of the course-prereq
relationship is reached. At this point no new tuples are added to the view, and a
fixed point is reached.

To find the prerequisites of a specific course, such as CS-347, we can modify the
outer level query by adding a where clause “where rec prereq.course id = ‘CS-347‘”.
One way to evaluate the query with the selection is to compute the full contents
of rec prereq using the iterative technique, and then select from this result only
those tuples whose course id is CS-347. However, this would result in computing
(course, prerequisite) pairs for all courses, all of which are irrelevant except for
those for the course CS-347. In fact the database system is not required to use the
above iterative technique to compute the full result of the recursive query and
then perform the selection. It may get the same result using other techniques that
may be more efficient, such as that used in the function findAllPrereqs which we
saw earlier. See the bibliographic notes for references to more information on this
topic.

There are some restrictions on the recursive query in a recursive view; specifi-
cally, the query should be monotonic, that is, its result on a view relation instance
V1 should be a superset of its result on a view relation instance V2 if V1 is a super-
set of V2. Intuitively, if more tuples are added to the view relation, the recursive
query should return at least the same set of tuples as before, and possibly return
additional tuples.
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In particular, recursive queries should not use any of the following constructs,
since they would make the query nonmonotonic:

• Aggregation on the recursive view.

• not exists on a subquery that uses the recursive view.

• Set difference (except) whose right-hand side uses the recursive view.

For instance, if the recursive query was of the form r − v where v is the recursive
view, if we add a tuple to v the result of the query can become smaller; the query
is therefore not monotonic.

The meaning of recursive views can be defined by the iterative procedure as
long as the recursive query is monotonic; if the recursive query is nonmonotonic,
the meaning of the view is hard to define. SQL therefore requires the queries to be
monotonic. Recursive queries are discussed in more detail in the context of the
Datalog query language, in Section B.3.6.

SQL also allows creation of recursively defined permanent views by using
create recursive view in place of with recursive. Some implementations support
recursive queries using a different syntax; see the respective system manuals for
further details.

5.5 Advanced Aggregation Features**

The aggregation support in SQL, which we have seen earlier, is quite powerful,
and handles most common tasks with ease. However, there are some tasks that are
hard to implement efficiently with the basic aggregation features. In this section,
we study features that were added to SQL to handle some such tasks.

5.5.1 Ranking

Finding the position of a value in a larger set is a common operation. For instance,
we may wish to assign students a rank in class based on their grade-point average
(GPA), with the rank 1 going to the student with the highest GPA, the rank 2 to the
student with the next highest GPA, and so on. A related type of query is to find
the percentile in which a value in a (multi)set belongs, for example, the bottom
third, middle third, or top third. While such queries can be expressed using the
SQL constructs we have seen so far, they are difficult to express and inefficient to
evaluate. Programmers may resort to writing the query partly in SQL and partly
in a programming language. We study SQL support for direct expression of these
types of queries here.

In our university example, the takes relation shows the grade each student
earned in each course taken. To illustrate ranking, let us assume we have a view
student grades (ID, GPA) giving the grade-point average of each student.8

8The SQL statement to create the view student grades is somewhat complex since we must convert the letter grades in the
takes relation to numbers and weight the grades for each course by the number of credits for that course. The definition
of this view is the goal of Exercise 4.5.



5.5 Advanced Aggregation Features 193

Ranking is done with an order by specification. The following query gives
the rank of each student:

select ID, rank() over (order by (GPA) desc) as s rank
from student grades;

Note that the order of tuples in the output is not defined, so they may not be
sorted by rank. An extra order by clause is needed to get them in sorted order, as
shown below.

select ID, rank () over (order by (GPA) desc) as s rank
from student grades
order by s rank;

A basic issue with ranking is how to deal with the case of multiple tuples that
are the same on the ordering attribute(s). In our example, this means deciding
what to do if there are two students with the same GPA. The rank function gives
the same rank to all tuples that are equal on the order by attributes. For instance,
if the highest GPA is shared by two students, both would get rank 1. The next
rank given would be 3, not 2, so if three students get the next highest GPA, they
would all get rank 3, and the next student(s) would get rank 6, and so on. There is
also a dense rank function that does not create gaps in the ordering. In the above
example, the tuples with the second highest value all get rank 2, and tuples with
the third highest value get rank 3, and so on.

It is possible to express the above query with the basic SQL aggregation
functions, using the following query:

select ID, (1 + (select count(*)
from student grades B
where B.GPA > A.GPA)) as s rank

from student grades A
order by s rank;

It should be clear that the rank of a student is merely 1 plus the number of
students with a higher GPA, which is exactly what the above query specifies.
However, this computation of each student’s rank takes time linear in the size
of the relation, leading to an overall time quadratic in the size of the relation.
On large relations, the above query could take a very long time to execute. In
contrast, the system’s implementation of the rank clause can sort the relation and
compute the rank in much less time.

Ranking can be done within partitions of the data. For instance, suppose we
wish to rank students by department rather than across the entire university.
Assume that a view is defined like student grades but including the department
name: dept grades(ID, dept name, GPA). The following query then gives the rank of
students within each section:
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select ID, dept name,
rank () over (partition by dept name order by GPA desc) as dept rank

from dept grades
order by dept name, dept rank;

The outer order by clause orders the result tuples by department name, and
within each department by the rank.

Multiple rank expressions can be used within a single select statement; thus
we can obtain the overall rank and the rank within the department by using
two rank expressions in the same select clause. When ranking (possibly with
partitioning) occurs along with a group by clause, the group by clause is applied
first, and partitioning and ranking are done on the results of the group by. Thus
aggregate values can then be used for ranking. We could have written our ranking
over the student grades view without using the view, using a single select clause.
We leave details as an exercise for you.

The ranking functions can be used to find the top n tuples by embedding a
ranking query within an outer-level query; we leave details as an exercise. Note
that the bottom n is simply the same as the top n with a reverse sorting order.
Several database systems provide nonstandard SQL extensions to specify directly
that only the top n results are required; such extensions do not require the rank
function and simplify the job of the optimizer. For example, some databases allow
a clause limit n to be added at the end of an SQL query to specify that only the
first n tuples should be output; this clause is used in conjunction with an order
by clause to fetch the top n tuples, as illustrated by the following query, which
retrieves the IDs and GPAs of the top 10 students in order of GPA:

select ID, GPA)
from student grades
order by GPA
limit 10;

However, the limit clause does not support partitioning, so we cannot get the
top n within each partition without performing ranking; further, if more than one
student gets the same GPA, it is possible that one is included in the top 10, while
another is excluded.

Several other functions can be used in place of rank. For instance, per-
cent rank of a tuple gives the rank of the tuple as a fraction. If there are n tuples
in the partition9 and the rank of the tuple is r , then its percent rank is defined as
(r − 1)/(n − 1) (and as null if there is only one tuple in the partition). The function
cume dist, short for cumulative distribution, for a tuple is defined as p/n where p
is the number of tuples in the partition with ordering values preceding or equal to
the ordering value of the tuple and n is the number of tuples in the partition. The
function row number sorts the rows and gives each row a unique number corre-

9The entire set is treated as a single partition if no explicit partition is used.
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sponding to its position in the sort order; different rows with the same ordering
value would get different row numbers, in a nondeterministic fashion.

Finally, for a given constant n, the ranking function ntile(n) takes the tuples
in each partition in the specified order and divides them into n buckets with
equal numbers of tuples.10 For each tuple, ntile(n) then gives the number of the
bucket in which it is placed, with bucket numbers starting with 1. This function
is particularly useful for constructing histograms based on percentiles. We can
show the quartile into which each student falls based on GPA by the following
query:

select ID, ntile(4) over (order by (GPA desc)) as quartile
from student grades;

The presence of null values can complicate the definition of rank, since it is
not clear where they should occur first in the sort order. SQL permits the user to
specify where they should occur by using nulls first or nulls last, for instance:

select ID, rank () over (order by GPA desc nulls last) as s rank
from student grades;

5.5.2 Windowing

Window queries compute an aggregate function over ranges of tuples. This is
useful, for example, to compute an aggregate of a fixed range of time; the time
range is called a window. Windows may overlap, in which case a tuple may
contribute to more than one window. This is unlike the partitions we saw earlier,
where a tuple could contribute to only one partition.

An example of the use of windowing is trend analysis. Consider our earlier
sales example. Sales may fluctuate widely from day to day based on factors
like weather (for example a snowstorm, flood, hurricane, or earthquake might
reduce sales for a period of time). However, over a sufficiently long period of
time, fluctuations might be less (continuing the example, sales may “make up”
for weather-related downturns). Stock market trend analysis is another example
of the use of the windowing concept. Various “moving averages” are found on
business and investment Web sites.

It is relatively easy to write an SQL query using those features we have already
studied to compute an aggregate over one window, for example, sales over a fixed
3-day period. However, if we want to do this for every 3-day period, the query
becomes cumbersome.

SQL provides a windowing feature to support such queries. Suppose we are
given a view tot credits (year, num credits) giving the total number of credits taken

10If the total number of tuples in a partition is not divisible by n, then the number of tuples in each bucket can differ by at
most 1. Tuples with the same value for the ordering attribute may be assigned to different buckets, nondeterministically,
in order to make the number of tuples in each bucket equal.
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by students in each year.11 Note that this relation can contain at most one tuple
for each year. Consider the following query:

select year, avg(num credits)
over (order by year rows 3 preceding)
as avg total credits

from tot credits;

This query computes averages over the 3 preceding tuples in the specified sort
order. Thus, for 2009, if tuples for years 2008 and 2007 are present in the relation
tot credits, with each year represented by only one tuple, the result of the window
definition is the average of the values for years 2007, 2008, and 2009. The averages
each year would be computed in a similar manner. For the earliest year in the
relation tot credits, the average would be over only that year itself, while for the
next year, the average would be over two years. Note that if the relation tot
credits has more than one tuple for a specific year, there may be multiple possible

orderings of tuples, that are sorted by year. In this case, the definition of preceding
tuples is based on the implementation dependent sort order, and is not uniquely
defined.

Suppose that instead of going back a fixed number of tuples, we want the
window to consist of all prior years. That means the number of prior years
considered is not fixed. To get the average total credits over all prior years we
write:

select year, avg(num credits)
over (order by year rows unbounded preceding)
as avg total credits

from tot credits;

It is possible to use the keyword following in place of preceding. If we did
this in our example the year value specifies the beginning of the window instead
of the end. Similarly, we can specify a window beginning before the current tuple
and ending after it:

select year, avg(num credits)
over (order by year rows between 3 preceding and 2 following)
as avg total credits

from tot credits;

Instead of a specific count of tuples, we can specify a range based on the value
of the order by attribute. To specify a range going back 4 years and including the
current year, we write:

11We leave the definition of this view in terms of our university example as an exercise.
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select year, avg(num credits)
over (order by year range between year - 4 and year)
as avg total credits

from tot credits;

Be sure to note the use of the keyword range in the above example. For the year
2010, data for years 2006 to 2010 inclusive would be included regardless of how
many tuples actually exist for that range.

In our example, all tuples pertain to the entire university. Suppose instead,
we have credit data for each department in a view tot credits dept (dept name, year,
num credits) giving the total number of credits students took with the particular
department in the specified year. (Again, we leave writing this view definition
as an exercise.) We can write windowing queries that treat each department
separately by partitioning by dept name:

select dept name, year, avg(num credits)
over (partition by dept name

order by year rows between 3 preceding and current row)
as avg total credits

from tot credits dept;

5.6 OLAP**

An online analytical processing (OLAP) system is an interactive system that per-
mits an analyst to view different summaries of multidimensional data. The word
online indicates that an analyst must be able to request new summaries and get
responses online, within a few seconds, and should not be forced to wait for a
long time to see the result of a query.

There are many OLAP products available, including some that ship with
database products such as Microsoft SQL Server, and Oracle, and other stand-
alone tools. The initial versions of many OLAP tools assumed that data is memory
resident. Data analysis on small amounts of data can in fact be performed using
spreadsheet applications, such as Excel. However, OLAP on very large amounts
of data requires that data be resident in a database, and requires support from the
database for efficient preprocessing of data as well as for online query processing.
In this section, we study extensions of SQL to support such tasks.

5.6.1 Online Analytical Processing

Consider an application where a shop wants to find out what kinds of clothes are
popular. Let us suppose that clothes are characterized by their item name, color,
and size, and that we have a relation sales with the schema.

sales (item name, color, clothes size, quantity)
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item name color clothes size quantity
skirt dark small 2
skirt dark medium 5
skirt dark large 1
skirt pastel small 11
skirt pastel medium 9
skirt pastel large 15
skirt white small 2
skirt white medium 5
skirt white large 3
dress dark small 2
dress dark medium 6
dress dark large 12
dress pastel small 4
dress pastel medium 3
dress pastel large 3
dress white small 2
dress white medium 3
dress white large 0
shirt dark small 2
shirt dark medium 6
shirt dark large 6
shirt pastel small 4
shirt pastel medium 1
shirt pastel large 2
shirt white small 17
shirt white medium 1
shirt white large 10
pants dark small 14
pants dark medium 6
pants dark large 0
pants pastel small 1
pants pastel medium 0
pants pastel large 1
pants white small 3
pants white medium 0
pants white large 2

Figure 5.16 An example of sales relation.

Suppose that item name can take on the values (skirt, dress, shirt, pants), color
can take on the values (dark, pastel, white), clothes size can take on values (small,
medium, large), and quantity is an integer value representing the total number of
items of a given {item name, color, clothes size }. An instance of the sales relation is
shown in Figure 5.16.
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Statistical analysis often requires grouping on multiple attributes. Given a
relation used for data analysis, we can identify some of its attributes as measure
attributes, since they measure some value, and can be aggregated upon. For
instance, the attribute quantity of the sales relation is a measure attribute, since
it measures the number of units sold. Some (or all) of the other attributes of the
relation are identified as dimension attributes, since they define the dimensions
on which measure attributes, and summaries of measure attributes, are viewed.
In the sales relation, item name, color, and clothes size are dimension attributes. (A
more realistic version of the sales relation would have additional dimensions,
such as time and sales location, and additional measures such as monetary value
of the sale.)

Data that can be modeled as dimension attributes and measure attributes are
called multidimensional data.

To analyze the multidimensional data, a manager may want to see data laid
out as shown in the table in Figure 5.17. The table shows total quantities for
different combinations of item name and color. The value of clothes size is specified
to be all, indicating that the displayed values are a summary across all values of
clothes size (that is, we want to group the “small”, “medium”, and “large” items
into one single group.

The table in Figure 5.17 is an example of a cross-tabulation (or cross-tab, for
short), also referred to as a pivot-table. In general, a cross-tab is a table derived
from a relation (say R), where values for one attribute of relation R (say A) form
the row headers and values for another attribute of relation R (say B) form the
column header. For example, in Figure 5.17, the attribute item name corresponds to
A (with values “dark”, “pastel”, and “white”), and the attribute color corresponds
to to B (with attributes “skirt”, “dress”, “shirt”, and “pants”).

Each cell in the pivot-table can be identified by (ai , b j ), where ai is a value
for A and b j a value for B. The values of the various cells in the pivot-table are
derived from the relation R as follows: If there is at most one tuple in R with any
(ai , b j ) value, the value in the cell is derived from that single tuple (if any); for
instance, it could be the value of one or more other attributes of the tuple. If there
can be multiple tuples with an (ai , b j ) value, the value in the cell must be derived

skirt
dress
shirt
pants

color

item_name

clothes_size all

dark pastel white total

total

8 35 10 53
20 10 5 35
14 7 28 49
20 2 5 27
62 54 48 164

Figure 5.17 Cross tabulation of sales by item name and color.
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Figure 5.18 Three-dimensional data cube.

by aggregation on the tuples with that value. In our example, the aggregation
used is the sum of the values for attribute quantity, across all values for clothes
size, as indicated by “clothes size: all” above the cross-tab in Figure 5.17. Thus, the

value for cell (skirt, pastel) is 35, since there are 3 tuples in the sales table that meet
that criteria, with values 11, 9, and 15.

In our example, the cross-tab also has an extra column and an extra row storing
the totals of the cells in the row/column. Most cross-tabs have such summary
rows and columns.

The generalization of a cross-tab, which is two-dimensional, to n dimensions
can be visualized as an n-dimensional cube, called the data cube. Figure 5.18
shows a data cube on the sales relation. The data cube has three dimensions,
item name, color, and clothes size, and the measure attribute is quantity. Each cell is
identified by values for these three dimensions. Each cell in the data cube contains
a value, just as in a cross-tab. In Figure 5.18, the value contained in a cell is shown
on one of the faces of the cell; other faces of the cell are shown blank if they
are visible. All cells contain values, even if they are not visible. The value for a
dimension may be all, in which case the cell contains a summary over all values
of that dimension, as in the case of cross-tabs.

The number of different ways in which the tuples can be grouped for aggre-
gation can be large. In the example of Figure 5.18, there are 3 colors, 4 items, and
3 sizes resulting in a cube size of 3 × 4 × 3 = 36. Including the summary values,
we obtain a 4 × 5 × 4 cube, whose size is 80. In fact, for a table with n dimensions,
aggregation can be performed with grouping on each of the 2n subsets of the n
dimensions.12

12Grouping on the set of all n dimensions is useful only if the table may have duplicates.
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With an OLAP system, a data analyst can look at different cross-tabs on the
same data by interactively selecting the attributes in the cross-tab. Each cross-tab
is a two-dimensional view on a multidimensional data cube. For instance, the
analyst may select a cross-tab on item name and clothes size or a cross-tab on color
and clothes size. The operation of changing the dimensions used in a cross-tab is
called pivoting.

OLAP systems allow an analyst to see a cross-tab on item name and color for a
fixed value of clothes size, for example, large, instead of the sum across all sizes.
Such an operation is referred to as slicing, since it can be thought of as viewing
a slice of the data cube. The operation is sometimes called dicing, particularly
when values for multiple dimensions are fixed.

When a cross-tab is used to view a multidimensional cube, the values of
dimension attributes that are not part of the cross-tab are shown above the cross-
tab. The value of such an attribute can be all, as shown in Figure 5.17, indicating
that data in the cross-tab are a summary over all values for the attribute. Slic-
ing/dicing simply consists of selecting specific values for these attributes, which
are then displayed on top of the cross-tab.

OLAP systems permit users to view data at any desired level of granularity.
The operation of moving from finer-granularity data to a coarser granularity (by
means of aggregation) is called a rollup. In our example, starting from the data
cube on the sales table, we got our example cross-tab by rolling up on the attribute
clothes size. The opposite operation—that of moving from coarser-granularity data
to finer-granularity data—is called a drill down. Clearly, finer-granularity data
cannot be generated from coarse-granularity data; they must be generated either
from the original data, or from even finer-granularity summary data.

Analysts may wish to view a dimension at different levels of detail. For
instance, an attribute of type datetime contains a date and a time of day. Using
time precise to a second (or less) may not be meaningful: An analyst who is
interested in rough time of day may look at only the hour value. An analyst who
is interested in sales by day of the week may map the date to a day of the week
and look only at that. Another analyst may be interested in aggregates over a
month, or a quarter, or for an entire year.

The different levels of detail for an attribute can be organized into a hierarchy.
Figure 5.19a shows a hierarchy on the datetime attribute. As another example,
Figure 5.19b shows a hierarchy on location, with the city being at the bottom of the
hierarchy, state above it, country at the next level, and region being the top level. In
our earlier example, clothes can be grouped by category (for instance, menswear
or womenswear); category would then lie above item name in our hierarchy on
clothes. At the level of actual values, skirts and dresses would fall under the
womenswear category and pants and shirts under the menswear category.

An analyst may be interested in viewing sales of clothes divided as menswear
and womenswear, and not interested in individual values. After viewing the
aggregates at the level of womenswear and menswear, an analyst may drill down
the hierarchy to look at individual values. An analyst looking at the detailed level
may drill up the hierarchy and look at coarser-level aggregates. Both levels can be
displayed on the same cross-tab, as in Figure 5.20.
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(a) Time Hierarchy (b) Location Hierarchy

Figure 5.19 Hierarchies on dimensions.

5.6.2 Cross-Tab and Relational Tables

A cross-tab is different from relational tables usually stored in databases, since
the number of columns in the cross-tab depends on the actual data. A change
in the data values may result in adding more columns, which is not desirable
for data storage. However, a cross-tab view is desirable for display to users. It is
straightforward to represent a cross-tab without summary values in a relational
form with a fixed number of columns. A cross-tab with summary rows/columns
can be represented by introducing a special value all to represent subtotals, as in
Figure 5.21. The SQL standard actually uses the null value in place of all, but to
avoid confusion with regular null values, we shall continue to use all.

womenswear

category         item_name               color

clothes_size: all

dark   pastel  white      total

total

skirt                8           8          10      53
dress             20         20           5       35
subtotal        28         28         15                 88

menswear pants            14         14         28       49
shirt              20         20           5       27
subtotal        34         34         33                 76
                      62         62          48               164

Figure 5.20 Cross tabulation of sales with hierarchy on item name.
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item name color clothes size quantity
skirt dark all 8
skirt pastel all 35
skirt white all 10
skirt all all 53
dress dark all 20
dress pastel all 10
dress white all 5
dress all all 35
shirt dark all 14
shirt pastel all 7
shirt white all 28
shirt all all 49
pants dark all 20
pants pastel all 2
pants white all 5
pants all all 27
all dark all 62
all pastel all 54
all white all 48
all all all 164

Figure 5.21 Relational representation of the data in Figure 5.17.

Consider the tuples (skirt, all, all, 53) and (dress, all, all, 35). We have obtained
these tuples by eliminating individual tuples with different values for color and
clothes size, and by replacing the value of quantity by an aggregate—namely, the
sum of the quantities. The value all can be thought of as representing the set of
all values for an attribute. Tuples with the value all for the color and clothes size
dimensions can be obtained by an aggregation on the sales relation with a group
by on the column item name. Similarly, a group by on color, clothes size can be
used to get the tuples with the value all for item name, and a group by with no
attributes (which can simply be omitted in SQL) can be used to get the tuple with
value all for item name, color, and clothes size.

Hierarchies can also be represented by relations. For example, the fact that
skirts and dresses fall under the womenswear category, and the pants and shirts
under the menswear category can be represented by a relation itemcategory(item
name, category). This relation can be joined with the sales relation, to get a relation

that includes the category for each item. Aggregation on this joined relation allows
us to get a cross-tab with hierarchy. As another example, a hierarchy on city can
be represented by a single relation city hierarchy (ID, city, state, country, region), or
by multiple relations, each mapping values in one level of the hierarchy to values
at the next level. We assume here that cities have unique identifiers, stored in the
attribute ID, to avoid confusing between two cities with the same name, e.g., the
Springfield in Missouri and the Springfield in Illinois.
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OLAP IMPLEMENTATION

The earliest OLAP systems used multidimensional arrays in memory to store
data cubes, and are referred to as multidimensional OLAP (MOLAP) systems.
Later, OLAP facilities were integrated into relational systems, with data stored in
a relational database. Such systems are referred to as relational OLAP (ROLAP)
systems. Hybrid systems, which store some summaries in memory and store
the base data and other summaries in a relational database, are called hybrid
OLAP (HOLAP) systems.

Many OLAP systems are implemented as client-server systems. The server
contains the relational database as well as any MOLAP data cubes. Client systems
obtain views of the data by communicating with the server.

A naı̈ve way of computing the entire data cube (all groupings) on a relation is
to use any standard algorithm for computing aggregate operations, one group-
ing at a time. The naı̈ve algorithm would require a large number of scans of
the relation. A simple optimization is to compute an aggregation on, say, (item
name, color) from an aggregation (item name, color, clothes size), instead of from

the original relation.
For the standard SQL aggregate functions, we can compute an aggregate with

grouping on a set of attributes A from an aggregate with grouping on a set of at-
tributes B if A ⊆ B; you can do so as an exercise (see Exercise 5.24), but note that
to compute avg, we additionally need the count value. (For some nonstandard
aggregate functions, such as median, aggregates cannot be computed as above;
the optimization described here does not apply to such non-decomposable aggre-
gate functions.) The amount of data read drops significantly by computing an
aggregate from another aggregate, instead of from the original relation. Further
improvements are possible; for instance, multiple groupings can be computed
on a single scan of the data.

Early OLAP implementations precomputed and stored entire data cubes, that
is, groupings on all subsets of the dimension attributes. Precomputation allows
OLAP queries to be answered within a few seconds, even on datasets that may
contain millions of tuples adding up to gigabytes of data. However, there are
2n groupings with n dimension attributes; hierarchies on attributes increase the
number further. As a result, the entire data cube is often larger than the original
relation that formed the data cube and in many cases it is not feasible to store
the entire data cube.

Instead of precomputing and storing all possible groupings, it makes sense to
precompute and store some of the groupings, and to compute others on demand.
Instead of computing queries from the original relation, which may take a very
long time, we can compute them from other precomputed queries. For instance,
suppose that a query requires grouping by (item name, color), and this has not
been precomputed. The query result can be computed from summaries by (item
name, color, clothes size), if that has been precomputed. See the bibliographical

notes for references on how to select a good set of groupings for precomputation,
given limits on the storage available for precomputed results.
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5.6.3 OLAP in SQL

Several SQL implementations, such as Microsoft SQL Server, and Oracle, support
a pivot clause in SQL, which allows creation of cross-tabs. Given the sales relation
from Figure 5.16, the query:

select *
from sales
pivot (

sum(quantity)
for color in (’dark’,’pastel’,’white’)

)
order by item name;

returns the cross-tab shown in Figure 5.22. Note that the for clause within the
pivot clause specifies what values from the attribute color should appears as
attribute names in the pivot result. The attribute color itself is eliminated from
the result, although all other attributes are retained, except that the values for the
newly created attributes are specified to come from the attribute quantity. In case
more than one tuple contributes values to a given cell, the aggregate operation
within the pivot clause specifies how the values should be combined. In the above
example, the quantity values are summed up.

Note that the pivot clause by itself does not compute the subtotals we saw
in the pivot table from Figure 5.17. However, we can first generate the relational
representation shown in Figure 5.21, as outlined shortly, and then apply the pivot
clause on that representation to get an equivalent result. In this case, the value all
must also be listed in the for clause, and the order by clause needs to be modified
to order all at the end.

item name clothes size dark pastel white
skirt small 2 11 2
skirt medium 5 9 5
skirt large 1 15 3
dress small 2 4 2
dress medium 6 3 3
dress large 12 3 0
shirt small 2 4 17
shirt medium 6 1 1
shirt large 6 2 10
pants small 14 1 3
pants medium 6 0 0
pants large 0 1 2

Figure 5.22 Result of SQL pivot operation on the sales relation of Figure 5.16.
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item name quantity
skirt 53
dress 35
shirt 49
pants 27

Figure 5.23 Query result.

The data in a data cube cannot be generated by a single SQL query, using the
basic group by constructs, since aggregates are computed for several different
groupings of the dimension attributes. For this reason, SQL includes functions to
form the grouping needed for OLAP. We discuss these below.

SQL supports generalizations of the group by construct to perform the cube
and rollup operations. The cube and rollup constructs in the group by clause
allow multiple group by queries to be run in a single query with the result
returned as a single relation in a style similar to that of the relation of Figure 5.21.

Consider again our retail shop example and the relation:

sales (item name, color, clothes size, quantity)

We can find the number of items sold in each item name by writing a simple
group by query:

select item name, sum(quantity)
from sales
group by item name;

The result of this query is shown in Figure 5.23. Note that this represents the same
data as the last column of Figure 5.17 (or equivalently, the first row in the cube of
Figure 5.18).

Similarly, we can find the number of items sold in each color, etc. By using
multiple attributes in the group by clause, we can find how many items were
sold with a certain set of properties. For example, we can find a breakdown of
sales by item-name and color by writing:

select item name, color, sum(quantity)
from sales
group by item name, color;

The result of this query is shown in Figure 5.24. Note that this represents the
same data as is shown in the the first 4 rows and first 4 columns of Figure 5.17 (or
equivalently, the first 4 rows and columns in the cube of Figure 5.18).

If, however, we want to generate the entire data cube using this approach, we
would have to write a separate query for each of the following sets of attributes:
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item name color quantity
skirt dark 8
skirt pastel 35
skirt white 10
dress dark 20
dress pastel 10
dress white 5
shirt dark 14
shirt pastel 7
shirt white 28
pants dark 20
pants pastel 2
pants white 5

Figure 5.24 Query result.

{ (item name, color, clothes size), (item name, color), (item name, clothes size),
(color, clothes size), (item name), (color), (clothes size), () }

where () denotes an empty group by list.
The cube construct allows us to accomplish this in one query:

select item name, color, clothes size, sum(quantity)
from sales
group by cube(item name, color, clothes size);

The above query produces a relation whose schema is:

(item name, color, clothes size, sum(quantity))

So that the result of this query is indeed a relation, tuples in the result con-
tain null as the value of those attributes not present in a particular grouping.
For example, tuples produced by grouping on clothes size have a schema (clothes
size, sum(quantity)). They are converted to tuples on (item name, color, clothes size,

sum(quantity)) by inserting null for item name and color.
Data cube relations are often very large. The cube query above, with 3 possible

colors, 4 possible item names, and 3 sizes, has 80 tuples. The relation of Figure 5.21
is generated using grouping by item name and color. It also uses all in place of null
so as to be more readable to the average user. To generate that relation in SQL, we
arrange to substitute all for null. The query:

select item name, color, sum(quantity)
from sales
group by cube(item name, color);
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THE DECODE FUNCTION

The decode function allows substitution of values in an attribute of a tuple. The
general form of decode is:

decode (value, match-1, replacement-1, match-2, replacement-2, . . .,
match-N, replacement-N, default-replacement);

It compares value against the match values and if a match is found, it replaces the
attribute value with the corresponding replacement value. If no match succeeds,
then the attribute value is replaced with the default replacement value.

The decode function does not work as we might like for null values because,
as we saw in Section 3.6, predicates on nulls evaluate to unknown, which
ultimately becomes false. To deal with this, we apply the grouping function,
which returns 1 if its argument is a null value generated by a cube or rollup and
0 otherwise. Then the relation in Figure 5.21, with occurrences of all replaced
by null, can be computed by the query:

select decode(grouping(item name), 1, ’all’, item name) as item name
decode(grouping(color), 1, ’all’, color) as color
sum(quantity) as quantity

from sales
group by cube(item name, color);

generates the relation of Figure 5.21 with nulls. The substitution of all is achieved
using the SQL decode and grouping functions. The decode function is conceptu-
ally simple but its syntax is somewhat hard to read. See blue box for details.

The rollup construct is the same as the cube construct except that rollup
generates fewer group by queries. We saw that group by cube (item name, color,
clothes size) generated all 8 ways of forming a group by query using some (or all
or none) of the attributes. In:

select item name, color, clothes size, sum(quantity)
from sales
group by rollup(item name, color, clothes size);

group by rollup(item name, color, clothes size) generates only 4 groupings:

{ (item name, color, clothes size), (item name, color), (item name), () }

Notice that the order of the attributes in the rollup makes a difference; the final
attribute (clothes size, in our example) appears in only one grouping, the penul-
timate (second last) attribute in 2 groupings, and so on, with the first attribute
appearing in all groups but one (the empty grouping).
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Why might we want the specific groupings that are used in rollup? These
groups are of frequent practical interest for hierarchies (as in Figure 5.19, for
example). For the location hierarchy (Region, Country, State, City), we may want
to group by Region to get sales by region. Then we may want to “drill down” to the
level of countries within each region, which means we would group by Region,
Country. Drilling down further, we may wish to group by Region, Country, State
and then by Region, Country, State, City. The rollup construct allows us to specify
this sequence of drilling down for further detail.

Multiple rollups and cubes can be used in a single group by clause. For
instance, the following query:

select item name, color, clothes size, sum(quantity)
from sales
group by rollup(item name), rollup(color, clothes size);

generates the groupings:

{ (item name, color, clothes size), (item name, color), (item name),
(color, clothes size), (color), () }

To understand why, observe that rollup(item name) generates two groupings,
{(item name), ()}, and rollup(color, clothes size) generates three groupings, {(color,
clothes size), (color), () }. The Cartesian product of the two gives us the six groupings
shown.

Neither the rollup nor the cube clause gives complete control on the group-
ings that are generated. For instance, we cannot use them to specify that we
want only groupings {(color, clothes size), (clothes size, item name)}. Such restricted
groupings can be generated by using the grouping construct in the having clause;
we leave the details as an exercise for you.

5.7 Summary

• SQL queries can be invoked from host languages, via embedded and dynamic
SQL. The ODBC and JDBC standards define application program interfaces
to access SQL databases from C and Java language programs. Increasingly,
programmers use these APIs to access databases.

• Functions and procedures can be defined using SQLprocedural extensions
that allow iteration and conditional (if-then-else) statements.

• Triggers define actions to be executed automatically when certain events
occur and corresponding conditions are satisfied. Triggers have many uses,
such as implementing business rules, audit logging, and even carrying out
actions outside the database system. Although triggers were not added to the
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SQL standard until SQL:1999, most database systems have long implemented
triggers.

• Some queries, such as transitive closure, can be expressed either by using
iteration or by using recursive SQL queries. Recursion can be expressed using
either recursive views or recursive with clause definitions.

• SQL supports several advanced aggregation features, including ranking and
windowing queries that simplify the expression of some aggregates and allow
more efficient evaluation.

• Online analytical processing (OLAP) tools help analysts view data summa-
rized in different ways, so that they can gain insight into the functioning of
an organization.

◦ OLAP tools work on multidimensional data, characterized by dimension
attributes and measure attributes.

◦ The data cube consists of multidimensional data summarized in different
ways. Precomputing the data cube helps speed up queries on summaries
of data.

◦ Cross-tab displays permit users to view two dimensions of multidimen-
sional data at a time, along with summaries of the data.

◦ Drill down, rollup, slicing, and dicing are among the operations that users
perform with OLAP tools.

• SQL, starting with the SQL:1999 standard, provides a variety of operators for
data analysis, including cube and rollup operations. Some systems support
a pivot clause, which allows easy creation of cross-tabs.

Review Terms

• JDBC

• ODBC

• Prepared statements
• Accessing metadata
• SQL injection
• Embedded SQL

• Cursors
• Updatable cursors
• Dynamic SQL

• SQL functions
• Stored procedures
• Procedural constructs

• External language routines
• Trigger
• Before and after triggers
• Transition variables and tables
• Recursive queries
• Monotonic queries
• Ranking functions

◦ Rank

◦ Dense rank

◦ Partition by

• Windowing
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• Online analytical processing
(OLAP)

• Multidimensional data

◦ Measure attributes

◦ Dimension attributes

◦ Pivoting

◦ Data cube

◦ Slicing and dicing

◦ Rollup and drill down

• Cross-tabulation

Practice Exercises

5.1 Describe the circumstances in which you would choose to use embedded
SQL rather than SQL alone or only a general-purpose programming lan-
guage.

5.2 Write a Java function using JDBC metadata features that takes a ResultSet
as an input parameter, and prints out the result in tabular form, with
appropriate names as column headings.

5.3 Write a Java function using JDBC metadata features that prints a list of all
relations in the database, displaying for each relation the names and types
of its attributes.

5.4 Show how to enforce the constraint “an instructor cannot teach in two
different classrooms in a semester in the same time slot.” using a trigger
(remember that the constraint can be violated by changes to the teaches
relation as well as to the section relation).

5.5 Write triggers to enforce the referential integrity constraint from section to
time slot, on updates to section, and time slot. Note that the ones we wrote
in Figure 5.8 do not cover the update operation.

5.6 To maintain the tot cred attribute of the student relation, carry out the fol-
lowing:

a. Modify the trigger on updates of takes, to handle all updates that can
affect the value of tot cred.

b. Write a trigger to handle inserts to the takes relation.

c. Under what assumptions is it reasonable not to create triggers on the
course relation?

5.7 Consider the bank database of Figure 5.25. Let us define a view branch cust
as follows:

create view branch cust as
select branch name, customer name
from depositor, account
where depositor.account number = account.account number
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branch(branch name, branch city, assets)
customer (customer name, customer street, cust omer city)
loan (loan number, branch name, amount)
borrower (customer name, loan number)
account (account number, branch name, balance )
depositor (customer name, account number)

Figure 5.25 Banking database for Exercises 5.7, 5.8, and 5.28 .

Suppose that the view is materialized; that is, the view is computed and
stored. Write triggers to maintain the view, that is, to keep it up-to-date on
insertions to and deletions from depositor or account. Do not bother about
updates.

5.8 Consider the bank database of Figure 5.25. Write an SQL trigger to carry
out the following action: On delete of an account, for each owner of the
account, check if the owner has any remaining accounts, and if she does
not, delete her from the depositor relation.

5.9 Show how to express group by cube(a , b, c, d) using rollup; your answer
should have only one group by clause.

5.10 Given a relation S(student, sub ject, marks), write a query to find the top n
students by total marks, by using ranking.

5.11 Consider the sales relation from Section 5.6. Write an SQL query to compute
the cube operation on the relation, giving the relation in Figure 5.21. Do
not use the cube construct.

Exercises

5.12 Consider the following relations for a company database:

• emp (ename, dname, salary)

• mgr (ename, mname)

and the Java code in Figure 5.26, which uses the JDBC API. Assume that
the userid, password, machine name, etc. are all okay. Describe in concise
English what the Java program does. (That is, produce an English sen-
tence like “It finds the manager of the toy department,” not a line-by-line
description of what each Java statement does.)

5.13 Suppose you were asked to define a class MetaDisplay in Java, containing
a method static void printTable(String r); the method takes a relation name
r as input, executes the query “select * from r”, and prints the result out
in nice tabular format, with the attribute names displayed in the header of
the table.
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import java.sql.*;
public class Mystery {

public static void main(String[] args) {
try {

Connection con=null;
Class.forName("oracle.jdbc.driver.OracleDriver");
con=DriverManager.getConnection(

"jdbc:oracle:thin:star/X@//edgar.cse.lehigh.edu:1521/XE");
Statement s=con.createStatement();
String q;
String empName = "dog";
boolean more;
ResultSet result;
do {

q = "select mname from mgr where ename = ’" + empName + "’";
result = s.executeQuery(q);
more = result.next();
if (more) {

empName = result.getString("mname");
System.out.println (empName);

}
} while (more);
s.close();
con.close();

} catch(Exception e){e.printStackTrace();} }}

Figure 5.26 Java code for Exercise 5.12.

a. What do you need to know about relation r to be able to print the
result in the specified tabular format.

b. What JDBC methods(s) can get you the required information?

c. Write the method printTable(String r) using the JDBC API.

5.14 Repeat Exercise 5.13 using ODBC, defining void printTable(char *r) as a
function instead of a method.

5.15 Consider an employee database with two relations

employee (employee name, street, city)
works (employee name, company name, salary)

where the primary keys are underlined. Write a query to find companies
whose employees earn a higher salary, on average, than the average salary
at “First Bank Corporation”.
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a. Using SQL functions as appropriate.

b. Without using SQL functions.

5.16 Rewrite the query in Section 5.2.1 that returns the name and budget of all
departments with more than 12 instructors, using the with clause instead
of using a function call.

5.17 Compare the use of embedded SQL with the use in SQL of functions defined
in a general-purpose programming language. Under what circumstances
would you use each of these features?

5.18 Modify the recursive query in Figure 5.15 to define a relation

prereq depth(course id, prereq id, depth)

where the attribute depth indicates how many levels of intermediate pre-
requisites are there between the course and the prerequisite. Direct prereq-
uisites have a depth of 0.

5.19 Consider the relational schema

part(part id, name, cost)
subpart(part id, subpart id, count)

A tuple (p1, p2, 3) in the subpart relation denotes that the part with part-id
p2 is a direct subpart of the part with part-id p1, and p1 has 3 copies of p2.
Note that p2 may itself have further subparts. Write a recursive SQL query
that outputs the names of all subparts of the part with part-id “P-100”.

5.20 Consider again the relational schema from Exercise 5.19. Write a JDBC
function using non-recursive SQL to find the total cost of part “P-100”,
including the costs of all its subparts. Be sure to take into account the
fact that a part may have multiple occurrences of a subpart. You may use
recursion in Java if you wish.

5.21 Suppose there are two relations r and s, such that the foreign key B of r
references the primary key Aof s. Describe how the trigger mechanism can
be used to implement the on delete cascade option, when a tuple is deleted
from s.

5.22 The execution of a trigger can cause another action to be triggered. Most
database systems place a limit on how deep the nesting can be. Explain
why they might place such a limit.

5.23 Consider the relation, r , shown in Figure 5.27. Give the result of the follow-
ing query:
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building room number time slot id course id sec id
Garfield 359 A BIO-101 1
Garfield 359 B BIO-101 2
Saucon 651 A CS-101 2
Saucon 550 C CS-319 1
Painter 705 D MU-199 1
Painter 403 D FIN-201 1

Figure 5.27 The relation r for Exercise 5.23.

select building, room number, time slot id, count(*)
from r
group by rollup (building, room number, time slot id)

5.24 For each of the SQL aggregate functions sum, count, min, and max, show
how to compute the aggregate value on a multiset S1 ∪ S2, given the aggre-
gate values on multisets S1 and S2.

On the basis of the above, give expressions to compute aggregate values
with grouping on a subset S of the attributes of a relation r (A, B, C, D, E),
given aggregate values for grouping on attributes T ⊇ S, for the following
aggregate functions:

a. sum, count, min, and max

b. avg

c. Standard deviation

5.25 In Section 5.5.1, we used the student grades view of Exercise 4.5 to write
a query to find the rank of each student based on grade-point average.
Modify that query to show only the top 10 students (that is, those students
whose rank is 1 through 10).

5.26 Give an example of a pair of groupings that cannot be expressed by using
a single group by clause with cube and rollup.

5.27 Given relation s(a , b, c), show how to use the extended SQL features to
generate a histogram of c versus a , dividing a into 20 equal-sized partitions
(that is, where each partition contains 5 percent of the tuples in s, sorted by
a ).

5.28 Consider the bank database of Figure 5.25 and the balance attribute of the
account relation. Write an SQL query to compute a histogram of balance
values, dividing the range 0 to the maximum account balance present, into
three equal ranges.
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Tools

Most database vendors provide OLAP tools as part of their database systems, or
as add-on applications. These include OLAP tools from Microsoft Corp., Oracle
Express, and Informix Metacube. Tools may be integrated with a larger “business
intelligence” product such as IBM Cognos. Many companies also provide analysis
tools for specific applications, such as customer relationship management (for
example, Oracle Siebel CRM).

Bibliographical Notes

See the bibliographic notes of Chapter 3 for references to SQL standards and books
on SQL.

An excellent source for more (and up-to-date) information on JDBC, and on
Java in general, is java.sun.com/docs/books/tutorial. References to books on Java (in-
cluding JDBC) are also available at this URL. The ODBC API is described in Microsoft
[1997] and Sanders [1998]. Melton and Eisenberg [2000] provides a guide to SQLJ,
JDBC, and related technologies. More information on ODBC, ADO, and ADO.NET
can be found on msdn.microsoft.com/data.

In the context of functions and procedures in SQL, many database products
support features beyond those specified in the standards, and do not support
many of the features of the standard. More information on these features may be
found in the SQL user manuals of the respective products.

The original SQL proposals for assertions and triggers are discussed in Astra-
han et al. [1976], Chamberlin et al. [1976], and Chamberlin et al. [1981]. Melton and
Simon [2001], Melton [2002], and Eisenberg and Melton [1999] provide textbook
coverage of SQL:1999, the version of the SQL standard that first included triggers.

Recursive query processing was first studied in detail in the context of a query
language called Datalog, which was based on mathematical logic and followed
the syntax of the logic programming language Prolog. Ramakrishnan and Ullman
[1995] provides a survey of results in this area, including techniques to optimize
queries that select a subset of tuples from a recursively defined view.

Gray et al. [1995] and Gray et al. [1997] describe the data-cube operator.
Efficient algorithms for computing data cubes are described by Agarwal et al.
[1996], Harinarayan et al. [1996], and Ross and Srivastava [1997]. Descriptions of
extended aggregation support in SQL:1999 can be found in the product manuals
of database systems such as Oracle and IBM DB2.

There has been a substantial amount of research on the efficient processing of
“top-k” queries that return only the top-k-ranked results. A survey of that work
appears in Ilyas et al. [2008].



C H A P T E R6
Formal Relational Query
Languages

In Chapters 2 through 5 we introduced the relational model and covered SQL in
great detail. In this chapter we present the formal model upon which SQL as well
as other relational query languages are based.

We cover three formal languages. We start by presenting the relational algebra,
which forms the basis of the widely used SQL query language. We then cover the
tuple relational calculus and the domain relational calculus, which are declarative
query languages based on mathematical logic.

6.1 The Relational Algebra

The relational algebra is a procedural query language. It consists of a set of op-
erations that take one or two relations as input and produce a new relation as
their result. The fundamental operations in the relational algebra are select, project,
union, set difference, Cartesian product, and rename. In addition to the fundamental
operations, there are several other operations—namely, set intersection, natural
join, and assignment. We shall define these operations in terms of the fundamental
operations.

6.1.1 Fundamental Operations

The select, project, and rename operations are called unary operations, because
they operate on one relation. The other three operations operate on pairs of
relations and are, therefore, called binary operations.

6.1.1.1 The Select Operation

The select operation selects tuples that satisfy a given predicate. We use the
lowercase Greek letter sigma (�) to denote selection. The predicate appears as a
subscript to �. The argument relation is in parentheses after the �. Thus, to select

217
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ID name dept name salary

10101 Srinivasan Comp. Sci. 65000
12121 Wu Finance 90000
15151 Mozart Music 40000
22222 Einstein Physics 95000
32343 El Said History 60000
33456 Gold Physics 87000
45565 Katz Comp. Sci. 75000
58583 Califieri History 62000
76543 Singh Finance 80000
76766 Crick Biology 72000
83821 Brandt Comp. Sci. 92000
98345 Kim Elec. Eng. 80000

Figure 6.1 The instructor relation.

those tuples of the instructor relation where the instructor is in the “Physics”
department, we write:

�dept name = “Physics” (instructor )

If the instructor relation is as shown in Figure 6.1, then the relation that results
from the preceding query is as shown in Figure 6.2.

We can find all instructors with salary greater than $90,000 by writing:

�salary>90000 (instructor )

In general, we allow comparisons using =, �=, <, ≤, >, and ≥ in the selection
predicate. Furthermore, we can combine several predicates into a larger predicate
by using the connectives and (∧), or (∨), and not (¬). Thus, to find the instructors
in Physics with a salary greater than $90,000, we write:

�dept name = “Physics” ∧ salary>90000 (instructor )

The selection predicate may include comparisons between two attributes. To
illustrate, consider the relation department. To find all departments whose name
is the same as their building name, we can write:

�dept name = building (department)

ID name dept name salary
22222 Einstein Physics 95000
33456 Gold Physics 87000

Figure 6.2 Result of �dept name = “Physics” (instructor ).
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SQL VERSUS RELATIONAL ALGEBRA

The term select in relational algebra has a different meaning than the one used in
SQL, which is an unfortunate historical fact. In relational algebra, the term select
corresponds to what we refer to in SQL as where. We emphasize the different
interpretations here to minimize potential confusion.

6.1.1.2 The Project Operation

Suppose we want to list all instructors’ ID, name, and salary, but do not care
about the dept name. The project operation allows us to produce this relation.
The project operation is a unary operation that returns its argument relation,
with certain attributes left out. Since a relation is a set, any duplicate rows are
eliminated. Projection is denoted by the uppercase Greek letter pi (�). We list
those attributes that we wish to appear in the result as a subscript to �. The
argument relation follows in parentheses. We write the query to produce such a
list as:

�ID, name, salary (instructor )

Figure 6.3 shows the relation that results from this query.

6.1.1.3 Composition of Relational Operations

The fact that the result of a relational operation is itself a relation is important.
Consider the more complicated query “Find the name of all instructors in the
Physics department.” We write:

ID name salary
10101 Srinivasan 65000
12121 Wu 90000
15151 Mozart 40000
22222 Einstein 95000
32343 El Said 60000
33456 Gold 87000
45565 Katz 75000
58583 Califieri 62000
76543 Singh 80000
76766 Crick 72000
83821 Brandt 92000
98345 Kim 80000

Figure 6.3 Result of �ID, name, salary (instructor ).



220 Chapter 6 Formal Relational Query Languages

�name (�dept name = “Physics” (instructor ))

Notice that, instead of giving the name of a relation as the argument of the
projection operation, we give an expression that evaluates to a relation.

In general, since the result of a relational-algebra operation is of the same type
(relation) as its inputs, relational-algebra operations can be composed together
into a relational-algebra expression. Composing relational-algebra operations
into relational-algebra expressions is just like composing arithmetic operations
(such as +, −, ∗, and ÷) into arithmetic expressions. We study the formal definition
of relational-algebra expressions in Section 6.1.2.

6.1.1.4 The Union Operation

Consider a query to find the set of all courses taught in the Fall 2009 semester, the
Spring 2010 semester, or both. The information is contained in the section relation
(Figure 6.4). To find the set of all courses taught in the Fall 2009 semester, we
write:

�course id (�semester = “Fall” ∧ year=2009 (section))

To find the set of all courses taught in the Spring 2010 semester, we write:

�course id (�semester = “Spring” ∧ year=2010 (section))

To answer the query, we need the union of these two sets; that is, we need all
section IDs that appear in either or both of the two relations. We find these data

course id sec id semester year building room number time slot id

BIO-101 1 Summer 2009 Painter 514 B
BIO-301 1 Summer 2010 Painter 514 A
CS-101 1 Fall 2009 Packard 101 H
CS-101 1 Spring 2010 Packard 101 F
CS-190 1 Spring 2009 Taylor 3128 E
CS-190 2 Spring 2009 Taylor 3128 A
CS-315 1 Spring 2010 Watson 120 D
CS-319 1 Spring 2010 Watson 100 B
CS-319 2 Spring 2010 Taylor 3128 C
CS-347 1 Fall 2009 Taylor 3128 A
EE-181 1 Spring 2009 Taylor 3128 C
FIN-201 1 Spring 2010 Packard 101 B
HIS-351 1 Spring 2010 Painter 514 C
MU-199 1 Spring 2010 Packard 101 D
PHY-101 1 Fall 2009 Watson 100 A

Figure 6.4 The section relation.
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course id
CS-101
CS-315
CS-319
CS-347
FIN-201
HIS-351
MU-199
PHY-101

Figure 6.5 Courses offered in either Fall 2009, Spring 2010 or both semesters.

by the binary operation union, denoted, as in set theory, by ∪. So the expression
needed is:

�course id (�semester = “Fall” ∧ year=2009 (section)) ∪
�course id (�semester = “Spring” ∧ year=2010 (section))

The result relation for this query appears in Figure 6.5. Notice that there are 8
tuples in the result, even though there are 3 distinct courses offered in the Fall 2009
semester and 6 distinct courses offered in the Spring 2010 semester. Since relations
are sets, duplicate values such as CS-101, which is offered in both semesters, are
replaced by a single occurrence.

Observe that, in our example, we took the union of two sets, both of which
consisted of course id values. In general, we must ensure that unions are taken
between compatible relations. For example, it would not make sense to take the
union of the instructor relation and the student relation. Although both relations
have four attributes, they differ on the salary and tot cred domains. The union of
these two attributes would not make sense in most situations. Therefore, for a
union operation r ∪ s to be valid, we require that two conditions hold:

1. The relations r and s must be of the same arity. That is, they must have the
same number of attributes.

2. The domains of the ith attribute of r and the ith attribute of s must be the
same, for all i .

Note that r and s can be either database relations or temporary relations that are
the result of relational-algebra expressions.

6.1.1.5 The Set-Difference Operation

The set-difference operation, denoted by −, allows us to find tuples that are
in one relation but are not in another. The expression r − s produces a relation
containing those tuples in r but not in s.
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course id
CS-347
PHY-101

Figure 6.6 Courses offered in the Fall 2009 semester but not in Spring 2010 semester.

We can find all the courses taught in the Fall 2009 semester but not in Spring
2010 semester by writing:

�course id (�semester = “Fall” ∧ year=2009 (section)) -
�course id (�semester = “Spring” ∧ year=2010 (section))

The result relation for this query appears in Figure 6.6.
As with the union operation, we must ensure that set differences are taken

between compatible relations. Therefore, for a set-difference operation r − s to be
valid, we require that the relations r and s be of the same arity, and that the
domains of the ith attribute of r and the ith attribute of s be the same, for all i .

6.1.1.6 The Cartesian-Product Operation

The Cartesian-product operation, denoted by a cross (×), allows us to combine
information from any two relations. We write the Cartesian product of relations
r1 and r2 as r1 × r2.

Recall that a relation is by definition a subset of a Cartesian product of a set
of domains. From that definition, we should already have an intuition about the
definition of the Cartesian-product operation. However, since the same attribute
name may appear in both r1 and r2, we need to devise a naming schema to
distinguish between these attributes. We do so here by attaching to an attribute
the name of the relation from which the attribute originally came. For example,
the relation schema for r = instructor × teaches is:

(instructor.ID, instructor.name, instructor.dept name, instructor.salary
teaches.ID, teaches.course id, teaches.sec id, teaches.semester, teaches.year)

With this schema, we can distinguish instructor.ID from teaches.ID. For those at-
tributes that appear in only one of the two schemas, we shall usually drop the
relation-name prefix. This simplification does not lead to any ambiguity. We can
then write the relation schema for r as:

(instructor.ID, name, dept name, salary
teaches.ID, course id, sec id, semester, year)

This naming convention requires that the relations that are the arguments of
the Cartesian-product operation have distinct names. This requirement causes
problems in some cases, such as when the Cartesian product of a relation with
itself is desired. A similar problem arises if we use the result of a relational-algebra
expression in a Cartesian product, since we shall need a name for the relation so
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ID course id sec id semester year

10101 CS-101 1 Fall 2009
10101 CS-315 1 Spring 2010
10101 CS-347 1 Fall 2009
12121 FIN-201 1 Spring 2010
15151 MU-199 1 Spring 2010
22222 PHY-101 1 Fall 2009
32343 HIS-351 1 Spring 2010
45565 CS-101 1 Spring 2010
45565 CS-319 1 Spring 2010
76766 BIO-101 1 Summer 2009
76766 BIO-301 1 Summer 2010
83821 CS-190 1 Spring 2009
83821 CS-190 2 Spring 2009
83821 CS-319 2 Spring 2010
98345 EE-181 1 Spring 2009

Figure 6.7 The teaches relation.

that we can refer to the relation’s attributes. In Section 6.1.1.7, we see how to avoid
these problems by using the rename operation.

Now that we know the relation schema for r = instructor × teaches, what tuples
appear in r? As you may suspect, we construct a tuple of r out of each possible
pair of tuples: one from the instructor relation (Figure 6.1) and one from the teaches
relation (Figure 6.7). Thus, r is a large relation, as you can see from Figure 6.8,
which includes only a portion of the tuples that make up r.1

Assume that we have n1 tuples in instructor and n2 tuples in teaches. Then,
there are n1 ∗ n2 ways of choosing a pair of tuples—one tuple from each relation;
so there are n1 ∗ n2 tuples in r. In particular, note that for some tuples t in r, it may
be that t[instructor.ID] �= t[teaches.ID].

In general, if we have relations r1(R1) and r2(R2), then r1 × r2 is a relation
whose schema is the concatenation of R1 and R2. Relation R contains all tuples t
for which there is a tuple t1 in r1 and a tuple t2 in r2 for which t[R1] = t1[R1] and
t[R2] = t2[R2].

Suppose that we want to find the names of all instructors in the Physics
department together with the course id of all courses they taught. We need the
information in both the instructor relation and the teaches relation to do so. If we
write:

�dept name = “Physics”(instructor × teaches)

then the result is the relation in Figure 6.9.

1Note that we renamed instructor.ID as inst.ID to reduce the width of the tables in Figures 6.8 and 6.9.
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inst.ID name dept name salary teaches.ID course id sec id semester year
10101 Srinivasan Physics 95000 10101 CS-101 1 Fall 2009
10101 Srinivasan Physics 95000 10101 CS-315 1 Spring 2010
10101 Srinivasan Physics 95000 10101 CS-347 1 Fall 2009
10101 Srinivasan Physics 95000 10101 FIN-201 1 Spring 2010
10101 Srinivasan Physics 95000 15151 MU-199 1 Spring 2010
10101 Srinivasan Physics 95000 22222 PHY-101 1 Fall 2009

... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... ...
12121 Wu Physics 95000 10101 CS-101 1 Fall 2009
12121 Wu Physics 95000 10101 CS-315 1 Spring 2010
12121 Wu Physics 95000 10101 CS-347 1 Fall 2009
12121 Wu Physics 95000 10101 FIN-201 1 Spring 2010
12121 Wu Physics 95000 15151 MU-199 1 Spring 2010
12121 Wu Physics 95000 22222 PHY-101 1 Fall 2009

... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... ...
15151 Mozart Physics 95000 10101 CS-101 1 Fall 2009
15151 Mozart Physics 95000 10101 CS-315 1 Spring 2010
15151 Mozart Physics 95000 10101 CS-347 1 Fall 2009
15151 Mozart Physics 95000 10101 FIN-201 1 Spring 2010
15151 Mozart Physics 95000 15151 MU-199 1 Spring 2010
15151 Mozart Physics 95000 22222 PHY-101 1 Fall 2009

... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... ...
22222 Einstein Physics 95000 10101 CS-101 1 Fall 2009
22222 Einstein Physics 95000 10101 CS-315 1 Spring 2010
22222 Einstein Physics 95000 10101 CS-347 1 Fall 2009
22222 Einstein Physics 95000 10101 FIN-201 1 Spring 2010
22222 Einstein Physics 95000 15151 MU-199 1 Spring 2010
22222 Einstein Physics 95000 22222 PHY-101 1 Fall 2009

... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... ...

Figure 6.8 Result of instructor × teaches.

We have a relation that pertains only to instructors in the Physics department.
However, the course id column may contain information about courses that were
not taught by the corresponding instructor. (If you do not see why that is true,
recall that the Cartesian product takes all possible pairings of one tuple from
instructor with one tuple of teaches.)

Since the Cartesian-product operation associates every tuple of instructor with
every tuple of teaches, we know that if a an instructor is in the Physics department,
and has taught a course (as recorded in the teaches relation), then there is some
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inst.ID name dept name salary teaches.ID course id sec id semester year
22222 Einstein Physics 95000 10101 CS-437 1 Fall 2009
22222 Einstein Physics 95000 10101 CS-315 1 Spring 2010
22222 Einstein Physics 95000 12121 FIN-201 1 Spring 2010
22222 Einstein Physics 95000 15151 MU-199 1 Spring 2010
22222 Einstein Physics 95000 22222 PHY-101 1 Fall 2009
22222 Einstein Physics 95000 32343 HIS-351 1 Spring 2010

... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... ...
33456 Gold Physics 87000 10101 CS-437 1 Fall 2009
33456 Gold Physics 87000 10101 CS-315 1 Spring 2010
33456 Gold Physics 87000 12121 FIN-201 1 Spring 2010
33456 Gold Physics 87000 15151 MU-199 1 Spring 2010
33456 Gold Physics 87000 22222 PHY-101 1 Fall 2009
33456 Gold Physics 87000 32343 HIS-351 1 Spring 2010

... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... ...

Figure 6.9 Result of �dept name = “Physics”(instructor × teaches ).

tuple in �dept name = “Physics”(instructor × teaches) that contains his name, and which
satisfies instructor.ID = teaches.ID. So, if we write:

�instructor .ID = teaches .ID (�dept name = “Physics”(instructor × teaches))

we get only those tuples of instructor × teaches that pertain to instructors in
Physics and the courses that they taught.

Finally, since we only want the names of all instructors in the Physics depart-
ment together with the course id of all courses they taught, we do a projection:

�name, course id (�instructor .ID = teaches .ID (�dept name = “Physics”(instructor × teaches)))

The result of this expression, shown in Figure 6.10, is the correct answer to our
query. Observe that although instructor Gold is in the Physics department, he
does not teach any course (as recorded in the teaches relation), and therefore does
not appear in the result.

name course id
Einstein PHY-101

Figure 6.10 Result of
�name, course id (�instructor .ID = teaches.ID (�dept name = “Physics”(instructor × teaches ))).



226 Chapter 6 Formal Relational Query Languages

Note that there is often more than one way to write a query in relational
algebra. Consider the following query:

�name, course id (�instructor .ID = teaches .ID ((�dept name = “Physics”(instructor )) × teaches))

Note the subtle difference between the two queries: in the query above, the selec-
tion that restricts dept name to Physics is applied to instructor, and the Cartesian
product is applied subsequently; in contrast, the Cartesian product was applied
before the selection in the earlier query. However, the two queries are equivalent;
that is, they give the same result on any database.

6.1.1.7 The Rename Operation

Unlike relations in the database, the results of relational-algebra expressions do
not have a name that we can use to refer to them. It is useful to be able to give
them names; the rename operator, denoted by the lowercase Greek letter rho (� ),
lets us do this. Given a relational-algebra expression E , the expression

�x (E)

returns the result of expression E under the name x.
A relation r by itself is considered a (trivial) relational-algebra expression.

Thus, we can also apply the rename operation to a relation r to get the same
relation under a new name.

A second form of the rename operation is as follows: Assume that a relational-
algebra expression E has arity n. Then, the expression

�x(A1,A2,...,An) (E)

returns the result of expression E under the name x, and with the attributes
renamed to A1, A2, . . . , An.

To illustrate renaming a relation, we consider the query “Find the highest
salary in the university.” Our strategy is to (1) compute first a temporary relation
consisting of those salaries that are not the largest and (2) take the set difference
between the relation �salary (instructor ) and the temporary relation just computed,
to obtain the result.

1. Step 1: To compute the temporary relation, we need to compare the values
of all salaries. We do this comparison by computing the Cartesian product
instructor × instructor and forming a selection to compare the value of any
two salaries appearing in one tuple. First, we need to devise a mechanism
to distinguish between the two salary attributes. We shall use the rename
operation to rename one reference to the instructor relation; thus we can
reference the relation twice without ambiguity.
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salary
65000
90000
40000
60000
87000
75000
62000
72000
80000
92000

Figure 6.11 Result of the subexpression
�instructor .salary (�instructor .salary < d .salary (instructor × �d (instructor ))).

We can now write the temporary relation that consists of the salaries that
are not the largest:

�instructor .salary (�instructor .salary < d .salary (instructor × �d (instructor )))

This expression gives those salaries in the instructor relation for which a
larger salary appears somewhere in the instructor relation (renamed as d).
The result contains all salaries except the largest one. Figure 6.11 shows this
relation.

2. Step 2: The query to find the largest salary in the university can be written
as:

�salary (instructor ) −
�instructor .salary (�instructor .salary < d .salary (instructor × �d (instructor )))

Figure 6.12 shows the result of this query.

The rename operation is not strictly required, since it is possible to use a
positional notation for attributes. We can name attributes of a relation implicitly by
using a positional notation, where $1, $2, . . . refer to the first attribute, the second
attribute, and so on. The positional notation also applies to results of relational-
algebra operations. The following relational-algebra expression illustrates the

salary
95000

Figure 6.12 Highest salary in the university.
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use of positional notation to write the expression we saw earlier, which computes
salaries that are not the largest:

�$4 (�$4 < $8 (instructor × instructor ))

Note that the Cartesian product concatenates the attributes of the two relations.
Thus, for the result of the Cartesian product (instructor × instructor), $4 refers to
the salary attribute from the first occurrence of instructor, while $8 refers to the
salary attribute from the second occurrence of instructor. A positional notation can
also be used to refer to relation names, if a binary operation needs to distinguish
between its two operand relations. For example, $R1 could refer to the first
operand relation, and $R2 could refer to the second operand relation of a Cartesian
product. However, the positional notation is inconvenient for humans, since the
position of the attribute is a number, rather than an easy-to-remember attribute
name. Hence, we do not use the positional notation in this textbook.

6.1.2 Formal Definition of the Relational Algebra

The operations in Section 6.1.1 allow us to give a complete definition of an expres-
sion in the relational algebra. A basic expression in the relational algebra consists
of either one of the following:

• A relation in the database

• A constant relation

A constant relation is written by listing its tuples within { }, for example
{ (22222, Einstein, Physics, 95000), (76543, Singh, Finance, 80000) }.

A general expression in the relational algebra is constructed out of smaller
subexpressions. Let E1 and E2 be relational-algebra expressions. Then, the fol-
lowing are all relational-algebra expressions:

• E1 ∪ E2

• E1 − E2

• E1 × E2

• �P (E1), where P is a predicate on attributes in E1

• �S(E1), where S is a list consisting of some of the attributes in E1

• �x (E1), where x is the new name for the result of E1

6.1.3 Additional Relational-Algebra Operations

The fundamental operations of the relational algebra are sufficient to express any
relational-algebra query. However, if we restrict ourselves to just the fundamental
operations, certain common queries are lengthy to express. Therefore, we define
additional operations that do not add any power to the algebra, but simplify
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course id
CS-101

Figure 6.13 Courses offered in both the Fall 2009 and Spring 2010 semesters.

common queries. For each new operation, we give an equivalent expression that
uses only the fundamental operations.

6.1.3.1 The Set-Intersection Operation

The first additional relational-algebra operation that we shall define is set inter-
section (∩). Suppose that we wish to find the set of all courses taught in both the
Fall 2009 and the Spring 2010 semesters. Using set intersection, we can write

�course id (�semester = “Fall” ∧ year=2009 (section)) ∩
�course id (�semester = “Spring” ∧ year=2010 (section))

The result relation for this query appears in Figure 6.13.
Note that we can rewrite any relational-algebra expression that uses set in-

tersection by replacing the intersection operation with a pair of set-difference
operations as:

r ∩ s = r − (r − s)

Thus, set intersection is not a fundamental operation and does not add any power
to the relational algebra. It is simply more convenient to write r ∩ s than to write
r − (r − s).

6.1.3.2 The Natural-Join Operation

It is often desirable to simplify certain queries that require a Cartesian product.
Usually, a query that involves a Cartesian product includes a selection opera-
tion on the result of the Cartesian product. The selection operation most often
requires that all attributes that are common to the relations that are involved in
the Cartesian product be equated.

In our example query from Section 6.1.1.6 that combined information from
the instructor and teaches tables, the matching condition required instructor.ID to
be equal to teaches.ID. These are the only attributes in the two relations that have
the same name.

The natural join is a binary operation that allows us to combine certain selec-
tions and a Cartesian product into one operation. It is denoted by the join symbol
�. The natural-join operation forms a Cartesian product of its two arguments,
performs a selection forcing equality on those attributes that appear in both rela-
tion schemas, and finally removes duplicate attributes. Returning to the example
of the relations instructor and teaches, computing instructor natural join teaches
considers only those pairs of tuples where both the tuple from instructor and the
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ID name dept name salary course id sec id semester year
10101 Srinivasan Comp. Sci. 65000 CS-101 1 Fall 2009
10101 Srinivasan Comp. Sci. 65000 CS-315 1 Spring 2010
10101 Srinivasan Comp. Sci. 65000 CS-347 1 Fall 2009
12121 Wu Finance 90000 FIN-201 1 Spring 2010
15151 Mozart Music 40000 MU-199 1 Spring 2010
22222 Einstein Physics 95000 PHY-101 1 Fall 2009
32343 El Said History 60000 HIS-351 1 Spring 2010
45565 Katz Comp. Sci. 75000 CS-101 1 Spring 2010
45565 Katz Comp. Sci. 75000 CS-319 1 Spring 2010
76766 Crick Biology 72000 BIO-101 1 Summer 2009
76766 Crick Biology 72000 BIO-301 1 Summer 2010
83821 Brandt Comp. Sci. 92000 CS-190 1 Spring 2009
83821 Brandt Comp. Sci. 92000 CS-190 2 Spring 2009
83821 Brandt Comp. Sci. 92000 CS-319 2 Spring 2010
98345 Kim Elec. Eng. 80000 EE-181 1 Spring 2009

Figure 6.14 The natural join of the instructor relation with the teaches relation.

tuple from teaches have the same value on the common attribute ID. The result
relation, shown in Figure 6.14, has only 13 tuples, the ones that give information
about an instructor and a course that that instructor actually teaches. Notice that
we do not repeat those attributes that appear in the schemas of both relations;
rather they appear only once. Notice also the order in which the attributes are
listed: first the attributes common to the schemas of both relations, second those
attributes unique to the schema of the first relation, and finally, those attributes
unique to the schema of the second relation.

Although the definition of natural join is complicated, the operation is easy
to apply. As an illustration, consider again the example “Find the names of all
instructors together with the course id of all courses they taught.” We express this
query by using the natural join as follows:

�name, course id (instructor � teaches)

Since the schemas for instructor and teaches have the attribute ID in common,
the natural-join operation considers only pairs of tuples that have the same value
on ID. It combines each such pair of tuples into a single tuple on the union of the
two schemas; that is, (ID, name, dept name, salary, course id). After performing the
projection, we obtain the relation in Figure 6.15.

Consider two relation schemas R and S—which are, of course, lists of attribute
names. If we consider the schemas to be sets, rather than lists, we can denote those
attribute names that appear in both R and S by R ∩ S, and denote those attribute
names that appear in R, in S, or in both by R ∪ S. Similarly, those attribute names
that appear in R but not S are denoted by R − S, whereas S − R denotes those
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name course id
Srinivasan CS-101
Srinivasan CS-315
Srinivasan CS-347
Wu FIN-201
Mozart MU-199
Einstein PHY-101
El Said HIS-351
Katz CS-101
Katz CS-319
Crick BIO-101
Crick BIO-301
Brandt CS-190
Brandt CS-319
Kim EE-181

Figure 6.15 Result of �name, course id (instructor � teaches ).

attribute names that appear in S but not in R. Note that the union, intersection,
and difference operations here are on sets of attributes, rather than on relations.

We are now ready for a formal definition of the natural join. Consider two
relations r (R) and s(S). The natural join of r and s, denoted by r � s, is a relation
on schema R ∪ S formally defined as follows:

r � s = �R ∪ S (�r.A1 = s.A1 ∧ r.A2 = s.A2 ∧ ... ∧ r.An = s.An (r × s))

where R ∩ S = {A1, A2, . . . , An}.
Please note that if r (R) and s(S) are relations without any attributes in com-

mon, that is, R ∩ S = ∅, then r � s = r × s.
Let us consider one more example of the use of natural join, to write the query

“Find the names of all instructors in the Comp. Sci. department together with the
course titles of all the courses that the instructors teach.”

�name,title (�dept name = “Comp. Sci.” (instructor � teaches � course))

The result relation for this query appears in Figure 6.16.
Notice that we wrote instructor � teaches � course without inserting parenthe-

ses to specify the order in which the natural-join operations on the three relations
should be executed. In the preceding case, there are two possibilities:

(instructor � teaches) � course
instructor � (teaches � course)

We did not specify which expression we intended, because the two are equivalent.
That is, the natural join is associative.
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name title
Brandt Game Design
Brandt Image Processing
Katz Image Processing
Katz Intro. to Computer Science
Srinivasan Intro. to Computer Science
Srinivasan Robotics
Srinivasan Database System Concepts

Figure 6.16 Result of
�name,title (�dept name = “Comp. Sci.” (instructor � teaches � course )).

The theta join operation is a variant of the natural-join operation that allows us
to combine a selection and a Cartesian product into a single operation. Consider
relations r (R) and s(S), and let � be a predicate on attributes in the schema R ∪ S.
The theta join operation r �� s is defined as follows:

r �� s = ��(r × s)

6.1.3.3 The Assignment Operation

It is convenient at times to write a relational-algebra expression by assigning parts
of it to temporary relation variables. The assignment operation, denoted by ←,
works like assignment in a programming language. To illustrate this operation,
consider the definition of the natural-join operation. We could write r � s as:

temp1 ← R × S
temp2 ← �r.A1 = s.A1 ∧ r.A2 = s.A2 ∧ ... ∧ r.An = s.An (temp1)
result = �R ∪ S (temp2)

The evaluation of an assignment does not result in any relation being displayed
to the user. Rather, the result of the expression to the right of the ← is assigned
to the relation variable on the left of the ←. This relation variable may be used in
subsequent expressions.

With the assignment operation, a query can be written as a sequential program
consisting of a series of assignments followed by an expression whose value is
displayed as the result of the query. For relational-algebra queries, assignment
must always be made to a temporary relation variable. Assignments to permanent
relations constitute a database modification. Note that the assignment operation
does not provide any additional power to the algebra. It is, however, a convenient
way to express complex queries.

6.1.3.4 Outer join Operations

The outer-join operation is an extension of the join operation to deal with missing
information. Suppose that there is some instructor who teaches no courses. Then
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ID name dept name salary course id sec id semester year
10101 Srinivasan Comp. Sci. 65000 CS-101 1 Fall 2009
10101 Srinivasan Comp. Sci. 65000 CS-315 1 Spring 2010
10101 Srinivasan Comp. Sci. 65000 CS-347 1 Fall 2009
12121 Wu Finance 90000 FIN-201 1 Spring 2010
15151 Mozart Music 40000 MU-199 1 Spring 2010
22222 Einstein Physics 95000 PHY-101 1 Fall 2009
32343 El Said History 60000 HIS-351 1 Spring 2010
33456 Gold Physics 87000 null null null null
45565 Katz Comp. Sci. 75000 CS-101 1 Spring 2010
45565 Katz Comp. Sci. 75000 CS-319 1 Spring 2010
58583 Califieri History 62000 null null null null
76543 Singh Finance 80000 null null null null
76766 Crick Biology 72000 BIO-101 1 Summer 2009
76766 Crick Biology 72000 BIO-301 1 Summer 2010
83821 Brandt Comp. Sci. 92000 CS-190 1 Spring 2009
83821 Brandt Comp. Sci. 92000 CS-190 2 Spring 2009
83821 Brandt Comp. Sci. 92000 CS-319 2 Spring 2010
98345 Kim Elec. Eng. 80000 EE-181 1 Spring 2009

Figure 6.17 Result of instructor � teaches .

the tuple in the instructor relation (Figure 6.1) for that particular instructor would
not satisfy the condition of a natural join with the teaches relation (Figure 6.7) and
that instructor’s data would not appear in the result of the natural join, shown in
Figure 6.14. For example, instructors Califieri, Gold, and Singh do not appear in
the result of the natural join, since they do not teach any course.

More generally, some tuples in either or both of the relations being joined may
be “lost” in this way. The outer join operation works in a manner similar to the
natural join operation we have already studied, but preserves those tuples that
would be lost in an join by creating tuples in the result containing null values.

We can use the outer-join operation to avoid this loss of information. There
are actually three forms of the operation: left outer join, denoted �; right outer
join, denoted � ; and full outer join, denoted � . All three forms of outer join
compute the join, and add extra tuples to the result of the join. For example, the
results of the expression instructor � teaches and teaches � instructor appear
in Figures 6.17 and 6.18, respectively.

The left outer join ( �) takes all tuples in the left relation that did not match
with any tuple in the right relation, pads the tuples with null values for all other
attributes from the right relation, and adds them to the result of the natural join.
In Figure 6.17, tuple (58583, Califieri, History, 62000, null, null, null, null), is such
a tuple. All information from the left relation is present in the result of the left
outer join.
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ID course id sec id semester year name dept name salary
10101 CS-101 1 Fall 2009 Srinivasan Comp. Sci. 65000
10101 CS-315 1 Spring 2010 Srinivasan Comp. Sci. 65000
10101 CS-347 1 Fall 2009 Srinivasan Comp. Sci. 65000
12121 FIN-201 1 Spring 2010 Wu Finance 90000
15151 MU-199 1 Spring 2010 Mozart Music 40000
22222 PHY-101 1 Fall 2009 Einstein Physics 95000
32343 HIS-351 1 Spring 2010 El Said History 60000
33456 null null null null Gold Physics 87000
45565 CS-101 1 Spring 2010 Katz Comp. Sci. 75000
45565 CS-319 1 Spring 2010 Katz Comp. Sci. 75000
58583 null null null null Califieri History 62000
76543 null null null null Singh Finance 80000
76766 BIO-101 1 Summer 2009 Crick Biology 72000
76766 BIO-301 1 Summer 2010 Crick Biology 72000
83821 CS-190 1 Spring 2009 Brandt Comp. Sci. 92000
83821 CS-190 2 Spring 2009 Brandt Comp. Sci. 92000
83821 CS-319 2 Spring 2010 Brandt Comp. Sci. 92000
98345 EE-181 1 Spring 2009 Kim Elec. Eng. 80000

Figure 6.18 Result of teaches � instructor .

The right outer join (� ) is symmetric with the left outer join: It pads tuples
from the right relation that did not match any from the left relation with nulls and
adds them to the result of the natural join. In Figure 6.18, tuple (58583, null, null,
null, null, Califieri, History, 62000), is such a tuple. Thus, all information from the
right relation is present in the result of the right outer join.

The full outer join( � ) does both the left and right outer join operations,
padding tuples from the left relation that did not match any from the right
relation, as well as tuples from the right relation that did not match any from
the left relation, and adding them to the result of the join.

Note that in going from our left-outer-join example to our right-outer-join ex-
ample, we chose to swap the order of the operands. Thus both examples preserve
tuples from the instructor relation, and thus contain the same information. In
our example relations, teaches tuples always have matching instructor tuples, and
thus teaches � instructor would give the same result as teaches � instructor .
If there were tuples in teaches without matching tuples in instructor, such tu-
ples would appear padded with nulls in teaches � instructor as well as in
teaches � instructor . Further examples of outer joins (expressed in SQL syntax)
may be found in Section 4.1.2.

Since outer-join operations may generate results containing null values, we
need to specify how the different relational-algebra operations deal with null
values. Section 3.6 dealt with this issue in the context of SQL. The same concepts
apply for the case of relational algebra, and we omit details.
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It is interesting to note that the outer-join operations can be expressed by
the basic relational-algebra operations. For instance, the left outer join operation,
r � s, can be written as:

(r � s) ∪ (r − �R(r � s)) × {(null, . . . , null)}

where the constant relation {(null, . . . , null)} is on the schema S − R.

6.1.4 Extended Relational-Algebra Operations

We now describe relational-algebra operations that provide the ability to write
queries that cannot be expressed using the basic relational-algebra operations.
These operations are called extended relational-algebra operations.

6.1.4.1 Generalized Projection

The first operation is the generalized-projection operation, which extends the
projection operation by allowing operations such as arithmetic and string func-
tions to be used in the projection list. The generalized-projection operation has
the form:

�F1,F2,...,Fn(E)

where E is any relational-algebra expression, and each of F1, F2, . . . , Fn is an
arithmetic expression involving constants and attributes in the schema of E . As
a base case, the expression may be simply an attribute or a constant. In general,
an expression can use arithmetic operations such as +, −, ∗, and ÷ on numeric
valued attributes, numeric constants, and on expressions that generate a numeric
result. Generalized projection also permits operations on other data types, such
as concatenation of strings.

For example, the expression:

�ID,name,dept name,salary÷12(instructor )

gives the ID, name, dept name, and the monthly salary of each instructor.

6.1.4.2 Aggregation

The second extended relational-algebra operation is the aggregate operation G,
which permits the use of aggregate functions such as min or average, on sets of
values.

Aggregate functions take a collection of values and return a single value as a
result. For example, the aggregate function sum takes a collection of values and
returns the sum of the values. Thus, the function sum applied on the collection:

{1, 1, 3, 4, 4, 11}
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returns the value 24. The aggregate function avg returns the average of the values.
When applied to the preceding collection, it returns the value 4. The aggregate
function count returns the number of the elements in the collection, and returns
6 on the preceding collection. Other common aggregate functions include min
and max, which return the minimum and maximum values in a collection; they
return 1 and 11, respectively, on the preceding collection.

The collections on which aggregate functions operate can have multiple oc-
currences of a value; the order in which the values appear is not relevant. Such
collections are called multisets. Sets are a special case of multisets where there is
only one copy of each element.

To illustrate the concept of aggregation, we shall use the instructor relation.
Suppose that we want to find out the sum of salaries of all instructors; the
relational-algebra expression for this query is:

Gsum(salar y)(instructor )

The symbol G is the letter G in calligraphic font; read it as “calligraphic G.” The
relational-algebra operation G signifies that aggregation is to be applied, and
its subscript specifies the aggregate operation to be applied. The result of the
expression above is a relation with a single attribute, containing a single row with
a numerical value corresponding to the sum of the salaries of all instructors.

There are cases where we must eliminate multiple occurrences of a value
before computing an aggregate function. If we do want to eliminate duplicates,
we use the same function names as before, with the addition of the hyphenated
string “distinct” appended to the end of the function name (for example, count-
distinct). An example arises in the query “Find the total number of instructors
who teach a course in the Spring 2010 semester.” In this case, an instructor counts
only once, regardless of the number of course sections that the instructor teaches.
The required information is contained in the relation teaches, and we write this
query as follows:

Gcount−distinct(ID)(�semester=“Spring”∧year =2010(teaches))

The aggregate function count-distinct ensures that even if an instructor teaches
more than one course, she is counted only once in the result.

There are circumstances where we would like to apply the aggregate function
not to a single set of tuples, but instead to a group of sets of tuples. As an
illustration, consider the query “Find the average salary in each department.” We
write this query as follows:

dept nameGaverage(salary)(instructor )

Figure 6.19 shows the tuples in the instructor relation grouped by the dept
name attribute. This is the first step in computing the query result. The specified

aggregate is computed for each group, and the result of the query is shown in
Figure 6.20.
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ID name dept name salary
76766 Crick Biology 72000
45565 Katz Comp. Sci. 75000
10101 Srinivasan Comp. Sci. 65000
83821 Brandt Comp. Sci. 92000
98345 Kim Elec. Eng. 80000
12121 Wu Finance 90000
76543 Singh Finance 80000
32343 El Said History 60000
58583 Califieri History 62000
15151 Mozart Music 40000
33456 Gold Physics 87000
22222 Einstein Physics 95000

Figure 6.19 Tuples of the instructor relation, grouped by the dept name attribute

In contrast, consider the query “Find the average salary of all instructors.” We
write this query as follows:

Gaverage(salary)(instructor )

In this case the attribute dept name has been omitted from the left side of the G
operator, so the entire relation is treated as a single group.

The general form of the aggregation operation G is as follows:

G1,G2,...,GnGF1(A1), F2(A2),..., Fm(Am)(E)

where E is any relational-algebra expression; G1, G2, . . . , Gn constitute a list of
attributes on which to group; each Fi is an aggregate function; and each Ai is
an attribute name. The meaning of the operation is as follows: The tuples in the
result of expression E are partitioned into groups in such a way that:

dept name salary
Biology 72000
Comp. Sci. 77333
Elec. Eng. 80000
Finance 85000
History 61000
Music 40000
Physics 91000

Figure 6.20 The result relation for the query “Find the average salary in each department”.
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MULTISET RELATIONAL ALGEBRA

Unlike the relational algebra, SQL allows multiple copies of a tuple in an input
relation as well as in a query result. The SQL standard defines how many copies
of each tuple are there in the output of a query, which depends in turn on how
many copies of tuples are present in the input relations.

To model this behavior of SQL, a version of relational algebra, called the
multiset relational algebra, is defined to work on multisets, that is, sets that
may contain duplicates. The basic operations in the multiset relational algebra
are defined as follows:

1. If there are c1 copies of tuple t1 in r1, and t1 satisfies selection �� , then there are
c1 copies of t1 in ��(r1).

2. For each copy of tuple t1 in r1, there is a copy of tuple �A(t1) in �A(r1), where
�A(t1) denotes the projection of the single tuple t1.

3. If there are c1 copies of tuple t1 in r1 and c2 copies of tuple t2 in r2, there are c1 ∗ c2
copies of the tuple t1.t2 in r1 × r2.

For example, suppose that relations r1 with schema (A, B) and r2 with schema
(C) are the following multisets:

r1 = {(1, a), (2, a)} r2 = {(2), (3), (3)}

Then �B(r1) would be {(a), (a)}, whereas �B(r1) × r2 would be:

{(a, 2), (a, 2), (a, 3), (a, 3), (a, 3), (a, 3)}

Multiset union, intersection and set difference can also be defined in a similar
way, following the corresponding definitions in SQL, which we saw in Sec-
tion 3.5. There is no change in the definition of the aggregation operation.

1. All tuples in a group have the same values for G1, G2, . . . , Gn.

2. Tuples in different groups have different values for G1, G2, . . . , Gn.

Thus, the groups can be identified by the values of attributes G1, G2, . . . , Gn.
For each group (g1, g2, . . . , gn), the result has a tuple (g1, g2, . . . , gn, a1, a2, . . . , am)
where, for each i , ai is the result of applying the aggregate function Fi on the
multiset of values for attribute Ai in the group.

As a special case of the aggregate operation, the list of attributes G1, G2, . . . , Gn
can be empty, in which case there is a single group containing all tuples in the
relation. This corresponds to aggregation without grouping.
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SQL AND RELATIONAL ALGEBRA

From a comparison of the relational algebra operations and the SQL operations,
it should be clear that there is a close connection between the two. A typical SQL
query has the form:

select A1, A2, . . . , An

from r1, r2, . . . , rm

where P

Each Ai represents an attribute, and each ri a relation. P is a predicate. The query
is equivalent to the multiset relational-algebra expression:

�A1, A2,...,An (�P (r1 × r2 × · · · × rm))

If the where clause is omitted, the predicate P is true.
More complex SQL queries can also be rewritten in relational algebra. For

example, the query:

select A1, A2, sum(A3)
from r1, r2, . . . , rm

where P
group by A1, A2

is equivalent to:

A1, A2Gsum(A3)(�A1, A2,..., An(�P (r1 × r2 × · · · × rm)))

Join expressions in the from clause can be written using equivalent join expres-
sions in relational algebra; we leave the details as an exercise for the reader.
However, subqueries in the where or select clause cannot be rewritten into
relational algebra in such a straightforward manner, since there is no relational-
algebra operation equivalent to the subquery construct. Extensions of relational
algebra have been proposed for this task, but are beyond the scope of this book.

6.2 The Tuple Relational Calculus

When we write a relational-algebra expression, we provide a sequence of proce-
dures that generates the answer to our query. The tuple relational calculus, by
contrast, is a nonprocedural query language. It describes the desired information
without giving a specific procedure for obtaining that information.

A query in the tuple relational calculus is expressed as:

{t | P(t)}
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That is, it is the set of all tuples t such that predicate P is true for t. Following our
earlier notation, we use t[A] to denote the value of tuple t on attribute A, and we
use t ∈ r to denote that tuple t is in relation r.

Before we give a formal definition of the tuple relational calculus, we re-
turn to some of the queries for which we wrote relational-algebra expressions in
Section 6.1.1.

6.2.1 Example Queries

Find the ID, name, dept name, salary for instructors whose salary is greater than
$80,000:

{t | t ∈ instructor ∧ t[salary] > 80000}

Suppose that we want only the ID attribute, rather than all attributes of the
instructor relation. To write this query in the tuple relational calculus, we need to
write an expression for a relation on the schema (ID). We need those tuples on (ID)
such that there is a tuple in instructor with the salary attribute > 80000. To express
this request, we need the construct “there exists” from mathematical logic. The
notation:

∃ t ∈ r (Q(t))

means “there exists a tuple t in relation r such that predicate Q(t) is true.”
Using this notation, we can write the query “Find the instructor ID for each

instructor with a salary greater than $80,000” as:

{t | ∃ s ∈ instructor (t[ID] = s[ID]
∧ s[salary] > 80000)}

In English, we read the preceding expression as “The set of all tuples t such that
there exists a tuple s in relation instructor for which the values of t and s for
the ID attribute are equal, and the value of s for the salary attribute is greater than
$80,000.”

Tuple variable t is defined on only the ID attribute, since that is the only
attribute having a condition specified for t. Thus, the result is a relation on (ID).

Consider the query “Find the names of all instructors whose department is
in the Watson building.” This query is slightly more complex than the previous
queries, since it involves two relations: instructor and department. As we shall
see, however, all it requires is that we have two “there exists” clauses in our
tuple-relational-calculus expression, connected by and (∧). We write the query as
follows:

{t | ∃ s ∈ instructor (t[name] = s[name]
∧ ∃ u ∈ department (u[dept name] = s[dept name]

∧ u[building] = “Watson”))}
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name
Einstein
Crick
Gold

Figure 6.21 Names of all instructors whose department is in the Watson building.

Tuple variable u is restricted to departments that are located in the Watson build-
ing, while tuple variable s is restricted to instructors whose dept name matches
that of tuple variable u. Figure 6.21 shows the result of this query.

To find the set of all courses taught in the Fall 2009 semester, the Spring 2010
semester, or both, we used the union operation in the relational algebra. In the
tuple relational calculus, we shall need two “there exists” clauses, connected by
or (∨):

{t | ∃ s ∈ section (t[course id ] = s[course id ])
∧ s[semester ] = “Fall” ∧ s[year ] = 2009)}

∨ ∃ u ∈ section (u[course id ] = t[course id ])}
∧ u[semester ] = “Spring” ∧ u[year ] = 2010)}

This expression gives us the set of all course id tuples for which at least one of the
following holds:

• The course id appears in some tuple of the section relation with semester = Fall
and year = 2009.

• The course id appears in some tuple of the section relation with semester =
Spring and year = 2010.

If the same course is offered in both the Fall 2009 and Spring 2010 semesters, its
course id appears only once in the result, because the mathematical definition of
a set does not allow duplicate members. The result of this query appeared earlier
in Figure 6.5.

If we now want only those course id values for courses that are offered in both
the Fall 2009 and Spring 2010 semesters, all we need to do is to change the or (∨)
to and (∧) in the preceding expression.

{t | ∃ s ∈ section (t[course id ] = s[course id ])
∧ s[semester ] = “Fall” ∧ s[year ] = 2009)}

∧ ∃ u ∈ section (u[course id ] = t[course id ])}
∧ u[semester ] = “Spring” ∧ u[year ] = 2010)}

The result of this query appeared in Figure 6.13.
Now consider the query “Find all the courses taught in the Fall 2009 semester

but not in Spring 2010 semester.” The tuple-relational-calculus expression for this
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query is similar to the expressions that we have just seen, except for the use of
the not (¬) symbol:

{t | ∃ s ∈ section (t[course id ] = s[course id ])
∧ s[semester ] = “Fall” ∧ s[year ] = 2009)}

∧ ¬ ∃ u ∈ section (u[course id ] = t[course id ])}
∧ u[semester ] = “Spring” ∧ u[year ] = 2010)}

This tuple-relational-calculus expression uses the ∃s ∈ section (. . .) clause to
require that a particular course id is taught in the Fall 2009 semester, and it uses the
¬ ∃ u ∈ section (. . .) clause to eliminate those course id values that appear in some
tuple of the section relation as having been taught in the Spring 2010 semester.

The query that we shall consider next uses implication, denoted by ⇒. The
formula P ⇒ Q means “P implies Q”; that is, “if P is true, then Q must be true.”
Note that P ⇒ Q is logically equivalent to ¬P ∨ Q. The use of implication
rather than not and or often suggests a more intuitive interpretation of a query in
English.

Consider the query that “Find all students who have taken all courses offered
in the Biology department.” To write this query in the tuple relational calculus,
we introduce the “for all” construct, denoted by ∀. The notation:

∀ t ∈ r (Q(t))

means “Q is true for all tuples t in relation r.”
We write the expression for our query as follows:

{t | ∃ r ∈ student (r [ID] = t[ID]) ∧
( ∀ u ∈ course (u[dept name] = “ Biology” ⇒

∃ s ∈ takes (t[ID] = s[ID]
∧ s[course id ] = u[course id ]))}

In English, we interpret this expression as “The set of all students (that is, (ID)
tuples t) such that, for all tuples u in the course relation, if the value of u on attribute
dept name is ’Biology’, then there exists a tuple in the takes relation that includes
the student ID and the course id.”

Note that there is a subtlety in the above query: If there is no course offered
in the Biology department, all student IDs satisfy the condition. The first line of
the query expression is critical in this case—without the condition

∃ r ∈ student (r [ID] = t[ID])

if there is no course offered in the Biology department, any value of t (including
values that are not student IDs in the student relation) would qualify.
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6.2.2 Formal Definition

We are now ready for a formal definition. A tuple-relational-calculus expression
is of the form:

{t|P (t)}

where P is a formula. Several tuple variables may appear in a formula. A tuple
variable is said to be a free variable unless it is quantified by a ∃ or ∀. Thus, in:

t ∈ instructor ∧ ∃ s ∈ department(t[dept name] = s[dept name])

t is a free variable. Tuple variable s is said to be a bound variable.
A tuple-relational-calculus formula is built up out of atoms. An atom has one

of the following forms:

• s ∈ r, where s is a tuple variable and r is a relation (we do not allow use of the
/∈ operator).

• s[x] � u[y], where s and u are tuple variables, x is an attribute on which s
is defined, y is an attribute on which u is defined, and � is a comparison
operator (<, ≤, =, �=, >, ≥); we require that attributes x and y have domains
whose members can be compared by �.

• s[x] � c, where s is a tuple variable, x is an attribute on which s is defined, �

is a comparison operator, and c is a constant in the domain of attribute x.

We build up formulae from atoms by using the following rules:

• An atom is a formula.

• If P1 is a formula, then so are ¬P1 and (P1).

• If P1 and P2 are formulae, then so are P1 ∨ P2, P1 ∧ P2, and P1 ⇒ P2.

• If P1(s) is a formula containing a free tuple variable s, and r is a relation, then

∃ s ∈ r (P1(s)) and ∀ s ∈ r (P1(s))

are also formulae.

As we could for the relational algebra, we can write equivalent expressions
that are not identical in appearance. In the tuple relational calculus, these equiv-
alences include the following three rules:

1. P1 ∧ P2 is equivalent to ¬ (¬(P1) ∨ ¬(P2)).

2. ∀ t ∈ r (P1(t)) is equivalent to ¬ ∃ t ∈ r (¬P1(t)).

3. P1 ⇒ P2 is equivalent to ¬(P1) ∨ P2.
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6.2.3 Safety of Expressions

There is one final issue to be addressed. A tuple-relational-calculus expression
may generate an infinite relation. Suppose that we write the expression:

{t |¬ (t ∈ instructor )}

There are infinitely many tuples that are not in instructor. Most of these tuples
contain values that do not even appear in the database! Clearly, we do not wish
to allow such expressions.

To help us define a restriction of the tuple relational calculus, we introduce
the concept of the domain of a tuple relational formula, P. Intuitively, the domain
of P, denoted dom(P), is the set of all values referenced by P. They include
values mentioned in P itself, as well as values that appear in a tuple of a relation
mentioned in P. Thus, the domain of P is the set of all values that appear explicitly
in P or that appear in one or more relations whose names appear in P. For example,
dom(t ∈ instructor ∧ t[salary] > 80000) is the set containing 80000 as well as the
set of all values appearing in any attribute of any tuple in the instructor relation.
Similarly, dom(¬ (t ∈ instructor )) is also the set of all values appearing in
instructor, since the relation instructor is mentioned in the expression.

We say that an expression {t | P(t)} is safe if all values that appear in the
result are values from dom(P). The expression {t |¬ (t ∈ instructor )} is not safe.
Note that dom(¬ (t ∈ instructor )) is the set of all values appearing in instructor.
However, it is possible to have a tuple t not in instructor that contains values
that do not appear in instructor. The other examples of tuple-relational-calculus
expressions that we have written in this section are safe.

The number of tuples that satisfy an unsafe expression, such as {t |¬ (t ∈
instructor )}, could be infinite, whereas safe expressions are guaranteed to have
finite results. The class of tuple-relational-calculus expressions that are allowed
is therefore restricted to those that are safe.

6.2.4 Expressive Power of Languages

The tuple relational calculus restricted to safe expressions is equivalent in expres-
sive power to the basic relational algebra (with the operators ∪, −, ×, �, and � , but
without the extended relational operations such as generalized projection and ag-
gregation (G)). Thus, for every relational-algebra expression using only the basic
operations, there is an equivalent expression in the tuple relational calculus, and
for every tuple-relational-calculus expression, there is an equivalent relational-
algebra expression. We shall not prove this assertion here; the bibliographic notes
contain references to the proof. Some parts of the proof are included in the exer-
cises. We note that the tuple relational calculus does not have any equivalent of
the aggregate operation, but it can be extended to support aggregation. Extending
the tuple relational calculus to handle arithmetic expressions is straightforward.
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6.3 The Domain Relational Calculus

A second form of relational calculus, called domain relational calculus, uses
domain variables that take on values from an attributes domain, rather than values
for an entire tuple. The domain relational calculus, however, is closely related to
the tuple relational calculus.

Domain relational calculus serves as the theoretical basis of the widely used
QBE language (see Appendix B.1), just as relational algebra serves as the basis for
the SQL language.

6.3.1 Formal Definition

An expression in the domain relational calculus is of the form

{< x1, x2, . . . , xn > | P(x1, x2, . . . , xn)}

where x1, x2, . . . , xn represent domain variables. P represents a formula composed
of atoms, as was the case in the tuple relational calculus. An atom in the domain
relational calculus has one of the following forms:

• < x1, x2, . . . , xn > ∈ r, where r is a relation on n attributes and x1, x2, . . . , xn
are domain variables or domain constants.

• x � y, where x and y are domain variables and � is a comparison operator
(<, ≤, =, �=, >, ≥). We require that attributes x and y have domains that can
be compared by �.

• x � c, where x is a domain variable, � is a comparison operator, and c is a
constant in the domain of the attribute for which x is a domain variable.

We build up formulae from atoms by using the following rules:

• An atom is a formula.

• If P1 is a formula, then so are ¬P1 and (P1).

• If P1 and P2 are formulae, then so are P1 ∨ P2, P1 ∧ P2, and P1 ⇒ P2.

• If P1(x) is a formula in x, where x is a free domain variable, then

∃ x (P1(x)) and ∀ x (P1(x))

are also formulae.

As a notational shorthand, we write ∃ a , b, c (P(a , b, c)) for ∃ a (∃ b (∃ c (P(a , b, c)))).
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6.3.2 Example Queries

We now give domain-relational-calculus queries for the examples that we con-
sidered earlier. Note the similarity of these expressions and the corresponding
tuple-relational-calculus expressions.

• Find the instructor ID, name, dept name, and salary for instructors whose salary
is greater than $80,000:

{< i, n, d, s > | < i, n, d, s > ∈ instructor ∧ s > 80000}

• Find all instructor ID for instructors whose salary is greater than $80,000:

{< n > | ∃ i, d, s (< i, n, d, s > ∈ instructor ∧ s > 80000)}

Although the second query appears similar to the one that we wrote for the tuple
relational calculus, there is an important difference. In the tuple calculus, when
we write ∃ s for some tuple variable s, we bind it immediately to a relation by
writing ∃ s ∈ r . However, when we write ∃ n in the domain calculus, n refers
not to a tuple, but rather to a domain value. Thus, the domain of variable n is
unconstrained until the subformula < i, n, d, s > ∈ instructor constrains n to
instructor names that appear in the instructor relation.

We now give several examples of queries in the domain relational calculus.

• Find the names of all instructors in the Physics department together with the
course id of all courses they teach:

{< n, c > | ∃ i, a (< i, c, a , s, y > ∈ teaches
∧ ∃ d, s (< i, n, d, s > ∈ instructor ∧ d = “Physics”))}

• Find the set of all courses taught in the Fall 2009 semester, the Spring 2010
semester, or both:

{< c > | ∃ s (< c, a , s, y, b, r, t >∈ section
∧ s = “Fall” ∧ y = “2009”

∨∃ u (< c, a , s, y, b, r, t >∈ section
∧ s = “Spring” ∧ y = “2010”

• Find all students who have taken all courses offered in the Biology depart-
ment:

{< i > | ∃ n, d, t (< i, n, d, t > ∈ student) ∧
∀ x, y, z, w (< x, y, z, w > ∈ course ∧ z = “Biology” ⇒
∃ a , b (< a , x, b, r, p, q > ∈ takes ∧ < c, a > ∈ depositor ))}
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Note that as was the case for tuple-relational-calculus, if no courses are offered
in the Biology department, all students would be in the result.

6.3.3 Safety of Expressions

We noted that, in the tuple relational calculus (Section 6.2), it is possible to write
expressions that may generate an infinite relation. That led us to define safety for
tuple-relational-calculus expressions. A similar situation arises for the domain
relational calculus. An expression such as

{< i, n, d, s > | ¬(< i, n, d, s > ∈ instructor )}

is unsafe, because it allows values in the result that are not in the domain of the
expression.

For the domain relational calculus, we must be concerned also about the form
of formulae within “there exists” and “for all” clauses. Consider the expression

{< x > | ∃ y (< x, y >∈ r ) ∧ ∃ z (¬(< x, z >∈ r ) ∧ P(x, z))}

where P is some formula involving x and z. We can test the first part of the
formula, ∃ y (< x, y > ∈ r ), by considering only the values in r. However, to test
the second part of the formula, ∃ z (¬ (< x, z > ∈ r ) ∧ P(x, z)), we must consider
values for z that do not appear in r. Since all relations are finite, an infinite number
of values do not appear in r. Thus, it is not possible, in general, to test the second
part of the formula without considering an infinite number of potential values
for z. Instead, we add restrictions to prohibit expressions such as the preceding
one.

In the tuple relational calculus, we restricted any existentially quantified vari-
able to range over a specific relation. Since we did not do so in the domain calculus,
we add rules to the definition of safety to deal with cases like our example. We
say that an expression

{< x1, x2, . . . , xn > | P (x1, x2, . . . , xn)}

is safe if all of the following hold:

1. All values that appear in tuples of the expression are values from dom(P).

2. For every “there exists” subformula of the form ∃ x (P1(x)), the subformula
is true if and only if there is a value x in dom(P1) such that P1(x) is true.

3. For every “for all” subformula of the form ∀x (P1(x)), the subformula is true
if and only if P1(x) is true for all values x from dom(P1).

The purpose of the additional rules is to ensure that we can test “for all” and
“there exists” subformulae without having to test infinitely many possibilities.
Consider the second rule in the definition of safety. For ∃ x (P1(x)) to be true,
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we need to find only one x for which P1(x) is true. In general, there would be
infinitely many values to test. However, if the expression is safe, we know that
we can restrict our attention to values from dom(P1). This restriction reduces to a
finite number the tuples we must consider.

The situation for subformulae of the form ∀x (P1(x)) is similar. To assert
that ∀x (P1(x)) is true, we must, in general, test all possible values, so we must
examine infinitely many values. As before, if we know that the expression is safe,
it is sufficient for us to test P1(x) for those values taken from dom(P1).

All the domain-relational-calculus expressions that we have written in the
example queries of this section are safe, except for the example unsafe query we
saw earlier.

6.3.4 Expressive Power of Languages

When the domain relational calculus is restricted to safe expressions, it is equiv-
alent in expressive power to the tuple relational calculus restricted to safe ex-
pressions. Since we noted earlier that the restricted tuple relational calculus is
equivalent to the relational algebra, all three of the following are equivalent:

• The basic relational algebra (without the extended relational-algebra opera-
tions)

• The tuple relational calculus restricted to safe expressions

• The domain relational calculus restricted to safe expressions

We note that the domain relational calculus also does not have any equivalent
of the aggregate operation, but it can be extended to support aggregation, and
extending it to handle arithmetic expressions is straightforward.

6.4 Summary

• The relational algebra defines a set of algebraic operations that operate on
tables, and output tables as their results. These operations can be combined
to get expressions that express desired queries. The algebra defines the basic
operations used within relational query languages.

• The operations in relational algebra can be divided into:

◦ Basic operations

◦ Additional operations that can be expressed in terms of the basic opera-
tions

◦ Extended operations, some of which add further expressive power to
relational algebra

• The relational algebra is a terse, formal language that is inappropriate for
casual users of a database system. Commercial database systems, therefore,
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use languages with more “syntactic sugar.” In Chapters 3 through 5, we cover
the most influential language—SQL, which is based on relational algebra.

• The tuple relational calculus and the domain relational calculus are non-
procedural languages that represent the basic power required in a relational
query language. The basic relational algebra is a procedural language that is
equivalent in power to both forms of the relational calculus when they are
restricted to safe expressions.

• The relational calculi are terse, formal languages that are inappropriate for
casual users of a database system. These two formal languages form the basis
for two more user-friendly languages, QBE and Datalog, that we cover in
Appendix B.

Review Terms

• Relational algebra
• Relational-algebra operations

◦ Select �

◦ Project �

◦ Union ∪
◦ Set difference −
◦ Cartesian product ×
◦ Rename �

• Additional operations

◦ Set intersection ∩
◦ Natural join �

◦ Assignment operation

◦ Outer join

� Left outer join �

� Right outer join �

� Full outer join �

• Multisets
• Grouping
• Null value
• Tuple relational calculus
• Domain relational calculus
• Safety of expressions
• Expressive power of languages

Practice Exercises

6.1 Write the following queries in relational algebra, using the university
schema.

a. Find the titles of courses in the Comp. Sci. department that have 3
credits.

b. Find the IDs of all students who were taught by an instructor named
Einstein; make sure there are no duplicates in the result.

c. Find the highest salary of any instructor.

d. Find all instructors earning the highest salary (there may be more
than one with the same salary).



250 Chapter 6 Formal Relational Query Languages

employee (person name, street, city )
works (person name, company name, salary)
company (company name, city)
manages (person name, manager name)

Figure 6.22 Relational database for Exercises 6.2, 6.8, 6.11, 6.13, and 6.15

e. Find the enrollment of each section that was offered in Autumn 2009.

f. Find the maximum enrollment, across all sections, in Autumn 2009.

g. Find the sections that had the maximum enrollment in Autumn 2009.

6.2 Consider the relational database of Figure 6.22, where the primary keys are
underlined. Give an expression in the relational algebra to express each of
the following queries:

a. Find the names of all employees who live in the same city and on the
same street as do their managers.

b. Find the names of all employees in this database who do not work
for “First Bank Corporation”.

c. Find the names of all employees who earn more than every employee
of “Small Bank Corporation”.

6.3 The natural outer-join operations extend the natural-join operation so that
tuples from the participating relations are not lost in the result of the join.
Describe how the theta-join operation can be extended so that tuples from
the left, right, or both relations are not lost from the result of a theta join.

6.4 (Division operation): The division operator of relational algebra, “÷”, is
defined as follows. Let r (R) and s(S) be relations, and let S ⊆ R; that is,
every attribute of schema S is also in schema R. Then r ÷ s is a relation on
schema R − S (that is, on the schema containing all attributes of schema
R that are not in schema S). A tuple t is in r ÷ s if and only if both of two
conditions hold:

• t is in �R−S(r )

• For every tuple ts in s, there is a tuple tr in r satisfying both of the
following:
a. tr [S] = ts[S]
b. tr [R − S] = t

Given the above definition:

a. Write a relational algebra expression using the division operator to
find the IDs of all students who have taken all Comp. Sci. courses.
(Hint: project takes to just ID and course id, and generate the set of



Practice Exercises 251

all Comp. Sci. course ids using a select expression, before doing the
division.)

b. Show how to write the above query in relational algebra, without
using division. (By doing so, you would have shown how to define
the division operation using the other relational algebra operations.)

6.5 Let the following relation schemas be given:

R = (A, B, C)
S = (D, E, F )

Let relations r(R) and s(S) be given. Give an expression in the tuple rela-
tional calculus that is equivalent to each of the following:

a. �A(r )

b. �B = 17 (r )

c. r × s

d. �A,F (�C = D(r × s))

6.6 Let R = (A, B, C), and let r1 and r2 both be relations on schema R. Give
an expression in the domain relational calculus that is equivalent to each
of the following:

a. �A(r1)

b. �B = 17 (r1)

c. r1 ∪ r2

d. r1 ∩ r2

e. r1 − r2

f. �A,B(r1) � �B,C (r2)

6.7 Let R = (A, B) and S = (A, C), and let r (R) and s(S) be relations. Write
expressions in relational algebra for each of the following queries:

a. {< a > | ∃ b (< a , b > ∈ r ∧ b = 7)}
b. {< a , b, c > | < a , b > ∈ r ∧ < a , c > ∈ s}
c. {< a > | ∃ c (< a , c > ∈ s ∧ ∃ b1, b2 (< a , b1 > ∈ r ∧ < c, b2 > ∈

r ∧ b1 > b2))}

6.8 Consider the relational database of Figure 6.22 where the primary keys are
underlined. Give an expression in tuple relational calculus for each of the
following queries:
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a. Find all employees who work directly for “Jones.”

b. Find all cities of residence of all employees who work directly for
“Jones.”

c. Find the name of the manager of the manager of “Jones.”

d. Find those employees who earn more than all employees living in the
city “Mumbai.”

6.9 Describe how to translate join expressions in SQL to relational algebra.

Exercises

6.10 Write the following queries in relational algebra, using the university
schema.

a. Find the names of all students who have taken at least one Comp. Sci.
course.

b. Find the IDs and names of all students who have not taken any course
offering before Spring 2009.

c. For each department, find the maximum salary of instructors in that
department. You may assume that every department has at least one
instructor.

d. Find the lowest, across all departments, of the per-department maxi-
mum salary computed by the preceding query.

6.11 Consider the relational database of Figure 6.22, where the primary keys are
underlined. Give an expression in the relational algebra to express each of
the following queries:

a. Find the names of all employees who work for “First Bank Corpora-
tion”.

b. Find the names and cities of residence of all employees who work for
“First Bank Corporation”.

c. Find the names, street addresses, and cities of residence of all em-
ployees who work for “First Bank Corporation” and earn more than
$10,000.

d. Find the names of all employees in this database who live in the same
city as the company for which they work.

e. Assume the companies may be located in several cities. Find all com-
panies located in every city in which “Small Bank Corporation” is
located.
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6.12 Using the university example, write relational-algebra queries to find the
course sections taught by more than one instructor in the following ways:

a. Using an aggregate function.

b. Without using any aggregate functions.

6.13 Consider the relational database of Figure 6.22. Give a relational-algebra
expression for each of the following queries:

a. Find the company with the most employees.

b. Find the company with the smallest payroll.

c. Find those companies whose employees earn a higher salary, on av-
erage, than the average salary at First Bank Corporation.

6.14 Consider the following relational schema for a library:

member(memb no, name, dob)
books(isbn, title, authors, publisher)
borrowed(memb no, isbn, date)

Write the following queries in relational algebra.

a. Find the names of members who have borrowed any book published
by “McGraw-Hill”.

b. Find the name of members who have borrowed all books published
by “McGraw-Hill”.

c. Find the name and membership number of members who have bor-
rowed more than five different books published by “McGraw-Hill”.

d. For each publisher, find the name and membership number of mem-
bers who have borrowed more than five books of that publisher.

e. Find the average number of books borrowed per member. Take into
account that if an member does not borrow any books, then that
member does not appear in the borrowed relation at all.

6.15 Consider the employee database of Figure 6.22. Give expressions in tuple
relational calculus and domain relational calculus for each of the following
queries:

a. Find the names of all employees who work for “First Bank Corpora-
tion”.

b. Find the names and cities of residence of all employees who work for
“First Bank Corporation”.

c. Find the names, street addresses, and cities of residence of all em-
ployees who work for “First Bank Corporation” and earn more than
$10,000.
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d. Find all employees who live in the same city as that in which the
company for which they work is located.

e. Find all employees who live in the same city and on the same street
as their managers.

f. Find all employees in the database who do not work for “First Bank
Corporation”.

g. Find all employees who earn more than every employee of “Small
Bank Corporation”.

h. Assume that the companies may be located in several cities. Find all
companies located in every city in which “Small Bank Corporation”
is located.

6.16 Let R = (A, B) and S = (A, C), and let r (R) and s(S) be relations.
Write relational-algebra expressions equivalent to the following domain-
relational-calculus expressions:

a. {< a > | ∃ b (< a , b > ∈ r ∧ b = 17)}
b. {< a , b, c > | < a , b > ∈ r ∧ < a , c > ∈ s}
c. {< a > | ∃ b (< a , b > ∈ r ) ∨ ∀ c (∃ d (< d, c > ∈ s) ⇒ < a , c > ∈ s)}
d. {< a > | ∃ c (< a , c > ∈ s ∧ ∃ b1, b2 (< a , b1 > ∈ r ∧ < c, b2 >

∈ r ∧ b1 > b2))}
6.17 Repeat Exercise 6.16, writing SQL queries instead of relational-algebra ex-

pressions.

6.18 Let R = (A, B) and S = (A, C), and let r (R) and s(S) be relations.
Using the special constant null, write tuple-relational-calculus expressions
equivalent to each of the following:

a. r � s

b. r � s

c. r � s

6.19 Give a tuple-relational-calculus expression to find the maximum value in
relation r (A).
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PART 2

DATABASE DESIGN
Database systems are designed to manage large bodies of information. These large
bodies of information do not exist in isolation. They are part of the operation of
some enterprise whose end product may be information from the database or
may be some device or service for which the database plays only a supporting
role.

The first two chapters of this part focus on the design of database schemas.
The entity-relationship (E-R) model described in Chapter 7 is a high-level data
model. Instead of representing all data in tables, it distinguishes between basic
objects, called entities, and relationships among these objects. It is often used as a
first step in database-schema design.

Relational database design—the design of the relational schema— was cov-
ered informally in earlier chapters. There are, however, principles that can be
used to distinguish good database designs from bad ones. These are formal-
ized by means of several “normal forms” that offer different trade-offs between
the possibility of inconsistencies and the efficiency of certain queries. Chapter 8
describes the formal design of relational schemas.

The design of a complete database application environment that meets the
needs of the enterprise being modeled requires attention to a broader set of
issues, many of which are covered in Chapter 9. This chapter first covers the
design of Web-based interfaces to applications. The chapter then describes how
large applications are architected using multiple layers of abstraction. Finally, the
chapter provides a detailed discussion of security at the application and database
levels.
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C H A P T E R7
Database Design and the E-R
Model

Up to this point in the text, we have assumed a given database schema and
studied how queries and updates are expressed. We now consider how to design
a database schema in the first place. In this chapter, we focus on the entity-
relationship data model (E-R), which provides a means of identifying entities to
be represented in the database and how those entities are related. Ultimately, the
database design will be expressed in terms of a relational database design and an
associated set of constraints. We show in this chapter how an E-R design can be
transformed into a set of relation schemas and how some of the constraints can
be captured in that design. Then, in Chapter 8, we consider in detail whether a
set of relation schemas is a good or bad database design and study the process
of creating good designs using a broader set of constraints. These two chapters
cover the fundamental concepts of database design.

7.1 Overview of the Design Process

The task of creating a database application is a complex one, involving design
of the database schema, design of the programs that access and update the data,
and design of a security scheme to control access to data. The needs of the users
play a central role in the design process. In this chapter, we focus on the design of
the database schema, although we briefly outline some of the other design tasks
later in the chapter.

The design of a complete database application environment that meets the
needs of the enterprise being modeled requires attention to a broad set of issues.
These additional aspects of the expected use of the database influence a variety
of design choices at the physical, logical, and view levels.

7.1.1 Design Phases

For small applications, it may be feasible for a database designer who understands
the application requirements to decide directly on the relations to be created,

259
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their attributes, and constraints on the relations. However, such a direct design
process is difficult for real-world applications, since they are often highly complex.
Often no one person understands the complete data needs of an application.
The database designer must interact with users of the application to understand
the needs of the application, represent them in a high-level fashion that can be
understood by the users, and then translate the requirements into lower levels of
the design. A high-level data model serves the database designer by providing
a conceptual framework in which to specify, in a systematic fashion, the data
requirements of the database users, and a database structure that fulfills these
requirements.

• The initial phase of database design is to characterize fully the data needs of
the prospective database users. The database designer needs to interact ex-
tensively with domain experts and users to carry out this task. The outcome
of this phase is a specification of user requirements. While there are tech-
niques for diagrammatically representing user requirements, in this chapter
we restrict ourselves to textual descriptions of user requirements.

• Next, the designer chooses a data model and, by applying the concepts of the
chosen data model, translates these requirements into a conceptual schema
of the database. The schema developed at this conceptual-design phase pro-
vides a detailed overview of the enterprise. The entity-relationship model,
which we study in the rest of this chapter, is typically used to represent the
conceptual design. Stated in terms of the entity-relationship model, the con-
ceptual schema specifies the entities that are represented in the database, the
attributes of the entities, the relationships among the entities, and constraints
on the entities and relationships. Typically, the conceptual-design phase re-
sults in the creation of an entity-relationship diagram that provides a graphic
representation of the schema.

The designer reviews the schema to confirm that all data requirements are
indeed satisfied and are not in conflict with one another. She can also examine
the design to remove any redundant features. Her focus at this point is on
describing the data and their relationships, rather than on specifying physical
storage details.

• A fully developed conceptual schema also indicates the functional require-
ments of the enterprise. In a specification of functional requirements, users
describe the kinds of operations (or transactions) that will be performed on
the data. Example operations include modifying or updating data, searching
for and retrieving specific data, and deleting data. At this stage of conceptual
design, the designer can review the schema to ensure it meets functional
requirements.

• The process of moving from an abstract data model to the implementation of
the database proceeds in two final design phases.

◦ In the logical-design phase, the designer maps the high-level conceptual
schema onto the implementation data model of the database system that
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will be used. The implementation data model is typically the relational
data model, and this step typically consists of mapping the conceptual
schema defined using the entity-relationship model into a relation schema.

◦ Finally, the designer uses the resulting system-specific database schema
in the subsequent physical-design phase, in which the physical features
of the database are specified. These features include the form of file or-
ganization and choice of index structures, discussed in Chapters 10 and
11.

The physical schema of a database can be changed relatively easily after an
application has been built. However, changes to the logical schema are usually
harder to carry out, since they may affect a number of queries and updates scat-
tered across application code. It is therefore important to carry out the database
design phase with care, before building the rest of the database application.

7.1.2 Design Alternatives

A major part of the database design process is deciding how to represent in the
design the various types of “things” such as people, places, products, and the
like. We use the term entity to refer to any such distinctly identifiable item. In
a university database, examples of entities would include instructors, students,
departments, courses, and course offerings.1 The various entities are related to
each other in a variety of ways, all of which need to be captured in the database
design. For example, a student takes a course offering, while an instructor teaches
a course offering; teaches and takes are examples of relationships between entities.

In designing a database schema, we must ensure that we avoid two major
pitfalls:

1. Redundancy: A bad design may repeat information. For example, if we
store the course identifier and title of a course with each course offering, the
title would be stored redundantly (that is, multiple times, unnecessarily)
with each course offering. It would suffice to store only the course identifier
with each course offering, and to associate the title with the course identifier
only once, in a course entity.

Redundancy can also occur in a relational schema. In the university
example we have used so far, we have a relation with section information
and a separate relation with course information. Suppose that instead we
have a single relation where we repeat all of the course information (course
id, title, dept name, credits) once for each section (offering) of the course.

Clearly, information about courses would then be stored redundantly.
The biggest problem with such redundant representation of information

is that the copies of a piece of information can become inconsistent if the

1A course may have run in multiple semesters, as well as multiple times in a semester. We refer to each such offering of
a course as a section.
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information is updated without taking precautions to update all copies of
the information. For example, different offerings of a course may have the
same course identifier, but may have different titles. It would then become
unclear what the correct title of the course is. Ideally, information should
appear in exactly one place.

2. Incompleteness: A bad design may make certain aspects of the enterprise
difficult or impossible to model. For example, suppose that, as in case (1)
above, we only had entities corresponding to course offering, without hav-
ing an entity corresponding to courses. Equivalently, in terms of relations,
suppose we have a single relation where we repeat all of the course infor-
mation once for each section that the course is offered. It would then be
impossible to represent information about a new course, unless that course
is offered. We might try to make do with the problematic design by stor-
ing null values for the section information. Such a work-around is not only
unattractive, but may be prevented by primary-key constraints.

Avoiding bad designs is not enough. There may be a large number of good
designs from which we must choose. As a simple example, consider a customer
who buys a product. Is the sale of this product a relationship between the customer
and the product? Alternatively, is the sale itself an entity that is related both to the
customer and to the product? This choice, though simple, may make an important
difference in what aspects of the enterprise can be modeled well. Considering the
need to make choices such as this for the large number of entities and relationships
in a real-world enterprise, it is not hard to see that database design can be a
challenging problem. Indeed we shall see that it requires a combination of both
science and “good taste.”

7.2 The Entity-Relationship Model

The entity-relationship (E-R) data model was developed to facilitate database
design by allowing specification of an enterprise schema that represents the overall
logical structure of a database.

The E-R model is very useful in mapping the meanings and interactions of
real-world enterprises onto a conceptual schema. Because of this usefulness, many
database-design tools draw on concepts from the E-R model. The E-R data model
employs three basic concepts: entity sets, relationship sets, and attributes, which
we study first. The E-R model also has an associated diagrammatic representation,
the E-R diagram, which we study later in this chapter.

7.2.1 Entity Sets

An entity is a “thing” or “object” in the real world that is distinguishable from
all other objects. For example, each person in a university is an entity. An entity
has a set of properties, and the values for some set of properties may uniquely
identify an entity. For instance, a person may have a person id property whose
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value uniquely identifies that person. Thus, the value 677-89-9011 for person id
would uniquely identify one particular person in the university. Similarly, courses
can be thought of as entities, and course id uniquely identifies a course entity in
the university. An entity may be concrete, such as a person or a book, or it may
be abstract, such as a course, a course offering, or a flight reservation.

An entity set is a set of entities of the same type that share the same properties,
or attributes. The set of all people who are instructors at a given university, for
example, can be defined as the entity set instructor. Similarly, the entity set student
might represent the set of all students in the university.

In the process of modeling, we often use the term entity set in the abstract,
without referring to a particular set of individual entities. We use the term ex-
tension of the entity set to refer to the actual collection of entities belonging to
the entity set. Thus, the set of actual instructors in the university forms the exten-
sion of the entity set instructor. The above distinction is similar to the difference
between a relation and a relation instance, which we saw in Chapter 2.

Entity sets do not need to be disjoint. For example, it is possible to define the
entity set of all people in a university (person). A person entity may be an instructor
entity, a student entity, both, or neither.

An entity is represented by a set of attributes. Attributes are descriptive
properties possessed by each member of an entity set. The designation of an
attribute for an entity set expresses that the database stores similar information
concerning each entity in the entity set; however, each entity may have its own
value for each attribute. Possible attributes of the instructor entity set are ID, name,
dept name, and salary. In real life, there would be further attributes, such as street
number, apartment number, state, postal code, and country, but we omit them to
keep our examples simple. Possible attributes of the course entity set are course id,
title, dept name, and credits.

Each entity has a value for each of its attributes. For instance, a particular
instructor entity may have the value 12121 for ID, the value Wu for name, the value
Finance for dept name, and the value 90000 for salary.

The ID attribute is used to identify instructors uniquely, since there may
be more than one instructor with the same name. In the United States, many
enterprises find it convenient to use the social-security number of a person2 as an
attribute whose value uniquely identifies the person. In general the enterprise
would have to create and assign a unique identifier for each instructor.

A database thus includes a collection of entity sets, each of which contains
any number of entities of the same type. Figure 7.1 shows part of a university
database that consists of two entity sets: instructor and student. To keep the figure
simple, only some of the attributes of the two entity sets are shown.

A database for a university may include a number of other entity sets. For
example, in addition to keeping track of instructors and students, the university
also has information about courses, which are represented by the entity set course

2In the United States, the government assigns to each person in the country a unique number, called a social-security
number, to identify that person uniquely. Each person is supposed to have only one social-security number, and no two
people are supposed to have the same social-security number.
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Figure 7.1 Entity sets instructor and student.

with attributes course id, title, dept name and credits. In a real setting, a university
database may keep dozens of entity sets.

7.2.2 Relationship Sets

A relationship is an association among several entities. For example, we can
define a relationship advisor that associates instructor Katz with student Shankar.
This relationship specifies that Katz is an advisor to student Shankar.

A relationship set is a set of relationships of the same type. Formally, it is a
mathematical relation on n ≥ 2 (possibly nondistinct) entity sets. If E1, E2, . . . , En
are entity sets, then a relationship set R is a subset of

{(e1, e2, . . . , en) | e1 ∈ E1, e2 ∈ E2, . . . , en ∈ En}

where (e1, e2, . . . , en) is a relationship.
Consider the two entity sets instructor and student in Figure 7.1. We define

the relationship set advisor to denote the association between instructors and
students. Figure 7.2 depicts this association.

As another example, consider the two entity sets student and section. We can
define the relationship set takes to denote the association between a student and
the course sections in which that student is enrolled.

The association between entity sets is referred to as participation; that is, the
entity sets E1, E2, . . . , En participate in relationship set R. A relationship in-
stance in an E-R schema represents an association between the named entities in
the real-world enterprise that is being modeled. As an illustration, the individual
instructor entity Katz, who has instructor ID 45565, and the student entity Shankar,
who has student ID 12345, participate in a relationship instance of advisor. This re-
lationship instance represents that in the university, the instructor Katz is advising
student Shankar.

The function that an entity plays in a relationship is called that entity’s role.
Since entity sets participating in a relationship set are generally distinct, roles
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Figure 7.2 Relationship set advisor.

are implicit and are not usually specified. However, they are useful when the
meaning of a relationship needs clarification. Such is the case when the entity sets
of a relationship set are not distinct; that is, the same entity set participates in a
relationship set more than once, in different roles. In this type of relationship set,
sometimes called a recursive relationship set, explicit role names are necessary to
specify how an entity participates in a relationship instance. For example, consider
the entity set course that records information about all the courses offered in the
university. To depict the situation where one course (C2) is a prerequisite for
another course (C1) we have relationship set prereq that is modeled by ordered
pairs of course entities. The first course of a pair takes the role of course C1, whereas
the second takes the role of prerequisite course C2. In this way, all relationships
of prereq are characterized by (C1, C2) pairs; (C2, C1) pairs are excluded.

A relationship may also have attributes called descriptive attributes. Con-
sider a relationship set advisor with entity sets instructor and student. We could
associate the attribute date with that relationship to specify the date when an
instructor became the advisor of a student. The advisor relationship among the
entities corresponding to instructor Katz and student Shankar has the value “10
June 2007” for attribute date, which means that Katz became Shankar’s advisor
on 10 June 2007.

Figure 7.3 shows the relationship set advisor with a descriptive attribute date.
Please note that Katz advises two students with two different advising dates.

As a more realistic example of descriptive attributes for relationships, consider
the entity sets student and section, which participate in a relationship set takes. We
may wish to store a descriptive attribute grade with the relationship to record the
grade that a student got in the class. We may also store a descriptive attribute for
credit to record whether a student has taken the course for credit, or is auditing

(or sitting in on) the course.
A relationship instance in a given relationship set must be uniquely identi-

fiable from its participating entities, without using the descriptive attributes. To
understand this point, suppose we want to model all the dates when an instructor
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Figure 7.3 date as attribute of the advisor relationship set.

became an advisor of a particular student. The single-valued attribute date can
store a single date only. We cannot represent multiple dates by multiple relation-
ship instances between the same instructor and a student, since the relationship
instances would not be uniquely identifiable using only the participating entities.
The right way to handle this case is to create a multivalued attribute date, which
can store all the dates.

It is possible to have more than one relationship set involving the same
entity sets. In our example, the instructor and student entity sets participate in the
relationship set advisor. Additionally, suppose each student must have another
instructor who serves as a department advisor (undergraduate or graduate). Then
the instructor and student entity sets may participate in another relationship set,
dept advisor.

The relationship sets advisor and dept advisor provide examples of a binary
relationship set—that is, one that involves two entity sets. Most of the relationship
sets in a database system are binary. Occasionally, however, relationship sets
involve more than two entity sets.

As an example, suppose that we have an entity set project that represents
all the research projects carried out in the university. Consider the entity sets
instructor, student, and project. Each project can have multiple associated students
and multiple associated instructors. Furthermore, each student working on a
project must have an associated instructor who guides the student on the project.
For now, we ignore the first two relationships, between project and instructor, and
between project and student. Instead, we focus on the information about which
instructor is guiding which student on a particular project. To represent this
information, we relate the three entity sets through the relationship set proj guide,
which indicates that a particular student is guided by a particular instructor on a
particular project.

Note that a student could have different instructors as guides for different
projects, which cannot be captured by a binary relationship between students and
instructors.
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The number of entity sets that participate in a relationship set is the degree of
the relationship set. A binary relationship set is of degree 2; a ternary relationship
set is of degree 3.

7.2.3 Attributes

For each attribute, there is a set of permitted values, called the domain, or value
set, of that attribute. The domain of attribute course id might be the set of all text
strings of a certain length. Similarly, the domain of attribute semester might be
strings from the set {Fall, Winter, Spring, Summer}.

Formally, an attribute of an entity set is a function that maps from the entity
set into a domain. Since an entity set may have several attributes, each entity can
be described by a set of (attribute, data value) pairs, one pair for each attribute
of the entity set. For example, a particular instructor entity may be described by
the set {(ID, 76766), (name, Crick), (dept name, Biology), (salary, 72000)}, meaning
that the entity describes a person named Crick whose instructor ID is 76766, who
is a member of the Biology department with salary of $72,000. We can see, at
this point, an integration of the abstract schema with the actual enterprise being
modeled. The attribute values describing an entity constitute a significant portion
of the data stored in the database.

An attribute, as used in the E-R model, can be characterized by the following
attribute types.

• Simple and composite attributes. In our examples thus far, the attributes have
been simple; that is, they have not been divided into subparts. Composite
attributes, on the other hand, can be divided into subparts (that is, other
attributes). For example, an attribute name could be structured as a composite
attribute consisting of first name, middle initial, and last name. Using composite
attributes in a design schema is a good choice if a user will wish to refer to an
entire attribute on some occasions, and to only a component of the attribute
on other occasions. Suppose we were to to add an address to the student
entity-set. The address can be defined as the composite attribute address with
the attributes street, city, state, and zip code.3 Composite attributes help us to
group together related attributes, making the modeling cleaner.

Note also that a composite attribute may appear as a hierarchy. In the com-
posite attribute address, its component attribute street can be further divided
into street number, street name, and apartment number. Figure 7.4 depicts these
examples of composite attributes for the instructor entity set.

• Single-valued and multivalued attributes. The attributes in our examples all
have a single value for a particular entity. For instance, the student ID attribute
for a specific student entity refers to only one student ID. Such attributes are
said to be single valued. There may be instances where an attribute has a
set of values for a specific entity. Suppose we add to the instructor entity set

3We assume the address format used in the United States, which includes a numeric postal code called a zip code.
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Figure 7.4 Composite attributes instructor name and address.

a phone number attribute. An instructor may have zero, one, or several phone
numbers, and different instructors may have different numbers of phones.
This type of attribute is said to be multivalued. As another example, we
could add to the instructor entity set an attribute dependent name listing all
the dependents. This attribute would be multivalued, since any particular
instructor may have zero, one, or more dependents.
To denote that an attribute is multivalued, we enclose it in braces, for example
{phone number} or {dependent name}.

Where appropriate, upper and lower bounds may be placed on the number
of values in a multivalued attribute. For example, a university may limit the
number of phone numbers recorded for a single instructor to two. Placing
bounds in this case expresses that the phone number attribute of the instructor
entity set may have between zero and two values.

• Derived attribute. The value for this type of attribute can be derived from the
values of other related attributes or entities. For instance, let us say that the
instructor entity set has an attribute students advised, which represents how
many students an instructor advises. We can derive the value for this attribute
by counting the number of student entities associated with that instructor.

As another example, suppose that the instructor entity set has an attribute
age that indicates the instructor’s age. If the instructor entity set also has an
attribute date of birth, we can calculate age from date of birth and the current
date. Thus, age is a derived attribute. In this case, date of birth may be referred
to as a base attribute, or a stored attribute. The value of a derived attribute is
not stored but is computed when required.

An attribute takes a null value when an entity does not have a value for it.
The null value may indicate “not applicable”—that is, that the value does not
exist for the entity. For example, one may have no middle name. Null can also
designate that an attribute value is unknown. An unknown value may be either
missing (the value does exist, but we do not have that information) or not known
(we do not know whether or not the value actually exists).

For instance, if the name value for a particular instructor is null, we assume
that the value is missing, since every instructor must have a name. A null value
for the apartment number attribute could mean that the address does not include
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an apartment number (not applicable), that an apartment number exists but we
do not know what it is (missing), or that we do not know whether or not an
apartment number is part of the instructor’s address (unknown).

7.3 Constraints

An E-R enterprise schema may define certain constraints to which the contents of
a database must conform. In this section, we examine mapping cardinalities and
participation constraints.

7.3.1 Mapping Cardinalities

Mapping cardinalities, or cardinality ratios, express the number of entities to
which another entity can be associated via a relationship set.

Mapping cardinalities are most useful in describing binary relationship sets,
although they can contribute to the description of relationship sets that involve
more than two entity sets. In this section, we shall concentrate on only binary
relationship sets.

For a binary relationship set R between entity sets A and B, the mapping
cardinality must be one of the following:

• One-to-one. An entity in A is associated with at most one entity in B, and an
entity in B is associated with at most one entity in A. (See Figure 7.5a.)

• One-to-many. An entity in A is associated with any number (zero or more)
of entities in B. An entity in B, however, can be associated with at most one
entity in A. (See Figure 7.5b.)
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Figure 7.5 Mapping cardinalities. (a) One-to-one. (b) One-to-many.
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Figure 7.6 Mapping cardinalities. (a) Many-to-one. (b) Many-to-many.

• Many-to-one. An entity in A is associated with at most one entity in B. An
entity in B, however, can be associated with any number (zero or more) of
entities in A. (See Figure 7.6a.)

• Many-to-many. An entity in A is associated with any number (zero or more)
of entities in B, and an entity in B is associated with any number (zero or
more) of entities in A. (See Figure 7.6b.)

The appropriate mapping cardinality for a particular relationship set obviously
depends on the real-world situation that the relationship set is modeling.

As an illustration, consider the advisor relationship set. If, in a particular
university, a student can be advised by only one instructor, and an instructor
can advise several students, then the relationship set from instructor to student is
one-to-many. If a student can be advised by several instructors (as in the case of
students advised jointly), the relationship set is many-to-many.

7.3.2 Participation Constraints

The participation of an entity set E in a relationship set R is said to be total if every
entity in E participates in at least one relationship in R. If only some entities in E
participate in relationships in R, the participation of entity set E in relationship R
is said to be partial. In Figure 7.5a, the participation of B in the relationship set is
total while the participation of A in the relationship set is partial. In Figure 7.5b,
the participation of both A and B in the relationship set are total.

For example, we expect every student entity to be related to at least one
instructor through the advisor relationship. Therefore the participation of student
in the relationship set advisor is total. In contrast, an instructor need not advise any
students. Hence, it is possible that only some of the instructor entities are related
to the student entity set through the advisor relationship, and the participation of
instructor in the advisor relationship set is therefore partial.
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7.3.3 Keys

We must have a way to specify how entities within a given entity set are distin-
guished. Conceptually, individual entities are distinct; from a database perspec-
tive, however, the differences among them must be expressed in terms of their
attributes.

Therefore, the values of the attribute values of an entity must be such that
they can uniquely identify the entity. In other words, no two entities in an entity
set are allowed to have exactly the same value for all attributes.

The notion of a key for a relation schema, as defined in Section 2.3, applies
directly to entity sets. That is, a key for an entity is a set of attributes that suffice
to distinguish entities from each other. The concepts of superkey, candidate key,
and primary key are applicable to entity sets just as they are applicable to relation
schemas.

Keys also help to identify relationships uniquely, and thus distinguish rela-
tionships from each other. Below, we define the corresponding notions of keys
for relationships.

The primary key of an entity set allows us to distinguish among the various
entities of the set. We need a similar mechanism to distinguish among the various
relationships of a relationship set.

Let R be a relationship set involving entity sets E1, E2, . . . , En. Let primary-
key(Ei ) denote the set of attributes that forms the primary key for entity set Ei .
Assume for now that the attribute names of all primary keys are unique. The
composition of the primary key for a relationship set depends on the set of
attributes associated with the relationship set R.

If the relationship set R has no attributes associated with it, then the set of
attributes

primary-key(E1) ∪ primary-key(E2) ∪ · · · ∪ primary-key(En)

describes an individual relationship in set R.
If the relationship set R has attributes a1, a2, . . . , am associated with it, then

the set of attributes

primary-key(E1) ∪ primary-key(E2) ∪ · · · ∪ primary-key(En) ∪ {a1, a2, . . . , am}

describes an individual relationship in set R.
In both of the above cases, the set of attributes

primary-key(E1) ∪ primary-key(E2) ∪ · · · ∪ primary-key(En)

forms a superkey for the relationship set.
If the attribute names of primary keys are not unique across entity sets, the

attributes are renamed to distinguish them; the name of the entity set combined
with the name of the attribute would form a unique name. If an entity set par-
ticipates more than once in a relationship set (as in the prereq relationship in
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Section 7.2.2), the role name is used instead of the name of the entity set, to form
a unique attribute name.

The structure of the primary key for the relationship set depends on the
mapping cardinality of the relationship set. As an illustration, consider the entity
sets instructor and student, and the relationship set advisor, with attribute date, in
Section 7.2.2. Suppose that the relationship set is many-to-many. Then the primary
key of advisor consists of the union of the primary keys of instructor and student. If
the relationship is many-to-one from student to instructor—that is, each student
can have have at most one advisor—then the primary key of advisor is simply the
primary key of student. However, if an instructor can advise only one student—
that is, if the advisor relationship is many-to-one from instructor to student—then
the primary key of advisor is simply the primary key of instructor. For one-to-one
relationships either candidate key can be used as the primary key.

For nonbinary relationships, if no cardinality constraints are present then the
superkey formed as described earlier in this section is the only candidate key, and
it is chosen as the primary key. The choice of the primary key is more complicated
if cardinality constraints are present. Since we have not discussed how to specify
cardinality constraints on nonbinary relations, we do not discuss this issue further
in this chapter. We consider the issue in more detail later, in Sections 7.5.5 and 8.4.

7.4 Removing Redundant Attributes in Entity Sets

When we design a database using the E-R model, we usually start by identifying
those entity sets that should be included. For example, in the university organiza-
tion we have discussed thus far, we decided to include such entity sets as student,
instructor, etc. Once the entity sets are decided upon, we must choose the appro-
priate attributes. These attributes are supposed to represent the various values
we want to capture in the database. In the university organization, we decided
that for the instructor entity set, we will include the attributes ID, name, dept name,
and salary. We could have added the attributes: phone number, office number, home
page, etc. The choice of what attributes to include is up to the designer, who has

a good understanding of the structure of the enterprise.
Once the entities and their corresponding attributes are chosen, the relation-

ship sets among the various entities are formed. These relationship sets may result
in a situation where attributes in the various entity sets are redundant and need
to be removed from the original entity sets. To illustrate, consider the entity sets
instructor and department:

• The entity set instructor includes the attributes ID, name, dept name, and salary,
with ID forming the primary key.

• The entity set department includes the attributes dept name, building, and bud-
get, with dept name forming the primary key.

We model the fact that each instructor has an associated department using a
relationship set inst dept relating instructor and department.



7.4 Removing Redundant Attributes in Entity Sets 273

The attribute dept name appears in both entity sets. Since it is the primary key
for the entity set department, it is redundant in the entity set instructor and needs
to be removed.

Removing the attribute dept name from the instructor entity set may appear
rather unintuitive, since the relation instructor that we used in the earlier chap-
ters had an attribute dept name. As we shall see later, when we create a relational
schema from the E-R diagram, the attribute dept name in fact gets added to the
relation instructor, but only if each instructor has at most one associated depart-
ment. If an instructor has more than one associated department, the relationship
between instructors and departments is recorded in a separate relation inst dept.

Treating the connection between instructors and departments uniformly as a
relationship, rather than as an attribute of instructor, makes the logical relationship
explicit, and helps avoid a premature assumption that each instructor is associated
with only one department.

Similarly, the student entity set is related to the department entity set through
the relationship set student dept and thus there is no need for a dept name attribute
in student.

As another example, consider course offerings (sections) along with the time
slots of the offerings. Each time slot is identified by a time slot id, and has associated
with it a set of weekly meetings, each identified by a day of the week, start time,
and end time. We decide to model the set of weekly meeting times as a multivalued
composite attribute. Suppose we model entity sets section and time slot as follows:

• The entity set section includes the attributes course id, sec id, semester, year,
building, room number, and time slot id, with (course id, sec id, year, semester)
forming the primary key.

• The entity set time slot includes the attributes time slot id, which is the primary
key,4 and a multivalued composite attribute {(day, start time, end time)}.5

These entities are related through the relationship set sec time slot.
The attribute time slot id appears in both entity sets. Since it is the primary

key for the entity set time slot, it is redundant in the entity set section and needs to
be removed.

As a final example, suppose we have an entity set classroom, with attributes
building, room number, and capacity, with building and room number forming the
primary key. Suppose also that we have a relationship set sec class that relates
section to classroom. Then the attributes {building, room number} are redundant in
the entity set section.

A good entity-relationship design does not contain redundant attributes. For
our university example, we list the entity sets and their attributes below, with
primary keys underlined:

4We shall see later on that the primary key for the relation created from the entity set time slot includes day and start time;
however, day and start time do not form part of the primary key of the entity set time slot.
5We could optionally give a name, such as meeting, for the composite attribute containing day, start time, and end time.
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• classroom: with attributes (building, room number, capacity).

• department: with attributes (dept name, building, budget).

• course: with attributes (course id, title, credits).

• instructor: with attributes (ID, name, salary).

• section: with attributes (course id, sec id, semester, year).

• student: with attributes (ID, name, tot cred).

• time slot: with attributes (time slot id, {(day, start time, end time) }).

The relationship sets in our design are listed below:

• inst dept: relating instructors with departments.

• stud dept: relating students with departments.

• teaches: relating instructors with sections.

• takes: relating students with sections, with a descriptive attribute grade.

• course dept: relating courses with departments.

• sec course: relating sections with courses.

• sec class: relating sections with classrooms.

• sec time slot: relating sections with time slots.

• advisor: relating students with instructors.

• prereq: relating courses with prerequisite courses.

You can verify that none of the entity sets has any attribute that is made
redundant by one of the relationship sets. Further, you can verify that all the
information (other than constraints) in the relational schema for our university
database, which we saw earlier in Figure 2.8 in Chapter 2, has been captured by
the above design, but with several attributes in the relational design replaced by
relationships in the E-R design.

7.5 Entity-Relationship Diagrams

As we saw briefly in Section 1.3.3, an E-R diagram can express the overall logical
structure of a database graphically. E-R diagrams are simple and clear—qualities
that may well account in large part for the widespread use of the E-R model.

7.5.1 Basic Structure

An E-R diagram consists of the following major components:
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instructor

ID
name
salary

student

ID
name
tot_cred

advisor

Figure 7.7 E-R diagram corresponding to instructors and students.

• Rectangles divided into two parts represent entity sets. The first part, which
in this textbook is shaded blue, contains the name of the entity set. The second
part contains the names of all the attributes of the entity set.

• Diamonds represent relationship sets.

• Undivided rectangles represent the attributes of a relationship set. Attributes
that are part of the primary key are underlined.

• Lines link entity sets to relationship sets.

• Dashed lines link attributes of a relationship set to the relationship set.

• Double lines indicate total participation of an entity in a relationship set.

• Double diamonds represent identifying relationship sets linked to weak
entity sets (we discuss identifying relationship sets and weak entity sets later,
in Section 7.5.6).

Consider the E-R diagram in Figure 7.7, which consists of two entity sets, in-
structor and student related through a binary relationship set advisor. The attributes
associated with instructor are ID, name, and salary. The attributes associated with
student are ID, name, and tot cred. In Figure 7.7, attributes of an entity set that are
members of the primary key are underlined.

If a relationship set has some attributes associated with it, then we enclose the
attributes in a rectangle and link the rectangle with a dashed line to the diamond
representing that relationship set. For example, in Figure 7.8, we have the date
descriptive attribute attached to the relationship set advisor to specify the date on
which an instructor became the advisor.

ID
name
salary

ID
name
tot_cred

date

instructor student

advisor

Figure 7.8 E-R diagram with an attribute attached to a relationship set.
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Figure 7.9 Relationships. (a) One-to-one. (b) One-to-many. (c) Many-to-many.

7.5.2 Mapping Cardinality

The relationship set advisor, between the instructor and student entity sets may be
one-to-one, one-to-many, many-to-one, or many-to-many. To distinguish among
these types, we draw either a directed line (→) or an undirected line (—) between
the relationship set and the entity set in question, as follows:

• One-to-one: We draw a directed line from the relationship set advisor to
both entity sets instructor and student (see Figure 7.9a). This indicates that an
instructor may advise at most one student, and a student may have at most
one advisor.

• One-to-many: We draw a directed line from the relationship set advisor to
the entity set instructor and an undirected line to the entity set student (see
Figure 7.9b). This indicates that an instructor may advise many students, but
a student may have at most one advisor.

• Many-to-one: We draw an undirected line from the relationship set advisor
to the entity set instructor and a directed line to the entity set student. This
indicates that an instructor may advise at most one student, but a student
may have many advisors.

• Many-to-many: We draw an undirected line from the relationship set advisor
to both entity sets instructor and student (see Figure 7.9c). This indicates that
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an instructor may advise many students, and a student may have many
advisors.

E-R diagrams also provide a way to indicate more complex constraints on the
number of times each entity participates in relationships in a relationship set. A
line may have an associated minimum and maximum cardinality, shown in the
form l..h, where l is the minimum and h the maximum cardinality. A minimum
value of 1 indicates total participation of the entity set in the relationship set;
that is, each entity in the entity set occurs in at least one relationship in that
relationship set. A maximum value of 1 indicates that the entity participates in at
most one relationship, while a maximum value ∗ indicates no limit.

For example, consider Figure 7.10. The line between advisor and student has a
cardinality constraint of 1..1, meaning the minimum and the maximum cardinal-
ity are both 1. That is, each student must have exactly one advisor. The limit 0..∗
on the line between advisor and instructor indicates that an instructor can have
zero or more students. Thus, the relationship advisor is one-to-many from instruc-
tor to student, and further the participation of student in advisor is total, implying
that a student must have an advisor.

It is easy to misinterpret the 0..∗ on the left edge and think that the relationship
advisor is many-to-one from instructor to student—this is exactly the reverse of the
correct interpretation.

If both edges have a maximum value of 1, the relationship is one-to-one. If
we had specified a cardinality limit of 1..∗ on the left edge, we would be saying
that each instructor must advise at least one student.

The E-R diagram in Figure 7.10 could alternatively have been drawn with
a double line from student to advisor, and an arrow on the line from advisor to
instructor, in place of the cardinality constraints shown. This alternative diagram
would enforce exactly the same constraints as the constraints shown in the figure.

7.5.3 Complex Attributes

Figure 7.11 shows how composite attributes can be represented in the E-R notation.
Here, a composite attribute name, with component attributes first name, middle
initial, and last name replaces the simple attribute name of instructor. As another

example, suppose we were to add an address to the instructor entity-set. The
address can be defined as the composite attribute address with the attributes

instructor

ID
name
salary

student

ID
name
tot_cred

advisor 1..10..*

Figure 7.10 Cardinality limits on relationship sets.
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instructor
ID
name

first_name
middle_initial
last_name

address
street

street_number
street_name
apt_number

city
state
zip

{ phone_number }
date_of_birth
age ( )

Figure 7.11 E-R diagram with composite, multivalued, and derived attributes.

street, city, state, and zip code. The attribute street is itself a composite attribute
whose component attributes are street number, street name, and apartment number.

Figure 7.11 also illustrates a multivalued attribute phone number, denoted by
“{phone number}”, and a derived attribute age, depicted by a “age ( )”.

7.5.4 Roles

We indicate roles in E-R diagrams by labeling the lines that connect diamonds to
rectangles. Figure 7.12 shows the role indicators course id and prereq id between
the course entity set and the prereq relationship set.

7.5.5 Nonbinary Relationship Sets

Nonbinary relationship sets can be specified easily in an E-R diagram. Figure 7.13
consists of the three entity sets instructor, student, and project, related through the
relationship set proj guide.

course
course_id
title
credits

course_id

prereq_id prereq

Figure 7.12 E-R diagram with role indicators.
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Figure 7.13 E-R diagram with a ternary relationship.

We can specify some types of many-to-one relationships in the case of non-
binary relationship sets. Suppose a student can have at most one instructor as
a guide on a project. This constraint can be specified by an arrow pointing to
instructor on the edge from proj guide.

We permit at most one arrow out of a relationship set, since an E-R diagram
with two or more arrows out of a nonbinary relationship set can be interpreted in
two ways. Suppose there is a relationship set R between entity sets A1, A2, . . . , An,
and the only arrows are on the edges to entity sets Ai+1, Ai+2, . . . , An. Then, the
two possible interpretations are:

1. A particular combination of entities from A1, A2, . . . , Ai can be associated
with at most one combination of entities from Ai+1, Ai+2, . . . , An. Thus, the
primary key for the relationship R can be constructed by the union of the
primary keys of A1, A2, . . . , Ai .

2. For each entity set Ak , i < k ≤ n, each combination of the entities from the
other entity sets can be associated with at most one entity from Ak . Each set
{A1, A2, . . . , Ak−1, Ak+1, . . . , An}, for i < k ≤ n, then forms a candidate key.

Each of these interpretations has been used in different books and systems. To
avoid confusion, we permit only one arrow out of a relationship set, in which
case the two interpretations are equivalent. In Chapter 8 (Section 8.4), we study
functional dependencies, which allow either of these interpretations to be specified
in an unambiguous manner.

7.5.6 Weak Entity Sets

Consider a section entity, which is uniquely identified by a course identifier,
semester, year, and section identifier. Clearly, section entities are related to course
entities. Suppose we create a relationship set sec course between entity sets section
and course.

Now, observe that the information in sec course is redundant, since section
already has an attribute course id, which identifies the course with which the
section is related. One option to deal with this redundancy is to get rid of the
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relationship sec course; however, by doing so the relationship between section and
course becomes implicit in an attribute, which is not desirable.

An alternative way to deal with this redundancy is to not store the attribute
course id in the section entity and to only store the remaining attributes sec id,
year, and semester.6 However, the entity set section then does not have enough
attributes to identify a particular section entity uniquely; although each section
entity is distinct, sections for different courses may share the same sec id, year,
and semester. To deal with this problem, we treat the relationship sec course as
a special relationship that provides extra information, in this case the course id,
required to identify section entities uniquely.

The notion of weak entity set formalizes the above intuition. An entity set that
does not have sufficient attributes to form a primary key is termed a weak entity
set. An entity set that has a primary key is termed a strong entity set.

For a weak entity set to be meaningful, it must be associated with another
entity set, called the identifying or owner entity set. Every weak entity must
be associated with an identifying entity; that is, the weak entity set is said to be
existence dependent on the identifying entity set. The identifying entity set is said
to own the weak entity set that it identifies. The relationship associating the weak
entity set with the identifying entity set is called the identifying relationship.

The identifying relationship is many-to-one from the weak entity set to the
identifying entity set, and the participation of the weak entity set in the rela-
tionship is total. The identifying relationship set should not have any descriptive
attributes, since any such attributes can instead be associated with the weak entity
set.

In our example, the identifying entity set for section is course, and the relation-
ship sec course, which associates section entities with their corresponding course
entities, is the identifying relationship.

Although a weak entity set does not have a primary key, we nevertheless
need a means of distinguishing among all those entities in the weak entity set
that depend on one particular strong entity. The discriminator of a weak entity
set is a set of attributes that allows this distinction to be made. For example, the
discriminator of the weak entity set section consists of the attributes sec id, year,
and semester, since, for each course, this set of attributes uniquely identifies one
single section for that course. The discriminator of a weak entity set is also called
the partial key of the entity set.

The primary key of a weak entity set is formed by the primary key of the
identifying entity set, plus the weak entity set’s discriminator. In the case of the
entity set section, its primary key is {course id, sec id, year, semester}, where course
id is the primary key of the identifying entity set, namely course, and {sec id, year,

semester} distinguishes section entities for the same course.
Note that we could have chosen to make sec id globally unique across all

courses offered in the university, in which case the section entity set would have

6Note that the relational schema we eventually create from the entity set section does have the attribute course id, for
reasons that will become clear later, even though we have dropped the attribute course id from the entity set section.
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Figure 7.14 E-R diagram with a weak entity set.

had a primary key. However, conceptually, a section is still dependent on a course
for its existence, which is made explicit by making it a weak entity set.

In E-R diagrams, a weak entity set is depicted via a rectangle, like a strong
entity set, but there are two main differences:

• The discriminator of a weak entity is underlined with a dashed, rather than
a solid, line.

• The relationship set connecting the weak entity set to the identifying strong
entity set is depicted by a double diamond.

In Figure 7.14, the weak entity set section depends on the strong entity set course
via the relationship set sec course.

The figure also illustrates the use of double lines to indicate total participation;
the participation of the (weak) entity set section in the relationship sec course is
total, meaning that every section must be related via sec course to some course.
Finally, the arrow from sec course to course indicates that each section is related to
a single course.

A weak entity set can participate in relationships other than the identifying
relationship. For instance, the section entity could participate in a relationship
with the time slot entity set, identifying the time when a particular class section
meets. A weak entity set may participate as owner in an identifying relationship
with another weak entity set. It is also possible to have a weak entity set with more
than one identifying entity set. A particular weak entity would then be identified
by a combination of entities, one from each identifying entity set. The primary
key of the weak entity set would consist of the union of the primary keys of the
identifying entity sets, plus the discriminator of the weak entity set.

In some cases, the database designer may choose to express a weak entity set
as a multivalued composite attribute of the owner entity set. In our example, this
alternative would require that the entity set course have a multivalued, composite
attribute section. A weak entity set may be more appropriately modeled as an
attribute if it participates in only the identifying relationship, and if it has few
attributes. Conversely, a weak entity set representation more aptly models a
situation where the set participates in relationships other than the identifying
relationship, and where the weak entity set has several attributes. It is clear that
section violates the requirements for being modeled as a multivalued composite
attribute, and is modeled more aptly as a weak entity set.
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7.5.7 E-R diagram for the University Enterprise

In Figure 7.15, we show an E-R diagram that corresponds to the university enter-
prise that we have been using thus far in the text. This E-R diagram is equivalent
to the textual description of the university E-R model that we saw in Section 7.4,
but with several additional constraints, and section now being a weak entity.

In our university database, we have a constraint that each instructor must have
exactly one associated department. As a result, there is a double line in Figure 7.15
between instructor and inst dept, indicating total participation of instructor in inst
dept; that is, each instructor must be associated with a department. Further, there

is an arrow from inst dept to department, indicating that each instructor can have
at most one associated department.

time_slotcourse

student
ID
name
salary

ID
name
tot_cred

course_id
title
credits

time_slot_id
{ day

start_time
end_time

}
course_id prereq_id

advisor

teaches takes

sec_course sec_time_slot

grade

prereq

inst_dept stud_dept

instructor

department
dept_name
building
budget

section
sec_id
semester
year

course_dept

sec_class

classroom
building
room_number
capacity

Figure 7.15 E-R diagram for a university enterprise.
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Similarly, entity sets course and student have double lines to relationship sets
course dept and stud dept respectively, as also entity set section to relationship set
sec time slot. The first two relationships, in turn, have an arrow pointing to the
other relationship, department, while the third relationship has an arrow pointing
to time slot.

Further, Figure 7.15 shows that the relationship set takes has a descriptive
attribute grade, and that each student has at most one advisor. The figure also
shows that section is now a weak entity set, with attributes sec id, semester, and
year forming the discriminator; sec course is the identifying relationship set relating
weak entity set section to the strong entity set course.

In Section 7.6, we shall show how this E-R diagram can be used to derive the
various relation schemas we use.

7.6 Reduction to Relational Schemas

We can represent a database that conforms to an E-R database schema by a col-
lection of relation schemas. For each entity set and for each relationship set in the
database design, there is a unique relation schema to which we assign the name
of the corresponding entity set or relationship set.

Both the E-R model and the relational database model are abstract, logical
representations of real-world enterprises. Because the two models employ similar
design principles, we can convert an E-R design into a relational design.

In this section, we describe how an E-R schema can be represented by relation
schemas and how constraints arising from the E-R design can be mapped to
constraints on relation schemas.

7.6.1 Representation of Strong Entity Sets with Simple Attributes

Let E be a strong entity set with only simple descriptive attributes a1, a2, . . . , an.
We represent this entity by a schema called E with n distinct attributes. Each tuple
in a relation on this schema corresponds to one entity of the entity set E.

For schemas derived from strong entity sets, the primary key of the entity set
serves as the primary key of the resulting schema. This follows directly from the
fact that each tuple corresponds to a specific entity in the entity set.

As an illustration, consider the entity set student of the E-R diagram in Fig-
ure 7.15. This entity set has three attributes: ID, name, tot cred. We represent this
entity set by a schema called student with three attributes:

student (ID, name, tot cred)

Note that since student ID is the primary key of the entity set, it is also the primary
key of the relation schema.

Continuing with our example, for the E-R diagram in Figure 7.15, all the strong
entity sets, except time slot, have only simple attributes. The schemas derived from
these strong entity sets are:
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classroom (building, room number, capacity)
department (dept name, building, budget)
course (course id, title, credits)
instructor (ID, name, salary)
student (ID, name, tot cred)

As you can see, both the instructor and student schemas are different from the
schemas we have used in the previous chapters (they do not contain the attribute
dept name). We shall revisit this issue shortly.

7.6.2 Representation of Strong Entity Sets with Complex Attributes

When a strong entity set has nonsimple attributes, things are a bit more complex.
We handle composite attributes by creating a separate attribute for each of the
component attributes; we do not create a separate attribute for the composite
attribute itself. To illustrate, consider the version of the instructor entity set de-
picted in Figure 7.11. For the composite attribute name, the schema generated
for instructor contains the attributes first name, middle name, and last name; there
is no separate attribute or schema for name. Similarly, for the composite attribute
address, the schema generated contains the attributes street, city, state, and zip code.
Since street is a composite attribute it is replaced by street number, street name, and
apt number. We revisit this matter in Section 8.2.

Multivalued attributes are treated differently from other attributes. We have
seen that attributes in an E-R diagram generally map directly into attributes for the
appropriate relation schemas. Multivalued attributes, however, are an exception;
new relation schemas are created for these attributes, as we shall see shortly.

Derived attributes are not explicitly represented in the relational data model.
However, they can be represented as “methods” in other data models such as the
object-relational data model, which is described later in Chapter 22.

The relational schema derived from the version of entity set instructor with
complex attributes, without including the multivalued attribute, is thus:

instructor (ID, first name, middle name, last name,
street number, street name, apt number,
city, state, zip code, date of birth)

For a multivalued attribute M, we create a relation schema R with an attribute
A that corresponds to M and attributes corresponding to the primary key of the
entity set or relationship set of which M is an attribute.

As an illustration, consider the E-R diagram in Figure 7.11 that depicts the
entity set instructor, which includes the multivalued attribute phone number. The
primary key of instructor is ID. For this multivalued attribute, we create a relation
schema

instructor phone (ID, phone number)
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Each phone number of an instructor is represented as a unique tuple in the relation
on this schema. Thus, if we had an instructor with ID 22222, and phone numbers
555-1234 and 555-4321, the relation instructor phone would have two tuples (22222,
555-1234) and (22222, 555-4321).

We create a primary key of the relation schema consisting of all attributes of
the schema. In the above example, the primary key consists of both attributes of
the relation instructor phone.

In addition, we create a foreign-key constraint on the relation schema created
from the multivalued attribute, with the attribute generated from the primary
key of the entity set referencing the relation generated from the entity set. In the
above example, the foreign-key constraint on the instructor phone relation would
be that attribute ID references the instructor relation.

In the case that an entity set consists of only two attributes — a single primary-
key attribute B and a single multivalued attribute M — the relation schema for the
entity set would contain only one attribute, namely the primary-key attribute B.
We can drop this relation, while retaining the relation schema with the attribute
B and attribute A that corresponds to M.

To illustrate, consider the entity set time slot depicted in Figure 7.15. Here, time
slot id is the primary key of the time slot entity set and there is a single multivalued

attribute that happens also to be composite. The entity set can be represented by
just the following schema created from the multivalued composite attribute:

time slot (time slot id, day, start time, end time)

Although not represented as a constraint on the E-R diagram, we know that there
cannot be two meetings of a class that start at the same time of the same day-of-
the-week but end at different times; based on this constraint, end time has been
omitted from the primary key of the time slot schema.

The relation created from the entity set would have only a single attribute time
slot id; the optimization of dropping this relation has the benefit of simplifying

the resultant database schema, although it has a drawback related to foreign keys,
which we briefly discuss in Section 7.6.4.

7.6.3 Representation of Weak Entity Sets

Let A be a weak entity set with attributes a1, a2, . . . , am. Let B be the strong
entity set on which A depends. Let the primary key of B consist of attributes
b1, b2, . . . , bn. We represent the entity set A by a relation schema called A with
one attribute for each member of the set:

{a1, a2, . . . , am} ∪ {b1, b2, . . . , bn}

For schemas derived from a weak entity set, the combination of the pri-
mary key of the strong entity set and the discriminator of the weak entity set
serves as the primary key of the schema. In addition to creating a primary key,
we also create a foreign-key constraint on the relation A, specifying that the
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attributes b1, b2, . . . , bn reference the primary key of the relation B. The foreign-
key constraint ensures that for each tuple representing a weak entity, there is a
corresponding tuple representing the corresponding strong entity.

As an illustration, consider the weak entity set section in the E-R diagram
of Figure 7.15. This entity set has the attributes: sec id, semester, and year. The
primary key of the course entity set, on which section depends, is course id. Thus,
we represent section by a schema with the following attributes:

section (course id, sec id, semester, year)

The primary key consists of the primary key of the entity set course, along with
the discriminator of section, which is sec id, semester, and year. We also create a
foreign-key constraint on the section schema, with the attribute course id refer-
encing the primary key of the course schema, and the integrity constraint “on
delete cascade”.7 Because of the “on delete cascade” specification on the foreign
key constraint, if a course entity is deleted, then so are all the associated section
entities.

7.6.4 Representation of Relationship Sets

Let R be a relationship set, let a1, a2, . . . , am be the set of attributes formed by the
union of the primary keys of each of the entity sets participating in R, and let the
descriptive attributes (if any) of R be b1, b2, . . . , bn. We represent this relationship
set by a relation schema called R with one attribute for each member of the set:

{a1, a2, . . . , am} ∪ {b1, b2, . . . , bn}

We described earlier, in Section 7.3.3, how to choose a primary key for a binary
relationship set. As we saw in that section, taking all the primary-key attributes
from all the related entity sets serves to identify a particular tuple, but for one-to-
one, many-to-one, and one-to-many relationship sets, this turns out to be a larger
set of attributes than we need in the primary key. The primary key is instead
chosen as follows:

• For a binary many-to-many relationship, the union of the primary-key at-
tributes from the participating entity sets becomes the primary key.

• For a binary one-to-one relationship set, the primary key of either entity set
can be chosen as the primary key. The choice can be made arbitrarily.

• For a binary many-to-one or one-to-many relationship set, the primary key of
the entity set on the “many” side of the relationship set serves as the primary
key.

7The “on delete cascade” feature of foreign key constraints in SQL is described in Section 4.4.5.
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• For an n-ary relationship set without any arrows on its edges, the union of the
primary key-attributes from the participating entity sets becomes the primary
key.

• For an n-ary relationship set with an arrow on one of its edges, the primary
keys of the entity sets not on the “arrow” side of the relationship set serve as
the primary key for the schema. Recall that we allowed only one arrow out
of a relationship set.

We also create foreign-key constraints on the relation schema R as follows:
For each entity set Ei related to relationship set R, we create a foreign-key con-
straint from relation schema R, with the attributes of R that were derived from
primary-key attributes of Ei referencing the primary key of the relation schema
representing Ei .

As an illustration, consider the relationship set advisor in the E-R diagram of
Figure 7.15. This relationship set involves the following two entity sets:

• instructor with the primary key ID.

• student with the primary key ID.

Since the relationship set has no attributes, the advisor schema has two attributes,
the primary keys of instructor and student. Since both attributes have the same
name, we rename them i ID and s ID. Since the advisor relationship set is many-
to-one from student to instructor the primary key for the advisor relation schema
is s ID.

We also create two foreign-key constraints on the advisor relation, with at-
tribute i ID referencing the primary key of instructor and attribute s ID referencing
the primary key of student.

Continuing with our example, for the E-R diagram in Figure 7.15, the schemas
derived from a relationship set are depicted in Figure 7.16.

Observe that for the case of the relationship set prereq, the role indicators
associated with the relationship are used as attribute names, since both roles refer
to the same relation course.

Similar to the case of advisor, the primary key for each of the relations sec course,
sec time slot, sec class, inst dept, stud dept and course dept consists of the primary
key of only one of the two related entity sets, since each of the corresponding
relationships is many-to-one.

Foreign keys are not shown in Figure 7.16, but for each of the relations in the
figure there are two foreign-key constraints, referencing the two relations created
from the two related entity sets. Thus, for example, sec course has foreign keys
referencing section and classroom, teaches has foreign keys referencing instructor
and section, and takes has foreign keys referencing student and section.

The optimization that allowed us to create only a single relation schema from
the entity set time slot, which had a multivalued attribute, prevents the creation
of a foreign key from the relation schema sec time slot to the relation created from
entity set time slot, since we dropped the relation created from the entity set time
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teaches (ID, course id, sec id, semester, year)
takes (ID, course id, sec id, semester, year, grade)
prereq (course id, prereq id)
advisor (s ID, i ID)
sec course (course id, sec id, semester, year)
sec time slot (course id, sec id, semester, year, time slot id)
sec class (course id, sec id, semester, year, building, room number)
inst dept (ID, dept name)
stud dept (ID, dept name)
course dept (course id, dept name)

Figure 7.16 Schemas derived from relationship sets in the E-R diagram in Figure 7.15.

slot. We retained the relation created from the multivalued attribute, and named
it time slot, but this relation may potentially have no tuples corresponding to a
time slot id, or may have multiple tuples corresponding to a time slot id; thus, time
slot id in sec time slot cannot reference this relation.

The astute reader may wonder why we have not seen the schemas sec course,
sec time slot, sec class, inst dept, stud dept, and course dept in the previous chapters.
The reason is that the algorithm we have presented thus far results in some
schemas that can be either eliminated or combined with other schemas. We ex-
plore this issue next.

7.6.4.1 Redundancy of Schemas

A relationship set linking a weak entity set to the corresponding strong entity set
is treated specially. As we noted in Section 7.5.6, these relationships are many-to-
one and have no descriptive attributes. Furthermore, the primary key of a weak
entity set includes the primary key of the strong entity set. In the E-R diagram
of Figure 7.14, the weak entity set section is dependent on the strong entity set
course via the relationship set sec course. The primary key of section is {course id,
sec id, semester, year} and the primary key of course is course id. Since sec course
has no descriptive attributes, the sec course schema has attributes course id, sec id,
semester, and year. The schema for the entity set section includes the attributes
course id, sec id, semester, and year (among others). Every (course id, sec id, semester,
year) combination in a sec course relation would also be present in the relation on
schema section, and vice versa. Thus, the sec course schema is redundant.

In general, the schema for the relationship set linking a weak entity set to its
corresponding strong entity set is redundant and does not need to be present in
a relational database design based upon an E-R diagram.

7.6.4.2 Combination of Schemas

Consider a many-to-one relationship set AB from entity set A to entity set B.
Using our relational-schema construction algorithm outlined previously, we get
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three schemas: A, B, and AB. Suppose further that the participation of A in the
relationship is total; that is, every entity a in the entity set B must participate in
the relationship AB. Then we can combine the schemas A and AB to form a single
schema consisting of the union of attributes of both schemas. The primary key of
the combined schema is the primary key of the entity set into whose schema the
relationship set schema was merged.

To illustrate, let’s examine the various relations in the E-R diagram of Fig-
ure 7.15 that satisfy the above criteria:

• inst dept. The schemas instructor and department correspond to the entity sets
A and B, respectively. Thus, the schema inst dept can be combined with the
instructor schema. The resulting instructor schema consists of the attributes
{ID, name, dept name, salary}.

• stud dept. The schemas student and department correspond to the entity sets
A and B, respectively. Thus, the schema stud dept can be combined with the
student schema. The resulting student schema consists of the attributes {ID,
name, dept name, tot cred}.

• course dept. The schemas course and department correspond to the entity sets
A and B, respectively. Thus, the schema course dept can be combined with the
course schema. The resulting course schema consists of the attributes {course
id, title, dept name, credits}.

• sec class. The schemas section and classroom correspond to the entity sets A and
B, respectively. Thus, the schema sec class can be combined with the section
schema. The resulting section schema consists of the attributes {course id, sec
id, semester, year, building, room number}.

• sec time slot. The schemas section and time slot correspond to the entity sets
A and B respectively, Thus, the schema sec time slot can be combined with
the section schema obtained in the previous step. The resulting section schema
consists of the attributes {course id, sec id, semester, year, building, room number,
time slot id}.

In the case of one-to-one relationships, the relation schema for the relationship
set can be combined with the schemas for either of the entity sets.

We can combine schemas even if the participation is partial by using null
values. In the above example, if inst dept were partial, then we would store null
values for the dept name attribute for those instructors who have no associated
department.

Finally, we consider the foreign-key constraints that would have appeared in
the schema representing the relationship set. There would have been foreign-key
constraints referencing each of the entity sets participating in the relationship
set. We drop the constraint referencing the entity set into whose schema the
relationship set schema is merged, and add the other foreign-key constraints to
the combined schema. For example, inst dept has a foreign key constraint of the
attribute dept name referencing the department relation. This foreign constraint is
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added to the instructor relation when the schema for inst dept is merged into
instructor.

7.7 Entity-Relationship Design Issues

The notions of an entity set and a relationship set are not precise, and it is possible
to define a set of entities and the relationships among them in a number of
different ways. In this section, we examine basic issues in the design of an E-R
database schema. Section 7.10 covers the design process in further detail.

7.7.1 Use of Entity Sets versus Attributes

Consider the entity set instructor with the additional attribute phone number (Fig-
ure 7.17a.) It can easily be argued that a phone is an entity in its own right with
attributes phone number and location; the location may be the office or home where
the phone is located, with mobile (cell) phones perhaps represented by the value
“mobile.” If we take this point of view, we do not add the attribute phone number
to the instructor. Rather, we create:

• A phone entity set with attributes phone number and location.

• A relationship set inst phone, denoting the association between instructors
and the phones that they have.

This alternative is shown in Figure 7.17b.
What, then, is the main difference between these two definitions of an instruc-

tor? Treating a phone as an attribute phone number implies that instructors have
precisely one phone number each. Treating a phone as an entity phone permits
instructors to have several phone numbers (including zero) associated with them.
However, we could instead easily define phone number as a multivalued attribute
to allow multiple phones per instructor.

The main difference then is that treating a phone as an entity better models
a situation where one may want to keep extra information about a phone, such
as its location, or its type (mobile, IP phone, or plain old phone), or all who share

instructor

ID
name
salary

phone
phone_number
location

instructor

ID
name
salary
phone_number

(a) (b)

inst_phone

Figure 7.17 Alternatives for adding phone to the instructor entity set.



7.7 Entity-Relationship Design Issues 291

the phone. Thus, treating phone as an entity is more general than treating it as an
attribute and is appropriate when the generality may be useful.

In contrast, it would not be appropriate to treat the attribute name (of an
instructor) as an entity; it is difficult to argue that name is an entity in its own right
(in contrast to the phone). Thus, it is appropriate to have name as an attribute of
the instructor entity set.

Two natural questions thus arise: What constitutes an attribute, and what
constitutes an entity set? Unfortunately, there are no simple answers. The distinc-
tions mainly depend on the structure of the real-world enterprise being modeled,
and on the semantics associated with the attribute in question.

A common mistake is to use the primary key of an entity set as an attribute
of another entity set, instead of using a relationship. For example, it is incorrect
to model the ID of a student as an attribute of an instructor even if each instructor
advises only one student. The relationship advisor is the correct way to represent
the connection between students and instructors, since it makes their connection
explicit, rather than implicit via an attribute.

Another related mistake that people sometimes make is to designate the
primary-key attributes of the related entity sets as attributes of the relationship
set. For example, ID (the primary-key attributes of student) and ID (the primary
key of instructor) should not appear as attributes of the relationship advisor. This
should not be done since the primary-key attributes are already implicit in the
relationship set.8

7.7.2 Use of Entity Sets versus Relationship Sets

It is not always clear whether an object is best expressed by an entity set or a
relationship set. In Figure 7.15, we used the takes relationship set to model the
situation where a student takes a (section of a) course. An alternative is to imagine
that there is a course-registration record for each course that each student takes.
Then, we have an entity set to represent the course-registration record. Let us call
that entity set registration. Each registration entity is related to exactly one student
and to exactly one section, so we have two relationship sets, one to relate course-
registration records to students and one to relate course-registration records to
sections. In Figure 7.18, we show the entity sets section and student from Figure 7.15
with the takes relationship set replaced by one entity set and two relationship sets:

• registration, the entity set representing course-registration records.

• section reg, the relationship set relating registration and course.

• student reg, the relationship set relating registration and student.

Note that we use double lines to indicate total participation by registration entities.

8When we create a relation schema from the E-R schema, the attributes may appear in a schema created from the advisor
relationship set, as we shall see later; however, they should not appear in the advisor relationship set.
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registration
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...
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section
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year

student
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tot_cred

section_reg student_reg

Figure 7.18 Replacement of takes by registration and two relationship sets

Both the approach of Figure 7.15 and that of Figure 7.18 accurately represent
the university’s information, but the use of takes is more compact and probably
preferable. However, if the registrar’s office associates other information with a
course-registration record, it might be best to make it an entity in its own right.

One possible guideline in determining whether to use an entity set or a
relationship set is to designate a relationship set to describe an action that occurs
between entities. This approach can also be useful in deciding whether certain
attributes may be more appropriately expressed as relationships.

7.7.3 Binary versus n-ary Relationship Sets

Relationships in databases are often binary. Some relationships that appear to be
nonbinary could actually be better represented by several binary relationships.
For instance, one could create a ternary relationship parent, relating a child to
his/her mother and father. However, such a relationship could also be represented
by two binary relationships, mother and father, relating a child to his/her mother
and father separately. Using the two relationships mother and father provides us a
record of a child’s mother, even if we are not aware of the father’s identity; a null
value would be required if the ternary relationship parent is used. Using binary
relationship sets is preferable in this case.

In fact, it is always possible to replace a nonbinary (n-ary, for n > 2) relation-
ship set by a number of distinct binary relationship sets. For simplicity, consider
the abstract ternary (n = 3) relationship set R, relating entity sets A, B, and C . We
replace the relationship set R by an entity set E , and create three relationship sets
as shown in Figure 7.19:

• RA, relating E and A.

• RB , relating E and B.

• RC , relating E and C .
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B R C
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RB RC

(a) (b)

Figure 7.19 Ternary relationship versus three binary relationships.

If the relationship set R had any attributes, these are assigned to entity set E ;
further, a special identifying attribute is created for E (since it must be possible to
distinguish different entities in an entity set on the basis of their attribute values).
For each relationship (ai , bi , ci ) in the relationship set R, we create a new entity
ei in the entity set E . Then, in each of the three new relationship sets, we insert a
relationship as follows:

• (ei , ai ) in RA.

• (ei , bi ) in RB .

• (ei , ci ) in RC .

We can generalize this process in a straightforward manner to n-ary relation-
ship sets. Thus, conceptually, we can restrict the E-R model to include only binary
relationship sets. However, this restriction is not always desirable.

• An identifying attribute may have to be created for the entity set created to
represent the relationship set. This attribute, along with the extra relationship
sets required, increases the complexity of the design and (as we shall see in
Section 7.6) overall storage requirements.

• An n-ary relationship set shows more clearly that several entities participate
in a single relationship.

• There may not be a way to translate constraints on the ternary relationship
into constraints on the binary relationships. For example, consider a con-
straint that says that R is many-to-one from A, B to C ; that is, each pair of
entities from A and B is associated with at most one C entity. This constraint
cannot be expressed by using cardinality constraints on the relationship sets
RA, RB , and RC .

Consider the relationship set proj guide in Section 7.2.2, relating instructor,
student, and project. We cannot directly split proj guide into binary relationships
between instructor and project and between instructor and student. If we did so,
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Figure 7.20 date as an attribute of the student entity set.

we would be able to record that instructor Katz works on projects A and B with
students Shankar and Zhang; however, we would not be able to record that Katz
works on project A with student Shankar and works on project B with student
Zhang, but does not work on project A with Zhang or on project B with Shankar.

The relationship set proj guide can be split into binary relationships by creating
a new entity set as described above. However, doing so would not be very natural.

7.7.4 Placement of Relationship Attributes

The cardinality ratio of a relationship can affect the placement of relationship
attributes. Thus, attributes of one-to-one or one-to-many relationship sets can be
associated with one of the participating entity sets, rather than with the relation-
ship set. For instance, let us specify that advisor is a one-to-many relationship set
such that one instructor may advise several students, but each student can be
advised by only a single instructor. In this case, the attribute date, which specifies
when the instructor became the advisor of a student, could be associated with
the student entity set, as Figure 7.20 depicts. (To keep the figure simple, only
some of the attributes of the two entity sets are shown.) Since each student entity
participates in a relationship with at most one instance of instructor, making this
attribute designation has the same meaning as would placing date with the advisor
relationship set. Attributes of a one-to-many relationship set can be repositioned
to only the entity set on the “many” side of the relationship. For one-to-one rela-
tionship sets, on the other hand, the relationship attribute can be associated with
either one of the participating entities.

The design decision of where to place descriptive attributes in such cases
—as a relationship or entity attribute—should reflect the characteristics of the
enterprise being modeled. The designer may choose to retain date as an attribute
of advisor to express explicitly that the date refers to the advising relationship
and not some other aspect of the student’s university status (for example, date of
acceptance to the university).
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The choice of attribute placement is more clear-cut for many-to-many rela-
tionship sets. Returning to our example, let us specify the perhaps more realistic
case that advisor is a many-to-many relationship set expressing that an instructor
may advise one or more students, and that a student may be advised by one
or more instructors. If we are to express the date on which a specific instructor
became the advisor of a specific student, date must be an attribute of the advisor
relationship set, rather than either one of the participating entities. If date were an
attribute of student, for instance, we could not determine which instructor became
the advisor on that particular date. When an attribute is determined by the com-
bination of participating entity sets, rather than by either entity separately, that
attribute must be associated with the many-to-many relationship set. Figure 7.3
depicts the placement of date as a relationship attribute; again, to keep the figure
simple, only some of the attributes of the two entity sets are shown.

7.8 Extended E-R Features

Although the basic E-R concepts can model most database features, some aspects
of a database may be more aptly expressed by certain extensions to the basic
E-R model. In this section, we discuss the extended E-R features of specializa-
tion, generalization, higher- and lower-level entity sets, attribute inheritance, and
aggregation.

To help with the discussions, we shall use a slightly more elaborate database
schema for the university. In particular, we shall model the various people within
a university by defining an entity set person, with attributes ID, name, and address.

7.8.1 Specialization

An entity set may include subgroupings of entities that are distinct in some way
from other entities in the set. For instance, a subset of entities within an entity set
may have attributes that are not shared by all the entities in the entity set. The E-R
model provides a means for representing these distinctive entity groupings.

As an example, the entity set person may be further classified as one of the
following:

• employee.

• student.

Each of these person types is described by a set of attributes that includes all
the attributes of entity set person plus possibly additional attributes. For exam-
ple, employee entities may be described further by the attribute salary, whereas
student entities may be described further by the attribute tot cred. The process of
designating subgroupings within an entity set is called specialization. The spe-
cialization of person allows us to distinguish among person entities according to
whether they correspond to employees or students: in general, a person could be
an employee, a student, both, or neither.
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As another example, suppose the university divides students into two cate-
gories: graduate and undergraduate. Graduate students have an office assigned to
them. Undergraduate students are assigned to a residential college. Each of these
student types is described by a set of attributes that includes all the attributes of
the entity set student plus additional attributes.

The university could create two specializations of student, namely graduate and
undergraduate. As we saw earlier, student entities are described by the attributes
ID, name, address, and tot cred. The entity set graduate would have all the attributes
of student and an additional attribute office number. The entity set undergraduate
would have all the attributes of student, and an additional attribute residential
college.

We can apply specialization repeatedly to refine a design. For instance, uni-
versity employees may be further classified as one of the following:

• instructor.

• secretary.

Each of these employee types is described by a set of attributes that includes
all the attributes of entity set employee plus additional attributes. For example,
instructor entities may be described further by the attribute rank while secretary
entities are described by the attribute hours per week. Further, secretary entities may
participate in a relationship secretary for between the secretary and employee entity
sets, which identifies the employees who are assisted by a secretary.

An entity set may be specialized by more than one distinguishing feature. In
our example, the distinguishing feature among employee entities is the job the em-
ployee performs. Another, coexistent, specialization could be based on whether
the person is a temporary (limited term) employee or a permanent employee, re-
sulting in the entity sets temporary employee and permanent employee. When more
than one specialization is formed on an entity set, a particular entity may belong
to multiple specializations. For instance, a given employee may be a temporary
employee who is a secretary.

In terms of an E-R diagram, specialization is depicted by a hollow arrow-head
pointing from the specialized entity to the other entity (see Figure 7.21). We refer
to this relationship as the ISA relationship, which stands for “is a” and represents,
for example, that an instructor “is a” employee.

The way we depict specialization in an E-R diagram depends on whether
an entity may belong to multiple specialized entity sets or if it must belong to at
most one specialized entity set. The former case (multiple sets permitted) is called
overlapping specialization, while the latter case (at most one permitted) is called
disjoint specialization. For an overlapping specialization (as is the case for student
and employee as specializations of person), two separate arrows are used. For a
disjoint specialization (as is the case for instructor and secretary as specializations
of employee), a single arrow is used. The specialization relationship may also be
referred to as a superclass-subclass relationship. Higher- and lower-level entity
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Figure 7.21 Specialization and generalization.

sets are depicted as regular entity sets—that is, as rectangles containing the name
of the entity set.

7.8.2 Generalization

The refinement from an initial entity set into successive levels of entity subgroup-
ings represents a top-down design process in which distinctions are made explicit.
The design process may also proceed in a bottom-up manner, in which multiple
entity sets are synthesized into a higher-level entity set on the basis of common
features. The database designer may have first identified:

• instructor entity set with attributes instructor id, instructor name, instructor
salary, and rank.

• secretary entity set with attributes secretary id, secretary name, secretary salary,
and hours per week.

There are similarities between the instructor entity set and the secretary entity
set in the sense that they have several attributes that are conceptually the same
across the two entity sets: namely, the identifier, name, and salary attributes.
This commonality can be expressed by generalization, which is a containment
relationship that exists between a higher-level entity set and one or more lower-level
entity sets. In our example, employee is the higher-level entity set and instructor and
secretary are lower-level entity sets. In this case, attributes that are conceptually
the same had different names in the two lower-level entity sets. To create a
generalization, the attributes must be given a common name and represented
with the higher-level entity person. We can use the attribute names ID, name,
address, as we saw in the example in Section 7.8.1.



298 Chapter 7 Database Design and the E-R Model

Higher- and lower-level entity sets also may be designated by the terms
superclass and subclass, respectively. The person entity set is the superclass of the
employee and student subclasses.

For all practical purposes, generalization is a simple inversion of specializa-
tion. We apply both processes, in combination, in the course of designing the E-R
schema for an enterprise. In terms of the E-R diagram itself, we do not distinguish
between specialization and generalization. New levels of entity representation
are distinguished (specialization) or synthesized (generalization) as the design
schema comes to express fully the database application and the user require-
ments of the database. Differences in the two approaches may be characterized
by their starting point and overall goal.

Specialization stems from a single entity set; it emphasizes differences among
entities within the set by creating distinct lower-level entity sets. These lower-
level entity sets may have attributes, or may participate in relationships, that do
not apply to all the entities in the higher-level entity set. Indeed, the reason a
designer applies specialization is to represent such distinctive features. If student
and employee have exactly the same attributes as person entities, and participate
in exactly the same relationships as person entities, there would be no need to
specialize the person entity set.

Generalization proceeds from the recognition that a number of entity sets
share some common features (namely, they are described by the same attributes
and participate in the same relationship sets). On the basis of their commonalities,
generalization synthesizes these entity sets into a single, higher-level entity set.
Generalization is used to emphasize the similarities among lower-level entity sets
and to hide the differences; it also permits an economy of representation in that
shared attributes are not repeated.

7.8.3 Attribute Inheritance

A crucial property of the higher- and lower-level entities created by specialization
and generalization is attribute inheritance. The attributes of the higher-level
entity sets are said to be inherited by the lower-level entity sets. For example,
student and employee inherit the attributes of person. Thus, student is described by
its ID, name, and address attributes, and additionally a tot cred attribute; employee is
described by its ID, name, and address attributes, and additionally a salary attribute.
Attribute inheritance applies through all tiers of lower-level entity sets; thus,
instructor and secretary, which are subclasses of employee, inherit the attributes ID,
name, and address from person, in addition to inheriting salary from employee.

A lower-level entity set (or subclass) also inherits participation in the relation-
ship sets in which its higher-level entity (or superclass) participates. Like attribute
inheritance, participation inheritance applies through all tiers of lower-level en-
tity sets. For example, suppose the person entity set participates in a relationship
person dept with department. Then, the student, employee, instructor and secretary en-
tity sets, which are subclasses of the person entity set, also implicitly participate in
the person dept relationship with department. The above entity sets can participate
in any relationships in which the person entity set participates.
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Whether a given portion of an E-R model was arrived at by specialization or
generalization, the outcome is basically the same:

• A higher-level entity set with attributes and relationships that apply to all of
its lower-level entity sets.

• Lower-level entity sets with distinctive features that apply only within a
particular lower-level entity set.

In what follows, although we often refer to only generalization, the properties
that we discuss belong fully to both processes.

Figure 7.21 depicts a hierarchy of entity sets. In the figure, employee is a
lower-level entity set of person and a higher-level entity set of the instructor and
secretary entity sets. In a hierarchy, a given entity set may be involved as a lower-
level entity set in only one ISA relationship; that is, entity sets in this diagram
have only single inheritance. If an entity set is a lower-level entity set in more
than one ISA relationship, then the entity set has multiple inheritance, and the
resulting structure is said to be a lattice.

7.8.4 Constraints on Generalizations

To model an enterprise more accurately, the database designer may choose to
place certain constraints on a particular generalization. One type of constraint
involves determining which entities can be members of a given lower-level entity
set. Such membership may be one of the following:

• Condition-defined. In condition-defined lower-level entity sets, membership
is evaluated on the basis of whether or not an entity satisfies an explicit condi-
tion or predicate. For example, assume that the higher-level entity set student
has the attribute student type. All student entities are evaluated on the defin-
ing student type attribute. Only those entities that satisfy the condition student
type = “graduate” are allowed to belong to the lower-level entity set graduate
student. All entities that satisfy the condition student type = “undergraduate”

are included in undergraduate student. Since all the lower-level entities are
evaluated on the basis of the same attribute (in this case, on student type), this
type of generalization is said to be attribute-defined.

• User-defined. User-defined lower-level entity sets are not constrained by a
membership condition; rather, the database user assigns entities to a given
entity set. For instance, let us assume that, after 3 months of employment,
university employees are assigned to one of four work teams. We therefore
represent the teams as four lower-level entity sets of the higher-level employee
entity set. A given employee is not assigned to a specific team entity auto-
matically on the basis of an explicit defining condition. Instead, the user in
charge of this decision makes the team assignment on an individual basis.
The assignment is implemented by an operation that adds an entity to an
entity set.
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A second type of constraint relates to whether or not entities may belong to
more than one lower-level entity set within a single generalization. The lower-
level entity sets may be one of the following:

• Disjoint. A disjointness constraint requires that an entity belong to no more
than one lower-level entity set. In our example, student entity can satisfy only
one condition for the student type attribute; an entity can be either a graduate
student or an undergraduate student, but cannot be both.

• Overlapping. In overlapping generalizations, the same entity may belong to
more than one lower-level entity set within a single generalization. For an
illustration, consider the employee work-team example, and assume that
certain employees participate in more than one work team. A given employee
may therefore appear in more than one of the team entity sets that are lower-
level entity sets of employee. Thus, the generalization is overlapping.

In Figure 7.21, we assume a person may be both an employee and a student. We
show this overlapping generalization via separate arrows: one from employee
to person and another from student to person. However, the generalization of
instructor and secretaries is disjoint. We show this using a single arrow.

A final constraint, the completeness constraint on a generalization or special-
ization, specifies whether or not an entity in the higher-level entity set must belong
to at least one of the lower-level entity sets within the generalization/specialization.
This constraint may be one of the following:

• Total generalization or specialization. Each higher-level entity must belong
to a lower-level entity set.

• Partial generalization or specialization. Some higher-level entities may not
belong to any lower-level entity set.

Partial generalization is the default. We can specify total generalization in an E-R
diagram by adding the keyword “total” in the diagram and drawing a dashed line
from the keyword to the corresponding hollow arrow-head to which it applies
(for a total generalization), or to the set of hollow arrow-heads to which it applies
(for an overlapping generalization).

The student generalization is total: All student entities must be either graduate
or undergraduate. Because the higher-level entity set arrived at through general-
ization is generally composed of only those entities in the lower-level entity sets,
the completeness constraint for a generalized higher-level entity set is usually
total. When the generalization is partial, a higher-level entity is not constrained
to appear in a lower-level entity set. The work team entity sets illustrate a partial
specialization. Since employees are assigned to a team only after 3 months on the
job, some employee entities may not be members of any of the lower-level team
entity sets.

We may characterize the team entity sets more fully as a partial, overlapping
specialization of employee. The generalization of graduate student and undergrad-
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uate student into student is a total, disjoint generalization. The completeness and
disjointness constraints, however, do not depend on each other. Constraint pat-
terns may also be partial-disjoint and total-overlapping.

We can see that certain insertion and deletion requirements follow from the
constraints that apply to a given generalization or specialization. For instance,
when a total completeness constraint is in place, an entity inserted into a higher-
level entity set must also be inserted into at least one of the lower-level entity
sets. With a condition-defined constraint, all higher-level entities that satisfy the
condition must be inserted into that lower-level entity set. Finally, an entity that
is deleted from a higher-level entity set also is deleted from all the associated
lower-level entity sets to which it belongs.

7.8.5 Aggregation

One limitation of the E-R model is that it cannot express relationships among
relationships. To illustrate the need for such a construct, consider the ternary
relationship proj guide, which we saw earlier, between an instructor, student and
project (see Figure 7.13).

Now suppose that each instructor guiding a student on a project is required to
file a monthly evaluation report. We model the evaluation report as an entity eval-
uation, with a primary key evaluation id. One alternative for recording the (student,
project, instructor) combination to which an evaluation corresponds is to create a
quaternary (4-way) relationship set eval for between instructor, student, project, and
evaluation. (A quaternary relationship is required—a binary relationship between
student and evaluation, for example, would not permit us to represent the (project,
instructor) combination to which an evaluation corresponds.) Using the basic E-R
modeling constructs, we obtain the E-R diagram of Figure 7.22. (We have omitted
the attributes of the entity sets, for simplicity.)

It appears that the relationship sets proj guide and eval for can be combined
into one single relationship set. Nevertheless, we should not combine them into
a single relationship, since some instructor, student, project combinations may not
have an associated evaluation.

There is redundant information in the resultant figure, however, since every
instructor, student, project combination in eval for must also be in proj guide. If the
evaluation were a value rather than a entity, we could instead make evaluation
a multivalued composite attribute of the relationship set proj guide. However,
this alternative may not be be an option if an evaluation may also be related
to other entities; for example, each evaluation report may be associated with a
secretary who is responsible for further processing of the evaluation report to
make scholarship payments.

The best way to model a situation such as the one just described is to use ag-
gregation. Aggregation is an abstraction through which relationships are treated
as higher-level entities. Thus, for our example, we regard the relationship set
proj guide (relating the entity sets instructor, student, and project) as a higher-level
entity set called proj guide. Such an entity set is treated in the same manner as is
any other entity set. We can then create a binary relationship eval for between proj
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Figure 7.22 E-R diagram with redundant relationships.

guide and evaluation to represent which (student, project, instructor) combination
an evaluation is for. Figure 7.23 shows a notation for aggregation commonly used
to represent this situation.

7.8.6 Reduction to Relation Schemas

We are in a position now to describe how the extended E-R features can be
translated into relation schemas.

7.8.6.1 Representation of Generalization

There are two different methods of designing relation schemas for an E-R diagram
that includes generalization. Although we refer to the generalization in Figure 7.21
in this discussion, we simplify it by including only the first tier of lower-level
entity sets—that is, employee and student. We assume that ID is the primary key
of person.

1. Create a schema for the higher-level entity set. For each lower-level entity
set, create a schema that includes an attribute for each of the attributes of that
entity set plus one for each attribute of the primary key of the higher-level
entity set. Thus, for the E-R diagram of Figure 7.21 (ignoring the instructor
and secretary entity sets) we have three schemas:

person (ID, name, street, city)
employee (ID, salary)
student (ID, tot cred)
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Figure 7.23 E-R diagram with aggregation.

The primary-key attributes of the higher-level entity set become primary-
key attributes of the higher-level entity set as well as all lower-level entity
sets. These can be seen underlined in the above example.

In addition, we create foreign-key constraints on the lower-level entity
sets, with their primary-key attributes referencing the primary key of the
relation created from the higher-level entity set. In the above example, the
ID attribute of employee would reference the primary key of person, and
similarly for student.

2. An alternative representation is possible, if the generalization is disjoint and
complete—that is, if no entity is a member of two lower-level entity sets
directly below a higher-level entity set, and if every entity in the higher-level
entity set is also a member of one of the lower-level entity sets. Here, we do
not create a schema for the higher-level entity set. Instead, for each lower-
level entity set, we create a schema that includes an attribute for each of
the attributes of that entity set plus one for each attribute of the higher-level
entity set. Then, for the E-R diagram of Figure 7.21, we have two schemas:

employee (ID, name, street, city, salary)
student (ID, name, street, city, tot cred)

Both these schemas have ID, which is the primary-key attribute of the higher-
level entity set person, as their primary key.
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One drawback of the second method lies in defining foreign-key constraints.
To illustrate the problem, suppose we had a relationship set R involving entity
set person. With the first method, when we create a relation schema R from the
relationship set, we would also define a foreign-key constraint on R, referencing
the schema person. Unfortunately, with the second method, we do not have a single
relation to which a foreign-key constraint on R can refer. To avoid this problem,
we need to create a relation schema person containing at least the primary-key
attributes of the person entity.

If the second method were used for an overlapping generalization, some
values would be stored multiple times, unnecessarily. For instance, if a person is
both an employee and a student, values for street and city would be stored twice.

If the generalization were disjoint but not complete—that is, if some person
is neither an employee nor a student—then an extra schema

person (ID, name, street, city)

would be required to represent such people. However, the problem with foreign-
key constraints mentioned above would remain. As an attempt to work around
the problem, suppose employees and students are additionally represented in
the person relation. Unfortunately, name, street, and city information would then
be stored redundantly in the person relation and the student relation for students,
and similarly in the person relation and the employee relation for employees. That
suggests storing name, street, and city information only in the person relation and
removing that information from student and employee. If we do that, the result is
exactly the first method we presented.

7.8.6.2 Representation of Aggregation

Designing schemas for an E-R diagram containing aggregation is straightforward.
Consider the diagram of Figure 7.23. The schema for the relationship set eval for
between the aggregation of proj guide and the entity set evaluation includes an
attribute for each attribute in the primary keys of the entity set evaluation, and
the relationship set proj guide. It also includes an attribute for any descriptive
attributes, if they exist, of the relationship set eval for. We then transform the
relationship sets and entity sets within the aggregated entity set following the
rules we have already defined.

The rules we saw earlier for creating primary-key and foreign-key constraints
on relationship sets can be applied to relationship sets involving aggregations as
well, with the aggregation treated like any other entity set. The primary key of
the aggregation is the primary key of its defining relationship set. No separate
relation is required to represent the aggregation; the relation created from the
defining relationship is used instead.

7.9 Alternative Notations for Modeling Data

A diagrammatic representation of the data model of an application is a very
important part of designing a database schema. Creation of a database schema
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requires not only data modeling experts, but also domain experts who know
the requirements of the application but may not be familiar with data modeling.
An intuitive diagrammatic representation is particularly important since it eases
communication of information between these groups of experts.

A number of alternative notations for modeling data have been proposed,
of which E-R diagrams and UML class diagrams are the most widely used. There
is no universal standard for E-R diagram notation, and different books and E-R
diagram software use different notations. We have chosen a particular notation
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Figure 7.24 Symbols used in the E-R notation.
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in this sixth edition of this book which actually differs from the notation we used
in earlier editions, for reasons that we explain later in this section.

In the rest of this section, we study some of the alternative E-R diagram
notations, as well as the UML class diagram notation. To aid in comparison of our
notation with these alternatives, Figure 7.24 summarizes the set of symbols we
have used in our E-R diagram notation.

7.9.1 Alternative E-R Notations

Figure 7.25 indicates some of the alternative E-R notations that are widely used.
One alternative representation of attributes of entities is to show them in ovals
connected to the box representing the entity; primary key attributes are indicated
by underlining them. The above notation is shown at the top of the figure. Re-
lationship attributes can be similarly represented, by connecting the ovals to the
diamond representing the relationship.

participation
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Figure 7.25 Alternative E-R notations.
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Cardinality constraints on relationships can be indicated in several different
ways, as shown in Figure 7.25. In one alternative, shown on the left side of the
figure, labels ∗ and 1 on the edges out of the relationship are used for depicting
many-to-many, one-to-one, and many-to-one relationships. The case of one-to-
many is symmetric to many-to-one, and is not shown.

In another alternative notation shown on the right side of the figure, relation-
ship sets are represented by lines between entity sets, without diamonds; only
binary relationships can be modeled thus. Cardinality constraints in such a no-
tation are shown by “crow’s-foot” notation, as in the figure. In a relationship R
between E1 and E2, crow’s feet on both sides indicates a many-to-many relation-
ship, while crow’s feet on just the E1 side indicates a many-to-one relationship
from E1 to E2. Total participation is specified in this notation by a vertical bar.
Note however, that in a relationship R between entities E1 and E2, if the partici-
pation of E1 in R is total, the vertical bar is placed on the opposite side, adjacent
to entity E2. Similarly, partial participation is indicated by using a circle, again
on the opposite side.

The bottom part of Figure 7.25 shows an alternative representation of gener-
alization, using triangles instead of hollow arrow-heads.

In prior editions of this text up to the fifth edition, we used ovals to represent
attributes, with triangles representing generalization, as shown in Figure 7.25.
The notation using ovals for attributes and diamonds for relationships is close to
the original form of E-R diagrams used by Chen in his paper that introduced the
notion of E-R modeling. That notation is now referred to as Chen’s notation.

The U.S. National Institute for Standards and Technology defined a standard
called IDEF1X in 1993. IDEF1X uses the crow’s-foot notation, with vertical bars on
the relationship edge to denote total participation and hollow circles to denote
partial participation, and includes other notations that we have not shown.

With the growth in the use of Unified Markup Language (UML), described
later in Section 7.9.2, we have chosen to update our E-R notation to make it closer to
the form of UML class diagrams; the connections will become clear in Section 7.9.2.
In comparison with our previous notation, our new notation provides a more
compact representation of attributes, and is also closer to the notation supported
by many E-R modeling tools, in addition to being closer to the UML class diagram
notation.

There are a variety of tools for constructing E-R diagrams, each of which has
its own notational variants. Some of the tools even provide a choice between
several E-R notation variants. See the references in the bibliographic notes for
more information.

One key difference between entity sets in an E-R diagram and the relation
schemas created from such entities is that attributes in the relational schema
corresponding to E-R relationships, such as the dept name attribute of instructor,
are not shown in the entity set in the E-R diagram. Some data modeling tools
allow users to choose between two views of the same entity, one an entity view
without such attributes, and other a relational view with such attributes.
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7.9.2 The Unified Modeling Language UML

Entity-relationship diagrams help model the data representation component of a
software system. Data representation, however, forms only one part of an overall
system design. Other components include models of user interactions with the
system, specification of functional modules of the system and their interaction,
etc. The Unified Modeling Language (UML) is a standard developed under the
auspices of the Object Management Group (OMG) for creating specifications of
various components of a software system. Some of the parts of UML are:

• Class diagram. A class diagram is similar to an E-R diagram. Later in this
section we illustrate a few features of class diagrams and how they relate to
E-R diagrams.

• Use case diagram. Use case diagrams show the interaction between users
and the system, in particular the steps of tasks that users perform (such as
withdrawing money or registering for a course).

• Activity diagram. Activity diagrams depict the flow of tasks between various
components of a system.

• Implementation diagram. Implementation diagrams show the system com-
ponents and their interconnections, both at the software component level and
the hardware component level.

We do not attempt to provide detailed coverage of the different parts of UML
here. See the bibliographic notes for references on UML. Instead we illustrate some
features of that part of UML that relates to data modeling through examples.

Figure 7.26 shows several E-R diagram constructs and their equivalent UML
class diagram constructs. We describe these constructs below. UML actually mod-
els objects, whereas E-R models entities. Objects are like entities, and have at-
tributes, but additionally provide a set of functions (called methods) that can be
invoked to compute values on the basis of attributes of the objects, or to update
the object itself. Class diagrams can depict methods in addition to attributes. We
cover objects in Chapter 22. UML does not support composite or multivalued
attributes, and derived attributes are equivalent to methods that take no param-
eters. Since classes support encapsulation, UML allows attributes and methods to
be prefixed with a “+”, “-”, or “#”, which denote respectively public, private and
protected access. Private attributes can only be used in methods of the class, while
protected attributes can be used only in methods of the class and its subclasses;
these should be familiar to anyone who knows Java, C++ or C#.

In UML terminology, relationship sets are referred to as associations; we shall
refer to them as relationship sets for consistency with E-R terminology. We repre-
sent binary relationship sets in UML by just drawing a line connecting the entity
sets. We write the relationship set name adjacent to the line. We may also specify
the role played by an entity set in a relationship set by writing the role name on
the line, adjacent to the entity set. Alternatively, we may write the relationship
set name in a box, along with attributes of the relationship set, and connect the
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Figure 7.26 Symbols used in the UML class diagram notation.

box by a dotted line to the line depicting the relationship set. This box can then
be treated as an entity set, in the same way as an aggregation in E-R diagrams,
and can participate in relationships with other entity sets.

Since UML version 1.3, UML supports nonbinary relationships, using the same
diamond notation used in E-R diagrams. Nonbinary relationships could not be
directly represented in earlier versions of UML—they had to be converted to
binary relationships by the technique we have seen earlier in Section 7.7.3. UML
allows the diamond notation to be used even for binary relationships, but most
designers use the line notation.

Cardinality constraints are specified in UML in the same way as in E-R dia-
grams, in the form l..h, where l denotes the minimum and h the maximum number
of relationships an entity can participate in. However, you should be aware that
the positioning of the constraints is exactly the reverse of the positioning of con-
straints in E-R diagrams, as shown in Figure 7.26. The constraint 0..∗ on the E2
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side and 0..1 on the E1 side means that each E2 entity can participate in at most
one relationship, whereas each E1 entity can participate in many relationships;
in other words, the relationship is many-to-one from E2 to E1.

Single values such as 1 or ∗ may be written on edges; the single value 1 on an
edge is treated as equivalent to 1..1, while ∗ is equivalent to 0..∗. UML supports
generalization; the notation is basically the same as in our E-R notation, including
the representation of disjoint and overlapping generalizations.

UML class diagrams include several other notations that do not correspond to
the E-R notations we have seen. For example, a line between two entity sets with
a small diamond at one end specifies that the entity on the diamond side contains
the other entity (containment is called “aggregation” in UML terminology; do not
confuse this use of aggregation with the sense in which it is used in the E-R model).
For example, a vehicle entity may contain an engine entity.

UML class diagrams also provide notations to represent object-oriented lan-
guage features such as interfaces. See the references in the bibliographic notes for
more information on UML class diagrams.

7.10 Other Aspects of Database Design

Our extensive discussion of schema design in this chapter may create the false
impression that schema design is the only component of a database design. There
are indeed several other considerations that we address more fully in subsequent
chapters, and survey briefly here.

7.10.1 Data Constraints and Relational Database Design

We have seen a variety of data constraints that can be expressed using SQL,
including primary-key constraints, foreign-key constraints, check constraints,
assertions, and triggers. Constraints serve several purposes. The most obvious
one is the automation of consistency preservation. By expressing constraints in
the SQL data-definition language, the designer is able to ensure that the database
system itself enforces the constraints. This is more reliable than relying on each
application program individually to enforce constraints. It also provides a central
location for the update of constraints and the addition of new ones.

A further advantage of stating constraints explicitly is that certain constraints
are particularly useful in designing relational database schemas. If we know, for
example, that a social-security number uniquely identifies a person, then we can
use a person’s social-security number to link data related to that person even
if these data appear in multiple relations. Contrast that with, for example, eye
color, which is not a unique identifier. Eye color could not be used to link data
pertaining to a specific person across relations because that person’s data could
not be distinguished from data pertaining to other people with the same eye color.

In Section 7.6, we generated a set of relation schemas for a given E-R design
using the constraints specified in the design. In Chapter 8, we formalize this
idea and related ones, and show how they can assist in the design of relational
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database schemas. The formal approach to relational database design allows us
to state in a precise manner when a given design is a good one and to transform
poor designs into better ones. We shall see that the process of starting with an
entity-relationship design and generating relation schemas algorithmically from
that design provides a good start to the design process.

Data constraints are useful as well in determining the physical structure of
data. It may be useful to store data that are closely related to each other in physical
proximity on disk so as to gain efficiencies in disk access. Certain index structures
work better when the index is on a primary key.

Constraint enforcement comes at a potentially high price in performance
each time the database is updated. For each update, the system must check all
of the constraints and either reject updates that fail the constraints or execute
appropriate triggers. The significance of the performance penalty depends not
only on the frequency of update but also on how the database is designed. Indeed
efficiency of the testing of certain types of constraints is an important aspect of
the discussion of relational database schema design in Chapter 8.

7.10.2 Usage Requirements: Queries, Performance

Database system performance is a critical aspect of most enterprise information
systems. Performance pertains not only to the efficient use of the computing and
storage hardware being used, but also to the efficiency of people who interact
with the system and of processes that depend upon database data.

There are two main metrics for performance:

• Throughput—the number of queries or updates (often referred to as trans-
actions) that can be processed on average per unit of time.

• Response time—the amount of time a single transaction takes from start to
finish in either the average case or the worst case.

Systems that process large numbers of transactions in a batch style focus on having
high throughput. Systems that interact with people or time-critical systems often
focus on response time. These two metrics are not equivalent. High throughput
arises from obtaining high utilization of system components. Doing so may result
in certain transactions being delayed until such time that they can be run more
efficiently. Those delayed transactions suffer poor response time.

Most commercial database systems historically have focused on throughput;
however, a variety of applications including Web-based applications and telecom-
munication information systems require good response time on average and a
reasonable bound on worst-case response time.

An understanding of types of queries that are expected to be the most frequent
helps in the design process. Queries that involve joins require more resources to
evaluate than those that do not. In cases where a join is required, the database
administrator may choose to create an index that facilitates evaluation of that join.
For queries—whether a join is involved or not—indices can be created to speed
evaluation of selection predicates (SQL where clause) that are likely to appear.
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Another aspect of queries that affects the choice of indices is the relative mix of
update and read operations. While an index may speed queries, it also slows
updates, which are forced to do extra work to maintain the accuracy of the index.

7.10.3 Authorization Requirements

Authorization constraints affect design of the database as well because SQL allows
access to be granted to users on the basis of components of the logical design
of the database. A relation schema may need to be decomposed into two or
more schemas to facilitate the granting of access rights in SQL. For example, an
employee record may include data relating to payroll, job functions, and medical
benefits. Because different administrative units of the enterprise may manage
each of these types of data, some users will need access to payroll data while
being denied access to the job data, medical data, etc. If these data are all in one
relation, the desired division of access, though still feasible through the use of
views, is more cumbersome. Division of data in this manner becomes even more
critical when the data are distributed across systems in a computer network, an
issue we consider in Chapter 19.

7.10.4 Data Flow, Workflow

Database applications are often part of a larger enterprise application that in-
teracts not only with the database system but also with various specialized ap-
plications. For example, in a manufacturing company, a computer-aided design
(CAD) system may assist in the design of new products. The CAD system may
extract data from the database via an SQL statement, process the data internally,
perhaps interacting with a product designer, and then update the database. Dur-
ing this process, control of the data may pass among several product designers
as well as other people. As another example, consider a travel-expense report. It
is created by an employee returning from a business trip (possibly by means of a
special software package) and is subsequently routed to the employee’s manager,
perhaps other higher-level managers, and eventually to the accounting depart-
ment for payment (at which point it interacts with the enterprise’s accounting
information systems).

The term workflow refers to the combination of data and tasks involved in pro-
cesses like those of the preceding examples. Workflows interact with the database
system as they move among users and users perform their tasks on the workflow.
In addition to the data on which workflows operate, the database may store data
about the workflow itself, including the tasks making up a workflow and how
they are to be routed among users. Workflows thus specify a series of queries and
updates to the database that may be taken into account as part of the database-
design process. Put in other terms, modeling the enterprise requires us not only
to understand the semantics of the data but also the business processes that use
those data.
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7.10.5 Other Issues in Database Design

Database design is usually not a one-time activity. The needs of an organization
evolve continually, and the data that it needs to store also evolve correspond-
ingly. During the initial database-design phases, or during the development of
an application, the database designer may realize that changes are required at the
conceptual, logical, or physical schema levels. Changes in the schema can affect
all aspects of the database application. A good database design anticipates future
needs of an organization, and ensures that the schema requires minimal changes
as the needs evolve.

It is important to distinguish between fundamental constraints that are ex-
pected to be permanent and constraints that are anticipated to change. For exam-
ple, the constraint that an instructor-id identify a unique instructor is fundamen-
tal. On the other hand, a university may have a policy that an instructor can have
only one department, which may change at a later date if joint appointments are
allowed. A database design that only allows one department per instructor might
require major changes if joint appointments are allowed. Such joint appointments
can be represented by adding an extra relationship, without modifying the in-
structor relation, as long as each instructor has only one primary department
affiliation; a policy change that allows more than one primary affiliation may
require a larger change in the database design. A good design should account
not only for current policies, but should also avoid or minimize changes due to
changes that are anticipated, or have a reasonable chance of happening.

Furthermore, the enterprise that the database is serving likely interacts with
other enterprises and, therefore, multiple databases may need to interact. Con-
version of data between different schemas is an important problem in real-world
applications. Various solutions have been proposed for this problem. The XML
data model, which we study in Chapter 23, is widely used for representing data
when it is exchanged between different applications.

Finally, it is worth noting that database design is a human-oriented activity
in two senses: the end users of the system are people (even if an application
sits between the database and the end users); and the database designer needs to
interact extensively with experts in the application domain to understand the data
requirements of the application. All of the people involved with the data have
needs and preferences that should be taken into account in order for a database
design and deployment to succeed within the enterprise.

7.11 Summary

• Database design mainly involves the design of the database schema. The
entity-relationship (E-R) data model is a widely used data model for database
design. It provides a convenient graphical representation to view data, rela-
tionships, and constraints.

• The E-R model is intended primarily for the database-design process. It was
developed to facilitate database design by allowing the specification of an
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enterprise schema. Such a schema represents the overall logical structure of
the database. This overall structure can be expressed graphically by an E-R
diagram.

• An entity is an object that exists in the real world and is distinguishable from
other objects. We express the distinction by associating with each entity a set
of attributes that describes the object.

• A relationship is an association among several entities. A relationship set is
a collection of relationships of the same type, and an entity set is a collection
of entities of the same type.

• The terms superkey, candidate key, and primary key apply to entity and
relationship sets as they do for relation schemas. Identifying the primary key
of a relationship set requires some care, since it is composed of attributes
from one or more of the related entity sets.

• Mapping cardinalities express the number of entities to which another entity
can be associated via a relationship set.

• An entity set that does not have sufficient attributes to form a primary key
is termed a weak entity set. An entity set that has a primary key is termed a
strong entity set.

• The various features of the E-R model offer the database designer numer-
ous choices in how to best represent the enterprise being modeled. Concepts
and objects may, in certain cases, be represented by entities, relationships,
or attributes. Aspects of the overall structure of the enterprise may be best
described by using weak entity sets, generalization, specialization, or aggre-
gation. Often, the designer must weigh the merits of a simple, compact model
versus those of a more precise, but more complex, one.

• A database design specified by an E-R diagram can be represented by a
collection of relation schemas. For each entity set and for each relationship
set in the database, there is a unique relation schema that is assigned the
name of the corresponding entity set or relationship set. This forms the basis
for deriving a relational database design from an E-R diagram.

• Specialization and generalization define a containment relationship be-
tween a higher-level entity set and one or more lower-level entity sets. Spe-
cialization is the result of taking a subset of a higher-level entity set to form a
lower-level entity set. Generalization is the result of taking the union of two
or more disjoint (lower-level) entity sets to produce a higher-level entity set.
The attributes of higher-level entity sets are inherited by lower-level entity
sets.

• Aggregation is an abstraction in which relationship sets (along with their as-
sociated entity sets) are treated as higher-level entity sets, and can participate
in relationships.

• UML is a popular modeling language. UML class diagrams are widely used
for modeling classes, as well as for general purpose data modeling.
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Review Terms

• Entity-relationship data model
• Entity and entity set

◦ Attributes

◦ Domain

◦ Simple and composite attributes

◦ Single-valued and multivalued
attributes

◦ Null value

◦ Derived attribute

◦ Superkey, candidate key, and
primary key

• Relationship and relationship set

◦ Binary relationship set

◦ Degree of relationship set

◦ Descriptive attributes

◦ Superkey, candidate key, and
primary key

◦ Role

◦ Recursive relationship set

• E-R diagram
• Mapping cardinality:

◦ One-to-one relationship

◦ One-to-many relationship

◦ Many-to-one relationship

◦ Many-to-many relationship

• Participation

◦ Total participation

◦ Partial participation

• Weak entity sets and strong entity
sets

◦ Discriminator attributes

◦ Identifying relationship

• Specialization and generalization

◦ Superclass and subclass

◦ Attribute inheritance

◦ Single and multiple inheritance

◦ Condition-defined and user-
defined membership

◦ Disjoint and overlapping gener-
alization

◦ Total and partial generalization

• Aggregation
• UML

• UML class diagram

Practice Exercises

7.1 Construct an E-R diagram for a car insurance company whose customers
own one or more cars each. Each car has associated with it zero to any
number of recorded accidents. Each insurance policy covers one or more
cars, and has one or more premium payments associated with it. Each
payment is for a particular period of time, and has an associated due date,
and the date when the payment was received.

7.2 Consider a database used to record the marks that students get in different
exams of different course offerings (sections).
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a. Construct an E-R diagram that models exams as entities, and uses a
ternary relationship, for the database.

b. Construct an alternative E-R diagram that uses only a binary relation-
ship between student and section. Make sure that only one relationship
exists between a particular student and section pair, yet you can rep-
resent the marks that a student gets in different exams.

7.3 Design an E-R diagram for keeping track of the exploits of your favorite
sports team. You should store the matches played, the scores in each match,
the players in each match, and individual player statistics for each match.
Summary statistics should be modeled as derived attributes.

7.4 Consider an E-R diagram in which the same entity set appears several times,
with its attributes repeated in more than one occurrence. Why is allowing
this redundancy a bad practice that one should avoid?

7.5 An E-R diagram can be viewed as a graph. What do the following mean in
terms of the structure of an enterprise schema?

a. The graph is disconnected.

b. The graph has a cycle.

7.6 Consider the representation of a ternary relationship using binary relation-
ships as described in Section 7.7.3 and illustrated in Figure 7.27b (attributes
not shown).

B C

A

CB E

A

RA

RB RC

(a) (b)

(c)

A

B C

R

RBC

RAB RAC

Figure 7.27 E-R diagram for Practice Exercise 7.6 and Exercise 7.24.
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a. Show a simple instance of E, A, B, C , RA, RB , and RC that cannot
correspond to any instance of A, B, C , and R.

b. Modify the E-R diagram of Figure 7.27b to introduce constraints that
will guarantee that any instance of E, A, B, C , RA, RB , and RC that
satisfies the constraints will correspond to an instance of A, B, C , and
R.

c. Modify the translation above to handle total participation constraints
on the ternary relationship.

d. The above representation requires that we create a primary-key at-
tribute for E . Show how to treat E as a weak entity set so that a
primary-key attribute is not required.

7.7 A weak entity set can always be made into a strong entity set by adding to
its attributes the primary-key attributes of its identifying entity set. Outline
what sort of redundancy will result if we do so.

7.8 Consider a relation such as sec course, generated from a many-to-one rela-
tionship sec course. Do the primary and foreign key constraints created on
the relation enforce the many-to-one cardinality constraint? Explain why.

7.9 Suppose the advisor relationship were one-to-one. What extra constraints
are required on the relation advisorto ensure that the one-to-one cardinality
constraint is enforced?

7.10 Consider a many-to-one relationship R between entity sets A and B. Sup-
pose the relation created from R is combined with the relation created from
A. In SQL, attributes participating in a foreign key constraint can be null.
Explain how a constraint on total participation of A in R can be enforced
using not null constraints in SQL.

7.11 In SQL, foreign key constraints can only reference the primary key attributes
of the referenced relation, or other attributes declared to be a super key us-
ing the unique constraint. As a result, total participation constraints on a
many-to-many relationship (or on the “one” side of a one-to-many rela-
tionship) cannot be enforced on the relations created from the relationship,
using primary key, foreign key and not null constraints on the relations.

a. Explain why.

b. Explain how to enforce total participation constraints using com-
plex check constraints or assertions (see Section 4.4.7). (Unfortunately,
these features are not supported on any widely used database cur-
rently.)

7.12 Figure 7.28 shows a lattice structure of generalization and specialization
(attributes not shown). For entity sets A, B, and C , explain how attributes
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X Y

A B C

Figure 7.28 E-R diagram for Practice Exercise 7.12.

are inherited from the higher-level entity sets X and Y. Discuss how to
handle a case where an attribute of X has the same name as some attribute
of Y.

7.13 Temporal changes: An E-R diagram usually models the state of an enter-
prise at a point in time. Suppose we wish to track temporal changes, that is,
changes to data over time. For example, Zhang may have been a student
between 1 September 2005 31 May 2009, while Shankar may have had in-
structor Einstein as advisor from 31 May 2008 to 5 December 2008, and
again from 1 June 2009 to 5 January 2010. Similarly, attribute values of an
entity or relationship, such as title and credits of course, salary, or even name
of instructor, and tot cred of student, can change over time.

One way to model temporal changes is as follows. We define a new data
type called valid time, which is a time-interval, or a set of time-intervals.
We then associate a valid time attribute with each entity and relationship,
recording the time periods during which the entity or relationship is valid.
The end-time of an interval can be infinity; for example, if Shankar became
a student on 2 September 2008, and is still a student, we can represent
the end-time of the valid time interval as infinity for the Shankar entity.
Similarly, we model attributes that can change over time as a set of values,
each with its own valid time.

a. Draw an E-R diagram with the student and instructor entities, and
the advisor relationship, with the above extensions to track temporal
changes.

b. Convert the above E-R diagram into a set of relations.

It should be clear that the set of relations generated above is rather complex,
leading to difficulties in tasks such as writing queries in SQL. An alterna-
tive approach, which is used more widely is to ignore temporal changes
when designing the E-R model (in particular, temporal changes to attribute
values), and to modify the relations generated from the E-R model to track
temporal changes, as discussed later in Section 8.9.
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Exercises

7.14 Explain the distinctions among the terms primary key, candidate key, and
superkey.

7.15 Construct an E-R diagram for a hospital with a set of patients and a set of
medical doctors. Associate with each patient a log of the various tests and
examinations conducted.

7.16 Construct appropriate relation schemas for each of the E-R diagrams in
Practice Exercises 7.1 to 7.3.

7.17 Extend the E-R diagram of Practice Exercise 7.3 to track the same informa-
tion for all teams in a league.

7.18 Explain the difference between a weak and a strong entity set.

7.19 We can convert any weak entity set to a strong entity set by simply adding
appropriate attributes. Why, then, do we have weak entity sets?

7.20 Consider the E-R diagram in Figure 7.29, which models an online bookstore.

a. List the entity sets and their primary keys.

b. Suppose the bookstore adds Blu-ray discs and downloadable video
to its collection. The same item may be present in one or both formats,
with differing prices. Extend the E-R diagram to model this addition,
ignoring the effect on shopping baskets.

c. Now extend the E-R diagram, using generalization, to model the case
where a shopping basket may contain any combination of books,
Blu-ray discs, or downloadable video.

7.21 Design a database for an automobile company to provide to its dealers to
assist them in maintaining customer records and dealer inventory and to
assist sales staff in ordering cars.

Each vehicle is identified by a vehicle identification number (VIN). Each
individual vehicle is a particular model of a particular brand offered by the
company (e.g., the XF is a model of the car brand Jaguar of Tata Motors).
Each model can be offered with a variety of options, but an individual
car may have only some (or none) of the available options. The database
needs to store information about models, brands, and options, as well as
information about individual dealers, customers, and cars.

Your design should include an E-R diagram, a set of relational schemas,
and a list of constraints, including primary-key and foreign-key constraints.

7.22 Design a database for a world-wide package delivery company (e.g., DHL
or FedEX). The database must be able to keep track of customers (who ship
items) and customers (who receive items); some customers may do both.
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Figure 7.29 E-R diagram for Exercise 7.20.

Each package must be identifiable and trackable, so the database must
be able to store the location of the package and its history of locations.
Locations include trucks, planes, airports, and warehouses.

Your design should include an E-R diagram, a set of relational schemas,
and a list of constraints, including primary-key and foreign-key constraints.

7.23 Design a database for an airline. The database must keep track of cus-
tomers and their reservations, flights and their status, seat assignments on
individual flights, and the schedule and routing of future flights.

Your design should include an E-R diagram, a set of relational schemas,
and a list of constraints, including primary-key and foreign-key constraints.

7.24 In Section 7.7.3, we represented a ternary relationship (repeated in Fig-
ure 7.27a) using binary relationships, as shown in Figure 7.27b. Consider
the alternative shown in Figure 7.27c. Discuss the relative merits of these
two alternative representations of a ternary relationship by binary relation-
ships.
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7.25 Consider the relation schemas shown in Section 7.6, which were generated
from the E-R diagram in Figure 7.15. For each schema, specify what foreign-
key constraints, if any, should be created.

7.26 Design a generalization–specialization hierarchy for a motor vehicle sales
company. The company sells motorcycles, passenger cars, vans, and buses.
Justify your placement of attributes at each level of the hierarchy. Explain
why they should not be placed at a higher or lower level.

7.27 Explain the distinction between condition-defined and user-defined con-
straints. Which of these constraints can the system check automatically?
Explain your answer.

7.28 Explain the distinction between disjoint and overlapping constraints.

7.29 Explain the distinction between total and partial constraints.

Tools

Many database systems provide tools for database design that support E-R dia-
grams. These tools help a designer create E-Rdiagrams, and they can automatically
create corresponding tables in a database. See bibliographic notes of Chapter 1
for references to database-system vendors’ Web sites.

There are also several database-independent data modeling tools that sup-
port E-R diagrams and UML class diagrams. The drawing tool Dia, which is
available as freeware, supports E-R diagrams and UML class diagrams. Com-
mercial tools include IBM Rational Rose (www.ibm.com/software/rational), Microsoft
Visio (see www.microsoft.com/office/visio), CA’s ERwin (www.ca.com/us/data-
modeling.aspx), Poseidon for UML (www.gentleware.com), and SmartDraw
(www.smartdraw.com).
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C H A P T E R8
Relational Database Design

In this chapter, we consider the problem of designing a schema for a relational
database. Many of the issues in doing so are similar to design issues we considered
in Chapter 7 using the E-R model.

In general, the goal of relational database design is to generate a set of relation
schemas that allows us to store information without unnecessary redundancy, yet
also allows us to retrieve information easily. This is accomplished by designing
schemas that are in an appropriate normal form. To determine whether a relation
schema is in one of the desirable normal forms, we need information about
the real-world enterprise that we are modeling with the database. Some of this
information exists in a well-designed E-R diagram, but additional information
about the enterprise may be needed as well.

In this chapter, we introduce a formal approach to relational database design
based on the notion of functional dependencies. We then define normal forms
in terms of functional dependencies and other types of data dependencies. First,
however, we view the problem of relational design from the standpoint of the
schemas derived from a given entity-relationship design.

8.1 Features of Good Relational Designs

Our study of entity-relationship design in Chapter 7 provides an excellent starting
point for creating a relational database design. We saw in Section 7.6 that it
is possible to generate a set of relation schemas directly from the E-R design.
Obviously, the goodness (or badness) of the resulting set of schemas depends
on how good the E-R design was in the first place. Later in this chapter, we shall
study precise ways of assessing the desirability of a collection of relation schemas.
However, we can go a long way toward a good design using concepts we have
already studied.

For ease of reference, we repeat the schemas for the university database in
Figure 8.1.

323
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classroom(building, room number, capacity)
department(dept name, building, budget)
course(course id, title, dept name, credits)
instructor(ID, name, dept name, salary)
section(course id, sec id, semester, year, building, room number, time slot id)
teaches(ID, course id, sec id, semester, year)
student(ID, name, dept name, tot cred)
takes(ID, course id, sec id, semester, year, grade)
advisor(s ID, i ID)
time slot(time slot id, day, start time, end time)
prereq(course id, prereq id)

Figure 8.1 Schema for the university database.

8.1.1 Design Alternative: Larger Schemas

Now, let us explore features of this relational database design as well as some
alternatives. Suppose that instead of having the schemas instructor and department,
we have the schema:

inst dept (ID, name, salary, dept name, building, budget)

This represents the result of a natural join on the relations corresponding to
instructor and department. This seems like a good idea because some queries can
be expressed using fewer joins, until we think carefully about the facts about the
university that led to our E-R design.

Let us consider the instance of the inst dept relation shown in Figure 8.2. Notice
that we have to repeat the department information (“building” and “budget”)
once for each instructor in the department. For example, the information about
the Comp. Sci. department (Taylor, 100000) is included in the tuples of instructors
Katz, Srinivasan, and Brandt.

It is important that all these tuples agree as to the budget amount since other-
wise our database would be inconsistent. In our original design using instructor
and department, we stored the amount of each budget exactly once. This suggests
that using inst dept is a bad idea since it stores the budget amounts redundantly
and runs the risk that some user might update the budget amount in one tuple
but not all, and thus create inconsistency.

Even if we decided to live with the redundancy problem, there is still another
problem with the inst dept schema. Suppose we are creating a new department
in the university. In the alternative design above, we cannot represent directly
the information concerning a department (dept name, building, budget) unless that
department has at least one instructor at the university. This is because tuples in
the inst dept table require values for ID, name, and salary. This means that we cannot
record information about the newly created department until the first instructor
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ID name salary dept name building budget

22222 Einstein 95000 Physics Watson 70000
12121 Wu 90000 Finance Painter 120000
32343 El Said 60000 History Painter 50000
45565 Katz 75000 Comp. Sci. Taylor 100000
98345 Kim 80000 Elec. Eng. Taylor 85000
76766 Crick 72000 Biology Watson 90000
10101 Srinivasan 65000 Comp. Sci. Taylor 100000
58583 Califieri 62000 History Painter 50000
83821 Brandt 92000 Comp. Sci. Taylor 100000
15151 Mozart 40000 Music Packard 80000
33456 Gold 87000 Physics Watson 70000
76543 Singh 80000 Finance Painter 120000

Figure 8.2 The inst dept table.

is hired for the new department. In the old design, the schema department can
handle this, but under the revised design, we would have to create a tuple with a
null value for building and budget. In some cases null values are troublesome, as
we saw in our study of SQL. However, if we decide that this is not a problem to
us in this case, then we can proceed to use the revised design.

8.1.2 Design Alternative: Smaller Schemas

Suppose again that, somehow, we had started out with the schema inst dept. How
would we recognize that it requires repetition of information and should be split
into the two schemas instructor and department?

By observing the contents of actual relations on schema inst dept, we could
note the repetition of information resulting from having to list the building and
budget once for each instructor associated with a department. However, this is an
unreliable process. A real-world database has a large number of schemas and an
even larger number of attributes. The number of tuples can be in the millions or
higher. Discovering repetition would be costly. There is an even more fundamental
problem with this approach. It does not allow us to determine whether the lack of
repetition is just a “lucky” special case or whether it is a manifestation of a general
rule. In our example, how would we know that in our university organization, each
department (identified by its department name) must reside in a single building
and must have a single budget amount? Is the fact that the budget amount for
the Comp. Sci. department appears three times with the same budget amount
just a coincidence? We cannot answer these questions without going back to
the enterprise itself and understanding its rules. In particular, we would need
to discover that the university requires that every department (identified by its
department name) must have only one building and one budget value.

In the case of inst dept, our process of creating an E-R design successfully
avoided the creation of this schema. However, this fortuitous situation does not
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always occur. Therefore, we need to allow the database designer to specify rules
such as “each specific value for dept name corresponds to at most one budget” even
in cases where dept name is not the primary key for the schema in question. In
other words, we need to write a rule that says “if there were a schema (dept name,
budget), then dept name is able to serve as the primary key.” This rule is specified
as a functional dependency

dept name → budget

Given such a rule, we now have sufficient information to recognize the problem
of the inst dept schema. Because dept name cannot be the primary key for inst dept
(because a department may need several tuples in the relation on schema inst
dept), the amount of a budget may have to be repeated.

Observations such as these and the rules (functional dependencies in partic-
ular) that result from them allow the database designer to recognize situations
where a schema ought to be split, or decomposed, into two or more schemas. It is
not hard to see that the right way to decompose inst dept is into schemas instruc-
tor and department as in the original design. Finding the right decomposition is
much harder for schemas with a large number of attributes and several functional
dependencies. To deal with this, we shall rely on a formal methodology that we
develop later in this chapter.

Not all decompositions of schemas are helpful. Consider an extreme case
where all we had were schemas consisting of one attribute. No interesting rela-
tionships of any kind could be expressed. Now consider a less extreme case where
we choose to decompose the employee schema (Section 7.8):

employee (ID, name, street, city, salary)

into the following two schemas:

employee1 (ID, name)
employee2 (name, street, city, salary)

The flaw in this decomposition arises from the possibility that the enterprise has
two employees with the same name. This is not unlikely in practice, as many
cultures have certain highly popular names. Of course each person would have
a unique employee-id, which is why ID can serve as the primary key. As an
example, let us assume two employees, both named Kim, work at the university
and have the following tuples in the relation on schema employee in the original
design:

(57766, Kim, Main, Perryridge, 75000)
(98776, Kim, North, Hampton, 67000)
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ID name street city salary
...

57766
98776...

Kim
Kim

Main
North

Perryridge
Hampton

75000
67000

ID name
...

57766
98776...

Kim
Kim

name street city salary

75000
67000

Main
North

Perryridge
Hampton

...
Kim
Kim...

ID name street city salary

employee

...
57766
57766
98776
98776

...

75000
67000
75000
67000

Perryridge
Hampton
Perryridge
Hampton

Main
North
Main
North

Kim
Kim
Kim
Kim

natural join

Figure 8.3 Loss of information via a bad decomposition.

Figure 8.3 shows these tuples, the resulting tuples using the schemas resulting
from the decomposition, and the result if we attempted to regenerate the origi-
nal tuples using a natural join. As we see in the figure, the two original tuples
appear in the result along with two new tuples that incorrectly mix data values
pertaining to the two employees named Kim. Although we have more tuples,
we actually have less information in the following sense. We can indicate that a
certain street, city, and salary pertain to someone named Kim, but we are unable
to distinguish which of the Kims. Thus, our decomposition is unable to represent
certain important facts about the university employees. Clearly, we would like
to avoid such decompositions. We shall refer to such decompositions as being
lossy decompositions, and, conversely, to those that are not as lossless decom-
positions.

8.2 Atomic Domains and First Normal Form

The E-R model allows entity sets and relationship sets to have attributes that have
some degree of substructure. Specifically, it allows multivalued attributes such as
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phone number in Figure 7.11 and composite attributes (such as an attribute address
with component attributes street, city, state, and zip). When we create tables from
E-R designs that contain these types of attributes, we eliminate this substructure.
For composite attributes, we let each component be an attribute in its own right.
For multivalued attributes, we create one tuple for each item in a multivalued set.

In the relational model, we formalize this idea that attributes do not have any
substructure. A domain is atomic if elements of the domain are considered to be
indivisible units. We say that a relation schema R is in first normal form (1NF) if
the domains of all attributes of R are atomic.

A set of names is an example of a nonatomic value. For example, if the schema
of a relation employee included an attribute children whose domain elements are
sets of names, the schema would not be in first normal form.

Composite attributes, such as an attribute address with component attributes
street, city, state, and zip also have nonatomic domains.

Integers are assumed to be atomic, so the set of integers is an atomic domain;
however, the set of all sets of integers is a nonatomic domain. The distinction is
that we do not normally consider integers to have subparts, but we consider sets
of integers to have subparts—namely, the integers making up the set. But the
important issue is not what the domain itself is, but rather how we use domain
elements in our database. The domain of all integers would be nonatomic if we
considered each integer to be an ordered list of digits.

As a practical illustration of the above point, consider an organization that
assigns employees identification numbers of the following form: The first two
letters specify the department and the remaining four digits are a unique number
within the department for the employee. Examples of such numbers would be
“CS001” and “EE1127”. Such identification numbers can be divided into smaller
units, and are therefore nonatomic. If a relation schema had an attribute whose
domain consists of identification numbers encoded as above, the schema would
not be in first normal form.

When such identification numbers are used, the department of an employee
can be found by writing code that breaks up the structure of an identification
number. Doing so requires extra programming, and information gets encoded
in the application program rather than in the database. Further problems arise
if such identification numbers are used as primary keys: When an employee
changes departments, the employee’s identification number must be changed
everywhere it occurs, which can be a difficult task, or the code that interprets the
number would give a wrong result.

From the above discussion, it may appear that our use of course identifiers
such as “CS-101”, where “CS” indicates the Computer Science department, means
that the domain of course identifiers is not atomic. Such a domain is not atomic as
far as humans using the system are concerned. However, the database application
still treats the domain as atomic, as long as it does not attempt to split the identifier
and interpret parts of the identifier as a department abbreviation. The course
schema stores the department name as a separate attribute, and the database
application can use this attribute value to find the department of a course, instead
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of interpreting particular characters of the course identifier. Thus, our university
schema can be considered to be in first normal form.

The use of set-valued attributes can lead to designs with redundant storage of
data, which in turn can result in inconsistencies. For instance, instead of having
the relationship between instructors and sections being represented as a separate
relation teaches, a database designer may be tempted to store a set of course section
identifiers with each instructor and a set of instructor identifiers with each section.
(The primary keys of section and instructor are used as identifiers.) Whenever data
pertaining to which instructor teaches which section is changed, the update has
to be performed at two places: in the set of instructors for the section, and the
set of sections for the instructor. Failure to perform both updates can leave the
database in an inconsistent state. Keeping only one of these sets, that either the
set of instructors of a section, or the set of sections of an instructor, would avoid
repeated information; however keeping only one of these would complicate some
queries, and it is unclear which of the two to retain.

Some types of nonatomic values can be useful, although they should be used
with care. For example, composite-valued attributes are often useful, and set-
valued attributes are also useful in many cases, which is why both are supported
in the E-R model. In many domains where entities have a complex structure,
forcing a first normal form representation represents an unnecessary burden on
the application programmer, who has to write code to convert data into atomic
form. There is also the runtime overhead of converting data back and forth from
the atomic form. Support for nonatomic values can thus be very useful in such
domains. In fact, modern database systems do support many types of nonatomic
values, as we shall see in Chapter 22. However, in this chapter we restrict ourselves
to relations in first normal form and, thus, all domains are atomic.

8.3 Decomposition Using Functional Dependencies

In Section 8.1, we noted that there is a formal methodology for evaluating whether
a relational schema should be decomposed. This methodology is based upon the
concepts of keys and functional dependencies.

In discussing algorithms for relational database design, we shall need to
talk about arbitrary relations and their schema, rather than talking only about
examples. Recalling our introduction to the relational model in Chapter 2, we
summarize our notation here.

• In general, we use Greek letters for sets of attributes (for example, �). We
use a lowercase Roman letter followed by an uppercase Roman letter in
parentheses to refer to a relation schema (for example, r (R)). We use the
notation r (R) to show that the schema is for relation r , with R denoting the
set of attributes, but at times simplify our notation to use just R when the
relation name does not matter to us.

Of course, a relation schema is a set of attributes, but not all sets of attributes
are schemas. When we use a lowercase Greek letter, we are referring to a set
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of attributes that may or may not be a schema. A Roman letter is used when
we wish to indicate that the set of attributes is definitely a schema.

• When a set of attributes is a superkey, we denote it by K . A superkey pertains
to a specific relation schema, so we use the terminology “K is a superkey of
r (R).”

• We use a lowercase name for relations. In our examples, these names are
intended to be realistic (for example, instructor), while in our definitions and
algorithms, we use single letters, like r .

• A relation, of course, has a particular value at any given time; we refer to that
as an instance and use the term “instance of r”. When it is clear that we are
talking about an instance, we may use simply the relation name (for example,
r ).

8.3.1 Keys and Functional Dependencies

A database models a set of entities and relationships in the real world. There are
usually a variety of constraints (rules) on the data in the real world. For example,
some of the constraints that are expected to hold in a university database are:

1. Students and instructors are uniquely identified by their ID.

2. Each student and instructor has only one name.

3. Each instructor and student is (primarily) associated with only one depart-
ment.1

4. Each department has only one value for its budget, and only one associated
building.

An instance of a relation that satisfies all such real-world constraints is called
a legal instance of the relation; a legal instance of a database is one where all the
relation instances are legal instances.

Some of the most commonly used types of real-world constraints can be
represented formally as keys (superkeys, candidate keys and primary keys), or
as functional dependencies, which we define below.

In Section 2.3, we defined the notion of a superkey as a set of one or more
attributes that, taken collectively, allows us to identify uniquely a tuple in the
relation. We restate that definition here as follows: Let r (R) be a relation schema.
A subset K of R is a superkey of r (R) if, in any legal instance of r (R), for all pairs
t1 and t2 of tuples in the instance of r if t1 �= t2, then t1[K ] �= t2[K ]. That is,
no two tuples in any legal instance of relation r (R) may have the same value on

1An instructor or a student can be associated with more than one department, for example as an adjunct faculty, or
as a minor department. Our simplified university schema models only the primary department associated with each
instructor or student. A real university schema would capture secondary associations in other relations.
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attribute set K. Clearly, if no two tuples in r have the same value on K , then a
K -value uniquely identifies a tuple in r .

Whereas a superkey is a set of attributes that uniquely identifies an entire
tuple, a functional dependency allows us to express constraints that uniquely
identify the values of certain attributes. Consider a relation schema r (R), and let
� ⊆ R and � ⊆ R.

• Given an instance of r (R), we say that the instance satisfies the functional
dependency � → � if for all pairs of tuples t1 and t2 in the instance such that
t1[�] = t2[�], it is also the case that t1[�] = t2[�].

• We say that the functional dependency � → � holds on schema r (R) if, in
every legal instance of r (R) it satisfies the functional dependency.

Using the functional-dependency notation, we say that K is a superkey of r (R) if
the functional dependency K → R holds on r (R). In other words, K is a superkey
if, for every legal instance of r (R), for every pair of tuples t1 and t2 from the
instance, whenever t1[K ] = t2[K ], it is also the case that t1[R] = t2[R] (that is,
t1 = t2).2

Functional dependencies allow us to express constraints that we cannot ex-
press with superkeys. In Section 8.1.2, we considered the schema:

inst dept (ID, name, salary, dept name, building, budget)

in which the functional dependency dept name → budget holds because for each
department (identified by dept name) there is a unique budget amount.

We denote the fact that the pair of attributes (ID, dept name) forms a superkey
for inst dept by writing:

ID, dept name → name, salary, building, budget

We shall use functional dependencies in two ways:

1. To test instances of relations to see whether they satisfy a given set F of
functional dependencies.

2. To specify constraints on the set of legal relations. We shall thus concern our-
selves with only those relation instances that satisfy a given set of functional
dependencies. If we wish to constrain ourselves to relations on schema r (R)
that satisfy a set F of functional dependencies, we say that F holds on r (R).

Let us consider the instance of relation r of Figure 8.4, to see which functional
dependencies are satisfied. Observe that A → C is satisfied. There are two tuples

2Note that we assume here that relations are sets. SQL deals with multisets, and a primary key declaration in SQL for
a set of attributes K requires not only that t1 = t2 if t1[K ] = t2[K ], but also that there be no duplicate tuples. SQL also
requires that attributes in the set K cannot be assigned a null value.
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A B C D

a1 b1 c1 d1
a1 b2 c1 d2
a2 b2 c2 d2
a2 b3 c2 d3
a3 b3 c2 d4

Figure 8.4 Sample instance of relation r.

that have an A value of a1. These tuples have the same C value—namely, c1.
Similarly, the two tuples with an A value of a2 have the same C value, c2. There
are no other pairs of distinct tuples that have the same A value. The functional
dependency C → A is not satisfied, however. To see that it is not, consider the
tuples t1 = (a2, b3, c2, d3) and t2 = (a3, b3, c2, d4). These two tuples have the same
C values, c2, but they have different A values, a2 and a3, respectively. Thus, we
have found a pair of tuples t1 and t2 such that t1[C] = t2[C], but t1[A] �= t2[A].

Some functional dependencies are said to be trivial because they are satis-
fied by all relations. For example, A → A is satisfied by all relations involving
attribute A. Reading the definition of functional dependency literally, we see that,
for all tuples t1 and t2 such that t1[A] = t2[A], it is the case that t1[A] = t2[A].
Similarly, AB → A is satisfied by all relations involving attribute A. In general,
a functional dependency of the form � → � is trivial if � ⊆ �.

It is important to realize that an instance of a relation may satisfy some func-
tional dependencies that are not required to hold on the relation’s schema. In the
instance of the classroom relation of Figure 8.5, we see that room number → capacity
is satisfied. However, we believe that, in the real world, two classrooms in differ-
ent buildings can have the same room number but with different room capacity.
Thus, it is possible, at some time, to have an instance of the classroom relation
in which room number → capacity is not satisfied. So, we would not include room
number → capacity in the set of functional dependencies that hold on the schema

for the classroom relation. However, we would expect the functional dependency
building, room number → capacity to hold on the classroom schema.

Given that a set of functional dependencies F holds on a relation r (R), it may
be possible to infer that certain other functional dependencies must also hold on

building room number capacity

Packard 101 500
Painter 514 10
Taylor 3128 70
Watson 100 30
Watson 120 50

Figure 8.5 An instance of the classroom relation.
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the relation. For example, given a schema r (A, B, C), if functional dependencies
A → B and B → C , hold on r , we can infer the functional dependency A → C
must also hold on r . This is because, given any value of A there can be only
one corresponding value for B, and for that value of B, there can only be one
corresponding value for C . We study later, in Section 8.4.1, how to make such
inferences.

We will use the notation F + to denote the closure of the set F , that is, the set
of all functional dependencies that can be inferred given the set F . Clearly F +
contains all of the functional dependencies in F .

8.3.2 Boyce–Codd Normal Form

One of the more desirable normal forms that we can obtain is Boyce–Codd
normal form (BCNF). It eliminates all redundancy that can be discovered based
on functional dependencies, though, as we shall see in Section 8.6, there may be
other types of redundancy remaining. A relation schema R is in BCNF with respect
to a set F of functional dependencies if, for all functional dependencies in F + of
the form � → �, where � ⊆ R and � ⊆ R, at least one of the following holds:

• � → � is a trivial functional dependency (that is, � ⊆ �).

• � is a superkey for schema R.

A database design is in BCNF if each member of the set of relation schemas that
constitutes the design is in BCNF.

We have already seen in Section 8.1 an example of a relational schema that is
not in BCNF:

inst dept (ID, name, salary, dept name, building, budget)

The functional dependency dept name → budget holds on inst dept, but dept name
is not a superkey (because, a department may have a number of different instruc-
tors). In Section 8.1.2, we saw that the decomposition of inst dept into instructor
and department is a better design. The instructor schema is in BCNF. All of the
nontrivial functional dependencies that hold, such as:

ID → name, dept name, salary

include ID on the left side of the arrow, and ID is a superkey (actually, in this case,
the primary key) for instructor. (In other words, there is no nontrivial functional
dependency with any combination of name, dept name, and salary, without ID, on
the side.) Thus, instructor is in BCNF.

Similarly, the department schema is in BCNF because all of the nontrivial func-
tional dependencies that hold, such as:

dept name → building, budget
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include dept name on the left side of the arrow, and dept name is a superkey (and
the primary key) for department. Thus, department is in BCNF.

We now state a general rule for decomposing that are not in BCNF. Let R
be a schema that is not in BCNF. Then there is at least one nontrivial functional
dependency � → � such that � is not a superkey for R. We replace R in our design
with two schemas:

• (� ∪ �)

• (R − (� − �))

In the case of inst dept above, � = dept name, � = {building, budget}, and inst dept
is replaced by

• (� ∪ �) = (dept name, building,budget)

• (R − (� − �)) = (ID, name, dept name, salary)

In this example, it turns out that � − � = �. We need to state the rule as we
did so as to deal correctly with functional dependencies that have attributes that
appear on both sides of the arrow. The technical reasons for this are covered later
in Section 8.5.1.

When we decompose a schema that is not in BCNF, it may be that one or more
of the resulting schemas are not in BCNF. In such cases, further decomposition is
required, the eventual result of which is a set of BCNF schemas.

8.3.3 BCNF and Dependency Preservation

We have seen several ways in which to express database consistency constraints:
primary-key constraints, functional dependencies, check constraints, assertions,
and triggers. Testing these constraints each time the database is updated can be
costly and, therefore, it is useful to design the database in a way that constraints
can be tested efficiently. In particular, if testing a functional dependency can be
done by considering just one relation, then the cost of testing this constraint is low.
We shall see that, in some cases, decomposition into BCNF can prevent efficient
testing of certain functional dependencies.

To illustrate this, suppose that we make a small change to our university
organization. In the design of Figure 7.15, a student may have only one advisor.
This follows from the relationship set advisor being many-to-one from student to
advisor. The “small” change we shall make is that an instructor can be associated
with only a single department and a student may have more than one advisor,
but at most one from a given department.3

One way to implement this change using the E-R design is by replacing the
advisor relationship set with a ternary relationship set, dept advisor, involving
entity sets instructor, student, and department that is many-to-one from the pair

3Such an arrangement makes sense for students with a double major.
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dept_name
building
budget

department

dept_advisor

instructor

ID
name
salary

student

ID
name
tot_cred

Figure 8.6 The dept advisor relationship set.

{student, instructor} to department as shown in Figure 8.6. The E-R diagram specifies
the constraint that “a student may have more than one advisor, but at most one
corresponding to a given department”.

With this new E-R diagram, the schemas for the instructor, department, and
student are unchanged. However, the schema derived from dept advisor is now:

dept advisor (s ID, i ID, dept name)

Although not specified in the E-R diagram, suppose we have the additional
constraint that “an instructor can act as advisor for only a single department.”

Then, the following functional dependencies hold on dept advisor:

i ID → dept name
s ID, dept name → i ID

The first functional dependency follows from our requirement that “an instructor
can act as an advisor for only one department.” The second functional dependency
follows from our requirement that “a student may have at most one advisor for a
given department.”

Notice that with this design, we are forced to repeat the department name
once for each time an instructor participates in a dept advisor relationship. We see
that dept advisor is not in BCNF because i ID is not a superkey. Following our rule
for BCNF decomposition, we get:

(s ID, i ID)
(i ID, dept name)

Both the above schemas are BCNF. (In fact, you can verify that any schema with
only two attributes is in BCNF by definition.) Note however, that in our BCNF de-
sign, there is no schema that includes all the attributes appearing in the functional
dependency s ID, dept name → i ID.
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Because our design makes it computationally hard to enforce this functional
dependency, we say our design is not dependency preserving.4 Because depen-
dency preservation is usually considered desirable, we consider another normal
form, weaker than BCNF, that will allow us to preserve dependencies. That normal
form is called third normal form.5

8.3.4 Third Normal Form

BCNF requires that all nontrivial dependencies be of the form � → �, where � is
a superkey. Third normal form (3NF) relaxes this constraint slightly by allowing
certain nontrivial functional dependencies whose left side is not a superkey. Before
we define 3NF, we recall that a candidate key is a minimal superkey—that is, a
superkey no proper subset of which is also a superkey.

A relation schema R is in third normal form with respect to a set F of functional
dependencies if, for all functional dependencies in F + of the form � → �, where
� ⊆ R and � ⊆ R, at least one of the following holds:

• � → � is a trivial functional dependency.

• � is a superkey for R.

• Each attribute A in � − � is contained in a candidate key for R.

Note that the third condition above does not say that a single candidate key must
contain all the attributes in � − �; each attribute A in � − � may be contained in
a different candidate key.

The first two alternatives are the same as the two alternatives in the definition
of BCNF. The third alternative of the 3NF definition seems rather unintuitive, and
it is not obvious why it is useful. It represents, in some sense, a minimal relaxation
of the BCNF conditions that helps ensure that every schema has a dependency-
preserving decomposition into 3NF. Its purpose will become more clear later,
when we study decomposition into 3NF.

Observe that any schema that satisfies BCNF also satisfies 3NF, since each of
its functional dependencies would satisfy one of the first two alternatives. BCNF
is therefore a more restrictive normal form than is 3NF.

The definition of 3NF allows certain functional dependencies that are not
allowed in BCNF. A dependency � → � that satisfies only the third alternative of
the 3NF definition is not allowed in BCNF, but is allowed in 3NF.6

Now, let us again consider the dept advisor relationship set, which has the
following functional dependencies:

4Technically, it is possible that a dependency whose attributes do not all appear in any one schema is still implicitly
enforced, because of the presence of other dependencies that imply it logically. We address that case later, in Section 8.4.5.
5You may have noted that we skipped second normal form. It is of historical significance only and is not used in practice.
6These dependencies are examples of transitive dependencies (see Practice Exercise 8.16). The original definition of
3NF was in terms of transitive dependencies. The definition we use is equivalent but easier to understand.
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i ID → dept name
s ID, dept name → i ID

In Section 8.3.3 we argued that the functional dependency “i ID → dept name”
caused the dept advisor schema not to be in BCNF. Note that here � = i ID, � = dept
name, and � − � = dept name. Since the functional dependency s ID, dept name →

i ID holds on dept advisor, the attribute dept name is contained in a candidate key
and, therefore, dept advisor is in 3NF.

We have seen the trade-off that must be made between BCNF and 3NF when
there is no dependency-preserving BCNF design. These trade-offs are described
in more detail in Section 8.5.4.

8.3.5 Higher Normal Forms

Using functional dependencies to decompose schemas may not be sufficient to
avoid unnecessary repetition of information in certain cases. Consider a slight
variation in the instructor entity-set definition in which we record with each
instructor a set of children’s names and a set of phone numbers. The phone
numbers may be shared by multiple people. Thus, phone number and child name
would be multivalued attributes and, following our rules for generating schemas
from an E-R design, we would have two schemas, one for each of the multivalued
attributes, phone number and child name:

(ID, child name)
(ID, phone number)

If we were to combine these schemas to get

(ID, child name, phone number)

we would find the result to be in BCNF because only nontrivial functional de-
pendencies hold. As a result we might think that such a combination is a good
idea. However, such a combination is a bad idea, as we can see by consider-
ing the example of an instructor with two children and two phone numbers.
For example, let the instructor with ID 99999 have two children named “David”
and “William” and two phone numbers, 512-555-1234 and 512-555-4321. In the
combined schema, we must repeat the phone numbers once for each dependent:

(99999, David, 512-555-1234)
(99999, David, 512-555-4321)
(99999, William, 512-555-1234)
(99999, William, 512-555-4321)

If we did not repeat the phone numbers, and stored only the first and last
tuple, we would have recorded the dependent names and the phone numbers, but
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the resultant tuples would imply that David corresponded to 512-555-1234, while
William corresponded to 512-555-4321. As we know, this would be incorrect.

Because normal forms based on functional dependencies are not sufficient to
deal with situations like this, other dependencies and normal forms have been
defined. We cover these in Sections 8.6 and 8.7.

8.4 Functional-Dependency Theory

We have seen in our examples that it is useful to be able to reason systematically
about functional dependencies as part of a process of testing schemas for BCNF
or 3NF.

8.4.1 Closure of a Set of Functional Dependencies

We shall see that, given a set F of functional dependencies on a schema, we
can prove that certain other functional dependencies also hold on the schema.
We say that such functional dependencies are “logically implied” by F. When
testing for normal forms, it is not sufficient to consider the given set of functional
dependencies; rather, we need to consider all functional dependencies that hold
on the schema.

More formally, given a relational schema r (R), a functional dependency f on
R is logically implied by a set of functional dependencies F on r if every instance
of r (R) that satisfies F also satisfies f .

Suppose we are given a relation schema r (A, B, C , G, H, I ) and the set of
functional dependencies:

A → B
A → C
CG → H
CG → I
B → H

The functional dependency:

A → H

is logically implied. That is, we can show that, whenever a relation satisfies our
given set of functional dependencies, A → H must also be satisfied by that relation.
Suppose that t1 and t2 are tuples such that:

t1[A] = t2[A]

Since we are given that A → B, it follows from the definition of functional depen-
dency that:

t1[B] = t2[B]
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Then, since we are given that B → H, it follows from the definition of functional
dependency that:

t1[H] = t2[H]

Therefore, we have shown that, whenever t1 and t2 are tuples such that t1[A] =
t2[A], it must be that t1[H] = t2[H]. But that is exactly the definition of A → H.

Let F be a set of functional dependencies. The closure of F, denoted by F +,
is the set of all functional dependencies logically implied by F. Given F, we can
compute F + directly from the formal definition of functional dependency. If F
were large, this process would be lengthy and difficult. Such a computation of
F + requires arguments of the type just used to show that A → H is in the closure
of our example set of dependencies.

Axioms, or rules of inference, provide a simpler technique for reasoning about
functional dependencies. In the rules that follow, we use Greek letters (�, �, � ,
. . . ) for sets of attributes, and uppercase Roman letters from the beginning of the
alphabet for individual attributes. We use �� to denote � ∪ �.

We can use the following three rules to find logically implied functional
dependencies. By applying these rules repeatedly, we can find all of F +, given F.
This collection of rules is called Armstrong’s axioms in honor of the person who
first proposed it.

• Reflexivity rule. If � is a set of attributes and � ⊆ �, then � → � holds.

• Augmentation rule. If � → � holds and � is a set of attributes, then
�� → �� holds.

• Transitivity rule. If � → � holds and � → � holds, then � → � holds.

Armstrong’s axioms are sound, because they do not generate any incorrect
functional dependencies. They are complete, because, for a given set F of func-
tional dependencies, they allow us to generate all F +. The bibliographical notes
provide references for proofs of soundness and completeness.

Although Armstrong’s axioms are complete, it is tiresome to use them directly
for the computation of F +. To simplify matters further, we list additional rules.
It is possible to use Armstrong’s axioms to prove that these rules are sound (see
Practice Exercises 8.4 and 8.5 and Exercise 8.26).

• Union rule. If � → � holds and � → � holds, then � → �� holds.

• Decomposition rule. If � → �� holds, then � → � holds and � → � holds.

• Pseudotransitivity rule. If � → � holds and �� → � holds, then �� → �
holds.

Let us apply our rules to the example of schema R = (A, B, C , G, H, I ) and the
set F of functional dependencies {A → B, A → C , CG → H, CG → I , B → H}.
We list several members of F + here:
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• A → H. Since A → B and B → H hold, we apply the transitivity rule.
Observe that it was much easier to use Armstrong’s axioms to show that
A → H holds than it was to argue directly from the definitions, as we did
earlier in this section.

• CG → HI . Since CG → H and CG → I , the union rule implies that CG →
HI .

• AG → I . Since A → C and CG → I , the pseudotransitivity rule implies that
AG → I holds.

Another way of finding that AG → I holds is as follows: We use the
augmentation rule on A → C to infer AG → CG. Applying the transitivity
rule to this dependency and CG → I , we infer AG → I .

Figure 8.7 shows a procedure that demonstrates formally how to use Arm-
strong’s axioms to compute F +. In this procedure, when a functional dependency
is added to F +, it may be already present, and in that case there is no change to
F +. We shall see an alternative way of computing F + in Section 8.4.2.

The left-hand and right-hand sides of a functional dependency are both sub-
sets of R. Since a set of size n has 2n subsets, there are a total of 2n × 2n = 22n

possible functional dependencies, where n is the number of attributes in R. Each
iteration of the repeat loop of the procedure, except the last iteration, adds at least
one functional dependency to F +. Thus, the procedure is guaranteed to terminate.

8.4.2 Closure of Attribute Sets

We say that an attribute B is functionally determined by � if � → B. To test
whether a set � is a superkey, we must devise an algorithm for computing the set
of attributes functionally determined by �. One way of doing this is to compute
F +, take all functional dependencies with � as the left-hand side, and take the
union of the right-hand sides of all such dependencies. However, doing so can be
expensive, since F + can be large.

An efficient algorithm for computing the set of attributes functionally deter-
mined by � is useful not only for testing whether � is a superkey, but also for
several other tasks, as we shall see later in this section.

F + = F
repeat

for each functional dependency f in F +
apply reflexivity and augmentation rules on f
add the resulting functional dependencies to F +

for each pair of functional dependencies f1 and f2 in F +
if f1 and f2 can be combined using transitivity

add the resulting functional dependency to F +
until F + does not change any further

Figure 8.7 A procedure to compute F +.
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result := �;
repeat

for each functional dependency � → � in F do
begin

if � ⊆ result then result := result ∪ � ;
end

until (result does not change)

Figure 8.8 An algorithm to compute �+, the closure of � under F.

Let � be a set of attributes. We call the set of all attributes functionally de-
termined by � under a set F of functional dependencies the closure of � under
F; we denote it by �+. Figure 8.8 shows an algorithm, written in pseudocode,
to compute �+. The input is a set F of functional dependencies and the set � of
attributes. The output is stored in the variable result.

To illustrate how the algorithm works, we shall use it to compute (AG)+ with
the functional dependencies defined in Section 8.4.1. We start with result = AG .
The first time that we execute the repeat loop to test each functional dependency,
we find that:

• A → B causes us to include B in result. To see this fact, we observe that
A → B is in F, A ⊆ result (which is AG), so result := result ∪B.

• A → C causes result to become ABCG.

• CG → H causes result to become ABCGH.

• CG → I causes result to become ABCGHI.

The second time that we execute the repeat loop, no new attributes are added to
result, and the algorithm terminates.

Let us see why the algorithm of Figure 8.8 is correct. The first step is correct,
since � → � always holds (by the reflexivity rule). We claim that, for any subset �
of result, � → �. Since we start the repeat loop with � → result being true, we can
add � to result only if � ⊆ result and � → � . But then result → � by the reflexivity
rule, so � → � by transitivity. Another application of transitivity shows that � →
� (using � → � and � → � ). The union rule implies that � → result ∪ � , so �
functionally determines any new result generated in the repeat loop. Thus, any
attribute returned by the algorithm is in �+.

It is easy to see that the algorithm finds all of �+. If there is an attribute in �+
that is not yet in result at any point during the execution, then there must be a
functional dependency � → � for which � ⊆ result, and at least one attribute in �
is not in result. When the algorithm terminates, all such functional dependencies
have been processed, and the attributes in � added to result; we can thus be sure
that all attributes in �+ are in result.
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It turns out that, in the worst case, this algorithm may take an amount of
time quadratic in the size of F. There is a faster (although slightly more complex)
algorithm that runs in time linear in the size of F; that algorithm is presented as
part of Practice Exercise 8.8.

There are several uses of the attribute closure algorithm:

• To test if � is a superkey, we compute �+, and check if �+ contains all attributes
in R.

• We can check if a functional dependency � → � holds (or, in other words,
is in F +), by checking if � ⊆ �+. That is, we compute �+ by using attribute
closure, and then check if it contains �. This test is particularly useful, as we
shall see later in this chapter.

• It gives us an alternative way to compute F +: For each � ⊆ R, we find the
closure �+, and for each S ⊆ �+, we output a functional dependency � → S.

8.4.3 Canonical Cover

Suppose that we have a set of functional dependencies F on a relation schema.
Whenever a user performs an update on the relation, the database system must
ensure that the update does not violate any functional dependencies, that is, all
the functional dependencies in F are satisfied in the new database state.

The system must roll back the update if it violates any functional dependen-
cies in the set F .

We can reduce the effort spent in checking for violations by testing a simplified
set of functional dependencies that has the same closure as the given set. Any
database that satisfies the simplified set of functional dependencies also satisfies
the original set, and vice versa, since the two sets have the same closure. However,
the simplified set is easier to test. We shall see how the simplified set can be
constructed in a moment. First, we need some definitions.

An attribute of a functional dependency is said to be extraneous if we can
remove it without changing the closure of the set of functional dependencies.
The formal definition of extraneous attributes is as follows: Consider a set F of
functional dependencies and the functional dependency � → � in F.

• Attribute A is extraneous in � if A ∈ �, and F logically implies (F − {� →
�}) ∪ {(� − A) → �}.

• Attribute A is extraneous in � if A ∈ �, and the set of functional dependencies
(F − {� → �}) ∪ {� → (� − A)} logically implies F.

For example, suppose we have the functional dependencies AB → C and
A → C in F . Then, B is extraneous in AB → C . As another example, suppose we
have the functional dependencies AB → C D and A → C in F . Then C would be
extraneous in the right-hand side of AB → C D.

Beware of the direction of the implications when using the definition of ex-
traneous attributes: If you exchange the left-hand side with the right-hand side,
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Fc = F
repeat

Use the union rule to replace any dependencies in Fc of the form
�1 → �1 and �1 → �2 with �1 → �1 �2.

Find a functional dependency � → � in Fc with an extraneous
attribute either in � or in �.
/* Note: the test for extraneous attributes is done using Fc , not F */

If an extraneous attribute is found, delete it from � → � in Fc .
until (Fc does not change)

Figure 8.9 Computing canonical cover.

the implication will always hold. That is, (F − {� → �}) ∪ {(� − A) → �} al-
ways logically implies F, and also F always logically implies (F − {� → �}) ∪
{� → (� − A)}.

Here is how we can test efficiently if an attribute is extraneous. Let R be the
relation schema, and let F be the given set of functional dependencies that hold
on R. Consider an attribute A in a dependency � → �.

• If A ∈ �, to check if A is extraneous, consider the set

F ′ = (F − {� → �}) ∪ {� → (� − A)}
and check if � → Acan be inferred from F ′. To do so, compute �+ (the closure
of �) under F ′; if �+ includes A, then A is extraneous in �.

• If A ∈ �, to check if A is extraneous, let � = � − {A}, and check if � → � can
be inferred from F . To do so, compute �+ (the closure of � ) under F ; if �+
includes all attributes in �, then A is extraneous in �.

For example, suppose F contains AB → C D, A → E , and E → C . To check
if C is extraneous in AB → C D, we compute the attribute closure of AB under
F ′ = {AB → D, A → E , and E → C}. The closure is ABC DE , which includes
C D, so we infer that C is extraneous.

A canonical cover Fc for F is a set of dependencies such that F logically
implies all dependencies in Fc , and Fc logically implies all dependencies in F.
Furthermore, Fc must have the following properties:

• No functional dependency in Fc contains an extraneous attribute.

• Each left side of a functional dependency in Fc is unique. That is, there are
no two dependencies �1 → �1 and �2 → �2 in Fc such that �1 = �2.

A canonical cover for a set of functional dependencies F can be computed as
depicted in Figure 8.9. It is important to note that when checking if an attribute is
extraneous, the check uses the dependencies in the current value of Fc , and not
the dependencies in F . If a functional dependency contains only one attribute
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in its right-hand side, for example A → C , and that attribute is found to be
extraneous, we would get a functional dependency with an empty right-hand
side. Such functional dependencies should be deleted.

The canonical cover of F , Fc , can be shown to have the same closure as F ;
hence, testing whether Fc is satisfied is equivalent to testing whether F is satis-
fied. However, Fc is minimal in a certain sense—it does not contain extraneous
attributes, and it combines functional dependencies with the same left side. It is
cheaper to test Fc than it is to test F itself.

Consider the following set F of functional dependencies on schema (A, B, C):

A → BC
B → C
A → B
AB → C

Let us compute the canonical cover for F.

• There are two functional dependencies with the same set of attributes on the
left side of the arrow:

A → BC
A → B

We combine these functional dependencies into A → BC.

• A is extraneous in AB → C because F logically implies (F − {AB → C}) ∪
{B → C}. This assertion is true because B → C is already in our set of
functional dependencies.

• C is extraneous in A → BC, since A → BC is logically implied by A → B and
B → C.

Thus, our canonical cover is:

A → B
B → C

Given a set F of functional dependencies, it may be that an entire functional
dependency in the set is extraneous, in the sense that dropping it does not change
the closure of F . We can show that a canonical cover Fc of F contains no such
extraneous functional dependency. Suppose that, to the contrary, there were such
an extraneous functional dependency in Fc . The right-side attributes of the de-
pendency would then be extraneous, which is not possible by the definition of
canonical covers.

A canonical cover might not be unique. For instance, consider the set of
functional dependencies F = {A → BC , B → AC , and C → AB}. If we apply
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the extraneity test to A → BC , we find that both B and C are extraneous under
F . However, it is incorrect to delete both! The algorithm for finding the canonical
cover picks one of the two, and deletes it. Then,

1. If C is deleted, we get the set F ′ = {A → B, B → AC , and C → AB}. Now, B
is not extraneous in the side of A → B under F ′. Continuing the algorithm,
we find A and B are extraneous in the right-hand side of C → AB, leading
to two canonical covers

Fc = {A → B, B → C , C → A}
Fc = {A → B, B → AC , C → B}.

2. If B is deleted, we get the set {A → C , B → AC , and C → AB}. This case is
symmetrical to the previous case, leading to the canonical covers

Fc = {A → C , C → B, and B → A}
Fc = {A → C , B → C , and C → AB}.

As an exercise, can you find one more canonical cover for F ?

8.4.4 Lossless Decomposition

Let r (R) be a relation schema, and let F be a set of functional dependencies on
r (R). Let R1 and R2 form a decomposition of R. We say that the decomposition is
a lossless decomposition if there is no loss of information by replacing r (R) with
two relation schemas r1(R1) and r2(R2). More precisely, we say the decomposition
is lossless if, for all legal database instances (that is, database instances that satisfy
the specified functional dependencies and other constraints), relation r contains
the same set of tuples as the result of the following SQL query:

select *
from (select R1 from r)

natural join
(select R2 from r)

This is stated more succinctly in the relational algebra as:

�R1 (r ) � �R2 (r ) = r

In other words, if we project r onto R1 and R2, and compute the natural join
of the projection results, we get back exactly r . A decomposition that is not a
lossless decomposition is called a lossy decomposition. The terms lossless-join
decomposition and lossy-join decomposition are sometimes used in place of
lossless decomposition and lossy decomposition.

As an example of a lossy decomposition, recall the decomposition of the
employee schema into:
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employee1 (ID, name)
employee2 (name, street, city, salary)

that we saw earlier in Section 8.1.2. As we saw in Figure 8.3, the result of employee1
� employee2 is a superset of the original relation employee, but the decomposition
is lossy since the join result has lost information about which employee identi-
fiers correspond to which addresses and salaries, in the case where two or more
employees have the same name.

We can use functional dependencies to show when certain decompositions are
lossless. Let R, R1, R2, and F be as above. R1 and R2 form a lossless decomposition
of R if at least one of the following functional dependencies is in F +:

• R1 ∩ R2 → R1

• R1 ∩ R2 → R2

In other words, if R1 ∩ R2 forms a superkey of either R1 or R2, the decomposition
of R is a lossless decomposition. We can use attribute closure to test efficiently for
superkeys, as we have seen earlier.

To illustrate this, consider the schema

inst dept (ID, name, salary, dept name, building, budget)

that we decomposed in Section 8.1.2 into the instructor and department schemas:

instructor (ID, name, dept name, salary)
department (dept name, building, budget)

Consider the intersection of these two schemas, which is dept name. We see that
because dept name→ dept name, building, budget, the lossless-decomposition rule
is satisfied.

For the general case of decomposition of a schema into multiple schemas at
once, the test for lossless decomposition is more complicated. See the bibliograph-
ical notes for references on the topic.

While the test for binary decomposition is clearly a sufficient condition for
lossless decomposition, it is a necessary condition only if all constraints are func-
tional dependencies. We shall see other types of constraints later (in particular,
a type of constraint called multivalued dependencies discussed in Section 8.6.1),
that can ensure that a decomposition is lossless even if no functional dependencies
are present.

8.4.5 Dependency Preservation

Using the theory of functional dependencies, it is easier to characterize depen-
dency preservation than using the ad-hoc approach we took in Section 8.3.3.
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Let F be a set of functional dependencies on a schema R, and let R1, R2, . . . , Rn
be a decomposition of R. The restriction of F to Ri is the set Fi of all functional
dependencies in F + that include only attributes of Ri . Since all functional depen-
dencies in a restriction involve attributes of only one relation schema, it is possible
to test such a dependency for satisfaction by checking only one relation.

Note that the definition of restriction uses all dependencies in F +, not just
those in F . For instance, suppose F = {A → B, B → C}, and we have a decompo-
sition into AC and AB. The restriction of F to AC includes A → C , since A → C
is in F +, even though it is not in F .

The set of restrictions F1, F2, . . . , Fn is the set of dependencies that can be
checked efficiently. We now must ask whether testing only the restrictions is
sufficient. Let F ′ = F1 ∪ F2 ∪ · · · ∪ Fn. F ′ is a set of functional dependencies
on schema R, but, in general, F ′ �= F . However, even if F ′ �= F , it may be that
F ′+ = F +. If the latter is true, then every dependency in F is logically implied by
F ′, and, if we verify that F ′ is satisfied, we have verified that F is satisfied. We say
that a decomposition having the property F ′+ = F + is a dependency-preserving
decomposition.

Figure 8.10 shows an algorithm for testing dependency preservation. The
input is a set D = {R1, R2, . . . , Rn} of decomposed relation schemas, and a
set F of functional dependencies. This algorithm is expensive since it requires
computation of F +. Instead of applying the algorithm of Figure 8.10, we consider
two alternatives.

First, note that if each member of F can be tested on one of the relations of the
decomposition, then the decomposition is dependency preserving. This is an easy
way to show dependency preservation; however, it does not always work. There
are cases where, even though the decomposition is dependency preserving, there
is a dependency in F that cannot be tested in any one relation in the decomposition.
Thus, this alternative test can be used only as a sufficient condition that is easy

compute F +;
for each schema Ri in D do

begin
Fi : = the restriction of F + to Ri ;

end
F ′ := ∅
for each restriction Fi do

begin
F ′ = F ′ ∪ Fi

end
compute F ′+;
if (F ′+ = F +) then return (true)

else return (false);

Figure 8.10 Testing for dependency preservation.
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to check; if it fails we cannot conclude that the decomposition is not dependency
preserving; instead we will have to apply the general test.

We now give a second alternative test for dependency preservation that avoids
computing F +. We explain the intuition behind the test after presenting the test.
The test applies the following procedure to each � → � in F .

result = �
repeat

for each Ri in the decomposition
t = (result ∩ Ri )+ ∩ Ri
result = result ∪ t

until (result does not change)

The attribute closure here is under the set of functional dependencies F . If result
contains all attributes in �, then the functional dependency � → � is preserved.
The decomposition is dependency preserving if and only if the procedure shows
that all the dependencies in F are preserved.

The two key ideas behind the above test are as follows:

• The first idea is to test each functional dependency � → � in F to see if it is
preserved in F ′ (where F ′ is as defined in Figure 8.10). To do so, we compute
the closure of � under F ′; the dependency is preserved exactly when the
closure includes �. The decomposition is dependency preserving if (and only
if) all the dependencies in F are found to be preserved.

• The second idea is to use a modified form of the attribute-closure algorithm
to compute closure under F ′, without actually first computing F ′. We wish to
avoid computing F ′ since computing it is quite expensive. Note that F ′ is the
union of Fi , where Fi is the restriction of F on Ri . The algorithm computes the
attribute closure of (result ∩ Ri ) with respect to F , intersects the closure with
Ri , and adds the resultant set of attributes to result; this sequence of steps is
equivalent to computing the closure of result under Fi . Repeating this step
for each i inside the while loop gives the closure of result under F ′.

To understand why this modified attribute-closure approach works cor-
rectly, we note that for any � ⊆ Ri , � → �+ is a functional dependency in
F +, and � → �+ ∩ Ri is a functional dependency that is in Fi , the restriction
of F + to Ri . Conversely, if � → � were in Fi , then � would be a subset of
�+ ∩ Ri .

This test takes polynomial time, instead of the exponential time required to
compute F +.

8.5 Algorithms for Decomposition

Real-world database schemas are much larger than the examples that fit in the
pages of a book. For this reason, we need algorithms for the generation of designs
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that are in appropriate normal form. In this section, we present algorithms for
BCNF and 3NF.

8.5.1 BCNF Decomposition

The definition of BCNF can be used directly to test if a relation is in BCNF. However,
computation of F + can be a tedious task. We first describe below simplified
tests for verifying if a relation is in BCNF. If a relation is not in BCNF, it can
be decomposed to create relations that are in BCNF. Later in this section, we
describe an algorithm to create a lossless decomposition of a relation, such that
the decomposition is in BCNF.

8.5.1.1 Testing for BCNF

Testing of a relation schema R to see if it satisfies BCNF can be simplified in some
cases:

• To check if a nontrivial dependency � → � causes a violation of BCNF,
compute �+ (the attribute closure of �), and verify that it includes all attributes
of R; that is, it is a superkey of R.

• To check if a relation schema R is in BCNF, it suffices to check only the
dependencies in the given set F for violation of BCNF, rather than check all
dependencies in F +.

We can show that if none of the dependencies in F causes a violation of
BCNF, then none of the dependencies in F + will cause a violation of BCNF,
either.

Unfortunately, the latter procedure does not work when a relation is decomposed.
That is, it does not suffice to use F when we test a relation Ri , in a decomposition of
R, for violation of BCNF. For example, consider relation schema R (A, B, C, D, E),
with functional dependencies F containing A → B and BC → D. Suppose
this were decomposed into R1(A, B) and R2(A, C, D, E). Now, neither of the
dependencies in F contains only attributes from (A, C, D, E) so we might be
misled into thinking R2 satisfies BCNF. In fact, there is a dependency AC → D
in F + (which can be inferred using the pseudotransitivity rule from the two
dependencies in F ) that shows that R2 is not in BCNF. Thus, we may need a
dependency that is in F +, but is not in F , to show that a decomposed relation is
not in BCNF.

An alternative BCNF test is sometimes easier than computing every depen-
dency in F +. To check if a relation Ri in a decomposition of R is in BCNF, we apply
this test:

• For every subset � of attributes in Ri , check that �+ (the attribute closure
of � under F ) either includes no attribute of Ri − �, or includes all attributes
of Ri .
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result := {R};
done := false;
compute F +;
while (not done) do

if (there is a schema Ri in result that is not in BCNF)
then begin

let � → � be a nontrivial functional dependency that holds
on Ri such that � → Ri is not in F +, and � ∩ � = ∅ ;
result := (result − Ri ) ∪ (Ri − �) ∪ ( �, �);

end
else done := true;

Figure 8.11 BCNF decomposition algorithm.

If the condition is violated by some set of attributes � in Ri , consider the following
functional dependency, which can be shown to be present in F +:

� → (�+ − �) ∩ Ri .

The above dependency shows that Ri violates BCNF.

8.5.1.2 BCNF Decomposition Algorithm

We are now able to state a general method to decompose a relation schema so
as to satisfy BCNF. Figure 8.11 shows an algorithm for this task. If R is not in
BCNF, we can decompose R into a collection of BCNF schemas R1, R2, . . . , Rn by
the algorithm. The algorithm uses dependencies that demonstrate violation of
BCNF to perform the decomposition.

The decomposition that the algorithm generates is not only in BCNF, but is
also a lossless decomposition. To see why our algorithm generates only lossless
decompositions, we note that, when we replace a schema Ri with (Ri − �) and
(�, �), the dependency � → � holds, and (Ri − �) ∩ (�, �) = �.

If we did not require � ∩ � = ∅, then those attributes in � ∩ � would not
appear in the schema (Ri − �) and the dependency � → � would no longer hold.

It is easy to see that our decomposition of inst dept in Section 8.3.2 would
result from applying the algorithm. The functional dependency dept name →
building, budget satisfies the � ∩ � = ∅ condition and would therefore be chosen
to decompose the schema.

The BCNF decomposition algorithm takes time exponential in the size of the
initial schema, since the algorithm for checking if a relation in the decomposition
satisfies BCNF can take exponential time. The bibliographical notes provide ref-
erences to an algorithm that can compute a BCNF decomposition in polynomial
time. However, the algorithm may “overnormalize,” that is, decompose a relation
unnecessarily.

As a longer example of the use of the BCNF decomposition algorithm, suppose
we have a database design using the class schema below:
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class (course id, title, dept name, credits, sec id, semester, year, building,
room number, capacity, time slot id)

The set of functional dependencies that we require to hold on class are:

course id → title, dept name, credits
building, room number → capacity
course id, sec id, semester, year→ building, room number, time slot id

A candidate key for this schema is {course id, sec id, semester, year}.
We can apply the algorithm of Figure 8.11 to the class example as follows:

• The functional dependency:

course id → title, dept name, credits

holds, but course id is not a superkey. Thus, class is not in BCNF. We replace
class by:

course(course id, title, dept name, credits)
class-1 (course id, sec id, semester, year, building, room number

capacity, time slot id)

The only nontrivial functional dependencies that hold on course include course
id on the left side of the arrow. Since course id is a key for course, the relation

course is in BCNF.

• A candidate key for class-1 is {course id, sec id, semester, year}. The functional
dependency:

building, room number → capacity

holds on class-1, but {building, room number} is not a superkey for class-1. We
replace class-1 by:

classroom (building, room number, capacity)
section (course id, sec id, semester, year,

building, room number, time slot id)

classroom and section are in BCNF.

Thus, the decomposition of class results in the three relation schemas course, class-
room, and section, each of which is in BCNF. These correspond to the schemas that
we have used in this, and previous, chapters. You can verify that the decomposi-
tion is lossless and dependency preserving.
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let Fc be a canonical cover for F;
i := 0;
for each functional dependency � → � in Fc

i := i + 1;
Ri := � �;

if none of the schemas Rj , j = 1, 2, . . . , i contains a candidate key for R
then

i := i + 1;
Ri := any candidate key for R;

/* Optionally, remove redundant relations */
repeat

if any schema Rj is contained in another schema Rk
then

/* Delete Rj */
Rj := Ri ;
i := i - 1;

until no more Rj s can be deleted
return (R1, R2, . . . , Ri )

Figure 8.12 Dependency-preserving, lossless decomposition into 3NF.

8.5.2 3NF Decomposition

Figure 8.12 shows an algorithm for finding a dependency-preserving, lossless
decomposition into 3NF. The set of dependencies Fc used in the algorithm is
a canonical cover for F. Note that the algorithm considers the set of schemas
Rj , j = 1, 2, . . . , i ; initially i = 0, and in this case the set is empty.

Let us apply this algorithm to our example of Section 8.3.4, where we showed
that:

dept advisor (s ID, i ID, dept name)

is in 3NF even though it is not in BCNF. The algorithm uses the following functional
dependencies in F :

f1: i ID → dept name
f2: s ID, dept name → i ID

There are no extraneous attributes in any of the functional dependencies in
F , so Fc contains f1 and f2. The algorithm then generates as R1 the schema, (i ID
dept name), and as R2 the schema (s ID, dept name, i ID). The algorithm then finds
that R2 contains a candidate key, so no further relation schema is created.

The resultant set of schemas can contain redundant schemas, with one schema
Rk containing all the attributes of another schema Rj . For example, R2 above
contains all the attributes from R1. The algorithm deletes all such schemas that
are contained in another schema. Any dependencies that could be tested on an
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Rj that is deleted can also be tested on the corresponding relation Rk , and the
decomposition is lossless even if Rj is deleted.

Now let us consider again the class schema of Section 8.5.1.2 and apply the
3NF decomposition algorithm. The set of functional dependencies we listed there
happen to be a canonical cover. As a result, the algorithm gives us the same three
schemas course, classroom, and section.

The above example illustrates an interesting property of the 3NF algorithm.
Sometimes, the result is not only in 3NF, but also in BCNF. This suggests an
alternative method of generating a BCNF design. First use the 3NF algorithm.
Then, for any schema in the 3NF design that is not in BCNF, decompose using
the BCNF algorithm. If the result is not dependency-preserving, revert to the 3NF
design.

8.5.3 Correctness of the 3NF Algorithm

The 3NF algorithm ensures the preservation of dependencies by explicitly building
a schema for each dependency in a canonical cover. It ensures that the decomposi-
tion is a lossless decomposition by guaranteeing that at least one schema contains
a candidate key for the schema being decomposed. Practice Exercise 8.14 provides
some insight into the proof that this suffices to guarantee a lossless decomposition.

This algorithm is also called the 3NF synthesis algorithm, since it takes a
set of dependencies and adds one schema at a time, instead of decomposing
the initial schema repeatedly. The result is not uniquely defined, since a set of
functional dependencies can have more than one canonical cover, and, further, in
some cases, the result of the algorithm depends on the order in which it considers
the dependencies in Fc . The algorithm may decompose a relation even if it is
already in 3NF; however, the decomposition is still guaranteed to be in 3NF.

If a relation Ri is in the decomposition generated by the synthesis algorithm,
then Ri is in 3NF. Recall that when we test for 3NF it suffices to consider functional
dependencies whose right-hand side is a single attribute. Therefore, to see that
Ri is in 3NF you must convince yourself that any functional dependency � → B
that holds on Ri satisfies the definition of 3NF. Assume that the dependency that
generated Ri in the synthesis algorithm is � → �. Now, B must be in � or �, since
B is in Ri and � → � generated Ri . Let us consider the three possible cases:

• B is in both � and �. In this case, the dependency � → � would not have
been in Fc since B would be extraneous in �. Thus, this case cannot hold.

• B is in � but not �. Consider two cases:

◦ � is a superkey. The second condition of 3NF is satisfied.

◦ � is not a superkey. Then � must contain some attribute not in � . Now,
since � → B is in F +, it must be derivable from Fc by using the attribute
closure algorithm on � . The derivation could not have used � → �—
if it had been used, � must be contained in the attribute closure of � ,
which is not possible, since we assumed � is not a superkey. Now, using
� → (� − {B}) and � → B, we can derive � → B (since � ⊆ ��, and �
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cannot contain B because � → B is nontrivial). This would imply that B
is extraneous in the right-hand side of � → �, which is not possible since
� → � is in the canonical cover Fc . Thus, if B is in �, then � must be a
superkey, and the second condition of 3NF must be satisfied.

• B is in � but not �.
Since � is a candidate key, the third alternative in the definition of 3NF is
satisfied.

Interestingly, the algorithm we described for decomposition into 3NF can be
implemented in polynomial time, even though testing a given relation to see if it
satisfies 3NF is NP-hard (which means that it is very unlikely that a polynomial-
time algorithm will ever be invented for this task).

8.5.4 Comparison of BCNF and 3NF

Of the two normal forms for relational database schemas, 3NF and BCNF there are
advantages to 3NF in that we know that it is always possible to obtain a 3NF design
without sacrificing losslessness or dependency preservation. Nevertheless, there
are disadvantages to 3NF: We may have to use null values to represent some of
the possible meaningful relationships among data items, and there is the problem
of repetition of information.

Our goals of database design with functional dependencies are:

1. BCNF.

2. Losslessness.

3. Dependency preservation.

Since it is not always possible to satisfy all three, we may be forced to choose
between BCNF and dependency preservation with 3NF.

It is worth noting that SQL does not provide a way of specifying functional
dependencies, except for the special case of declaring superkeys by using the
primary key or unique constraints. It is possible, although a little complicated, to
write assertions that enforce a functional dependency (see Practice Exercise 8.9);
unfortunately, currently no database system supports the complex assertions that
are required to enforce a functional dependency, and the assertions would be
expensive to test. Thus even if we had a dependency-preserving decomposition,
if we use standard SQL we can test efficiently only those functional dependencies
whose left-hand side is a key.

Although testing functional dependencies may involve a join if the decom-
position is not dependency preserving, we could in principle reduce the cost by
using materialized views, which many database systems support, provided the
database system supports primary key constraints on materialized views. Given
a BCNF decomposition that is not dependency preserving, we consider each de-
pendency in a canonical cover Fc that is not preserved in the decomposition. For
each such dependency � → �, we define a materialized view that computes a
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join of all relations in the decomposition, and projects the result on ��. The func-
tional dependency can be tested easily on the materialized view, using one of the
constraints unique (�) or primary key (�).

On the negative side, there is a space and time overhead due to the material-
ized view, but on the positive side, the application programmer need not worry
about writing code to keep redundant data consistent on updates; it is the job of
the database system to maintain the materialized view, that is, keep it up to date
when the database is updated. (Later in the book, in Section 13.5, we outline how
a database system can perform materialized view maintenance efficiently.)

Unfortunately, most current database systems do not support constraints on
materialized views. Although the Oracle database does support constraints on
materialized views, by default it performs view maintenance when the view is
accessed, not when the underlying relation is updated;7 as a result a constraint
violation may get detected well after the update has been performed, which
makes the detection useless.

Thus, in case we are not able to get a dependency-preserving BCNF decom-
position, it is generally preferable to opt for BCNF, since checking functional
dependencies other than primary key constraints is difficult in SQL.

8.6 Decomposition Using Multivalued Dependencies

Some relation schemas, even though they are in BCNF, do not seem to be suffi-
ciently normalized, in the sense that they still suffer from the problem of repetition
of information. Consider a variation of the university organization where an in-
structor may be associated with multiple departments.

inst (ID, dept name, name, street, city)

The astute reader will recognize this schema as a non-BCNF schema because of
the functional dependency

ID → name, street, city

and because ID is not a key for inst.
Further assume that an instructor may have several addresses (say, a winter

home and a summer home). Then, we no longer wish to enforce the functional
dependency “ID→ street, city”, though, of course, we still want to enforce “ID →
name” (that is, the university is not dealing with instructors who operate under
multiple aliases!). Following the BCNF decomposition algorithm, we obtain two
schemas:

7At least as of Oracle version 10g.
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r1 (ID, name)
r2 (ID, dept name, street, city)

Both of these are in BCNF (recall that an instructor can be associated with multi-
ple departments and a department may have several instructors, and therefore,
neither “ID → dept name” nor “dept name → ID” hold).

Despite r2 being in BCNF, there is redundancy. We repeat the address informa-
tion of each residence of an instructor once for each department with which the
instructor is associated. We could solve this problem by decomposing r2 further
into:

r21(dept name, ID)
r22(ID, street, city)

but there is no constraint that leads us to do this.
To deal with this problem, we must define a new form of constraint, called

a multivalued dependency. As we did for functional dependencies, we shall use
multivalued dependencies to define a normal form for relation schemas. This
normal form, called fourth normal form (4NF), is more restrictive than BCNF. We
shall see that every 4NF schema is also in BCNF but there are BCNF schemas that
are not in 4NF.

8.6.1 Multivalued Dependencies

Functional dependencies rule out certain tuples from being in a relation. If A → B,
then we cannot have two tuples with the same A value but different B values.
Multivalued dependencies, on the other hand, do not rule out the existence of
certain tuples. Instead, they require that other tuples of a certain form be present in
the relation. For this reason, functional dependencies sometimes are referred to as
equality-generating dependencies, and multivalued dependencies are referred
to as tuple-generating dependencies.

Let r (R) be a relation schema and let � ⊆ R and � ⊆ R. The multivalued
dependency

� →→ �

holds on R if, in any legal instance of relation r (R), for all pairs of tuples t1 and t2
in r such that t1[�] = t2[�], there exist tuples t3 and t4 in r such that

t1[�] = t2[�] = t3[�] = t4[�]
t3[�] = t1[�]
t3[R − �] = t2[R − �]
t4[�] = t2[�]
t4[R − �] = t1[R − �]
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α α ββ –R –
t1
t2
t3
t4

a1 . . . ai
a1 . . . ai
a1 . . . ai
a1 . . . ai

ai + 1 . . . aj
bi + 1 . . . bj
ai + 1 . . . aj
bi + 1 . . . bj

aj + 1 . . . an
bj + 1 . . . bn
bj + 1 . . . bn
aj + 1 . . . an

Figure 8.13 Tabular representation of � →→ �.

This definition is less complicated than it appears to be. Figure 8.13 gives a tabular
picture of t1, t2, t3, and t4. Intuitively, the multivalued dependency � →→ � says
that the relationship between � and � is independent of the relationship between
� and R−�. If the multivalued dependency � →→ � is satisfied by all relations on
schema R, then � →→ � is a trivial multivalued dependency on schema R. Thus,
� →→ � is trivial if � ⊆ � or � ∪ � = R.

To illustrate the difference between functional and multivalued dependencies,
we consider the schema r2 again, and an example relation on that schema shown
in Figure 8.14. We must repeat the department name once for each address that an
instructor has, and we must repeat the address for each department with which
an instructor is associated. This repetition is unnecessary, since the relationship
between an instructor and his address is independent of the relationship between
that instructor and a department. If an instructor with ID 22222 is associated with
the Physics department, we want that department to be associated with all of that
instructor’s addresses. Thus, the relation of Figure 8.15 is illegal. To make this
relation legal, we need to add the tuples (Physics, 22222, Main, Manchester) and
(Math, 22222, North, Rye) to the relation of Figure 8.15.

Comparing the preceding example with our definition of multivalued depen-
dency, we see that we want the multivalued dependency:

ID →→ street, city

to hold. (The multivalued dependency ID →→ dept name will do as well. We shall
soon see that they are equivalent.)

As with functional dependencies, we shall use multivalued dependencies in
two ways:

1. To test relations to determine whether they are legal under a given set of
functional and multivalued dependencies

ID dept name street city

22222 Physics North Rye
22222 Physics Main Manchester
12121 Finance Lake Horseneck

Figure 8.14 An example of redundancy in a relation on a BCNF schema.
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ID dept name street city

22222 Physics North Rye
22222 Math Main Manchester

Figure 8.15 An illegal r2 relation.

2. To specify constraints on the set of legal relations; we shall thus concern
ourselves with only those relations that satisfy a given set of functional and
multivalued dependencies

Note that, if a relation r fails to satisfy a given multivalued dependency, we can
construct a relation r ′ that does satisfy the multivalued dependency by adding
tuples to r.

Let D denote a set of functional and multivalued dependencies. The closure
D+ of D is the set of all functional and multivalued dependencies logically im-
plied by D. As we did for functional dependencies, we can compute D+ from
D, using the formal definitions of functional dependencies and multivalued de-
pendencies. We can manage with such reasoning for very simple multivalued
dependencies. Luckily, multivalued dependencies that occur in practice appear
to be quite simple. For complex dependencies, it is better to reason about sets of
dependencies by using a system of inference rules.

From the definition of multivalued dependency, we can derive the following
rules for �, � ⊆ R:

• If � → �, then � →→ �. In other words, every functional dependency is also
a multivalued dependency.

• If � →→ �, then � →→ R − � − �

Appendix C.1.1 outlines a system of inference rules for multivalued dependen-
cies.

8.6.2 Fourth Normal Form

Consider again our example of the BCNF schema:

r2 (ID, dept name, street, city)

in which the multivalued dependency “ID →→ street, city” holds. We saw in
the opening paragraphs of Section 8.6 that, although this schema is in BCNF, the
design is not ideal, since we must repeat an instructor’s address information for
each department. We shall see that we can use the given multivalued dependency
to improve the database design, by decomposing this schema into a fourth normal
form decomposition.

A relation schema r (R) is in fourth normal form (4NF) with respect to a set D
of functional and multivalued dependencies if, for all multivalued dependencies
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in D+ of the form � →→ �, where � ⊆ R and � ⊆ R, at least one of the following
holds:

• � →→ � is a trivial multivalued dependency.

• � is a superkey for R.

A database design is in 4NF if each member of the set of relation schemas that
constitutes the design is in 4NF.

Note that the definition of 4NF differs from the definition of BCNF in only the
use of multivalued dependencies. Every 4NF schema is in BCNF. To see this fact,
we note that, if a schema r (R) is not in BCNF, then there is a nontrivial functional
dependency � → � holding on R, where � is not a superkey. Since � → � implies
� →→ �, r (R) cannot be in 4NF.

Let r (R) be a relation schema, and let r1(R1), r2(R2), . . . , rn(Rn) be a decompo-
sition of r (R). To check if each relation schema ri in the decomposition is in 4NF,
we need to find what multivalued dependencies hold on each ri . Recall that, for
a set F of functional dependencies, the restriction Fi of F to Ri is all functional
dependencies in F + that include only attributes of Ri . Now consider a set D of
both functional and multivalued dependencies. The restriction of D to Ri is the
set Di consisting of:

1. All functional dependencies in D+ that include only attributes of Ri .

2. All multivalued dependencies of the form:

� →→ � ∩ Ri

where � ⊆ Ri and � →→ � is in D+.

8.6.3 4NF Decomposition

The analogy between 4NF and BCNF applies to the algorithm for decomposing
a schema into 4NF. Figure 8.16 shows the 4NF decomposition algorithm. It is
identical to the BCNF decomposition algorithm of Figure 8.11, except that it uses
multivalued dependencies and uses the restriction of D+ to Ri .

If we apply the algorithm of Figure 8.16 to (ID, dept name, street, city), we
find that ID→→ dept name is a nontrivial multivalued dependency, and ID is not a
superkey for the schema. Following the algorithm, we replace it by two schemas:

r21 (ID, dept name)
r22 (ID, street, city)

This pair of schemas, which is in 4NF, eliminates the redundancy we encountered
earlier.

As was the case when we were dealing solely with functional dependencies,
we are interested in decompositions that are lossless and that preserve dependen-
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result := {R};
done := false;
compute D+; Given schema Ri , let Di denote the restriction of D+ to Ri
while (not done) do

if (there is a schema Ri in result that is not in 4NF w.r.t. Di )
then begin

let � →→ � be a nontrivial multivalued dependency that holds
on Ri such that � → Ri is not in Di , and � ∩ � = ∅;
result := (result − Ri ) ∪ (Ri − �) ∪ (�, �);

end
else done := true;

Figure 8.16 4NF decomposition algorithm.

cies. The following fact about multivalued dependencies and losslessness shows
that the algorithm of Figure 8.16 generates only lossless decompositions:

• Let r (R) be a relation schema, and let D be a set of functional and multivalued
dependencies on R. Let r1(R1) and r2(R2) form a decomposition of R. This
decomposition is lossless of R if and only if at least one of the following
multivalued dependencies is in D+:

R1 ∩ R2 →→ R1
R1 ∩ R2 →→ R2

Recall that we stated in Section 8.4.4 that, if R1 ∩ R2 → R1 or R1 ∩ R2 → R2, then
r1(R1) and r2(R2) are a lossless decomposition r (R) . The preceding fact about
multivalued dependencies is a more general statement about losslessness. It says
that, for every lossless decomposition of r (R) into two schemas r1(R1) and r2(R2),
one of the two dependencies R1 ∩ R2 →→ R1 or R1 ∩ R2 →→ R2 must hold.

The issue of dependency preservation when we decompose a relation schema
becomes more complicated in the presence of multivalued dependencies. Ap-
pendix C.1.2 pursues this topic.

8.7 More Normal Forms

The fourth normal form is by no means the “ultimate” normal form. As we
saw earlier, multivalued dependencies help us understand and eliminate some
forms of repetition of information that cannot be understood in terms of func-
tional dependencies. There are types of constraints called join dependencies that
generalize multivalued dependencies, and lead to another normal form called
project-join normal form (PJNF) (PJNF is called fifth normal form in some books).
There is a class of even more general constraints that leads to a normal form called
domain-key normal form (DKNF).
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A practical problem with the use of these generalized constraints is that they
are not only hard to reason with, but there is also no set of sound and complete
inference rules for reasoning about the constraints. Hence PJNF and DKNF are
used quite rarely. Appendix C provides more details about these normal forms.

Conspicuous by its absence from our discussion of normal forms is second
normal form (2NF). We have not discussed it, because it is of historical interest
only. We simply define it, and let you experiment with it in Practice Exercise 8.17.

8.8 Database-Design Process

So far we have looked at detailed issues about normal forms and normalization.
In this section, we study how normalization fits into the overall database-design
process.

Earlier in the chapter, starting in Section 8.3, we assumed that a relation
schema r (R) is given, and proceeded to normalize it. There are several ways in
which we could have come up with the schema r (R):

1. r (R) could have been generated in converting an E-R diagram to a set of
relation schemas.

2. r (R) could have been a single relation schema containing all attributes that
are of interest. The normalization process then breaks up r (R) into smaller
schemas.

3. r (R) could have been the result of an ad-hoc design of relations that we then
test to verify that it satisfies a desired normal form.

In the rest of this section, we examine the implications of these approaches. We also
examine some practical issues in database design, including denormalization for
performance and examples of bad design that are not detected by normalization.

8.8.1 E-R Model and Normalization

When we define an E-R diagram carefully, identifying all entities correctly, the
relation schemas generated from the E-R diagram should not need much further
normalization. However, there can be functional dependencies between attributes
of an entity. For instance, suppose an instructor entity set had attributes dept name
and dept address, and there is a functional dependency dept name → dept address.
We would then need to normalize the relation generated from instructor.

Most examples of such dependencies arise out of poor E-R diagram design.
In the above example, if we had designed the E-R diagram correctly, we would
have created a department entity set with attribute dept address and a relationship
set between instructor and department. Similarly, a relationship set involving more
than two entity sets may result in a schema that may not be in a desirable normal
form. Since most relationship sets are binary, such cases are relatively rare. (In
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fact, some E-R-diagram variants actually make it difficult or impossible to specify
nonbinary relationship sets.)

Functional dependencies can help us detect poor E-R design. If the generated
relation schemas are not in desired normal form, the problem can be fixed in the E-
R diagram. That is, normalization can be done formally as part of data modeling.
Alternatively, normalization can be left to the designer’s intuition during E-R
modeling, and can be done formally on the relation schemas generated from the
E-R model.

A careful reader will have noted that in order for us to illustrate a need for
multivalued dependencies and fourth normal form, we had to begin with schemas
that were not derived from our E-R design. Indeed, the process of creating an E-R
design tends to generate 4NF designs. If a multivalued dependency holds and is
not implied by the corresponding functional dependency, it usually arises from
one of the following sources:

• A many-to-many relationship set.

• A multivalued attribute of an entity set.

For a many-to-many relationship set each related entity set has its own schema and
there is an additional schema for the relationship set. For a multivalued attribute,
a separate schema is created consisting of that attribute and the primary key of the
entity set (as in the case of the phone number attribute of the entity set instructor).

The universal-relation approach to relational database design starts with an
assumption that there is one single relation schema containing all attributes of
interest. This single schema defines how users and applications interact with the
database.

8.8.2 Naming of Attributes and Relationships

A desirable feature of a database design is the unique-role assumption, which
means that each attribute name has a unique meaning in the database. This
prevents us from using the same attribute to mean different things in different
schemas. For example, we might otherwise consider using the attribute number
for phone number in the instructor schema and for room number in the classroom
schema. The join of a relation on schema instructor with one on classroom is
meaningless. While users and application developers can work carefully to ensure
use of the right number in each circumstance, having a different attribute name
for phone number and for room number serves to reduce user errors.

While it is a good idea to keep names for incompatible attributes distinct, if
attributes of different relations have the same meaning, it may be a good idea to
use the same attribute name. For this reason we used the same attribute name
“name” for both the instructor and the student entity sets. If this was not the
case (that is, we used different naming conventions for the instructor and student
names), then if we wished to generalize these entity sets by creating a person entity
set, we would have to rename the attribute. Thus, even if we did not currently
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have a generalization of student and instructor, if we foresee such a possibility it
is best to use the same name in both entity sets (and relations).

Although technically, the order of attribute names in a schema does not matter,
it is convention to list primary-key attributes first. This makes reading default
output (as from select *) easier.

In large database schemas, relationship sets (and schemas derived therefrom)
are often named via a concatenation of the names of related entity sets, perhaps
with an intervening hyphen or underscore. We have used a few such names, for
example inst sec and student sec. We used the names teaches and takes instead of
using the longer concatenated names. This was acceptable since it is not hard for
you to remember the associated entity sets for a few relationship sets. We cannot
always create relationship-set names by simple concatenation; for example, a
manager or works-for relationship between employees would not make much
sense if it were called employee employee! Similarly, if there are multiple relationship
sets possible between a pair of entity sets, the relationship-set names must include
extra parts to identify the relationship set.

Different organizations have different conventions for naming entity sets. For
example, we may call an entity set of students student or students. We have chosen
to use the singular form in our database designs. Using either singular or plural
is acceptable, as long as the convention is used consistently across all entity sets.

As schemas grow larger, with increasing numbers of relationship sets, using
consistent naming of attributes, relationships, and entities makes life much easier
for the database designer and application programmers.

8.8.3 Denormalization for Performance

Occasionally database designers choose a schema that has redundant information;
that is, it is not normalized. They use the redundancy to improve performance
for specific applications. The penalty paid for not using a normalized schema is
the extra work (in terms of coding time and execution time) to keep redundant
data consistent.

For instance, suppose all course prerequisites have to be displayed along with
a course information, every time a course is accessed. In our normalized schema,
this requires a join of course with prereq.

One alternative to computing the join on the fly is to store a relation containing
all the attributes of course and prereq. This makes displaying the “full” course
information faster. However, the information for a course is repeated for every
course prerequisite, and all copies must be updated by the application, whenever
a course prerequisite is added or dropped. The process of taking a normalized
schema and making it nonnormalized is called denormalization, and designers
use it to tune performance of systems to support time-critical operations.

A better alternative, supported by many database systems today, is to use
the normalized schema, and additionally store the join of course and prereq as a
materialized view. (Recall that a materialized view is a view whose result is stored
in the database and brought up to date when the relations used in the view are
updated.) Like denormalization, using materialized views does have space and
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time overhead; however, it has the advantage that keeping the view up to date is
the job of the database system, not the application programmer.

8.8.4 Other Design Issues

There are some aspects of database design that are not addressed by normal-
ization, and can thus lead to bad database design. Data pertaining to time or to
ranges of time have several such issues. We give examples here; obviously, such
designs should be avoided.

Consider a university database, where we want to store the total number of
instructors in each department in different years. A relation total inst(dept name,
year, size) could be used to store the desired information. The only functional
dependency on this relation is dept name, year→ size, and the relation is in BCNF.

An alternative design is to use multiple relations, each storing the size infor-
mation for a different year. Let us say the years of interest are 2007, 2008, and
2009; we would then have relations of the form total inst 2007, total inst 2008, total
inst 2009, all of which are on the schema (dept name, size). The only functional

dependency here on each relation would be dept name → size, so these relations
are also in BCNF.

However, this alternative design is clearly a bad idea—we would have to
create a new relation every year, and we would also have to write new queries
every year, to take each new relation into account. Queries would also be more
complicated since they may have to refer to many relations.

Yet another way of representing the same data is to have a single relation
dept year(dept name, total inst 2007, total inst 2008, total inst 2009). Here the only
functional dependencies are from dept name to the other attributes, and again the
relation is in BCNF. This design is also a bad idea since it has problems similar
to the previous design—namely we would have to modify the relation schema
and write new queries every year. Queries would also be more complicated, since
they may have to refer to many attributes.

Representations such as those in the dept year relation, with one column for
each value of an attribute, are called crosstabs; they are widely used in spread-
sheets and reports and in data analysis tools. While such representations are
useful for display to users, for the reasons just given, they are not desirable in a
database design. SQL includes features to convert data from a normal relational
representation to a crosstab, for display, as we discussed in Section 5.6.1.

8.9 Modeling Temporal Data

Suppose we retain data in our university organization showing not only the
address of each instructor, but also all former addresses of which the university
is aware. We may then ask queries such as “Find all instructors who lived in
Princeton in 1981.” In this case, we may have multiple addresses for instructors.
Each address has an associated start and end date, indicating when the instructor
was resident at that address. A special value for the end date, e.g., null, or a value
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well into the future such as 9999-12-31, can be used to indicate that the instructor
is still resident at that address.

In general, temporal data are data that have an associated time interval during
which they are valid.8 We use the term snapshot of data to mean the value of the
data at a particular point in time. Thus a snapshot of course data gives the values
of all attributes, such as title and department, of all courses at a particular point
in time.

Modeling temporal data is a challenging problem for several reasons. For ex-
ample, suppose we have an instructor entity set with which we wish to associate a
time-varying address. To add temporal information to an address, we would then
have to create a multivalued attribute, each of whose values is a composite value
containing an address and a time interval. In addition to time-varying attribute
values, entities may themselves have an associated valid time. For example, a
student entity may have a valid time from the date the student entered the uni-
versity to the date the student graduated (or left the university). Relationships
too may have associated valid times. For example, the prereq relationship may
record when a course became a prerequisite for another course. We would thus
have to add valid time intervals to attribute values, entity sets, and relationship
sets. Adding such detail to an E-R diagram makes it very difficult to create and
to comprehend. There have been several proposals to extend the E-R notation to
specify in a simple manner that an attribute value or relationship is time varying,
but there are no accepted standards.

When we track data values across time, functional dependencies that we
assumed to hold, such as:

ID → street, city

may no longer hold. The following constraint (expressed in English) would hold
instead: “An instructor ID has only one street and city value for any given time t.”

Functional dependencies that hold at a particular point in time are called
temporal functional dependencies. Formally, a temporal functional dependency
X

�→ Y holds on a relation schema r (R) if, for all legal instances of r (R), all
snapshots of r satisfy the functional dependency X → Y.

We could extend the theory of relational database design to take temporal
functional dependencies into account. However, reasoning with regular func-
tional dependencies is difficult enough already, and few designers are prepared
to deal with temporal functional dependencies.

In practice, database designers fall back to simpler approaches to design-
ing temporal databases. One commonly used approach is to design the entire
database (including E-R design and relational design) ignoring temporal changes
(equivalently, taking only a snapshot into consideration). After this, the designer

8There are other models of temporal data that distinguish between valid time and transaction time, the latter recording
when a fact was recorded in the database. We ignore such details for simplicity.



366 Chapter 8 Relational Database Design

studies the various relations and decides which relations require temporal varia-
tion to be tracked.

The next step is to add valid time information to each such relation, by adding
start and end time as attributes. For example, consider the course relation. The
title of the course may change over time, which can be handled by adding a valid
time range; the resultant schema would be

course (course id, title, dept name, start, end)

An instance of this relation might have two records (CS-101, “Introduction to Pro-
gramming”, 1985-01-01, 2000-12-31) and (CS-101, “Introduction to C”, 2001-01-01,
9999-12-31). If the relation is updated by changing the course title to “Introduction
to Java,” the time “9999-12-31” would be updated to the time until which the old
value (“Introduction to C”) is valid, and a new tuple would be added containing
the new title (“Introduction to Java”), with an appropriate start time.

If another relation had a foreign key referencing a temporal relation, the
database designer has to decide if the reference is to the current version of the
data or to the data as of a particular point in time. For example, we may extend
the department relation to track changes in the building or budget of a department
across time, but a reference from the instructor or student relation may not care
about the history of the building or budget, but may instead implicitly refer to the
temporally current record for the corresponding dept name. On the other hand, a
record in a student’s transcript should refer to the course title at the time when
the student took the course. In this latter case, the referencing relation must also
record time information, to identify a particular record from the course relation. In
our example, the year and semester when the course was taken can be mapped to a
representative time/date value such as midnight of the start date of the semester;
the resulting time/date value is used to identify a particular record from the
temporal version of the course relation, from which the title is retrieved.

The original primary key for a temporal relation would no longer uniquely
identify a tuple. To resolve this problem, we could add the start and end time
attributes to the primary key. However, some problems remain:

• It is possible to store data with overlapping intervals, which the primary-key
constraint would not catch. If the system supports a native valid time type, it
can detect and prevent such overlapping time intervals.

• To specify a foreign key referencing such a relation, the referencing tuples
would have to include the start- and end-time attributes as part of their
foreign key, and the values must match that in the referenced tuple. Further,
if the referenced tuple is updated (and the end time which was in the future
is updated), the update must propagate to all the referencing tuples.

If the system supports temporal data in a better fashion, we can allow
the referencing tuple to specify a point in time, rather than a range, and rely
on the system to ensure that there is a tuple in the referenced relation whose
valid time interval contains the point in time. For example, a transcript record
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may specify a course id and a time (say the start date of a semester), which is
enough to identify the correct record in the course relation.

As a common special case, if all references to temporal data refer to only the
current data, a simpler solution is to not add time information to the relation,
but instead create a corresponding history relation that has temporal information,
for past values. For example, in our bank database, we could use the design we
have created, ignoring temporal changes, to store only the current information.
All historical information is moved to historical relations. Thus, the instructor
relation may store only the current address, while a relation instructor history
may contain all the attributes of instructor, with additional start time and end time
attributes.

Although we have not provided any formal way to deal with temporal data,
the issues we have discussed and the examples we have provided should help
you in designing a database that records temporal data. Further issues in handling
temporal data, including temporal queries, are covered later, in Section 25.2.

8.10 Summary

• We showed pitfalls in database design, and how to systematically design
a database schema that avoids the pitfalls. The pitfalls included repeated
information and inability to represent some information.

• We showed the development of a relational database design from an E-R
design, when schemas may be combined safely, and when a schema should
be decomposed. All valid decompositions must be lossless.

• We described the assumptions of atomic domains and first normal form.

• We introduced the concept of functional dependencies, and used it to present
two normal forms, Boyce–Codd normal form (BCNF) and third normal form
(3NF).

• If the decomposition is dependency preserving, given a database update, all
functional dependencies can be verifiable from individual relations, without
computing a join of relations in the decomposition.

• We showed how to reason with functional dependencies. We placed special
emphasis on what dependencies are logically implied by a set of dependen-
cies. We also defined the notion of a canonical cover, which is a minimal set of
functional dependencies equivalent to a given set of functional dependencies.

• We outlined an algorithm for decomposing relations into BCNF. There are
relations for which there is no dependency-preserving BCNF decomposition.

• We used the canonical covers to decompose a relation into 3NF, which is
a small relaxation of the BCNF condition. Relations in 3NF may have some
redundancy, but there is always a dependency-preserving decomposition
into 3NF.
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• We presented the notion of multivalued dependencies, which specify con-
straints that cannot be specified with functional dependencies alone. We de-
fined fourth normal form (4NF) with multivalued dependencies. Appendix
C.1.1 gives details on reasoning about multivalued dependencies.

• Other normal forms, such as PJNF and DKNF, eliminate more subtle forms
of redundancy. However, these are hard to work with and are rarely used.
Appendix C gives details on these normal forms.

• In reviewing the issues in this chapter, note that the reason we could define
rigorous approaches to relational database design is that the relational data
model rests on a firm mathematical foundation. That is one of the primary
advantages of the relational model compared with the other data models that
we have studied.

Review Terms

• E-R model and normalization
• Decomposition
• Functional dependencies
• Lossless decomposition
• Atomic domains
• First normal form (1NF)
• Legal relations
• Superkey
• R satisfies F

• F holds on R

• Boyce–Codd normal form
(BCNF)

• Dependency preservation
• Third normal form (3NF)
• Trivial functional dependencies
• Closure of a set of functional

dependencies

• Armstrong’s axioms
• Closure of attribute sets
• Restriction of F to Ri

• Canonical cover
• Extraneous attributes
• BCNF decomposition algorithm
• 3NF decomposition algorithm
• Multivalued dependencies
• Fourth normal form (4NF)
• Restriction of a multivalued

dependency
• Project-join normal form (PJNF)
• Domain-key normal form (DKNF)
• Universal relation
• Unique-role assumption
• Denormalization

Practice Exercises

8.1 Suppose that we decompose the schema r (A, B, C , D, E) into

r1(A, B, C)
r2(A, D, E)
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Show that this decomposition is a lossless decomposition if the following
set F of functional dependencies holds:

A → BC
CD → E
B → D
E → A

8.2 List all functional dependencies satisfied by the relation of Figure 8.17.

8.3 Explain how functional dependencies can be used to indicate the following:

• A one-to-one relationship set exists between entity sets student and
instructor.

• A many-to-one relationship set exists between entity sets student and
instructor.

8.4 Use Armstrong’s axioms to prove the soundness of the union rule. (Hint:
Use the augmentation rule to show that, if � → �, then � → ��. Apply
the augmentation rule again, using � → � , and then apply the transitivity
rule.)

8.5 Use Armstrong’s axioms to prove the soundness of the pseudotransitivity
rule.

8.6 Compute the closure of the following set F of functional dependencies for
relation schema r (A, B, C, D, E).

A → BC
CD → E
B → D
E → A

List the candidate keys for R.

8.7 Using the functional dependencies of Practice Exercise 8.6, compute the
canonical cover Fc .

A B C

a1 b1 c1
a1 b1 c2
a2 b1 c1
a2 b1 c3

Figure 8.17 Relation of Practice Exercise 8.2.
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8.8 Consider the algorithm in Figure 8.18 to compute �+. Show that this algo-
rithm is more efficient than the one presented in Figure 8.8 (Section 8.4.2)
and that it computes �+ correctly.

8.9 Given the database schema R(a , b, c), and a relation r on the schema R,
write an SQL query to test whether the functional dependency b → c holds
on relation r . Also write an SQL assertion that enforces the functional de-
pendency; assume that no null values are present. (Although part of the
SQL standard, such assertions are not supported by any database imple-
mentation currently.)

8.10 Our discussion of lossless-join decomposition implicitly assumed that at-
tributes on the left-hand side of a functional dependency cannot take on
null values. What could go wrong on decomposition, if this property is
violated?

8.11 In the BCNF decomposition algorithm, suppose you use a functional de-
pendency � → � to decompose a relation schema r (�, �, � ) into r1(�, �)
and r2(�, � ).

a. What primary and foreign-key constraint do you expect to hold on
the decomposed relations?

b. Give an example of an inconsistency that can arise due to an erro-
neous update, if the foreign-key constraint were not enforced on the
decomposed relations above.

c. When a relation is decomposed into 3NF using the algorithm in Sec-
tion 8.5.2, what primary and foreign key dependencies would you
expect will hold on the decomposed schema?

8.12 Let R1, R2, . . . , Rn be a decomposition of schema U. Let u(U) be a relation,
and let ri = �RI (u). Show that

u ⊆ r1 � r2 � · · · � rn

8.13 Show that the decomposition in Practice Exercise 8.1 is not a dependency-
preserving decomposition.

8.14 Show that it is possible to ensure that a dependency-preserving decom-
position into 3NF is a lossless decomposition by guaranteeing that at least
one schema contains a candidate key for the schema being decomposed.
(Hint: Show that the join of all the projections onto the schemas of the
decomposition cannot have more tuples than the original relation.)

8.15 Give an example of a relation schema R′ and set F ′ of functional depen-
dencies such that there are at least three distinct lossless decompositions of
R′ into BCNF.



Practice Exercises 371

result := ∅;
/* fdcount is an array whose ith element contains the number

of attributes on the left side of the ith FD that are
not yet known to be in �+ */

for i := 1 to |F | do
begin

let � → � denote the ith FD;
fdcount [i] := |�|;

end
/* appears is an array with one entry for each attribute. The

entry for attribute A is a list of integers. Each integer
i on the list indicates that A appears on the left side
of the ith FD */

for each attribute A do
begin

appears [A] := NI L ;
for i := 1 to |F | do

begin
let � → � denote the ith FD;
if A ∈ � then add i to appears [A];

end
end

addin (�);
return (result);

procedure addin (�);
for each attribute A in � do

begin
if A �∈ result then

begin
result := result ∪ {A};
for each element i of appears[A] do

begin
fdcount [i] := fdcount [i] − 1;
if fdcount [i] := 0 then

begin
let � → � denote the ith FD;
addin (� );

end
end

end
end

Figure 8.18 An algorithm to compute �+.
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8.16 Let a prime attribute be one that appears in at least one candidate key. Let
� and � be sets of attributes such that � → � holds, but � → � does not
hold. Let A be an attribute that is not in �, is not in �, and for which � → A
holds. We say that A is transitively dependent on �. We can restate our
definition of 3NF as follows: A relation schema R is in 3NF with respect to a set
F of functional dependencies if there are no nonprime attributes A in R for which
A is transitively dependent on a key for R. Show that this new definition is
equivalent to the original one.

8.17 A functional dependency � → � is called a partial dependency if there is
a proper subset � of � such that � → �. We say that � is partially dependent
on �. A relation schema R is in second normal form (2NF) if each attribute
A in R meets one of the following criteria:

• It appears in a candidate key.

• It is not partially dependent on a candidate key.

Show that every 3NF schema is in 2NF. (Hint: Show that every partial
dependency is a transitive dependency.)

8.18 Give an example of a relation schema R and a set of dependencies such
that R is in BCNF but is not in 4NF.

Exercises

8.19 Give a lossless-join decomposition into BCNF of schema R of Practice Exer-
cise 8.1.

8.20 Give a lossless-join, dependency-preserving decomposition into 3NF of
schema R of Practice Exercise 8.1.

8.21 Normalize the following schema, with given constraints, to 4NF.

books(accessionno, isbn, title, author, publisher)
users(userid, name, deptid, deptname)
accessionno → isbn
isbn → title
isbn → publisher
isbn →→ author
userid → name
userid → deptid
deptid → deptname

8.22 Explain what is meant by repetition of information and inability to represent
information. Explain why each of these properties may indicate a bad rela-
tional database design.
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8.23 Why are certain functional dependencies called trivial functional depen-
dencies?

8.24 Use the definition of functional dependency to argue that each of Arm-
strong’s axioms (reflexivity, augmentation, and transitivity) is sound.

8.25 Consider the following proposed rule for functional dependencies: If � →
� and � → �, then � → � . Prove that this rule is not sound by showing a
relation r that satisfies � → � and � → �, but does not satisfy � → � .

8.26 Use Armstrong’s axioms to prove the soundness of the decomposition rule.

8.27 Using the functional dependencies of Practice Exercise 8.6, compute B+.

8.28 Show that the following decomposition of the schema R of Practice Exer-
cise 8.1 is not a lossless decomposition:

(A, B, C)
(C , D, E)

Hint: Give an example of a relation r on schema R such that

�A, B, C (r ) � �C, D, E (r ) �= r

8.29 Consider the following set F of functional dependencies on the relation
schema r (A, B, C, D, E, F ):

A → BCD
BC → DE
B → D
D → A

a. Compute B+.

b. Prove (using Armstrong’s axioms) that AF is a superkey.

c. Compute a canonical cover for the above set of functional dependen-
cies F ; give each step of your derivation with an explanation.

d. Give a 3NF decomposition of r based on the canonical cover.

e. Give a BCNF decomposition of r using the original set of functional
dependencies.

f. Can you get the same BCNF decomposition of r as above, using the
canonical cover?

8.30 List the three design goals for relational databases, and explain why each
is desirable.
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8.31 In designing a relational database, why might we choose a non-BCNF de-
sign?

8.32 Given the three goals of relational database design, is there any reason to
design a database schema that is in 2NF, but is in no higher-order normal
form? (See Practice Exercise 8.17 for the definition of 2NF.)

8.33 Given a relational schema r (A, B, C, D), does A →→ BC logically imply
A →→ B and A →→ C? If yes prove it, else give a counter example.

8.34 Explain why 4NF is a normal form more desirable than BCNF.
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C H A P T E R9
Application Design and
Development

Practically all use of databases occurs from within application programs. Corre-
spondingly, almost all user interaction with databases is indirect, via application
programs. Not surprisingly, therefore, database systems have long supported
tools such as form and GUI builders, which help in rapid development of appli-
cations that interface with users. In recent years, the Web has become the most
widely used user interface to databases.

In this chapter, we study tools and technologies that are used to build appli-
cations, focussing on interactive applications that use databases to store data.

After an introduction to application programs and user interfaces in Sec-
tion 9.1, we focus on developing applications with Web-based interfaces. We start
with an overview of Web technologies in Section 9.2, and discuss the Java Servlets
technology, which is widely used for building Web applications, in Section 9.3. A
short overview of Web application architectures in presented Section 9.4. In Sec-
tion 9.5, we discuss tools for rapid application development, while in Section 9.6
we cover performance issues in building large Web applications. In Section 9.7, we
discuss issues in application security. We conclude the chapter with Section 9.8,
which covers encryption and its use in applications.

9.1 Application Programs and User Interfaces

Although many people interact with databases, very few people use a query
language to interact with a database system directly. The most common way
in which users interact with databases is through an application program that
provides a user interface at the front end, and interfaces with a database at the
back end. Such applications take input from users, typically through a forms-
based interface, and either enter data into a database or extract information from
a database based on the user input, and generate output, which is displayed to
the user.

As an example of an application, consider a university registration system.
Like other such applications, the registration system first requires you to identify
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(a) Mainframe Era (b) Personal Computer Era (c) Web era
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Figure 9.1 Application architectures in different eras

and authenticate yourself, typically by a user name and password. The applica-
tion then uses your identity to extract information, such as your name and the
courses for which you have registered, from the database and displays the infor-
mation. The application provides a number of interfaces that let you register for
courses and query a variety of other information such as course and instructor
information. Organizations use such applications to automate a variety of tasks,
such as sales, purchases, accounting and payroll, human-resources management,
and inventory management, among many others.

Application programs may be used even when it is not apparent that they are
being used. For example, a news site may provide a page that is transparently
customized to individual users, even if the user does not explicitly fill any forms
when interacting with the site. To do so, it actually runs an application program
that generates a customized page for each user; customization can, for example,
be based on the history of articles browsed by the user.

A typical application program includes a front-end component, which deals
with the user interface, a back-end component, which communicates with a
database, and a middle layer, which contains “business logic,” that is, code that
executes specific requests for information or updates, enforcing rules of business
such as what actions should be carried out to execute a given task, or who can
carry out what task.

Application architectures have evolved over time, as illustrated in Figure 9.1.
Applications such as airline reservations have been around since the 1960s. In
the early days of computer applications, applications ran on a large “mainframe”
computer, and users interacted with the application through terminals, some of
which even supported forms.

With the widespread use of personal computers, many organizations used a
different architecture for internal applications, with applications running on the
user’s computer, and accessing a central database. This architecture, often called
a “client–server” architecture, allowed the creation of powerful graphical user
interfaces, which earlier terminal-based applications did not support. However,
software had to be installed on each user’s machine to run an application, making
tasks such as upgrades harder. Even in the personal computer era, when client–
server architectures became popular, mainframe architecture continued to be the



9.2 Web Fundamentals 377

choice for applications such as airline reservations, which are used from a large
number of geographically distributed locations.

In the past 15 years, Web browsers have become the universal front end to
database applications, connecting to the back end through the Internet. Browsers
use a standardized syntax, the HyperText Markup Language (HTML) standard,
which supports both formatted display of information, and creation of forms-
based interfaces. The HTML standard is independent of the operating system or
browser, and pretty much every computer today has a Web browser installed.
Thus a Web-based application can be accessed from any computer that is con-
nected to the Internet.

Unlike client–server architectures, there is no need to install any application-
specific software on client machines in order to use Web-based applications.
However, sophisticated user interfaces, supporting features well beyond what is
possible using plain HTML, are now widely used, and are built with the script-
ing language JavaScript, which is supported by most Web browsers. JavaScript
programs, unlike programs written in C, can be run in a safe mode, guarantee-
ing they cannot cause security problems. JavaScript programs are downloaded
transparently to the browser and do not need any explicit software installation
on the user’s computer.

While the Web browser provides the front end for user interaction, application
programs constitute the back end. Typically, requests from a browser are sent to a
Web server, which in turn executes an application program to process the request.
A variety of technologies are available for creating application programs that run
at the back end, including Java servlets, Java Server Pages (JSP), Active Server
Page (ASP), or scripting languages such as PHP, Perl, or Python.

In the rest of this chapter, we describe how to build such applications, starting
with Web technologies and tools for building Web interfaces, and technologies
for building application programs, and then covering application architectures,
and performance and security issues in building applications.

9.2 Web Fundamentals

In this section, we review some of the fundamental technology behind the World
Wide Web, for readers who are not familiar with the technology underlying the
Web.

9.2.1 Uniform Resource Locators

A uniform resource locator (URL) is a globally unique name for each document
that can be accessed on the Web. An example of a URL is:

http://www.acm.org/sigmod

The first part of the URL indicates how the document is to be accessed: “http”
indicates that the document is to be accessed by the HyperText Transfer Protocol
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<html>
<body>

<table border>
<tr> <th>ID</th> <th>Name</th> <th>Department</th> </tr>
<tr> <td>00128</td> <td>Zhang</td> <td>Comp. Sci.</td> </tr>
<tr> <td>12345</td> <td>Shankar</td> <td>Comp. Sci.</td> </tr>
<tr> <td>19991</td> <td>Brandt</td> <td>History</td> </tr>
</table>

</body>

</html>

Figure 9.2 Tabular data in HTML format.

(HTTP), which is a protocol for transferring HTML documents. The second part
gives the name of a machine that has a Web server. The rest of the URL is the path
name of the file on the machine, or other unique identifier of a document within
the machine.

A URL can contain the identifier of a program located on the Web server
machine, as well as arguments to be given to the program. An example of such a
URL is

http://www.google.com/search?q=silberschatz

which says that the program search on the server www.google.com should be
executed with the argument q=silberschatz. On receiving a request for such a URL,
the Web server executes the program, using the given arguments. The program
returns an HTML document to the Web server, which sends it back to the front
end.

9.2.2 HyperText Markup Language

Figure 9.2 is an example of a table represented in the HTMLformat, while Figure 9.3
shows the displayed image generated by a browser from the HTML representation
of the table. The HTML source shows a few of the HTML tags. Every HTML page
should be enclosed in an html tag, while the body of the page is enclosed in a
body tag. A table is specified by a table tag, which contains rows specified by a tr
tag. The header row of the table has table cells specified by a th tag, while regular

ID
00128
12345
19991

Zhang
Shankar
Brandt

Name
Comp. Sci.
Comp. Sci.
History

Department

Figure 9.3 Display of HTML source from Figure 9.2.
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<html>
<body>

<form action="PersonQuery" method=get>
Search for:
<select name="persontype">

<option value="student" selected>Student </option>

<option value="instructor"> Instructor </option>

</select> <br>
Name: <input type=text size=20 name="name">
<input type=submit value="submit">
</form>

</body>

</html>

Figure 9.4 An HTML form.

rows have table cells specified by a td tag. We do not go into more details about
the tags here; see the bibliographic notes for references containing more detailed
descriptions of HTML.

Figure 9.4 shows how to specify an HTML form that allows users to select the
person type (student or instructor) from a menu and to input a number in a text
box. Figure 9.5 shows how the above form is displayed in a Web browser. Two
methods of accepting input are illustrated in the form, but HTML also supports
several other input methods. The action attribute of the form tag specifies that
when the form is submitted (by clicking on the submit button), the form data
should be sent to the URL PersonQuery (the URL is relative to that of the page).
The Web server is configured such that when this URL is accessed, a corresponding
application program is invoked, with the user-provided values for the arguments
persontype and name (specified in the select and input fields). The application
program generates an HTML document, which is then sent back and displayed to
the user; we shall see how to construct such programs later in this chapter.

HTTP defines two ways in which values entered by a user at the browser can
be sent to the Web server. The get method encodes the values as part of the URL.
For example, if the Google search page used a form with an input parameter
named q with the get method, and the user typed in the string “silberschatz” and
submitted the form, the browser would request the following URL from the Web
server:

http://www.google.com/search?q=silberschatz

Search for:
Name:

Student

submit

Figure 9.5 Display of HTML source from Figure 9.4.
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The post method would instead send a request for the URL http://www.google.com,
and send the parameter values as part of the HTTP protocol exchange between
the Web server and the browser. The form in Figure 9.4 specifies that the form
uses the get method.

Although HTML code can be created using a plain text editor, there are a
number of editors that permit direct creation of HTML text by using a graphical
interface. Such editors allow constructs such as forms, menus, and tables to be
inserted into the HTML document from a menu of choices, instead of manually
typing in the code to generate the constructs.

HTML supports stylesheets, which can alter the default definitions of how an
HTML formatting construct is displayed, as well as other display attributes such
as background color of the page. The cascading stylesheet (CSS) standard allows
the same stylesheet to be used for multiple HTML documents, giving a distinctive
but uniform look to all the pages on a Web site.

9.2.3 Web Servers and Sessions

A Web server is a program running on the server machine, which accepts requests
from a Web browser and sends back results in the form of HTML documents. The
browser and Web server communicate via HTTP. Web servers provide powerful
features, beyond the simple transfer of documents. The most important feature
is the ability to execute programs, with arguments supplied by the user, and to
deliver the results back as an HTML document.

As a result, a Web server can act as an intermediary to provide access to a
variety of information services. A new service can be created by creating and
installing an application program that provides the service. The common gate-
way interface (CGI) standard defines how the Web server communicates with
application programs. The application program typically communicates with a
database server, through ODBC, JDBC, or other protocols, in order to get or store
data.

HTTP

browser

server

web server

application server

database server

data

network

network

Figure 9.6 Three-layer Web application architecture.
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Figure 9.7 Two-layer Web application architecture.

Figure 9.6 shows a Web application built using a three-layer architecture, with
a Web server, an application server, and a database server. Using multiple levels
of servers increases system overhead; the CGI interface starts a new process to
service each request, which results in even greater overhead.

Most Web applications today therefore use a two-layer Web application ar-
chitecture, where the application program runs within the Web server, as in
Figure 9.7. We study systems based on the two-layer architecture in more detail
in subsequent sections.

There is no continuous connection between the client and the Web server;
when a Web server receives a request, a connection is temporarily created to send
the request and receive the response from the Web server. But the connection
may then be closed, and the next request could come over a new connection. In
contrast, when a user logs on to a computer, or connects to a database using ODBC
or JDBC, a session is created, and session information is retained at the server and
the client until the session is terminated—information such as the user-identifier
of the user and session options that the user has set. One important reason that
HTTP is connectionless is that most computers have limits on the number of
simultaneous connections they can accommodate, and if a large number of sites
on the Web open connections to a single server, this limit would be exceeded,
denying service to further users. With a connectionless protocol, the connection
can be broken as soon as a request is satisfied, leaving connections available for
other requests.1

Most Web applications, however, need session information to allow mean-
ingful user interaction. For instance, applications typically restrict access to in-
formation, and therefore need to authenticate users. Authentication should be

1For performance reasons, connections may be kept open for a short while, to allow subsequent requests to reuse the
connection. However, there is no guarantee that the connection will be kept open, and applications must be designed
assuming the connection may be closed as soon as a request is serviced.
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done once per session, and further interactions in the session should not require
reauthentication.

To implement sessions in spite of connections getting closed, extra informa-
tion has to be stored at the client and returned with each request in a session; the
server uses this information to identify that a request is part of a user session.
Extra information about the session also has to be maintained at the server.

This extra information is usually maintained in the form of a cookie at the
client; a cookie is simply a small piece of text containing identifying information
and with an associated name. For example, google.com may set a cookie with
the name prefs, which encodes preferences set by the user such as the preferred
language and the number of answers displayed per page. On each search request,
google.com can retrieve the cookie named prefs from the user’s browser, and
display results according to the specified preferences. A domain (Web site) is
permitted to retrieve only cookies that it has set, not cookies set by other domains,
and cookie names can be reused across domains.

For the purpose of tracking a user session, an application may generate a
session identifier (usually a random number not currently in use as a session
identifier), and send a cookie named (for instance) sessionid containing the
session identifier. The session identifier is also stored locally at the server. When
a request comes in, the application server requests the cookie named sessionid
from the client. If the client does not have the cookie stored, or returns a value that
is not currently recorded as a valid session identifier at the server, the application
concludes that the request is not part of a current session. If the cookie value
matches a stored session identifier, the request is identified as part of an ongoing
session.

If an application needs to identify users securely, it can set the cookie only
after authenticating the user; for example a user may be authenticated only when
a valid user name and password are submitted.2

For applications that do not require high security, such as publicly available
news sites, cookies can be stored permanently at the browser and at the server;
they identify the user on subsequent visits to the same site, without any identifica-
tion information being typed in. For applications that require higher security, the
server may invalidate (drop) the session after a time-out period, or when the user
logs out. (Typically a user logs out by clicking on a logout button, which submits
a logout form, whose action is to invalidate the current session.) Invalidating a
session merely consists of dropping the session identifier from the list of active
sessions at the application server.

2The user identifier could be stored at the client end, in a cookie named, for example, userid. Such cookies can be used
for low-security applications, such as free Web sites identifying their users. However, for applications that require a
higher level of security, such a mechanism creates a security risk: The value of a cookie can be changed at the browser
by a malicious user, who can then masquerade as a different user. Setting a cookie (named sessionid, for example) to
a randomly generated session identifier (from a large space of numbers) makes it highly improbable that a user can
masquerade as (that is, pretend to be) another user. A sequentially generated session identifier, on the other hand, would
be susceptible to masquerading.
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9.3 Servlets and JSP

In a two-layer Web architecture, an application runs as part of the Web server it-
self. One way of implementing such an architecture is to load Java programs into
the Web server. The Java servlet specification defines an application program-
ming interface for communication between the Web server and the application
program. The HttpServlet class in Java implements the servlet API specification;
servlet classes used to implement specific functions are defined as subclasses of
this class.3 Often the word servlet is used to refer to a Java program (and class) that
implements the servlet interface. Figure 9.8 shows a servlet example; we explain
it in detail shortly.

The code for a servlet is loaded into the Web server when the server is started,
or when the server receives a remote HTTP request to execute a particular servlet.
The task of a servlet is to process such a request, which may involve accessing a
database to retrieve necessary information, and dynamically generate an HTML
page to be returned to the client browser.

9.3.1 A Servlet Example

Servlets are commonly used to generate dynamic responses to HTTP requests.
They can access inputs provided through HTML forms, apply “business logic” to
decide what response to provide, and then generate HTML output to be sent back
to the browser.

Figure 9.8 shows an example of servlet code to implement the form in Fig-
ure 9.4. The servlet is called PersonQueryServlet, while the form specifies that
“action="PersonQuery".” The Web server must be told that this servlet is to be
used to handle requests for PersonQuery. The form specifies that the HTTP get
mechanism is used for transmitting parameters. So the doGet() method of the
servlet, as defined in the code, is invoked.

Each request results in a new thread within which the call is executed, so
multiple requests can be handled in parallel. Any values from the form menus
and input fields on the Web page, as well as cookies, pass through an object of
the HttpServletRequest class that is created for the request, and the reply to the
request passes through an object of the class HttpServletResponse.

The doGet() method in the example extracts values of the parameter’s type
and number by using request.getParameter(), and uses these values to run a query
against a database. The code used to access the database and to get attribute values
from the query result is not shown; refer to Section 5.1.1.4 for details of how to
use JDBC to access a database. The servlet code returns the results of the query
to the requester by outputting them to the HttpServletResponse object response.
Outputting the results is to response is implemented by first getting a PrintWriter
object out from response, and then printing the result in HTML format to out.

3The servlet interface can also support non-HTTP requests, although our example uses only HTTP.
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import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class PersonQueryServlet extends HttpServlet {
public void doGet(HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException

{
response.setContentType("text/html");
PrintWriter out = response.getWriter();
out.println("<HEAD><TITLE> Query Result</TITLE></HEAD>");
out.println("<BODY>");

String persontype = request.getParameter("persontype");
String number = request.getParameter("name");
if(persontype.equals("student")) {

... code to find students with the specified name ...

... using JDBC to communicate with the database ..
out.println("<table BORDER COLS=3>");
out.println(" <tr> <td>ID</td> <td>Name: </td>" +

" <td>Department</td> </tr>");
for(... each result ...){

... retrieve ID, name and dept name

... into variables ID, name and deptname
out.println("<tr> <td>" + ID + "</td>" +

"<td>" + name + "</td>" +
"<td>" + deptname + "</td></tr>");

};
out.println("</table>");

}
else {

... as above, but for instructors ...
}
out.println("</BODY>");
out.close();

}
}

Figure 9.8 Example of servlet code.

9.3.2 Servlet Sessions

Recall that the interaction between a browser and a Web server is stateless. That is,
each time the browser makes a request to the server, the browser needs to connect
to the server, request some information, then disconnect from the server. Cookies
can be used to recognize that a request is from the same browser session as an
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earlier request. However, cookies form a low-level mechanism, and programmers
require a better abstraction to deal with sessions.

The servlet API provides a method of tracking a session and storing infor-
mation pertaining to it. Invocation of the method getSession(false) of the
class HttpServletRequest retrieves the HttpSession object corresponding to the
browser that sent the request. An argument value of true would have specified
that a new session object must be created if the request is a new request.

When the getSession() method is invoked, the server first asks the client
to return a cookie with a specified name. If the client does not have a cookie
of that name, or returns a value that does not match any ongoing session, then
the request is not part of an ongoing session. In this case, getSession() would
return a null value, and the servlet could direct the user to a login page.

The login page could allow the user to provide a user name and password. The
servlet corresponding to the login page could verify that the password matches
the user (for example, by looking up authentication information in the database).
If the user is properly authenticated, the login servlet would execute getSes-
sion(true), which would return a new session object. To create a new session
the Web server would internally carry out the following tasks: set a cookie (called,
for example, sessionId) with a session identifier as its associated value at the client
browser, create a new session object, and associate the session identifier value with
the session object.

The servlet code can also store and look up (attribute-name, value) pairs
in the HttpSession object, to maintain state across multiple requests within a
session. For example, after the user is authenticated and the session object has
been created, the login servlet could store the user-id of the user as a session
parameter by executing the method

session.setAttribute(“userid”, userid)

on the session object returned by getSession(); the Java variable userid is
assumed to contain the user identifier.

If the request was part of an ongoing session, the browser would have re-
turned the cookie value, and the corresponding session object is returned by
getSession(). The servlet can then retrieve session parameters such as user-id
from the session object by executing the method

session.getAttribute(“userid”)

on the session object returned above. If the attribute userid is not set, the function
would return a null value, which would indicate that the client user has not been
authenticated.

9.3.3 Servlet Life Cycle

The life cycle of a servlet is controlled by the Web server in which the servlet has
been deployed. When there is a client request for a specific servlet, the server



386 Chapter 9 Application Design and Development

first checks if an instance of the servlet exists or not. If not, the Web server loads
the servlet class into the Java virtual machine (JVM), and creates an instance of
the servlet class. In addition, the server calls the init() method to initialize the
servlet instance. Notice that each servlet instance is initialized only once when it
is loaded.

After making sure the servlet instance does exist, the server invokes the
service method of the servlet, with a request object and a response object as
parameters. By default, the server creates a new thread to execute the service
method; thus, multiple requests on a servlet can execute in parallel, without
having to wait for earlier requests to complete execution. The service method
calls doGet or doPost as appropriate.

When no longer required, a servlet can be shut down by calling the destroy()
method. The server can be set up to automatically shut down a servlet if no
requests have been made on a servlet within a time-out period; the time-out
period is a server parameter that can be set as appropriate for the application.

9.3.4 Servlet Support

Many application servers provide built-in support for servlets. One of the most
popular is the Tomcat Server from the Apache Jakarta Project. Other application
servers that support servlets include Glassfish, JBoss, BEA Weblogic Application
Server, Oracle Application Server, and IBM’s WebSphere Application Server.

The best way to develop servlet applications is by using an IDE such as Eclipse
or NetBeans, which come with Tomcat or Glassfish servers built in.

Application servers usually provide a variety of useful services, in addition
to basic servlet support. They allow applications to be deployed or stopped, and
provide functionality to monitor the status of the application server, including
performance statistics. If a servlet file is modified, some application servers can
detect this and recompile and reload the servlet transparently. Many application
servers also allow the server to run on multiple machines in parallel to improve
performance, and route requests to an appropriate copy. Many application servers
also support the Java 2 Enterprise Edition (J2EE) platform, which provides support
and APIs for a variety of tasks, such as for handling objects, parallel processing
across multiple application servers, and for handling XML data (XML is described
later in Chapter 23).

9.3.5 Server-Side Scripting

Writing even a simple Web application in a programming language such as Java
or C is a time-consuming task that requires many lines of code and programmers
who are familiar with the intricacies of the language. An alternative approach,
that of server-side scripting, provides a much easier method for creating many
applications. Scripting languages provide constructs that can be embedded within
HTML documents. In server-side scripting, before delivering a Web page, the
server executes the scripts embedded within the HTML contents of the page. Each
piece of script, when executed, can generate text that is added to the page (or may
even delete content from the page). The source code of the scripts is removed
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<html>
<head> <title> Hello </title> </head>

<body>

< % if (request.getParameter(“name”) == null)
{ out.println(“Hello World”); }
else { out.println(“Hello, ” + request.getParameter(“name”)); }

%>

</body>

</html>

Figure 9.9 A JSP page with embedded Java code.

from the page, so the client may not even be aware that the page originally had
any code in it. The executed script may contain SQL code that is executed against
a database.

Some of the widely used scripting languages include Java Server Pages (JSP)
from Sun, Active Server Pages (ASP) and its successor ASP.NET from Microsoft,
the PHP scripting language, the ColdFusion Markup Language (CFML), and Ruby
on Rails. Many scripting languages also allow code written in languages such as
Java, C#, VBScript, Perl, and Python to be embedded into or invoked from HTML
pages. For instance, JSP allows Java code to be embedded in HTML pages, while
Microsoft’s ASP.NET and ASP support embedded C# and VBScript. Many of these
languages come with libraries and tools, that together constitute a framework for
Web application development.

We briefly describe below Java Server Pages (JSP), a scripting language that
allows HTML programmers to mix static HTML with dynamically generated HTML.
The motivation is that, for many dynamic Web pages, most of their content is still
static (that is, the same content is present whenever the page is generated). The
dynamic content of the Web pages (which are generated, for example, on the
basis of form parameters) is often a small part of the page. Creating such pages by
writing servlet code results in a large amount of HTML being coded as Java strings.
JSP instead allows Java code to be embedded in static HTML; the embedded Java
code generates the dynamic part of the page. JSP scripts are actually translated
into servlet code that is then compiled, but the application programmer is saved
the trouble of writing much of the Java code to create the servlet.

Figure 9.9 shows the source text of an JSP page that includes embedded Java
code. The Java code in the script is distinguished from the surrounding HTML
code by being enclosed in <% . . . %>. The code uses request.getParameter()
to get the value of the attribute name.

When a JSP page is requested by a browser, the application server generates
HTML output from the page, which is sent back to the browser. The HTML part of
the JSP page is output as is.4 Wherever Java code is embedded within <% . . .%>,

4JSP allows a more complex embedding, where HTML code is within a Java if-else statement, and gets output condi-
tionally depending on whether the if condition evaluates to true or not. We omit details here.
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PHP

PHP is a scripting language that is widely used for server-side scripting. PHP
code can be intermixed with HTML in a manner similar to JSP. The characters
“<?php” indicate the start of PHP code, while the characters “?>” indicate the
end of PHP code. The following code performs the same actions as the JSP code
in Figure 9.9.

<html>
<head> <title> Hello </title> </head>

<body>

<?php if (!isset($ REQUEST[’name’]))
{ echo ’Hello World’; }
else { echo ’Hello, ’ . $ REQUEST[’name’]; }

?>

</body>

</html>

The array $ REQUEST contains the request parameters. Note that the array is
indexed by the parameter name; in PHP arrays can be indexed by arbitrary
strings, not just numbers. The function isset checks if the element of the array
has been initialized. The echo function prints its argument to the output HTML.
The operator “.” between two strings concatenates the strings.

A suitably configured Web server would interpret any file whose name ends
in “.php” to be a PHP file. If the file is requested, the Web server process it in a
manner similar to how JSP files are processed, and returns the generated HTML
to the browser.

A number of libraries are available for the PHP language, including libraries
for database access using ODBC (similar to JDBC in Java).

the code is replaced in the HTML output by the text it prints to the object out. In
the JSP code in the above figure, if no value was entered for the form parameter
name, the script prints “Hello World”; if a value was entered, the script prints
“Hello” followed by the name.

A more realistic example may perform more complex actions, such as looking
up values from a database using JDBC.

JSP also supports the concept of a tag library, which allows the use of tags that
look much like HTML tags, but are interpreted at the server, and are replaced by
appropriately generated HTML code. JSP provides a standard set of tags that de-
fine variables and control flow (iterators, if-then-else), along with an expression
language based on JavaScript (but interpreted at the server). The set of tags is
extensible, and a number of tag libraries have been implemented. For example,
there is a tag library that supports paginated display of large data sets, and a li-
brary that simplifies display and parsing of dates and times. See the bibliographic
notes for references to more information on JSP tag libraries.
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9.3.6 Client-Side Scripting

Embedding of program code in documents allows Web pages to be active, car-
rying out activities such as animation by executing programs at the local site,
instead of just presenting passive text and graphics. The primary use of such pro-
grams is flexible interaction with the user, beyond the limited interaction power
provided by HTML and HTML forms. Further, executing programs at the client
site speeds up interaction greatly, compared to every interaction being sent to a
server site for processing.

A danger in supporting such programs is that, if the design of the system
is done carelessly, program code embedded in a Web page (or equivalently, in
an email message) can perform malicious actions on the user’s computer. The
malicious actions could range from reading private information, to deleting or
modifying information on the computer, up to taking control of the computer
and propagating the code to other computers (through email, for example). A
number of email viruses have spread widely in recent years in this way.

One of the reasons that the Java language became very popular is that it
provides a safe mode for executing programs on users’ computers. Java code
can be compiled into platform-independent “byte-code” that can be executed on
any browser that supports Java. Unlike local programs, Java programs (applets)
downloaded as part of a Web page have no authority to perform any actions that
could be destructive. They are permitted to display data on the screen, or to make
a network connection to the server from which the Web page was downloaded,
in order to fetch more information. However, they are not permitted to access
local files, to execute any system programs, or to make network connections to
any other computers.

While Java is a full-fledged programming language, there are simpler lan-
guages, called scripting languages, that can enrich user interaction, while pro-
viding the same protection as Java. These languages provide constructs that can
be embedded with an HTML document. Client-side scripting languages are lan-
guages designed to be executed on the client’s Web browser.

Of these, the JavaScript language is by far the most widely used. The current
generation of Web interfaces uses the JavaScript scripting language extensively
to construct sophisticated user interfaces. JavaScript is used for a variety of tasks.
For example, functions written in JavaScript can be used to perform error checks
(validation) on user input, such as a date string being properly formatted, or
a value entered (such as age) being in an appropriate range. These checks are
carried out on the browser as data is entered, even before the data are sent to the
Web server.

Figure 9.10 shows an example of a JavaScript function used to validate a form
input. The function is declared in the head section of the HTML document. The
function checks that the credits entered for a course is a number greater than
0, and less than 16. The form tag specifies that the validation function is to be
invoked when the form is submitted. If the validation fails, an alert box is shown
to the user, and if it succeeds, the form is submitted to the server.

JavaScript can be used to modify dynamically the HTML code being displayed.
The browser parses HTML code into an in-memory tree structure defined by
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<html>
<head>
<script type="text/javascript">

function validate() {
var credits=document.getElementById("credits").value;
if (isNaN(credits)|| credits<=0 || credits>=16) {

alert("Credits must be a number greater than 0 and less than 16");
return false

}
}

</script>
</head>

<body>
<form action="createCourse" onsubmit="return validate()">

Title: <input type="text" id="title" size="20"><br />
Credits: <input type="text" id="credits" size="2"><br />
<input type="submit" value="Submit">

</form>
</body>
</html>

Figure 9.10 Example of JavaScript used to validate form input

a standard called the Document Object Model (DOM). JavaScript code can
modify the tree structure to carry out certain operations. For example, suppose
a user needs to enter a number of rows of data, for example multiple items in a
single bill. A table containing text boxes and other form input methods can be
used to gather user input. The table may have a default size, but if more rows are
needed, the user may click on a button labeled (for example) “Add Item.” This
button can be set up to invoke a JavaScript function that modifies the DOM tree
by adding an extra row in the table.

Although the JavaScript language has been standardized, there are differ-
ences between browsers, particularly in the details of the DOM model. As a result,
JavaScript code that works on one browser may not work on another. To avoid
such problems, it is best to use a JavaScript library, such as Yahoo’s YUI library,
which allows code to be written in a browser independent way. Internally, the
functions in the library can find out which browser is in use, and send appropri-
ately generated JavaScript to the browser. See the Tools section at the end of the
chapter for more information on YUI and other libraries.

Today, JavaScript is widely used to create dynamic Web pages, using several
technologies that are collectively called Ajax. Programs written in JavaScript
communicate with the Web server asynchronously (that is, in the background,
without blocking user interaction with the Web browser), and can fetch data and
display it.
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As an example of the use of Ajax, consider a Web site with a form that allows
you to select a country, and once a country has been selected, you are allowed to
select a state from a list of states in that country. Until the country is selected, the
drop-down list of states is empty. The Ajax framework allows the list of states to
be downloaded from the Web site in the background when the country is selected,
and as soon as the list has been fetched, it is added to the drop-down list, which
allows you to select the state.

There are also special-purpose scripting languages for specialized tasks such
as animation (for example, Flash and Shockwave) and three-dimensional model-
ing (Virtual Reality Markup Language (VRML)). Flash is very widely used today
not only for animation, but also for handling streaming video content.

9.4 Application Architectures

To handle their complexity, large applications are often broken into several layers:

• The presentation or user interface layer, which deals with user interaction. A
single application may have several different versions of this layer, corre-
sponding to distinct kinds of interfaces such as Web browsers, and user
interfaces of mobile phones, which have much smaller screens.

In many implementations, the presentation/user-interface layer is it-
self conceptually broken up into layers, based on the model-view-controller
(MVC) architecture. The model corresponds to the business-logic layer, de-
scribed below. The view defines the presentation of data; a single underlying
model can have different views depending on the specific software/device
used to access the application. The controller receives events (user actions),
executes actions on the model, and returns a view to the user. The MVC ar-
chitecture is used in a number of Web application frameworks, which are
discussed later in Section 9.5.2.

• The business-logic layer, which provides a high-level view of data and ac-
tions on data. We discuss the business-logic layer in more detail in Sec-
tion 9.4.1.

• The data access layer, which provides the interface between the business-logic
layer and the underlying database. Many applications use an object-oriented
language to code the business-logic layer, and use an object-oriented model
of data, while the underlying database is a relational database. In such cases,
the data-access layer also provides the mapping from the object-oriented data
model used by the business logic to the relational model supported by the
database. We discuss such mappings in more detail in Section 9.4.2.

Figure 9.11 shows the above layers, along with a sequence of steps taken to
process a request from the Web browser. The labels on the arrows in the figure
indicate the order of the steps. When the request is received by the application
server, the controller sends a request to the model. The model processes the
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Figure 9.11 Web application architecture.

request, using business logic, which may involve updating objects that are part of
the model, followed by creating a result object. The model in turn uses the data-
access layer to update or retrieve information from a database. The result object
created by the model is sent to the view module, which creates an HTML view of
the result, to be displayed on the Web browser. The view may be tailored based
on the characteristics of the device used to view the result, for example whether
it is a computer monitor with a large screen, or a small screen on a phone.

9.4.1 The Business-Logic Layer

The business-logic layer of an application for managing a university may provide
abstractions of entities such as students, instructors, courses, sections, etc., and
actions such as admitting a student to the university, enrolling a student in a
course, and so on. The code implementing these actions ensures that business
rules are satisfied; for example the code would ensure that a student can enroll
for a course only if she has already completed course prerequisites, and has paid
her tuition fees.

In addition, the business logic includes workflows, which describe how a
particular task that involves multiple participants is handled. For example, if a
candidate applies to the university, there is a workflow that defines who should
see and approve the application first, and if approved in the first step, who
should see the application next, and so on until either an offer is made to the
student, or a rejection note is sent out. Workflow management also needs to deal
with error situations; for example, if a deadline for approval/rejection is not
met, a supervisor may need to be informed so she can intervene and ensure the
application is processed. Workflows are discussed in more detail in Section 26.2.



9.4 Application Architectures 393

9.4.2 The Data-Access Layer and Object-Relational Mapping

In the simplest scenario, where the business-logic layer uses the same data model
as the database, the data-access layer simply hides the details of interfacing with
the database. However, when the business-logic layer is written using an object-
oriented programming language, it is natural to model data as objects, with
methods invoked on objects.

In early implementations, programmers had to write code for creating objects
by fetching data from the database, and for storing updated objects back in the
database. However, such manual conversions between data models is cumber-
some and error prone. One approach to handling this problem was to develop a
database system that natively stores objects, and relationships between objects.
Such databases, called object-oriented databases, are discussed in more detail
in Chapter 22. However, object-oriented databases did not achieve commercial
success for a variety of technical and commercial reasons.

An alternative approach is to use traditional relational databases to store data,
but to automate the mapping of data in relations to in-memory objects, which
are created on demand (since memory is usually not sufficient to store all data
in the database), as well as the reverse mapping to store updated objects back as
relations in the database.

Several systems have been developed to implement such object-relational
mappings. The Hibernate system is widely used for mapping from Java objects
to relations. In Hibernate, the mapping from each Java class to one or more
relations is specified in a mapping file. The mapping file can specify, for example,
that a Java class called Student is mapped to the relation student, with the Java
attribute ID mapped to the attribute student.ID, and so on. Information about the
database, such as the host on which it is running, and user name and password
for connecting to the database, etc., are specified in a properties file. The program
has to open a session, which sets up the connection to the database. Once the
session is set up, a Student object stud created in Java can be stored in the database
by invoking session.save(stud). The Hibernate code generates the SQL commands
required to store corresponding data in the student relation.

A list of objects can be retrieved from the database by executing a query
written in the Hibernate query language; this is similar to executing a query us-
ing JDBC, which returns a ResultSet containing a set of tuples. Alternatively, a
single object can be retrieved by providing its primary key. The retrieved objects
can be updated in memory; when the transaction on the ongoing Hibernate ses-
sion is committed, Hibernate automatically saves the updated objects by making
corresponding updates on relations in the database.

While entities in an E-R model naturally correspond to objects in an object-
oriented language such as Java, relationships often do not. Hibernate supports
the ability to map such relationships as sets associated with objects. For example,
the takes relationship between student and section can be modeled by associating
a set of sections with each student, and a set of students with each section. Once the
appropriate mapping is specified, Hibernate populates these sets automatically
from the database relation takes, and updates to the sets are reflected back to the
database relation on commit.
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HIBERNATE EXAMPLE

As an example of the use of Hibernate, we create a Java class corresponding to
the student relation as follows.

public class Student {
String ID;
String name;
String department;
int tot cred;
Student(String id, String name, String dept, int totcreds); // constructor

}
To be precise, the class attributes should be declared as private, and getter/setter
methods should be provided to access the attributes, but we omit these details.

The mapping of the class attributes of Student to attributes of the relation
student is specified in a mapping file, in an XML format. Again, we omit details.

The following code snippet then creates a Student object and saves it to the
database.

Session session = getSessionFactory().openSession();
Transaction txn = session.beginTransaction();
Student stud = new Student("12328", "John Smith", "Comp. Sci.", 0);
session.save(stud);
txn.commit();
session.close();

Hibernate automatically generates the required SQL insert statement to create a
student tuple in the database.

To retrieve students, we can use the following code snippet

Session session = getSessionFactory().openSession();
Transaction txn = session.beginTransaction();
List students =

session.find("from Student as s order by s.ID asc");
for ( Iterator iter = students.iterator(); iter.hasNext(); ) {

Student stud = (Student) iter.next();
.. print out the Student information ..

}
txn.commit();
session.close();

The above code snippet uses a query in Hibernate’s HQL query language. The
HQL query is automatically translated to SQL by Hibernate and executed, and
the results are converted into a list of Student objects. The for loop iterates over
the objects in this list and prints them out.
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The above features help to provide the programmer a high-level model of data
without bothering about the details of the relational storage. However, Hibernate,
like other object-relational mapping systems, also allows programmers direct SQL
access to the underlying relations. Such direct access is particularly important for
writing complex queries used for report generation.

Microsoft has developed a data model called the Entity Data Model, which
can be viewed as a variant of the entity-relationship model, and an associated
framework called the ADO.NET Entity Framework, which can map data between
the Entity Data Model and a relational database. The framework also provides an
SQL-like query language called Entity SQL, which operates directly on the Entity
Data Model.

9.4.3 Web Services

In the past, most Web applications used only data available at the application
server and its associated database. In recent years, a wide variety of data is
available on the Web that is intended to be processed by a program, rather than
displayed directly to the user; the program may be running as part of a back-end
application, or may be a script running in the browser. Such data are typically
accessed using what is in effect a Web application programming interface; that is,
a function call request is sent using the HTTP protocol, executed at an application
server, and the results sent back to the calling program. A system that supports
such an interface is called a Web service.

Two approaches are widely used to implement Web services. In the simpler
approach, called Representation State Transfer (or REST), Web service function
calls are executed by a standard HTTP request to a URL at an application server,
with parameters sent as standard HTTP request parameters. The application server
executes the request (which may involve updating the database at the server),
generates and encodes the result, and returns the result as the result of the HTTP
request. The server can use any encoding for a particular requested URL; XML,
and an encoding of JavaScript objects called JavaScript Object Notation(JSON),
are widely used. The requestor parses the returned page to access the returned
data.

In many applications of such RESTful Web services (that is, Web services using
REST), the requestor is JavaScript code running in a Web browser; the code updates
the browser screen using the result of the function call. For example, when you
scroll the display on a map interface on the Web, the part of the map that needs to
be newly displayed may be fetched by JavaScript code using a RESTful interface,
and then displayed on the screen.

A more complex approach, sometimes referred to as “Big Web Services,” uses
XML encoding of parameters as well as results, has a formal definition of the Web
API using a special language, and uses a protocol layer built on top of the HTTP
protocol. This approach is described in more detail in Section 23.7.3.

9.4.4 Disconnected Operation

Many applications wish to support some operations even when a client is dis-
connected from the application server. For example, a student may wish to fill
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an application form even if her laptop is disconnected from the network, but
have it saved back when the laptop is reconnected. As another example, if an
email client is built as a Web application, a user may wish to compose an email
even if her laptop is disconnected from the network, and have it sent when it
is reconnected. Building such applications requires local storage, preferably in
the form of a database, in the client machine. The Gears software (originally de-
veloped by Google) is a browser plug-in that provides a database, a local Web
server, and support for parallel execution of JavaScript at the client. The software
works identically on multiple operating system/browser platforms, allowing ap-
plications to support rich functionality without installation of any software (other
than Gears itself). Adobe’s AIR software also provides similar functionality for
building Internet applications that can run outside the Web browser.

9.5 Rapid Application Development

If Web applications are built without using tools or libraries for constructing the
user interface, the programming effort required to construct the user interface can
be significantly more than that required for business logic and database access.
Several approaches have been developed to reduce the effort required to build
applications:

• Provide a library of functions to generate user-interface elements with mini-
mal programming.

• Provide drag-and-drop features in an integrated development environment
that allows user-interface elements to be dragged from a menu into a design
view of a page. The integrated development environment generates code that
creates the user-interface element by invoking library functions.

• Automatically generate code for the user interface from a declarative specifi-
cation.

All these approaches have been used for creating user interfaces, well before the
Web was created, as part of Rapid Application Development (RAD) tools, and
are now used extensively for creating Web applications as well.

Examples of tools designed for rapid development of interfaces for database
applications include Oracle Forms, Sybase PowerBuilder, and Oracle Application
Express (APEX). In addition, tools designed for Web application development,
such as Visual Studio and Netbeans VisualWeb, support several features designed
for rapid development of Web interfaces for database backed applications.

We study tools for construction of user interfaces in Section 9.5.1, and study
frameworks that support automatic code generation from a system model, in
Section 9.5.2.

9.5.1 Tools for Building User Interfaces

Many HTML constructs are best generated by using appropriately defined func-
tions, instead of being written as part of the code of each Web page. For example,
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address forms typically require a menu containing country or state names. In-
stead of writing lengthy HTML code to create the required menu each time it is
used, it is preferable to define a function that outputs the menu, and to call the
function wherever required.

Menus are often best generated from data in the database, such as a table
containing country names or state names. The function generating the menu exe-
cutes a database query and populates the menu, using the query result. Adding a
country or state then requires only a change to the database, not to the application
code. This approach has the potential drawback of requiring increased database
interaction, but such overhead can be minimized by caching query results at the
application server.

Forms to input dates and times, or inputs that require validation, are similarly
best generated by calling appropriately defined functions. Such functions can
output JavaScript code to perform validation at the browser.

Displaying a set of results from a query is a common task for many database
applications. It is possible to build a generic function that takes an SQL query (or
ResultSet) as argument, and display the tuples in the query result (or ResultSet)
in a tabular form. JDBC metadata calls can be used to find information such as the
number of columns and the names and types of the columns in the query result;
this information is then used to display the query result.

To handle situations where the query result is very large, such a query result
display function can provide for pagination of results. The function can display
a fixed number of records in a page and provide controls to step to the next or
previous page or jump to a particular page of the results.

There is unfortunately no (widely used) standard Java API for functions to
carry out the user-interface tasks described above. Building such a library can be
an interesting programming project.

However, there are other tools, such as the JavaServer Faces (JSF) framework,
that support the features listed above. The JSF framework includes a JSP tag
library that implements these features. The Netbeans IDE has a component called
VisualWeb that builds on JSF, providing a visual development environment where
user interface components can be dragged and dropped into a page, and their
properties customized. For example, JSF provides components to create drop-
down menus, or display a table, which can be configured to get their data from
a database query. JSF also supports validation specification on components, for
example to make a selection or input mandatory, or to constrain a number or a
date to be in a specified range.

Microsoft’s Active Server Pages (ASP), and its more recent version, Active
Server Pages.NET(ASP.NET), is a widely used alternative to JSP/Java. ASP.NET is
similar to JSP, in that code in a language such as Visual Basic or C# can be
embedded within HTML code. In addition, ASP.NET provides a variety of controls
(scripting commands) that are interpreted at the server, and generate HTML that
is then sent to the client. These controls can significantly simplify the construction
of Web interfaces. We provide a brief overview of the benefits that these controls
offer.
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For example, controls such as drop-down menus and list boxes can be asso-
ciated with a DataSet object. The DataSet object is similar to a JDBC ResultSet
object, and is typically created by executing a query on the database. The HTML
menu contents are then generated from the DataSet object’s contents; for exam-
ple, a query may retrieve the names of all departments in an organization into the
DataSet, and the associated menu would contain these names. Thus, menus that
depend on database contents can be created in a convenient manner with very
little programming.

Validator controls can be added to form input fields; these declaratively spec-
ify validity constraints such as value ranges, or whether the input is a required
input for which a value must be provided by the user. The server creates ap-
propriate HTML code combined with JavaScript to perform the validation at the
user’s browser. Error messages to be displayed on invalid input can be associated
with each validator control.

User actions can be specified to have an associated action at the server. For
example, a menu control can specify that selecting a value from a menu has an
associated server-side action (JavaScript code is generated to detect the selection
event and initiate the server-side action). Visual Basic/C# code that displays data
pertaining to the selected value can be associated with the action at the server.
Thus, selecting a value from a menu can result in associated data on the page
getting updated, without requiring the user to click on a submit button.

The DataGrid control provides a very convenient way of displaying query
results. A DataGrid is associated with a DataSet object, which is typically the
result of a query. The server generates HTML code that displays the query result
as a table. Column headings are generated automatically from query result meta-
data. In addition, DataGrids provide several features, such as pagination, and
allow the user to sort the result on chosen columns. All the HTML code as well
as server-side functionality to implement these features is generated automati-
cally by the server. The DataGrid even allows users to edit the data and submit
changes back to the server. The application developer can specify a function, to
be executed when a row is edited, that can perform the update on the database.

Microsoft Visual Studio provides a graphical user interface for creating ASP
pages using these features, further reducing the programming effort.

See the bibliographic notes for references to more information on ASP.NET.

9.5.2 Web Application Frameworks

There are a variety of Web application development frameworks that provide
several commonly used features such as:

• An object-oriented model with an object-relational mapping to store data in
a relational database (as we saw in Section 9.4.2).

• A (relatively) declarative way of specifying a form with validation constraints
on user inputs, from which the system generates HTML and Javascript/Ajax
code to implement the form.
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• A template scripting system (similar to JSP).

• A controller that maps user interaction events such as form submits to ap-
propriate functions that handle the event. The controller also manages au-
thentication and sessions. Some frameworks also provide tools for managing
authorizations.

Thus, these frameworks provide a variety of features that are required to build
Web applications, in an integrated manner. By generating forms from declarative
specifications, and managing data access transparently, the frameworks minimize
the amount of coding that a Web application programmer has to carry out.

There are a large number of such frameworks, based on different languages.
Some of the more widely used frameworks include Ruby on Rails, which is
based on the Ruby programming language, JBoss Seam, Apache Struts, Swing,
Tapestry, and WebObjects, all based on Java/JSP. Some of these, such as Ruby on
Rails and JBoss Seam provide a tool that can automatically create simple CRUD
Web interfaces; that is, interfaces that support create, read, update and delete
of objects/tuples, by generating code from an object model or a database. Such
tools are particularly useful to get simple applications running quickly, and the
generated code can be edited to build more sophisticated Web interfaces.

9.5.3 Report Generators

Report generators are tools to generate human-readable summary reports from
a database. They integrate querying the database with the creation of formatted
text and summary charts (such as bar or pie charts). For example, a report may
show the total sales in each of the past 2 months for each sales region.

The application developer can specify report formats by using the formatting
facilities of the report generator. Variables can be used to store parameters such
as the month and the year and to define fields in the report. Tables, graphs, bar
charts, or other graphics can be defined via queries on the database. The query
definitions can make use of the parameter values stored in the variables.

Once we have defined a report structure on a report-generator facility, we
can store it and can execute it at any time to generate a report. Report-generator
systems provide a variety of facilities for structuring tabular output, such as
defining table and column headers, displaying subtotals for each group in a table,
automatically splitting long tables into multiple pages, and displaying subtotals
at the end of each page.

Figure 9.12 is an example of a formatted report. The data in the report are
generated by aggregation on information about orders.

Report-generation tools are available from a variety of vendors, such as Crys-
tal Reports and Microsoft (SQL Server Reporting Services). Several application
suites, such as Microsoft Office, provide a way of embedding formatted query
results from a database directly into a document. Chart-generation facilities pro-
vided by Crystal Reports, or by spreadsheets such as Excel can be used to access
data from databases, and generate tabular depictions of data or graphical depic-
tions using charts or graphs. Such charts can be embedded within text documents.
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Region Category Sales

North Computer Hardware 1,000,000

 Computer So�ware 500,000

 All categories  1,500,000

South Computer Hardware 200,000

 Computer So�ware 400,000

 All categories  600,000

   2,100,000

Acme Supply Company, Inc. 
Quarterly Sales Report

Period:  Jan. 1 to March 31, 2009

Total Sales

Subtotal

Figure 9.12 A formatted report.

The charts are created initially from data generated by executing queries against
the database; the queries can be re-executed and the charts regenerated when
required, to generate a current version of the overall report.

In addition to generating static reports, report-generation tools support the
creation of interactive reports. For example, a user can “drill down” into areas of
interest, for example move from an aggregate view showing the total sales across
an entire year to the monthly sales figures for a particular year. Such operations
were discussed earlier, in Section 5.6.

9.6 Application Performance

Web sites may be accessed by millions of people from across the globe, at rates of
thousands of requests per second, or even more, for the most popular sites. Ensur-
ing that requests are served with low response times is a major challenge for Web
site developers. To do so, application developers try to speed up the processing
of individual requests by using techniques such as caching, and exploit parallel
processing by using multiple application servers. We describe these techniques
briefly below. Tuning of database applications is described in more detail later, in
Chapter 24 (Section 24.1).

9.6.1 Reducing Overhead by Caching

Caching techniques of various types are used to exploit commonalities between
transactions. For instance, suppose the application code for servicing each user
request needs to contact a database through JDBC. Creating a new JDBC connection
may take several milliseconds, so opening a new connection for each user request
is not a good idea if very high transaction rates are to be supported.
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The Connection pooling method is used to reduce this overhead; it works as
follows. The connection pool manager (a part of the application server) creates
a pool (that is, a set) of open ODBC/JDBC connections. Instead of opening a new
connection to the database, the code servicing a user request (typically a servlet)
asks for (requests) a connection from the connection pool and returns the con-
nection to the pool when the code (servlet) completes its processing. If the pool
has no unused connections when a connection is requested, a new connection is
opened to the database (taking care not to exceed the maximum number of con-
nections that the database system can support concurrently). If there are many
open connections that have not been used for a while, the connection pool man-
ager may close some of the open database connections. Many application servers,
and newer ODBC/JDBC drivers provide a built-in connection pool manager.

A common error that many programmers make when creating Web appli-
cations is to forget to close an opened JDBC connection (or equivalently, when
connection pooling is used, to forget to return the connection to the connection
pool). Each request then opens a new connection to the database, and the database
soon reaches the limit of how many open connections it can have at a time. Such
problems often do not show up on small-scale testing, since databases often al-
low hundreds of open connections, but show up only on intensive usage. Some
programmers assume that connections, like memory allocated by Java programs,
are garbage collected automatically. Unfortunately, this does not happen, and
programmers are responsible for closing connections that they have opened.

Certain requests may result in exactly the same query being resubmitted to the
database. The cost of communication with the database can be greatly reduced by
caching the results of earlier queries and reusing them, so long as the query result
has not changed at the database. Some Web servers support such query-result
caching; caching can otherwise be done explicitly in application code.

Costs can be further reduced by caching the final Web page that is sent in
response to a request. If a new request comes with exactly the same parameters as
a previous request, the request does not perform any updates, and the resultant
Web page is in the cache, then it can be reused to avoid the cost of recomputing
the page. Caching can be done at the level of fragments of Web pages, which are
then assembled to create complete Web pages.

Cached query results and cached Web pages are forms of materialized views.
If the underlying database data change, the cached results must be discarded, or
recomputed, or even incrementally updated, as in materialized-view maintenance
(described later, in Section 13.5). Some database systems (such as Microsoft SQL
Server) provide a way for the application server to register a query with the
database, and get a notification from the database when the result of the query
changes. Such a notification mechanism can be used to ensure that query results
cached at the application server are up-to-date.

9.6.2 Parallel Processing

A commonly used approach to handling such very heavy loads is to use a large
number of application servers running in parallel, each handling a fraction of the
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requests. A Web server or a network router can be used to route each client request
to one of the application servers. All requests from a particular client session must
go to the same application server, since the server maintains state for a client
session. This property can be ensured, for example, by routing all requests from a
particular IP address to the same application server. The underlying database is,
however, shared by all the application servers, so that users see a consistent view
of the database.

With the above architecture, the database could easily become the bottleneck,
since it is shared. Application designers pay particular attention to minimizing
the number of requests to the database, by caching query results at the application
server, as discussed earlier. In addition, parallel database systems, described in
Chapter 18, are used when required.

9.7 Application Security

Application security has to deal with several security threats and issues beyond
those handled by SQL authorization.

The first point where security has to be enforced is in the application. To do
so, applications must authenticate users, and ensure that users are only allowed
to carry out authorized tasks.

There are many ways in which an application’s security can be compromised,
even if the database system is itself secure, due to badly written application
code. In this section, we first describe several security loopholes that can permit
hackers to carry out actions that bypass the authentication and authorization
checks carried out by the application, and explain how to prevent such loopholes.
Later in the section, we describe techniques for secure authentication, and for fine-
grained authorization. We then describe audit trails that can help in recovering
from unauthorized access and from erroneous updates. We conclude the section
by describing issues in data privacy.

9.7.1 SQL Injection

In SQL injection attacks, the attacker manages to get an application to execute an
SQL query created by the attacker. In Section 5.1.1.4, we saw an example of an SQL
injection vulnerability if user inputs are concatenated directly with an SQL query
and submitted to the database. As another example of SQL injection vulnerability,
consider the form source text shown in Figure 9.4. Suppose the corresponding
servlet shown in Figure 9.8 creates an SQL query string using the following Java
expression:

String query = “select * from student where name like ’%”
+ name + “%’”

where name is a variable containing the string input by the user, and then executes
the query on the database. A malicious attacker using the Web form can then type
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a string such as “’;<some SQL statement>; −− ”, where <some SQL statement>
denotes any SQL statement that the attacker desires, in place of a valid student
name. The servlet would then execute the following string.

select * from student where name like ’ ’; <some SQL statement>; −− ’

The quote inserted by the attacker closes the string, the following semicolon ter-
minates the query, and the following text inserted by the attacker gets interpreted
as a second SQL query, while the closing quote has been commented out. Thus, the
malicious user has managed to insert an arbitrary SQL statement that is executed
by the application. The statement can cause significant damage, since it can per-
form any action on the database, bypassing all security measures implemented
in the application code.

As discussed in Section 5.1.1.4, to avoid such attacks, it is best to use prepared
statements to execute SQL queries. When setting a parameter of a prepared query,
JDBC automatically adds escape characters so that the user-supplied quote would
no longer be able to terminate the string. Equivalently, a function that adds such
escape characters could be applied on input strings before they are concatenated
with the SQL query, instead of using prepared statements.

Another source of SQL-injection risk comes from applications that create
queries dynamically, based on selection conditions and ordering attributes spec-
ified in a form. For example, an application may allow a user to specify what
attribute should be used for sorting the results of a query. An appropriate SQL
query is constructed, based on the attribute specified. Suppose the application
takes the attribute name from a form, in the variable orderAttribute, and creates a
query string such as the following:

String query = “select * from takes order by ” + orderAttribute;

A malicious user can send an arbitrary string in place of a meaningful or-
derAttribute value, even if the HTML form used to get the input tried to restrict
the allowed values by providing a menu. To avoid this kind of SQL injection,
the application should ensure that the orderAttribute variable value is one of the
allowed values (in our example, attribute names), before appending it.

9.7.2 Cross Site Scripting and Request Forgery

A Web site that allows users to enter text, such as a comment or a name, and then
stores it and later displays it to other users, is potentially vulnerable to a kind of
attack called a cross-site scripting (XSS) attack. In such an attack, a malicious user
enters code written in a client-side scripting language such as JavaScript or Flash
instead of entering a valid name or comment. When a different user views the
entered text, the browser would execute the script, which can carry out actions
such as sending private cookie information back to the malicious user, or even
executing an action on a different Web server that the user may be logged into.
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For example, suppose the user happens to be logged into her bank account at
the time the script executes. The script could send cookie information related to
the bank account login back to the malicious user, who could use the information
to connect to the bank’s Web server, fooling it into believing that the connection is
from the original user. Or, the script could access appropriate pages on the bank’s
Web site, with appropriately set parameters, to execute a money transfer. In fact
this particular problem can occur even without scripting by simply using a line
of code such as

<img src=
"http://mybank.com/transfermoney?amount=1000&toaccount=14523">

assuming that the URL mybank.com/transfermoney accepts the specified param-
eters, and carries out a money transfer. This latter kind of vulnerability is also
called cross-site request forgery or XSRF (sometimes also called CSRF).

XSS can be done in other ways, such as luring a user into visiting a Web site
that has malicious scripts embedded in its pages. There are other more complex
kinds of XSS and XSRF attacks, which we shall not get into here. To protect against
such attacks, two things need to be done:

• Prevent your Web site from being used to launch XSS or XSRF attacks.
The simplest technique is to disallow any HTML tags whatsoever in text input
by users. There are functions that detect, or strip all such tags. These functions
can be used to prevent HTML tags, and as a result, any scripts, from being
displayed to other users. In some cases HTML formatting is useful, and in
that case functions that parse the text and allow limited HTML constructs,
but disallow other dangerous constructs can be used instead; these must be
designed carefully, since something as innocuous as an image include could
potentially be dangerous in case there is a bug in the image display software
that can be exploited.

• Protect your Web site from XSS or XSRF attacks launched from other sites.
If the user has logged into your Web site, and visits a different Web site
vulnerable to XSS, the malicious code executing on the user’s browser could
execute actions on your Web site, or pass session information related to your
Web site back to the malicious user who could try to exploit it. This cannot
be prevented altogether, but you can take a few steps to minimize the risk.

◦ The HTTP protocol allows a server to check the referer of a page access, that
is, the URL of the page that had the link that the user clicked on to initiate
the page access. By checking that the referer is valid, for example, that the
referer URL is a page on the same Web site, XSS attacks that originated on
a different Web page accessed by the user can be prevented.

◦ Instead of using only the cookie to identify a session, the session could also
be restricted to the IP address from which it was originally authenticated.
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As a result, even if a malicious user gets a cookie, he may not be able to
log in from a different computer.

◦ Never use a GET method to perform any updates. This prevents attacks
using <img src ..> such as the one we saw earlier. In fact, the HTTP stan-
dard recommends that GET methods should never perform any updates,
for other reasons such as a page refresh repeating an action that should
have happened only once.

9.7.3 Password Leakage

Another problem that application developers must deal with is storing passwords
in clear text in the application code. For example, programs such as JSP scripts
often contain passwords in clear text. If such scripts are stored in a directory
accessible by a Web server, an external user may be able to access the source
code of the script, and get access to the password for the database account used
by the application. To avoid such problems, many application servers provide
mechanisms to store passwords in encrypted form, which the server decrypts
before passing it on to the database. Such a feature removes the need for storing
passwords as clear text in application programs. However, if the decryption key
is also vulnerable to being exposed, this approach is not fully effective.

As another measure against compromised database passwords, many data-
base systems allow access to the database to be restricted to a given set of Internet
addresses, typically, the machines running the application servers. Attempts to
connect to the database from other Internet addresses are rejected. Thus, unless
the malicious user is able to log into the application server, she cannot do any
damage even if she gains access to the database password.

9.7.4 Application Authentication

Authentication refers to the task of verifying the identity of a person/software
connecting to an application. The simplest form of authentication consists of a
secret password that must be presented when a user connects to the application.
Unfortunately, passwords are easily compromised, for example, by guessing, or
by sniffing of packets on the network if the passwords are not sent encrypted.
More robust schemes are needed for critical applications, such as online bank
accounts. Encryption is the basis for more robust authentication schemes. Au-
thentication through encryption is addressed in Section 9.8.3.

Many applications use two-factor authentication, where two independent
factors (that is, pieces of information or processes) are used to identify a user. The
two factors should not share a common vulnerability; for example, if a system
merely required two passwords, both could be vulnerable to leakage in the same
manner (by network sniffing, or by a virus on the computer used by the user, for
example). While biometrics such as fingerprints or iris scanners can be used in
situations where a user is physically present at the point of authentication, they
are not very meaningful across a network.
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Passwords are used as the first factor in most such two-factor authentication
schemes. Smart cards or other encryption devices connected through the USB
interface, which can be used for authentication based on encryption techniques
(see Section 9.8.3), are widely used as second factors.

One-time password devices, which generate a new pseudo-random number
(say) every minute are also widely used as a second factor. Each user is given
one of these devices, and must enter the number displayed by the device at
the time of authentication, along with the password, to authenticate himself.
Each device generates a different sequence of pseudo-random numbers. The
application server can generate the same sequence of pseudo-random numbers
as the device given to the user, stopping at the number that would be displayed
at the time of authentication, and verify that the numbers match. This scheme
requires that the clock in the device and at the server are synchronized reasonably
closely.

Yet another second-factor approach is to send an SMS with a (randomly gener-
ated) one-time password to the user’s phone (whose number is registered earlier)
whenever the user wishes to log in to the application. The user must possess a
phone with that number to receive the SMS, and then enter the one-time password,
along with her regular password, to be authenticated.

It is worth noting that even with two-factor authentication, users may still be
vulnerable to man-in-the-middle attacks. In such attacks, a user attempting to
connect to the application is diverted to a fake Web site, which accepts the pass-
word (including second factor passwords) from the user, and uses it immediately
to authenticate to the original application. The HTTPS protocol, described later in
Section 9.8.3.2, is used to authenticate the Web site to the user (so the user does
not connect to a fake site believing it to be the intended site). The HTTPS protocol
also encrypts data, and prevents man-in-the-middle attacks.

When users access multiple Web sites, it is often annoying for a user to have to
authenticate herself to each site separately, often with different passwords on each
site. There are systems that allow the user to authenticate herself to one central
authentication service, and other Web sites and applications can authenticate the
user through the central authentication service; the same password can then be
used to access multiple sites. The LDAP protocol is widely used to implement
such a central point of authentication; organizations implement an LDAP server
containing user names and password information, and applications use the LDAP
server to authenticate users.

In addition to authenticating users, a central authentication service can pro-
vide other services, for example, providing information about the user such as
name, email, and address information, to the application. This obviates the need
to enter this information separately in each application. LDAP can be used for
this task, as described later in Section 19.10.2. Other directory systems such Mi-
crosoft’s Active Directories, also provide mechanisms for authenticating users as
well as for providing user information.

A single sign-on system further allows the user to be authenticated once, and
multiple applications can then verify the user’s identity through an authentication
service without requiring reauthentication. In other words, once a user is logged
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in at one site, he does not have to enter his user name and password at other
sites that use the same single sign-on service. Such single sign-on mechanisms
have long been used in network authentication protocols such as Kerberos, and
implementations are now available for Web applications.

The Security Assertion Markup Language (SAML) is a standard for ex-
changing authentication and authorization information between different secu-
rity domains, to provide cross-organization single sign-on. For example, suppose
an application needs to provide access to all students from a particular university,
say Yale. The university can set up a Web-based service that carries out authen-
tication. Suppose a user connects to the application with a username such as
“joe@yale.edu”. The application, instead of directly authenticating a user, diverts
the user to Yale University’s authentication service, which authenticates the user,
and then tells the application who the user is and may provide some additional
information such as the category of the user (student or instructor) or other rele-
vant information. The user’s password and other authentication factors are never
revealed to the application, and the user need not register explicitly with the
application. However, the application must trust the university’s authentication
service when authenticating a user.

The OpenID standard is an alternative for single sign-on across organizations,
and has seen increasing acceptance in recent years. A large number of popular
Web sites, such as Google, Microsoft, Yahoo!, among many others, act as OpenID
authentication providers. Any application that acts as an OpenID client can then
use any of these providers to authenticate a user; for example, a user who has
a Yahoo! account can choose Yahoo! as the authentication provider. The user
is redirected to Yahoo! for authentication, and on successful authentication is
transparently redirected back to the application, and can then continue using the
application.

9.7.5 Application-Level Authorization

Although the SQL standard supports a fairly flexible system of authorization
based on roles (described in Section 4.6), the SQL authorization model plays a
very limited role in managing user authorizations in a typical application. For
instance, suppose you want all students to be able to see their own grades, but
not the grades of anyone else. Such authorization cannot be specified in SQL for
at least two reasons:

1. Lack of end-user information. With the growth in the Web, database ac-
cesses come primarily from Web application servers. The end users typically
do not have individual user identifiers on the database itself, and indeed
there may only be a single user identifier in the database corresponding to
all users of an application server. Thus, authorization specification in SQL
cannot be used in the above scenario.

It is possible for an application server to authenticate end users, and then
pass the authentication information on to the database. In this section we
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will assume that the function syscontext.user id() returns the identifier of the
application user on whose behalf a query is being executed.5

2. Lack of fine-grained authorization. Authorization must be at the level of
individual tuples, if we are to authorize students to see only their own
grades. Such authorization is not possible in the current SQL standard, which
permits authorization only on an entire relation or view, or on specified
attributes of relations or views.

We could try to get around this limitation by creating for each student
a view on the takes relation that shows only that student’s grades. While
this would work in principle, it would be extremely cumbersome since we
would have to create one such view for every single student enrolled in the
university, which is completely impractical.6

An alternative is to create a view of the form

create view studentTakes as
select *
from takes
where takes.ID= syscontext.user id()

Users are then given authorization to this view, rather than to the underlying
takes relation. However, queries executed on behalf of students must now be
written on the view studentTakes, rather than on the original takes relation,
whereas queries executed on behalf of instructors may need to use a different
view. The task of developing applications becomes more complex as a result.

The task of authorization is today typically carried out entirely in the applica-
tion, bypassing the authorization facilities of SQL. At the application level, users
are authorized to access specific interfaces, and may further be restricted to view
or update certain data items only.

While carrying out authorization in the application gives a great deal of
flexibility to application developers, there are problems, too.

• The code for checking authorization becomes intermixed with the rest of the
application code.

• Implementing authorization through application code, rather than specifying
it declaratively in SQL, makes it hard to ensure the absence of loopholes.
Because of an oversight, one of the application programs may not check for
authorization, allowing unauthorized users access to confidential data.

5In Oracle, a JDBC connection using Oracle’s JDBC drivers can set the end user identifier using the method
OracleConnection.setClientIdentifier(userId), and an SQL query can use the function sys context(’USERENV’,
’CLIENT IDENTIFIER’) to retrieve the user identifier.
6Database systems are designed to manage large relations, but manage schema information such as views in a way that
assumes smaller data volumes so as to enhance overall performance.
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Verifying that all application programs make all required authorization checks
involves reading through all the application-server code, a formidable task in
a large system. In other words, applications have a very large “surface area,”
making the task of protecting the application significantly harder. And in fact,
security loopholes have been found in a variety of real-life applications.

In contrast, if a database directly supported fine-grained authorization, au-
thorization policies could be specified and enforced at the SQL-level, which has
a much smaller surface area. Even if some of the application interfaces inad-
vertently omit required authorization checks, the SQL-level authorization could
prevent unauthorized actions from being executed.

Some database systems provide mechanisms for fine-grained authorization.
For example, the Oracle Virtual Private Database (VPD) allows a system admin-
istrator to associate a function with a relation; the function returns a predicate
that must be added to any query that uses the relation (different functions can
be defined for relations that are being updated). For example, using our syntax
for retrieving application user identifiers, the function for the takes relation can
return a predicate such as:

ID = sys context.user id()

This predicate is added to the where clause of every query that uses the takes
relation. As a result (assuming that the application program sets the user id value
to the student’s ID), each student can see only the tuples corresponding to courses
that she took.

Thus, VPD provides authorization at the level of specific tuples, or rows,
of a relation, and is therefore said to be a row-level authorization mechanism. A
potential pitfall with adding a predicate as described above is that it may change
the meaning of a query significantly. For example, if a user wrote a query to find
the average grade over all courses, she would end up getting the average of her
grades, not all grades. Although the system would give the “right” answer for
the rewritten query, that answer would not correspond to the query the user may
have thought she was submitting.

See the bibliographic notes for pointers to more information on Oracle VPD.

9.7.6 Audit Trails

An audit trail is a log of all changes (inserts, deletes, and updates) to the appli-
cation data, along with information such as which user performed the change
and when the change was performed. If application security is breached, or even
if security was not breached, but some update was carried out erroneously, an
audit trail can (a) help find out what happened, and who may have carried out
the actions, and (b) aid in fixing the damage caused by the security breach or
erroneous update.

For example, if a student’s grade is found to be incorrect, the audit log can
be examined to locate when and how the grade was updated, as well as to find
which user carried out the updates. The university could then also use the audit
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trail to trace all the updates performed by this user, in order to find other incorrect
or fraudulent updates, and then correct them.

Audit trails can also be used to detect security breaches where a user’s account
is compromised and accessed by an intruder. For example, each time a user logs
in, she may be informed about all updates in the audit trail that were done from
that login in the recent past; if the user sees a update that she did not carry out, it
is likely the account has been compromised.

It is possible to create a database-level audit trail by defining appropriate
triggers on relation updates (using system-defined variables that identify the user
name and time). However, many database systems provide built-in mechanisms
to create audit trails that are much more convenient to use. Details of how to
create audit trails vary across database systems, and you should refer to the
database-system manuals for details.

Database-level audit trails are usually insufficient for applications, since they
are usually unable to track who was the end user of the application. Further,
updates are recorded at a low level, in terms of updates to tuples of a relation,
rather than at a higher level, in terms of the business logic. Applications therefore
usually create a higher-level audit trail, recording, for example, what action was
carried out, by whom, when, and from which IP address the request originated.

A related issue is that of protecting the audit trail itself from being modified
or deleted by users who breach application security. One possible solution is to
copy the audit trail to a different machine, to which the intruder would not have
access, with each record in the trail copied as soon as it is generated.

9.7.7 Privacy

In a world where an increasing amount of personal data are available online,
people are increasingly worried about the privacy of their data. For example,
most people would want their personal medical data to be kept private and
not revealed publicly. However, the medical data must be made available to
doctors and emergency medical technicians who treat the patient. Many countries
have laws on privacy of such data that define when and to whom the data may
be revealed. Violation of privacy law can result in criminal penalties in some
countries. Applications that access such private data must be built carefully,
keeping the privacy laws in mind.

On the other hand, aggregated private data can play an important role in
many tasks such as detecting drug side effects, or in detecting the spread of
epidemics. How to make such data available to researchers carrying out such
tasks, without compromising the privacy of individuals, is an important real-
world problem. As an example, suppose a hospital hides the name of the patient,
but provides a researcher with the date of birth and the zip code (postal code)
of the patient (both of which may be useful to the researcher). Just these two
pieces of information can be used to uniquely identify the patient in many cases
(using information from an external database), compromising his privacy. In this
particular situation, one solution would be to give the year of birth but not the
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date of birth, along with the zip code, which may suffice for the researcher. This
would not provide enough information to uniquely identify most individuals.7

As another example, Web sites often collect personal data such as address,
telephone, email, and credit-card information. Such information may be required
to carry out a transaction such as purchasing an item from a store. However, the
customer may not want the information to be made available to other organiza-
tions, or may want part of the information (such as credit-card numbers) to be
erased after some period of time as a way to prevent it from falling into unautho-
rized hands in the event of a security breach. Many Web sites allow customers
to specify their privacy preferences, and must then ensure that these preferences
are respected.

9.8 Encryption and Its Applications

Encryption refers to the process of transforming data into a form that is unread-
able, unless the reverse process of decryption is applied. Encryption algorithms
use an encryption key to perform encryption, and require a decryption key (which
could be the same as the encryption key depending on the encryption algorithm
used) to perform decryption.

The oldest uses of encryption were for transmitting messages, encrypted
using a secret key known only to the sender and the intended receiver. Even if
the message is intercepted by an enemy, the enemy, not knowing the key, will not
be able to decrypt and understand the message. Encryption is widely used today
for protecting data in transit in a variety of applications such as data transfer on
the Internet, and on cellular phone networks. Encryption is also used to carry out
other tasks, such as authentication, as we will see in Section 9.8.3.

In the context of databases, encryption is used to store data in a secure way,
so that even if the data is acquired by an unauthorized user (for example, a laptop
computer containing the data is stolen), the data will not be accessible without a
decryption key.

Many databases today store sensitive customer information, such as credit-
card numbers, names, fingerprints, signatures, and identification numbers such
as, in the United States, social-security numbers. A criminal who gets access to
such data can use it for a variety of illegal activities such as purchasing goods
using a credit-card number, or even acquiring a credit card in someone else’s
name. Organizations such as credit-card companies use knowledge of personal
information as a way of identifying who is requesting a service or goods. Leakage
of such personal information allows a criminal to impersonate someone else and
get access to service or goods; such impersonation is referred to as identity theft.
Thus, applications that store such sensitive data must take great care to protect
them from theft.

7For extremely old people, who are relatively rare, even the year of birth plus postal code may be enough to uniquely
identify the individual, so a range of values, such as 80 years or older, may be provided instead of the actual age for
people older than 80 years.
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To reduce the chance of sensitive information being acquired by criminals,
many countries and states today require by law that any database storing such
sensitive information must store the information in an encrypted form. A business
that does not protect its data thus could be held criminally liable in case of data
theft. Thus, encryption is a critical component of any application that stores such
sensitive information.

9.8.1 Encryption Techniques

There are a vast number of techniques for the encryption of data. Simple encryp-
tion techniques may not provide adequate security, since it may be easy for an
unauthorized user to break the code. As an example of a weak encryption tech-
nique, consider the substitution of each character with the next character in the
alphabet. Thus,

Perryridge

becomes

Qfsszsjehf

If an unauthorized user sees only “Qfsszsjehf,” she probably has insufficient
information to break the code. However, if the intruder sees a large number of
encrypted branch names, she could use statistical data regarding the relative
frequency of characters to guess what substitution is being made (for example, E
is the most common letter in English text, followed by T, A, O, N, I, and so on).

A good encryption technique has the following properties:

• It is relatively simple for authorized users to encrypt and decrypt data.

• It depends not on the secrecy of the algorithm, but rather on a parameter
of the algorithm called the encryption key, which is used to encrypt data. In
a symmetric-key encryption technique, the encryption key is also used to
decrypt data. In contrast, in public-key (also known as asymmetric-key)
encryption techniques, there are two different keys, the public key and the
private key, used to encrypt and decrypt the data.

• Its decryption key is extremely difficult for an intruder to determine, even
if the intruder has access to encrypted data. In the case of asymmetric-key
encryption, it is extremely difficult to infer the private key even if the public
key is available.

The Advanced Encryption Standard (AES) is a symmetric-key encryption
algorithm that was adopted as an encryption standard by the U.S. government in
2000, and is now widely used. The standard is based on the Rijndael algorithm
(named for the inventors V. Rijmen and J. Daemen). The algorithm operates on a
128-bit block of data at a time, while the key can be 128, 192, or 256 bits in length.
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The algorithm runs a series of steps to jumble up the bits in a data block in a way
that can be reversed during decryption, and performs an XOR operation with a
128-bit “round key” that is derived from the encryption key. A new round key
is generated from the encryption key for each block of data that is encrypted.
During decryption, the round keys are generated again from the encryption key
and the encryption process is reversed to recover the original data. An earlier
standard called the Data Encryption Standard (DES), adopted in 1977, was very
widely used earlier.

For any symmetric-key encryption scheme to work, authorized users must
be provided with the encryption key via a secure mechanism. This requirement
is a major weakness, since the scheme is no more secure than the security of the
mechanism by which the encryption key is transmitted.

Public-key encryption is an alternative scheme that avoids some of the prob-
lems faced by symmetric-key encryption techniques. It is based on two keys: a
public key and a private key. Each user Ui has a public key Ei and a private key Di .
All public keys are published: They can be seen by anyone. Each private key is
known to only the one user to whom the key belongs. If user U1 wants to store
encrypted data, U1 encrypts them using public key E1. Decryption requires the
private key D1.

Because the encryption key for each user is public, it is possible to exchange
information securely by this scheme. If user U1 wants to share data with U2, U1
encrypts the data using E2, the public key of U2. Since only user U2 knows how
to decrypt the data, information can be transferred securely.

For public-key encryption to work, there must be a scheme for encryption
such that it is infeasible (that is, extremely hard) to deduce the private key, given
the public key. Such a scheme does exist and is based on these conditions:

• There is an efficient algorithm for testing whether or not a number is prime.

• No efficient algorithm is known for finding the prime factors of a number.

For purposes of this scheme, data are treated as a collection of integers. We
create a public key by computing the product of two large prime numbers: P1 and
P2. The private key consists of the pair (P1, P2). The decryption algorithm cannot
be used successfully if only the product P1 P2 is known; it needs the individual
values P1 and P2. Since all that is published is the product P1 P2, an unauthorized
user would need to be able to factor P1 P2 to steal data. By choosing P1 and P2
to be sufficiently large (over 100 digits), we can make the cost of factoring P1 P2
prohibitively high (on the order of years of computation time, on even the fastest
computers).

The details of public-key encryption and the mathematical justification of this
technique’s properties are referenced in the bibliographic notes.

Although public-key encryption by this scheme is secure, it is also computa-
tionally very expensive. A hybrid scheme widely used for secure communication
is as follows: a symmetric encryption key (based, for example, on AES) is ran-
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domly generated and exchanged in a secure manner using a public-key encryp-
tion scheme, and symmetric-key encryption using that key is used on the data
transmitted subsequently.

Encryption of small values, such as identifiers or names, is made compli-
cated by the possibility of dictionary attacks, particularly if the encryption key is
publicly available. For example, if date-of-birth fields are encrypted, an attacker
trying to decrypt a particular encrypted value e could try encrypting every possi-
ble date of birth until he finds one whose encrypted value matches e. Even if the
encryption key is not publicly available, statistical information about data distri-
butions can be used to figure out what an encrypted value represents in some
cases, such as age or zip code. For example, if the age 18 is the most common age
in a database, the encrypted age value that occurs most often can be inferred to
represent 18.

Dictionary attacks can be deterred by adding extra random bits to the end
of the value before encryption (and removing them after decryption). Such extra
bits, referred to as an initialization vector in AES, or as salt bits in other contexts,
provide good protection against dictionary attack.

9.8.2 Encryption Support in Databases

Many file systems and database systems today support encryption of data. Such
encryption protects the data from someone who is able to access the data, but is
not able to access the decryption key. In the case of file-system encryption, the
data to be encrypted are usually large files and directories containing information
about files.

In the context of databases, encryption can be done at several different levels.
At the lowest level, the disk blocks containing database data can be encrypted,
using a key available to the database-system software. When a block is retrieved
from disk, it is first decrypted and then used in the usual fashion. Such disk-block-
level encryption protects against attackers who can access the disk contents but
do not have access to the encryption key.

At the next higher level, specified (or all) attributes of a relation can be stored
in encrypted form. In this case, each attribute of a relation could have a different
encryption key. Many databases today support encryption at the level of specified
attributes as well as at the level of an entire relation, or all relations in a database.
Encryption of specified attributes minimizes the overhead of decryption, by al-
lowing applications to encrypt only attributes that contain sensitive values such
as credit-card numbers. However, when individual attributes or relations are en-
crypted, databases typically do not allow primary and foreign key attributes to be
encrypted, and do not support indexing on encrypted attributes. Encryption also
then needs to use extra random bits to prevent dictionary attacks, as described
earlier.

A decryption key is obviously required to get access to encrypted data. A
single master encryption key may be used for all the encrypted data; with attribute
level encryption, different encryption keys could be used for different attributes.
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In this case, the decryption keys for different attributes can be stored in a file or
relation (often referred to as “wallet”), which is itself encrypted using a master
key.

A connection to the database that needs to access encrypted attributes must
then provide the master key; unless this is provided, the connection will not be
able to access encrypted data. The master key would be stored in the application
program (typically on a different computer), or memorized by the database user,
and provided when the user connects to the database.

Encryption at the database level has the advantage of requiring relatively
low time and space overhead, and does not require modification of applications.
For example, if data in a laptop computer database need to be protected from
theft of the computer itself, such encryption can be used. Similarly, someone who
gets access to backup tapes of a database would not be able to access the data
contained in the backups without knowing the decryption key.

An alternative to performing encryption in the database is to perform it before
the data are sent to the database. The application must then encrypt the data
before sending it to the database, and decrypt the data when it is retrieved. This
approach to data encryption requires significant modifications to be done to the
application, unlike encryption performed in a database system.

9.8.3 Encryption and Authentication

Password-based authentication is used widely by operating systems as well as
databases. However, the use of passwords has some drawbacks, especially over a
network. If an eavesdropper is able to “sniff” the data being sent over the network,
she may be able to find the password as it is being sent across the network. Once
the eavesdropper has a user name and password, she can connect to the database,
pretending to be the legitimate user.

A more secure scheme involves a challenge–response system. The database
system sends a challenge string to the user. The user encrypts the challenge
string using a secret password as encryption key and then returns the result. The
database system can verify the authenticity of the user by decrypting the string
with the same secret password and checking the result with the original challenge
string. This scheme ensures that no passwords travel across the network.

Public-key systems can be used for encryption in challenge–response sys-
tems. The database system encrypts a challenge string using the user’s public key
and sends it to the user. The user decrypts the string using her private key, and
returns the result to the database system. The database system then checks the
response. This scheme has the added benefit of not storing the secret password
in the database, where it could potentially be seen by system administrators.

Storing the private key of a user on a computer (even a personal computer)
has the risk that if the computer is compromised, the key may be revealed to an
attacker who can then masquerade as the user. Smart cards provide a solution to
this problem. In a smart card, the key can be stored on an embedded chip; the
operating system of the smart card guarantees that the key can never be read, but



416 Chapter 9 Application Design and Development

allows data to be sent to the card for encryption or decryption, using the private
key.8

9.8.3.1 Digital Signatures

Another interesting application of public-key encryption is in digital signatures
to verify authenticity of data; digital signatures play the electronic role of physical
signatures on documents. The private key is used to “sign,” that is, encrypt, data,
and the signed data can be made public. Anyone can verify the signature by
decrypting the data using the public key, but no one could have generated the
signed data without having the private key. (Note the reversal of the roles of the
public and private keys in this scheme.) Thus, we can authenticate the data; that
is, we can verify that the data were indeed created by the person who is supposed
to have created them.

Furthermore, digital signatures also serve to ensure nonrepudiation. That is,
in case the person who created the data later claims she did not create it (the
electronic equivalent of claiming not to have signed the check), we can prove
that that person must have created the data (unless her private key was leaked to
others).

9.8.3.2 Digital Certificates

Authentication is, in general, a two-way process, where each of a pair of inter-
acting entities authenticates itself to the other. Such pairwise authentication is
needed even when a client contacts a Web site, to prevent a malicious site from
masquerading as a legal Web site. Such masquerading could be done, for exam-
ple, if the network routers were compromised, and data rerouted to the malicious
site.

For a user to ensure that she is interacting with an authentic Web site, she
must have the site’s public key. This raises the problem of how the user can get the
public key–if it is stored on the Web site, the malicious site could supply a different
key, and the user would have no way of verifying if the supplied public key is
itself authentic. Authentication can be handled by a system of digital certificates,
whereby public keys are signed by a certification agency, whose public key is
well known. For example, the public keys of the root certification authorities are
stored in standard Web browsers. A certificate issued by them can be verified by
using the stored public keys.

A two-level system would place an excessive burden of creating certificates
on the root certification authorities, so a multilevel system is used instead, with
one or more root certification authorities and a tree of certification authorities
below each root. Each authority (other than the root authorities) has a digital
certificate issued by its parent.

A digital certificate issued by a certification authority A consists of a public
key K A and an encrypted text E that can be decoded by using the public key

8Smart cards provide other functionality too, such as the ability to store cash digitally and make payments, which is not
relevant in our context.
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K A. The encrypted text contains the name of the party to whom the certificate
was issued and her public key Kc . In case the certification authority A is not a
root certification authority, the encrypted text also contains the digital certificate
issued to A by its parent certification authority; this certificate authenticates the
key K A itself. (That certificate may in turn contain a certificate from a further
parent authority, and so on.)

To verify a certificate, the encrypted text E is decrypted by using the public
key K A to retrieve the name of the party (that is, the name of the organization
owning the Web site); additionally, if A is not a root authority whose public
key is known to the verifier, the public key K A is verified recursively by using
the digital certificate contained within E ; recursion terminates when a certificate
issued by the root authority is reached. Verifying the certificate establishes the
chain through which a particular site was authenticated, and provides the name
and authenticated public key for the site.

Digital certificates are widely used to authenticate Web sites to users, to
prevent malicious sites from masquerading as other Web sites. In the HTTPS
protocol (the secure version of the HTTP protocol), the site provides its digital
certificate to the browser, which then displays it to the user. If the user accepts
the certificate, the browser then uses the provided public key to encrypt data.
A malicious site will have access to the certificate, but not the private key, and
will thus not be able to decrypt the data sent by the browser. Only the authentic
site, which has the corresponding private key, can decrypt the data sent by the
browser. We note that public-/private-key encryption and decryption costs are
much higher than encryption/decryption costs using symmetric private keys. To
reduce encryption costs, HTTPS actually creates a one-time symmetric key after
authentication, and uses it to encrypt data for the rest of the session.

Digital certificates can also be used for authenticating users. The user must
submit a digital certificate containing her public key to a site, which verifies that
the certificate has been signed by a trusted authority. The user’s public key can
then be used in a challenge–response system to ensure that the user possesses
the corresponding private key, thereby authenticating the user.

9.9 Summary

• Application programs that use databases as back ends and interact with users
have been around since the 1960s. Application architectures have evolved
over this period. Today most applications use Web browsers as their front
end, and a database as their back end, with an application server in between.

• HTML provides the ability to define interfaces that combine hyperlinks with
forms facilities. Web browsers communicate with Web servers by the HTTP
protocol. Web servers can pass on requests to application programs, and
return the results to the browser.

• Web servers execute application programs to implement desired function-
ality. Servlets are a widely used mechanism to write application programs
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that run as part of the Web server process, in order to reduce overhead.
There are also many server-side scripting languages that are interpreted by
the Web server and provide application-program functionality as part of the
Web server.

• There are several client-side scripting languages—JavaScript is the most
widely used—that provide richer user interaction at the browser end.

• Complex applications usually have a multilayer architecture, including a
model implementing business logic, a controller, and a view mechanism to
display results. They may also include a data access layer that implements
an object-relational mapping. Many applications implement and use Web
services, allowing functions to be invoked over HTTP.

• A number of tools have been developed for rapid application development,
and in particular to reduce the effort required to build user interfaces.

• Techniques such as caching of various forms, including query result caching
and connection pooling, and parallel processing are used to improve appli-
cation performance.

• Application developers must pay careful attention to security, to prevent
attacks such as SQL injection attacks and cross-site scripting attacks.

• SQL authorization mechanisms are coarse grained and of limited value to ap-
plications that deal with large numbers of users. Today application programs
implement fine-grained, tuple-level authorization, dealing with a large num-
ber of application users, completely outside the database system. Database
extensions to provide tuple-level access control and to deal with large num-
bers of application users have been developed, but are not standard as yet.

• Protecting the privacy of data is an important task for database applications.
Many countries have legal requirements on protection of certain kinds of
data, such as credit-card information or medical data.

• Encryption plays a key role in protecting information and in authentication
of users and Web sites. Symmetric-key encryption and public-key encryption
are two contrasting but widely used approaches to encryption. Encryption
of certain sensitive data stored in databases is a legal requirement in many
countries and states.

• Encryption also plays a key role in authentication of users to applications, of
Web sites to users, and for digital signatures.

Review Terms

• Application programs
• Web interfaces to databases

• HyperText Markup Language
(HTML)
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• Hyperlinks
• Uniform resource locator (URL)
• Forms
• HyperText Transfer Protocol

(HTTP)
• Common Gateway Interface

(CGI)
• Connectionless protocols
• Cookie
• Session
• Servlets and Servlet sessions
• Server-side scripting
• JSP

• PHP

• ASP.NET

• Client-side scripting
• JavaScript
• Document Object Model (DOM)
• Applets
• Application architecture
• Presentation layer
• Model-view-controller (MVC)

architecture
• Business-logic layer
• Data-access layer
• Object-relational mapping
• Hibernate

• Web services
• RESTful services
• Rapid application development
• Web application frameworks
• Report generators
• Connection pooling
• Query result caching
• Application security
• SQL injection
• Cross-site scripting (XSS)
• Cross-site request forgery (XSRF)
• Authentication
• Two-factor authentication
• Man-in-the-middle attack
• Central authentication
• Single sign-on
• OpenID
• Virtual Private Database (VPD)
• Audit trail
• Encryption
• Symmetric-key encryption
• Public-key encryption
• Dictionary attack
• Challenge–response
• Digital signatures
• Digital certificates

Practice Exercises

9.1 What is the main reason why servlets give better performance than pro-
grams that use the common gateway interface (CGI), even though Java
programs generally run slower than C or C++ programs?

9.2 List some benefits and drawbacks of connectionless protocols over proto-
cols that maintain connections.

9.3 Consider a carelessly written Web application for an online-shopping site,
which stores the price of each item as a hidden form variable in the Web
page sent to the customer; when the customer submits the form, the in-
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formation from the hidden form variable is used to compute the bill for
the customer. What is the loophole in this scheme? (There was a real in-
stance where the loophole was exploited by some customers of an online-
shopping site, before the problem was detected and fixed.)

9.4 Consider another carelessly written Web application, which uses a servlet
that checks if there was an active session, but does not check if the user is
authorized to access that page, instead depending on the fact that a link
to the page is shown only to authorized users. What is the risk with this
scheme? (There was a real instance where applicants to a college admissions
site could, after logging into the Web site, exploit this loophole and view
information they were not authorized to see; the unauthorized access was
however detected, and those who accessed the information were punished
by being denied admission.)

9.5 List three ways in which caching can be used to speed up Web server
performance.

9.6 The netstat command (available on Linux and on Windows) shows the
active network connections on a computer. Explain how this command can
be used to find out if a particular Web page is not closing connections that
it opened, or if connection pooling is used, not returning connections to
the connection pool. You should account for the fact that with connection
pooling, the connection may not get closed immediately.

9.7 Testing for SQL-injection vulnerability:

a. Suggest an approach for testing an application to find if it is vulner-
able to SQL injection attacks on text input.

b. Can SQL injection occur with other forms of input? If so, how would
you test for vulnerability?

9.8 A database relation may have the values of certain attributes encrypted
for security. Why do database systems not support indexing on encrypted
attributes? Using your answer to this question, explain why database sys-
tems do not allow encryption of primary-key attributes.

9.9 Exercise 9.8 addresses the problem of encryption of certain attributes. How-
ever, some database systems support encryption of entire databases. Ex-
plain how the problems raised in Exercise 9.8 are avoided when the entire
database is encrypted.

9.10 Suppose someone impersonates a company and gets a certificate from a
certificate-issuing authority. What is the effect on things (such as purchase
orders or programs) certified by the impersonated company, and on things
certified by other companies?

9.11 Perhaps the most important data items in any database system are the
passwords that control access to the database. Suggest a scheme for the
secure storage of passwords. Be sure that your scheme allows the system
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to test passwords supplied by users who are attempting to log into the
system.

Exercises

9.12 Write a servlet and associated HTML code for the following very simple
application: A user is allowed to submit a form containing a value, say n,
and should get a response containing n “*” symbols.

9.13 Write a servlet and associated HTML code for the following simple appli-
cation: A user is allowed to submit a form containing a number, say n,
and should get a response saying how many times the value n has been
submitted previously. The number of times each value has been submitted
previously should be stored in a database.

9.14 Write a servlet that authenticates a user (based on user names and pass-
words stored in a database relation), and sets a session variable called userid
after authentication.

9.15 What is an SQL injection attack? Explain how it works, and what precau-
tions must be taken to prevent SQL injection attacks.

9.16 Write pseudocode to manage a connection pool. Your pseudocode must
include a function to create a pool (providing a database connection string,
database user name, and password as parameters), a function to request a
connection from the pool, a connection to release a connection to the pool,
and a function to close the connection pool.

9.17 Explain the terms CRUD and REST.

9.18 Many Web sites today provide rich user-interfaces using Ajax. List two
features each of which reveals if a site uses Ajax, without having to look at
the source code. Using the above features, find three sites which use Ajax;
you can view the HTML source of the page to check if the site is actually
using Ajax.

9.19 XSS attacks:

a. What is an XSS attack?

b. How can the referer field be used to detect some XSS attacks?

9.20 What is multi-factor authentication? How does it help safeguard against
stolen passwords?

9.21 Consider the Oracle Virtual Private Database (VPD) feature described in
Section 9.7.5, and an application based on our university schema.

a. What predicate (using a subquery) should be generated to allow
each faculty member to see only takes tuples corresponding to course
sections that they have taught?
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b. Give an SQL query such that the query with the predicate added gives
a result that is a subset of the original query result without the added
predicate.

c. Give an SQL query such that the query with the predicate added gives
a result containing a tuple that is not in the result of the original query
without the added predicate.

9.22 What are two advantages of encrypting data stored in the database?

9.23 Suppose you wish to create an audit trail of changes to the takes relation.

a. Define triggers to create an audit trail, logging the information into a
relation called, for example, takes trail. The logged information should
include the user-id (assume a function user id() provides this informa-
tion) and a timestamp, in addition to old and new values. You must
also provide the schema of the takes trail relation.

b. Can the above implementation guarantee that updates made by a
malicious database administrator (or someone who manages to get
the administrator’s password) will be in the audit trail? Explain your
answer.

9.24 Hackers may be able to fool you into believing that their Web site is actually
a Web site (such as a bank or credit card Web site) that you trust. This
may be done by misleading email, or even by breaking into the network
infrastructure and rerouting network traffic destined for, say mybank.com, to
the hacker’s site. If you enter your user name and password on the hacker’s
site, the site can record it, and use it later to break into your account at the
real site. When you use a URL such as https://mybank.com, the HTTPS protocol
is used to prevent such attacks. Explain how the protocol might use digital
certificates to verify authenticity of the site.

9.25 Explain what is a challenge–response system for authentication. Why is it
more secure than a traditional password-based system?

Project Suggestions

Each of the following is a large project, which can be a semester-long project done
by a group of students. The difficulty of the project can be adjusted easily by
adding or deleting features.

Project 9.1 Pick your favorite interactive Web site, such as Bebo, Blogger, Face-
book, Flickr, Last.FM, Twitter, Wikipedia; these are just a few examples,
there are many more. Most of these sites manage a large amount of data,
and use databases to store and process the data. Implement a subset of the
functionality of the Web site you picked. Clearly, implementing even a sig-
nificant subset of the features of such a site is well beyond a course project,
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but it is possible to find a set of features that is interesting to implement, yet
small enough for a course project.

Most of today’s popular Web sites make extensive use of Javascript to
create rich interfaces. You may wish to go easy on this for your project, at
least initially, since it takes time to build such intefaces, and then add more
features to your interfaces, as time permits. Make use of Web application
development frameworks, or Javascript libraries available on the Web, such
as the Yahoo User Interface library, to speed up your development.

Project 9.2 Create a “mashup” which uses Web services such as Google or Ya-
hoo maps APIs to create an interactive Web sites. For example, the map APIs
provide a way to display a map on the Web page, with other information
overlayed on the maps. You could implement a restaurant recommenda-
tion system, with users contributing information about restaurants such as
location, cuisine, price range, and ratings. Results of user searches could
be displayed on the map. You could allow Wikipedia-like features, such
as allowing users to add information and edit information added by other
users, along with moderators who can weed out malicious updates. You
could also implement social features, such as giving more importance to
ratings provided by your friends.

Project 9.3 Your university probably uses a course-management systems such
as Moodle, Blackboard, or WebCT. Implement a subset of the functionality
of such a course-management system. For example, you can provide as-
signment submission and grading functionality, including mechanisms for
students and teachers/teaching-assistants to discuss grading of a particular
assignment. You could also provide polls and other mechanisms for getting
feedback.

Project 9.4 Consider the E-R schema of Practice Exercise 7.3 (Chapter 7), which
represents information about teams in a league. Design and implement a
Web-based system to enter, update, and view the data.

Project 9.5 Design and implement a shopping cart system that lets shoppers
collect items into a shopping cart (you can decide what information is to be
supplied for each item) and purchased together. You can extend and use the
E-R schema of Exercise 7.20 of Chapter 7. You should check for availability
of the item and deal with nonavailable items as you feel appropriate.

Project 9.6 Design and implement a Web-based system to record student regis-
tration and grade information for courses at a university.

Project 9.7 Design and implement a system that permits recording of course
performance information—specifically, the marks given to each student in
each assignment or exam of a course, and computation of a (weighted) sum
of marks to get the total course marks. The number of assignments/exams
should not be predefined; that is, more assignments/exams can be added
at any time. The system should also support grading, permitting cutoffs to
be specified for various grades.
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You may also wish to integrate it with the student registration system of
Project 9.6 (perhaps being implemented by another project team).

Project 9.8 Design and implement a Web-based system for booking classrooms
at your university. Periodic booking (fixed days/times each week for a
whole semester) must be supported. Cancellation of specific lectures in a
periodic booking should also be supported.

You may also wish to integrate it with the student registration system
of Project 9.6 (perhaps being implemented by another project team) so
that classrooms can be booked for courses, and cancellations of a lecture
or addition of extra lectures can be noted at a single interface, and will be
reflected in the classroom booking and communicated to students via email.

Project 9.9 Design and implement a system for managing online multiple-choice
tests. You should support distributed contribution of questions (by teaching
assistants, for example), editing of questions by whoever is in charge of the
course, and creation of tests from the available set of questions. You should
also be able to administer tests online, either at a fixed time for all students,
or at any time but with a time limit from start to finish (support one or
both), and give students feedback on their scores at the end of the allotted
time.

Project 9.10 Design and implement a system for managing email customer ser-
vice. Incoming mail goes to a common pool. There is a set of customer
service agents who reply to email. If the email is part of an ongoing se-
ries of replies (tracked using the in-reply-to field of email) the mail should
preferably be replied to by the same agent who replied earlier. The system
should track all incoming mail and replies, so an agent can see the history
of questions from a customer before replying to an email.

Project 9.11 Design and implement a simple electronic marketplace where items
can be listed for sale or for purchase under various categories (which should
form a hierarchy). You may also wish to support alerting services, whereby
a user can register interest in items in a particular category, perhaps with
other constraints as well, without publicly advertising her interest, and is
notified when such an item is listed for sale.

Project 9.12 Design and implement a Web-based newsgroup system. Users should
be able to subscribe to newsgroups, and browse articles in newsgroups. The
system tracks which articles were read by a user, so they are not displayed
again. Also provide search for old articles. You may also wish to provide a
rating service for articles, so that articles with high rating are highlighted,
permitting the busy reader to skip low-rated articles.

Project 9.13 Design and implement a Web-based system for managing a sports
“ladder.” Many people register, and may be given some initial rankings
(perhaps based on past performance). Anyone can challenge anyone else to
a match, and the rankings are adjusted according to the result. One simple
system for adjusting rankings just moves the winner ahead of the loser in
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the rank order, in case the winner was behind earlier. You can try to invent
more complicated rank-adjustment systems.

Project 9.14 Design and implement a publication-listing service. The service
should permit entering of information about publications, such as title,
authors, year, where the publication appeared, and pages. Authors should
be a separate entity with attributes such as name, institution, department,
email, address, and home page.

Your application should support multiple views on the same data. For
instance, you should provide all publications by a given author (sorted by
year, for example), or all publications by authors from a given institution
or department. You should also support search by keywords, on the overall
database as well as within each of the views.

Project 9.15 A common task in any organization is to collect structured infor-
mation from a group of people. For example, a manager may need to ask
employees to enter their vacation plans, a professor may wish to collect
feedback on a particular topic from students, or a student organizing an
event may wish to allow other students to register for the event, or some-
one may wish to conduct an online vote on some topic.

Create a system that will allow users to easily create information collection
events. When creating an event, the event creator must define who is eligible
to participate; to do so, your system must maintain user information, and
allow predicates defining a subset of users. The event creator should be able
to specify a set of inputs (with types, default values, and validation checks)
that the users will have to provide. The event should have an associated
deadline, and the system should have the ability to send reminders to
users who have not yet submitted their information. The event creator
may be given the option of automatic enforcement of the deadline based
on a specified date/time, or choosing to login and declare the deadline is
over. Statistics about the submissions should be generated—to do so, the
event creator may be allowed to create simple summaries on the entered
information. The event creator may choose to make some of the summaries
public, viewable by all users, either continually (e.g., how many people
have responded) or after the deadline (e.g., what was the average feedback
score).

Project 9.16 Create a library of functions to simplify creation of Web interfaces.
You must implement at least the following functions: a function to display
a JDBC result set (with tabular formatting), functions to create different
types of text and numeric inputs (with validation criteria such as input type
and optional range, enforced at the client by appropriate JavaScript code),
functions to input date and time values (with default values), and functions
to create menu items based on a result set. For extra credit, allow the user
to set style parameters such as colors and fonts, and provide pagination
support in the tables (hidden form parameters can be used to specify which
page is to be displayed). Build a sample database application to illustrate
the use of these functions.
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Project 9.17 Design and implement a Web-based multiuser calendar system. The
system must track appointments for each person, including multioccurrence
events, such as weekly meetings, and shared events (where an update made
by the event creator gets reflected to all those who share the event). Provide
interfaces to schedule multiuser events, where an event creator can add a
number of users who are invited to the event. Provide email notification
of events. For extra credits implement a Web service that can be used by a
reminder program running on the client machine.

Tools

Development of a Web application requires several software tools such as an
application server, a compiler, and an editor for a programming language such
as Java or C#, and other optional tools such as a Web server. There are several
integrated development environments that provide support for Web application
development. The two most popular open-source IDEs are Eclipse, developed by
IBM, and Netbeans, developed by Sun Microsystems. Microsoft’s Visual Studio is
the most widely used IDE in the Windows world.

The Apache Tomcat (jakarta.apache.org), Glassfish (glassfish.dev.java.net), JBoss
(jboss.org), and Caucho’s Resin (www.caucho.com), are application servers that sup-
port servlets and JSP. The Apache Web server (apache.org) is the most widely used
Web server today. Microsoft’s IIS (Internet Information Services) is a Web and ap-
plication server that is widely used on Microsoft Windows platforms, supporting
Microsoft’s ASP.NET (msdn.microsoft.com/asp.net/).

IBM’s WebSphere (www.software.ibm.com) software provides a variety of soft-
ware tools for Web application development and deployment, including an ap-
plication server, an IDE, application integration middleware, business process
management software and system management tools.

Some of the above tools are open-source software that can be used free of
cost, some are free for noncommercial use or for personal use, while others need
to be paid for. See the respective Web sites for more information.

The Yahoo! User Interface (YUI) JavaScript library (developer.yahoo.com/yui) is
widely used for creating JavaScript programs that work across multiple browsers.

Bibliographical Notes

Information about servlets, including tutorials, standard specifications, and soft-
ware, is available on java.sun.com/products/servlet. Information about JSP is available
at java.sun.com/products/jsp. Information on JSP tag libraries can also be found at
this URL. Information about the .NET framework and about Web application de-
velopment using ASP.NET can be found at msdn.microsoft.com.

Atreya et al. [2002] provide textbook coverage of digital signatures, including
X.509 digital certificates and public-key infrastructure.



PART 3

DATA STORAGE AND
QUERYING

Although a database system provides a high-level view of data, ultimately data
have to be stored as bits on one or more storage devices. A vast majority of
databases today store data on magnetic disk (and, increasingly, on flash storage)
and fetch data into main memory for processing, or copy data onto tapes and
other backup devices for archival storage. The physical characteristics of storage
devices play a major role in the way data are stored, in particular because access
to a random piece of data on disk is much slower than memory access: Disk access
takes tens of milliseconds, whereas memory access takes a tenth of a microsecond.

Chapter 10 begins with an overview of physical storage media, including
mechanisms to minimize the chance of data loss due to device failures. The
chapter then describes how records are mapped to files, which in turn are mapped
to bits on the disk.

Many queries reference only a small proportion of the records in a file. An
index is a structure that helps locate desired records of a relation quickly, without
examining all records. The index in this textbook is an example, although, unlike
database indices, it is meant for human use. Chapter 11 describes several types
of indices used in database systems.

User queries have to be executed on the database contents, which reside on
storage devices. It is usually convenient to break up queries into smaller oper-
ations, roughly corresponding to the relational-algebra operations. Chapter 12
describes how queries are processed, presenting algorithms for implementing
individual operations, and then outlining how the operations are executed in
synchrony, to process a query.

There are many alternative ways of processing a query, which can have widely
varying costs. Query optimization refers to the process of finding the lowest-cost
method of evaluating a given query. Chapter 13 describes the process of query
optimization.
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C H A P T E R10
Storage and File Structure

In preceding chapters, we have emphasized the higher-level models of a database.
For example, at the conceptual or logical level, we viewed the database, in the re-
lational model, as a collection of tables. Indeed, the logical model of the database
is the correct level for database users to focus on. This is because the goal of a
database system is to simplify and facilitate access to data; users of the system
should not be burdened unnecessarily with the physical details of the implemen-
tation of the system.

In this chapter, however, as well as in Chapters 11, 12, and 13, we probe be-
low the higher levels as we describe various methods for implementing the data
models and languages presented in preceding chapters. We start with character-
istics of the underlying storage media, such as disk and tape systems. We then
define various data structures that allow fast access to data. We consider several
alternative structures, each best suited to a different kind of access to data. The
final choice of data structure needs to be made on the basis of the expected use of
the system and of the physical characteristics of the specific machine.

10.1 Overview of Physical Storage Media

Several types of data storage exist in most computer systems. These storage media
are classified by the speed with which data can be accessed, by the cost per unit
of data to buy the medium, and by the medium’s reliability. Among the media
typically available are these:

• Cache. The cache is the fastest and most costly form of storage. Cache memory
is relatively small; its use is managed by the computer system hardware.
We shall not be concerned about managing cache storage in the database
system. It is, however, worth noting that database implementors do pay
attention to cache effects when designing query processing data structures
and algorithms.

• Main memory. The storage medium used for data that are available to be op-
erated on is main memory. The general-purpose machine instructions operate
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on main memory. Although main memory may contain several gigabytes of
data on a personal computer, or even hundreds of gigabytes of data in large
server systems, it is generally too small (or too expensive) for storing the
entire database. The contents of main memory are usually lost if a power
failure or system crash occurs.

• Flash memory. Flash memory differs from main memory in that stored data
are retained even if power is turned off (or fails). There are two types of flash
memory, called NAND and NOR flash. Of these, NAND flash has a much
higher storage capacity for a given cost, and is widely used for data storage
in devices such as cameras, music players, and cell phones, and increasingly,
in laptop computers as well. Flash memory has a lower cost per byte than
main memory, in addition to being nonvolatile; that is, it retains stored data
even if power is switched off.

Flash memory is also widely used for storing data in “USB keys,” which can
be plugged into the Universal Serial Bus (USB) slots of computing devices.
Such USB keys have become a popular means of transporting data between
computer systems (“floppy disks” played the same role in earlier days, but
their limited capacity has made them obsolete now).

Flash memory is also increasingly used as a replacement for magnetic
disks for storing moderate amounts of data. Such disk-drive replacements
are called solid-state drives. As of 2009, a 64 GB solid-state hard drive costs
less than $200, and capacities range up to 160 GB. Further, flash memory
is increasingly being used in server systems to improve performance by
caching frequently used data, since it provides faster access than disk, with
larger storage capacity than main memory (for a given cost).

• Magnetic-disk storage. The primary medium for the long-term online stor-
age of data is the magnetic disk. Usually, the entire database is stored on
magnetic disk. The system must move the data from disk to main memory
so that they can be accessed. After the system has performed the designated
operations, the data that have been modified must be written to disk.

As of 2009, the size of magnetic disks ranges from 80 gigabytes to 1.5
terabytes, and a 1 terabyte disk costs about $100. Disk capacities have been
growing at about 50 percent per year, and we can expect disks of much larger
capacity every year. Disk storage survives power failures and system crashes.
Disk-storage devices themselves may sometimes fail and thus destroy data,
but such failures usually occur much less frequently than do system crashes.

• Optical storage. The most popular forms of optical storage are the compact
disk (CD), which can hold about 700 megabytes of data and has a playtime of
about 80 minutes, and the digital video disk (DVD), which can hold 4.7 or 8.5
gigabytes of data per side of the disk (or up to 17 gigabytes on a two-sided
disk). The expression digital versatile disk is also used in place of digital
video disk, since DVDs can hold any digital data, not just video data. Data
are stored optically on a disk, and are read by a laser. A higher capacity
format called Blu-ray DVD can store 27 gigabytes per layer, or 54 gigabytes in
a double-layer disk.
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The optical disks used in read-only compact disks (CD-ROM) or read-only
digital video disks (DVD-ROM) cannot be written, but are supplied with data
prerecorded. There are also “record-once” versions of compact disk (called
CD-R) and digital video disk (called DVD-R and DVD+R), which can be written
only once; such disks are also called write-once, read-many (WORM) disks.
There are also “multiple-write” versions of compact disk (called CD-RW) and
digital video disk (DVD-RW, DVD+RW, and DVD-RAM), which can be written
multiple times.

Optical disk jukebox systems contain a few drives and numerous disks
that can be loaded into one of the drives automatically (by a robot arm) on
demand.

• Tape storage. Tape storage is used primarily for backup and archival data.
Although magnetic tape is cheaper than disks, access to data is much slower,
because the tape must be accessed sequentially from the beginning. For this
reason, tape storage is referred to as sequential-access storage. In contrast,
disk storage is referred to as direct-access storage because it is possible to
read data from any location on disk.

Tapes have a high capacity (40- to 300-gigabyte tapes are currently avail-
able), and can be removed from the tape drive, so they are well suited to
cheap archival storage. Tape libraries (jukeboxes) are used to hold exception-
ally large collections of data such as data from satellites, which could include
as much as hundreds of terabytes (1 terabyte = 1012 bytes), or even multiple
petabytes (1 petabyte = 1015 bytes) of data in a few cases.

The various storage media can be organized in a hierarchy (Figure 10.1)
according to their speed and their cost. The higher levels are expensive, but are
fast. As we move down the hierarchy, the cost per bit decreases, whereas the
access time increases. This trade-off is reasonable; if a given storage system were
both faster and less expensive than another—other properties being the same
—then there would be no reason to use the slower, more expensive memory. In
fact, many early storage devices, including paper tape and core memories, are
relegated to museums now that magnetic tape and semiconductor memory have
become faster and cheaper. Magnetic tapes themselves were used to store active
data back when disks were expensive and had low storage capacity. Today, almost
all active data are stored on disks, except in very rare cases where they are stored
on tape or in optical jukeboxes.

The fastest storage media—for example, cache and main memory—are re-
ferred to as primary storage. The media in the next level in the hierarchy—for
example, magnetic disks—are referred to as secondary storage, or online stor-
age. The media in the lowest level in the hierarchy—for example, magnetic tape
and optical-disk jukeboxes—are referred to as tertiary storage, or offline storage.

In addition to the speed and cost of the various storage systems, there is also
the issue of storage volatility. Volatile storage loses its contents when the power
to the device is removed. In the hierarchy shown in Figure 10.1, the storage
systems from main memory up are volatile, whereas the storage systems below
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Figure 10.1 Storage device hierarchy.

main memory are nonvolatile. Data must be written to nonvolatile storage for
safekeeping. We shall return to this subject in Chapter 16.

10.2 Magnetic Disk and Flash Storage

Magnetic disks provide the bulk of secondary storage for modern computer
systems. Although disk capacities have been growing year after year, the storage
requirements of large applications have also been growing very fast, in some cases
even faster than the growth rate of disk capacities. A very large database may
require hundreds of disks. In recent years, flash-memory storage sizes have grown
rapidly, and flash storage is increasingly becoming a competitor to magnetic disk
storage for several applications.

10.2.1 Physical Characteristics of Disks

Physically, disks are relatively simple (Figure 10.2). Each disk platter has a flat,
circular shape. Its two surfaces are covered with a magnetic material, and infor-
mation is recorded on the surfaces. Platters are made from rigid metal or glass.

When the disk is in use, a drive motor spins it at a constant high speed
(usually 60, 90, or 120 revolutions per second, but disks running at 250 revolutions
per second are available). There is a read–write head positioned just above the
surface of the platter. The disk surface is logically divided into tracks, which
are subdivided into sectors. A sector is the smallest unit of information that can
be read from or written to the disk. In currently available disks, sector sizes are
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Figure 10.2 Moving head disk mechanism.

typically 512 bytes; there are about 50,000 to 100,000 tracks per platter, and 1 to
5 platters per disk. The inner tracks (closer to the spindle) are of smaller length,
and in current-generation disks, the outer tracks contain more sectors than the
inner tracks; typical numbers are around 500 to 1000 sectors per track in the inner
tracks, and around 1000 to 2000 sectors per track in the outer tracks. The numbers
vary among different models; higher-capacity models usually have more sectors
per track and more tracks on each platter.

The read–write head stores information on a sector magnetically as reversals
of the direction of magnetization of the magnetic material.

Each side of a platter of a disk has a read–write head that moves across the
platter to access different tracks. A disk typically contains many platters, and the
read–write heads of all the tracks are mounted on a single assembly called a disk
arm, and move together. The disk platters mounted on a spindle and the heads
mounted on a disk arm are together known as head–disk assemblies. Since the
heads on all the platters move together, when the head on one platter is on the ith
track, the heads on all other platters are also on the ith track of their respective
platters. Hence, the ith tracks of all the platters together are called the ith cylinder.

Today, disks with a platter diameter of 3 1
2 inches dominate the market. They

have a lower cost and faster seek times (due to smaller seek distances) than do
the larger-diameter disks (up to 14 inches) that were common earlier, yet they
provide high storage capacity. Disks with even smaller diameters are used in
portable devices such as laptop computers, and some handheld computers and
portable music players.

The read–write heads are kept as close as possible to the disk surface to
increase the recording density. The head typically floats or flies only microns
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from the disk surface; the spinning of the disk creates a small breeze, and the
head assembly is shaped so that the breeze keeps the head floating just above
the disk surface. Because the head floats so close to the surface, platters must be
machined carefully to be flat.

Head crashes can be a problem. If the head contacts the disk surface, the
head can scrape the recording medium off the disk, destroying the data that had
been there. In older-generation disks, the head touching the surface caused the
removed medium to become airborne and to come between the other heads and
their platters, causing more crashes; a head crash could thus result in failure of
the entire disk. Current-generation disk drives use a thin film of magnetic metal
as recording medium. They are much less susceptible to failure by head crashes
than the older oxide-coated disks.

A disk controller interfaces between the computer system and the actual
hardware of the disk drive; in modern disk systems, the disk controller is im-
plemented within the disk drive unit. A disk controller accepts high-level com-
mands to read or write a sector, and initiates actions, such as moving the disk
arm to the right track and actually reading or writing the data. Disk controllers
also attach checksums to each sector that is written; the checksum is computed
from the data written to the sector. When the sector is read back, the controller
computes the checksum again from the retrieved data and compares it with the
stored checksum; if the data are corrupted, with a high probability the newly
computed checksum will not match the stored checksum. If such an error occurs,
the controller will retry the read several times; if the error continues to occur, the
controller will signal a read failure.

Another interesting task that disk controllers perform is remapping of bad
sectors. If the controller detects that a sector is damaged when the disk is initially
formatted, or when an attempt is made to write the sector, it can logically map the
sector to a different physical location (allocated from a pool of extra sectors set
aside for this purpose). The remapping is noted on disk or in nonvolatile memory,
and the write is carried out on the new location.

Disks are connected to a computer system through a high-speed interconnec-
tion. There are a number of common interfaces for connecting disks to computers
of which the most commonly used today are (1) SATA (which stands for serial
ATA,1 and a newer version of SATA called SATA II or SATA3 Gb (older versions of the
ATA standard called PATA, or Parallel ATA, and IDE, were widely used earlier, and
are still available), (2) small-computer-system interconnect (SCSI; pronounced
“scuzzy”) , (3) SAS (which stands for serial attached SCSI), and (4) the Fibre Chan-
nel interface. Portable external disk systems often use the USB interface or the
IEEE 1394 FireWire interface.

While disks are usually connected directly by cables to the disk interface of the
computer system, they can be situated remotely and connected by a high-speed
network to the disk controller. In the storage area network (SAN) architecture,
large numbers of disks are connected by a high-speed network to a number

1ATA is a storage-device connection standard from the 1980s.
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of server computers. The disks are usually organized locally using a storage
organization technique called redundant arrays of independent disks (RAID)
(described later, in Section 10.3), to give the servers a logical view of a very large
and very reliable disk. The computer and the disk subsystem continue to use the
SCSI, SAS, or Fiber Channel interface protocols to talk with each other, although
they may be separated by a network. Remote access to disks across a storage area
network means that disks can be shared by multiple computers that could run
different parts of an application in parallel. Remote access also means that disks
containing important data can be kept in a central server room where they can be
monitored and maintained by system administrators, instead of being scattered
in different parts of an organization.

Network attached storage (NAS) is an alternative to SAN. NAS is much like
SAN, except that instead of the networked storage appearing to be a large disk,
it provides a file system interface using networked file system protocols such as
NFS or CIFS.

10.2.2 Performance Measures of Disks

The main measures of the qualities of a disk are capacity, access time, data-transfer
rate, and reliability.

Access time is the time from when a read or write request is issued to when
data transfer begins. To access (that is, to read or write) data on a given sector of
a disk, the arm first must move so that it is positioned over the correct track, and
then must wait for the sector to appear under it as the disk rotates. The time for
repositioning the arm is called the seek time, and it increases with the distance
that the arm must move. Typical seek times range from 2 to 30 milliseconds,
depending on how far the track is from the initial arm position. Smaller disks
tend to have lower seek times since the head has to travel a smaller distance.

The average seek time is the average of the seek times, measured over a
sequence of (uniformly distributed) random requests. If all tracks have the same
number of sectors, and we disregard the time required for the head to start
moving and to stop moving, we can show that the average seek time is one-third
the worst-case seek time. Taking these factors into account, the average seek time
is around one-half of the maximum seek time. Average seek times currently range
between 4 and 10 milliseconds, depending on the disk model.

Once the head has reached the desired track, the time spent waiting for the
sector to be accessed to appear under the head is called the rotational latency
time. Rotational speeds of disks today range from 5400 rotations per minute (90
rotations per second) up to 15,000 rotations per minute (250 rotations per second),
or, equivalently, 4 milliseconds to 11.1 milliseconds per rotation. On an average,
one-half of a rotation of the disk is required for the beginning of the desired sector
to appear under the head. Thus, the average latency time of the disk is one-half
the time for a full rotation of the disk.

The access time is then the sum of the seek time and the latency, and ranges
from 8 to 20 milliseconds. Once the first sector of the data to be accessed has come
under the head, data transfer begins. The data-transfer rate is the rate at which
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data can be retrieved from or stored to the disk. Current disk systems support
maximum transfer rates of 25 to 100 megabytes per second; transfer rates are
significantly lower than the maximum transfer rates for inner tracks of the disk,
since they have fewer sectors. For example, a disk with a maximum transfer rate
of 100 megabytes per second may have a sustained transfer rate of around 30
megabytes per second on its inner tracks.

The final commonly used measure of a disk is the mean time to failure (MTTF),
which is a measure of the reliability of the disk. The mean time to failure of a disk
(or of any other system) is the amount of time that, on average, we can expect the
system to run continuously without any failure. According to vendors’ claims,
the mean time to failure of disks today ranges from 500,000 to 1,200,000 hours—
about 57 to 136 years. In practice the claimed mean time to failure is computed
on the probability of failure when the disk is new—the figure means that given
1000 relatively new disks, if the MTTF is 1,200,000 hours, on an average one of
them will fail in 1200 hours. A mean time to failure of 1,200,000 hours does not
imply that the disk can be expected to function for 136 years! Most disks have an
expected life span of about 5 years, and have significantly higher rates of failure
once they become more than a few years old.

Disk drives for desktop machines typically support the Serial ATA(SATA) in-
terface, which supports 150 megabytes per second, or the SATA-II 3Gb interface,
which supports 300 megabytes per second. The PATA 5 interface supported trans-
fer rates of 133 megabytes per second. Disk drives designed for server systems
typically support the Ultra320 SCSI interface, which provides transfer rates of up
to 320 megabytes per second, or the Serial Attached SCSI (SAS) interface, versions
of which provide transfer rates of 3 or 6 gigabits per second. Storage area network
(SAN) devices, which are connected to servers by a network, typically use Fiber
Channel FC 2-Gb or 4-Gb interface, which provides transfer rates of up to 256 or
512 megabytes per second. The transfer rate of an interface is shared between all
disks attached to the interface, except for the serial interfaces which allow only
one disk to be connected to each interface.

10.2.3 Optimization of Disk-Block Access

Requests for disk I/O are generated both by the file system and by the virtual
memory manager found in most operating systems. Each request specifies the
address on the disk to be referenced; that address is in the form of a block number.
A block is a logical unit consisting of a fixed number of contiguous sectors. Block
sizes range from 512 bytes to several kilobytes. Data are transferred between disk
and main memory in units of blocks. The term page is often used to refer to
blocks, although in a few contexts (such as flash memory) they refer to different
things.

A sequence of requests for blocks from disk may be classified as a sequential
access pattern or a random access pattern. In a sequential access pattern, succes-
sive requests are for successive block numbers, which are on the same track, or on
adjacent tracks. To read blocks in sequential access, a disk seek may be required
for the first block, but successive requests would either not require a seek, or



10.2 Magnetic Disk and Flash Storage 437

require a seek to an adjacent track, which is faster than a seek to a track that is
farther away.

In contrast, in a random access pattern, successive requests are for blocks
that are randomly located on disk. Each such request would require a seek. The
number of random block accesses that can be satisfied by a single disk in a second
depends on the seek time, and is typically about 100 to 200 accesses per second.
Since only a small amount (one block) of data is read per seek, the transfer rate
is significantly lower with a random access pattern than with a sequential access
pattern.

A number of techniques have been developed for improving the speed of
access to blocks.

• Buffering. Blocks that are read from disk are stored temporarily in an in-
memory buffer, to satisfy future requests. Buffering is done by both the op-
erating system and the database system. Database buffering is discussed in
more detail in Section 10.8.

• Read-ahead. When a disk block is accessed, consecutive blocks from the same
track are read into an in-memory buffer even if there is no pending request
for the blocks. In the case of sequential access, such read-ahead ensures that
many blocks are already in memory when they are requested, and minimizes
the time wasted in disk seeks and rotational latency per block read. Operat-
ing systems also routinely perform read-ahead for consecutive blocks of an
operating system file. Read-ahead is, however, not very useful for random
block accesses.

• Scheduling. If several blocks from a cylinder need to be transferred from
disk to main memory, we may be able to save access time by requesting the
blocks in the order in which they will pass under the heads. If the desired
blocks are on different cylinders, it is advantageous to request the blocks in an
order that minimizes disk-arm movement. Disk-arm–scheduling algorithms
attempt to order accesses to tracks in a fashion that increases the number of
accesses that can be processed. A commonly used algorithm is the elevator
algorithm, which works in the same way many elevators do. Suppose that,
initially, the arm is moving from the innermost track toward the outside of
the disk. Under the elevator algorithm’s control, for each track for which
there is an access request, the arm stops at that track, services requests for
the track, and then continues moving outward until there are no waiting
requests for tracks farther out. At this point, the arm changes direction, and
moves toward the inside, again stopping at each track for which there is a
request, until it reaches a track where there is no request for tracks farther
toward the center. Then, it reverses direction and starts a new cycle. Disk
controllers usually perform the task of reordering read requests to improve
performance, since they are intimately aware of the organization of blocks on
disk, of the rotational position of the disk platters, and of the position of the
disk arm.
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• File organization. To reduce block-access time, we can organize blocks on
disk in a way that corresponds closely to the way we expect data to be
accessed. For example, if we expect a file to be accessed sequentially, then
we should ideally keep all the blocks of the file sequentially on adjacent
cylinders. Older operating systems, such as the IBM mainframe operating
systems, provided programmers fine control on placement of files, allowing
a programmer to reserve a set of cylinders for storing a file. However, this
control places a burden on the programmer or system administrator to decide,
for example, how many cylinders to allocate for a file, and may require costly
reorganization if data are inserted to or deleted from the file.

Subsequent operating systems, such as Unix and Microsoft Windows,
hide the disk organization from users, and manage the allocation internally.
Although they do not guarantee that all blocks of a file are laid out sequen-
tially, they allocate multiple consecutive blocks (an extent) at a time to a file.
Sequential access to the file then only needs one seek per extent, instead of
one seek per block. Over time, a sequential file that has multiple small ap-
pends may become fragmented; that is, its blocks become scattered all over
the disk. To reduce fragmentation, the system can make a backup copy of the
data on disk and restore the entire disk. The restore operation writes back
the blocks of each file contiguously (or nearly so). Some systems (such as dif-
ferent versions of the Windows operating system) have utilities that scan the
disk and then move blocks to decrease the fragmentation. The performance
increases realized from these techniques can be large.

• Nonvolatile write buffers. Since the contents of main memory are lost in
a power failure, information about database updates has to be recorded on
disk to survive possible system crashes. For this reason, the performance of
update-intensive database applications, such as transaction-processing sys-
tems, is heavily dependent on the speed of disk writes.

We can use nonvolatile random-access memory (NVRAM) to speed up
disk writes drastically. The contents of NVRAM are not lost in power failure.
A common way to implement NVRAM is to use battery–backed-up RAM, al-
though flash memory is also increasingly being used for nonvolatile write
buffering. The idea is that, when the database system (or the operating sys-
tem) requests that a block be written to disk, the disk controller writes the
block to an NVRAM buffer, and immediately notifies the operating system
that the write completed successfully. The controller writes the data to their
destination on disk whenever the disk does not have any other requests, or
when the NVRAM buffer becomes full. When the database system requests a
block write, it notices a delay only if the NVRAM buffer is full. On recovery
from a system crash, any pending buffered writes in the NVRAM are written
back to the disk. NVRAM buffers are found in certain high end disks, but are
more frequently found in “RAID controllers”; we study RAID in Section 10.3.

• Log disk. Another approach to reducing write latencies is to use a log disk—
that is, a disk devoted to writing a sequential log—in much the same way as
a nonvolatile RAM buffer. All access to the log disk is sequential, essentially
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eliminating seek time, and several consecutive blocks can be written at once,
making writes to the log disk several times faster than random writes. As
before, the data have to be written to their actual location on disk as well,
but the log disk can do the write later, without the database system having
to wait for the write to complete. Furthermore, the log disk can reorder the
writes to minimize disk-arm movement. If the system crashes before some
writes to the actual disk location have completed, when the system comes
back up it reads the log disk to find those writes that had not been completed,
and carries them out then.

File systems that support log disks as above are called journaling file
systems. Journaling file systems can be implemented even without a separate
log disk, keeping data and the log on the same disk. Doing so reduces the
monetary cost, at the expense of lower performance.

Most modern file systems implement journaling, and use the log disk when
writing internal file system information such as file allocation information.
Earlier-generation file systems allowed write reordering without using a log
disk, and ran the risk that the file system data structures on disk would be
corrupted if the system crashed. Suppose, for example, that a file system used
a linked list, and inserted a new node at the end by first writing the data for
the new node, then updating the pointer from the previous node. Suppose
also that the writes were reordered, so the pointer was updated first, and
the system crashes before the new node is written. The contents of the node
would then be whatever junk was on disk earlier, resulting in a corrupted
data structure.

To deal with the possibility of such data structure corruption, earlier-
generation file systems had to perform a file system consistency check on
system restart, to ensure that the data structures were consistent. And if
they were not, extra steps had to be taken to restore them to consistency.
These checks resulted in long delays in system restart after a crash, and the
delays became worse as disk systems grew to higher capacities. Journaling file
systems allow quick restart without the need for such file system consistency
checks.

However, writes performed by applications are usually not written to the
log disk. Database systems implement their own forms of logging, which we
study later in Chapter 16.

10.2.4 Flash Storage

As mentioned in Section 10.1, there are two types of flash memory, NOR flash and
NAND flash. NOR flash allows random access to individual words of memory, and
has read time comparable to main memory. However, unlike NOR flash, reading
from NAND flash requires an entire page of data, typically consisting of between
512 and 4096 bytes, to be fetched from NAND flash into main memory. Pages in
a NAND flash are thus similar to sectors in a magnetic disk. But NAND flash is
significantly cheaper than NOR flash, and has much higher storage capacity, and
is by far the more widely used.
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Storage systems built using NAND flash provide the same block-oriented
interface as disk storage. Compared to magnetic disks, flash memory can provide
much faster random access: a page of data can be retrieved in around 1 or 2
microseconds from flash, whereas a random access on disk would take 5 to 10
milliseconds. Flash memory has a lower transfer rate than magnetic disks, with
20 megabytes per second being common. Some more recent flash memories have
increased transfer rates of 100 to 200 megabytes per second. However, solid state
drives use multiple flash memory chips in parallel, to increase transfer rates to
over 200 megabytes per second, which is faster than transfer rates of most disks.

Writes to flash memory are a little more complicated. A write to a page of
flash memory typically takes a few microseconds. However, once written, a page
of flash memory cannot be directly overwritten. Instead, it has to be erased and
rewritten subsequently. The erase operation can be performed on a number of
pages, called an erase block, at once, and takes about 1 to 2 milliseconds. The size
of an erase block (often referred to as just “block” in flash literature) is usually
significantly larger than the block size of the storage system. Further, there is a
limit to how many times a flash page can be erased, typically around 100,000 to
1,000,000 times. Once this limit is reached, errors in storing bits are likely to occur.

Flash memory systems limit the impact of both the slow erase speed and the
update limits by mapping logical page numbers to physical page numbers. When
a logical page is updated, it can be remapped to any already erased physical page,
and the original location can be erased later. Each physical page has a small area
of memory where its logical address is stored; if the logical address is remapped
to a different physical page, the original physical page is marked as deleted. Thus
by scanning the physical pages, we can find where each logical page resides. The
logical-to-physical page mapping is replicated in an in-memory translation table
for quick access.

Blocks containing multiple deleted pages are periodically erased, taking care
to first copy nondeleted pages in those blocks to a different block (the transla-
tion table is updated for these nondeleted pages). Since each physical page can
be updated only a fixed number of times, physical pages that have been erased
many times are assigned “cold data,” that is, data that are rarely updated, while
pages that have not been erased many times are used to store “hot data,” that is,
data that are updated frequently. This principle of evenly distributing erase op-
erations across physical blocks is called wear leveling, and is usually performed
transparently by flash-memory controllers. If a physical page is damaged due to
an excessive number of updates, it can be removed from usage, without affecting
the flash memory as a whole.

All the above actions are carried out by a layer of software called the flash
translation layer; above this layer, flash storage looks identical to magnetic disk
storage, providing the same page/sector-oriented interface, except that flash stor-
age is much faster. File systems and database storage structures can thus see an
identical logical view of the underlying storage structure, regardless of whether
it is flash or magnetic storage.

Hybrid disk drives are hard-disk systems that combine magnetic storage
with a smaller amount of flash memory, which is used as a cache for frequently
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accessed data. Frequently accessed data that are rarely updated are ideal for
caching in flash memory.

10.3 RAID

The data-storage requirements of some applications (in particular Web, database,
and multimedia applications) have been growing so fast that a large number of
disks are needed to store their data, even though disk-drive capacities have been
growing very fast.

Having a large number of disks in a system presents opportunities for im-
proving the rate at which data can be read or written, if the disks are operated in
parallel. Several independent reads or writes can also be performed in parallel.
Furthermore, this setup offers the potential for improving the reliability of data
storage, because redundant information can be stored on multiple disks. Thus,
failure of one disk does not lead to loss of data.

A variety of disk-organization techniques, collectively called redundant ar-
rays of independent disks (RAID), have been proposed to achieve improved
performance and reliability.

In the past, system designers viewed storage systems composed of several
small, cheap disks as a cost-effective alternative to using large, expensive disks;
the cost per megabyte of the smaller disks was less than that of larger disks. In fact,
the I in RAID, which now stands for independent, originally stood for inexpensive.
Today, however, all disks are physically small, and larger-capacity disks actually
have a lower cost per megabyte. RAID systems are used for their higher reliability
and higher performance rate, rather than for economic reasons. Another key
justification for RAID use is easier management and operations.

10.3.1 Improvement of Reliability via Redundancy

Let us first consider reliability. The chance that at least one disk out of a set of
N disks will fail is much higher than the chance that a specific single disk will
fail. Suppose that the mean time to failure of a disk is 100,000 hours, or slightly
over 11 years. Then, the mean time to failure of some disk in an array of 100 disks
will be 100,000/100 = 1000 hours, or around 42 days, which is not long at all! If
we store only one copy of the data, then each disk failure will result in loss of a
significant amount of data (as discussed in Section 10.2.1). Such a high frequency
of data loss is unacceptable.

The solution to the problem of reliability is to introduce redundancy; that is,
we store extra information that is not needed normally, but that can be used in
the event of failure of a disk to rebuild the lost information. Thus, even if a disk
fails, data are not lost, so the effective mean time to failure is increased, provided
that we count only failures that lead to loss of data or to nonavailability of data.

The simplest (but most expensive) approach to introducing redundancy is to
duplicate every disk. This technique is called mirroring (or, sometimes, shadow-
ing). A logical disk then consists of two physical disks, and every write is carried
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out on both disks. If one of the disks fails, the data can be read from the other.
Data will be lost only if the second disk fails before the first failed disk is repaired.

The mean time to failure (where failure is the loss of data) of a mirrored disk
depends on the mean time to failure of the individual disks, as well as on the
mean time to repair, which is the time it takes (on an average) to replace a failed
disk and to restore the data on it. Suppose that the failures of the two disks are
independent; that is, there is no connection between the failure of one disk and the
failure of the other. Then, if the mean time to failure of a single disk is 100,000
hours, and the mean time to repair is 10 hours, the mean time to data loss of
a mirrored disk system is 100, 0002/(2 ∗ 10) = 500 ∗ 106 hours, or 57,000 years!
(We do not go into the derivations here; references in the bibliographical notes
provide the details.)

You should be aware that the assumption of independence of disk failures
is not valid. Power failures, and natural disasters such as earthquakes, fires, and
floods, may result in damage to both disks at the same time. As disks age, the
probability of failure increases, increasing the chance that a second disk will fail
while the first is being repaired. In spite of all these considerations, however,
mirrored-disk systems offer much higher reliability than do single-disk systems.
Mirrored-disk systems with mean time to data loss of about 500,000 to 1,000,000
hours, or 55 to 110 years, are available today.

Power failures are a particular source of concern, since they occur far more
frequently than do natural disasters. Power failures are not a concern if there is no
data transfer to disk in progress when they occur. However, even with mirroring
of disks, if writes are in progress to the same block in both disks, and power fails
before both blocks are fully written, the two blocks can be in an inconsistent state.
The solution to this problem is to write one copy first, then the next, so that one
of the two copies is always consistent. Some extra actions are required when we
restart after a power failure, to recover from incomplete writes. This matter is
examined in Practice Exercise 10.3.

10.3.2 Improvement in Performance via Parallelism

Now let us consider the benefit of parallel access to multiple disks. With disk
mirroring, the rate at which read requests can be handled is doubled, since read
requests can be sent to either disk (as long as both disks in a pair are functional,
as is almost always the case). The transfer rate of each read is the same as in a
single-disk system, but the number of reads per unit time has doubled.

With multiple disks, we can improve the transfer rate as well (or instead) by
striping data across multiple disks. In its simplest form, data striping consists of
splitting the bits of each byte across multiple disks; such striping is called bit-
level striping. For example, if we have an array of eight disks, we write bit i of
each byte to disk i . The array of eight disks can be treated as a single disk with
sectors that are eight times the normal size, and, more important, that has eight
times the transfer rate. In such an organization, every disk participates in every
access (read or write), so the number of accesses that can be processed per second
is about the same as on a single disk, but each access can read eight times as many
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data in the same time as on a single disk. Bit-level striping can be generalized to
a number of disks that either is a multiple of 8 or a factor of 8. For example, if we
use an array of four disks, bits i and 4 + i of each byte go to disk i .

Block-level striping stripes blocks across multiple disks. It treats the array of
disks as a single large disk, and it gives blocks logical numbers; we assume the
block numbers start from 0. With an array of n disks, block-level striping assigns
logical block i of the disk array to disk (i mod n) + 1; it uses the �i/n�th physical

(a) RAID 0: nonredundant striping

(b) RAID 1: mirrored disks

(c) RAID 2: memory-style error-correcting codes

(d) RAID 3: bit-interleaved parity

(e) RAID 4: block-interleaved parity

(f) RAID 5: block-interleaved distributed parity

(g) RAID 6: P + Q redundancy
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Figure 10.3 RAID levels.
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block of the disk to store logical block i . For example, with 8 disks, logical block 0
is stored in physical block 0 of disk 1, while logical block 11 is stored in physical
block 1 of disk 4. When reading a large file, block-level striping fetches n blocks at
a time in parallel from the n disks, giving a high data-transfer rate for large reads.
When a single block is read, the data-transfer rate is the same as on one disk, but
the remaining n − 1 disks are free to perform other actions.

Block-level striping is the most commonly used form of data striping. Other
levels of striping, such as bytes of a sector or sectors of a block, also are possible.

In summary, there are two main goals of parallelism in a disk system:

1. Load-balance multiple small accesses (block accesses), so that the through-
put of such accesses increases.

2. Parallelize large accesses so that the response time of large accesses is re-
duced.

10.3.3 RAID Levels

Mirroring provides high reliability, but it is expensive. Striping provides high
data-transfer rates, but does not improve reliability. Various alternative schemes
aim to provide redundancy at lower cost by combining disk striping with “parity”
bits (which we describe next). These schemes have different cost–performance
trade-offs. The schemes are classified into RAID levels, as in Figure 10.3. (In the
figure, P indicates error-correcting bits, and C indicates a second copy of the
data.) For all levels, the figure depicts four disks’ worth of data, and the extra
disks depicted are used to store redundant information for failure recovery.

• RAID level 0 refers to disk arrays with striping at the level of blocks, but
without any redundancy (such as mirroring or parity bits). Figure 10.3a shows
an array of size 4.

• RAID level 1 refers to disk mirroring with block striping. Figure 10.3b shows
a mirrored organization that holds four disks’ worth of data.
Note that some vendors use the term RAID level 1+0 or RAID level 10 to refer
to mirroring with striping, and use the term RAID level 1 to refer to mirroring
without striping. Mirroring without striping can also be used with arrays of
disks, to give the appearance of a single large, reliable disk: if each disk has
M blocks, logical blocks 0 to M − 1 are stored on disk 0, M to 2M − 1 on disk
1(the second disk), and so on, and each disk is mirrored.2

• RAID level 2, known as memory-style error-correcting-code (ECC) organiza-
tion, employs parity bits. Memory systems have long used parity bits for

2Note that some vendors use the term RAID 0+1 to refer to a version of RAID that uses striping to create a RAID 0
array, and mirrors the array onto another array, with the difference from RAID 1 being that if a disk fails, the RAID
0 array containing the disk becomes unusable. The mirrored array can still be used, so there is no loss of data. This
arrangement is inferior to RAID 1 when a disk has failed, since the other disks in the RAID 0 array can continue to be
used in RAID 1, but remain idle in RAID 0+1.
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error detection and correction. Each byte in a memory system may have a
parity bit associated with it that records whether the numbers of bits in the
byte that are set to 1 is even (parity = 0) or odd (parity = 1). If one of the bits
in the byte gets damaged (either a 1 becomes a 0, or a 0 becomes a 1), the
parity of the byte changes and thus will not match the stored parity. Similarly,
if the stored parity bit gets damaged, it will not match the computed parity.
Thus, all 1-bit errors will be detected by the memory system. Error-correcting
schemes store 2 or more extra bits, and can reconstruct the data if a single bit
gets damaged.

The idea of error-correcting codes can be used directly in disk arrays by
striping bytes across disks. For example, the first bit of each byte could be
stored in disk 0, the second bit in disk 1, and so on until the eighth bit is
stored in disk 7, and the error-correction bits are stored in further disks.

Figure 10.3c shows the level 2 scheme. The disks labeled P store the error-
correction bits. If one of the disks fails, the remaining bits of the byte and the
associated error-correction bits can be read from other disks, and can be used
to reconstruct the damaged data. Figure 10.3c shows an array of size 4; note
RAID level 2 requires only three disks’ overhead for four disks of data, unlike
RAID level 1, which required four disks’ overhead.

• RAID level 3, bit-interleaved parity organization, improves on level 2 by
exploiting the fact that disk controllers, unlike memory systems, can detect
whether a sector has been read correctly, so a single parity bit can be used
for error correction, as well as for detection. The idea is as follows: If one of
the sectors gets damaged, the system knows exactly which sector it is, and,
for each bit in the sector, the system can figure out whether it is a 1 or a 0
by computing the parity of the corresponding bits from sectors in the other
disks. If the parity of the remaining bits is equal to the stored parity, the
missing bit is 0; otherwise, it is 1.

RAID level 3 is as good as level 2, but is less expensive in the number of
extra disks (it has only a one-disk overhead), so level 2 is not used in practice.
Figure 10.3d shows the level 3 scheme.

RAID level 3 has two benefits over level 1. It needs only one parity disk
for several regular disks, whereas level 1 needs one mirror disk for every
disk, and thus level 3 reduces the storage overhead. Since reads and writes
of a byte are spread out over multiple disks, with N-way striping of data,
the transfer rate for reading or writing a single block is N times faster than
a RAID level 1 organization using N-way striping. On the other hand, RAID
level 3 supports a lower number of I/O operations per second, since every
disk has to participate in every I/O request.

• RAID level 4, block-interleaved parity organization, uses block-level striping,
like RAID 0, and in addition keeps a parity block on a separate disk for
corresponding blocks from N other disks. This scheme is shown pictorially
in Figure 10.3e. If one of the disks fails, the parity block can be used with the
corresponding blocks from the other disks to restore the blocks of the failed
disk.
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A block read accesses only one disk, allowing other requests to be processed
by the other disks. Thus, the data-transfer rate for each access is slower, but
multiple read accesses can proceed in parallel, leading to a higher overall I/O
rate. The transfer rates for large reads is high, since all the disks can be read in
parallel; large writes also have high transfer rates, since the data and parity
can be written in parallel.

Small independent writes, on the other hand, cannot be performed in
parallel. A write of a block has to access the disk on which the block is stored,
as well as the parity disk, since the parity block has to be updated. Moreover,
both the old value of the parity block and the old value of the block being
written have to be read for the new parity to be computed. Thus, a single
write requires four disk accesses: two to read the two old blocks, and two to
write the two blocks.

• RAID level 5, block-interleaved distributed parity, improves on level 4 by
partitioning data and parity among all N + 1 disks, instead of storing data in
N disks and parity in one disk. In level 5, all disks can participate in satisfying
read requests, unlike RAID level 4, where the parity disk cannot participate,
so level 5 increases the total number of requests that can be met in a given
amount of time. For each set of N logical blocks, one of the disks stores the
parity, and the other N disks store the blocks.

Figure 10.3f shows the setup. The P’s are distributed across all the disks.
For example, with an array of 5 disks, the parity block, labeled Pk, for logical
blocks 4k, 4k + 1, 4k + 2, 4k + 3 is stored in disk k mod 5; the corresponding
blocks of the other four disks store the 4 data blocks 4k to 4k+3. The following
table indicates how the first 20 blocks, numbered 0 to 19, and their parity
blocks are laid out. The pattern shown gets repeated on further blocks.

P0
4
8

12
16

0
P1

9
13
17

1
5

P2
14
18

2
6

10
P3
19

3
7

11
15
P4

Note that a parity block cannot store parity for blocks in the same disk, since
then a disk failure would result in loss of data as well as of parity, and hence
would not be recoverable. Level 5 subsumes level 4, since it offers better read
–write performance at the same cost, so level 4 is not used in practice.

• RAID level 6, the P + Q redundancy scheme, is much like RAID level 5, but
stores extra redundant information to guard against multiple disk failures.
Instead of using parity, level 6 uses error-correcting codes such as the Reed–
Solomon codes (see the bibliographical notes). In the scheme in Figure 10.3g,
2 bits of redundant data are stored for every 4 bits of data—unlike 1 parity
bit in level 5—and the system can tolerate two disk failures.
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Finally, we note that several variations have been proposed to the basic RAID
schemes described here, and different vendors use different terminologies for the
variants.

10.3.4 Choice of RAID Level

The factors to be taken into account in choosing a RAID level are:

• Monetary cost of extra disk-storage requirements.

• Performance requirements in terms of number of I/O operations.

• Performance when a disk has failed.

• Performance during rebuild (that is, while the data in a failed disk are being
rebuilt on a new disk).

The time to rebuild the data of a failed disk can be significant, and it varies
with the RAID level that is used. Rebuilding is easiest for RAID level 1, since data
can be copied from another disk; for the other levels, we need to access all the
other disks in the array to rebuild data of a failed disk. The rebuild performance
of a RAID system may be an important factor if continuous availability of data
is required, as it is in high-performance database systems. Furthermore, since
rebuild time can form a significant part of the repair time, rebuild performance
also influences the mean time to data loss.

RAID level 0 is used in high-performance applications where data safety is
not critical. Since RAID levels 2 and 4 are subsumed by RAID levels 3 and 5, the
choice of RAID levels is restricted to the remaining levels. Bit striping (level 3) is
inferior to block striping (level 5), since block striping gives as good data-transfer
rates for large transfers, while using fewer disks for small transfers. For small
transfers, the disk access time dominates anyway, so the benefit of parallel reads
diminishes. In fact, level 3 may perform worse than level 5 for a small transfer,
since the transfer completes only when corresponding sectors on all disks have
been fetched; the average latency for the disk array thus becomes very close to
the worst-case latency for a single disk, negating the benefits of higher transfer
rates. Level 6 is not supported currently by many RAID implementations, but it
offers better reliability than level 5 and can be used in applications where data
safety is very important.

The choice between RAID level 1 and level 5 is harder to make. RAID level 1 is
popular for applications such as storage of log files in a database system, since it
offers the best write performance. RAID level 5 has a lower storage overhead than
level 1, but has a higher time overhead for writes. For applications where data
are read frequently, and written rarely, level 5 is the preferred choice.

Disk-storage capacities have been growing at a rate of over 50 percent per year
for many years, and the cost per byte has been falling at the same rate. As a result,
for many existing database applications with moderate storage requirements, the
monetary cost of the extra disk storage needed for mirroring has become relatively
small (the extra monetary cost, however, remains a significant issue for storage-
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intensive applications such as video data storage). Access speeds have improved
at a much slower rate (around a factor of 3 over 10 years), while the number of
I/O operations required per second has increased tremendously, particularly for
Web application servers.

RAID level 5, which increases the number of I/O operations needed to write a
single logical block, pays a significant time penalty in terms of write performance.
RAID level 1 is therefore the RAID level of choice for many applications with
moderate storage requirements and high I/O requirements.

RAID system designers have to make several other decisions as well. For
example, how many disks should there be in an array? How many bits should
be protected by each parity bit? If there are more disks in an array, data-transfer
rates are higher, but the system will be more expensive. If there are more bits
protected by a parity bit, the space overhead due to parity bits is lower, but there
is an increased chance that a second disk will fail before the first failed disk is
repaired, and that will result in data loss.

10.3.5 Hardware Issues

Another issue in the choice of RAID implementations is at the level of hardware.
RAID can be implemented with no change at the hardware level, using only soft-
ware modification. Such RAID implementations are called software RAID. How-
ever, there are significant benefits to be had by building special-purpose hardware
to support RAID, which we outline below; systems with special hardware support
are called hardware RAID systems.

Hardware RAID implementations can use nonvolatile RAM to record writes
before they are performed. In case of power failure, when the system comes back
up, it retrieves information about any incomplete writes from nonvolatile RAM
and then completes the writes. Without such hardware support, extra work needs
to be done to detect blocks that may have been partially written before power
failure (see Practice Exercise 10.3).

Even if all writes are completed properly, there is a small chance of a sector
in a disk becoming unreadable at some point, even though it was successfully
written earlier. Reasons for loss of data on individual sectors could range from
manufacturing defects, to data corruption on a track when an adjacent track
is written repeatedly. Such loss of data that were successfully written earlier is
sometimes referred to as a latent failure, or as bit rot. When such a failure happens,
if it is detected early the data can be recovered from the remaining disks in the
RAID organization. However, if such a failure remains undetected, a single disk
failure could lead to data loss if a sector in one of the other disks has a latent
failure.

To minimize the chance of such data loss, good RAID controllers perform
scrubbing; that is, during periods when disks are idle, every sector of every disk
is read, and if any sector is found to be unreadable, the data are recovered from
the remaining disks in the RAID organization, and the sector is written back. (If
the physical sector is damaged, the disk controller would remap the logical sector
address to a different physical sector on disk.)
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Some hardware RAID implementations permit hot swapping; that is, faulty
disks can be removed and replaced by new ones without turning power off. Hot
swapping reduces the mean time to repair, since replacement of a disk does not
have to wait until a time when the system can be shut down. In fact many critical
systems today run on a 24 × 7 schedule; that is, they run 24 hours a day, 7 days a
week, providing no time for shutting down and replacing a failed disk. Further,
many RAID implementations assign a spare disk for each array (or for a set of disk
arrays). If a disk fails, the spare disk is immediately used as a replacement. As a
result, the mean time to repair is reduced greatly, minimizing the chance of any
data loss. The failed disk can be replaced at leisure.

The power supply, or the disk controller, or even the system interconnection
in a RAID system could become a single point of failure that could stop functioning
of the RAID system. To avoid this possibility, good RAID implementations have
multiple redundant power supplies (with battery backups so they continue to
function even if power fails). Such RAID systems have multiple disk interfaces,
and multiple interconnections to connect the RAID system to the computer system
(or to a network of computer systems). Thus, failure of any single component will
not stop the functioning of the RAID system.

10.3.6 Other RAID Applications

The concepts of RAID have been generalized to other storage devices, including
arrays of tapes, and even to the broadcast of data over wireless systems. When
applied to arrays of tapes, the RAID structures are able to recover data even if one
of the tapes in an array of tapes is damaged. When applied to broadcast of data,
a block of data is split into short units and is broadcast along with a parity unit;
if one of the units is not received for any reason, it can be reconstructed from the
other units.

10.4 Tertiary Storage

In a large database system, some of the data may have to reside on tertiary storage.
The two most common tertiary storage media are optical disks and magnetic
tapes.

10.4.1 Optical Disks

Compact disks have been a popular medium for distributing software, multime-
dia data such as audio and images, and other electronically published informa-
tion. They have a storage capacity of 640 to 700 megabytes, and they are cheap
to mass-produce. Digital video disks (DVDs) have now replaced compact disks
in applications that require larger amounts of data. Disks in the DVD-5 format
can store 4.7 gigabytes of data (in one recording layer), while disks in the DVD-9
format can store 8.5 gigabytes of data (in two recording layers). Recording on
both sides of a disk yields even larger capacities; DVD-10 and DVD-18 formats,
which are the two-sided versions of DVD-5 and DVD-9, can store 9.4 gigabytes
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and 17 gigabytes, respectively. The Blu-ray DVD format has a significantly higher
capacity of 27 to 54 gigabytes per disk.

CD and DVD drives have much longer seek times (100 milliseconds is common)
than do magnetic-disk drives, since the head assembly is heavier. Rotational
speeds are typically lower than those of magnetic disks, although the faster CD
and DVD drives have rotation speeds of about 3000 rotations per minute, which
is comparable to speeds of lower-end magnetic-disk drives. Rotational speeds
of CD drives originally corresponded to the audio CD standards, and the speeds
of DVD drives originally corresponded to the DVD video standards, but current-
generation drives rotate at many times the standard rate.

Data-transfer rates are somewhat less than for magnetic disks. Current CD
drives read at around 3 to 6 megabytes per second, and current DVD drives read
at 8 to 20 megabytes per second. Like magnetic-disk drives, optical disks store
more data in outside tracks and less data in inner tracks. The transfer rate of
optical drives is characterized as n×, which means the drive supports transfers
at n times the standard rate; rates of around 50× for CD and 16× for DVD are now
common.

The record-once versions of optical disks (CD-R, DVD-R, and DVD+R) are pop-
ular for distribution of data and particularly for archival storage of data because
they have a high capacity, have a longer lifetime than magnetic disks, and can be
removed and stored at a remote location. Since they cannot be overwritten, they
can be used to store information that should not be modified, such as audit trails.
The multiple-write versions (CD-RW, DVD-RW, DVD+RW, and DVD-RAM) are also
used for archival purposes.

Jukeboxes are devices that store a large number of optical disks (up to several
hundred) and load them automatically on demand to one of a small number of
drives (usually 1 to 10). The aggregate storage capacity of such a system can be
many terabytes. When a disk is accessed, it is loaded by a mechanical arm from a
rack onto a drive (any disk that was already in the drive must first be placed back
on the rack). The disk load/unload time is usually of the order of a few seconds
—very much longer than disk access times.

10.4.2 Magnetic Tapes

Although magnetic tapes are relatively permanent, and can hold large volumes
of data, they are slow in comparison to magnetic and optical disks. Even more im-
portant, magnetic tapes are limited to sequential access. Thus, they cannot provide
random access for secondary-storage requirements, although historically, prior
to the use of magnetic disks, tapes were used as a secondary-storage medium.

Tapes are used mainly for backup, for storage of infrequently used informa-
tion, and as an off-line medium for transferring information from one system to
another. Tapes are also used for storing large volumes of data, such as video or
image data, that either do not need to be accessible quickly or are so voluminous
that magnetic-disk storage would be too expensive.

A tape is kept in a spool, and is wound or rewound past a read–write head.
Moving to the correct spot on a tape can take seconds or even minutes, rather than
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milliseconds; once positioned, however, tape drives can write data at densities
and speeds approaching those of disk drives. Capacities vary, depending on the
length and width of the tape and on the density at which the head can read and
write. The market is currently fragmented among a wide variety of tape formats.
Currently available tape capacities range from a few gigabytes with the Digital
Audio Tape (DAT) format, 10 to 40 gigabytes with the Digital Linear Tape (DLT)
format, 100 gigabytes and higher with the Ultrium format, to 330 gigabytes with
Ampex helical scan tape formats. Data-transfer rates are of the order of a few to
tens of megabytes per second.

Tape devices are quite reliable, and good tape drive systems perform a read of
the just-written data to ensure that it has been recorded correctly. Tapes, however,
have limits on the number of times that they can be read or written reliably.

Tape jukeboxes, like optical disk jukeboxes, hold large numbers of tapes, with
a few drives onto which the tapes can be mounted; they are used for storing large
volumes of data, ranging up to many petabytes (1015 bytes), with access times on
the order of seconds to a few minutes. Applications that need such enormous data
storage include imaging systems that gather data from remote-sensing satellites,
and large video libraries for television broadcasters.

Some tape formats (such as the Accelis format) support faster seek times
(of the order of tens of seconds), and are intended for applications that retrieve
information from jukeboxes. Most other tape formats provide larger capacities,
at the cost of slower access; such formats are ideal for data backup, where fast
seeks are not important.

Tape drives have been unable to keep up with the enormous improvements
in disk drive capacity and corresponding reduction in storage cost. While the cost
of tapes is low, the cost of tape drives and tape libraries is significantly higher
than the cost of a disk drive: a tape library capable of storing a few terabytes can
costs tens of thousands of dollars. Backing up data to disk drives has become a
cost-effective alternative to tape backup for a number of applications.

10.5 File Organization

A database is mapped into a number of different files that are maintained by the
underlying operating system. These files reside permanently on disks. A file is
organized logically as a sequence of records. These records are mapped onto disk
blocks. Files are provided as a basic construct in operating systems, so we shall
assume the existence of an underlying file system. We need to consider ways of
representing logical data models in terms of files.

Each file is also logically partitioned into fixed-length storage units called
blocks, which are the units of both storage allocation and data transfer. Most
databases use block sizes of 4 to 8 kilobytes by default, but many databases allow
the block size to be specified when a database instance is created. Larger block
sizes can be useful in some database applications.

A block may contain several records; the exact set of records that a block
contains is determined by the form of physical data organization being used. We
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shall assume that no record is larger than a block. This assumption is realistic for most
data-processing applications, such as our university example. There are certainly
several kinds of large data items, such as images, that can be significantly larger
than a block. We briefly discuss how to handle such large data items later, in
Section 10.5.2, by storing large data items separately, and storing a pointer to the
data item in the record.

In addition, we shall require that each record is entirely contained in a single
block; that is, no record is contained partly in one block, and partly in another.
This restriction simplifies and speeds up access to data items.

In a relational database, tuples of distinct relations are generally of different
sizes. One approach to mapping the database to files is to use several files, and
to store records of only one fixed length in any given file. An alternative is to
structure our files so that we can accommodate multiple lengths for records;
however, files of fixed-length records are easier to implement than are files of
variable-length records. Many of the techniques used for the former can be applied
to the variable-length case. Thus, we begin by considering a file of fixed-length
records, and consider storage of variable-length records later.

10.5.1 Fixed-Length Records

As an example, let us consider a file of instructor records for our university
database. Each record of this file is defined (in pseudocode) as:

type instructor = record
ID varchar (5);
name varchar(20);
dept name varchar (20);
salary numeric (8,2);

end

Assume that each character occupies 1 byte and that numeric (8,2) occupies
8 bytes. Suppose that instead of allocating a variable amount of bytes for the
attributes ID, name, and dept name, we allocate the maximum number of bytes
that each attribute can hold. Then, the instructor record is 53 bytes long. A simple
approach is to use the first 53 bytes for the first record, the next 53 bytes for the
second record, and so on (Figure 10.4). However, there are two problems with
this simple approach:

1. Unless the block size happens to be a multiple of 53 (which is unlikely),
some records will cross block boundaries. That is, part of the record will
be stored in one block and part in another. It would thus require two block
accesses to read or write such a record.

2. It is difficult to delete a record from this structure. The space occupied by
the record to be deleted must be filled with some other record of the file, or
we must have a way of marking deleted records so that they can be ignored.
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Srinivasan Comp. Sci. 65000
Wu Finance 90000
Mozart Music 40000
Einstein Physics 95000
El Said History 60000
Gold Physics 87000
Katz Comp. Sci. 75000
Califieri History 62000
Singh Finance 80000
Crick Biology 72000
Brandt Comp. Sci. 92000

15151

10101
12121

22222
32343
33456
45565
58583
76543
76766
83821
98345 Kim Elec. Eng. 80000

record 0
record 1
record 2
record 3
record 4
record 5
record 6
record 7
record 8
record 9
record 10
record 11

Figure 10.4 File containing instructor records.

To avoid the first problem, we allocate only as many records to a block as
would fit entirely in the block (this number can be computed easily by dividing the
block size by the record size, and discarding the fractional part). Any remaining
bytes of each block are left unused.

When a record is deleted, we could move the record that came after it into the
space formerly occupied by the deleted record, and so on, until every record fol-
lowing the deleted record has been moved ahead (Figure 10.5). Such an approach
requires moving a large number of records. It might be easier simply to move the
final record of the file into the space occupied by the deleted record (Figure 10.6).

It is undesirable to move records to occupy the space freed by a deleted record,
since doing so requires additional block accesses. Since insertions tend to be more
frequent than deletions, it is acceptable to leave open the space occupied by the

Srinivasan Comp. Sci. 65000
Wu Finance 90000
Mozart Music 40000
El Said History 60000
Gold Physics 87000
Katz Comp. Sci. 75000
Califieri History 62000
Singh Finance 80000
Crick Biology 72000
Brandt Comp. Sci. 92000

15151

10101
12121

32343
33456
45565
58583
76543
76766
83821
98345 Kim Elec. Eng. 80000

record 0
record 1
record 2
record 4
record 5
record 6
record 7
record 8
record 9
record 10
record 11

Figure 10.5 File of Figure 10.4, with record 3 deleted and all records moved.
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Srinivasan Comp. Sci. 65000
Wu Finance 90000
Mozart Music 40000

El Said History 60000
Gold Physics 87000
Katz Comp. Sci. 75000
Califieri History 62000
Singh Finance 80000
Crick Biology 72000
Brandt Comp. Sci. 92000

15151

10101
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32343
33456
45565
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76543
76766
83821
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record 1
record 2

record 4
record 5
record 6
record 7
record 8
record 9
record 10

98345 Kim Elec. Eng. 80000record 11

Figure 10.6 File of Figure 10.4, with record 3 deleted and final record moved.

deleted record, and to wait for a subsequent insertion before reusing the space.
A simple marker on a deleted record is not sufficient, since it is hard to find this
available space when an insertion is being done. Thus, we need to introduce an
additional structure.

At the beginning of the file, we allocate a certain number of bytes as a file
header. The header will contain a variety of information about the file. For now, all
we need to store there is the address of the first record whose contents are deleted.
We use this first record to store the address of the second available record, and so
on. Intuitively, we can think of these stored addresses as pointers, since they point
to the location of a record. The deleted records thus form a linked list, which is
often referred to as a free list. Figure 10.7 shows the file of Figure 10.4, with the
free list, after records 1, 4, and 6 have been deleted.

On insertion of a new record, we use the record pointed to by the header.
We change the header pointer to point to the next available record. If no space is
available, we add the new record to the end of the file.

Insertion and deletion for files of fixed-length records are simple to imple-
ment, because the space made available by a deleted record is exactly the space
needed to insert a record. If we allow records of variable length in a file, this
match no longer holds. An inserted record may not fit in the space left free by a
deleted record, or it may fill only part of that space.

10.5.2 Variable-Length Records

Variable-length records arise in database systems in several ways:

• Storage of multiple record types in a file.

• Record types that allow variable lengths for one or more fields.

• Record types that allow repeating fields, such as arrays or multisets.
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Figure 10.7 File of Figure 10.4, with free list after deletion of records 1, 4, and 6.

Different techniques for implementing variable-length records exist. Two different
problems must be solved by any such technique:

• How to represent a single record in such a way that individual attributes can
be extracted easily.

• How to store variable-length records within a block, such that records in a
block can be extracted easily.

The representation of a record with variable-length attributes typically has
two parts: an initial part with fixed length attributes, followed by data for variable-
length attributes. Fixed-length attributes, such as numeric values, dates, or fixed-
length character strings are allocated as many bytes as required to store their
value. Variable-length attributes, such as varchar types, are represented in the
initial part of the record by a pair (offset, length), where offset denotes where
the data for that attribute begins within the record, and length is the length in
bytes of the variable-sized attribute. The values for these attributes are stored
consecutively, after the initial fixed-length part of the record. Thus, the initial part
of the record stores a fixed size of information about each attribute, whether it is
fixed-length or variable-length.

An example of such a record representation is shown in Figure 10.8. The figure
shows an instructor record, whose first three attributes ID, name, and dept name are
variable-length strings, and whose fourth attribute salary is a fixed-sized number.
We assume that the offset and length values are stored in two bytes each, for a
total of 4 bytes per attribute. The salary attribute is assumed to be stored in 8 bytes,
and each string takes as many bytes as it has characters.
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21, 5 26, 10 36, 10 65000 10101 Srinivasan Comp. Sci.
Bytes 0 4 8 12 20 21 26 36 45

0000
Null bitmap (stored in 1 byte)

Figure 10.8 Representation of variable-length record.

The figure also illustrates the use of a null bitmap, which indicates which
attributes of the record have a null value. In this particular record, if the salary
were null, the fourth bit of the bitmap would be set to 1, and the salary value stored
in bytes 12 through 19 would be ignored. Since the record has four attributes, the
null bitmap for this record fits in 1 byte, although more bytes may be required with
more attributes. In some representations, the null bitmap is stored at the beginning
of the record, and for attributes that are null, no data (value, or offset/length) are
stored at all. Such a representation would save some storage space, at the cost of
extra work to extract attributes of the record. This representation is particularly
useful for certain applications where records have a large number of fields, most
of which are null.

We next address the problem of storing variable-length records in a block. The
slotted-page structure is commonly used for organizing records within a block,
and is shown in Figure 10.9.3 There is a header at the beginning of each block,
containing the following information:

1. The number of record entries in the header.

2. The end of free space in the block.

3. An array whose entries contain the location and size of each record.

The actual records are allocated contiguously in the block, starting from the
end of the block. The free space in the block is contiguous, between the final entry
in the header array, and the first record. If a record is inserted, space is allocated
for it at the end of free space, and an entry containing its size and location is
added to the header.

If a record is deleted, the space that it occupies is freed, and its entry is set to
deleted (its size is set to −1, for example). Further, the records in the block before
the deleted record are moved, so that the free space created by the deletion gets
occupied, and all free space is again between the final entry in the header array
and the first record. The end-of-free-space pointer in the header is appropriately
updated as well. Records can be grown or shrunk by similar techniques, as long
as there is space in the block. The cost of moving the records is not too high, since
the size of a block is limited: typical values are around 4 to 8 kilobytes.

The slotted-page structure requires that there be no pointers that point directly
to records. Instead, pointers must point to the entry in the header that contains the

3Here, “page” is synonymous with “block.”
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# EntriesSize
Location

Block Header Records

Free Space

End of Free Space

Figure 10.9 Slotted-page structure.

actual location of the record. This level of indirection allows records to be moved to
prevent fragmentation of space inside a block, while supporting indirect pointers
to the record.

Databases often store data that can be much larger than a disk block. For
instance, an image or an audio recording may be multiple megabytes in size,
while a video object may be multiple gigabytes in size. Recall that SQL supports
the types blob and clob, which store binary and character large objects.

Most relational databases restrict the size of a record to be no larger than
the size of a block, to simplify buffer management and free-space management.
Large objects are often stored in a special file (or collection of files) instead of
being stored with the other (short) attributes of records in which they occur. A
(logical) pointer to the object is then stored in the record containing the large
object. Large objects are often represented using B+-tree file organizations, which
we study in Section 11.4.1. B+-tree file organizations permit us to read an entire
object, or specified byte ranges in the object, as well as to insert and delete parts
of the object.

10.6 Organization of Records in Files

So far, we have studied how records are represented in a file structure. A relation
is a set of records. Given a set of records, the next question is how to organize
them in a file. Several of the possible ways of organizing records in files are:

• Heap file organization. Any record can be placed anywhere in the file where
there is space for the record. There is no ordering of records. Typically, there
is a single file for each relation.

• Sequential file organization. Records are stored in sequential order, accord-
ing to the value of a “search key” of each record. Section 10.6.1 describes this
organization.

• Hashing file organization. A hash function is computed on some attribute
of each record. The result of the hash function specifies in which block of the
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Figure 10.10 Sequential file for instructor records.

file the record should be placed. Chapter 11 describes this organization; it is
closely related to the indexing structures described in that chapter.

Generally, a separate file is used to store the records of each relation. However,
in a multitable clustering file organization, records of several different relations
are stored in the same file; further, related records of the different relations are
stored on the same block, so that one I/O operation fetches related records from
all the relations. For example, records of the two relations can be considered to be
related if they would match in a join of the two relations. Section 10.6.2 describes
this organization.

10.6.1 Sequential File Organization

A sequential file is designed for efficient processing of records in sorted order
based on some search key. A search key is any attribute or set of attributes; it
need not be the primary key, or even a superkey. To permit fast retrieval of records
in search-key order, we chain together records by pointers. The pointer in each
record points to the next record in search-key order. Furthermore, to minimize the
number of block accesses in sequential file processing, we store records physically
in search-key order, or as close to search-key order as possible.

Figure 10.10 shows a sequential file of instructor records taken from our uni-
versity example. In that example, the records are stored in search-key order, using
ID as the search key.

The sequential file organization allows records to be read in sorted order;
that can be useful for display purposes, as well as for certain query-processing
algorithms that we shall study in Chapter 12.

It is difficult, however, to maintain physical sequential order as records are
inserted and deleted, since it is costly to move many records as a result of a single
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Figure 10.11 Sequential file after an insertion.

insertion or deletion. We can manage deletion by using pointer chains, as we saw
previously. For insertion, we apply the following rules:

1. Locate the record in the file that comes before the record to be inserted in
search-key order.

2. If there is a free record (that is, space left after a deletion) within the same
block as this record, insert the new record there. Otherwise, insert the new
record in an overflow block. In either case, adjust the pointers so as to chain
together the records in search-key order.

Figure 10.11 shows the file of Figure 10.10 after the insertion of the record
(32222, Verdi, Music, 48000). The structure in Figure 10.11 allows fast insertion of
new records, but forces sequential file-processing applications to process records
in an order that does not match the physical order of the records.

If relatively few records need to be stored in overflow blocks, this approach
works well. Eventually, however, the correspondence between search-key order
and physical order may be totally lost over a period of time, in which case se-
quential processing will become much less efficient. At this point, the file should
be reorganized so that it is once again physically in sequential order. Such reorga-
nizations are costly, and must be done during times when the system load is low.
The frequency with which reorganizations are needed depends on the frequency
of insertion of new records. In the extreme case in which insertions rarely occur,
it is possible always to keep the file in physically sorted order. In such a case, the
pointer field in Figure 10.10 is not needed.
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10.6.2 Multitable Clustering File Organization

Many relational database systems store each relation in a separate file, so that they
can take full advantage of the file system that the operating system provides.
Usually, tuples of a relation can be represented as fixed-length records. Thus,
relations can be mapped to a simple file structure. This simple implementation of
a relational database system is well suited to low-cost database implementations
as in, for example, embedded systems or portable devices. In such systems, the
size of the database is small, so little is gained from a sophisticated file structure.
Furthermore, in such environments, it is essential that the overall size of the object
code for the database system be small. A simple file structure reduces the amount
of code needed to implement the system.

This simple approach to relational database implementation becomes less
satisfactory as the size of the database increases. We have seen that there are per-
formance advantages to be gained from careful assignment of records to blocks,
and from careful organization of the blocks themselves. Clearly, a more compli-
cated file structure may be beneficial, even if we retain the strategy of storing each
relation in a separate file.

However, many large-scale database systems do not rely directly on the un-
derlying operating system for file management. Instead, one large operating-
system file is allocated to the database system. The database system stores all
relations in this one file, and manages the file itself.

Even if multiple relations are stored in a single file, by default most databases
store records of only one relation in a given block. This simplifies data man-
agement. However, in some cases it can be useful to store records of more than
one relation in a single block. To see the advantage of storing records of multi-
ple relations in one block, consider the following SQL query for the university
database:

select dept name, building, budget, ID, name, salary
from department natural join instructor;

This query computes a join of the department and instructor relations. Thus, for
each tuple of department, the system must locate the instructor tuples with the
same value for dept name. Ideally, these records will be located with the help of
indices, which we shall discuss in Chapter 11. Regardless of how these records are
located, however, they need to be transferred from disk into main memory. In the
worst case, each record will reside on a different block, forcing us to do one block
read for each record required by the query.

dept name building budget

Comp. Sci. Taylor 100000
Physics Watson 70000

Figure 10.12 The department relation.
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ID name dept name salary

10101 Srinivasan Comp. Sci. 65000
33456 Gold Physics 87000
45565 Katz Comp. Sci. 75000
83821 Brandt Comp. Sci. 92000

Figure 10.13 The instructor relation.

As a concrete example, consider the department and instructor relations of
Figures 10.12 and 10.13, respectively (for brevity, we include only a subset of the
tuples of the relations we have used thus far). In Figure 10.14, we show a file
structure designed for efficient execution of queries involving the natural join
of department and instructor. The instructor tuples for each ID are stored near the
department tuple for the corresponding dept name. This structure mixes together
tuples of two relations, but allows for efficient processing of the join. When a
tuple of the department relation is read, the entire block containing that tuple is
copied from disk into main memory. Since the corresponding instructor tuples are
stored on the disk near the department tuple, the block containing the department
tuple contains tuples of the instructor relation needed to process the query. If a
department has so many instructors that the instructor records do not fit in one
block, the remaining records appear on nearby blocks.

A multitable clustering file organization is a file organization, such as that
illustrated in Figure 10.14, that stores related records of two or more relations in
each block. Such a file organization allows us to read records that would satisfy
the join condition by using one block read. Thus, we are able to process this
particular query more efficiently.

In the representation shown in Figure 10.14, the dept name attribute is omitted
from instructor records since it can be inferred from the associated department
record; the attribute may be retained in some implementations, to simplify access
to the attributes. We assume that each record contains the identifier of the relation
to which it belongs, although this is not shown in Figure 10.14.

Our use of clustering of multiple tables into a single file has enhanced pro-
cessing of a particular join (that of department and instructor), but it results in
slowing processing of other types of queries. For example,
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70000
87000
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45564
10101
83821
Physics
33456

Figure 10.14 Multitable clustering file structure.
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Figure 10.15 Multitable clustering file structure with pointer chains.

select *
from department;

requires more block accesses than it did in the scheme under which we stored
each relation in a separate file, since each block now contains significantly fewer
department records. To locate efficiently all tuples of the department relation in the
structure of Figure 10.14, we can chain together all the records of that relation
using pointers, as in Figure 10.15.

When multitable clustering is to be used depends on the types of queries
that the database designer believes to be most frequent. Careful use of multitable
clustering can produce significant performance gains in query processing.

10.7 Data-Dictionary Storage

So far, we have considered only the representation of the relations themselves.
A relational database system needs to maintain data about the relations, such as
the schema of the relations. In general, such “data about data” is referred to as
metadata.

Relational schemas and other metadata about relations are stored in a struc-
ture called the data dictionary or system catalog. Among the types of information
that the system must store are these:

• Names of the relations.

• Names of the attributes of each relation.

• Domains and lengths of attributes.

• Names of views defined on the database, and definitions of those views.

• Integrity constraints (for example, key constraints).

In addition, many systems keep the following data on users of the system:

• Names of authorized users.

• Authorization and accounting information about users.
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• Passwords or other information used to authenticate users.

Further, the database may store statistical and descriptive data about the relations,
such as:

• Number of tuples in each relation.

• Method of storage for each relation (for example, clustered or nonclustered).

The data dictionary may also note the storage organization (sequential, hash, or
heap) of relations, and the location where each relation is stored:

• If relations are stored in operating system files, the dictionary would note the
names of the file (or files) containing each relation.

• If the database stores all relations in a single file, the dictionary may note the
blocks containing records of each relation in a data structure such as a linked
list.

In Chapter 11, in which we study indices, we shall see a need to store information
about each index on each of the relations:

• Name of the index.

• Name of the relation being indexed.

• Attributes on which the index is defined.

• Type of index formed.

All this metadata information constitutes, in effect, a miniature database.
Some database systems store such metadata by using special-purpose data struc-
tures and code. It is generally preferable to store the data about the database as
relations in the database itself. By using database relations to store system meta-
data, we simplify the overall structure of the system and harness the full power
of the database for fast access to system data.

The exact choice of how to represent system metadata by relations must be
made by the system designers. One possible representation, with primary keys
underlined, is shown in Figure 10.16. In this representation, the attribute index
attributes of the relation Index metadata is assumed to contain a list of one or more

attributes, which can be represented by a character string such as “dept name,
building”. The Index metadata relation is thus not in first normal form; it can be
normalized, but the above representation is likely to be more efficient to access.
The data dictionary is often stored in a nonnormalized form to achieve fast access.

Whenever the database system needs to retrieve records from a relation, it
must first consult the Relation metadata relation to find the location and storage
organization of the relation, and then fetch records using this information. How-
ever, the storage organization and location of the Relation metadata relation itself
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Figure 10.16 Relational schema representing system metadata.

must be recorded elsewhere (for example, in the database code itself, or in a fixed
location in the database), since we need this information to find the contents of
Relation metadata.

10.8 Database Buffer

A major goal of the database system is to minimize the number of block transfers
between the disk and memory. One way to reduce the number of disk accesses is
to keep as many blocks as possible in main memory. The goal is to maximize the
chance that, when a block is accessed, it is already in main memory, and, thus, no
disk access is required.

Since it is not possible to keep all blocks in main memory, we need to manage
the allocation of the space available in main memory for the storage of blocks.
The buffer is that part of main memory available for storage of copies of disk
blocks. There is always a copy kept on disk of every block, but the copy on disk
may be a version of the block older than the version in the buffer. The subsystem
responsible for the allocation of buffer space is called the buffer manager.

10.8.1 Buffer Manager

Programs in a database system make requests (that is, calls) on the buffer manager
when they need a block from disk. If the block is already in the buffer, the buffer
manager passes the address of the block in main memory to the requester. If the
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block is not in the buffer, the buffer manager first allocates space in the buffer for
the block, throwing out some other block, if necessary, to make space for the new
block. The thrown-out block is written back to disk only if it has been modified
since the most recent time that it was written to the disk. Then, the buffer manager
reads in the requested block from the disk to the buffer, and passes the address
of the block in main memory to the requester. The internal actions of the buffer
manager are transparent to the programs that issue disk-block requests.

If you are familiar with operating-system concepts, you will note that the
buffer manager appears to be nothing more than a virtual-memory manager,
like those found in most operating systems. One difference is that the size of
the database might be larger than the hardware address space of a machine,
so memory addresses are not sufficient to address all disk blocks. Further, to
serve the database system well, the buffer manager must use techniques more
sophisticated than typical virtual-memory management schemes:

• Buffer replacement strategy. When there is no room left in the buffer, a
block must be removed from the buffer before a new one can be read in.
Most operating systems use a least recently used (LRU) scheme, in which
the block that was referenced least recently is written back to disk and is
removed from the buffer. This simple approach can be improved on for
database applications.

• Pinned blocks. For the database system to be able to recover from crashes
(Chapter 16), it is necessary to restrict those times when a block may be
written back to disk. For instance, most recovery systems require that a block
should not be written to disk while an update on the block is in progress.
A block that is not allowed to be written back to disk is said to be pinned.
Although many operating systems do not support pinned blocks, such a
feature is essential for a database system that is resilient to crashes.

• Forced output of blocks. There are situations in which it is necessary to write
back the block to disk, even though the buffer space that it occupies is not
needed. This write is called the forced output of a block. We shall see the
reason for forced output in Chapter 16; briefly, main-memory contents and
thus buffer contents are lost in a crash, whereas data on disk usually survive
a crash.

10.8.2 Buffer-Replacement Policies

The goal of a replacement strategy for blocks in the buffer is to minimize accesses
to the disk. For general-purpose programs, it is not possible to predict accurately
which blocks will be referenced. Therefore, operating systems use the past pattern
of block references as a predictor of future references. The assumption generally
made is that blocks that have been referenced recently are likely to be referenced
again. Therefore, if a block must be replaced, the least recently referenced block is
replaced. This approach is called the least recently used (LRU) block-replacement
scheme.



466 Chapter 10 Storage and File Structure

for each tuple i of instructor do
for each tuple d of department do

if i[dept name] = d[dept name]
then begin

let x be a tuple defined as follows:
x[ID] := i[ID]
x[dept name] := i[dept name]
x[name] := i[name]
x[salary] := i[salary]
x[building] := d[building]
x[budget] := d[budget]
include tuple x as part of result of instructor � department

end
end

end

Figure 10.17 Procedure for computing join.

LRU is an acceptable replacement scheme in operating systems. However, a
database system is able to predict the pattern of future references more accurately
than an operating system. A user request to the database system involves several
steps. The database system is often able to determine in advance which blocks
will be needed by looking at each of the steps required to perform the user-
requested operation. Thus, unlike operating systems, which must rely on the past
to predict the future, database systems may have information regarding at least
the short-term future.

To illustrate how information about future block access allows us to improve
the LRU strategy, consider the processing of the SQL query:

select *
from instructor natural join department;

Assume that the strategy chosen to process this request is given by the pseu-
docode program shown in Figure 10.17. (We shall study other, more efficient,
strategies in Chapter 12.)

Assume that the two relations of this example are stored in separate files.
In this example, we can see that, once a tuple of instructor has been processed,
that tuple is not needed again. Therefore, once processing of an entire block of
instructor tuples is completed, that block is no longer needed in main memory,
even though it has been used recently. The buffer manager should be instructed
to free the space occupied by an instructor block as soon as the final tuple has
been processed. This buffer-management strategy is called the toss-immediate
strategy.

Now consider blocks containing department tuples. We need to examine every
block of department tuples once for each tuple of the instructor relation. When
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processing of a department block is completed, we know that that block will not
be accessed again until all other department blocks have been processed. Thus, the
most recently used department block will be the final block to be re-referenced,
and the least recently used department block is the block that will be referenced
next. This assumption set is the exact opposite of the one that forms the basis for
the LRU strategy. Indeed, the optimal strategy for block replacement for the above
procedure is the most recently used (MRU) strategy. If a department block must be
removed from the buffer, the MRU strategy chooses the most recently used block
(blocks are not eligible for replacement while they are being used).

For the MRU strategy to work correctly for our example, the system must pin
the department block currently being processed. After the final department tuple
has been processed, the block is unpinned, and it becomes the most recently used
block.

In addition to using knowledge that the system may have about the request
being processed, the buffer manager can use statistical information about the
probability that a request will reference a particular relation. For example, the data
dictionary that (as we will see in detail in Section 10.7) keeps track of the logical
schema of the relations as well as their physical storage information is one of the
most frequently accessed parts of the database. Thus, the buffer manager should
try not to remove data-dictionary blocks from main memory, unless other factors
dictate that it do so. In Chapter 11, we discuss indices for files. Since an index
for a file may be accessed more frequently than the file itself, the buffer manager
should, in general, not remove index blocks from main memory if alternatives
are available.

The ideal database block-replacement strategy needs knowledge of the data-
base operations—both those being performed and those that will be performed
in the future. No single strategy is known that handles all the possible scenarios
well. Indeed, a surprisingly large number of database systems use LRU, despite
that strategy’s faults. The practice questions and exercises explore alternative
strategies.

The strategy that the buffer manager uses for block replacement is influenced
by factors other than the time at which the block will be referenced again. If
the system is processing requests by several users concurrently, the concurrency-
control subsystem (Chapter 15) may need to delay certain requests, to ensure
preservation of database consistency. If the buffer manager is given informa-
tion from the concurrency-control subsystem indicating which requests are being
delayed, it can use this information to alter its block-replacement strategy. Specif-
ically, blocks needed by active (nondelayed) requests can be retained in the buffer
at the expense of blocks needed by the delayed requests.

The crash-recovery subsystem (Chapter 16) imposes stringent constraints
on block replacement. If a block has been modified, the buffer manager is not
allowed to write back the new version of the block in the buffer to disk, since that
would destroy the old version. Instead, the block manager must seek permission
from the crash-recovery subsystem before writing out a block. The crash-recovery
subsystem may demand that certain other blocks be force-output before it grants
permission to the buffer manager to output the block requested. In Chapter 16,
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we define precisely the interaction between the buffer manager and the crash-
recovery subsystem.

10.9 Summary

• Several types of data storage exist in most computer systems. They are clas-
sified by the speed with which they can access data, by their cost per unit of
data to buy the memory, and by their reliability. Among the media available
are cache, main memory, flash memory, magnetic disks, optical disks, and
magnetic tapes.

• Two factors determine the reliability of storage media: whether a power
failure or system crash causes data to be lost, and what the likelihood is of
physical failure of the storage device.

• We can reduce the likelihood of physical failure by retaining multiple copies
of data. For disks, we can use mirroring. Or we can use more sophisticated
methods based on redundant arrays of independent disks (RAID). By striping
data across disks, these methods offer high throughput rates on large accesses;
by introducing redundancy across disks, they improve reliability greatly.
Several different RAID organizations are possible, each with different cost,
performance, and reliability characteristics. RAID level 1 (mirroring) and RAID
level 5 are the most commonly used.

• We can organize a file logically as a sequence of records mapped onto disk
blocks. One approach to mapping the database to files is to use several files,
and to store records of only one fixed length in any given file. An alternative is
to structure files so that they can accommodate multiple lengths for records.
The slotted-page method is widely used to handle varying length records
within a disk block.

• Since data are transferred between disk storage and main memory in units
of a block, it is worthwhile to assign file records to blocks in such a way that
a single block contains related records. If we can access several of the records
we want with only one block access, we save disk accesses. Since disk accesses
are usually the bottleneck in the performance of a database system, careful
assignment of records to blocks can pay significant performance dividends.

• The data dictionary, also referred to as the system catalog, keeps track of
metadata, that is data about data, such as relation names, attribute names
and types, storage information, integrity constraints, and user information.

• One way to reduce the number of disk accesses is to keep as many blocks as
possible in main memory. Since it is not possible to keep all blocks in main
memory, we need to manage the allocation of the space available in main
memory for the storage of blocks. The buffer is that part of main memory
available for storage of copies of disk blocks. The subsystem responsible for
the allocation of buffer space is called the buffer manager.
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Review Terms

• Physical storage media

◦ Cache

◦ Main memory

◦ Flash memory

◦ Magnetic disk

◦ Optical storage

• Magnetic disk

◦ Platter

◦ Hard disks

◦ Floppy disks

◦ Tracks

◦ Sectors

◦ Read–write head

◦ Disk arm

◦ Cylinder

◦ Disk controller

◦ Checksums

◦ Remapping of bad sectors

• Performance measures of disks

◦ Access time

◦ Seek time

◦ Rotational latency

◦ Data-transfer rate

◦ Mean time to failure (MTTF)

• Disk block
• Optimization of disk-block access

◦ Disk-arm scheduling

◦ Elevator algorithm

◦ File organization

◦ Defragmenting

◦ Nonvolatile write buffers

◦ Nonvolatile random-access
memory (NVRAM)

◦ Log disk

• Redundant arrays of independent
disks (RAID)

◦ Mirroring

◦ Data striping

◦ Bit-level striping

◦ Block-level striping

• RAID levels

◦ Level 0 (block striping, no
redundancy)

◦ Level 1 (block striping,
mirroring)

◦ Level 3 (bit striping, parity)

◦ Level 5 (block striping,
distributed parity)

◦ Level 6 (block striping, P + Q re-
dundancy)

• Rebuild performance
• Software RAID

• Hardware RAID

• Hot swapping
• Tertiary storage

◦ Optical disks

◦ Magnetic tapes

◦ Jukeboxes

• File
• File organization

◦ File header



470 Chapter 10 Storage and File Structure

◦ Free list

• Variable-length records

◦ Slotted-page structure

• Large objects
• Heap file organization
• Sequential file organization
• Hashing file organization
• Multitable clustering file organiza-

tion
• Search key
• Data dictionary

• System catalog
• Buffer

◦ Buffer manager

◦ Pinned blocks

◦ Forced output of blocks

• Buffer-replacement policies

◦ Least recently used (LRU)

◦ Toss-immediate

◦ Most recently used (MRU)

Practice Exercises

10.1 Consider the data and parity-block arrangement on four disks depicted in
Figure 10.18. The Bi s represent data blocks; the Pi s represent parity blocks.
Parity block Pi is the parity block for data blocks B4i−3 to B4i . What, if any,
problem might this arrangement present?

10.2 Flash storage:

a. How is the flash translation table, which is used to map logical page
numbers to physical page numbers, created in memory?

b. Suppose you have a 64 gigabyte flash storage system, with a 4096
byte page size. How big would the flash translation table be, as-
suming each page has a 32 bit address, and the table is stored as an
array.

c. Suggest how to reduce the size of the translation table if very often
long ranges of consecutive logical page numbers are mapped to
consecutive physical page numbers.

Disk 1 Disk 2 Disk 3 Disk 4
B1
P1
B8…

B2
B5
P2…

B3
B6
B9…

B4
B7
B10…

Figure 10.18 Data and parity block arrangement.
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10.3 A power failure that occurs while a disk block is being written could result
in the block being only partially written. Assume that partially written
blocks can be detected. An atomic block write is one where either the
disk block is fully written or nothing is written (i.e., there are no partial
writes). Suggest schemes for getting the effect of atomic block writes
with the following RAID schemes. Your schemes should involve work on
recovery from failure.

a. RAID level 1 (mirroring)

b. RAID level 5 (block interleaved, distributed parity)

10.4 Consider the deletion of record 5 from the file of Figure 10.6. Compare the
relative merits of the following techniques for implementing the deletion:

a. Move record 6 to the space occupied by record 5, and move record
7 to the space occupied by record 6.

b. Move record 7 to the space occupied by record 5.

c. Mark record 5 as deleted, and move no records.

10.5 Show the structure of the file of Figure 10.7 after each of the following
steps:

a. Insert (24556, Turnamian, Finance, 98000).

b. Delete record 2.

c. Insert (34556, Thompson, Music, 67000).

10.6 Consider the relations section and takes. Give an example instance of these
two relations, with three sections, each of which has five students. Give a
file structure of these relations that uses multitable clustering.

10.7 Consider the following bitmap technique for tracking free space in a file.
For each block in the file, two bits are maintained in the bitmap. If the
block is between 0 and 30 percent full the bits are 00, between 30 and 60
percent the bits are 01, between 60 and 90 percent the bits are 10, and
above 90 percent the bits are 11. Such bitmaps can be kept in memory
even for quite large files.

a. Describe how to keep the bitmap up to date on record insertions and
deletions.

b. Outline the benefit of the bitmap technique over free lists in search-
ing for free space and in updating free space information.

10.8 It is important to be able to quickly find out if a block is present in the
buffer, and if so where in the buffer it resides. Given that database buffer
sizes are very large, what (in-memory) data structure would you use for
the above task?
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10.9 Give an example of a relational-algebra expression and a query-processing
strategy in each of the following situations:

a. MRU is preferable to LRU.

b. LRU is preferable to MRU.

Exercises

10.10 List the physical storage media available on the computers you use rou-
tinely. Give the speed with which data can be accessed on each medium.

10.11 How does the remapping of bad sectors by disk controllers affect data-
retrieval rates?

10.12 RAID systems typically allow you to replace failed disks without stopping
access to the system. Thus, the data in the failed disk must be rebuilt and
written to the replacement disk while the system is in operation. Which of
the RAID levels yields the least amount of interference between the rebuild
and ongoing disk accesses? Explain your answer.

10.13 What is scrubbing, in the context of RAID systems, and why is scrubbing
important?

10.14 In the variable-length record representation, a null bitmap is used to
indicate if an attribute has the null value.

a. For variable length fields, if the value is null, what would be stored
in the offset and length fields?

b. In some applications, tuples have a very large number of attributes,
most of which are null. Can you modify the record representation
such that the only overhead for a null attribute is the single bit in
the null bitmap.

10.15 Explain why the allocation of records to blocks affects database-system
performance significantly.

10.16 If possible, determine the buffer-management strategy used by the operat-
ing system running on your local computer system and what mechanisms
it provides to control replacement of pages. Discuss how the control on
replacement that it provides would be useful for the implementation of
database systems.

10.17 List two advantages and two disadvantages of each of the following strate-
gies for storing a relational database:

a. Store each relation in one file.

b. Store multiple relations (perhaps even the entire database) in one
file.
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10.18 In the sequential file organization, why is an overflow block used even if
there is, at the moment, only one overflow record?

10.19 Give a normalized version of the Index metadata relation, and explain why
using the normalized version would result in worse performance.

10.20 If you have data that should not be lost on disk failure, and the data are
write intensive, how would you store the data?

10.21 In earlier generation disks the number of sectors per track was the same
across all tracks. Current generation disks have more sectors per track on
outer tracks, and fewer sectors per track on inner tracks (since they are
shorter in length). What is the effect of such a change on each of the three
main indicators of disk speed?

10.22 Standard buffer managers assume each block is of the same size and costs
the same to read. Consider a buffer manager that, instead of LRU, uses the
rate of reference to objects, that is, how often an object has been accessed
in the last n seconds. Suppose we want to store in the buffer objects of
varying sizes, and varying read costs (such as Web pages, whose read cost
depends on the site from which they are fetched). Suggest how a buffer
manager may choose which block to evict from the buffer.

Bibliographical Notes
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ogy such as magnetic disks, optical disks, tapes, and storage interfaces. Patterson
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do not control what data is kept in cache, there is an increasing motivation to
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The specifications of current-generation disk drives can be obtained from the
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principles and implementation. Reed–Solomon codes are covered in Pless [1998].

Buffering data in mobile systems is discussed in Imielinski and Badrinath
[1994], Imielinski and Korth [1996], and Chandrasekaran et al. [2003].



474 Chapter 10 Storage and File Structure

The storage structure of specific database systems, such as IBM DB2, Oracle,
Microsoft SQL Server, and PostgreSQL are documented in their respective system
manuals.

Buffer management is discussed in most operating-system texts, including in
Silberschatz et al. [2008]. Chou and Dewitt [1985] presents algorithms for buffer
management in database systems, and describes a performance evaluation.
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Indexing and Hashing

Many queries reference only a small proportion of the records in a file. For ex-
ample, a query like “Find all instructors in the Physics department” or “Find the
total number of credits earned by the student with ID 22201” references only a
fraction of the student records. It is inefficient for the system to read every tuple
in the instructor relation to check if the dept name value is “Physics”. Likewise, it
is inefficient to read the entire student relation just to find the one tuple for the
ID “32556,”. Ideally, the system should be able to locate these records directly. To
allow these forms of access, we design additional structures that we associate
with files.

11.1 Basic Concepts

An index for a file in a database system works in much the same way as the index
in this textbook. If we want to learn about a particular topic (specified by a word
or a phrase) in this textbook, we can search for the topic in the index at the back
of the book, find the pages where it occurs, and then read the pages to find the
information for which we are looking. The words in the index are in sorted order,
making it easy to find the word we want. Moreover, the index is much smaller
than the book, further reducing the effort needed.

Database-system indices play the same role as book indices in libraries. For
example, to retrieve a student record given an ID, the database system would look
up an index to find on which disk block the corresponding record resides, and
then fetch the disk block, to get the appropriate student record.

Keeping a sorted list of students’ ID would not work well on very large
databases with thousands of students, since the index would itself be very big;
further, even though keeping the index sorted reduces the search time, finding a
student can still be rather time-consuming. Instead, more sophisticated indexing
techniques may be used. We shall discuss several of these techniques in this
chapter.

There are two basic kinds of indices:

• Ordered indices. Based on a sorted ordering of the values.

475
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• Hash indices. Based on a uniform distribution of values across a range of
buckets. The bucket to which a value is assigned is determined by a function,
called a hash function.

We shall consider several techniques for both ordered indexing and hashing.
No one technique is the best. Rather, each technique is best suited to particular
database applications. Each technique must be evaluated on the basis of these
factors:

• Access types: The types of access that are supported efficiently. Access types
can include finding records with a specified attribute value and finding
records whose attribute values fall in a specified range.

• Access time: The time it takes to find a particular data item, or set of items,
using the technique in question.

• Insertion time: The time it takes to insert a new data item. This value includes
the time it takes to find the correct place to insert the new data item, as well
as the time it takes to update the index structure.

• Deletion time: The time it takes to delete a data item. This value includes
the time it takes to find the item to be deleted, as well as the time it takes to
update the index structure.

• Space overhead: The additional space occupied by an index structure. Pro-
vided that the amount of additional space is moderate, it is usually worth-
while to sacrifice the space to achieve improved performance.

We often want to have more than one index for a file. For example, we may
wish to search for a book by author, by subject, or by title.

An attribute or set of attributes used to look up records in a file is called a
search key. Note that this definition of key differs from that used in primary key,
candidate key, and superkey. This duplicate meaning for key is (unfortunately) well
established in practice. Using our notion of a search key, we see that if there are
several indices on a file, there are several search keys.

11.2 Ordered Indices

To gain fast random access to records in a file, we can use an index structure. Each
index structure is associated with a particular search key. Just like the index of a
book or a library catalog, an ordered index stores the values of the search keys in
sorted order, and associates with each search key the records that contain it.

The records in the indexed file may themselves be stored in some sorted order,
just as books in a library are stored according to some attribute such as the Dewey
decimal number. A file may have several indices, on different search keys. If the
file containing the records is sequentially ordered, a clustering index is an index
whose search key also defines the sequential order of the file. Clustering indices
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Figure 11.1 Sequential file for instructor records.

are also called primary indices; the term primary index may appear to denote an
index on a primary key, but such indices can in fact be built on any search key.
The search key of a clustering index is often the primary key, although that is
not necessarily so. Indices whose search key specifies an order different from the
sequential order of the file are called nonclustering indices, or secondary indices.
The terms “clustered” and “nonclustered” are often used in place of “clustering”
and “nonclustering.”

In Sections 11.2.1 through 11.2.3, we assume that all files are ordered sequen-
tially on some search key. Such files, with a clustering index on the search key,
are called index-sequential files. They represent one of the oldest index schemes
used in database systems. They are designed for applications that require both
sequential processing of the entire file and random access to individual records.
In Section 11.2.4 we cover secondary indices.

Figure 11.1 shows a sequential file of instructor records taken from our uni-
versity example. In the example of Figure 11.1, the records are stored in sorted
order of instructor ID, which is used as the search key.

11.2.1 Dense and Sparse Indices

An index entry, or index record, consists of a search-key value and pointers to
one or more records with that value as their search-key value. The pointer to a
record consists of the identifier of a disk block and an offset within the disk block
to identify the record within the block.

There are two types of ordered indices that we can use:
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10101
12121
15151
22222
32343
33456
45565
58583
76543
76766
83821
98345

10101 Srinivasan

45565 Katz
58583 Califieri
76543 Singh
76766 Crick
83821 Brandt
98345 Kim

12121 Wu
15151 Mozart
22222 Einstein
32343 El Said
33456 Gold

Comp. Sci.

Comp. Sci.

Comp. Sci.
History
Finance
Biology

Elec. Eng.

Finance
Music
Physics
History
Physics

65000

75000
62000
80000
72000
92000
80000

90000
40000
95000
60000
87000

Figure 11.2 Dense index.

• Dense index: In a dense index, an index entry appears for every search-key
value in the file. In a dense clustering index, the index record contains the
search-key value and a pointer to the first data record with that search-key
value. The rest of the records with the same search-key value would be stored
sequentially after the first record, since, because the index is a clustering one,
records are sorted on the same search key.

In a dense nonclustering index, the index must store a list of pointers to
all records with the same search-key value.

• Sparse index: In a sparse index, an index entry appears for only some of the
search-key values. Sparse indices can be used only if the relation is stored in
sorted order of the search key, that is, if the index is a clustering index. As
is true in dense indices, each index entry contains a search-key value and a
pointer to the first data record with that search-key value. To locate a record,
we find the index entry with the largest search-key value that is less than or
equal to the search-key value for which we are looking. We start at the record
pointed to by that index entry, and follow the pointers in the file until we find
the desired record.

Figures 11.2 and 11.3 show dense and sparse indices, respectively, for the
instructor file. Suppose that we are looking up the record of instructor with ID
“22222”. Using the dense index of Figure 11.2, we follow the pointer directly to
the desired record. Since ID is a primary key, there exists only one such record
and the search is complete. If we are using the sparse index (Figure 11.3), we
do not find an index entry for “22222”. Since the last entry (in numerical order)
before “22222” is “10101”, we follow that pointer. We then read the instructor file
in sequential order until we find the desired record.
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Consider a (printed) dictionary. The header of each page lists the first word
alphabetically on that page. The words at the top of each page of the book index
together form a sparse index on the contents of the dictionary pages.

As another example, suppose that the search-key value is not not a primary
key. Figure 11.4 shows a dense clustering index for the instructor file with the
search key being dept name. Observe that in this case the instructor file is sorted
on the search key dept name, instead of ID, otherwise the index on dept name
would be a nonclustering index. Suppose that we are looking up records for
the History department. Using the dense index of Figure 11.4, we follow the
pointer directly to the first History record. We process this record, and follow the
pointer in that record to locate the next record in search-key (dept name) order. We
continue processing records until we encounter a record for a department other
than History.

As we have seen, it is generally faster to locate a record if we have a dense
index rather than a sparse index. However, sparse indices have advantages over
dense indices in that they require less space and they impose less maintenance
overhead for insertions and deletions.

There is a trade-off that the system designer must make between access time
and space overhead. Although the decision regarding this trade-off depends on
the specific application, a good compromise is to have a sparse index with one
index entry per block. The reason this design is a good trade-off is that the
dominant cost in processing a database request is the time that it takes to bring
a block from disk into main memory. Once we have brought in the block, the
time to scan the entire block is negligible. Using this sparse index, we locate the
block containing the record that we are seeking. Thus, unless the record is on an
overflow block (see Section 10.6.1), we minimize block accesses while keeping
the size of the index (and thus our space overhead) as small as possible.
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Figure 11.3 Sparse index.
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Figure 11.4 Dense index with search key dept name.

For the preceding technique to be fully general, we must consider the case
where records for one search-key value occupy several blocks. It is easy to modify
our scheme to handle this situation.

11.2.2 Multilevel Indices

Suppose we build a dense index on a relation with 1,000,000 tuples. Index entries
are smaller than data records, so let us assume that 100 index entries fit on a
4 kilobyte block. Thus, our index occupies 10,000 blocks. If the relation instead
had 100,000,000 tuples, the index would instead occupy 1,000,000 blocks, or 4
gigabytes of space. Such large indices are stored as sequential files on disk.

If an index is small enough to be kept entirely in main memory, the search
time to find an entry is low. However, if the index is so large that not all of it
can be kept in memory, index blocks must be fetched from disk when required.
(Even if an index is smaller than the main memory of a computer, main memory
is also required for a number of other tasks, so it may not be possible to keep
the entire index in memory.) The search for an entry in the index then requires
several disk-block reads.

Binary search can be used on the index file to locate an entry, but the search
still has a large cost. If the index would occupy b blocks, binary search requires as
many as �log2(b)� blocks to be read. (�x� denotes the least integer that is greater
than or equal to x; that is, we round upward.) For a 10,000-block index, binary
search requires 14 block reads. On a disk system where a block read takes on
average 10 milliseconds, the index search will take 140 milliseconds. This may
not seem much, but we would be able to carry out only seven index searches a
second, whereas a more efficient search mechanism would let us carry out far
more searches per second, as we shall see shortly. Note that, if overflow blocks
have been used, binary search is not possible. In that case, a sequential search is
typically used, and that requires b block reads, which will take even longer. Thus,
the process of searching a large index may be costly.
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Figure 11.5 Two-level sparse index.

To deal with this problem, we treat the index just as we would treat any other
sequential file, and construct a sparse outer index on the original index, which we
now call the inner index, as shown in Figure 11.5. Note that the index entries are
always in sorted order, allowing the outer index to be sparse. To locate a record,
we first use binary search on the outer index to find the record for the largest
search-key value less than or equal to the one that we desire. The pointer points
to a block of the inner index. We scan this block until we find the record that
has the largest search-key value less than or equal to the one that we desire. The
pointer in this record points to the block of the file that contains the record for
which we are looking.

In our example, an inner index with 10,000 blocks would require 10,000 entries
in the outer index, which would occupy just 100 blocks. If we assume that the
outer index is already in main memory, we would read only one index block for
a search using a multilevel index, rather than the 14 blocks we read with binary
search. As a result, we can perform 14 times as many index searches per second.

If our file is extremely large, even the outer index may grow too large to fit in
main memory. With a 100,000,000 tuple relation, the inner index would occupy
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1,000,000 blocks, and the outer index occupies 10,000 blocks, or 40 megabytes.
Since there are many demands on main memory, it may not be possible to reserve
that much main memory just for this particular outer index. In such a case, we
can create yet another level of index. Indeed, we can repeat this process as many
times as necessary. Indices with two or more levels are called multilevel indices.
Searching for records with a multilevel index requires significantly fewer I/O
operations than does searching for records by binary search.1

Multilevel indices are closely related to tree structures, such as the binary
trees used for in-memory indexing. We shall examine the relationship later, in
Section 11.3.

11.2.3 Index Update

Regardless of what form of index is used, every index must be updated whenever
a record is either inserted into or deleted from the file. Further, in case a record in
the file is updated, any index whose search-key attribute is affected by the update
must also be updated; for example, if the department of an instructor is changed,
an index on the dept name attribute of instructor must be updated correspondingly.
Such a record update can be modeled as a deletion of the old record, followed
by an insertion of the new value of the record, which results in an index deletion
followed by an index insertion. As a result we only need to consider insertion
and deletion on an index, and do not need to consider updates explicitly.

We first describe algorithms for updating single-level indices.

• Insertion. First, the system performs a lookup using the search-key value
that appears in the record to be inserted. The actions the system takes next
depend on whether the index is dense or sparse:

◦ Dense indices:
1. If the search-key value does not appear in the index, the system inserts

an index entry with the search-key value in the index at the appropriate
position.

2. Otherwise the following actions are taken:
a. If the index entry stores pointers to all records with the same search-

key value, the system adds a pointer to the new record in the index
entry.

b. Otherwise, the index entry stores a pointer to only the first record
with the search-key value. The system then places the record being
inserted after the other records with the same search-key values.

◦ Sparse indices: We assume that the index stores an entry for each block.
If the system creates a new block, it inserts the first search-key value (in

1In the early days of disk-based indices, each level of the index corresponded to a unit of physical storage. Thus, we may
have indices at the track, cylinder, and disk levels. Such a hierarchy does not make sense today since disk subsystems
hide the physical details of disk storage, and the number of disks and platters per disk is very small compared to the
number of cylinders or bytes per track.
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search-key order) appearing in the new block into the index. On the other
hand, if the new record has the least search-key value in its block, the
system updates the index entry pointing to the block; if not, the system
makes no change to the index.

• Deletion. To delete a record, the system first looks up the record to be deleted.
The actions the system takes next depend on whether the index is dense or
sparse:

◦ Dense indices:
1. If the deleted record was the only record with its particular search-key

value, then the system deletes the corresponding index entry from the
index.

2. Otherwise the following actions are taken:
a. If the index entry stores pointers to all records with the same search-

key value, the system deletes the pointer to the deleted record from
the index entry.

b. Otherwise, the index entry stores a pointer to only the first record
with the search-key value. In this case, if the deleted record was the
first record with the search-key value, the system updates the index
entry to point to the next record.

◦ Sparse indices:
1. If the index does not contain an index entry with the search-key value

of the deleted record, nothing needs to be done to the index.
2. Otherwise the system takes the following actions:

a. If the deleted record was the only record with its search key, the
system replaces the corresponding index record with an index rec-
ord for the next search-key value (in search-key order). If the next
search-key value already has an index entry, the entry is deleted
instead of being replaced.

b. Otherwise, if the index entry for the search-key value points to the
record being deleted, the system updates the index entry to point
to the next record with the same search-key value.

Insertion and deletion algorithms for multilevel indices are a simple extension
of the scheme just described. On deletion or insertion, the system updates the
lowest-level index as described. As far as the second level is concerned, the
lowest-level index is merely a file containing records—thus, if there is any change
in the lowest-level index, the system updates the second-level index as described.
The same technique applies to further levels of the index, if there are any.

11.2.4 Secondary Indices

Secondary indices must be dense, with an index entry for every search-key value,
and a pointer to every record in the file. A clustering index may be sparse, storing
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only some of the search-key values, since it is always possible to find records
with intermediate search-key values by a sequential access to a part of the file, as
described earlier. If a secondary index stores only some of the search-key values,
records with intermediate search-key values may be anywhere in the file and, in
general, we cannot find them without searching the entire file.

A secondary index on a candidate key looks just like a dense clustering
index, except that the records pointed to by successive values in the index are not
stored sequentially. In general, however, secondary indices may have a different
structure from clustering indices. If the search key of a clustering index is not a
candidate key, it suffices if the index points to the first record with a particular
value for the search key, since the other records can be fetched by a sequential
scan of the file.

In contrast, if the search key of a secondary index is not a candidate key, it
is not enough to point to just the first record with each search-key value. The
remaining records with the same search-key value could be anywhere in the file,
since the records are ordered by the search key of the clustering index, rather
than by the search key of the secondary index. Therefore, a secondary index must
contain pointers to all the records.

We can use an extra level of indirection to implement secondary indices on
search keys that are not candidate keys. The pointers in such a secondary index
do not point directly to the file. Instead, each points to a bucket that contains
pointers to the file. Figure 11.6 shows the structure of a secondary index that uses
an extra level of indirection on the instructor file, on the search key salary.

A sequential scan in clustering index order is efficient because records in
the file are stored physically in the same order as the index order. However,
we cannot (except in rare special cases) store a file physically ordered by both
the search key of the clustering index and the search key of a secondary index.

40000
60000
62000
65000
72000
75000
80000
87000
90000
92000
95000

10101 Srinivasan Comp. Sci. 65000
12121 Wu Finance 90000
15151 Mozart Music 40000
22222 Einstein Physics 95000
32343 El Said History 60000
33456 Gold Physics 87000
45565 Katz Comp. Sci. 75000
58583 Califieri History 62000
76543 Singh Finance 80000
76766 Crick Biology 72000
83821 Brandt Comp. Sci. 92000
98345 Kim Elec. Eng. 80000

Figure 11.6 Secondary index on instructor file, on noncandidate key salary.
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AUTOMATIC CREATION OF INDICES

If a relation is declared to have a primary key, most database implementations
automatically create an index on the primary key. Whenever a tuple is inserted
into the relation, the index can be used to check that the primary key constraint is
not violated (that is, there are no duplicates on the primary key value). Without
the index on the primary key, whenever a tuple is inserted, the entire relation
would have to be read to ensure that the primary-key constraint is satisfied.

Because secondary-key order and physical-key order differ, if we attempt to scan
the file sequentially in secondary-key order, the reading of each record is likely
to require the reading of a new block from disk, which is very slow.

The procedure described earlier for deletion and insertion can also be applied
to secondary indices; the actions taken are those described for dense indices
storing a pointer to every record in the file. If a file has multiple indices, whenever
the file is modified, every index must be updated.

Secondary indices improve the performance of queries that use keys other
than the search key of the clustering index. However, they impose a significant
overhead on modification of the database. The designer of a database decides
which secondary indices are desirable on the basis of an estimate of the relative
frequency of queries and modifications.

11.2.5 Indices on Multiple Keys

Although the examples we have seen so far have had a single attribute in a
search key, in general a search key can have more than one attribute. A search key
containing more than one attribute is referred to as a composite search key. The
structure of the index is the same as that of any other index, the only difference
being that the search key is not a single attribute, but rather is a list of attributes.
The search key can be represented as a tuple of values, of the form (a1, . . . , an),
where the indexed attributes are A1, . . . , An. The ordering of search-key values is
the lexicographic ordering. For example, for the case of two attribute search keys,
(a1, a2) < (b1, b2) if either a1 < b1 or a1 = b1 and a2 < b2. Lexicographic ordering
is basically the same as alphabetic ordering of words.

As an example, consider an index on the takes relation, on the composite search
key (course id, semester, year). Such an index would be useful to find all students
who have registered for a particular course in a particular semester/year. An
ordered index on a composite key can also be used to answer several other kinds
of queries efficiently, as we shall see later in Section 11.5.2.

11.3 B+-Tree Index Files

The main disadvantage of the index-sequential file organization is that perfor-
mance degrades as the file grows, both for index lookups and for sequential scans
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through the data. Although this degradation can be remedied by reorganization
of the file, frequent reorganizations are undesirable.

The B+-tree index structure is the most widely used of several index structures
that maintain their efficiency despite insertion and deletion of data. A B+-tree
index takes the form of a balanced tree in which every path from the root of the
tree to a leaf of the tree is of the same length. Each nonleaf node in the tree has
between �n/2� and n children, where n is fixed for a particular tree.

We shall see that the B+-tree structure imposes performance overhead on in-
sertion and deletion, and adds space overhead. The overhead is acceptable even
for frequently modified files, since the cost of file reorganization is avoided. Fur-
thermore, since nodes may be as much as half empty (if they have the minimum
number of children), there is some wasted space. This space overhead, too, is
acceptable given the performance benefits of the B+-tree structure.

11.3.1 Structure of a B+-Tree

A B+-tree index is a multilevel index, but it has a structure that differs from that
of the multilevel index-sequential file. Figure 11.7 shows a typical node of a B+-
tree. It contains up to n − 1 search-key values K1, K2, . . . , Kn − 1, and n pointers
P1, P2, . . . , Pn. The search-key values within a node are kept in sorted order; thus,
if i < j , then Ki < K j .

We consider first the structure of the leaf nodes. For i = 1, 2, . . . , n−1, pointer
Pi points to a file record with search-key value Ki . Pointer Pn has a special purpose
that we shall discuss shortly.

Figure 11.8 shows one leaf node of a B+-tree for the instructor file, in which
we have chosen n to be 4, and the search key is name.

Now that we have seen the structure of a leaf node, let us consider how
search-key values are assigned to particular nodes. Each leaf can hold up to n − 1
values. We allow leaf nodes to contain as few as �(n − 1)/2� values. With n = 4
in our example B+-tree, each leaf must contain at least 2 values, and at most 3
values.

The ranges of values in each leaf do not overlap, except if there are duplicate
search-key values, in which case a value may be present in more than one leaf.
Specifically, if Li and L j are leaf nodes and i < j , then every search-key value
in Li is less than or equal to every search-key value in L j . If the B+-tree index is
used as a dense index (as is usually the case) every search-key value must appear
in some leaf node.

Now we can explain the use of the pointer Pn. Since there is a linear order on
the leaves based on the search-key values that they contain, we use Pn to chain

P1 K1 P2 Pn-1 Kn-1 Pn…

Figure 11.7 Typical node of a B+-tree.
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leaf node
Pointer to next leaf node

instructor file

Brandt

Srinivasan

Califieri Crick

Comp. Sci. 65000
Wu Finance 90000
Mozart Music 40000
Einstein Physics 95000
El Said History 80000
Gold Physics 87000
Katz Comp. Sci. 75000
Califieri History 60000
Singh Finance 80000
Crick Biology 72000
Brandt Comp. Sci. 92000

15151

10101
12121

22222
32343
33456
45565
58583
76543
76766
83821
98345 Kim Elec. Eng. 80000

Figure 11.8 A leaf node for instructor B+-tree index (n = 4).

together the leaf nodes in search-key order. This ordering allows for efficient
sequential processing of the file.

The nonleaf nodes of the B+-tree form a multilevel (sparse) index on the leaf
nodes. The structure of nonleaf nodes is the same as that for leaf nodes, except
that all pointers are pointers to tree nodes. A nonleaf node may hold up to n
pointers, and must hold at least �n/2� pointers. The number of pointers in a node
is called the fanout of the node. Nonleaf nodes are also referred to as internal
nodes.

Let us consider a node containing m pointers (m ≤ n). For i = 2, 3, . . . , m − 1,
pointer Pi points to the subtree that contains search-key values less than Ki and
greater than or equal to Ki − 1. Pointer Pm points to the part of the subtree that
contains those key values greater than or equal to Km − 1, and pointer P1 points to
the part of the subtree that contains those search-key values less than K1.

Unlike other nonleaf nodes, the root node can hold fewer than �n/2� pointers;
however, it must hold at least two pointers, unless the tree consists of only one
node. It is always possible to construct a B+-tree, for any n, that satisfies the
preceding requirements.

Figure 11.9 shows a complete B+-tree for the instructor file (with n = 4). We
have shown instructor names abbreviated to 3 characters in order to depict the
tree clearly; in reality, the tree nodes would contain the full names. We have also
omitted null pointers for simplicity; any pointer field in the figure that does not
have an arrow is understood to have a null value.

Figure 11.10 shows another B+-tree for the instructor file, this time with n = 6.
As before, we have abbreviated instructor names only for clarity of presentation.
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Gold Katz Kim Mozart Singh Srinivasan Wu

Internal nodes

Root node

Leaf nodes

Einstein

Einstein El Said

Gold

Mozart

Srinivasan

Srinivasan Comp. Sci. 65000
Wu Finance 90000
Mozart Music 40000
Einstein Physics 95000
El Said History 80000
Gold Physics 87000
Katz Comp. Sci. 75000
Califieri History 60000
Singh Finance 80000
Crick Biology 72000
Brandt Comp. Sci. 92000

15151

10101

Brandt Califieri Crick

12121

22222
32343
33456
45565
58583
76543
76766
83821
98345 Kim Elec. Eng. 80000

Figure 11.9 B+-tree for instructor file (n = 4).

Observe that the height of this tree is less than that of the previous tree, which
had n = 4.

These examples of B+-trees are all balanced. That is, the length of every path
from the root to a leaf node is the same. This property is a requirement for a B+-
tree. Indeed, the “B” in B+-tree stands for “balanced.” It is the balance property of
B+-trees that ensures good performance for lookup, insertion, and deletion.

11.3.2 Queries on B+-Trees

Let us consider how we process queries on a B+-tree. Suppose that we wish to
find records with a search-key value of V. Figure 11.11 presents pseudocode for
a function find() to carry out this task.

Intuitively, the function starts at the root of the tree, and traverses the tree
down until it reaches a leaf node that would contain the specified value if it exists
in the tree. Specifically, starting with the root as the current node, the function
repeats the following steps until a leaf node is reached. First, the current node
is examined, looking for the smallest i such that search-key value Ki is greater

Brandt CrickCalifieri Einstein El Said Gold Katz Kim Mozart Singh Srinivasan Wu

El Said Mozart

Figure 11.10 B+-tree for instructor file with n = 6.



11.3 B+-Tree Index Files 489

function find(value V)
/* Returns leaf node C and index i such that C.Pi points to first record
* with search key value V */

Set C = root node
while (C is not a leaf node) begin

Let i = smallest number such that V ≤ C.Ki
if there is no such number i then begin

Let Pm = last non-null pointer in the node
Set C = C.Pm

end
else if (V = C.Ki )

then Set C = C.Pi+1
else C = C.Pi /* V < C.Ki */

end
/* C is a leaf node */
Let i be the least value such that Ki = V
if there is such a value i

then return (C, i)
else return null ; /* No record with key value V exists*/

procedure printAll(value V)
/* prints all records with search key value V */

Set done = false;
Set (L , i) = find(V);
if ((L , i) is null) return
repeat

repeat
Print record pointed to by L .Pi
Set i = i + 1

until (i > number of keys in L or L .Ki > V)
if (i > number of keys in L)

then L = L .Pn
else Set done = true;

until (done or L is null)

Figure 11.11 Querying a B+-tree.

than or equal to V. Suppose such a value is found; then, if Ki is equal to V, the
current node is set to the node pointed to by Pi+1, otherwise Ki > V, and the
current node is set to the node pointed to by Pi . If no such value Ki is found, then
clearly V > Km−1, where Pm is the last nonnull pointer in the node. In this case
the current node is set to that pointed to by Pm. The above procedure is repeated,
traversing down the tree until a leaf node is reached.

At the leaf node, if there is a search-key value equal to V, let Ki be the first such
value; pointer Pi directs us to a record with search-key value Ki . The function
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then returns the leaf node L and the index i . If no search-key with value V is
found in the leaf node, no record with key value V exists in the relation, and
function find returns null, to indicate failure.

If there is at most one record with a search key value V (for example, if the
index is on a primary key) the procedure that calls the find function simply uses
the pointer L .Pi to retrieve the record and is done. However, in case there may be
more than one matching record, the remaining records also need to be fetched.

Procedure printAll shown in Figure 11.11 shows how to fetch all records
with a specified search key V. The procedure first steps through the remaining
keys in the node L, to find other records with search-key value V. If node L
contains at least one search-key value greater than V, then there are no more
records matching V. Otherwise, the next leaf, pointed to by Pn may contain
further entries for V. The node pointed to by Pn must then be searched to find
further records with search-key value V. If the highest search-key value in the
node pointed to by Pn is also V, further leaves may have to be traversed, in order
to find all matching records. The repeat loop in printAll carries out the task of
traversing leaf nodes until all matching records have been found.

A real implementation would provide a version offind supporting an iterator
interface similar to that provided by the JDBC ResultSet, which we saw in
Section 5.1.1. Such an iterator interface would provide a method next(), which
can be called repeatedly to fetch successive records with the specified search-key.
The next() method would step through the entries at the leaf level, in a manner
similar to printAll, but each call takes only one step, and records where it left
off, so that successive calls next step through successive records. We omit details
for simplicity, and leave the pseudocode for the iterator interface as an exercise
for the interested reader.

B+-trees can also be used to find all records with search key values in a
specified range (L , U). For example, with a B+-tree on attribute salary of instruc-
tor, we can find all instructor records with salary in a specified range such as
(50000, 100000) (in other words, all salaries between 50000 and 100000). Such
queries are called range queries. To execute such queries, we can create a proce-
dure printRange(L , U), whose body is the same as printAll except for these dif-
ferences: printRange calls find(L), instead of find(V), and then steps through
records as in procedure printAll, but with the stopping condition being that
L .Ki > U, instead of L .Ki > V.

In processing a query, we traverse a path in the tree from the root to some leaf
node. If there are N records in the file, the path is no longer than �log�n/2�(N)�.

In practice, only a few nodes need to be accessed. Typically, a node is made to
be the same size as a disk block, which is typically 4 kilobytes. With a search-key
size of 12 bytes, and a disk-pointer size of 8 bytes, n is around 200. Even with a
more conservative estimate of 32 bytes for the search-key size, n is around 100.
With n = 100, if we have 1 million search-key values in the file, a lookup requires
only �log50(1,000,000)� = 4 nodes to be accessed. Thus, at most four blocks need
to be read from disk for the lookup. The root node of the tree is usually heavily
accessed and is likely to be in the buffer, so typically only three or fewer blocks
need to be read from disk.
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An important difference between B+-tree structures and in-memory tree struc-
tures, such as binary trees, is the size of a node, and as a result, the height of the
tree. In a binary tree, each node is small, and has at most two pointers. In a B+-tree,
each node is large—typically a disk block—and a node can have a large number
of pointers. Thus, B+-trees tend to be fat and short, unlike thin and tall binary
trees. In a balanced binary tree, the path for a lookup can be of length �log2(N)�,
where N is the number of records in the file being indexed. With N = 1,000,000 as
in the previous example, a balanced binary tree requires around 20 node accesses.
If each node were on a different disk block, 20 block reads would be required to
process a lookup, in contrast to the four block reads for the B+-tree. The difference
is significant, since each block read could require a disk arm seek, and a block
read together with the disk arm seek takes about 10 milliseconds on a typical
disk.

11.3.3 Updates on B+-Trees

When a record is inserted into, or deleted from a relation, indices on the relation
must be updated correspondingly. Recall that updates to a record can be modeled
as a deletion of the old record followed by insertion of the updated record. Hence
we only consider the case of insertion and deletion.

Insertion and deletion are more complicated than lookup, since it may be
necessary to split a node that becomes too large as the result of an insertion, or
to coalesce nodes (that is, combine nodes) if a node becomes too small (fewer
than �n/2� pointers). Furthermore, when a node is split or a pair of nodes is
combined, we must ensure that balance is preserved. To introduce the idea behind
insertion and deletion in a B+-tree, we shall assume temporarily that nodes never
become too large or too small. Under this assumption, insertion and deletion are
performed as defined next.

• Insertion. Using the same technique as for lookup from the find() function
(Figure 11.11), we first find the leaf node in which the search-key value would
appear. We then insert an entry (that is, a search-key value and record pointer
pair) in the leaf node, positioning it such that the search keys are still in order.

• Deletion. Using the same technique as for lookup, we find the leaf node
containing the entry to be deleted, by performing a lookup on the search-key
value of the deleted record; if there are multiple entries with the same search-
key value, we search across all entries with the same search-key value until
we find the entry that points to the record being deleted. We then remove the
entry from the leaf node. All entries in the leaf node that are to the right of
the deleted entry are shifted left by one position, so that there are no gaps in
the entries after the entry is deleted.

We now consider the general case of insertion and deletion, dealing with node
splitting and node coalescing.

.
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Adams Califieri CrickBrandt

Figure 11.12 Split of leaf node on insertion of “Adams”

11.3.3.1 Insertion

We now consider an example of insertion in which a node must be split. Assume
that a record is inserted on the instructor relation, with the name value being
Adams. We then need to insert an entry for “Adams” into the B+-tree of Figure 11.9.
Using the algorithm for lookup, we find that “Adams” should appear in the leaf
node containing “Brandt”, “Califieri”, and “Crick.” There is no room in this leaf to
insert the search-key value “Adams.” Therefore, the node is split into two nodes.
Figure 11.12 shows the two leaf nodes that result from the split of the leaf node on
inserting “Adams”. The search-key values “Adams” and “Brandt” are in one leaf,
and “Califieri” and “Crick” are in the other. In general, we take the n search-key
values (the n − 1 values in the leaf node plus the value being inserted), and put
the first �n/2� in the existing node and the remaining values in a newly created
node.

Having split a leaf node, we must insert the new leaf node into the B+-tree
structure. In our example, the new node has “Califieri” as its smallest search-key
value. We need to insert an entry with this search-key value, and a pointer to the
new node, into the parent of the leaf node that was split. The B+-tree of Figure
11.13 shows the result of the insertion. It was possible to perform this insertion
with no further node split, because there was room in the parent node for the new
entry. If there were no room, the parent would have had to be split, requiring an
entry to be added to its parent. In the worst case, all nodes along the path to the
root must be split. If the root itself is split, the entire tree becomes deeper.

Splitting of a nonleaf node is a little different from splitting of a leaf node.
Figure 11.14 shows the result of inserting a record with search key “Lamport” into
the tree shown in Figure 11.13. The leaf node in which “Lamport” is to be inserted
already has entries “Gold”, “Katz”, and “Kim”, and as a result the leaf node has
to be split. The new right-hand-side node resulting from the split contains the
search-key values “Kim” and “Lamport”. An entry (Kim, n1) must then be added

Adams Brandt Einstein El Said Gold Katz Kim Mozart Singh Srinivasan Wu

Gold Srinivasan

Mozart

EinsteinCalifieri

CrickCalifieri

Figure 11.13 Insertion of “Adams” into the B+-tree of Figure 11.9.
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Califieri Einstein

Mozart

Kim

Adams Brandt Einstein El Said Gold Katz Kim Lamport Mozart Singh Srinivasan WuCrickCalifieri

Figure 11.14 Insertion of “Lamport” into the B+-tree of Figure 11.13.

to the parent node, where n1 is a pointer to the new node, However, there is no
space in the parent node to add a new entry, and the parent node has to be split.
To do so, the parent node is conceptually expanded temporarily, the entry added,
and the overfull node is then immediately split.

When an overfull nonleaf node is split, the child pointers are divided among
the original and the newly created nodes; in our example, the original node is
left with the first three pointers, and the newly created node to the right gets
the remaining two pointers. The search key values are, however, handled a little
differently. The search key values that lie between the pointers moved to the right
node (in our example, the value “Kim”) are moved along with the pointers, while
those that lie between the pointers that stay on the left (in our example, “Califieri”
and “Einstein”) remain undisturbed.

However, the search key value that lies between the pointers that stay on the
left, and the pointers that move to the right node is treated differently. In our
example, the search key value “Gold” lies between the three pointers that went to
the left node, and the two pointers that went to the right node. The value “Gold”
is not added to either of the split nodes. Instead, an entry (Gold, n2) is added to
the parent node, where n2 is a pointer to the newly created node that resulted
from the split. In this case, the parent node is the root, and it has enough space
for the new entry.

The general technique for insertion into a B+-tree is to determine the leaf node
l into which insertion must occur. If a split results, insert the new node into the
parent of node l. If this insertion causes a split, proceed recursively up the tree
until either an insertion does not cause a split or a new root is created.

Figure 11.15 outlines the insertion algorithm in pseudocode. The procedure
insert inserts a key-value pointer pair into the index, using two subsidiary
procedures insert in leaf and insert in parent. In the pseudocode, L , N, P
and T denote pointers to nodes, with L being used to denote a leaf node. L .Ki and
L .Pi denote the ith value and the ith pointer in node L, respectively; T.Ki and
T.Pi are used similarly. The pseudocode also makes use of the function parent(N)
to find the parent of a node N. We can compute a list of nodes in the path from
the root to the leaf while initially finding the leaf node, and can use it later to find
the parent of any node in the path efficiently.

The procedure insert in parent takes as parameters N, K ′, N′, where node
N was split into N and N′, with K ′ being the least value in N′. The procedure
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procedure insert(value K , pointer P)
if (tree is empty) create an empty leaf node L , which is also the root
else Find the leaf node L that should contain key value K
if (L has less than n − 1 key values)

then insert in leaf (L , K , P)
else begin /* L has n − 1 key values already, split it */

Create node L ′
Copy L .P1 . . . L .Kn−1 to a block of memory T that can

hold n (pointer, key-value) pairs
insert in leaf (T, K , P)
Set L ′.Pn = L .Pn; Set L .Pn = L ′
Erase L .P1 through L .Kn−1 from L
Copy T.P1 through T.K�n/2� from T into L starting at L .P1
Copy T.P�n/2�+1 through T.Kn from T into L ′ starting at L ′.P1
Let K ′ be the smallest key-value in L ′
insert in parent(L , K ′, L ′)

end

procedure insert in leaf (node L, value K , pointer P)
if (K < L .K1)

then insert P, K into L just before L .P1
else begin

Let Ki be the highest value in L that is less than K
Insert P, K into L just after T.Ki

end

procedure insert in parent(node N, value K ′, node N′)
if (N is the root of the tree)

then begin
Create a new node R containing N, K ′, N′ /* N and N′ are pointers */
Make R the root of the tree
return

end
Let P = parent (N)
if (P has less than n pointers)

then insert (K ′, N′) in P just after N
else begin /* Split P */

Copy P to a block of memory T that can hold P and (K ′, N′)
Insert (K ′, N′) into T just after N
Erase all entries from P ; Create node P ′
Copy T.P1 . . . T.P�n/2� into P
Let K ′′ = T.K�n/2�
Copy T.P�n/2�+1 . . . T.Pn+1 into P ′
insert in parent(P , K ′′, P ′)

end

Figure 11.15 Insertion of entry in a B+-tree.
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Figure 11.16 Deletion of “Srinivasan” from the B+-tree of Figure 11.13.

modifies the parent of N to record the split. The procedures insert into index
and insert in parent use a temporary area of memory T to store the contents
of a node being split. The procedures can be modified to copy data from the
node being split directly to the newly created node, reducing the time required
for copying data. However, the use of the temporary space T simplifies the
procedures.

11.3.3.2 Deletion

We now consider deletions that cause tree nodes to contain too few pointers. First,
let us delete “Srinivasan” from the B+-tree of Figure 11.13. The resulting B+-tree
appears in Figure 11.16. We now consider how the deletion is performed. We first
locate the entry for “Srinivasan” by using our lookup algorithm. When we delete
the entry for “Srinivasan” from its leaf node, the node is left with only one entry,
“Wu”. Since, in our example, n = 4 and 1 < �(n − 1)/2�, we must either merge
the node with a sibling node, or redistribute the entries between the nodes, to
ensure that each node is at least half-full. In our example, the underfull node with
the entry for “Wu” can be merged with its left sibling node. We merge the nodes
by moving the entries from both the nodes into the left sibling, and deleting the
now empty right sibling. Once the node is deleted, we must also delete the entry
in the parent node that pointed to the just deleted node.

In our example, the entry to be deleted is (Srinivasan, n3), where n3 is a
pointer to the leaf containing “Srinivasan”. (In this case the entry to be deleted
in the nonleaf node happens to be the same value as that deleted from the leaf;
that would not be the case for most deletions.) After deleting the above entry,
the parent node, which had a search key value “Srinivasan” and two pointers,
now has one pointer (the leftmost pointer in the node) and no search-key values.
Since 1 < �n/2� for n = 4, the parent node is underfull. (For larger n, a node that
becomes underfull would still have some values as well as pointers.)

In this case, we look at a sibling node; in our example, the only sibling is
the nonleaf node containing the search keys “Califieri”, “Einstein”, and “Gold”.
If possible, we try to coalesce the node with its sibling. In this case, coalescing is
not possible, since the node and its sibling together have five pointers, against a
maximum of four. The solution in this case is to redistribute the pointers between
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Figure 11.17 Deletion of “Singh” and “Wu” from the B+-tree of Figure 11.16.

the node and its sibling, such that each has at least �n/2� = 2 child pointers. To
do so, we move the rightmost pointer from the left sibling (the one pointing to
the leaf node containing “Mozart”) to the underfull right sibling. However, the
underfull right sibling would now have two pointers, namely its leftmost pointer,
and the newly moved pointer, with no value separating them. In fact, the value
separating them is not present in either of the nodes, but is present in the parent
node, between the pointers from the parent to the node and its sibling. In our
example, the value “Mozart” separates the two pointers, and is present in the right
sibling after the redistribution. Redistribution of the pointers also means that the
value “Mozart” in the parent no longer correctly separates search-key values in
the two siblings. In fact, the value that now correctly separates search-key values
in the two sibling nodes is the value “Gold”, which was in the left sibling before
redistribution.

As a result, as can be seen in the B+-tree in Figure 11.16, after redistribution of
pointers between siblings, the value “Gold” has moved up into the parent, while
the value that was there earlier, “Mozart”, has moved down into the right sibling.

We next delete the search-key values “Singh” and “Wu” from the B+-tree of
Figure 11.16. The result is shown in Figure 11.17. The deletion of the first of these
values does not make the leaf node underfull, but the deletion of the second
value does. It is not possible to merge the underfull node with its sibling, so a
redistribution of values is carried out, moving the search-key value “Kim” into
the node containing “Mozart”, resulting in the tree shown in Figure 11.17. The
value separating the two siblings has been updated in the parent, from “Mozart”
to “Kim”.

Now we delete “Gold” from the above tree; the result is shown in Figure 11.18.
This results in an underfull leaf, which can now be merged with its sibling. The
resultant deletion of an entry from the parent node (the nonleaf node containing
“Kim”) makes the parent underfull (it is left with just one pointer). This time
around, the parent node can be merged with its sibling. This merge results in the
search-key value “Gold” moving down from the parent into the merged node.
As a result of this merge, an entry is deleted from its parent, which happens to
be the root of the tree. And as a result of that deletion, the root is left with only
one child pointer and no search-key value, violating the condition that the root
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Figure 11.18 Deletion of “Gold” from the B+-tree of Figure 11.17.

have at least two children. As a result, the root node is deleted and its sole child
becomes the root, and the depth of the B+-tree has been decreased by 1.

It is worth noting that, as a result of deletion, a key value that is present in a
nonleaf node of the B+-tree may not be present at any leaf of the tree. For example,
in Figure 11.18, the value “Gold” has been deleted from the leaf level, but is still
present in a nonleaf node.

In general, to delete a value in a B+-tree, we perform a lookup on the value
and delete it. If the node is too small, we delete it from its parent. This deletion
results in recursive application of the deletion algorithm until the root is reached,
a parent remains adequately full after deletion, or redistribution is applied.

Figure 11.19 outlines the pseudocode for deletion from a B+-tree. The proce-
dure swap variables(N, N′) merely swaps the values of the (pointer) variables
N and N′; this swap has no effect on the tree itself. The pseudocode uses the
condition “too few pointers/values.” For nonleaf nodes, this criterion means less
than �n/2� pointers; for leaf nodes, it means less than �(n − 1)/2� values. The
pseudocode redistributes entries by borrowing a single entry from an adjacent
node. We can also redistribute entries by repartitioning entries equally between
the two nodes. The pseudocode refers to deleting an entry (K , P) from a node.
In the case of leaf nodes, the pointer to an entry actually precedes the key value,
so the pointer P precedes the key value K . For nonleaf nodes, P follows the key
value K .

11.3.4 Nonunique Search Keys

If a relation can have more than one record containing the same search key value
(that is, two or more records can have the same values for the indexed attributes),
the search key is said to be a nonunique search key.

One problem with nonunique search keys is in the efficiency of record dele-
tion. Suppose a particular search-key value occurs a large number of times, and
one of the records with that search key is to be deleted. The deletion may have
to search through a number of entries, potentially across multiple leaf nodes, to
find the entry corresponding to the particular record being deleted.

A simple solution to this problem, used by most database systems, is to make
search keys unique by creating a composite search key containing the original
search key and another attribute, which together are unique across all records.
The extra attribute can be a record-id, which is a pointer to the record, or any
other attribute whose value is unique among all records with the same search-
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procedure delete(value K , pointer P)
find the leaf node L that contains (K , P)
delete entry(L , K , P)

procedure delete entry(node N, value K , pointer P)
delete (K , P) from N
if (N is the root and N has only one remaining child)
then make the child of N the new root of the tree and delete N
else if (N has too few values/pointers) then begin

Let N′ be the previous or next child of parent(N)
Let K ′ be the value between pointers N and N′ in parent(N)
if (entries in N and N′ can fit in a single node)

then begin /* Coalesce nodes */
if (N is a predecessor of N′) then swap variables(N, N′)
if (N is not a leaf)

then append K ′ and all pointers and values in N to N′
else append all (Ki , Pi ) pairs in N to N′; set N′.Pn = N.Pn

delete entry(parent(N), K ′, N); delete node N
end

else begin /* Redistribution: borrow an entry from N′ */
if (N′ is a predecessor of N) then begin

if (N is a nonleaf node) then begin
let m be such that N′.Pm is the last pointer in N′
remove (N′.Km−1, N′.Pm) from N′
insert (N′.Pm, K ′) as the first pointer and value in N,

by shifting other pointers and values right
replace K ′ in parent(N) by N′.Km−1

end
else begin

let m be such that (N′.Pm, N′.Km) is the last pointer/value
pair in N′

remove (N′.Pm, N′.Km) from N′
insert (N′.Pm, N′.Km) as the first pointer and value in N,

by shifting other pointers and values right
replace K ′ in parent(N) by N′.Km

end
end
else . . . symmetric to the then case . . .

end
end

Figure 11.19 Deletion of entry from a B+-tree.

key value. The extra attribute is called a uniquifier attribute. When a record is
to be deleted, the composite search-key value is computed from the record, and
then used to look up the index. Since the value is unique, the corresponding leaf-



11.3 B+-Tree Index Files 499

level entry can be found with a single traversal from root to leaf, with no further
accesses at the leaf level. As a result, record deletion can be done efficiently.

A search with the original search-key attribute simply ignores the value of
the uniquifier attribute when comparing search-key values.

With nonunique search keys, our B+-tree structure stores each key value
as many times as there are records containing that value. An alternative is to
store each key value only once in the tree, and to keep a bucket (or list) of record
pointers with a search-key value, to handle nonunique search keys. This approach
is more space efficient since it stores the key value only once; however, it creates
several complications when B+-trees are implemented. If the buckets are kept
in the leaf node, extra code is needed to deal with variable-size buckets, and to
deal with buckets that grow larger than the size of the leaf node. If the buckets
are stored in separate blocks, an extra I/O operation may be required to fetch
records. In addition to these problems, the bucket approach also has the problem
of inefficiency for record deletion if a search-key value occurs a large number of
times.

11.3.5 Complexity of B+-Tree Updates

Although insertion and deletion operations on B+-trees are complicated, they
require relatively few I/O operations, which is an important benefit since I/O
operations are expensive. It can be shown that the number of I/O operations
needed in the worst case for an insertion is proportional to log�n/2�(N), where n is
the maximum number of pointers in a node, and N is the number of records in
the file being indexed.

The worst-case complexity of the deletion procedure is also proportional to
log�n/2�(N), provided there are no duplicate values for the search key. If there
are duplicate values, deletion may have to search across multiple records with
the same search-key value to find the correct entry to be deleted, which can
be inefficient. However, making the search key unique by adding a uniquifier
attribute, as described in Section 11.3.4, ensures the worst-case complexity of
deletion is the same even if the original search key is nonunique.

In other words, the cost of insertion and deletion operations in terms of I/O
operations is proportional to the height of the B+-tree, and is therefore low. It
is the speed of operation on B+-trees that makes them a frequently used index
structure in database implementations.

In practice, operations on B+-trees result in fewer I/O operations than the
worst-case bounds. With fanout of 100, and assuming accesses to leaf nodes are
uniformly distributed, the parent of a leaf node is 100 times more likely to get
accessed than the leaf node. Conversely, with the same fanout, the total number
of nonleaf nodes in a B+-tree would be just a little more than 1/100th of the
number of leaf nodes. As a result, with memory sizes of several gigabytes being
common today, for B+-trees that are used frequently, even if the relation is very
large it is quite likely that most of the nonleaf nodes are already in the database
buffer when they are accessed. Thus, typically only one or two I/O operations
are required to perform a lookup. For updates, the probability of a node split
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occurring is correspondingly very small. Depending on the ordering of inserts,
with a fanout of 100, only between 1 in 100 to 1 in 50 insertions will result in a
node split, requiring more than one block to be written. As a result, on an average
an insert will require just a little more than one I/O operation to write updated
blocks.

Although B+-trees only guarantee that nodes will be at least half full, if entries
are inserted in random order, nodes can be expected to be more than two-thirds
full on average. If entries are inserted in sorted order, on the other hand, nodes
will be only half full. (We leave it as an exercise to the reader to figure out why
nodes would be only half full in the latter case.)

11.4 B+-Tree Extensions

In this section, we discuss several extensions and variations of the B+-tree index
structure.

11.4.1 B+-Tree File Organization

As mentioned in Section 11.3, the main drawback of index-sequential file orga-
nization is the degradation of performance as the file grows: With growth, an
increasing percentage of index entries and actual records become out of order,
and are stored in overflow blocks. We solve the degradation of index lookups by
using B+-tree indices on the file. We solve the degradation problem for storing
the actual records by using the leaf level of the B+-tree to organize the blocks
containing the actual records. We use the B+-tree structure not only as an index,
but also as an organizer for records in a file. In a B+-tree file organization, the leaf
nodes of the tree store records, instead of storing pointers to records. Figure 11.20
shows an example of a B+-tree file organization. Since records are usually larger
than pointers, the maximum number of records that can be stored in a leaf node
is less than the number of pointers in a nonleaf node. However, the leaf nodes are
still required to be at least half full.

I

C MK

(A,4) (C,1)(B,8) (D,9) (E,4) (F,7) (G,3) (H,3)
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F

Figure 11.20 B+-tree file organization.
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Insertion and deletion of records from a B+-tree file organization are handled
in the same way as insertion and deletion of entries in a B+-tree index. When
a record with a given key value v is inserted, the system locates the block that
should contain the record by searching the B+-tree for the largest key in the tree
that is ≤ v. If the block located has enough free space for the record, the system
stores the record in the block. Otherwise, as in B+-tree insertion, the system splits
the block in two, and redistributes the records in it (in the B+-tree–key order) to
create space for the new record. The split propagates up the B+-tree in the normal
fashion. When we delete a record, the system first removes it from the block
containing it. If a block B becomes less than half full as a result, the records in B
are redistributed with the records in an adjacent block B ′. Assuming fixed-sized
records, each block will hold at least one-half as many records as the maximum
that it can hold. The system updates the nonleaf nodes of the B+-tree in the usual
fashion.

When we use a B+-tree for file organization, space utilization is particularly
important, since the space occupied by the records is likely to be much more than
the space occupied by keys and pointers. We can improve the utilization of space
in a B+-tree by involving more sibling nodes in redistribution during splits and
merges. The technique is applicable to both leaf nodes and nonleaf nodes, and
works as follows:

During insertion, if a node is full the system attempts to redistribute some
of its entries to one of the adjacent nodes, to make space for a new entry. If this
attempt fails because the adjacent nodes are themselves full, the system splits
the node, and splits the entries evenly among one of the adjacent nodes and the
two nodes that it obtained by splitting the original node. Since the three nodes
together contain one more record than can fit in two nodes, each node will be
about two-thirds full. More precisely, each node will have at least �2n/3� entries,
where n is the maximum number of entries that the node can hold. (�x� denotes
the greatest integer that is less than or equal to x; that is, we drop the fractional
part, if any.)

During deletion of a record, if the occupancy of a node falls below �2n/3�,
the system attempts to borrow an entry from one of the sibling nodes. If both
sibling nodes have �2n/3� records, instead of borrowing an entry, the system
redistributes the entries in the node and in the two siblings evenly between two
of the nodes, and deletes the third node. We can use this approach because the
total number of entries is 3�2n/3� − 1, which is less than 2n. With three adjacent
nodes used for redistribution, each node can be guaranteed to have �3n/4� entries.
In general, if m nodes (m − 1 siblings) are involved in redistribution, each node
can be guaranteed to contain at least �(m − 1)n/m� entries. However, the cost of
update becomes higher as more sibling nodes are involved in the redistribution.

Note that in a B+-tree index or file organization, leaf nodes that are adjacent
to each other in the tree may be located at different places on disk. When a file
organization is newly created on a set of records, it is possible to allocate blocks
that are mostly contiguous on disk to leaf nodes that are contiguous in the tree.
Thus a sequential scan of leaf nodes would correspond to a mostly sequential scan
on disk. As insertions and deletions occur on the tree, sequentiality is increasingly
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lost, and sequential access has to wait for disk seeks increasingly often. An index
rebuild may be required to restore sequentiality.

B+-tree file organizations can also be used to store large objects, such as SQL
clobs and blobs, which may be larger than a disk block, and as large as multiple
gigabytes. Such large objects can be stored by splitting them into sequences of
smaller records that are organized in a B+-tree file organization. The records can
be sequentially numbered, or numbered by the byte offset of the record within
the large object, and the record number can be used as the search key.

11.4.2 Secondary Indices and Record Relocation

Some file organizations, such as the B+-tree file organization, may change the
location of records even when the records have not been updated. As an example,
when a leaf node is split in a B+-tree file organization, a number of records are
moved to a new node. In such cases, all secondary indices that store pointers to
the relocated records would have to be updated, even though the values in the
records may not have changed. Each leaf node may contain a fairly large number
of records, and each of them may be in different locations on each secondary
index. Thus a leaf-node split may require tens or even hundreds of I/O operations
to update all affected secondary indices, making it a very expensive operation.

A widely used solution for this problem is as follows: In secondary indices,
in place of pointers to the indexed records, we store the values of the primary-
index search-key attributes. For example, suppose we have a primary index on the
attribute ID of relation instructor; then a secondary index on dept name would store
with each department name a list of instructor’s ID values of the corresponding
records, instead of storing pointers to the records.

Relocation of records because of leaf-node splits then does not require any
update on any such secondary index. However, locating a record using the sec-
ondary index now requires two steps: First we use the secondary index to find
the primary-index search-key values, and then we use the primary index to find
the corresponding records.

The above approach thus greatly reduces the cost of index update due to file
reorganization, although it increases the cost of accessing data using a secondary
index.

11.4.3 Indexing Strings

Creating B+-tree indices on string-valued attributes raises two problems. The
first problem is that strings can be of variable length. The second problem is that
strings can be long, leading to a low fanout and a correspondingly increased tree
height.

With variable-length search keys, different nodes can have different fanouts
even if they are full. A node must then be split if it is full, that is, there is no space
to add a new entry, regardless of how many search entries it has. Similarly, nodes
can be merged or entries redistributed depending on what fraction of the space
in the nodes is used, instead of being based on the maximum number of entries
that the node can hold.
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The fanout of nodes can be increased by using a technique called prefix
compression. With prefix compression, we do not store the entire search key
value at nonleaf nodes. We only store a prefix of each search key value that is
sufficient to distinguish between the key values in the subtrees that it separates.
For example, if we had an index on names, the key value at a nonleaf node could
be a prefix of a name; it may suffice to store “Silb” at a nonleaf node, instead of
the full “Silberschatz” if the closest values in the two subtrees that it separates
are, say, “Silas” and “Silver” respectively.

11.4.4 Bulk Loading of B+-Tree Indices

As we saw earlier, insertion of a record in a B+-tree requires a number of I/O
operations that in the worst case is proportional to the height of the tree, which
is usually fairly small (typically five or less, even for large relations).

Now consider the case where a B+-tree is being built on a large relation.
Suppose the relation is significantly larger than main memory, and we are con-
structing a nonclustering index on the relation such that the index is also larger
than main memory. In this case, as we scan the relation and add entries to the
B+-tree, it is quite likely that each leaf node accessed is not in the database buffer
when it is accessed, since there is no particular ordering of the entries. With such
randomly ordered accesses to blocks, each time an entry is added to the leaf, a
disk seek will be required to fetch the block containing the leaf node. The block
will probably be evicted from the disk buffer before another entry is added to the
block, leading to another disk seek to write the block back to disk. Thus a random
read and a random write operation may be required for each entry inserted.

For example, if the relation has 100 million records, and each I/O operation
takes about 10 milliseconds, it would take at least 1 million seconds to build the
index, counting only the cost of reading leaf nodes, not even counting the cost
of writing the updated nodes back to disk. This is clearly a very large amount of
time; in contrast, if each record occupies 100 bytes, and the disk subsystem can
transfer data at 50 megabytes per second, it would take just 200 seconds to read
the entire relation.

Insertion of a large number of entries at a time into an index is referred to as
bulk loading of the index. An efficient way to perform bulk loading of an index is
as follows. First, create a temporary file containing index entries for the relation,
then sort the file on the search key of the index being constructed, and finally scan
the sorted file and insert the entries into the index. There are efficient algorithms
for sorting large relations, which are described later in Section 12.4, which can
sort even a large file with an I/O cost comparable to that of reading the file a few
times, assuming a reasonable amount of main memory is available.

There is a significant benefit to sorting the entries before inserting them into
the B+-tree. When the entries are inserted in sorted order, all entries that go to a
particular leaf node will appear consecutively, and the leaf needs to be written
out only once; nodes will never have to be read from disk during bulk load, if
the B+-tree was empty to start with. Each leaf node will thus incur only one I/O
operation even though many entries may be inserted into the node. If each leaf
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contains 100 entries, the leaf level will contain 1 million nodes, resulting in only 1
million I/O operations for creating the leaf level. Even these I/O operations can be
expected to be sequential, if successive leaf nodes are allocated on successive disk
blocks, and few disk seeks would be required. With current disks, 1 millisecond
per block is a reasonable estimate for mostly sequential I/O operations, in contrast
to 10 milliseconds per block for random I/O operations.

We shall study the cost of sorting a large relation later, in Section 12.4, but as
a rough estimate, the index which would have taken a million seconds to build
otherwise, can be constructed in well under 1000 seconds by sorting the entries
before inserting them into the B+-tree, in contrast to more than 1,000,000 seconds
for inserting in random order.

If the B+-tree is initially empty, it can be constructed faster by building it
bottom-up, from the leaf level, instead of using the usual insert procedure. In
bottom-up B+-tree construction, after sorting the entries as we just described,
we break up the sorted entries into blocks, keeping as many entries in a block
as can fit in the block; the resulting blocks form the leaf level of the B+-tree. The
minimum value in each block, along with the pointer to the block, is used to create
entries in the next level of the B+-tree, pointing to the leaf blocks. Each further
level of the tree is similarly constructed using the minimum values associated
with each node one level below, until the root is created. We leave details as an
exercise for the reader.

Most database systems implement efficient techniques based on sorting of en-
tries, and bottom-up construction, when creating an index on a relation, although
they use the normal insertion procedure when tuples are added one at a time to a
relation with an existing index. Some database systems recommend that if a very
large number of tuples are added at once to an already existing relation, indices
on the relation (other than any index on the primary key) should be dropped,
and then re-created after the tuples are inserted, to take advantage of efficient
bulk-loading techniques.

11.4.5 B-Tree Index Files

B-tree indices are similar to B+-tree indices. The primary distinction between the
two approaches is that a B-tree eliminates the redundant storage of search-key val-
ues. In the B+-tree of Figure 11.13, the search keys “Califieri”, “Einstein”, “Gold”,
“Mozart”, and “Srinivasan” appear in nonleaf nodes, in addition to appearing
in the leaf nodes. Every search-key value appears in some leaf node; several are
repeated in nonleaf nodes.

A B-tree allows search-key values to appear only once (if they are unique),
unlike a B+-tree, where a value may appear in a nonleaf node, in addition to
appearing in a leaf node. Figure 11.21 shows a B-tree that represents the same
search keys as the B+-tree of Figure 11.13. Since search keys are not repeated
in the B-tree, we may be able to store the index in fewer tree nodes than in the
corresponding B+-tree index. However, since search keys that appear in nonleaf
nodes appear nowhere else in the B-tree, we are forced to include an additional
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Figure 11.21 B-tree equivalent of B+-tree in Figure 11.13.

pointer field for each search key in a nonleaf node. These additional pointers
point to either file records or buckets for the associated search key.

It is worth noting that many database system manuals, articles in industry
literature, and industry professionals use the term B-tree to refer to the data
structure that we call the B+-tree. In fact, it would be fair to say that in current
usage, the term B-tree is assumed to be synonymous with B+-tree. However, in
this book we use the terms B-tree and B+-tree as they were originally defined, to
avoid confusion between the two data structures.

A generalized B-tree leaf node appears in Figure 11.22a; a nonleaf node ap-
pears in Figure 11.22b. Leaf nodes are the same as in B+-trees. In nonleaf nodes,
the pointers Pi are the tree pointers that we used also for B+-trees, while the
pointers Bi are bucket or file-record pointers. In the generalized B-tree in the
figure, there are n− 1 keys in the leaf node, but there are m − 1 keys in the nonleaf
node. This discrepancy occurs because nonleaf nodes must include pointers Bi ,
thus reducing the number of search keys that can be held in these nodes. Clearly,
m < n, but the exact relationship between m and n depends on the relative size of
search keys and pointers.

The number of nodes accessed in a lookup in a B-tree depends on where the
search key is located. A lookup on a B+-tree requires traversal of a path from the
root of the tree to some leaf node. In contrast, it is sometimes possible to find the
desired value in a B-tree before reaching a leaf node. However, roughly n times
as many keys are stored in the leaf level of a B-tree as in the nonleaf levels, and,
since n is typically large, the benefit of finding certain values early is relatively

P1 K1 P2 Pn-1 Kn-1 Pn…

P1 B1 K1 P2 B2 K2 … Pm-1 Bm-1 Km-1 Pm

(a)

(b)

Figure 11.22 Typical nodes of a B-tree. (a) Leaf node. (b) Nonleaf node.
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small. Moreover, the fact that fewer search keys appear in a nonleaf B-tree node,
compared to B+-trees, implies that a B-tree has a smaller fanout and therefore
may have depth greater than that of the corresponding B+-tree. Thus, lookup in
a B-tree is faster for some search keys but slower for others, although, in general,
lookup time is still proportional to the logarithm of the number of search keys.

Deletion in a B-tree is more complicated. In a B+-tree, the deleted entry always
appears in a leaf. In a B-tree, the deleted entry may appear in a nonleaf node. The
proper value must be selected as a replacement from the subtree of the node
containing the deleted entry. Specifically, if search key Ki is deleted, the smallest
search key appearing in the subtree of pointer Pi + 1 must be moved to the field
formerly occupied by Ki . Further actions need to be taken if the leaf node now has
too few entries. In contrast, insertion in a B-tree is only slightly more complicated
than is insertion in a B+-tree.

The space advantages of B-trees are marginal for large indices, and usually
do not outweigh the disadvantages that we have noted. Thus, pretty much all
database-system implementations use the B+-tree data structure, even if (as we
discussed earlier) they refer to the data structure as a B-tree.

11.4.6 Flash Memory

In our description of indexing so far, we have assumed that data are resident on
magnetic disks. Although this assumption continues to be true for the most part,
flash memory capacities have grown significantly, and the cost of flash memory
per gigabyte has dropped equally significantly, making flash memory storage a
serious contender for replacing magnetic-disk storage for many applications. A
natural question is, how would this change affect the index structure.

Flash-memory storage is structured as blocks, and the B+-tree index structure
can be used for flash-memory storage. The benefit of the much faster access speeds
is clear for index lookups. Instead of requiring an average of 10 milliseconds to
seek to and read a block, a random block can be read in about a microsecond from
flash-memory. Thus lookups run significantly faster than with disk-based data.
The optimum B+-tree node size for flash-memory is typically smaller than that
with disk.

The only real drawback with flash memory is that it does not permit in-
place updates to data at the physical level, although it appears to do so logically.
Every update turns into a copy+write of an entire flash-memory block, requiring
the old copy of the block to be erased subsequently; a block erase takes about
1 millisecond. There is ongoing research aimed at developing index structures
that can reduce the number of block erases. Meanwhile, standard B+-tree indices
can continue to be used even on flash-memory storage, with acceptable update
performance, and significantly improved lookup performance compared to disk
storage.

11.5 Multiple-Key Access

Until now, we have assumed implicitly that only one index on one attribute is
used to process a query on a relation. However, for certain types of queries, it is
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advantageous to use multiple indices if they exist, or to use an index built on a
multiattribute search key.

11.5.1 Using Multiple Single-Key Indices

Assume that the instructor file has two indices: one for dept name and one for salary.
Consider the following query: “Find all instructors in the Finance department with
salary equal to $80,000.” We write

select ID
from instructor
where dept name =’Finance’ and salary= 80000;

There are three strategies possible for processing this query:

1. Use the index on dept name to find all records pertaining to the Finance
department. Examine each such record to see whether salary= 80000.

2. Use the index on salary to find all records pertaining to instructors with
salary of $80,000. Examine each such record to see whether the department
name is “Finance”.

3. Use the index on dept name to find pointers to all records pertaining to the
Finance department. Also, use the index on salary to find pointers to all
records pertaining to instructors with a salary of $80,000. Take the intersec-
tion of these two sets of pointers. Those pointers that are in the intersection
point to records pertaining to instructors of the Finance department and
with salary of $80,000.

The third strategy is the only one of the three that takes advantage of the existence
of multiple indices. However, even this strategy may be a poor choice if all of the
following hold:

• There are many records pertaining to the Finance department.

• There are many records pertaining to instructors with a salary of $80,000.

• There are only a few records pertaining to both the Finance department and
instructors with a salary of $80,000.

If these conditions hold, we must scan a large number of pointers to produce a
small result. An index structure called a “bitmap index” can in some cases greatly
speed up the intersection operation used in the third strategy. Bitmap indices are
outlined in Section 11.9.
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11.5.2 Indices on Multiple Keys

An alternative strategy for this case is to create and use an index on a composite
search key (dept name, salary)—that is, the search key consisting of the department
name concatenated with the instructor salary.

We can use an ordered (B+-tree) index on the above composite search key to
answer efficiently queries of the form

select ID
from instructor
where dept name = ’Finance’ and salary= 80000;

Queries such as the following query, which specifies an equality condition on the
first attribute of the search key (dept name) and a range on the second attribute of
the search key (salary), can also be handled efficiently since they correspond to a
range query on the search attribute.

select ID
from instructor
where dept name = ’Finance’ and salary< 80000;

We can even use an ordered index on the search key (dept name, salary) to answer
the following query on only one attribute efficiently:

select ID
from instructor
where dept name = ’Finance’;

An equality condition dept name = “Finance” is equivalent to a range query on
the range with lower end (Finance, −∞) and upper end (Finance, +∞). Range
queries on just the dept name attribute can be handled in a similar manner.

The use of an ordered-index structure on a composite search key, however,
has a few shortcomings. As an illustration, consider the query

select ID
from instructor
where dept name < ’Finance’ and salary< 80000;

We can answer this query by using an ordered index on the search key (dept
name, salary): For each value of dept name that is less than “Finance” in alphabetic

order, the system locates records with a salary value of 80000. However, each
record is likely to be in a different disk block, because of the ordering of records
in the file, leading to many I/O operations.

The difference between this query and the previous two queries is that the
condition on the first attribute (dept name) is a comparison condition, rather than
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an equality condition. The condition does not correspond to a range query on the
search key.

To speed the processing of general composite search-key queries (which can
involve one or more comparison operations), we can use several special struc-
tures. We shall consider bitmap indices in Section 11.9. There is another structure,
called the R-tree, that can be used for this purpose. The R-tree is an extension of
the B+-tree to handle indexing on multiple dimensions. Since the R-tree is used
primarily with geographical data types, we describe the structure in Chapter 25.

11.5.3 Covering Indices

Covering indices are indices that store the values of some attributes (other than
the search-key attributes) along with the pointers to the record. Storing extra
attribute values is useful with secondary indices, since they allow us to answer
some queries using just the index, without even looking up the actual records.

For example, suppose that we have a nonclustering index on the ID attribute
of the instructor relation. If we store the value of the salary attribute along with the
record pointer, we can answer queries that require the salary (but not the other
attribute, dept name) without accessing the instructor record.

The same effect could be obtained by creating an index on the search key (ID,
salary), but a covering index reduces the size of the search key, allowing a larger
fanout in the nonleaf nodes, and potentially reducing the height of the index.

11.6 Static Hashing

One disadvantage of sequential file organization is that we must access an index
structure to locate data, or must use binary search, and that results in more I/O
operations. File organizations based on the technique of hashing allow us to
avoid accessing an index structure. Hashing also provides a way of constructing
indices. We study file organizations and indices based on hashing in the following
sections.

In our description of hashing, we shall use the term bucket to denote a unit
of storage that can store one or more records. A bucket is typically a disk block,
but could be chosen to be smaller or larger than a disk block.

Formally, let K denote the set of all search-key values, and let B denote the set
of all bucket addresses. A hash function h is a function from K to B. Let h denote
a hash function.

To insert a record with search key Ki , we compute h(Ki ), which gives the
address of the bucket for that record. Assume for now that there is space in the
bucket to store the record. Then, the record is stored in that bucket.

To perform a lookup on a search-key value Ki , we simply compute h(Ki ),
then search the bucket with that address. Suppose that two search keys, K5 and
K7, have the same hash value; that is, h(K5) = h(K7). If we perform a lookup
on K5, the bucket h(K5) contains records with search-key values K5 and records
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with search-key values K7. Thus, we have to check the search-key value of every
record in the bucket to verify that the record is one that we want.

Deletion is equally straightforward. If the search-key value of the record to
be deleted is Ki , we compute h(Ki ), then search the corresponding bucket for that
record, and delete the record from the bucket.

Hashing can be used for two different purposes. In a hash file organization,
we obtain the address of the disk block containing a desired record directly by
computing a function on the search-key value of the record. In a hash index
organization we organize the search keys, with their associated pointers, into a
hash file structure.

11.6.1 Hash Functions

The worst possible hash function maps all search-key values to the same bucket.
Such a function is undesirable because all the records have to be kept in the same
bucket. A lookup has to examine every such record to find the one desired. An
ideal hash function distributes the stored keys uniformly across all the buckets,
so that every bucket has the same number of records.

Since we do not know at design time precisely which search-key values will
be stored in the file, we want to choose a hash function that assigns search-key
values to buckets in such a way that the distribution has these qualities:

• The distribution is uniform. That is, the hash function assigns each bucket
the same number of search-key values from the set of all possible search-key
values.

• The distribution is random. That is, in the average case, each bucket will have
nearly the same number of values assigned to it, regardless of the actual
distribution of search-key values. More precisely, the hash value will not be
correlated to any externally visible ordering on the search-key values, such
as alphabetic ordering or ordering by the length of the search keys; the hash
function will appear to be random.

As an illustration of these principles, let us choose a hash function for the
instructor file using the search key dept name. The hash function that we choose
must have the desirable properties not only on the example instructor file that we
have been using, but also on an instructor file of realistic size for a large university
with many departments.

Assume that we decide to have 26 buckets, and we define a hash function
that maps names beginning with the ith letter of the alphabet to the ith bucket.
This hash function has the virtue of simplicity, but it fails to provide a uniform
distribution, since we expect more names to begin with such letters as B and R
than Q and X, for example.

Now suppose that we want a hash function on the search key salary. Suppose
that the minimum salary is $30,000 and the maximum salary is $130,000, and
we use a hash function that divides the values into 10 ranges, $30,000–$40,000,
$40,001–$50,000 and so on. The distribution of search-key values is uniform (since
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Figure 11.23 Hash organization of instructor file, with dept name as the key.

each bucket has the same number of different salary values), but is not random.
Records with salaries between $60,001 and $70,000 are far more common than are
records with salaries between $30,001 and $40,000. As a result, the distribution
of records is not uniform—some buckets receive more records than others do. If
the function has a random distribution, even if there are such correlations in the
search keys, the randomness of the distribution will make it very likely that all
buckets will have roughly the same number of records, as long as each search
key occurs in only a small fraction of the records. (If a single search key occurs
in a large fraction of the records, the bucket containing it is likely to have more
records than other buckets, regardless of the hash function used.)

Typical hash functions perform computation on the internal binary machine
representation of characters in the search key. A simple hash function of this type
first computes the sum of the binary representations of the characters of a key,
then returns the sum modulo the number of buckets.

Figure 11.23 shows the application of such a scheme, with eight buckets,
to the instructor file, under the assumption that the ith letter in the alphabet is
represented by the integer i.

The following hash function is a better alternative for hashing strings. Let s
be a string of length n, and let s[i] denote the ith byte of the string. The hash
function is defined as:

s[0] ∗ 31(n−1) + s[1] ∗ 31(n−2) + · · · + s[n − 1]
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The function can be implemented efficiently by setting the hash result initially
to 0, and iterating from the first to the last character of the string, at each step
multiplying the hash value by 31 and then adding the next character (treated as
an integer). The above expression would appear to result in a very large number,
but it is actually computed with fixed-size positive integers; the result of each
multiplication and addition is thus automatically computed modulo the largest
possible integer value plus 1. The result of the above function modulo the number
of buckets can then be used for indexing.

Hash functions require careful design. A bad hash function may result in
lookup taking time proportional to the number of search keys in the file. A well-
designed function gives an average-case lookup time that is a (small) constant,
independent of the number of search keys in the file.

11.6.2 Handling of Bucket Overflows

So far, we have assumed that, when a record is inserted, the bucket to which it is
mapped has space to store the record. If the bucket does not have enough space,
a bucket overflow is said to occur. Bucket overflow can occur for several reasons:

• Insufficient buckets. The number of buckets, which we denote nB , must be
chosen such that nB > nr/ fr , where nr denotes the total number of records
that will be stored and fr denotes the number of records that will fit in a
bucket. This designation, of course, assumes that the total number of records
is known when the hash function is chosen.

• Skew. Some buckets are assigned more records than are others, so a bucket
may overflow even when other buckets still have space. This situation is
called bucket skew. Skew can occur for two reasons:

1. Multiple records may have the same search key.

2. The chosen hash function may result in nonuniform distribution of
search keys.

So that the probability of bucket overflow is reduced, the number of buckets
is chosen to be (nr/ fr ) ∗ (1 + d), where d is a fudge factor, typically around 0.2.
Some space is wasted: About 20 percent of the space in the buckets will be empty.
But the benefit is that the probability of overflow is reduced.

Despite allocation of a few more buckets than required, bucket overflow can
still occur. We handle bucket overflow by using overflow buckets. If a record
must be inserted into a bucket b, and b is already full, the system provides an
overflow bucket for b, and inserts the record into the overflow bucket. If the
overflow bucket is also full, the system provides another overflow bucket, and so
on. All the overflow buckets of a given bucket are chained together in a linked list,
as in Figure 11.24. Overflow handling using such a linked list is called overflow
chaining.

We must change the lookup algorithm slightly to handle overflow chaining.
As before, the system uses the hash function on the search key to identify a bucket
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Figure 11.24 Overflow chaining in a hash structure.

b. The system must examine all the records in bucket b to see whether they match
the search key, as before. In addition, if bucket b has overflow buckets, the system
must examine the records in all the overflow buckets also.

The form of hash structure that we have just described is sometimes referred
to as closed hashing. Under an alternative approach, called open hashing, the
set of buckets is fixed, and there are no overflow chains. Instead, if a bucket is
full, the system inserts records in some other bucket in the initial set of buckets B.
One policy is to use the next bucket (in cyclic order) that has space; this policy is
called linear probing. Other policies, such as computing further hash functions, are
also used. Open hashing has been used to construct symbol tables for compilers
and assemblers, but closed hashing is preferable for database systems. The rea-
son is that deletion under open hashing is troublesome. Usually, compilers and
assemblers perform only lookup and insertion operations on their symbol tables.
However, in a database system, it is important to be able to handle deletion as
well as insertion. Thus, open hashing is of only minor importance in database
implementation.

An important drawback to the form of hashing that we have described is
that we must choose the hash function when we implement the system, and it
cannot be changed easily thereafter if the file being indexed grows or shrinks.
Since the function h maps search-key values to a fixed set B of bucket addresses,
we waste space if B is made large to handle future growth of the file. If B is
too small, the buckets contain records of many different search-key values, and
bucket overflows can occur. As the file grows, performance suffers. We study
later, in Section 11.7, how the number of buckets and the hash function can be
changed dynamically.
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Figure 11.25 Hash index on search key ID of instructor file.

11.6.3 Hash Indices

Hashing can be used not only for file organization, but also for index-structure
creation. A hash index organizes the search keys, with their associated pointers,
into a hash file structure. We construct a hash index as follows. We apply a hash
function on a search key to identify a bucket, and store the key and its associated
pointers in the bucket (or in overflow buckets). Figure 11.25 shows a secondary
hash index on the instructor file, for the search key ID. The hash function in the
figure computes the sum of the digits of the ID modulo 8. The hash index has
eight buckets, each of size 2 (realistic indices would, of course, have much larger
bucket sizes). One of the buckets has three keys mapped to it, so it has an overflow
bucket. In this example, ID is a primary key for instructor, so each search key has
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only one associated pointer. In general, multiple pointers can be associated with
each key.

We use the term hash index to denote hash file structures as well as secondary
hash indices. Strictly speaking, hash indices are only secondary index structures.
A hash index is never needed as a clustering index structure, since, if a file itself
is organized by hashing, there is no need for a separate hash index structure on it.
However, since hash file organization provides the same direct access to records
that indexing provides, we pretend that a file organized by hashing also has a
clustering hash index on it.

11.7 Dynamic Hashing

As we have seen, the need to fix the set B of bucket addresses presents a serious
problem with the static hashing technique of the previous section. Most databases
grow larger over time. If we are to use static hashing for such a database, we have
three classes of options:

1. Choose a hash function based on the current file size. This option will result
in performance degradation as the database grows.

2. Choose a hash function based on the anticipated size of the file at some point
in the future. Although performance degradation is avoided, a significant
amount of space may be wasted initially.

3. Periodically reorganize the hash structure in response to file growth. Such
a reorganization involves choosing a new hash function, recomputing the
hash function on every record in the file, and generating new bucket as-
signments. This reorganization is a massive, time-consuming operation.
Furthermore, it is necessary to forbid access to the file during reorganiza-
tion.

Several dynamic hashing techniques allow the hash function to be modified
dynamically to accommodate the growth or shrinkage of the database. In this
section we describe one form of dynamic hashing, called extendable hashing.
The bibliographical notes provide references to other forms of dynamic hashing.

11.7.1 Data Structure

Extendable hashing copes with changes in database size by splitting and coalesc-
ing buckets as the database grows and shrinks. As a result, space efficiency is
retained. Moreover, since the reorganization is performed on only one bucket at
a time, the resulting performance overhead is acceptably low.

With extendable hashing, we choose a hash function h with the desirable
properties of uniformity and randomness. However, this hash function generates
values over a relatively large range—namely, b-bit binary integers. A typical
value for b is 32.
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Figure 11.26 General extendable hash structure.

We do not create a bucket for each hash value. Indeed, 232 is over 4 billion,
and that many buckets is unreasonable for all but the largest databases. Instead,
we create buckets on demand, as records are inserted into the file. We do not
use the entire b bits of the hash value initially. At any point, we use i bits, where
0 ≤ i ≤ b. These i bits are used as an offset into an additional table of bucket
addresses. The value of i grows and shrinks with the size of the database.

Figure 11.26 shows a general extendable hash structure. The i appearing above
the bucket address table in the figure indicates that i bits of the hash value h(K )
are required to determine the correct bucket for K. This number will, of course,
change as the file grows. Although i bits are required to find the correct entry
in the bucket address table, several consecutive table entries may point to the
same bucket. All such entries will have a common hash prefix, but the length of
this prefix may be less than i. Therefore, we associate with each bucket an integer
giving the length of the common hash prefix. In Figure 11.26 the integer associated
with bucket j is shown as i j . The number of bucket-address-table entries that point
to bucket j is

2(i − i j )

11.7.2 Queries and Updates

We now see how to perform lookup, insertion, and deletion on an extendable
hash structure.
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To locate the bucket containing search-key value Kl , the system takes the first
i high-order bits of h(Kl), looks at the corresponding table entry for this bit string,
and follows the bucket pointer in the table entry.

To insert a record with search-key value Kl , the system follows the same
procedure for lookup as before, ending up in some bucket—say, j. If there is room
in the bucket, the system inserts the record in the bucket. If, on the other hand,
the bucket is full, it must split the bucket and redistribute the current records,
plus the new one. To split the bucket, the system must first determine from the
hash value whether it needs to increase the number of bits that it uses.

• If i = i j , only one entry in the bucket address table points to bucket j.
Therefore, the system needs to increase the size of the bucket address table so
that it can include pointers to the two buckets that result from splitting bucket
j. It does so by considering an additional bit of the hash value. It increments
the value of i by 1, thus doubling the size of the bucket address table. It
replaces each entry by two entries, both of which contain the same pointer
as the original entry. Now two entries in the bucket address table point to
bucket j. The system allocates a new bucket (bucket z), and sets the second
entry to point to the new bucket. It sets i j and iz to i. Next, it rehashes each
record in bucket j and, depending on the first i bits (remember the system has
added 1 to i), either keeps it in bucket j or allocates it to the newly created
bucket.

The system now reattempts the insertion of the new record. Usually, the
attempt will succeed. However, if all the records in bucket j, as well as the new
record, have the same hash-value prefix, it will be necessary to split a bucket
again, since all the records in bucket j and the new record are assigned to
the same bucket. If the hash function has been chosen carefully, it is unlikely
that a single insertion will require that a bucket be split more than once,
unless there are a large number of records with the same search key. If all the
records in bucket j have the same search-key value, no amount of splitting
will help. In such cases, overflow buckets are used to store the records, as in
static hashing.

• If i > i j , then more than one entry in the bucket address table points to
bucket j. Thus, the system can split bucket j without increasing the size of
the bucket address table. Observe that all the entries that point to bucket j
correspond to hash prefixes that have the same value on the leftmost i j bits.
The system allocates a new bucket (bucket z), and sets i j and iz to the value
that results from adding 1 to the original i j value. Next, the system needs
to adjust the entries in the bucket address table that previously pointed to
bucket j. (Note that with the new value for i j , not all the entries correspond
to hash prefixes that have the same value on the leftmost i j bits.) The system
leaves the first half of the entries as they were (pointing to bucket j), and
sets all the remaining entries to point to the newly created bucket (bucket z).
Next, as in the previous case, the system rehashes each record in bucket j,
and allocates it either to bucket j or to the newly created bucket z.
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dept_name h(dept_name)

Biology 0010 1101 1111 1011 0010 1100 0011 0000
Comp. Sci. 1111 0001 0010 0100 1001 0011 0110 1101
Elec. Eng. 0100 0011 1010 1100 1100 0110 1101 1111
Finance 1010 0011 1010 0000 1100 0110 1001 1111
History 1100 0111 1110 1101 1011 1111 0011 1010
Music 0011 0101 1010 0110 1100 1001 1110 1011
Physics 1001 1000 0011 1111 1001 1100 0000 0001

Figure 11.27 Hash function for dept name.

The system then reattempts the insert. In the unlikely case that it again
fails, it applies one of the two cases, i = i j or i > i j , as appropriate.

Note that, in both cases, the system needs to recompute the hash function on only
the records in bucket j.

To delete a record with search-key value Kl , the system follows the same
procedure for lookup as before, ending up in some bucket—say, j. It removes
both the search key from the bucket and the record from the file. The bucket,
too, is removed if it becomes empty. Note that, at this point, several buckets can
be coalesced, and the size of the bucket address table can be cut in half. The
procedure for deciding on which buckets can be coalesced and how to coalesce
buckets is left to you to do as an exercise. The conditions under which the bucket
address table can be reduced in size are also left to you as an exercise. Unlike
coalescing of buckets, changing the size of the bucket address table is a rather
expensive operation if the table is large. Therefore it may be worthwhile to reduce
the bucket-address-table size only if the number of buckets reduces greatly.

To illustrate the operation of insertion, we use the instructor file in Figure 11.1
and assume that the search key is dept name with the 32-bit hash values as appear
in Figure 11.27. Assume that, initially, the file is empty, as in Figure 11.28. We
insert the records one by one. To illustrate all the features of extendable hashing
in a small structure, we shall make the unrealistic assumption that a bucket can
hold only two records.

0 0

bucket 1bucket address table

hash prefix

Figure 11.28 Initial extendable hash structure.
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1 1

bucket address table

hash prefix
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10101
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Finance

Figure 11.29 Hash structure after three insertions.

We insert the record (10101, Srinivasan, Comp. Sci., 65000). The bucket address
table contains a pointer to the one bucket, and the system inserts the record. Next,
we insert the record (12121, Wu, Finance, 90000). The system also places this
record in the one bucket of our structure.

When we attempt to insert the next record (15151, Mozart, Music, 40000), we
find that the bucket is full. Since i = i0, we need to increase the number of bits
that we use from the hash value. We now use 1 bit, allowing us 21 = 2 buckets.
This increase in the number of bits necessitates doubling the size of the bucket
address table to two entries. The system splits the bucket, placing in the new
bucket those records whose search key has a hash value beginning with 1, and
leaving in the original bucket the other records. Figure 11.29 shows the state of
our structure after the split.

Next, we insert (22222, Einstein, Physics, 95000). Since the first bit of h(Physics)
is 1, we must insert this record into the bucket pointed to by the “1” entry in the

2 1

2

2

bucket address table

hash prefix

15151 Music 40000Mozart

12121 Finance 90000Wu

10101 Comp. Sci. 65000Srinivasan

22222 Einstein Physics 95000

Figure 11.30 Hash structure after four insertions.
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Figure 11.31 Hash structure after six insertions.
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Figure 11.32 Hash structure after seven insertions.
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bucket address table. Once again, we find the bucket full and i = i1. We increase
the number of bits that we use from the hash to 2. This increase in the number of
bits necessitates doubling the size of the bucket address table to four entries, as
in Figure 11.30. Since the bucket of Figure 11.29 for hash prefix 0 was not split,
the two entries of the bucket address table of 00 and 01 both point to this bucket.

For each record in the bucket of Figure 11.29 for hash prefix 1 (the bucket
being split), the system examines the first 2 bits of the hash value to determine
which bucket of the new structure should hold it.

Next, we insert (32343, El Said, History, 60000), which goes in the same bucket
as Comp. Sci. The following insertion of (33456, Gold, Physics, 87000) results in a
bucket overflow, leading to an increase in the number of bits, and a doubling of
the size of the bucket address table (see Figure 11.31).

The insertion of (45565, Katz, Comp. Sci., 75000) leads to another bucket over-
flow; this overflow, however, can be handled without increasing the number of
bits, since the bucket in question has two pointers pointing to it (see Figure 11.32).

Next, we insert the records of “Califieri”, “Singh”, and “Crick” without any
bucket overflow. The insertion of the third Comp. Sci. record (83821, Brandt,
Comp. Sci., 92000), however, leads to another overflow. This overflow cannot
be handled by increasing the number of bits, since there are three records with
exactly the same hash value. Hence the system uses an overflow bucket, as in

3
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3

3

22222
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Figure 11.33 Hash structure after eleven insertions.
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Figure 11.34 Extendable hash structure for the instructor file.

Figure 11.33. We continue in this manner until we have inserted all the instructor
records of Figure 11.1. The resulting structure appears in Figure 11.34.

11.7.3 Static Hashing versus Dynamic Hashing

We now examine the advantages and disadvantages of extendable hashing, com-
pared with static hashing. The main advantage of extendable hashing is that
performance does not degrade as the file grows. Furthermore, there is minimal
space overhead. Although the bucket address table incurs additional overhead, it
contains one pointer for each hash value for the current prefix length. This table
is thus small. The main space saving of extendable hashing over other forms of
hashing is that no buckets need to be reserved for future growth; rather, buckets
can be allocated dynamically.

A disadvantage of extendable hashing is that lookup involves an additional
level of indirection, since the system must access the bucket address table before
accessing the bucket itself. This extra reference has only a minor effect on per-
formance. Although the hash structures that we discussed in Section 11.6 do not
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have this extra level of indirection, they lose their minor performance advantage
as they become full.

Thus, extendable hashing appears to be a highly attractive technique, pro-
vided that we are willing to accept the added complexity involved in its im-
plementation. The bibliographical notes reference more detailed descriptions of
extendable hashing implementation.

The bibliographical notes also provide references to another form of dynamic
hashing called linear hashing, which avoids the extra level of indirection associ-
ated with extendable hashing, at the possible cost of more overflow buckets.

11.8 Comparison of Ordered Indexing and Hashing

We have seen several ordered-indexing schemes and several hashing schemes.
We can organize files of records as ordered files by using index-sequential organi-
zation or B+-tree organizations. Alternatively, we can organize the files by using
hashing. Finally, we can organize them as heap files, where the records are not
ordered in any particular way.

Each scheme has advantages in certain situations. A database-system imple-
mentor could provide many schemes, leaving the final decision of which schemes
to use to the database designer. However, such an approach requires the imple-
mentor to write more code, adding both to the cost of the system and to the
space that the system occupies. Most database systems support B+-trees and may
additionally support some form of hash file organization or hash indices.

To make a choice of file organization and indexing techniques for a relation,
the implementor or the database designer must consider the following issues:

• Is the cost of periodic reorganization of the index or hash organization ac-
ceptable?

• What is the relative frequency of insertion and deletion?

• Is it desirable to optimize average access time at the expense of increasing
the worst-case access time?

• What types of queries are users likely to pose?

We have already examined the first three of these issues, first in our review of
the relative merits of specific indexing techniques, and again in our discussion of
hashing techniques. The fourth issue, the expected type of query, is critical to the
choice of ordered indexing or hashing.

If most queries are of the form:

select A1, A2, . . . , An
from r
where Ai = c;
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then, to process this query, the system will perform a lookup on an ordered index
or a hash structure for attribute Ai , for value c. For queries of this form, a hashing
scheme is preferable. An ordered-index lookup requires time proportional to
the log of the number of values in r for Ai . In a hash structure, however, the
average lookup time is a constant independent of the size of the database. The
only advantage to an index over a hash structure for this form of query is that
the worst-case lookup time is proportional to the log of the number of values in r
for Ai . By contrast, for hashing, the worst-case lookup time is proportional to the
number of values in r for Ai . However, the worst-case lookup time is unlikely to
occur with hashing, and hashing is preferable in this case.

Ordered-index techniques are preferable to hashing in cases where the query
specifies a range of values. Such a query takes the following form:

select A1, A2, ..., An
from r
where Ai ≤ c2 and Ai ≥ c1;

In other words, the preceding query finds all the records with Ai values between
c1 and c2.

Let us consider how we process this query using an ordered index. First, we
perform a lookup on value c1. Once we have found the bucket for value c1, we
follow the pointer chain in the index to read the next bucket in order, and we
continue in this manner until we reach c2.

If, instead of an ordered index, we have a hash structure, we can perform
a lookup on c1 and can locate the corresponding bucket—but it is not easy, in
general, to determine the next bucket that must be examined. The difficulty arises
because a good hash function assigns values randomly to buckets. Thus, there is
no simple notion of “next bucket in sorted order.” The reason we cannot chain
buckets together in sorted order on Ai is that each bucket is assigned many search-
key values. Since values are scattered randomly by the hash function, the values
in the specified range are likely to be scattered across many or all of the buckets.
Therefore, we have to read all the buckets to find the required search keys.

Usually the designer will choose ordered indexing unless it is known in
advance that range queries will be infrequent, in which case hashing would be
chosen. Hash organizations are particularly useful for temporary files created
during query processing, if lookups based on a key value are required, but no
range queries will be performed.

11.9 Bitmap Indices

Bitmap indices are a specialized type of index designed for easy querying on
multiple keys, although each bitmap index is built on a single key.

For bitmap indices to be used, records in a relation must be numbered se-
quentially, starting from, say, 0. Given a number n, it must be easy to retrieve
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the record numbered n. This is particularly easy to achieve if records are fixed in
size, and allocated on consecutive blocks of a file. The record number can then
be translated easily into a block number and a number that identifies the record
within the block.

Consider a relation r , with an attribute A that can take on only one of a
small number (for example, 2 to 20) values. For instance, a relation instructor info
may have an attribute gender, which can take only values m (male) or f (female).
Another example would be an attribute income level, where income has been
broken up into 5 levels: L1: $0−9999, L2: $10,000−19,999, L3: 20,000−39,999, L4:
40,000−74,999, and L5: 75,000−∞. Here, the raw data can take on many values,
but a data analyst has split the values into a small number of ranges to simplify
analysis of the data.

11.9.1 Bitmap Index Structure

A bitmap is simply an array of bits. In its simplest form, a bitmap index on the
attribute A of relation r consists of one bitmap for each value that A can take.
Each bitmap has as many bits as the number of records in the relation. The ith bit
of the bitmap for value v j is set to 1 if the record numbered i has the value v j for
attribute A. All other bits of the bitmap are set to 0.

In our example, there is one bitmap for the value m and one for f. The ith bit
of the bitmap for m is set to 1 if the gender value of the record numbered i is m.
All other bits of the bitmap for m are set to 0. Similarly, the bitmap for f has the
value 1 for bits corresponding to records with the value f for the gender attribute;
all other bits have the value 0. Figure 11.35 shows an example of bitmap indices
on a relation instructor info.

We now consider when bitmaps are useful. The simplest way of retrieving
all records with value m (or value f) would be to simply read all records of the
relation and select those records with value m (or f, respectively). The bitmap
index doesn’t really help to speed up such a selection. While it would allow us to

ID income_levelgender

76766

22222

12121

15151

58583

m

m

f

f

f

L1

L1

L2

L4

L3

record
number

1

0

2

3

4

m

f

Bitmaps for gender

10010

01101

Bitmaps for
income_level

L1

L2

L3

L4

L5

10100

01000

00001

00010

00000

Figure 11.35 Bitmap indices on relation instructor info.
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read only those records for a specific gender, it is likely that every disk block for
the file would have to be read anyway.

In fact, bitmap indices are useful for selections mainly when there are selec-
tions on multiple keys. Suppose we create a bitmap index on attribute income
level, which we described earlier, in addition to the bitmap index on gender.

Consider now a query that selects women with income in the range $10,000 to
$19, 999. This query can be expressed as

select *
from r
where gender = ’f’ and income level = ’L2’;

To evaluate this selection, we fetch the bitmaps for gender value f and the bitmap
for income level value L2, and perform an intersection (logical-and) of the two
bitmaps. In other words, we compute a new bitmap where bit i has value 1 if
the ith bit of the two bitmaps are both 1, and has a value 0 otherwise. In the
example in Figure 11.35, the intersection of the bitmap for gender = f (01101) and
the bitmap for income level = L2 (01000) gives the bitmap 01000.

Since the first attribute can take two values, and the second can take five
values, we would expect only about 1 in 10 records, on an average, to satisfy
a combined condition on the two attributes. If there are further conditions, the
fraction of records satisfying all the conditions is likely to be quite small. The
system can then compute the query result by finding all bits with value 1 in the
intersection bitmap and retrieving the corresponding records. If the fraction is
large, scanning the entire relation would remain the cheaper alternative.

Another important use of bitmaps is to count the number of tuples satisfying
a given selection. Such queries are important for data analysis. For instance, if
we wish to find out how many women have an income level L2, we compute the
intersection of the two bitmaps and then count the number of bits that are 1 in
the intersection bitmap. We can thus get the desired result from the bitmap index,
without even accessing the relation.

Bitmap indices are generally quite small compared to the actual relation size.
Records are typically at least tens of bytes to hundreds of bytes long, whereas a
single bit represents the record in a bitmap. Thus the space occupied by a single
bitmap is usually less than 1 percent of the space occupied by the relation. For
instance, if the record size for a given relation is 100 bytes, then the space occupied
by a single bitmap would be 1

8 of 1 percent of the space occupied by the relation.
If an attribute A of the relation can take on only one of eight values, a bitmap
index on attribute A would consist of eight bitmaps, which together occupy only
1 percent of the size of the relation.

Deletion of records creates gaps in the sequence of records, since shifting
records (or record numbers) to fill gaps would be extremely expensive. To recog-
nize deleted records, we can store an existence bitmap, in which bit i is 0 if record
i does not exist and 1 otherwise. We shall see the need for existence bitmaps in
Section 11.9.2. Insertion of records should not affect the sequence numbering of
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other records. Therefore, we can do insertion either by appending records to the
end of the file or by replacing deleted records.

11.9.2 Efficient Implementation of Bitmap Operations

We can compute the intersection of two bitmaps easily by using a for loop: the ith
iteration of the loop computes the and of the ith bits of the two bitmaps. We can
speed up computation of the intersection greatly by using bit-wise and instruc-
tions supported by most computer instruction sets. A word usually consists of 32
or 64 bits, depending on the architecture of the computer. A bit-wise and instruc-
tion takes two words as input and outputs a word where each bit is the logical
and of the bits in corresponding positions of the input words. What is important
to note is that a single bit-wise and instruction can compute the intersection of 32
or 64 bits at once.

If a relation had 1 million records, each bitmap would contain 1 million bits,
or equivalently 128 kilobytes. Only 31,250 instructions are needed to compute the
intersection of two bitmaps for our relation, assuming a 32-bit word length. Thus,
computing bitmap intersections is an extremely fast operation.

Just as bitmap intersection is useful for computing the and of two conditions,
bitmap union is useful for computing the or of two conditions. The procedure for
bitmap union is exactly the same as for intersection, except we use bit-wise or
instructions instead of bit-wise and instructions.

The complement operation can be used to compute a predicate involving the
negation of a condition, such as not (income-level = L1). The complement of a
bitmap is generated by complementing every bit of the bitmap (the complement
of 1 is 0 and the complement of 0 is 1). It may appear that not (income level = L1) can
be implemented by just computing the complement of the bitmap for income level
L1. If some records have been deleted, however, just computing the complement
of a bitmap is not sufficient. Bits corresponding to such records would be 0 in the
original bitmap, but would become 1 in the complement, although the records
don’t exist. A similar problem also arises when the value of an attribute is null.
For instance, if the value of income level is null, the bit would be 0 in the original
bitmap for value L1, and 1 in the complement bitmap.

To make sure that the bits corresponding to deleted records are set to 0
in the result, the complement bitmap must be intersected with the existence
bitmap to turn off the bits for deleted records. Similarly, to handle null values, the
complement bitmap must also be intersected with the complement of the bitmap
for the value null.2

Counting the number of bits that are 1 in a bitmap can be done quickly by a
clever technique. We can maintain an array with 256 entries, where the ith entry
stores the number of bits that are 1 in the binary representation of i . Set the total
count initially to 0. We take each byte of the bitmap, use it to index into this array,
and add the stored count to the total count. The number of addition operations is

2Handling predicates such as is unknown would cause further complications, which would in general require use of an
extra bitmap to track which operation results are unknown.
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1
8 of the number of tuples, and thus the counting process is very efficient. A large
array (using 216 = 65,536 entries), indexed by pairs of bytes, would give even
higher speedup, but at a higher storage cost.

11.9.3 Bitmaps and B+-Trees

Bitmaps can be combined with regular B+-tree indices for relations where a few
attribute values are extremely common, and other values also occur, but much
less frequently. In a B+-tree index leaf, for each value we would normally maintain
a list of all records with that value for the indexed attribute. Each element of the
list would be a record identifier, consisting of at least 32 bits, and usually more.
For a value that occurs in many records, we store a bitmap instead of a list of
records.

Suppose a particular value vi occurs in 1
16 of the records of a relation. Let N

be the number of records in the relation, and assume that a record has a 64-bit
number identifying it. The bitmap needs only 1 bit per record, or N bits in total.
In contrast, the list representation requires 64 bits per record where the value
occurs, or 64 ∗ N/16 = 4N bits. Thus, a bitmap is preferable for representing
the list of records for value vi . In our example (with a 64-bit record identifier),
if fewer than 1 in 64 records have a particular value, the list representation is
preferable for identifying records with that value, since it uses fewer bits than the
bitmap representation. If more than 1 in 64 records have that value, the bitmap
representation is preferable.

Thus, bitmaps can be used as a compressed storage mechanism at the leaf
nodes of B+-trees for those values that occur very frequently.

11.10 Index Definition in SQL

The SQL standard does not provide any way for the database user or administra-
tor to control what indices are created and maintained in the database system.
Indices are not required for correctness, since they are redundant data structures.
However, indices are important for efficient processing of transactions, includ-
ing both update transactions and queries. Indices are also important for efficient
enforcement of integrity constraints.

In principle, a database system can decide automatically what indices to
create. However, because of the space cost of indices, as well as the effect of
indices on update processing, it is not easy to automatically make the right choices
about what indices to maintain. Therefore, most SQL implementations provide
the programmer control over creation and removal of indices via data-definition-
language commands.

We illustrate the syntax of these commands next. Although the syntax that
we show is widely used and supported by many database systems, it is not part
of the SQL standard. The SQL standard does not support control of the physical
database schema; it restricts itself to the logical database schema.

We create an index with the create index command, which takes the form:
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create index <index-name> on <relation-name> (<attribute-list>);

The attribute-list is the list of attributes of the relations that form the search key
for the index.

To define an index named dept index on the instructor relation with dept name
as the search key, we write:

create index dept index on instructor (dept name);

If we wish to declare that the search key is a candidate key, we add the
attribute unique to the index definition. Thus, the command:

create unique index dept index on instructor (dept name);

declares dept name to be a candidate key for instructor (which is probably not what
we actually would want for our university database). If, at the time we enter the
create unique index command, dept name is not a candidate key, the system will
display an error message, and the attempt to create the index will fail. If the
index-creation attempt succeeds, any subsequent attempt to insert a tuple that
violates the key declaration will fail. Note that the unique feature is redundant if
the database system supports the unique declaration of the SQL standard.

Many database systems also provide a way to specify the type of index to
be used (such as B+-tree or hashing). Some database systems also permit one of
the indices on a relation to be declared to be clustered; the system then stores the
relation sorted by the search-key of the clustered index.

The index name we specified for an index is required to drop an index. The
drop index command takes the form:

drop index <index-name>;

11.11 Summary

• Many queries reference only a small proportion of the records in a file. To
reduce the overhead in searching for these records, we can construct indices
for the files that store the database.

• Index-sequential files are one of the oldest index schemes used in database
systems. To permit fast retrieval of records in search-key order, records are
stored sequentially, and out-of-order records are chained together. To allow
fast random access, we use an index structure.

• There are two types of indices that we can use: dense indices and sparse
indices. Dense indices contain entries for every search-key value, whereas
sparse indices contain entries only for some search-key values.
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• If the sort order of a search key matches the sort order of a relation, an index
on the search key is called a clustering index. The other indices are called
nonclustering or secondary indices. Secondary indices improve the performance
of queries that use search keys other than the search key of the clustering
index. However, they impose an overhead on modification of the database.

• The primary disadvantage of the index-sequential file organization is that
performance degrades as the file grows. To overcome this deficiency, we can
use a B+-tree index.

• A B+-tree index takes the form of a balanced tree, in which every path from
the root of the tree to a leaf of the tree is of the same length. The height of
a B+-tree is proportional to the logarithm to the base N of the number of
records in the relation, where each nonleaf node stores N pointers; the value
of N is often around 50 or 100. B+-trees are much shorter than other balanced
binary-tree structures such as AVL trees, and therefore require fewer disk
accesses to locate records.

• Lookup on B+-trees is straightforward and efficient. Insertion and deletion,
however, are somewhat more complicated, but still efficient. The number of
operations required for lookup, insertion, and deletion on B+-trees is propor-
tional to the logarithm to the base N of the number of records in the relation,
where each nonleaf node stores N pointers.

• We can use B+-trees for indexing a file containing records, as well as to
organize records into a file.

• B-tree indices are similar to B+-tree indices. The primary advantage of a B-tree
is that the B-tree eliminates the redundant storage of search-key values. The
major disadvantages are overall complexity and reduced fanout for a given
node size. System designers almost universally prefer B+-tree indices over
B-tree indices in practice.

• Sequential file organizations require an index structure to locate data. File
organizations based on hashing, by contrast, allow us to find the address of
a data item directly by computing a function on the search-key value of the
desired record. Since we do not know at design time precisely which search-
key values will be stored in the file, a good hash function to choose is one
that assigns search-key values to buckets such that the distribution is both
uniform and random.

• Static hashing uses hash functions in which the set of bucket addresses is
fixed. Such hash functions cannot easily accommodate databases that grow
significantly larger over time. There are several dynamic hashing techniques that
allow the hash function to be modified. One example is extendable hashing,
which copes with changes in database size by splitting and coalescing buckets
as the database grows and shrinks.
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• We can also use hashing to create secondary indices; such indices are called
hash indices. For notational convenience, we assume hash file organizations
have an implicit hash index on the search key used for hashing.

• Ordered indices such as B+-trees and hash indices can be used for selec-
tions based on equality conditions involving single attributes. When multi-
ple attributes are involved in a selection condition, we can intersect record
identifiers retrieved from multiple indices.

• Bitmap indices provide a very compact representation for indexing attributes
with very few distinct values. Intersection operations are extremely fast on
bitmaps, making them ideal for supporting queries on multiple attributes.

Review Terms

• Access types
• Access time
• Insertion time
• Deletion time
• Space overhead
• Ordered index
• Clustering index
• Primary index
• Nonclustering index
• Secondary index
• Index-sequential file
• Index entry/record
• Dense index
• Sparse index
• Multilevel index
• Composite key
• Sequential scan
• B+-tree index
• Leaf node
• Nonleaf node
• Balanced tree
• Range query
• Node split
• Node coalesce

• Nonunique search key
• B+-tree file organization
• Bulk load
• Bottom-up B+-tree construction
• B-tree index
• Static hashing
• Hash file organization
• Hash index
• Bucket
• Hash function
• Bucket overflow
• Skew
• Closed hashing
• Dynamic hashing
• Extendable hashing
• Multiple-key access
• Indices on multiple keys
• Bitmap index
• Bitmap operations

◦ Intersection

◦ Union

◦ Complement

◦ Existence bitmap
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Practice Exercises

11.1 Indices speed query processing, but it is usually a bad idea to create
indices on every attribute, and every combinations of attributes, that is a
potential search keys. Explain why.

11.2 Is it possible in general to have two clustering indices on the same relation
for different search keys? Explain your answer.

11.3 Construct a B+-tree for the following set of key values:

(2, 3, 5, 7, 11, 17, 19, 23, 29, 31)

Assume that the tree is initially empty and values are added in ascending
order. Construct B+-trees for the cases where the number of pointers that
will fit in one node is as follows:

a. Four

b. Six

c. Eight

11.4 For each B+-tree of Practice Exercise 11.3, show the form of the tree after
each of the following series of operations:

a. Insert 9.

b. Insert 10.

c. Insert 8.

d. Delete 23.

e. Delete 19.

11.5 Consider the modified redistribution scheme for B+-trees described on
page 501. What is the expected height of the tree as a function of n?

11.6 Suppose that we are using extendable hashing on a file that contains
records with the following search-key values:

2, 3, 5, 7, 11, 17, 19, 23, 29, 31

Show the extendable hash structure for this file if the hash function is
h(x) = x mod 8 and buckets can hold three records.

11.7 Show how the extendable hash structure of Practice Exercise 11.6 changes
as the result of each of the following steps:

a. Delete 11.

b. Delete 31.
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c. Insert 1.

d. Insert 15.

11.8 Give pseudocode for a B+-tree function findIterator(), which is like the
function find(), except that it returns an iterator object, as described in
Section 11.3.2. Also give pseudocode for the iterator class, including the
variables in the iterator object, and the next() method.

11.9 Give pseudocode for deletion of entries from an extendable hash structure,
including details of when and how to coalesce buckets. Do not bother
about reducing the size of the bucket address table.

11.10 Suggest an efficient way to test if the bucket address table in extendable
hashing can be reduced in size, by storing an extra count with the bucket
address table. Give details of how the count should be maintained when
buckets are split, coalesced, or deleted. (Note: Reducing the size of the
bucket address table is an expensive operation, and subsequent inserts
may cause the table to grow again. Therefore, it is best not to reduce the
size as soon as it is possible to do so, but instead do it only if the number of
index entries becomes small compared to the bucket-address-table size.)

11.11 Consider the instructor relation shown in Figure 11.1.

a. Construct a bitmap index on the attribute salary, dividing salary
values into 4 ranges: below 50000, 50000 to below 60000, 60000 to
below 70000, and 70000 and above.

b. Consider a query that requests all instructors in the Finance depart-
ment with salary of 80000 or more. Outline the steps in answering
the query, and show the final and intermediate bitmaps constructed
to answer the query.

11.12 What would the occupancy of each leaf node of a B+-tree be, if index
entries are inserted in sorted order? Explain why.

11.13 Suppose you have a relation r with nr tuples on which a secondary B+-tree
is to be constructed.

a. Give a formula for the cost of building the B+-tree index by inserting
one record at a time. Assume each block will hold an average of f
entries, and that all levels of the tree above the leaf are in memory.

b. Assuming a random disk access takes 10 milliseconds, what is the
cost of index construction on a relation with 10 million records?

c. Write pseudocode for bottom-up construction of a B+-tree, which
was outlined in Section 11.4.4. You can assume that a function to
efficiently sort a large file is available.

11.14 Why might the leaf nodes of a B+-tree file organization lose sequentiality?
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a. Suggest how the file organization may be reorganized to restore
sequentiality.

b. An alternative to reorganization is to allocate leaf pages in units of
n blocks, for some reasonably large n. When the first leaf of a B+-
tree is allocated, only one block of an n-block unit is used, and the
remaining pages are free. If a page splits, and its n-block unit has a
free page, that space is used for the new page. If the n-block unit is
full, another n-block unit is allocated, and the first n/2 leaf pages are
placed in one n-block unit, and the remaining in the second n-block
unit. For simplicity, assume that there are no delete operations.
i. What is the worst case occupancy of allocated space, assuming

no delete operations, after the first n-block unit is full.
ii. Is it possible that leaf nodes allocated to an n-node block unit

are not consecutive, that is, is it possible that two leaf nodes are
allocated to one n-node block, but another leaf node in between
the two is allocated to a different n-node block?

iii. Under the reasonable assumption that buffer space is sufficient
to store a n-page block, how many seeks would be required for
a leaf-level scan of the B+-tree, in the worst case? Compare this
number with the worst case if leaf pages are allocated a block at
a time.

iv. The technique of redistributing values to siblings to improve
space utilization is likely to be more efficient when used with the
above allocation scheme for leaf blocks. Explain why.

Exercises

11.15 When is it preferable to use a dense index rather than a sparse index?
Explain your answer.

11.16 What is the difference between a clustering index and a secondary index?

11.17 For each B+-tree of Practice Exercise 11.3, show the steps involved in the
following queries:

a. Find records with a search-key value of 11.

b. Find records with a search-key value between 7 and 17, inclusive.

11.18 The solution presented in Section 11.3.4 to deal with nonunique search
keys added an extra attribute to the search key. What effect could this
change have on the height of the B+-tree?

11.19 Explain the distinction between closed and open hashing. Discuss the
relative merits of each technique in database applications.
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11.20 What are the causes of bucket overflow in a hash file organization? What
can be done to reduce the occurrence of bucket overflows?

11.21 Why is a hash structure not the best choice for a search key on which
range queries are likely?

11.22 Suppose there is a relation r (A, B, C), with a B+-tree index with search
key (A, B).

a. What is the worst-case cost of finding records satisfying 10 < A < 50
using this index, in terms of the number of records retrieved n1 and
the height h of the tree?

b. What is the worst-case cost of finding records satisfying 10 < A <

50 ∧ 5 < B < 10 using this index, in terms of the number of records
n2 that satisfy this selection, as well as n1 and h defined above?

c. Under what conditions on n1 and n2 would the index be an efficient
way of finding records satisfying 10 < A < 50 ∧ 5 < B < 10?

11.23 Suppose you have to create a B+-tree index on a large number of names,
where the maximum size of a name may be quite large (say 40 characters)
and the average name is itself large (say 10 characters). Explain how prefix
compression can be used to maximize the average fanout of nonleaf nodes.

11.24 Suppose a relation is stored in a B+-tree file organization. Suppose sec-
ondary indices stored record identifiers that are pointers to records on
disk.

a. What would be the effect on the secondary indices if a node split
happens in the file organization?

b. What would be the cost of updating all affected records in a sec-
ondary index?

c. How does using the search key of the file organization as a logical
record identifier solve this problem?

d. What is the extra cost due to the use of such logical record identifiers?

11.25 Show how to compute existence bitmaps from other bitmaps. Make sure
that your technique works even in the presence of null values, by using a
bitmap for the value null.

11.26 How does data encryption affect index schemes? In particular, how might
it affect schemes that attempt to store data in sorted order?

11.27 Our description of static hashing assumes that a large contiguous stretch
of disk blocks can be allocated to a static hash table. Suppose you can
allocate only C contiguous blocks. Suggest how to implement the hash
table, if it can be much larger than C blocks. Access to a block should still
be efficient.
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Query Processing

Query processing refers to the range of activities involved in extracting data from
a database. The activities include translation of queries in high-level database
languages into expressions that can be used at the physical level of the file system,
a variety of query-optimizing transformations, and actual evaluation of queries.

12.1 Overview

The steps involved in processing a query appear in Figure 12.1. The basic steps
are:

1. Parsing and translation.

2. Optimization.

3. Evaluation.

Before query processing can begin, the system must translate the query into
a usable form. A language such as SQL is suitable for human use, but is ill suited
to be the system’s internal representation of a query. A more useful internal
representation is one based on the extended relational algebra.

Thus, the first action the system must take in query processing is to translate
a given query into its internal form. This translation process is similar to the work
performed by the parser of a compiler. In generating the internal form of the
query, the parser checks the syntax of the user’s query, verifies that the relation
names appearing in the query are names of the relations in the database, and
so on. The system constructs a parse-tree representation of the query, which it
then translates into a relational-algebra expression. If the query was expressed
in terms of a view, the translation phase also replaces all uses of the view by the
relational-algebra expression that defines the view.1 Most compiler texts cover
parsing in detail.

1For materialized views, the expression defining the view has already been evaluated and stored. Therefore, the stored
relation can be used, instead of uses of the view being replaced by the expression defining the view. Recursive views are
handled differently, via a fixed-point procedure, as discussed in Section 5.4 and Appendix B.3.6.

537
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query
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Figure 12.1 Steps in query processing.

Given a query, there are generally a variety of methods for computing the
answer. For example, we have seen that, in SQL, a query could be expressed in
several different ways. Each SQL query can itself be translated into a relational-
algebra expression in one of several ways. Furthermore, the relational-algebra
representation of a query specifies only partially how to evaluate a query; there are
usually several ways to evaluate relational-algebra expressions. As an illustration,
consider the query:

select salary
from instructor
where salary < 75000;

This query can be translated into either of the following relational-algebra ex-
pressions:

• �salary <75000 (�salary (instructor ))

• �salary (�salary<75000 (instructor ))

Further, we can execute each relational-algebra operation by one of several
different algorithms. For example, to implement the preceding selection, we can
search every tuple in instructor to find tuples with salary less than 75000. If a
B+-tree index is available on the attribute salary, we can use the index instead to
locate the tuples.

To specify fully how to evaluate a query, we need not only to provide the
relational-algebra expression, but also to annotate it with instructions specifying
how to evaluate each operation. Annotations may state the algorithm to be used
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Figure 12.2 A query-evaluation plan.

for a specific operation, or the particular index or indices to use. A relational-
algebra operation annotated with instructions on how to evaluate it is called an
evaluation primitive. A sequence of primitive operations that can be used to
evaluate a query is a query-execution plan or query-evaluation plan. Figure 12.2
illustrates an evaluation plan for our example query, in which a particular index
(denoted in the figure as “index 1”) is specified for the selection operation. The
query-execution engine takes a query-evaluation plan, executes that plan, and
returns the answers to the query.

The different evaluation plans for a given query can have different costs. We
do not expect users to write their queries in a way that suggests the most efficient
evaluation plan. Rather, it is the responsibility of the system to construct a query-
evaluation plan that minimizes the cost of query evaluation; this task is called
query optimization. Chapter 13 describes query optimization in detail.

Once the query plan is chosen, the query is evaluated with that plan, and the
result of the query is output.

The sequence of steps already described for processing a query is represen-
tative; not all databases exactly follow those steps. For instance, instead of using
the relational-algebra representation, several databases use an annotated parse-
tree representation based on the structure of the given SQL query. However, the
concepts that we describe here form the basis of query processing in databases.

In order to optimize a query, a query optimizer must know the cost of each
operation. Although the exact cost is hard to compute, since it depends on many
parameters such as actual memory available to the operation, it is possible to get
a rough estimate of execution cost for each operation.

In this chapter we study how to evaluate individual operations in a query
plan, and how to estimate their cost; we return to query optimization in Chap-
ter 13. Section 12.2 outlines how we measure the cost of a query. Sections 12.3
through 12.6 cover the evaluation of individual relational-algebra operations.
Several operations may be grouped together into a pipeline, in which each of the
operations starts working on its input tuples even as they are being generated
by another operation. In Section 12.7, we examine how to coordinate the execu-
tion of multiple operations in a query evaluation plan, in particular, how to use
pipelined operations to avoid writing intermediate results to disk.
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12.2 Measures of Query Cost

There are multiple possible evaluation plans for a query, and it is important to
be able to compare the alternatives in terms of their (estimated) cost, and choose
the best plan. To do so, we must estimate the cost of individual operations, and
combine them to get the cost of a query evaluation plan. Thus, as we study
evaluation algorithms for each operation later in this chapter, we also outline
how to estimate the cost of the operation.

The cost of query evaluation can be measured in terms of a number of dif-
ferent resources, including disk accesses, CPU time to execute a query, and, in
a distributed or parallel database system, the cost of communication (which we
discuss later, in Chapters 18 and 19).

In large database systems, the cost to access data from disk is usually the most
important cost, since disk accesses are slow compared to in-memory operations.
Moreover, CPU speeds have been improving much faster than have disk speeds.
Thus, it is likely that the time spent in disk activity will continue to dominate
the total time to execute a query. The CPU time taken for a task is harder to
estimate since it depends on low-level details of the execution code. Although
real-life query optimizers do take CPU costs into account, for simplicity in this
book we ignore CPU costs and use only disk-access costs to measure the cost of a
query-evaluation plan.

We use the number of block transfers from disk and the number of disk seeks
to estimate the cost of a query-evaluation plan. If the disk subsystem takes an
average of tT seconds to transfer a block of data, and has an average block-access
time (disk seek time plus rotational latency) of tS seconds, then an operation that
transfers b blocks and performs S seeks would take b ∗ tT + S ∗ tS seconds. The
values of tT and tS must be calibrated for the disk system used, but typical values
for high-end disks today would be tS = 4 milliseconds and tT = 0.1 milliseconds,
assuming a 4-kilobyte block size and a transfer rate of 40 megabytes per second.2

We can refine our cost estimates further by distinguishing block reads from
block writes, since block writes are typically about twice as expensive as reads
(this is because disk systems read sectors back after they are written to verify that
the write was successful). For simplicity, we ignore this detail, and leave it to you
to work out more precise cost estimates for various operations.

The cost estimates we give do not include the cost of writing the final result of
an operation back to disk. These are taken into account separately where required.
The costs of all the algorithms that we consider depend on the size of the buffer
in main memory. In the best case, all data can be read into the buffers, and the
disk does not need to be accessed again. In the worst case, we assume that the
buffer can hold only a few blocks of data—approximately one block per relation.
When presenting cost estimates, we generally assume the worst case.

2Some database systems perform test seeks and block transfers to estimate average seek and block transfer costs, as part
of the software installation process.
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In addition, although we assume that data must be read from disk initially, it
is possible that a block that is accessed is already present in the in-memory buffer.
Again, for simplicity, we ignore this effect; as a result, the actual disk-access cost
during the execution of a plan may be less than the estimated cost.

The response time for a query-evaluation plan (that is, the wall-clock time
required to execute the plan), assuming no other activity is going on in the
computer, would account for all these costs, and could be used as a measure
of the cost of the plan. Unfortunately, the response time of a plan is very hard to
estimate without actually executing the plan, for the following reasons:

1. The response time depends on the contents of the buffer when the query
begins execution; this information is not available when the query is opti-
mized, and is hard to account for even if it were available.

2. In a system with multiple disks, the response time depends on how accesses
are distributed among disks, which is hard to estimate without detailed
knowledge of data layout on disk.

Interestingly, a plan may get a better response time at the cost of extra resource
consumption. For example, if a system has multiple disks, a plan A that requires
extra disk reads, but performs the reads in parallel across multiple disks may
finish faster than another plan B that has fewer disk reads, but from only one
disk. However, if many instances of a query using plan A run concurrently, the
overall response time may actually be more than if the same instances are executed
using plan B, since plan A generates more load on the disks.

As a result, instead of trying to minimize the response time, optimizers gen-
erally try to minimize the total resource consumption of a query plan. Our model
of estimating the total disk access time (including seek and data transfer) is an
example of such a resource consumption–based model of query cost.

12.3 Selection Operation

In query processing, the file scan is the lowest-level operator to access data. File
scans are search algorithms that locate and retrieve records that fulfill a selection
condition. In relational systems, a file scan allows an entire relation to be read in
those cases where the relation is stored in a single, dedicated file.

12.3.1 Selections Using File Scans and Indices

Consider a selection operation on a relation whose tuples are stored together in
one file. The most straightforward way of performing a selection is as follows:

• A1 (linear search). In a linear search, the system scans each file block and
tests all records to see whether they satisfy the selection condition. An initial
seek is required to access the first block of the file. In case blocks of the file
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are not stored contiguously, extra seeks may be required, but we ignore this
effect for simplicity.

Although it may be slower than other algorithms for implementing selec-
tion, the linear-search algorithm can be applied to any file, regardless of the
ordering of the file, or the availability of indices, or the nature of the selection
operation. The other algorithms that we shall study are not applicable in all
cases, but when applicable they are generally faster than linear search.

Cost estimates for linear scan, as well as for other selection algorithms, are
shown in Figure 12.3. In the figure, we use hi to represent the height of the B+-
tree. Real-life optimizers usually assume that the root of the tree is present in the
in-memory buffer since it is frequently accessed. Some optimizers even assume
that all but the leaf level of the tree is present in memory, since they are accessed
relatively frequently, and usually less than 1 percent of the nodes of a B+-tree are
nonleaf nodes. The cost formulae can be modified appropriately.

Index structures are referred to as access paths, since they provide a path
through which data can be located and accessed. In Chapter 11, we pointed out
that it is efficient to read the records of a file in an order corresponding closely to
physical order. Recall that a primary index (also referred to as a clustering index) is
an index that allows the records of a file to be read in an order that corresponds
to the physical order in the file. An index that is not a primary index is called a
secondary index.

Search algorithms that use an index are referred to as index scans. We use the
selection predicate to guide us in the choice of the index to use in processing the
query. Search algorithms that use an index are:

• A2 (primary index, equality on key). For an equality comparison on a key
attribute with a primary index, we can use the index to retrieve a single record
that satisfies the corresponding equality condition. Cost estimates are shown
in Figure 12.3.

• A3 (primary index, equality on nonkey). We can retrieve multiple records
by using a primary index when the selection condition specifies an equality
comparison on a nonkey attribute, A. The only difference from the previous
case is that multiple records may need to be fetched. However, the records
must be stored consecutively in the file since the file is sorted on the search
key. Cost estimates are shown in Figure 12.3.

• A4 (secondary index, equality). Selections specifying an equality condition
can use a secondary index. This strategy can retrieve a single record if the
equality condition is on a key; multiple records may be retrieved if the index-
ing field is not a key.

In the first case, only one record is retrieved. The time cost in this case is
the same as that for a primary index (case A2).

In the second case, each record may be resident on a different block, which
may result in one I/O operation per retrieved record, with each I/O operation
requiring a seek and a block transfer. The worst-case time cost in this case is
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Algorithm Cost Reason
A1 Linear Search tS + br ∗ tT One initial seek plus br block transfers,

where br denotes the number of blocks
in the file.

A1 Linear Search,
Equality on
Key

Average
case tS +
(br/2) ∗ tT

Since at most one record satisfies con-
dition, scan can be terminated as soon
as the required record is found. In the
worst case, br blocks transfers are still
required.

A2 Primary
B+-tree Index,
Equality on
Key

(hi + 1) ∗
(tT + tS)

(Where hi denotes the height of the in-
dex.) Index lookup traverses the height
of the tree plus one I/O to fetch the
record; each of these I/O operations re-
quires a seek and a block transfer.

A3 Primary
B+-tree Index,
Equality on
Nonkey

hi ∗ (tT +
tS) + b ∗ tT

One seek for each level of the tree, one
seek for the first block. Here b is the
number of blocks containing records
with the specified search key, all of
which are read. These blocks are leaf
blocks assumed to be stored sequen-
tially (since it is a primary index) and
don’t require additional seeks.

A4 Secondary
B+-tree Index,
Equality on
Key

(hi + 1) ∗
(tT + tS)

This case is similar to primary index.

A4 Secondary
B+-tree Index,
Equality on
Nonkey

(hi + n) ∗
(tT + tS)

(Where n is the number of records
fetched.) Here, cost of index traversal
is the same as for A3, but each record
may be on a different block, requiring a
seek per record. Cost is potentially very
high if n is large.

A5 Primary
B+-tree Index,
Comparison

hi ∗ (tT +
tS) + b ∗ tT

Identical to the case of A3, equality on
nonkey.

A6 Secondary
B+-tree Index,
Comparison

(hi + n) ∗
(tT + tS)

Identical to the case of A4, equality on
nonkey.

Figure 12.3 Cost estimates for selection algorithms.

(hi + n) ∗ (tS + tT ), where n is the number of records fetched, if each record
is in a different disk block, and the block fetches are randomly ordered. The
worst-case cost could become even worse than that of linear search if a large
number of records are retrieved.
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If the in-memory buffer is large, the block containing the record may
already be in the buffer. It is possible to construct an estimate of the average
or expected cost of the selection by taking into account the probability of the
block containing the record already being in the buffer. For large buffers, that
estimate will be much less than the worst-case estimate.

In certain algorithms, including A2, the use of a B+-tree file organization can
save one access since records are stored at the leaf-level of the tree.

As described in Section 11.4.2, when records are stored in a B+-tree file organi-
zation or other file organizations that may require relocation of records, secondary
indices usually do not store pointers to the records.3 Instead, secondary indices
store the values of the attributes used as the search key in a B+-tree file organiza-
tion. Accessing a record through such a secondary index is then more expensive:
First the secondary index is searched to find the primary index search-key val-
ues, then the primary index is looked up to find the records. The cost formulae
described for secondary indices have to be modified appropriately if such indices
are used.

12.3.2 Selections Involving Comparisons

Consider a selection of the form �A≤v(r ). We can implement the selection either
by using linear search or by using indices in one of the following ways:

• A5 (primary index, comparison). A primary ordered index (for example, a
primary B+-tree index) can be used when the selection condition is a com-
parison. For comparison conditions of the form A > v or A ≥ v, a primary
index on A can be used to direct the retrieval of tuples, as follows: For A ≥ v,
we look up the value v in the index to find the first tuple in the file that has
a value of A = v. A file scan starting from that tuple up to the end of the file
returns all tuples that satisfy the condition. For A > v, the file scan starts with
the first tuple such that A > v. The cost estimate for this case is identical to
that for case A3.

For comparisons of the form A < v or A ≤ v, an index lookup is not
required. For A < v, we use a simple file scan starting from the beginning of
the file, and continuing up to (but not including) the first tuple with attribute
A = v. The case of A ≤ v is similar, except that the scan continues up to (but
not including) the first tuple with attribute A > v. In either case, the index is
not useful.

• A6 (secondary index, comparison). We can use a secondary ordered index
to guide retrieval for comparison conditions involving <, ≤, ≥, or >. The
lowest-level index blocks are scanned, either from the smallest value up to v

(for < and ≤), or from v up to the maximum value (for > and ≥).

3Recall that if B+-tree file organizations are used to store relations, records may be moved between blocks when leaf
nodes are split or merged, and when records are redistributed.
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The secondary index provides pointers to the records, but to get the actual
records we have to fetch the records by using the pointers. This step may
require an I/O operation for each record fetched, since consecutive records
may be on different disk blocks; as before, each I/O operation requires a disk
seek and a block transfer. If the number of retrieved records is large, using
the secondary index may be even more expensive than using linear search.
Therefore the secondary index should be used only if very few records are
selected.

12.3.3 Implementation of Complex Selections

So far, we have considered only simple selection conditions of the form A op B,
where op is an equality or comparison operation. We now consider more complex
selection predicates.

• Conjunction: A conjunctive selection is a selection of the form:

��1∧�2∧···∧�n(r )

• Disjunction: A disjunctive selection is a selection of the form:

��1∨�2∨···∨�n(r )

A disjunctive condition is satisfied by the union of all records satisfying the
individual, simple conditions �i .

• Negation: The result of a selection �¬�(r ) is the set of tuples of r for which
the condition � evaluates to false. In the absence of nulls, this set is simply
the set of tuples in r that are not in ��(r ).

We can implement a selection operation involving either a conjunction or a
disjunction of simple conditions by using one of the following algorithms:

• A7 (conjunctive selection using one index). We first determine whether an
access path is available for an attribute in one of the simple conditions. If
one is, one of the selection algorithms A2 through A6 can retrieve records
satisfying that condition. We complete the operation by testing, in the memory
buffer, whether or not each retrieved record satisfies the remaining simple
conditions.

To reduce the cost, we choose a �i and one of algorithms A1 through A6 for
which the combination results in the least cost for ��i (r ). The cost of algorithm
A7 is given by the cost of the chosen algorithm.

• A8 (conjunctive selection using composite index). An appropriate composite
index (that is, an index on multiple attributes) may be available for some
conjunctive selections. If the selection specifies an equality condition on two
or more attributes, and a composite index exists on these combined attribute
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fields, then the index can be searched directly. The type of index determines
which of algorithms A2, A3, or A4 will be used.

• A9 (conjunctive selection by intersection of identifiers). Another alterna-
tive for implementing conjunctive selection operations involves the use of
record pointers or record identifiers. This algorithm requires indices with
record pointers, on the fields involved in the individual conditions. The al-
gorithm scans each index for pointers to tuples that satisfy an individual
condition. The intersection of all the retrieved pointers is the set of pointers
to tuples that satisfy the conjunctive condition. The algorithm then uses the
pointers to retrieve the actual records. If indices are not available on all the
individual conditions, then the algorithm tests the retrieved records against
the remaining conditions.

The cost of algorithm A9 is the sum of the costs of the individual index scans,
plus the cost of retrieving the records in the intersection of the retrieved lists of
pointers. This cost can be reduced by sorting the list of pointers and retrieving
records in the sorted order. Thereby, (1) all pointers to records in a block come
together, hence all selected records in the block can be retrieved using a single
I/O operation, and (2) blocks are read in sorted order, minimizing disk-arm
movement. Section 12.4 describes sorting algorithms.

• A10 (disjunctive selection by union of identifiers). If access paths are avail-
able on all the conditions of a disjunctive selection, each index is scanned
for pointers to tuples that satisfy the individual condition. The union of all
the retrieved pointers yields the set of pointers to all tuples that satisfy the
disjunctive condition. We then use the pointers to retrieve the actual records.

However, if even one of the conditions does not have an access path, we
have to perform a linear scan of the relation to find tuples that satisfy the
condition. Therefore, if there is even one such condition in the disjunct, the
most efficient access method is a linear scan, with the disjunctive condition
tested on each tuple during the scan.

The implementation of selections with negation conditions is left to you as an
exercise (Practice Exercise 12.6).

12.4 Sorting

Sorting of data plays an important role in database systems for two reasons. First,
SQL queries can specify that the output be sorted. Second, and equally important
for query processing, several of the relational operations, such as joins, can be
implemented efficiently if the input relations are first sorted. Thus, we discuss
sorting here before discussing the join operation in Section 12.5.

We can sort a relation by building an index on the sort key, and then using
that index to read the relation in sorted order. However, such a process orders
the relation only logically, through an index, rather than physically. Hence, the
reading of tuples in the sorted order may lead to a disk access (disk seek plus
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block transfer) for each record, which can be very expensive, since the number of
records can be much larger than the number of blocks. For this reason, it may be
desirable to order the records physically.

The problem of sorting has been studied extensively, both for relations that
fit entirely in main memory and for relations that are bigger than memory. In the
first case, standard sorting techniques such as quick-sort can be used. Here, we
discuss how to handle the second case.

12.4.1 External Sort-Merge Algorithm

Sorting of relations that do not fit in memory is called external sorting. The
most commonly used technique for external sorting is the external sort–merge
algorithm. We describe the external sort–merge algorithm next. Let M denote the
number of blocks in the main-memory buffer available for sorting, that is, the
number of disk blocks whose contents can be buffered in available main memory.

1. In the first stage, a number of sorted runs are created; each run is sorted,
but contains only some of the records of the relation.

i = 0;
repeat

read M blocks of the relation, or the rest of the relation,
whichever is smaller;

sort the in-memory part of the relation;
write the sorted data to run file Ri ;
i = i + 1;

until the end of the relation

2. In the second stage, the runs are merged. Suppose, for now, that the total
number of runs, N, is less than M, so that we can allocate one block to
each run and have space left to hold one block of output. The merge stage
operates as follows:

read one block of each of the N files Ri into a buffer block in memory;
repeat

choose the first tuple (in sort order) among all buffer blocks;
write the tuple to the output, and delete it from the buffer block;
if the buffer block of any run Ri is empty and not end-of-file(Ri )

then read the next block of Ri into the buffer block;
until all input buffer blocks are empty

The output of the merge stage is the sorted relation. The output file is buffered
to reduce the number of disk write operations. The preceding merge operation
is a generalization of the two-way merge used by the standard in-memory sort–
merge algorithm; it merges N runs, so it is called an N-way merge.
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Figure 12.4 External sorting using sort–merge.

In general, if the relation is much larger than memory, there may be M or
more runs generated in the first stage, and it is not possible to allocate a block
for each run during the merge stage. In this case, the merge operation proceeds
in multiple passes. Since there is enough memory for M − 1 input buffer blocks,
each merge can take M − 1 runs as input.

The initial pass functions in this way: It merges the first M − 1 runs (as desc-
ribed in item 2 above) to get a single run for the next pass. Then, it merges the
next M − 1 runs similarly, and so on, until it has processed all the initial runs.
At this point, the number of runs has been reduced by a factor of M − 1. If this
reduced number of runs is still greater than or equal to M, another pass is made,
with the runs created by the first pass as input. Each pass reduces the number of
runs by a factor of M − 1. The passes repeat as many times as required, until the
number of runs is less than M; a final pass then generates the sorted output.

Figure 12.4 illustrates the steps of the external sort–merge for an example
relation. For illustration purposes, we assume that only one tuple fits in a block
( fr = 1), and we assume that memory holds at most three blocks. During the
merge stage, two blocks are used for input and one for output.

12.4.2 Cost Analysis of External Sort-Merge

We compute the disk-access cost for the external sort–merge in this way: Let
br denote the number of blocks containing records of relation r . The first stage
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reads every block of the relation and writes them out again, giving a total of 2br
block transfers. The initial number of runs is �br/M�. Since the number of runs
decreases by a factor of M − 1 in each merge pass, the total number of merge
passes required is �logM−1(br/M)�. Each of these passes reads every block of the
relation once and writes it out once, with two exceptions. First, the final pass can
produce the sorted output without writing its result to disk. Second, there may
be runs that are not read in or written out during a pass—for example, if there
are M runs to be merged in a pass, M − 1 are read in and merged, and one run
is not accessed during the pass. Ignoring the (relatively small) savings due to the
latter effect, the total number of block transfers for external sorting of the relation
is:

br (2�logM−1(br/M)� + 1)

Applying this equation to the example in Figure 12.4, we get a total of 12 ∗ (4 + 1)
= 60 block transfers, as you can verify from the figure. Note that the above
numbers do not include the cost of writing out the final result.

We also need to add the disk-seek costs. Run generation requires seeks for
reading data for each of the runs as well as for writing the runs. During the merge
phase, if data are read bb blocks at a time from each run (that is, bb buffer blocks
are allocated to each run), then each merge pass would require around �br /bb�
seeks for reading data.4 Although the output is written sequentially, if it is on the
same disk as the input runs the head may have moved away between writes of
consecutive blocks. Thus we would have to add a total of 2�br /bb� seeks for each
merge pass, except the final pass (since we assume the final result is not written
back to disk). The total number of seeks is then:

2�br/M� + �br/bb�(2�logM−1(br/M)� − 1)

Applying this equation to the example in Figure 12.4, we get a total of 8 + 12 ∗
(2 ∗ 2 − 1) = 44 disk seeks if we set the number of buffer blocks per run, bb to 1.

12.5 Join Operation

In this section, we study several algorithms for computing the join of relations,
and we analyze their respective costs.

We use the term equi-join to refer to a join of the form r �r.A=s.B s, where A
and B are attributes or sets of attributes of relations r and s, respectively.

We use as a running example the expression:

student � takes

4To be more precise, since we read each run separately and may get fewer than bb blocks when reading the end of a run,
we may require an extra seek for each run. We ignore this detail for simplicity.
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using the same relation schemas that we used in Chapter 2. We assume the
following information about the two relations:

• Number of records of student: nstudent = 5, 000.

• Number of blocks of student: bstudent = 100.

• Number of records of takes: ntakes = 10, 000.

• Number of blocks of takes: btakes = 400.

12.5.1 Nested-Loop Join

Figure 12.5 shows a simple algorithm to compute the theta join, r �� s, of two
relations r and s. This algorithm is called the nested-loop join algorithm, since
it basically consists of a pair of nested for loops. Relation r is called the outer
relation and relation s the inner relation of the join, since the loop for r encloses
the loop for s. The algorithm uses the notation tr · ts , where tr and ts are tuples;
tr · ts denotes the tuple constructed by concatenating the attribute values of tuples
tr and ts .

Like the linear file-scan algorithm for selection, the nested-loop join algorithm
requires no indices, and it can be used regardless of what the join condition is.
Extending the algorithm to compute the natural join is straightforward, since the
natural join can be expressed as a theta join followed by elimination of repeated
attributes by a projection. The only change required is an extra step of deleting
repeated attributes from the tuple tr · ts , before adding it to the result.

The nested-loop join algorithm is expensive, since it examines every pair of
tuples in the two relations. Consider the cost of the nested-loop join algorithm.
The number of pairs of tuples to be considered is nr ∗ ns , where nr denotes the
number of tuples in r , and ns denotes the number of tuples in s. For each record in
r , we have to perform a complete scan on s. In the worst case, the buffer can hold
only one block of each relation, and a total of nr ∗ bs + br block transfers would
be required, where br and bs denote the number of blocks containing tuples of
r and s, respectively. We need only one seek for each scan on the inner relation
s since it is read sequentially, and a total of br seeks to read r , leading to a total
of nr + br seeks. In the best case, there is enough space for both relations to fit
simultaneously in memory, so each block would have to be read only once; hence,
only br + bs block transfers would be required, along with 2 seeks.

for each tuple tr in r do begin
for each tuple ts in s do begin

test pair (tr , ts) to see if they satisfy the join condition �
if they do, add tr · ts to the result;

end
end

Figure 12.5 Nested-loop join.
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for each block Br of r do begin
for each block Bs of s do begin

for each tuple tr in Br do begin
for each tuple ts in Bs do begin

test pair (tr , ts) to see if they satisfy the join condition
if they do, add tr · ts to the result;

end
end

end
end

Figure 12.6 Block nested-loop join.

If one of the relations fits entirely in main memory, it is beneficial to use that
relation as the inner relation, since the inner relation would then be read only
once. Therefore, if s is small enough to fit in main memory, our strategy requires
only a total br + bs block transfers and 2 seeks—the same cost as that for the case
where both relations fit in memory.

Now consider the natural join of student and takes. Assume for now that we
have no indices whatsoever on either relation, and that we are not willing to create
any index. We can use the nested loops to compute the join; assume that student is
the outer relation and takes is the inner relation in the join. We will have to examine
5000 ∗ 10, 000 = 50 ∗ 106 pairs of tuples. In the worst case, the number of block
transfers is 5000∗400+100 = 2,000,100, plus 5000+100 = 5100 seeks. In the best-
case scenario, however, we can read both relations only once, and perform the
computation. This computation requires at most 100 + 400 = 500 block transfers,
plus 2 seeks—a significant improvement over the worst-case scenario. If we
had used takes as the relation for the outer loop and student for the inner loop,
the worst-case cost of our final strategy would have been 10,000 ∗ 100 + 400 =
1,000,400 block transfers, plus 10,400 disk seeks. The number of block transfers is
significantly less, and although the number of seeks is higher, the overall cost is
reduced, assuming tS = 4 milliseconds and tT = 0.1 milliseconds.

12.5.2 Block Nested-Loop Join

If the buffer is too small to hold either relation entirely in memory, we can still
obtain a major saving in block accesses if we process the relations on a per-block
basis, rather than on a per-tuple basis. Figure 12.6 shows block nested-loop join,
which is a variant of the nested-loop join where every block of the inner relation
is paired with every block of the outer relation. Within each pair of blocks, every
tuple in one block is paired with every tuple in the other block, to generate all
pairs of tuples. As before, all pairs of tuples that satisfy the join condition are
added to the result.

The primary difference in cost between the block nested-loop join and the
basic nested-loop join is that, in the worst case, each block in the inner relation s
is read only once for each block in the outer relation, instead of once for each tuple
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in the outer relation. Thus, in the worst case, there will be a total of br ∗ bs + br
block transfers, where br and bs denote the number of blocks containing records
of r and s, respectively. Each scan of the inner relation requires one seek, and the
scan of the outer relation requires one seek per block, leading to a total of 2 ∗ br
seeks. Clearly, it is more efficient to use the smaller relation as the outer relation,
in case neither of the relations fits in memory. In the best case, where the inner
relation fits in memory, there will be br + bs block transfers and just 2 seeks (we
would choose the smaller relation as the inner relation in this case).

Now return to our example of computing student � takes , using the block
nested-loop join algorithm. In the worst case, we have to read each block of takes
once for each block of student. Thus, in the worst case, a total of 100 ∗ 400 + 100 =
40,100 block transfers plus 2∗100 = 200 seeks are required. This cost is a significant
improvement over the 5000∗400+100 = 2,000,100 block transfers plus 5100 seeks
needed in the worst case for the basic nested-loop join. The best-case cost remains
the same—namely, 100 + 400 = 500 block transfers and 2 seeks.

The performance of the nested-loop and block nested-loop procedures can be
further improved:

• If the join attributes in a natural join or an equi-join form a key on the inner
relation, then for each outer relation tuple the inner loop can terminate as
soon as the first match is found.

• In the block nested-loop algorithm, instead of using disk blocks as the block-
ing unit for the outer relation, we can use the biggest size that can fit in
memory, while leaving enough space for the buffers of the inner relation and
the output. In other words, if memory has M blocks, we read in M− 2 blocks
of the outer relation at a time, and when we read each block of the inner
relation we join it with all the M − 2 blocks of the outer relation. This change
reduces the number of scans of the inner relation from br to �br /(M − 2)�,
where br is the number of blocks of the outer relation. The total cost is then
�br/(M − 2)� ∗ bs + br block transfers and 2�br/(M − 2)� seeks.

• We can scan the inner loop alternately forward and backward. This scanning
method orders the requests for disk blocks so that the data remaining in the
buffer from the previous scan can be reused, thus reducing the number of
disk accesses needed.

• If an index is available on the inner loop’s join attribute, we can replace
file scans with more efficient index lookups. Section 12.5.3 describes this
optimization.

12.5.3 Indexed Nested-Loop Join

In a nested-loop join (Figure 12.5), if an index is available on the inner loop’s
join attribute, index lookups can replace file scans. For each tuple tr in the outer
relation r, the index is used to look up tuples in s that will satisfy the join condition
with tuple tr .
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This join method is called an indexed nested-loop join; it can be used with
existing indices, as well as with temporary indices created for the sole purpose of
evaluating the join.

Looking up tuples in s that will satisfy the join conditions with a given tuple
tr is essentially a selection on s. For example, consider student � takes . Suppose
that we have a student tuple with ID “00128”. Then, the relevant tuples in takes are
those that satisfy the selection “ID = 00128”.

The cost of an indexed nested-loop join can be computed as follows: For each
tuple in the outer relation r , a lookup is performed on the index for s, and the
relevant tuples are retrieved. In the worst case, there is space in the buffer for
only one block of r and one block of the index. Then, br I/O operations are needed
to read relation r , where br denotes the number of blocks containing records of
r ; each I/O requires a seek and a block transfer, since the disk head may have
moved in between each I/O. For each tuple in r , we perform an index lookup on
s. Then, the time cost of the join can be computed as br (tT + tS) + nr ∗ c, where
nr is the number of records in relation r , and c is the cost of a single selection on
s using the join condition. We have seen in Section 12.3 how to estimate the cost
of a single selection algorithm (possibly using indices); that estimate gives us the
value of c.

The cost formula indicates that, if indices are available on both relations r
and s, it is generally most efficient to use the one with fewer tuples as the outer
relation.

For example, consider an indexed nested-loop join of student � takes , with
student as the outer relation. Suppose also that takes has a primary B+-tree index on
the join attribute ID, which contains 20 entries on average in each index node. Since
takes has 10,000 tuples, the height of the tree is 4, and one more access is needed
to find the actual data. Since nstudent is 5000, the total cost is 100+5000∗5 = 25,100
disk accesses, each of which requires a seek and a block transfer. In contrast, as we
saw before, 40,100 block transfers plus 200 seeks were needed for a block nested-
loop join. Although the number of block transfers has been reduced, the seek cost
has actually increased, increasing the total cost since a seek is considerably more
expensive than a block transfer. However, if we had a selection on the student
relation that reduces the number of rows significantly, indexed nested-loop join
could be significantly faster than block nested-loop join.

12.5.4 Merge Join

The merge-join algorithm (also called the sort-merge-join algorithm) can be used
to compute natural joins and equi-joins. Let r (R) and s(S) be the relations whose
natural join is to be computed, and let R ∩ S denote their common attributes.
Suppose that both relations are sorted on the attributes R ∩ S. Then, their join can
be computed by a process much like the merge stage in the merge–sort algorithm.

12.5.4.1 Merge-Join Algorithm

Figure 12.7 shows the merge-join algorithm. In the algorithm, JoinAttrs refers to
the attributes in R ∩ S, and tr � ts , where tr and ts are tuples that have the same
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pr := address of first tuple of r;
ps := address of first tuple of s;
while (ps 
= null and pr 
= null) do

begin
ts := tuple to which ps points;
Ss := {ts};
set ps to point to next tuple of s;
done := false;
while (not done and ps 
= null) do

begin
ts ′ := tuple to which ps points;
if (ts ′[JoinAttrs] = ts[JoinAttrs])

then begin
Ss := Ss ∪ {ts ′};
set ps to point to next tuple of s;

end
else done := true;

end
tr := tuple to which pr points;
while (pr 
= null and tr [JoinAttrs] < ts[JoinAttrs]) do

begin
set pr to point to next tuple of r;
tr := tuple to which pr points;

end
while (pr 
= null and tr [JoinAttrs] = ts[JoinAttrs]) do

begin
for each ts in Ss do

begin
add ts � tr to result;

end
set pr to point to next tuple of r;
tr := tuple to which pr points;

end
end.

Figure 12.7 Merge join.

values for JoinAttrs, denotes the concatenation of the attributes of the tuples, fol-
lowed by projecting out repeated attributes. The merge-join algorithm associates
one pointer with each relation. These pointers point initially to the first tuple of
the respective relations. As the algorithm proceeds, the pointers move through
the relation. A group of tuples of one relation with the same value on the join
attributes is read into Ss . The algorithm in Figure 12.7 requires that every set of
tuples Ss fit in main memory; we discuss extensions of the algorithm to avoid this
requirement shortly. Then, the corresponding tuples (if any) of the other relation
are read in, and are processed as they are read.
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Figure 12.8 Sorted relations for merge join.

Figure 12.8 shows two relations that are sorted on their join attribute a1. It is
instructive to go through the steps of the merge-join algorithm on the relations
shown in the figure.

The merge-join algorithm of Figure 12.7 requires that each set Ss of all tuples
with the same value for the join attributes must fit in main memory. This require-
ment can usually be met, even if the relation s is large. If there are some join
attribute values for which Ss is larger than available memory, a block nested-loop
join can be performed for such sets Ss , matching them with corresponding blocks
of tuples in r with the same values for the join attributes.

If either of the input relations r and s is not sorted on the join attributes, they
can be sorted first, and then the merge-join algorithm can be used. The merge-join
algorithm can also be easily extended from natural joins to the more general case
of equi-joins.

12.5.4.2 Cost Analysis

Once the relations are in sorted order, tuples with the same value on the join
attributes are in consecutive order. Thereby, each tuple in the sorted order needs
to be read only once, and, as a result, each block is also read only once. Since it
makes only a single pass through both files (assuming all sets Ss fit in memory)
the merge-join method is efficient; the number of block transfers is equal to the
sum of the number of blocks in both files, br + bs .

Assuming that bb buffer blocks are allocated to each relation, the number of
disk seeks required would be �br/bb� + �bs/bb� disk seeks. Since seeks are much
more expensive than data transfer, it makes sense to allocate multiple buffer
blocks to each relation, provided extra memory is available. For example, with
tT = 0.1 milliseconds per 4-kilobyte block, and tS = 4 milliseconds, the buffer
size is 400 blocks (or 1.6 megabytes), so the seek time would be 4 milliseconds for
every 40 milliseconds of transfer time, in other words, seek time would be just 10
percent of the transfer time.
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If either of the input relations r and s is not sorted on the join attributes, they
must be sorted first; the cost of sorting must then be added to the above costs. If
some some sets Ss do not fit in memory, the cost would increase slightly.

Suppose the merge-join scheme is applied to our example of student � takes .
The join attribute here is ID. Suppose that the relations are already sorted on the
join attribute ID. In this case, the merge join takes a total of 400 + 100 = 500 block
transfers. If we assume that in the worst case only one buffer block is allocated to
each input relation (that is, bb = 1), a total of 400 + 100 = 500 seeks would also be
required; in reality bb can be set much higher since we need to buffer blocks for
only two relations, and the seek cost would be significantly less.

Suppose the relations are not sorted, and the memory size is the worst case,
only three blocks. The cost is as follows:

1. Using the formulae that we developed in Section 12.4, we can see that sorting
relation takes requires �log3−1(400/3)� = 8 merge passes. Sorting of relation
takes then takes 400 ∗ (2�log3−1(400/3)� + 1), or 6800, block transfers, with
400 more transfers to write out the result. The number of seeks required is
2 ∗ �400/3� + 400 ∗ (2 ∗ 8 − 1) or 6268 seeks for sorting, and 400 seeks for
writing the output, for a total of 6668 seeks, since only one buffer block is
available for each run.

2. Similarly, sorting relation student takes �log3−1(100/3)� = 6 merge passes
and 100 ∗ (2�log3−1(100/3)� + 1), or 1300, block transfers, with 100 more
transfers to write it out. The number of seeks required for sorting student is
2 ∗ �100/3� + 100 ∗ (2 ∗ 6 − 1) = 1164, and 100 seeks are required for writing
the output, for a total of 1264 seeks.

3. Finally, merging the two relations takes 400 + 100 = 500 block transfers and
500 seeks.

Thus, the total cost is 9100 block transfers plus 8932 seeks if the relations are not
sorted, and the memory size is just 3 blocks.

With a memory size of 25 blocks, and the relations not sorted, the cost of
sorting followed by merge join would be as follows:

1. Sorting the relation takes can be done with just one merge step, and takes
a total of just 400 ∗ (2�log24(400/25)� + 1) = 1200 block transfers. Similarly,
sorting student takes 300 block transfers. Writing the sorted output to disk
requires 400 + 100 = 500 block transfers, and the merge step requires 500
block transfers to read the data back. Adding up these costs gives a total
cost of 2500 block transfers.

2. If we assume that only one buffer block is allocated for each run, the number
of seeks required in this case is 2∗�400/25�+400+400 = 832 seeks for sorting
takes and writing the sorted output to disk, and similarly 2∗�100/25�+100+
100 = 208 for student, plus 400 + 100 seeks for reading the sorted data in the
merge-join step. Adding up these costs gives a total cost of 1640 seeks.
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The number of seeks can be significantly reduced by setting aside more
buffer blocks for each run. For example, if 5 buffer blocks are allocated
for each run and for the output from merging the 4 runs of student, the
cost is reduced to 2 ∗ �100/25� + �100/5� + �100/5� = 48 seeks, from 208
seeks. If the merge-join step sets aside 12 blocks each for buffering takes
and student, the number of seeks for the merge-join step goes down to
�400/12� + �100/12� = 43, from 500. The total number of seeks is then 251.

Thus, the total cost is 2500 block transfers plus 251 seeks if the relations are not
sorted, and the memory size is 25 blocks.

12.5.4.3 Hybrid Merge Join

It is possible to perform a variation of the merge-join operation on unsorted
tuples, if secondary indices exist on both join attributes. The algorithm scans the
records through the indices, resulting in their being retrieved in sorted order. This
variation presents a significant drawback, however, since records may be scattered
throughout the file blocks. Hence, each tuple access could involve accessing a disk
block, and that is costly.

To avoid this cost, we can use a hybrid merge-join technique that combines
indices with merge join. Suppose that one of the relations is sorted; the other is
unsorted, but has a secondary B+-tree index on the join attributes. The hybrid
merge-join algorithm merges the sorted relation with the leaf entries of the
secondary B+-tree index. The result file contains tuples from the sorted relation
and addresses for tuples of the unsorted relation. The result file is then sorted on
the addresses of tuples of the unsorted relation, allowing efficient retrieval of the
corresponding tuples, in physical storage order, to complete the join. Extensions
of the technique to handle two unsorted relations are left as an exercise for you.

12.5.5 Hash Join

Like the merge-join algorithm, the hash-join algorithm can be used to implement
natural joins and equi-joins. In the hash-join algorithm, a hash function h is used
to partition tuples of both relations. The basic idea is to partition the tuples of
each of the relations into sets that have the same hash value on the join attributes.

We assume that:

• h is a hash function mapping JoinAttrs values to {0, 1, . . . , nh}, where JoinAttrs
denotes the common attributes of r and s used in the natural join.

• r0, r1, . . . , rnh denote partitions of r tuples, each initially empty. Each tuple
tr ∈ r is put in partition ri , where i = h(tr [JoinAttrs]).

• s0, s1, ..., snh denote partitions of s tuples, each initially empty. Each tuple ts ∈ s
is put in partition si , where i = h(ts[JoinAttrs]).
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Figure 12.9 Hash partitioning of relations.

The hash function h should have the “goodness” properties of randomness and
uniformity that we discussed in Chapter 11. Figure 12.9 depicts the partitioning
of the relations.

12.5.5.1 Basics

The idea behind the hash-join algorithm is this: Suppose that an r tuple and an
s tuple satisfy the join condition; then, they have the same value for the join
attributes. If that value is hashed to some value i , the r tuple has to be in ri and
the s tuple in si . Therefore, r tuples in ri need only to be compared with s tuples
in si ; they do not need to be compared with s tuples in any other partition.

For example, if d is a tuple in student, c a tuple in takes, and h a hash function
on the ID attributes of the tuples, then d and c must be tested only if h(c) = h(d). If
h(c) 
= h(d), then c and d must have different values for ID. However, if h(c) = h(d),
we must test c and d to see whether the values in their join attributes are the same,
since it is possible that c and d have different iids that have the same hash value.

Figure 12.10 shows the details of the hash-join algorithm to compute the
natural join of relations r and s. As in the merge-join algorithm, tr � ts denotes
the concatenation of the attributes of tuples tr and ts , followed by projecting out
repeated attributes. After the partitioning of the relations, the rest of the hash-join
code performs a separate indexed nested-loop join on each of the partition pairs i ,
for i = 0, . . . , nh . To do so, it first builds a hash index on each si , and then probes
(that is, looks up si ) with tuples from ri . The relation s is the build input, and r is
the probe input.

The hash index on si is built in memory, so there is no need to access the disk
to retrieve the tuples. The hash function used to build this hash index must be
different from the hash function h used earlier, but is still applied to only the join
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/* Partition s */
for each tuple ts in s do begin

i := h(ts[JoinAttrs]);
Hsi := Hsi ∪ {ts};

end
/* Partition r */
for each tuple tr in r do begin

i := h(tr [JoinAttrs]);
Hri := Hri ∪ {tr};

end
/* Perform join on each partition */
for i := 0 to nh do begin

read Hsi and build an in-memory hash index on it;
for each tuple tr in Hri do begin

probe the hash index on Hsi to locate all tuples ts
such that ts[JoinAttrs] = tr [JoinAttrs];

for each matching tuple ts in Hsi do begin
add tr � ts to the result;

end
end

end

Figure 12.10 Hash join.

attributes. In the course of the indexed nested-loop join, the system uses this hash
index to retrieve records that match records in the probe input.

The build and probe phases require only a single pass through both the
build and probe inputs. It is straightforward to extend the hash-join algorithm to
compute general equi-joins.

The value nh must be chosen to be large enough such that, for each i , the tuples
in the partition si of the build relation, along with the hash index on the partition,
fit in memory. It is not necessary for the partitions of the probe relation to fit in
memory. Clearly, it is best to use the smaller input relation as the build relation. If
the size of the build relation is bs blocks, then, for each of the nh partitions to be of
size less than or equal to M, nh must be at least �bs/M�. More precisely stated, we
have to account for the extra space occupied by the hash index on the partition as
well, so nh should be correspondingly larger. For simplicity, we sometimes ignore
the space requirement of the hash index in our analysis.

12.5.5.2 Recursive Partitioning

If the value of nh is greater than or equal to the number of blocks of memory, the
relations cannot be partitioned in one pass, since there will not be enough buffer
blocks. Instead, partitioning has to be done in repeated passes. In one pass, the
input can be split into at most as many partitions as there are blocks available for
use as output buffers. Each bucket generated by one pass is separately read in and
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partitioned again in the next pass, to create smaller partitions. The hash function
used in a pass is, of course, different from the one used in the previous pass. The
system repeats this splitting of the input until each partition of the build input
fits in memory. Such partitioning is called recursive partitioning.

A relation does not need recursive partitioning if M > nh + 1, or equivalently
M > (bs/M) + 1, which simplifies (approximately) to M >

√
bs . For example,

consider a memory size of 12 megabytes, divided into 4-kilobyte blocks; it would
contain a total of 3K (3072) blocks. We can use a memory of this size to partition
relations of size up to 3K ∗ 3K blocks, which is 36 gigabytes. Similarly, a relation of
size 1 gigabyte requires just over

√
256K blocks, or 2 megabytes, to avoid recursive

partitioning.

12.5.5.3 Handling of Overflows

Hash-table overflow occurs in partition i of the build relation s if the hash index
on si is larger than main memory. Hash-table overflow can occur if there are
many tuples in the build relation with the same values for the join attributes, or
if the hash function does not have the properties of randomness and uniformity.
In either case, some of the partitions will have more tuples than the average,
whereas others will have fewer; partitioning is then said to be skewed.

We can handle a small amount of skew by increasing the number of parti-
tions so that the expected size of each partition (including the hash index on the
partition) is somewhat less than the size of memory. The number of partitions
is therefore increased by a small value, called the fudge factor, that is usually
about 20 percent of the number of hash partitions computed as described in
Section 12.5.5.

Even if, by using a fudge factor, we are conservative on the sizes of the par-
titions, overflows can still occur. Hash-table overflows can be handled by either
overflow resolution or overflow avoidance. Overflow resolution is performed during
the build phase, if a hash-index overflow is detected. Overflow resolution pro-
ceeds in this way: If si , for any i , is found to be too large, it is further partitioned
into smaller partitions by using a different hash function. Similarly, ri is also par-
titioned using the new hash function, and only tuples in the matching partitions
need to be joined.

In contrast, overflow avoidance performs the partitioning carefully, so that
overflows never occur during the build phase. In overflow avoidance, the build
relation s is initially partitioned into many small partitions, and then some par-
titions are combined in such a way that each combined partition fits in memory.
The probe relation r is partitioned in the same way as the combined partitions on
s, but the sizes of ri do not matter.

If a large number of tuples in s have the same value for the join attributes,
the resolution and avoidance techniques may fail on some partitions. In that case,
instead of creating an in-memory hash index and using a nested-loop join to join
the partitions, we can use other join techniques, such as block nested-loop join,
on those partitions.
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12.5.5.4 Cost of Hash Join

We now consider the cost of a hash join. Our analysis assumes that there is no
hash-table overflow. First, consider the case where recursive partitioning is not
required.

• The partitioning of the two relations r and s calls for a complete reading
of both relations, and a subsequent writing back of them. This operation
requires 2(br + bs) block transfers, where br and bs denote the number of
blocks containing records of relations r and s, respectively. The build and
probe phases read each of the partitions once, calling for further br + bs block
transfers. The number of blocks occupied by partitions could be slightly more
than br +bs , as a result of partially filled blocks. Accessing such partially filled
blocks can add an overhead of at most 2nh for each of the relations, since each
of the nh partitions could have a partially filled block that has to be written
and read back. Thus, a hash join is estimated to require:

3(br + bs) + 4nh

block transfers. The overhead 4nh is usually quite small compared to br + bs ,
and can be ignored.

• Assuming bb blocks are allocated for the input buffer and each output buffer,
partitioning requires a total of 2(�br/bb�+�bs/bb�) seeks. The build and probe
phases require only one seek for each of the nh partitions of each relation,
since each partition can be read sequentially. The hash join thus requires
2(�br/bb� + �bs/bb�) + 2nh seeks.

Now consider the case where recursive partitioning is required. Each pass
reduces the size of each of the partitions by an expected factor of M − 1; and
passes are repeated until each partition is of size at most M blocks. The expected
number of passes required for partitioning s is therefore �logM−1(bs) − 1�.

• Since, in each pass, every block of s is read in and written out, the total block
transfers for partitioning of s is 2bs�logM−1(bs) − 1�. The number of passes
for partitioning of r is the same as the number of passes for partitioning of s,
therefore the join is estimated to require:

2(br + bs)�logM−1(bs) − 1� + br + bs

block transfers.

• Again assuming bb blocks are allocated for buffering each partition, and
ignoring the relatively small number of seeks during the build and probe
phase, hash join with recursive partitioning requires:

2(�br/bb� + �bs/bb�)�logM−1(bs) − 1�
disk seeks.
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Consider, for example, the natural join takes � student . With a memory size
of 20 blocks, the student relation can be partitioned into five partitions, each of
size 20 blocks, which size will fit into memory. Only one pass is required for
the partitioning. The relation takes is similarly partitioned into five partitions,
each of size 80. Ignoring the cost of writing partially filled blocks, the cost is
3(100 + 400) = 1500 block transfers. There is enough memory to allocate 3 buffers
for the input and each of the 5 outputs during partitioning, leading to 2(�100/3�+
�400/3�) = 336 seeks.

The hash join can be improved if the main-memory size is large. When the
entire build input can be kept in main memory, nh can be set to 0; then, the hash-
join algorithm executes quickly, without partitioning the relations into temporary
files, regardless of the probe input’s size. The cost estimate goes down to br + bs
block transfers and two seeks.

12.5.5.5 Hybrid Hash Join

The hybrid hash-join algorithm performs another optimization; it is useful when
memory sizes are relatively large, but not all of the build relation fits in memory.
The partitioning phase of the hash-join algorithm needs a minimum of one block
of memory as a buffer for each partition that is created, and one block of memory
as an input buffer. To reduce the impact of seeks, a larger number of blocks would
be used as a buffer; let bb denote the number of blocks used as a buffer for the
input and for each partition. Hence, a total of (nh + 1) ∗ bb blocks of memory are
needed for partitioning the two relations. If memory is larger than (nh + 1) ∗ bb ,
we can use the rest of memory (M− (nh +1)∗bb blocks) to buffer the first partition
of the build input (that is, s0), so that it will not need to be written out and read
back in. Further, the hash function is designed in such a way that the hash index
on s0 fits in M − (nh + 1) ∗ bb blocks, in order that, at the end of partitioning of s,
s0 is completely in memory and a hash index can be built on s0.

When the system partitions r it again does not write tuples in r0 to disk;
instead, as it generates them, the system uses them to probe the memory-resident
hash index on s0, and to generate output tuples of the join. After they are used
for probing, the tuples can be discarded, so the partition r0 does not occupy any
memory space. Thus, a write and a read access have been saved for each block of
both r0 and s0. The system writes out tuples in the other partitions as usual, and
joins them later. The savings of hybrid hash join can be significant if the build
input is only slightly bigger than memory.

If the size of the build relation is bs , nh is approximately equal to bs/M. Thus,
hybrid hash join is most useful if M >> (bs/M) ∗ bb , or M >>

√
bs ∗ bb , where

the notation >> denotes much larger than. For example, suppose the block size is
4 kilobytes, the build relation size is 5 gigabytes, and bb is 20. Then, the hybrid
hash-join algorithm is useful if the size of memory is significantly more than 20
megabytes; memory sizes of gigabytes or more are common on computers today.
If we devote 1 gigabyte for the join algorithm, s0 would be nearly 1 gigabyte, and
hybrid hash join would be nearly 20 percent cheaper than hash join.
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12.5.6 Complex Joins

Nested-loop and block nested-loop joins can be used regardless of the join condi-
tions. The other join techniques are more efficient than the nested-loop join and
its variants, but can handle only simple join conditions, such as natural joins or
equi-joins. We can implement joins with complex join conditions, such as con-
junctions and disjunctions, by using the efficient join techniques, if we apply the
techniques developed in Section 12.3.3 for handling complex selections.

Consider the following join with a conjunctive condition:

r ��1∧�2∧···∧�n s

One or more of the join techniques described earlier may be applicable for joins
on the individual conditions r ��1 s, r ��2 s, r ��3 s, and so on. We can compute
the overall join by first computing the result of one of these simpler joins r ��i s;
each pair of tuples in the intermediate result consists of one tuple from r and one
from s. The result of the complete join consists of those tuples in the intermediate
result that satisfy the remaining conditions:

�1 ∧ · · · ∧ �i−1 ∧ �i+1 ∧ · · · ∧ �n

These conditions can be tested as tuples in r ��i s are being generated.
A join whose condition is disjunctive can be computed in this way. Consider:

r ��1∨�2∨···∨�n s

The join can be computed as the union of the records in individual joins r ��i s:

(r ��1 s) ∪ (r ��2 s) ∪ · · · ∪ (r ��n s)

Section 12.6 describes algorithms for computing the union of relations.

12.6 Other Operations

Other relational operations and extended relational operations—such as dupli-
cate elimination, projection, set operations, outer join, and aggregation—can be
implemented as outlined in Sections 12.6.1 through 12.6.5.

12.6.1 Duplicate Elimination

We can implement duplicate elimination easily by sorting. Identical tuples will
appear adjacent to each other as a result of sorting, and all but one copy can be
removed. With external sort–merge, duplicates found while a run is being created
can be removed before the run is written to disk, thereby reducing the number of
block transfers. The remaining duplicates can be eliminated during merging, and
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the final sorted run has no duplicates. The worst-case cost estimate for duplicate
elimination is the same as the worst-case cost estimate for sorting of the relation.

We can also implement duplicate elimination by hashing, as in the hash-join
algorithm. First, the relation is partitioned on the basis of a hash function on the
whole tuple. Then, each partition is read in, and an in-memory hash index is
constructed. While constructing the hash index, a tuple is inserted only if it is not
already present. Otherwise, the tuple is discarded. After all tuples in the partition
have been processed, the tuples in the hash index are written to the result. The cost
estimate is the same as that for the cost of processing (partitioning and reading
each partition) of the build relation in a hash join.

Because of the relatively high cost of duplicate elimination, SQL requires an
explicit request by the user to remove duplicates; otherwise, the duplicates are
retained.

12.6.2 Projection

We can implement projection easily by performing projection on each tuple, which
gives a relation that could have duplicate records, and then removing duplicate
records. Duplicates can be eliminated by the methods described in Section 12.6.1.
If the attributes in the projection list include a key of the relation, no duplicates
will exist; hence, duplicate elimination is not required. Generalized projection can
be implemented in the same way as projection.

12.6.3 Set Operations

We can implement the union, intersection, and set-difference operations by first
sorting both relations, and then scanning once through each of the sorted relations
to produce the result. In r ∪ s, when a concurrent scan of both relations reveals
the same tuple in both files, only one of the tuples is retained. The result of r ∩ s
will contain only those tuples that appear in both relations. We implement set
difference, r − s, similarly, by retaining tuples in r only if they are absent in s.

For all these operations, only one scan of the two sorted input relations is
required, so the cost is br + bs block transfers if the relations are sorted in the
same order. Assuming a worst case of one block buffer for each relation, a total
of br + bs disk seeks would be required in addition to br + bs block transfers. The
number of seeks can be reduced by allocating extra buffer blocks.

If the relations are not sorted initially, the cost of sorting has to be included.
Any sort order can be used in evaluation of set operations, provided that both
inputs have that same sort order.

Hashing provides another way to implement these set operations. The first
step in each case is to partition the two relations by the same hash function, and
thereby create the partitions r0, r1, . . . , rnh and s0, s1, . . . , snh . Depending on the
operation, the system then takes these steps on each partition i = 0, 1, . . . , nh :

• r ∪ s

1. Build an in-memory hash index on ri .
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2. Add the tuples in si to the hash index only if they are not already present.

3. Add the tuples in the hash index to the result.

• r ∩ s

1. Build an in-memory hash index on ri .

2. For each tuple in si , probe the hash index and output the tuple to the
result only if it is already present in the hash index.

• r − s

1. Build an in-memory hash index on ri .

2. For each tuple in si , probe the hash index, and, if the tuple is present in
the hash index, delete it from the hash index.

3. Add the tuples remaining in the hash index to the result.

12.6.4 Outer Join

Recall the outer-join operations described in Section 4.1.2. For example, the natural
left outer join takes � student contains the join of takes and student, and, in
addition, for each takes tuple t that has no matching tuple in student (that is,
where ID is not in student), the following tuple t1 is added to the result. For all
attributes in the schema of takes, tuple t1 has the same values as tuple t. The
remaining attributes (from the schema of student) of tuple t1 contain the value
null.

We can implement the outer-join operations by using one of two strategies:

1. Compute the corresponding join, and then add further tuples to the join
result to get the outer-join result. Consider the left outer-join operation and
two relations: r (R) and s(S). To evaluate r �� s, we first compute r �� s,
and save that result as temporary relation q1. Next, we compute r − �R(q1)
to obtain those tuples in r that do not participate in the theta join. We can use
any of the algorithms for computing the joins, projection, and set difference
described earlier to compute the outer joins. We pad each of these tuples
with null values for attributes from s, and add it to q1 to get the result of the
outer join.

The right outer-join operation r � � s is equivalent to s �� r , and can
therefore be implemented in a symmetric fashion to the left outer join. We
can implement the full outer-join operation r � � s by computing the join
r � s, and then adding the extra tuples of both the left and right outer-join
operations, as before.

2. Modify the join algorithms. It is easy to extend the nested-loop join algo-
rithms to compute the left outer join: Tuples in the outer relation that do not
match any tuple in the inner relation are written to the output after being
padded with null values. However, it is hard to extend the nested-loop join
to compute the full outer join.
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Natural outer joins and outer joins with an equi-join condition can be
computed by extensions of the merge-join and hash-join algorithms. Merge
join can be extended to compute the full outer join as follows: When the
merge of the two relations is being done, tuples in either relation that do not
match any tuple in the other relation can be padded with nulls and written
to the output. Similarly, we can extend merge join to compute the left and
right outer joins by writing out nonmatching tuples (padded with nulls)
from only one of the relations. Since the relations are sorted, it is easy to
detect whether or not a tuple matches any tuples from the other relation.
For example, when a merge join of takes and student is done, the tuples are
read in sorted order of ID, and it is easy to check, for each tuple, whether
there is a matching tuple in the other.

The cost estimates for implementing outer joins using the merge-join
algorithm are the same as are those for the corresponding join. The only
difference lies in size of the result, and therefore in the block transfers for
writing it out, which we did not count in our earlier cost estimates.

The extension of the hash-join algorithm to compute outer joins is left for
you to do as an exercise (Exercise 12.15).

12.6.5 Aggregation

Recall the aggregation function (operator), discussed in Section 3.7. For example,
the function

select dept name, avg (salary)
from instructor
group by dept name;

computes the average salary in each university department.
The aggregation operation can be implemented in the same way as duplicate

elimination. We use either sorting or hashing, just as we did for duplicate elimina-
tion, but based on the grouping attributes (branch name in the preceding example).
However, instead of eliminating tuples with the same value for the grouping at-
tribute, we gather them into groups, and apply the aggregation operations on
each group to get the result.

The cost estimate for implementing the aggregation operation is the same as
the cost of duplicate elimination, for aggregate functions such as min, max, sum,
count, and avg.

Instead of gathering all the tuples in a group and then applying the aggre-
gation operations, we can implement the aggregation operations sum, min, max,
count, and avg on the fly as the groups are being constructed. For the case of
sum, min, and max, when two tuples in the same group are found, the system
replaces them by a single tuple containing the sum, min, or max, respectively, of
the columns being aggregated. For the count operation, it maintains a running
count for each group for which a tuple has been found. Finally, we implement the
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avg operation by computing the sum and the count values on the fly, and finally
dividing the sum by the count to get the average.

If all tuples of the result fit in memory, both the sort-based and the hash-based
implementations do not need to write any tuples to disk. As the tuples are read
in, they can be inserted in a sorted tree structure or in a hash index. When we
use on-the-fly aggregation techniques, only one tuple needs to be stored for each
of the groups. Hence, the sorted tree structure or hash index fits in memory, and
the aggregation can be processed with just br block transfers (and 1 seek) instead
of the 3br transfers (and a worst case of up to 2br seeks) that would be required
otherwise.

12.7 Evaluation of Expressions

So far, we have studied how individual relational operations are carried out.
Now we consider how to evaluate an expression containing multiple operations.
The obvious way to evaluate an expression is simply to evaluate one operation
at a time, in an appropriate order. The result of each evaluation is materialized
in a temporary relation for subsequent use. A disadvantage to this approach
is the need to construct the temporary relations, which (unless they are small)
must be written to disk. An alternative approach is to evaluate several operations
simultaneously in a pipeline, with the results of one operation passed on to the
next, without the need to store a temporary relation.

In Sections 12.7.1 and 12.7.2, we consider both the materialization approach
and the pipelining approach. We shall see that the costs of these approaches can
differ substantially, but also that there are cases where only the materialization
approach is feasible.

12.7.1 Materialization

It is easiest to understand intuitively how to evaluate an expression by looking
at a pictorial representation of the expression in an operator tree. Consider the
expression:

�name(�building = “Watson”(department) � instructor )

in Figure 12.11.
If we apply the materialization approach, we start from the lowest-level op-

erations in the expression (at the bottom of the tree). In our example, there is
only one such operation: the selection operation on department. The inputs to the
lowest-level operations are relations in the database. We execute these operations
by the algorithms that we studied earlier, and we store the results in temporary
relations. We can use these temporary relations to execute the operations at the
next level up in the tree, where the inputs now are either temporary relations or
relations stored in the database. In our example, the inputs to the join are the in-
structor relation and the temporary relation created by the selection on department.
The join can now be evaluated, creating another temporary relation.
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Figure 12.11 Pictorial representation of an expression.

By repeating the process, we will eventually evaluate the operation at the root
of the tree, giving the final result of the expression. In our example, we get the
final result by executing the projection operation at the root of the tree, using as
input the temporary relation created by the join.

Evaluation as just described is called materialized evaluation, since the re-
sults of each intermediate operation are created (materialized) and then are used
for evaluation of the next-level operations.

The cost of a materialized evaluation is not simply the sum of the costs of
the operations involved. When we computed the cost estimates of algorithms,
we ignored the cost of writing the result of the operation to disk. To compute
the cost of evaluating an expression as done here, we have to add the costs of
all the operations, as well as the cost of writing the intermediate results to disk.
We assume that the records of the result accumulate in a buffer, and, when the
buffer is full, they are written to disk. The number of blocks written out, br , can
be estimated as nr/ fr , where nr is the estimated number of tuples in the result
relation r , and fr is the blocking factor of the result relation, that is, the number
of records of r that will fit in a block. In addition to the transfer time, some disk
seeks may be required, since the disk head may have moved between successive
writes. The number of seeks can be estimated as �br/bb� where bb is the size of
the output buffer (measured in blocks).

Double buffering (using two buffers, with one continuing execution of the
algorithm while the other is being written out) allows the algorithm to execute
more quickly by performing CPU activity in parallel with I/O activity. The number
of seeks can be reduced by allocating extra blocks to the output buffer, and writing
out multiple blocks at once.

12.7.2 Pipelining

We can improve query-evaluation efficiency by reducing the number of tem-
porary files that are produced. We achieve this reduction by combining several
relational operations into a pipeline of operations, in which the results of one op-
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eration are passed along to the next operation in the pipeline. Evaluation as just
described is called pipelined evaluation.

For example, consider the expression (�a1,a2(r � s)). If materialization were
applied, evaluation would involve creating a temporary relation to hold the result
of the join, and then reading back in the result to perform the projection. These
operations can be combined: When the join operation generates a tuple of its
result, it passes that tuple immediately to the project operation for processing. By
combining the join and the projection, we avoid creating the intermediate result,
and instead create the final result directly.

Creating a pipeline of operations can provide two benefits:

1. It eliminates the cost of reading and writing temporary relations, reducing
the cost of query evaluation.

2. It can start generating query results quickly, if the root operator of a query-
evaluation plan is combined in a pipeline with its inputs. This can be quite
useful if the results are displayed to a user as they are generated, since
otherwise there may be a long delay before the user sees any query results.

12.7.2.1 Implementation of Pipelining

We can implement a pipeline by constructing a single, complex operation that
combines the operations that constitute the pipeline. Although this approach may
be feasible for some frequently occurring situations, it is desirable in general to
reuse the code for individual operations in the construction of a pipeline.

In the example of Figure 12.11, all three operations can be placed in a pipeline,
which passes the results of the selection to the join as they are generated. In
turn, it passes the results of the join to the projection as they are generated. The
memory requirements are low, since results of an operation are not stored for long.
However, as a result of pipelining, the inputs to the operations are not available
all at once for processing.

Pipelines can be executed in either of two ways:

1. In a demand-driven pipeline, the system makes repeated requests for tuples
from the operation at the top of the pipeline. Each time that an operation
receives a request for tuples, it computes the next tuple (or tuples) to be
returned, and then returns that tuple. If the inputs of the operation are not
pipelined, the next tuple(s) to be returned can be computed from the input
relations, while the system keeps track of what has been returned so far. If it
has some pipelined inputs, the operation also makes requests for tuples from
its pipelined inputs. Using the tuples received from its pipelined inputs, the
operation computes tuples for its output, and passes them up to its parent.

2. In a producer-driven pipeline, operations do not wait for requests to pro-
duce tuples, but instead generate the tuples eagerly. Each operation in a
producer-driven pipeline is modeled as a separate process or thread within
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the system that takes a stream of tuples from its pipelined inputs and gen-
erates a stream of tuples for its output.

We describe below how demand-driven and producer-driven pipelines can be
implemented.

Each operation in a demand-driven pipeline can be implemented as an iter-
ator that provides the following functions: open(), next(), and close(). After a call
to open(), each call to next() returns the next output tuple of the operation. The
implementation of the operation in turn calls open() and next() on its inputs, to get
its input tuples when required. The function close() tells an iterator that no more
tuples are required. The iterator maintains the state of its execution in between
calls, so that successive next() requests receive successive result tuples.

For example, for an iterator implementing the select operation using linear
search, the open() operation starts a file scan, and the iterator’s state records the
point to which the file has been scanned. When the next() function is called, the file
scan continues from after the previous point; when the next tuple satisfying the
selection is found by scanning the file, the tuple is returned after storing the point
where it was found in the iterator state. A merge-join iterator’s open() operation
would open its inputs, and if they are not already sorted, it would also sort the
inputs. On calls to next(), it would return the next pair of matching tuples. The
state information would consist of up to where each input had been scanned.
Details of the implementation of iterators are left for you to complete in Practice
Exercise 12.7.

Producer-driven pipelines, on the other hand, are implemented in a different
manner. For each pair of adjacent operations in a producer-driven pipeline, the
system creates a buffer to hold tuples being passed from one operation to the
next. The processes or threads corresponding to different operations execute
concurrently. Each operation at the bottom of a pipeline continually generates
output tuples, and puts them in its output buffer, until the buffer is full. An
operation at any other level of a pipeline generates output tuples when it gets
input tuples from lower down in the pipeline, until its output buffer is full. Once
the operation uses a tuple from a pipelined input, it removes the tuple from its
input buffer. In either case, once the output buffer is full, the operation waits
until its parent operation removes tuples from the buffer, so that the buffer has
space for more tuples. At this point, the operation generates more tuples, until the
buffer is full again. The operation repeats this process until all the output tuples
have been generated.

It is necessary for the system to switch between operations only when an
output buffer is full, or an input buffer is empty and more input tuples are needed
to generate any more output tuples. In a parallel-processing system, operations
in a pipeline may be run concurrently on distinct processors (see Chapter 18).

Using producer-driven pipelining can be thought of as pushing data up
an operation tree from below, whereas using demand-driven pipelining can be
thought of as pulling data up an operation tree from the top. Whereas tuples
are generated eagerly in producer-driven pipelining, they are generated lazily,
on demand, in demand-driven pipelining. Demand-driven pipelining is used
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more commonly than producer-driven pipelining, because it is easier to imple-
ment. However, producer-driven pipelining is very useful in parallel processing
systems.

12.7.2.2 Evaluation Algorithms for Pipelining

Some operations, such as sorting, are inherently blocking operations, that is, they
may not be able to output any results until all tuples from their inputs have been
examined.5

Other operations, such as join, are not inherently blocking, but specific eval-
uation algorithms may be blocking. For example, the hash-join algorithm is a
blocking operation, since it requires both its inputs to be fully retrieved and parti-
tioned, before it outputs any tuples. On the other hand, the indexed nested loops
join algorithm can output result tuples as it gets tuples for the outer relation. It
is therefore said to be pipelined on its outer (left-hand side) relation, although it
is blocking on its indexed (right-hand side) input, since the index must be fully
constructed before the indexed nested-loop join algorithm can execute.

Hybrid hash join can be viewed as partially pipelined on the probe relation,
since it can output tuples from the first partition as tuples are received for the
probe relation. However, tuples that are not in the first partition will be output
only after the entire pipelined input relation is received. Hybrid hash join thus
provides pipelined evaluation on its probe input if the build input fits entirely in
memory, or nearly pipelined evaluation if most of the build input fits in memory.

If both inputs are sorted on the join attribute, and the join condition is an
equi-join, merge join can be used, with both its inputs pipelined.

However, in the more common case that the two inputs that we desire to
pipeline into the join are not already sorted, another alternative is the double-
pipelined join technique, shown in Figure 12.12. The algorithm assumes that the
input tuples for both input relations, r and s, are pipelined. Tuples made available
for both relations are queued for processing in a single queue. Special queue
entries, called Endr and Ends , which serve as end-of-file markers, are inserted in
the queue after all tuples from r and s (respectively) have been generated. For
efficient evaluation, appropriate indices should be built on the relations r and s.
As tuples are added to r and s, the indices must be kept up to date. When hash
indices are used on r and s, the resultant algorithm is called the double-pipelined
hash-join technique.

The double-pipelined join algorithm in Figure 12.12 assumes that both inputs
fit in memory. In case the two inputs are larger than memory, it is still possible to
use the double-pipelined join technique as usual until available memory is full.
When available memory becomes full, r and s tuples that have arrived up to that
point can be treated as being in partition r0 and s0, respectively. Tuples for r and s
that arrive subsequently are assigned to partitions r1 and s1, respectively, which

5Blocking operations such as sorting may be able to output tuples early if the input is known to satisfy some special
properties such as being sorted, or partially sorted, already. However, in the absence of such information, blocking
operations cannot output tuples early.
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doner := false;
dones := false;
r := ∅;
s := ∅;
result := ∅;
while not doner or not dones do

begin
if queue is empty, then wait until queue is not empty;
t := top entry in queue;
if t = End r then doner := true

else if t = End s then dones := true
else if t is from input r

then
begin

r := r ∪ {t};
result := result ∪ ({t} � s);

end
else /* t is from input s */

begin
s := s ∪ {t};
result := result ∪ (r � {t});

end
end

Figure 12.12 Double-pipelined join algorithm.

are written to disk, and are not added to the in-memory index. However, tuples
assigned to r1 and s1 are used to probe s0 and r0, respectively, before they are
written to disk. Thus, the join of r1 with s0, and s0 with r1, is also carried out in
a pipelined fashion. After r and s have been fully processed, the join of r1 tuples
with s1 tuples must be carried out, to complete the join; any of the join techniques
we have seen earlier can be used to join r1 with s1.

12.8 Summary

• The first action that the system must perform on a query is to translate the
query into its internal form, which (for relational database systems) is usually
based on the relational algebra. In the process of generating the internal form
of the query, the parser checks the syntax of the user’s query, verifies that the
relation names appearing in the query are names of relations in the database,
and so on. If the query was expressed in terms of a view, the parser replaces
all references to the view name with the relational-algebra expression to
compute the view.

• Given a query, there are generally a variety of methods for computing the
answer. It is the responsibility of the query optimizer to transform the query
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as entered by the user into an equivalent query that can be computed more
efficiently. Chapter 13 covers query optimization.

• We can process simple selection operations by performing a linear scan, or
by making use of indices. We can handle complex selections by computing
unions and intersections of the results of simple selections.

• We can sort relations larger than memory by the external sort–merge algo-
rithm.

• Queries involving a natural join may be processed in several ways, depending
on the availability of indices and the form of physical storage for the relations.

◦ If the join result is almost as large as the Cartesian product of the two
relations, a block nested-loop join strategy may be advantageous.

◦ If indices are available, the indexed nested-loop join can be used.

◦ If the relations are sorted, a merge join may be desirable. It may be advan-
tageous to sort a relation prior to join computation (so as to allow use of
the merge-join strategy).

◦ The hash-join algorithm partitions the relations into several pieces, such
that each piece of one of the relations fits in memory. The partitioning is
carried out with a hash function on the join attributes, so that correspond-
ing pairs of partitions can be joined independently.

• Duplicate elimination, projection, set operations (union, intersection, and
difference), and aggregation can be done by sorting or by hashing.

• Outer-join operations can be implemented by simple extensions of join algo-
rithms.

• Hashing and sorting are dual, in the sense that any operation such as du-
plicate elimination, projection, aggregation, join, and outer join that can be
implemented by hashing can also be implemented by sorting, and vice versa;
that is, any operation that can be implemented by sorting can also be imple-
mented by hashing.

• An expression can be evaluated by means of materialization, where the sys-
tem computes the result of each subexpression and stores it on disk, and then
uses it to compute the result of the parent expression.

• Pipelining helps to avoid writing the results of many subexpressions to disk,
by using the results in the parent expression even as they are being generated.

Review Terms

• Query processing
• Evaluation primitive
• Query-execution plan

• Query-evaluation plan
• Query-execution engine
• Measures of query cost
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• Sequential I/O

• Random I/O

• File scan
• Linear search
• Selections using indices
• Access paths
• Index scans
• Conjunctive selection
• Disjunctive selection
• Composite index
• Intersection of identifiers
• External sorting
• External sort–merge
• Runs
• N-way merge
• Equi-join
• Nested-loop join
• Block nested-loop join
• Indexed nested-loop join
• Merge join
• Sort-merge join
• Hybrid merge join
• Hash join

◦ Build

◦ Probe

◦ Build input

◦ Probe input

◦ Recursive partitioning

◦ Hash-table overflow

◦ Skew

◦ Fudge factor

◦ Overflow resolution

◦ Overflow avoidance

• Hybrid hash join
• Operator tree
• Materialized evaluation
• Double buffering
• Pipelined evaluation

◦ Demand-driven pipeline
(lazy, pulling)

◦ Producer-driven pipeline
(eager, pushing)

◦ Iterator

• Double-pipelined join

Practice Exercises

12.1 Assume (for simplicity in this exercise) that only one tuple fits in a block
and memory holds at most 3 blocks. Show the runs created on each pass
of the sort-merge algorithm, when applied to sort the following tuples on
the first attribute: (kangaroo, 17), (wallaby, 21), (emu, 1), (wombat, 13),
(platypus, 3), (lion, 8), (warthog, 4), (zebra, 11), (meerkat, 6), (hyena, 9),
(hornbill, 2), (baboon, 12).

12.2 Consider the bank database of Figure 12.13, where the primary keys are
underlined, and the following SQL query:

select T.branch name
from branch T, branch S
where T.assets > S.assets and S.branch city = “Brooklyn”
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Write an efficient relational-algebra expression that is equivalent to this
query. Justify your choice.

12.3 Let relations r1(A, B, C) and r2(C, D, E) have the following properties: r1
has 20,000 tuples, r2 has 45,000 tuples, 25 tuples of r1 fit on one block, and
30 tuples of r2 fit on one block. Estimate the number of block transfers and
seeks required, using each of the following join strategies for r1 � r2:

a. Nested-loop join.

b. Block nested-loop join.

c. Merge join.

d. Hash join.

12.4 The indexed nested-loop join algorithm described in Section 12.5.3 can be
inefficient if the index is a secondary index, and there are multiple tuples
with the same value for the join attributes. Why is it inefficient? Describe
a way, using sorting, to reduce the cost of retrieving tuples of the inner
relation. Under what conditions would this algorithm be more efficient
than hybrid merge join?

12.5 Let r and s be relations with no indices, and assume that the relations
are not sorted. Assuming infinite memory, what is the lowest-cost way
(in terms of I/O operations) to compute r � s? What is the amount of
memory required for this algorithm?

12.6 Consider the bank database of Figure 12.13, where the primary keys are
underlined. Suppose that a B+-tree index on branch city is available on
relation branch, and that no other index is available. List different ways to
handle the following selections that involve negation:

a. �¬(branch city<“Brooklyn”)(branch)

b. �¬(branch city=“Brooklyn”)(branch)

c. �¬(branch city<“Brooklyn” ∨ assets<5000)(branch)

12.7 Write pseudocode for an iterator that implements indexed nested-loop
join, where the outer relation is pipelined. Your pseudocode must define

branch(branch name, branch city, assets)
customer (customer name, customer street, customer city)
loan (loan number, branch name, amount)
borrower (customer name, loan number)
account (account number, branch name, balance)
depositor (customer name, account number)

Figure 12.13 Banking database.
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the standard iterator functions open(), next(), and close(). Show what state
information the iterator must maintain between calls.

12.8 Design sort-based and hash-based algorithms for computing the relational
division operation (see Practise Exercises of Chapter 6 for a definition of
the division operation).

12.9 What is the effect on the cost of merging runs if the number of buffer
blocks per run is increased, while keeping overall memory available for
buffering runs fixed?

Exercises

12.10 Suppose you need to sort a relation of 40 gigabytes, with 4 kilobyte blocks,
using a memory size of 40 megabytes. Suppose the cost of a seek is 5
milliseconds, while the disk transfer rate is 40 megabytes per second.

a. Find the cost of sorting the relation, in seconds, with bb = 1 and with
bb = 100.

b. In each case, how many merge passes are required?

c. Suppose a flash storage device is used instead of a disk, and it has a
seek time of 1 microsecond, and a transfer rate of 40 megabytes per
second. Recompute the cost of sorting the relation, in seconds, with
bb = 1 and with bb = 100, in this setting.

12.11 Consider the following extended relational-algebra operators. Describe
how to implement each operation using sorting, and using hashing.

a. Semijoin (��): r �� s is defined as �R(r �� s), where R is the set of
attributes in the schema of r ; that it it selects those tuples ri in r for
which there is a tuple s j in s such that ri and s j satisfy predicate �.

b. Anti-semijoin (�̄�): r�̄�s is defined as r −�R(r �� s); that it it selects
those tuples ri in r for which there is no tuple s j in s such that ri and
s j satisfy predicate �.

12.12 Why is it not desirable to force users to make an explicit choice of a query-
processing strategy? Are there cases in which it is desirable for users to
be aware of the costs of competing query-processing strategies? Explain
your answer.

12.13 Design a variant of the hybrid merge-join algorithm for the case where
both relations are not physically sorted, but both have a sorted secondary
index on the join attributes.

12.14 Estimate the number of block transfers and seeks required by your solu-
tion to Exercise 12.13 for r1 � r2, where r1 and r2 are as defined in Practice
Exercise 12.3.
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12.15 The hash-join algorithm as described in Section 12.5.5 computes the nat-
ural join of two relations. Describe how to extend the hash-join algorithm
to compute the natural left outer join, the natural right outer join and the
natural full outer join. (Hint: Keep extra information with each tuple in the
hash index, to detect whether any tuple in the probe relation matches the
tuple in the hash index.) Try out your algorithm on the takes and student
relations.

12.16 Pipelining is used to avoid writing intermediate results to disk. Suppose
you need to sort relation r using sort–merge and merge-join the result
with an already sorted relation s.

a. Describe how the output of the sort of r can be pipelined to the
merge join without being written back to disk.

b. The same idea is applicable even if both inputs to the merge join
are the outputs of sort–merge operations. However, the available
memory has to be shared between the two merge operations (the
merge-join algorithm itself needs very little memory). What is the
effect of having to share memory on the cost of each sort–merge
operation?

12.17 Write pseudocode for an iterator that implements a version of the sort
–merge algorithm where the result of the final merge is pipelined to its
consumers. Your pseudocode must define the standard iterator functions
open(), next(), and close(). Show what state information the iterator must
maintain between calls.

12.18 Suppose you have to compute AGsum(C)(r ) as well as A,BGsum(C)(r ). Describe
how to compute these together using a single sorting of r .

Bibliographical Notes

A query processor must parse statements in the query language, and must trans-
late them into an internal form. Parsing of query languages differs little from pars-
ing of traditional programming languages. Most compiler texts cover the main
parsing techniques, and present optimization from a programming-language
point of view.

Graefe and McKenna [1993b] presents an excellent survey of query-evaluation
techniques.

Knuth [1973] presents an excellent description of external sorting algorithms,
including an optimization called replacement selection, which can create initial runs
that are (on the average) twice the size of memory. Nyberg et al. [1995] shows
that due to poor processor-cache behavior, replacement selection performs worse
than in-memory quicksort for run generation, negating the benefits of generating
longer runs. Nyberg et al. [1995] presents an efficient external sorting algorithm
that takes processor cache effects into account. Query evaluation algorithms that
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take cache effects into account have been extensively studied; see, for example,
Harizopoulos and Ailamaki [2004].

According to performance studies conducted in the mid-1970s, database sys-
tems of that period used only nested-loop join and merge join. These studies,
including Blasgen and Eswaran [1976], which was related to the development
of System R, determined that either the nested-loop join or merge join nearly
always provided the optimal join method. Hence, these two were the only join
algorithms implemented in System R. However, Blasgen and Eswaran [1976] did
not include an analysis of hash-join algorithms. Today, hash joins are considered
to be highly efficient and widely used.

Hash-join algorithms were initially developed for parallel database systems.
Hybrid hash join is described in Shapiro [1986]. Zeller and Gray [1990] and
Davison and Graefe [1994] describe hash-join techniques that can adapt to the
available memory, which is important in systems where multiple queries may be
running at the same time. Graefe et al. [1998] describes the use of hash joins and
hash teams, which allow pipelining of hash joins by using the same partitioning
for all hash joins in a pipeline sequence, in the Microsoft SQL Server.



C H A P T E R13
Query Optimization

Query optimization is the process of selecting the most efficient query-evaluation
plan from among the many strategies usually possible for processing a given
query, especially if the query is complex. We do not expect users to write their
queries so that they can be processed efficiently. Rather, we expect the system to
construct a query-evaluation plan that minimizes the cost of query evaluation.
This is where query optimization comes into play.

One aspect of optimization occurs at the relational-algebra level, where the
system attempts to find an expression that is equivalent to the given expression,
but more efficient to execute. Another aspect is selecting a detailed strategy for
processing the query, such as choosing the algorithm to use for executing an
operation, choosing the specific indices to use, and so on.

The difference in cost (in terms of evaluation time) between a good strategy
and a bad strategy is often substantial, and may be several orders of magnitude.
Hence, it is worthwhile for the system to spend a substantial amount of time
on the selection of a good strategy for processing a query, even if the query is
executed only once.

13.1 Overview

Consider the following relational-algebra expression, for the query “Find the
names of all instructors in the Music department together with the course title of
all the courses that the instructors teach.”

�name,title (�dept name = “Music” (instructor � (teaches � �course id ,title (course))))

Note that the projection of course on (course id,title) is required since course shares
an attribute dept name with instructor; if we did not remove this attribute using the
projection, the above expression using natural joins would return only courses
from the Music department, even if some Music department instructors taught
courses in other departments.

The above expression constructs a large intermediate relation, instructor �

teaches � �course id ,title(course). However, we are interested in only a few tuples

579
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name, title

dept_name = Music

course_id, title
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course course
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∏ ∏
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name, title
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σdept_name = Music

(a) Initial expression tree                            (b) Transformed expression tree

Figure 13.1 Equivalent expressions.

of this relation (those pertaining to instructors in the Music department), and in
only two of the ten attributes of this relation. Since we are concerned with only
those tuples in the instructor relation that pertain to the Music department, we
do not need to consider those tuples that do not have dept name = “Music”. By
reducing the number of tuples of the instructor relation that we need to access,
we reduce the size of the intermediate result. Our query is now represented by
the relational-algebra expression:

�name,title ((�dept name = “Music” (instructor )) � (teaches � �course id ,title(course)))

which is equivalent to our original algebra expression, but which generates
smaller intermediate relations. Figure 13.1 depicts the initial and transformed
expressions.

An evaluation plan defines exactly what algorithm should be used for each
operation, and how the execution of the operations should be coordinated. Fig-
ure 13.2 illustrates one possible evaluation plan for the expression from Fig-
ure 13.1(b). As we have seen, several different algorithms can be used for each
relational operation, giving rise to alternative evaluation plans. In the figure, hash
join has been chosen for one of the join operations, while the other uses merge
join, after sorting the relations on the join attribute, which is ID. Where edges
are marked as pipelined, the output of the producer is pipelined directly to the
consumer, without being written out to disk.

Given a relational-algebra expression, it is the job of the query optimizer to
come up with a query-evaluation plan that computes the same result as the given
expression, and is the least-costly way of generating the result (or, at least, is not
much costlier than the least-costly way).

To find the least-costly query-evaluation plan, the optimizer needs to gener-
ate alternative plans that produce the same result as the given expression, and to
choose the least-costly one. Generation of query-evaluation plans involves three
steps: (1) generating expressions that are logically equivalent to the given ex-
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Figure 13.2 An evaluation plan.

pression, (2) annotating the resultant expressions in alternative ways to generate
alternative query-evaluation plans, and (3) estimating the cost of each evaluation
plan, and choosing the one whose estimated cost is the least.

Steps (1), (2), and (3) are interleaved in the query optimizer—some expres-
sions are generated, and annotated to generate evaluation plans, then further
expressions are generated and annotated, and so on. As evaluation plans are
generated, their costs are estimated by using statistical information about the
relations, such as relation sizes and index depths.

To implement the first step, the query optimizer must generate expressions
equivalent to a given expression. It does so by means of equivalence rules that spec-
ify how to transform an expression into a logically equivalent one. We describe
these rules in Section 13.2.

In Section 13.3 we describe how to estimate statistics of the results of each op-
eration in a query plan. Using these statistics with the cost formulae in Chapter 12
allows us to estimate the costs of individual operations. The individual costs are
combined to determine the estimated cost of evaluating a given relational-algebra
expression, as outlined earlier in Section 12.7.

In Section 13.4, we describe how to choose a query-evaluation plan. We can
choose one based on the estimated cost of the plans. Since the cost is an estimate,
the selected plan is not necessarily the least-costly plan; however, as long as the
estimates are good, the plan is likely to be the least-costly one, or not much more
costly than it.

Finally, materialized views help to speed up processing of certain queries. In
Section 13.5, we study how to “maintain” materialized views—that is, to keep
them up-to-date—and how to perform query optimization with materialized
views.
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VIEWING QUERY EVALUATION PLANS

Most database systems provide a way to view the evaluation plan chosen to
execute a given query. It is usually best to use the GUI provided with the database
system to view evaluation plans. However, if you use a command line interface,
many databases support variations of a command “explain <query>”, which
displays the execution plan chosen for the specified query <query>. The exact
syntax varies with different databases:

• PostgreSQL uses the syntax shown above.

• Oracle uses the syntax explain plan for. However, the command stores the
resultant plan in a table called plan table, instead of displaying it. The query
“select * from table(dbms xplan.display);” displays the stored plan.

• DB2 follows a similar approach to Oracle, but requires the program db2exfmt
to be executed to display the stored plan.

• SQL Server requires the command set showplan text on to be executed
before submitting the query; then, when a query is submitted, instead of
executing the query, the evaluation plan is displayed.

The estimated costs for the plan are also displayed along with the plan. It is
worth noting that the costs are usually not in any externally meaningful unit,
such as seconds or I/O operations, but rather in units of whatever cost model the
optimizer uses. Some optimizers such as PostgreSQL display two cost-estimate
numbers; the first indicates the estimated cost for outputting the first result, and
the second indicates the estimated cost for outputting all results.

13.2 Transformation of Relational Expressions

A query can be expressed in several different ways, with different costs of eval-
uation. In this section, rather than take the relational expression as given, we
consider alternative, equivalent expressions.

Two relational-algebra expressions are said to be equivalent if, on every legal
database instance, the two expressions generate the same set of tuples. (Recall that
a legal database instance is one that satisfies all the integrity constraints specified
in the database schema.) Note that the order of the tuples is irrelevant; the two
expressions may generate the tuples in different orders, but would be considered
equivalent as long as the set of tuples is the same.

In SQL, the inputs and outputs are multisets of tuples, and the multiset version
of the relational algebra (described in the box in page 238) is used for evaluating
SQL queries. Two expressions in the multiset version of the relational algebra are
said to be equivalent if on every legal database the two expressions generate the
same multiset of tuples. The discussion in this chapter is based on the relational



13.2 Transformation of Relational Expressions 583

θ

E1 E2

θ

E2 E1

Rule 5

E3

E1 E2 E2 E3

E1

Rule 6.a

Rule 7.a

If    only has
attributes from E1

E1 E2 E1

E2

σθ

σθ
θ

Figure 13.3 Pictorial representation of equivalences.

algebra. We leave extensions to the multiset version of the relational algebra to
you as exercises.

13.2.1 Equivalence Rules

An equivalence rule says that expressions of two forms are equivalent. We can
replace an expression of the first form by an expression of the second form, or vice
versa—that is, we can replace an expression of the second form by an expression
of the first form—since the two expressions generate the same result on any
valid database. The optimizer uses equivalence rules to transform expressions
into other logically equivalent expressions.

We now list a number of general equivalence rules on relational-algebra
expressions. Some of the equivalences listed appear in Figure 13.3. We use �, �1, �2,
and so on to denote predicates, L1, L2, L3, and so on to denote lists of attributes,
and E, E1, E2, and so on to denote relational-algebra expressions. A relation
name r is simply a special case of a relational-algebra expression, and can be used
wherever E appears.

1. Conjunctive selection operations can be deconstructed into a sequence of
individual selections. This transformation is referred to as a cascade of �.

��1∧�2 (E) = ��1 (��2 (E))
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2. Selection operations are commutative.

��1 (��2 (E)) = ��2 (��1 (E))

3. Only the final operations in a sequence of projection operations are needed;
the others can be omitted. This transformation can also be referred to as a
cascade of �.

�L1 (�L2 (. . . (�Ln (E)) . . .)) = �L1 (E)

4. Selections can be combined with Cartesian products and theta joins.

a. ��(E1 × E2) = E1 �� E2

This expression is just the definition of the theta join.

b. ��1 (E1 ��2 E2) = E1 ��1∧�2 E2

5. Theta-join operations are commutative.

E1 �� E2 = E2 �� E1

Actually, the order of attributes differs between the left-hand side and right-
hand side, so the equivalence does not hold if the order of attributes is taken
into account. A projection operation can be added to one of the sides of the
equivalence to appropriately reorder attributes, but for simplicity we omit
the projection and ignore the attribute order in most of our examples.

Recall that the natural-join operator is simply a special case of the
theta-join operator; hence, natural joins are also commutative.

6. a. Natural-join operations are associative.

(E1 � E2) � E3 = E1 � (E2 � E3)

b. Theta joins are associative in the following manner:

(E1 ��1 E2) ��2∧�3 E3 = E1 ��1∧�3 (E2 ��2 E3)

where �2 involves attributes from only E2 and E3. Any of these condi-
tions may be empty; hence, it follows that the Cartesian product (×)
operation is also associative. The commutativity and associativity of
join operations are important for join reordering in query optimization.

7. The selection operation distributes over the theta-join operation under the
following two conditions:

a. It distributes when all the attributes in selection condition �0 involve
only the attributes of one of the expressions (say, E1) being joined.

��0 (E1 �� E2) = (��0 (E1)) �� E2



13.2 Transformation of Relational Expressions 585

b. It distributes when selection condition �1 involves only the attributes
of E1 and �2 involves only the attributes of E2.

��1∧�2 (E1 �� E2) = (��1 (E1)) �� (��2 (E2))

8. The projection operation distributes over the theta-join operation under the
following conditions.

a. Let L1 and L2 be attributes of E1 and E2, respectively. Suppose that
the join condition � involves only attributes in L1 ∪ L2. Then,

�L1∪L2 (E1 �� E2) = (�L1 (E1)) �� (�L2 (E2))

b. Consider a join E1 �� E2. Let L1 and L2 be sets of attributes from E1
and E2, respectively. Let L3 be attributes of E1 that are involved in join
condition �, but are not in L1 ∪ L2, and let L4 be attributes of E2 that
are involved in join condition �, but are not in L1 ∪ L2. Then,

�L1∪L2 (E1 �� E2) = �L1∪L2 ((�L1∪L3 (E1)) �� (�L2∪L4 (E2)))

9. The set operations union and intersection are commutative.

E1 ∪ E2 = E2 ∪ E1

E1 ∩ E2 = E2 ∩ E1

Set difference is not commutative.

10. Set union and intersection are associative.

(E1 ∪ E2) ∪ E3 = E1 ∪ (E2 ∪ E3)

(E1 ∩ E2) ∩ E3 = E1 ∩ (E2 ∩ E3)

11. The selection operation distributes over the union, intersection, and set-
difference operations.

�P (E1 − E2) = �P (E1) − �P (E2)

Similarly, the preceding equivalence, with − replaced with either ∪ or ∩,
also holds. Further:

�P (E1 − E2) = �P (E1) − E2

The preceding equivalence, with − replaced by ∩, also holds, but does not
hold if − is replaced by ∪.

12. The projection operation distributes over the union operation.

�L (E1 ∪ E2) = (�L(E1)) ∪ (�L (E2))
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This is only a partial list of equivalences. More equivalences involving ex-
tended relational operators, such as the outer join and aggregation, are discussed
in the exercises.

13.2.2 Examples of Transformations

We now illustrate the use of the equivalence rules. We use our university example
with the relation schemas:

instructor(ID, name, dept name, salary)
teaches(ID, course id, sec id, semester, year)
course(course id, title, dept name, credits)

In our example in Section 13.1, the expression:

�name,title (�dept name = “Music” (instructor � (teaches � �course id ,title (course))))

was transformed into the following expression:

�name,title ((�dept name = “Music” (instructor )) � (teaches � �course id ,title(course)))

which is equivalent to our original algebra expression, but generates smaller
intermediate relations. We can carry out this transformation by using rule 7.a.
Remember that the rule merely says that the two expressions are equivalent; it
does not say that one is better than the other.

Multiple equivalence rules can be used, one after the other, on a query or on
parts of the query. As an illustration, suppose that we modify our original query
to restrict attention to instructors who have taught a course in 2009. The new
relational-algebra query is:

�name,title (�dept name = “Music” ∧ year = 2009
(instructor � (teaches � �course id ,title (course))))

We cannot apply the selection predicate directly to the instructor relation, since the
predicate involves attributes of both the instructor and teaches relations. However,
we can first apply rule 6.a (associativity of natural join) to transform the join
instructor � (teaches � �course id ,title (course)) into (instructor � teaches) �

�course id ,title (course):

�name,title (�dept name = “Music” ∧ year = 2009
((instructor � teaches) � �course id ,title (course)))

Then, using rule 7.a, we can rewrite our query as:
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�name,title ((�dept name = “Music” ∧ year = 2009
(instructor � teaches)) � �course id ,title (course))

Let us examine the selection subexpression within this expression. Using
rule 1, we can break the selection into two selections, to get the following subex-
pression:

�dept name = “Music” (�year = 2009 (instructor � teaches))

Both of the preceding expressions select tuples with dept name = “Music”
and course id = 2009. However, the latter form of the expression provides a new
opportunity to apply Rule 7.a (“perform selections early”), resulting in the subex-
pression:

�dept name = “Music” (instructor ) � �year = 2009 (teaches)

Figure 13.4 depicts the initial expression and the final expression after all
these transformations. We could equally well have used rule 7.b to get the final
expression directly, without using rule 1 to break the selection into two selections.
In fact, rule 7.b can itself be derived from rules 1 and 7.a.

A set of equivalence rules is said to be minimal if no rule can be derived from
any combination of the others. The preceding example illustrates that the set of
equivalence rules in Section 13.2.1 is not minimal. An expression equivalent to the
original expression may be generated in different ways; the number of different
ways of generating an expression increases when we use a nonminimal set of
equivalence rules. Query optimizers therefore use minimal sets of equivalence
rules.

Now consider the following form of our example query:

name, title name, title

course_id, title

∏

∏

dept_name = Music
∧ year = 2009

σ

instructor

teaches

course

course_id, title

∏

∏

dept_name = Music year = 2009σ σ

instructor teaches course

(a) Initial expression tree (b) Tree after multiple transformations

Figure 13.4 Multiple transformations.
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�name,title ((�dept name = “Music” (instructor ) � teaches) � �course id ,title (course))

When we compute the subexpression:

(�dept name = “Music” (instructor ) � teaches)

we obtain a relation whose schema is:

(ID, name, dept name, salary, course id, sec id, semester, year)

We can eliminate several attributes from the schema by pushing projections based
on equivalence rules 8.a and 8.b. The only attributes that we must retain are those
that either appear in the result of the query or are needed to process subsequent
operations. By eliminating unneeded attributes, we reduce the number of columns
of the intermediate result. Thus, we reduce the size of the intermediate result. In
our example, the only attributes we need from the join of instructor and teaches
are name and course id. Therefore, we can modify the expression to:

�name,title ((�name,course id ((�dept name = “Music” (instructor )) � teaches)
� �course id ,title(course))

The projection �name,course id reduces the size of the intermediate join results.

13.2.3 Join Ordering

A good ordering of join operations is important for reducing the size of temporary
results; hence, most query optimizers pay a lot of attention to the join order. As
mentioned in Chapter 6 and in equivalence rule 6.a, the natural-join operation is
associative. Thus, for all relations r1, r2, and r3:

(r1 � r2) � r3 = r1 � (r2 � r3)

Although these expressions are equivalent, the costs of computing them may
differ. Consider again the expression:

�name,title ((�dept name = “Music” (instructor )) � teaches � �course id ,title (course))

We could choose to compute teaches � �course id ,title (course) first, and then to join
the result with:

�dept name = “Music” (instructor )

However, teaches � �course id ,title (course) is likely to be a large relation, since
it contains one tuple for every course taught. In contrast:

�dept name = “Music” (instructor ) � teaches
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is probably a small relation. To see that it is, we note that, since a university
has a large number of departments, it is likely that only a small fraction of
the university instructors are associated with the Music department. Thus, the
preceding expression results in one tuple for each course taught by an instructor
in the Music department. Therefore, the temporary relation that we must store is
smaller than it would have been had we computed teaches � �course id ,title (course)
first.

There are other options to consider for evaluating our query. We do not care
about the order in which attributes appear in a join, since it is easy to change the
order before displaying the result. Thus, for all relations r1 and r2:

r1 � r2 = r2 � r1

That is, natural join is commutative (equivalence rule 5).
Using the associativity and commutativity of the natural join (rules 5 and 6),

consider the following relational-algebra expression:

(instructor � �course id ,title(course)) � teaches

Note that there are no attributes in common between �course id ,title (course) and
instructor, so the join is just a Cartesian product. If there are a tuples in instructor
and b tuples in �course id ,title (course), this Cartesian product generates a ∗ b tuples,
one for every possible pair of instructor tuple and course (without regard for
whether the instructor taught the course). This Cartesian product would produce
a very large temporary relation. However, if the user had entered the preceding
expression, we could use the associativity and commutativity of the natural join
to transform this expression to the more efficient expression:

(instructor � teaches) � �course id ,title (course)

13.2.4 Enumeration of Equivalent Expressions

Query optimizers use equivalence rules to systematically generate expressions
equivalent to the given query expression. Conceptually, this can be done as out-
lined in Figure 13.5. The process proceeds as follows. Given a query expression E ,
the set of equivalent expressions EQ initially contains only E . Now, each expres-
sion in EQ is matched with each equivalence rule. If an expression, say Ei , of any
subexpression ei of Ei (which could, as a special case, be Ei itself) matches one
side of an equivalence rule, the optimizer generates a new expression where ei is
transformed to match the other side of the rule. The resultant expression is added
to EQ. This process continues until no more new expressions can be generated.

The preceding process is extremely costly both in space and in time, but
optimizers can greatly reduce both the space and time cost, using two key ideas.

1. If we generate an expression E ′ from an expression E1 by using an equiva-
lence rule on subexpression ei , then E ′ and E1 have identical subexpressions



590 Chapter 13 Query Optimization

procedure genAllEquivalent(E)
EQ = {E}
repeat

Match each expression Ei in EQ with each equivalence rule Rj
if any subexpression ei of Ei matches one side of Rj

Create a new expression E ′ which is identical to Ei , except that
ei is transformed to match the other side of Rj

Add E ′ to EQ if it is not already present in EQ
until no new expression can be added to EQ

Figure 13.5 Procedure to generate all equivalent expressions.

except for ei and its transformation. Even ei and its transformed version usu-
ally share many identical subexpressions. Expression-representation tech-
niques that allow both expressions to point to shared subexpressions can
reduce the space requirement significantly.

2. It is not always necessary to generate every expression that can be generated
with the equivalence rules. If an optimizer takes cost estimates of evaluation
into account, it may be able to avoid examining some of the expressions, as
we shall see in Section 13.4. We can reduce the time required for optimization
by using techniques such as these.

We revisit these issues in Section 13.4.2.

13.3 Estimating Statistics of Expression Results

The cost of an operation depends on the size and other statistics of its inputs.
Given an expression such as a � (b � c) to estimate the cost of joining a with
(b � c), we need to have estimates of statistics such as the size of b � c.

In this section, we first list some statistics about database relations that are
stored in database-system catalogs, and then show how to use the statistics to
estimate statistics on the results of various relational operations.

One thing that will become clear later in this section is that the estimates
are not very accurate, since they are based on assumptions that may not hold
exactly. A query-evaluation plan that has the lowest estimated execution cost
may therefore not actually have the lowest actual execution cost. However, real-
world experience has shown that even if estimates are not precise, the plans with
the lowest estimated costs usually have actual execution costs that are either the
lowest actual execution costs, or are close to the lowest actual execution costs.

13.3.1 Catalog Information

The database-system catalog stores the following statistical information about
database relations:
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• nr , the number of tuples in the relation r.

• br , the number of blocks containing tuples of relation r .

• lr , the size of a tuple of relation r in bytes.

• fr , the blocking factor of relation r —that is, the number of tuples of relation
r that fit into one block.

• V(A, r ), the number of distinct values that appear in the relation r for attribute
A. This value is the same as the size of �A(r ). If Ais a key for relation r , V(A, r )
is nr .

The last statistic, V(A, r ), can also be maintained for sets of attributes, if desired,
instead of just for individual attributes. Thus, given a set of attributes, A, V(A, r )
is the size of �A(r ).

If we assume that the tuples of relation r are stored together physically in a
file, the following equation holds:

br =
⌈

nr

fr

⌉

Statistics about indices, such as the heights of B+-tree indices and number of leaf
pages in the indices, are also maintained in the catalog.

If we wish to maintain accurate statistics, then, every time a relation is modi-
fied, we must also update the statistics. This update incurs a substantial amount
of overhead. Therefore, most systems do not update the statistics on every mod-
ification. Instead, they update the statistics during periods of light system load.
As a result, the statistics used for choosing a query-processing strategy may not
be completely accurate. However, if not too many updates occur in the intervals
between the updates of the statistics, the statistics will be sufficiently accurate to
provide a good estimation of the relative costs of the different plans.

The statistical information noted here is simplified. Real-world optimizers
often maintain further statistical information to improve the accuracy of their cost
estimates of evaluation plans. For instance, most databases store the distribution
of values for each attribute as a histogram: in a histogram the values for the
attribute are divided into a number of ranges, and with each range the histogram
associates the number of tuples whose attribute value lies in that range. Figure 13.6
shows an example of a histogram for an integer-valued attribute that takes values
in the range 1 to 25.

Histograms used in database systems usually record the number of distinct
values in each range, in addition to the number of tuples with attribute values in
that range.

As an example of a histogram, the range of values for an attribute age of a re-
lation person could be divided into 0–9, 10–19, . . . , 90–99 (assuming a maximum
age of 99). With each range we store a count of the number of person tuples whose
age values lie in that range, and the number of distinct age values that lie in that
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Figure 13.6 Example of histogram.

range. Without such histogram information, an optimizer would have to assume
that the distribution of values is uniform; that is, each range has the same count.

A histogram takes up only a little space, so histograms on several different at-
tributes can be stored in the system catalog. There are several types of histograms
used in database systems. For example, an equi-width histogram divides the
range of values into equal-sized ranges, whereas an equi-depth histogram ad-
justs the boundaries of the ranges such that each range has the same number of
values.

13.3.2 Selection Size Estimation

The size estimate of the result of a selection operation depends on the selection
predicate. We first consider a single equality predicate, then a single comparison
predicate, and finally combinations of predicates.

• �A= a (r ): If we assume uniform distribution of values (that is, each value ap-
pears with equal probability), the selection result can be estimated to have
nr/V(A, r ) tuples, assuming that the value a appears in attribute A of some
record of r . The assumption that the value a in the selection appears in some
record is generally true, and cost estimates often make it implicitly. However,
it is often not realistic to assume that each value appears with equal prob-
ability. The course id attribute in the takes relation is an example where the
assumption is not valid. It is reasonable to expect that a popular undergradu-
ate course will have many more students than a smaller specialized graduate
course. Therefore, certain course id values appear with greater probability
than do others. Despite the fact that the uniform-distribution assumption is
often not correct, it is a reasonable approximation of reality in many cases,
and it helps us to keep our presentation relatively simple.

If a histogram is available on attribute A, we can locate the range that
contains the value a , and modify the above-mentioned estimate nr/V(A, r )
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COMPUTING AND MAINTAINING STATISTICS

Conceptually, statistics on relations can be thought of as materialized views,
which should be automatically maintained when relations are modified. Unfor-
tunately, keeping statistics up-to-date on every insert, delete or update to the
database can be very expensive. On the other hand, optimizers generally do not
need exact statistics: an error of a few percent may result in a plan that is not
quite optimal being chosen, but the alternative plan chosen is likely to have a
cost which is within a few percent of the optimal cost. Thus, it is acceptable to
have statistics that are approximate.

Database systems reduce the cost of generating and maintaining statistics, as
outlined below, by exploiting the fact that statistics can be approximate.

• Statistics are often computed from a sample of the underlying data, instead
of examining the entire collection of data. For example, a fairly accurate
histogram can be computed from a sample of a few thousand tuples, even
on a relation that has millions, or hundreds of millions of records. However,
the sample used must be a random sample; a sample that is not random
may have an excessive representation of one part of the relation, and can
give misleading results. For example, if we used a sample of instructors to
compute a histogram on salaries, if the sample has an overrepresentation
of lower-paid instructors the histogram would result in wrong estimates.
Database systems today routinely use random sampling to create statistics.
See the bibliographic notes for references on sampling.

• Statistics are not maintained on every update to the database. In fact,
some database systems never update statistics automatically. They rely on
database administrators periodically running a command to update statis-
tics. Oracle and PostgreSQL provide an SQL command called analyze that
generates statistics on specified relations, or on all relations. IBM DB2 sup-
ports an equivalent command called runstats. See the system manuals for
details. You should be aware that optimizers sometimes choose very bad
plans due to incorrect statistics. Many database systems, such as IBM DB2,
Oracle, and SQL Server, update statistics automatically at certain points of
time. For example, the system can keep approximate track of how many
tuples there are in a relation and recompute statistics if this number changes
significantly. Another approach is to compare estimated cardinalities of a
relation scan with actual cardinalities when a query is executed, and if they
differ significantly, initiate an update of statistics for that relation.

by using the frequency count for that range instead of nr , and the number of
distinct values that occurs in that range instead of V(A, r ).

• �A≤v(r ): Consider a selection of the form �A≤v(r ). If the actual value used
in the comparison (v) is available at the time of cost estimation, a more
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accurate estimate can be made. The lowest and highest values (min(A, r ) and
max(A, r )) for the attribute can be stored in the catalog. Assuming that values
are uniformly distributed, we can estimate the number of records that will
satisfy the condition A ≤ v as 0 if v < min(A, r ), as nr if v ≥ max(A, r ), and:

nr · v − min(A, r )
max(A, r ) − min(A, r )

otherwise.
If a histogram is available on attribute A, we can get a more accurate

estimate; we leave the details as an exercise for you. In some cases, such as
when the query is part of a stored procedure, the value v may not be available
when the query is optimized. In such cases, we assume that approximately
one-half the records will satisfy the comparison condition. That is, we assume
the result has nr/2 tuples; the estimate may be very inaccurate, but is the best
we can do without any further information.

• Complex selections:

◦ Conjunction: A conjunctive selection is a selection of the form:

��1∧�2∧···∧�n(r )

We can estimate the result size of such a selection: For each �i , we estimate
the size of the selection ��i (r ), denoted by si , as described previously. Thus,
the probability that a tuple in the relation satisfies selection condition �i is
si/nr .

The preceding probability is called the selectivity of the selection ��i (r ).
Assuming that the conditions are independent of each other, the probability
that a tuple satisfies all the conditions is simply the product of all these
probabilities. Thus, we estimate the number of tuples in the full selection
as:

nr ∗ s1 ∗ s2 ∗ · · · ∗ sn

nn
r

◦ Disjunction: A disjunctive selection is a selection of the form:

��1∨�2∨···∨�n (r )

A disjunctive condition is satisfied by the union of all records satisfying
the individual, simple conditions �i .

As before, let si/nr denote the probability that a tuple satisfies condition
�i . The probability that the tuple will satisfy the disjunction is then 1 minus
the probability that it will satisfy none of the conditions:

1 − (1 − s1

nr
) ∗ (1 − s2

nr
) ∗ · · · ∗ (1 − sn

nr
)

Multiplying this value by nr gives us the estimated number of tuples that
satisfy the selection.
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◦ Negation: In the absence of nulls, the result of a selection �¬�(r ) is simply
the tuples of r that are not in ��(r ). We already know how to estimate
the number of tuples in ��(r ). The number of tuples in �¬�(r ) is therefore
estimated to be n(r ) minus the estimated number of tuples in ��(r ).

We can account for nulls by estimating the number of tuples for which
the condition � would evaluate to unknown, and subtracting that number
from the above estimate, ignoring nulls. Estimating that number would
require extra statistics to be maintained in the catalog.

13.3.3 Join Size Estimation

In this section, we see how to estimate the size of the result of a join.
The Cartesian product r ×s contains nr ∗ns tuples. Each tuple of r ×s occupies

lr + ls bytes, from which we can calculate the size of the Cartesian product.
Estimating the size of a natural join is somewhat more complicated than

estimating the size of a selection or of a Cartesian product. Let r (R) and s(S) be
relations.

• If R ∩ S = ∅—that is, the relations have no attribute in common—then r � s
is the same as r × s, and we can use our estimation technique for Cartesian
products.

• If R ∩ S is a key for R, then we know that a tuple of s will join with at most
one tuple from r . Therefore, the number of tuples in r � s is no greater than
the number of tuples in s. The case where R ∩ S is a key for S is symmetric
to the case just described. If R ∩ S forms a foreign key of S, referencing R, the
number of tuples in r � s is exactly the same as the number of tuples in s.

• The most difficult case is when R ∩ S is a key for neither R nor S. In this
case, we assume, as we did for selections, that each value appears with equal
probability. Consider a tuple t of r , and assume R ∩ S = {A}. We estimate
that tuple t produces:

ns

V(A, s)

tuples in r � s, since this number is the average number of tuples in s with a
given value for the attributes A. Considering all the tuples in r , we estimate
that there are:

nr ∗ ns

V(A, s)

tuples in r � s. Observe that, if we reverse the roles of r and s in the preceding
estimate, we obtain an estimate of:

nr ∗ ns

V(A, r )
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tuples in r � s. These two estimates differ if V(A, r ) �= V(A, s). If this situation
occurs, there are likely to be dangling tuples that do not participate in the
join. Thus, the lower of the two estimates is probably the more accurate one.

The preceding estimate of join size may be too high if the V(A, r ) values
for attribute A in r have few values in common with the V(A, s) values for
attribute A in s. However, this situation is unlikely to happen in the real
world, since dangling tuples either do not exist or constitute only a small
fraction of the tuples, in most real-world relations.

More important, the preceding estimate depends on the assumption that
each value appears with equal probability. More sophisticated techniques
for size estimation have to be used if this assumption does not hold. For
example, if we have histograms on the join attributes of both relations, and
both histograms have the same ranges, then we can use the above estimation
technique within each range, using the number of rows with values in the
range instead of nr or ns , and the number of distinct values in that range,
instead of V(A, r ) or V(A, s). We then add up the size estimates obtained
for each range to get the overall size estimate. We leave the case where
both relations have histograms on the join attribute, but the histograms have
different ranges, as an exercise for you.

We can estimate the size of a theta join r �� s by rewriting the join as ��(r × s),
and using the size estimates for Cartesian products along with the size estimates
for selections, which we saw in Section 13.3.2.

To illustrate all these ways of estimating join sizes, consider the expression:

student � takes

Assume the following catalog information about the two relations:

• nstudent = 5000.

• fstudent = 50, which implies that bstudent = 5000/50 = 100.

• ntakes = 10000.

• ftakes = 25, which implies that btakes = 10000/25 = 400.

• V(ID, takes) = 2500, which implies that only half the students have taken
any course (this is unrealistic, but we use it to show that our size estimates
are correct even in this case), and on average, each student who has taken a
course has taken four courses.

The attribute ID in takes is a foreign key on student, and null values do not occur in
takes.ID, since ID is part of the primary key of takes; thus, the size of student � takes
is exactly ntakes , which is 10000.

We now compute the size estimates for student � takes without using infor-
mation about foreign keys. Since V(ID, takes) = 2500 and V(ID, student) = 5000,
the two estimates we get are 5000 ∗ 10000/2500 = 20000 and 5000 ∗ 10000/5000 =
10000, and we choose the lower one. In this case, the lower of these estimates is
the same as that which we computed earlier from information about foreign keys.
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13.3.4 Size Estimation for Other Operations

We outline below how to estimate the sizes of the results of other relational-algebra
operations.

• Projection: The estimated size (number of records or number of tuples) of a
projection of the form �A(r ) is V(A, r ), since projection eliminates duplicates.

• Aggregation: The size of AGF (r ) is simply V(A, r ), since there is one tuple in
AGF (r ) for each distinct value of A.

• Set operations: If the two inputs to a set operation are selections on the same
relation, we can rewrite the set operation as disjunctions, conjunctions, or
negations. For example, ��1 (r ) ∪ ��2 (r ) can be rewritten as ��1∨�2 (r ). Simi-
larly, we can rewrite intersections as conjunctions, and we can rewrite set
difference by using negation, so long as the two relations participating in
the set operations are selections on the same relation. We can then use the
estimates for selections involving conjunctions, disjunctions, and negation in
Section 13.3.2.

If the inputs are not selections on the same relation, we estimate the sizes
this way: The estimated size of r ∪ s is the sum of the sizes of r and s. The
estimated size of r ∩ s is the minimum of the sizes of r and s. The estimated
size of r − s is the same size as r . All three estimates may be inaccurate, but
provide upper bounds on the sizes.

• Outer join: The estimated size of r � s is the size of r � s plus the size of
r ; that of r � s is symmetric, while that of r � s is the size of r � s plus
the sizes of r and s. All three estimates may be inaccurate, but provide upper
bounds on the sizes.

13.3.5 Estimation of Number of Distinct Values

For selections, the number of distinct values of an attribute (or set of attributes)
A in the result of a selection, V(A, ��(r )), can be estimated in these ways:

• If the selection condition � forces A to take on a specified value (e.g., A = 3),
V(A, ��(r )) = 1.

• If � forces A to take on one of a specified set of values (e.g., (A = 1 ∨ A =
3 ∨ A = 4)), then V(A, ��(r )) is set to the number of specified values.

• If the selection condition � is of the form A op v, where op is a comparison
operator, V(A, ��(r )) is estimated to be V(A, r ) ∗ s, where s is the selectivity
of the selection.

• In all other cases of selections, we assume that the distribution of A values is
independent of the distribution of the values on which selection conditions
are specified, and we use an approximate estimate of min(V(A, r ), n��(r )). A
more accurate estimate can be derived for this case using probability theory,
but the above approximation works fairly well.
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For joins, the number of distinct values of an attribute (or set of attributes) A
in the result of a join, V(A, r � s), can be estimated in these ways:

• If all attributes in A are from r , V(A, r � s) is estimated as min(V(A, r ), nr�s),
and similarly if all attributes in A are from s, V(A, r � s) is estimated to be
min(V(A, s), nr�s).

• If Acontains attributes A1 from r and A2 from s, then V(A, r � s) is estimated
as:

min(V(A1, r ) ∗ V(A2 − A1, s), V(A1 − A2, r ) ∗ V(A2, s), nr�s)

Note that some attributes may be in A1 as well as in A2, and A1 − A2 and
A2− A1 denote, respectively, attributes in Athat are only from r and attributes
in A that are only from s. Again, more accurate estimates can be derived by
using probability theory, but the above approximations work fairly well.

The estimates of distinct values are straightforward for projections: They are
the same in �A(r ) as in r . The same holds for grouping attributes of aggregation.
For results of sum, count, and average, we can assume, for simplicity, that all
aggregate values are distinct. For min(A) and max(A), the number of distinct
values can be estimated as min(V(A, r ), V(G, r )), where G denotes the grouping
attributes. We omit details of estimating distinct values for other operations.

13.4 Choice of Evaluation Plans

Generation of expressions is only part of the query-optimization process, since
each operation in the expression can be implemented with different algorithms.
An evaluation plan defines exactly what algorithm should be used for each op-
eration, and how the execution of the operations should be coordinated.

Given an evaluation plan, we can estimate its cost using statistics estimated by
the techniques in Section 13.3 coupled with cost estimates for various algorithms
and evaluation methods described in Chapter 12.

A cost-based optimizer explores the space of all query-evaluation plans that
are equivalent to the given query, and chooses the one with the least estimated
cost. We have seen how equivalence rules can be used to generate equivalent
plans. However, cost-based optimization with arbitrary equivalence rules is fairly
complicated. We first cover a simpler version of cost-based optimization, which
involves only join-order and join algorithm selection, in Section 13.4.1. Later
in Section 13.4.2 we briefly sketch how a general-purpose optimizer based on
equivalence rules can be built, without going into details.

Exploring the space of all possible plans may be too expensive for complex
queries. Most optimizers include heuristics to reduce the cost of query optimiza-
tion, at the potential risk of not finding the optimal plan. We study some such
heuristics in Section 13.4.3.
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13.4.1 Cost-Based Join Order Selection

The most common type of query in SQL consists of a join of a few relations, with
join predicates and selections specified in the where clause. In this section we
consider the problem of choosing the optimal join order for such a query.

For a complex join query, the number of different query plans that are equiv-
alent to the query can be large. As an illustration, consider the expression:

r1 � r2 � · · · � rn

where the joins are expressed without any ordering. With n = 3, there are 12
different join orderings:

r1 � (r2 � r3) r1 � (r3 � r2) (r2 � r3) � r1 (r3 � r2) � r1
r2 � (r1 � r3) r2 � (r3 � r1) (r1 � r3) � r2 (r3 � r1) � r2
r3 � (r1 � r2) r3 � (r2 � r1) (r1 � r2) � r3 (r2 � r1) � r3

In general, with n relations, there are (2(n − 1))!/(n − 1)! different join orders.
(We leave the computation of this expression for you to do in Exercise 13.10.)
For joins involving small numbers of relations, this number is acceptable; for
example, with n = 5, the number is 1680. However, as n increases, this number
rises quickly. With n = 7, the number is 665,280; with n = 10, the number is
greater than 17.6 billion!

Luckily, it is not necessary to generate all the expressions equivalent to a given
expression. For example, suppose we want to find the best join order of the form:

(r1 � r2 � r3) � r4 � r5

which represents all join orders where r1, r2, and r3 are joined first (in some order),
and the result is joined (in some order) with r4 and r5. There are 12 different join
orders for computing r1 � r2 � r3, and 12 orders for computing the join of this
result with r4 and r5. Thus, there appear to be 144 join orders to examine. However,
once we have found the best join order for the subset of relations {r1, r2, r3}, we
can use that order for further joins with r4 and r5, and can ignore all costlier join
orders of r1 � r2 � r3. Thus, instead of 144 choices to examine, we need to examine
only 12 + 12 choices.

Using this idea, we can develop a dynamic-programming algorithm for finding
optimal join orders. Dynamic-programming algorithms store results of computa-
tions and reuse them, a procedure that can reduce execution time greatly.

A recursive procedure implementing the dynamic-programming algorithm
appears in Figure 13.7. The procedure applies selections on individual relations
at the earliest possible point, that is, when the relations are accessed. It is easiest
to understand the procedure assuming that all joins are natural joins, although
the procedure works unchanged with any join condition. With arbitrary join con-
ditions, the join of two subexpressions is understood to include all join conditions
that relate attributes from the two subexpressions.
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procedure FindBestPlan(S)
if (bestplan[S].cost �= ∞) /* bestplan[S] already computed */

return bestplan[S]
if (S contains only 1 relation)

set bestplan[S].plan and bestplan[S].cost based on best way of accessing S
else for each non-empty subset S1 of S such that S1 �= S

P1 = FindBestPlan(S1)
P2 = FindBestPlan(S − S1)
A = best algorithm for joining results of P1 and P2
cost = P1.cost + P2.cost + cost of A
if cost < bestplan[S].cost

bestplan[S].cost = cost
bestplan[S].plan = “execute P1.plan; execute P2.plan;

join results of P1 and P2 using A”
return bestplan[S]

Figure 13.7 Dynamic-programming algorithm for join order optimization.

The procedure stores the evaluation plans it computes in an associative array
bestplan, which is indexed by sets of relations. Each element of the associative
array contains two components: the cost of the best plan of S, and the plan itself.
The value of bestplan[S].cost is assumed to be initialized to ∞ if bestplan[S] has
not yet been computed.

The procedure first checks if the best plan for computing the join of the given
set of relations S has been computed already (and stored in the associative array
bestplan); if so, it returns the already computed plan.

If S contains only one relation, the best way of accessing S (taking selections
on S, if any, into account) is recorded in bestplan. This may involve using an index
to identify tuples, and then fetching the tuples (often referred to as an index scan),
or scanning the entire relation (often referred to as a relation scan).1 If there is any
selection condition on S, other than those ensured by an index scan, a selection
operation is added to the plan, to ensure all selections on S are satisfied.

Otherwise, if S contains more than one relation, the procedure tries every
way of dividing S into two disjoint subsets. For each division, the procedure
recursively finds the best plans for each of the two subsets, and then computes
the cost of the overall plan by using that division.2 The procedure picks the
cheapest plan from among all the alternatives for dividing S into two sets. The
cheapest plan and its cost are stored in the array bestplan, and returned by the

1If an index contains all the attributes of a relation that are used in a query, it is possible to perform an index-only scan,
which retrieves the required attribute values from the index, without fetching actual tuples.
2Note that an indexed nested loops join is considered for joining P1 and P2, with P2 as the inner relation, if P2 has only
a single relation, say r , and an index is available on the join attributes of r . Plan P2 may contain an indexed access to r ,
based on selection conditions on r . To allow indexed nested loops join to be used, the index lookup using the selection
condition on r would be dropped from P2; instead, the selection condition would be checked on tuples returned from
the index on the join attributes of r .
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procedure. The time complexity of the procedure can be shown to be O(3n) (see
Practice Exercise 13.11).

Actually, the order in which tuples are generated by the join of a set of
relations is also important for finding the best overall join order, since it can affect
the cost of further joins (for instance, if merge join is used). A particular sort
order of the tuples is said to be an interesting sort order if it could be useful for
a later operation. For instance, generating the result of r1 � r2 � r3 sorted on the
attributes common with r4 or r5 may be useful, but generating it sorted on the
attributes common to only r1 and r2 is not useful. Using merge join for computing
r1 � r2 � r3 may be costlier than using some other join technique, but it may
provide an output sorted in an interesting sort order.

Hence, it is not sufficient to find the best join order for each subset of the set of
n given relations. Instead, we have to find the best join order for each subset, for
each interesting sort order of the join result for that subset. The number of subsets
of n relations is 2n. The number of interesting sort orders is generally not large.
Thus, about 2n join expressions need to be stored. The dynamic-programming
algorithm for finding the best join order can be easily extended to handle sort
orders. The cost of the extended algorithm depends on the number of interesting
orders for each subset of relations; since this number has been found to be small
in practice, the cost remains at O(3n). With n = 10, this number is around 59,000,
which is much better than the 17.6 billion different join orders. More important,
the storage required is much less than before, since we need to store only one
join order for each interesting sort order of each of 1024 subsets of r1, . . . , r10.
Although both numbers still increase rapidly with n, commonly occurring joins
usually have less than 10 relations, and can be handled easily.

13.4.2 Cost-Based Optimization with Equivalence Rules

The join order optimization technique we just saw handles the most common class
of queries, which perform an inner join of a set of relations. However, clearly many
queries use other features, such as aggregation, outer join, and nested queries,
which are not addressed by join order selection.

Many optimizers follow an approach based on using heuristic transforma-
tions to handle constructs other than joins, and applying the cost-based join order
selection algorithm to subexpressions involving only joins and selections. Details
of such heuristics are for the most part specific to individual optimizers, and we
do not cover them. However, heuristic transformations to handle nested queries
are widely used, and are considered in more detail in Section 13.4.4.

In this section, however, we outline how to create a general-purpose cost-
based optimizer based on equivalence rules, which can handle a wide variety of
query constructs.

The benefit of using equivalence rules is that it is easy to extend the optimizer
with new rules to handle different query constructs. For example, nested queries
can be represented using extended relational-algebra constructs, and transforma-
tions of nested queries can be expressed as equivalence rules. We have already
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seen equivalence rules with aggregation operations, and equivalence rules can
also be created for outer joins.

In Section 13.2.4, we saw how an optimizer could systematically generate all
expressions equivalent to the given query. The procedure for generating equiv-
alent expressions can be modified to generate all possible evaluation plans as
follows: A new class of equivalence rules, called physical equivalence rules, is
added that allows a logical operation, such as a join, to be transformed to a phys-
ical operation, such as a hash join, or a nested-loops join. By adding such rules
to the original set of equivalence rules, the procedure can generate all possible
evaluation plans. The cost estimation techniques we have seen earlier can then
be used to choose the optimal (that is, the least-cost) plan.

However, the procedure shown in Section 13.2.4 is very expensive, even if
we do not consider generation of evaluation plans. To make the approach work
efficiently requires the following:

1. A space-efficient representation of expressions that avoids making multiple
copies of the same subexpressions when equivalence rules are applied.

2. Efficient techniques for detecting duplicate derivations of the same expres-
sion.

3. A form of dynamic programming based on memoization, which stores the
optimal query evaluation plan for a subexpression when it is optimized for
the first time; subsequent requests to optimize the same subexpression are
handled by returning the already memoized plan.

4. Techniques that avoid generating all possible equivalent plans, by keeping
track of the cheapest plan generated for any subexpression up to any point
of time, and pruning away any plan that is more expensive than the cheapest
plan found so far for that subexpression.

The details are more complex than we wish to deal with here. This approach was
pioneered by the Volcano research project, and the query optimizer of SQL Server
is based on this approach. See the bibliographical notes for references containing
further information.

13.4.3 Heuristics in Optimization

A drawback of cost-based optimization is the cost of optimization itself. Although
the cost of query optimization can be reduced by clever algorithms, the number of
different evaluation plans for a query can be very large, and finding the optimal
plan from this set requires a lot of computational effort. Hence, optimizers use
heuristics to reduce the cost of optimization.

An example of a heuristic rule is the following rule for transforming relational-
algebra queries:

• Perform selection operations as early as possible.



13.4 Choice of Evaluation Plans 603

A heuristic optimizer would use this rule without finding out whether the cost is
reduced by this transformation. In the first transformation example in Section 13.2,
the selection operation was pushed into a join.

We say that the preceding rule is a heuristic because it usually, but not always,
helps to reduce the cost. For an example of where it can result in an increase in cost,
consider an expression ��(r � s), where the condition � refers to only attributes
in s. The selection can certainly be performed before the join. However, if r is
extremely small compared to s, and if there is an index on the join attributes
of s, but no index on the attributes used by �, then it is probably a bad idea to
perform the selection early. Performing the selection early—that is, directly on
s —would require doing a scan of all tuples in s. It is probably cheaper, in this
case, to compute the join by using the index, and then to reject tuples that fail the
selection.

The projection operation, like the selection operation, reduces the size of
relations. Thus, whenever we need to generate a temporary relation, it is advan-
tageous to apply immediately any projections that are possible. This advantage
suggests a companion to the “perform selections early” heuristic:

• Perform projections early.

It is usually better to perform selections earlier than projections, since selections
have the potential to reduce the sizes of relations greatly, and selections enable
the use of indices to access tuples. An example similar to the one used for the
selection heuristic should convince you that this heuristic does not always reduce
the cost.

Most practical query optimizers have further heuristics to reduce the cost of
optimization. For example, many query optimizers, such as the System R opti-
mizer,3 do not consider all join orders, but rather restrict the search to particular
kinds of join orders. The System R optimizer considers only those join orders
where the right operand of each join is one of the initial relations r1, . . . , rn. Such
join orders are called left-deep join orders. Left-deep join orders are particularly
convenient for pipelined evaluation, since the right operand is a stored relation,
and thus only one input to each join is pipelined.

Figure 13.8 illustrates the difference between left-deep join trees and non-left-
deep join trees. The time it takes to consider all left-deep join orders is O(n!), which
is much less than the time to consider all join orders. With the use of dynamic-
programming optimizations, the System R optimizer can find the best join order
in time O(n2n). Contrast this cost with the O(3n) time required to find the best
overall join order. The System R optimizer uses heuristics to push selections and
projections down the query tree.

A heuristic approach to reduce the cost of join-order selection, which was
originally used in some versions of Oracle, works roughly this way: For an n-way
join, it considers n evaluation plans. Each plan uses a left-deep join order, starting

3System R was one of the first implementations of SQL, and its optimizer pioneered the idea of cost-based join-order
optimization.
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Figure 13.8 Left-deep join trees.

with a different one of the n relations. The heuristic constructs the join order for
each of the n evaluation plans by repeatedly selecting the “best” relation to join
next, on the basis of a ranking of the available access paths. Either nested-loop or
sort-merge join is chosen for each of the joins, depending on the available access
paths. Finally, the heuristic chooses one of the n evaluation plans in a heuristic
manner, on the basis of minimizing the number of nested-loop joins that do not
have an index available on the inner relation and on the number of sort-merge
joins.

Query-optimization approaches that apply heuristic plan choices for some
parts of the query, with cost-based choice based on generation of alternative
access plans on other parts of the query, have been adopted in several systems.
The approach used in System R and in its successor, the Starburst project, is
a hierarchical procedure based on the nested-block concept of SQL. The cost-
based optimization techniques described here are used for each block of the
query separately. The optimizers in several database products, such as IBM DB2
and Oracle, are based on the above approach, with extensions to handle other
operations such as aggregation. For compound SQL queries (using the ∪, ∩, or
− operation), the optimizer processes each component separately, and combines
the evaluation plans to form the overall evaluation plan.

Most optimizers allow a cost budget to be specified for query optimization.
The search for the optimal plan is terminated when the optimization cost budget
is exceeded, and the best plan found up to that point is returned. The budget
itself may be set dynamically; for example, if a cheap plan is found for a query,
the budget may be reduced, on the premise that there is no point spending a lot
of time optimizing the query if the best plan found so far is already quite cheap.
On the other hand, if the best plan found so far is expensive, it makes sense to
invest more time in optimization, which could result in a significant reduction
in execution time. To best exploit this idea, optimizers usually first apply cheap
heuristics to find a plan, and then start full cost-based optimization with a budget
based on the heuristically chosen plan.
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Many applications execute the same query repeatedly, but with different
values for the constants. For example, a university application may repeatedly
execute a query to find the courses for which a student has registered, but each
time for a different student with a different value for the student ID. As a heuristic,
many optimizers optimize a query once, with whatever values were provided for
the constants when the query was first submitted, and cache the query plan.
Whenever the query is executed again, perhaps with new values for constants,
the cached query plan is reused (using new values for the constants, of course).
The optimal plan for the new constants may differ from the optimal plan for the
initial values, but as a heuristic the cached plan is reused.4 Caching and reuse of
query plans is referred to as plan caching.

Even with the use of heuristics, cost-based query optimization imposes a
substantial overhead on query processing. However, the added cost of cost-based
query optimization is usually more than offset by the saving at query-execution
time, which is dominated by slow disk accesses. The difference in execution time
between a good plan and a bad one may be huge, making query optimization
essential. The achieved saving is magnified in those applications that run on
a regular basis, where a query can be optimized once, and the selected query
plan can be used each time the query is executed. Therefore, most commercial
systems include relatively sophisticated optimizers. The bibliographical notes
give references to descriptions of the query optimizers of actual database systems.

13.4.4 Optimizing Nested Subqueries**

SQL conceptually treats nested subqueries in the where clause as functions that
take parameters and return either a single value or a set of values (possibly an
empty set). The parameters are the variables from an outer level query that are
used in the nested subquery (these variables are called correlation variables). For
instance, suppose we have the following query, to find the names of all instructors
who taught a course in 2007:

select name
from instructor
where exists (select *

from teaches
where instructor.ID = teaches.ID

and teaches.year = 2007);

Conceptually, the subquery can be viewed as a function that takes a parameter
(here, instructor.ID) and returns the set of all courses taught in 2007 by instructors
(with the same ID).

4For the student registration query, the plan would almost certainly be the same for any student ID. But a query that
took a range of student IDs, and returned registration information for all student IDs in that range, would probably
have a different optimal plan if the range is very small than if the range is large.
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SQL evaluates the overall query (conceptually) by computing the Cartesian
product of the relations in the outer from clause and then testing the predicates
in the where clause for each tuple in the product. In the preceding example, the
predicate tests if the result of the subquery evaluation is empty.

This technique for evaluating a query with a nested subquery is called corre-
lated evaluation. Correlated evaluation is not very efficient, since the subquery
is separately evaluated for each tuple in the outer level query. A large number of
random disk I/O operations may result.

SQL optimizers therefore attempt to transform nested subqueries into joins,
where possible. Efficient join algorithms help avoid expensive random I/O. Where
the transformation is not possible, the optimizer keeps the subqueries as separate
expressions, optimizes them separately, and then evaluates them by correlated
evaluation.

As an example of transforming a nested subquery into a join, the query in the
preceding example can be rewritten as:

select name
from instructor, teaches
where instructor.ID = teaches.ID and teaches.year = 2007;

(To properly reflect SQL semantics, the number of duplicate derivations should
not change because of the rewriting; the rewritten query can be modified to ensure
this property, as we shall see shortly.)

In the example, the nested subquery was very simple. In general, it may not
be possible to directly move the nested subquery relations into the from clause of
the outer query. Instead, we create a temporary relation that contains the results
of the nested query without the selections using correlation variables from the
outer query, and join the temporary table with the outer level query. For instance,
a query of the form:

select . . .

from L1
where P1 and exists (select *

from L2
where P2);

where P2 is a conjunction of simpler predicates, can be rewritten as:

create table t1 as
select distinct V

from L2
where P1

2 ;
select . . .

from L1, t1
where P1 and P2

2 ;

where P1
2 contains predicates in P2 without selections involving correlation vari-

ables, and P2
2 reintroduces the selections involving correlation variables (with
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relations referenced in the predicate appropriately renamed). Here, V contains
all attributes that are used in selections with correlation variables in the nested
subquery.

In our example, the original query would have been transformed to:

create table t1 as
select distinct ID
from teaches
where year = 2007;

select name
from instructor, t1
where t1.ID = instructor.ID;

The query we rewrote to illustrate creation of a temporary relation can be obtained
by simplifying the above transformed query, assuming the number of duplicates
of each tuple does not matter.

The process of replacing a nested query by a query with a join (possibly with
a temporary relation) is called decorrelation.

Decorrelation is more complicated when the nested subquery uses aggrega-
tion, or when the result of the nested subquery is used to test for equality, or when
the condition linking the nested subquery to the outer query is not exists, and so
on. We do not attempt to give algorithms for the general case, and instead refer
you to relevant items in the bibliographical notes.

Optimization of complex nested subqueries is a difficult task, as you can infer
from the above discussion, and many optimizers do only a limited amount of
decorrelation. It is best to avoid using complex nested subqueries, where possible,
since we cannot be sure that the query optimizer will succeed in converting them
to a form that can be evaluated efficiently.

13.5 Materialized Views**

When a view is defined, normally the database stores only the query defining the
view. In contrast, a materialized view is a view whose contents are computed
and stored. Materialized views constitute redundant data, in that their contents
can be inferred from the view definition and the rest of the database contents.
However, it is much cheaper in many cases to read the contents of a materialized
view than to compute the contents of the view by executing the query defining
the view.

Materialized views are important for improving performance in some appli-
cations. Consider this view, which gives the total salary in each department:

create view department total salary(dept name, total salary) as
select dept name, sum (salary)
from instructor
group by dept name;
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Suppose the total salary amount at a department is required frequently. Comput-
ing the view requires reading every instructor tuple pertaining to a department,
and summing up the salary amounts, which can be time-consuming. In contrast,
if the view definition of the total salary amount were materialized, the total salary
amount could be found by looking up a single tuple in the materialized view.5

13.5.1 View Maintenance

A problem with materialized views is that they must be kept up-to-date when
the data used in the view definition changes. For instance, if the salary value of
an instructor is updated, the materialized view will become inconsistent with the
underlying data, and it must be updated. The task of keeping a materialized view
up-to-date with the underlying data is known as view maintenance.

Views can be maintained by manually written code: That is, every piece
of code that updates the salary value can be modified to also update the total
salary amount for the corresponding department. However, this approach is
error prone, since it is easy to miss some places where the salary is updated, and
the materialized view will then no longer match the underlying data.

Another option for maintaining materialized views is to define triggers on
insert, delete, and update of each relation in the view definition. The triggers must
modify the contents of the materialized view, to take into account the change that
caused the trigger to fire. A simplistic way of doing so is to completely recompute
the materialized view on every update.

A better option is to modify only the affected parts of the materialized view,
which is known as incremental view maintenance. We describe how to perform
incremental view maintenance in Section 13.5.2.

Modern database systems provide more direct support for incremental view
maintenance. Database-system programmers no longer need to define triggers
for view maintenance. Instead, once a view is declared to be materialized, the
database system computes the contents of the view and incrementally updates
the contents when the underlying data change.

Most database systems perform immediate view maintenance; that is, incre-
mental view maintenance is performed as soon as an update occurs, as part of the
updating transaction. Some database systems also support deferred view main-
tenance, where view maintenance is deferred to a later time; for example, updates
may be collected throughout a day, and materialized views may be updated at
night. This approach reduces the overhead on update transactions. However, ma-
terialized views with deferred view maintenance may not be consistent with the
underlying relations on which they are defined.

5The difference may not be all that large for a medium-sized university, but in other settings the difference can be
very large. For example, if the materialized view computed total sales of each product, from a sales relation with tens
of millions of tuples, the difference between computing the aggregate from the underlying data, and looking up the
materialized view can be many orders of magnitude.
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13.5.2 Incremental View Maintenance

To understand how to maintain materialized views incrementally, we start off by
considering individual operations, and then we see how to handle a complete
expression.

The changes to a relation that can cause a materialized view to become out-
of-date are inserts, deletes, and updates. To simplify our description, we replace
updates to a tuple by deletion of the tuple followed by insertion of the updated
tuple. Thus, we need to consider only inserts and deletes. The changes (inserts
and deletes) to a relation or expression are referred to as its differential.

13.5.2.1 Join Operation

Consider the materialized view v = r � s. Suppose we modify r by inserting a
set of tuples denoted by ir . If the old value of r is denoted by rold , and the new
value of r by rnew, rnew = rold ∪ ir . Now, the old value of the view, vold , is given by
rold � s, and the new value vnew is given by rnew � s. We can rewrite rnew � s as
(rold ∪ ir ) � s, which we can again rewrite as (rold � s) ∪ (ir � s). In other words:

vnew = vold ∪ (ir � s)

Thus, to update the materialized view v, we simply need to add the tuples ir � s
to the old contents of the materialized view. Inserts to s are handled in an exactly
symmetric fashion.

Now suppose r is modified by deleting a set of tuples denoted by dr . Using
the same reasoning as above, we get:

vnew = vold − (dr � s)

Deletes on s are handled in an exactly symmetric fashion.

13.5.2.2 Selection and Projection Operations

Consider a view v = ��(r ). If we modify r by inserting a set of tuples ir , the new
value of v can be computed as:

vnew = vold ∪ ��(ir )

Similarly, if r is modified by deleting a set of tuples dr , the new value of v can be
computed as:

vnew = vold − ��(dr )

Projection is a more difficult operation with which to deal. Consider a ma-
terialized view v = �A(r ). Suppose the relation r is on the schema R = (A, B),
and r contains two tuples (a , 2) and (a , 3). Then, �A(r ) has a single tuple (a ). If
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we delete the tuple (a , 2) from r , we cannot delete the tuple (a ) from �A(r ): If we
did so, the result would be an empty relation, whereas in reality �A(r ) still has a
single tuple (a ). The reason is that the same tuple (a ) is derived in two ways, and
deleting one tuple from r removes only one of the ways of deriving (a ); the other
is still present.

This reason also gives us the intuition for solution: For each tuple in a projec-
tion such as �A(r ), we will keep a count of how many times it was derived.

When a set of tuples dr is deleted from r , for each tuple t in dr we do the
following: Let t.A denote the projection of t on the attribute A. We find (t.A) in
the materialized view, and decrease the count stored with it by 1. If the count
becomes 0, (t.A) is deleted from the materialized view.

Handling insertions is relatively straightforward. When a set of tuples ir is
inserted into r , for each tuple t in ir we do the following: If (t.A) is already present
in the materialized view, we increase the count stored with it by 1. If not, we add
(t.A) to the materialized view, with the count set to 1.

13.5.2.3 Aggregation Operations

Aggregation operations proceed somewhat like projections. The aggregate oper-
ations in SQL are count, sum, avg, min, and max:

• count: Consider a materialized view v = AGcount(B)(r ), which computes the
count of the attribute B, after grouping r by attribute A.

When a set of tuples ir is inserted into r , for each tuple t in ir we do
the following: We look for the group t.A in the materialized view. If it is not
present, we add (t.A, 1) to the materialized view. If the group t.A is present,
we add 1 to the count of the group.

When a set of tuples dr is deleted from r , for each tuple t in dr we do the
following: We look for the group t.A in the materialized view, and subtract 1
from the count for the group. If the count becomes 0, we delete the tuple for
the group t.A from the materialized view.

• sum: Consider a materialized view v = AGsum(B)(r ).
When a set of tuples ir is inserted into r , for each tuple t in ir we do

the following: We look for the group t.A in the materialized view. If it is not
present, we add (t.A, t.B) to the materialized view; in addition, we store a
count of 1 associated with (t.A, t.B), just as we did for projection. If the group
t.A is present, we add the value of t.B to the aggregate value for the group,
and add 1 to the count of the group.

When a set of tuples dr is deleted from r , for each tuple t in dr we do the
following: We look for the group t.A in the materialized view, and subtract
t.B from the aggregate value for the group. We also subtract 1 from the count
for the group, and if the count becomes 0, we delete the tuple for the group
t.A from the materialized view.

Without keeping the extra count value, we would not be able to distinguish
a case where the sum for a group is 0 from the case where the last tuple in a
group is deleted.
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• avg: Consider a materialized view v = AGavg(B)(r ).
Directly updating the average on an insert or delete is not possible, since

it depends not only on the old average and the tuple being inserted/deleted,
but also on the number of tuples in the group.

Instead, to handle the case of avg, we maintain the sum and count
aggregate values as described earlier, and compute the average as the sum
divided by the count.

• min, max: Consider a materialized view v = AGmin(B)(r ). (The case of max is
exactly equivalent.)

Handling insertions on r is straightforward. Maintaining the aggregate
values min and max on deletions may be more expensive. For example, if
the tuple corresponding to the minimum value for a group is deleted from r ,
we have to look at the other tuples of r that are in the same group to find the
new minimum value.

13.5.2.4 Other Operations

The set operation intersection is maintained as follows: Given materialized view
v = r ∩ s, when a tuple is inserted in r we check if it is present in s, and if so we
add it to v. If a tuple is deleted from r , we delete it from the intersection if it is
present. The other set operations, union and set difference, are handled in a similar
fashion; we leave details to you.

Outer joins are handled in much the same way as joins, but with some extra
work. In the case of deletion from r we have to handle tuples in s that no longer
match any tuple in r . In the case of insertion to r , we have to handle tuples in s
that did not match any tuple in r . Again we leave details to you.

13.5.2.5 Handling Expressions

So far we have seen how to update incrementally the result of a single operation.
To handle an entire expression, we can derive expressions for computing the
incremental change to the result of each subexpression, starting from the smallest
subexpressions.

For example, suppose we wish to incrementally update a materialized view
E1 � E2 when a set of tuples ir is inserted into relation r . Let us assume r is
used in E1 alone. Suppose the set of tuples to be inserted into E1 is given by
expression D1. Then the expression D1 � E2 gives the set of tuples to be inserted
into E1 � E2.

See the bibliographical notes for further details on incremental view mainte-
nance with expressions.

13.5.3 Query Optimization and Materialized Views

Query optimization can be performed by treating materialized views just like
regular relations. However, materialized views offer further opportunities for
optimization:

• Rewriting queries to use materialized views:
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Suppose a materialized view v = r � s is available, and a user submits a
query r � s � t. Rewriting the query as v � t may provide a more efficient
query plan than optimizing the query as submitted. Thus, it is the job of the
query optimizer to recognize when a materialized view can be used to speed
up a query.

• Replacing a use of a materialized view with the view definition:
Suppose a materialized view v = r � s is available, but without any index

on it, and a user submits a query �A=10(v). Suppose also that s has an index
on the common attribute B, and r has an index on attribute A. The best plan
for this query may be to replace v with r � s, which can lead to the query
plan �A=10(r ) � s; the selection and join can be performed efficiently by using
the indices on r.A and s.B, respectively. In contrast, evaluating the selection
directly on v may require a full scan of v, which may be more expensive.

The bibliographical notes give pointers to research showing how to efficiently
perform query optimization with materialized views.

13.5.4 Materialized View and Index Selection

Another related optimization problem is that of materialized view selection,
namely, “What is the best set of views to materialize?” This decision must be
made on the basis of the system workload, which is a sequence of queries and
updates that reflects the typical load on the system. One simple criterion would
be to select a set of materialized views that minimizes the overall execution time
of the workload of queries and updates, including the time taken to maintain the
materialized views. Database administrators usually modify this criterion to take
into account the importance of different queries and updates: Fast response may
be required for some queries and updates, but a slow response may be acceptable
for others.

Indices are just like materialized views, in that they too are derived data,
can speed up queries, and may slow down updates. Thus, the problem of index
selection is closely related to that of materialized view selection, although it is
simpler. We examine index and materialized view selection in more detail in
Sections 24.1.6 and 24.1.7.

Most database systems provide tools to help the database administrator with
index and materialized view selection. These tools examine the history of queries
and updates, and suggest indices and views to be materialized. The Microsoft SQL
Server Database Tuning Assistant, the IBM DB2 Design Advisor, and the Oracle
SQL Tuning Wizard are examples of such tools.

13.6 Advanced Topics in Query Optimization**

There are a number of opportunities for optimizing queries, beyond those we
have seen so far. We examine a few of these in this section.
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13.6.1 Top-K Optimization

Many queries fetch results sorted on some attributes, and require only the top K
results for some K . Sometimes the bound K is specified explicitly. For example,
some databases support a limit K clause which results in only the top K results
being returned by the query. Other databases support alternative ways of speci-
fying similar limits. In other cases, the query may not specify such a limit, but the
optimizer may allow a hint to be specified, indicating that only the top K results
of the query are likely to be retrieved, even if the query generates more results.

When K is small, a query optimization plan that generates the entire set of
results, then sorts and generates the top K , is very inefficient since it discards
most of the intermediate results that it computes. Several techniques have been
proposed to optimize such top-K queries. One approach is to use pipelined plans
that can generate the results in sorted order. Another approach is to estimate what
is the highest value on the sorted attributes that will appear in the top-K output,
and introduce selection predicates that eliminate larger values. If extra tuples
beyond the top-K are generated they are discarded, and if too few tuples are
generated then the selection condition is changed and the query is re-executed.
See the bibliographical notes for references to work on top-K optimization.

13.6.2 Join Minimization

When queries are generated through views, sometimes more relations are joined
than are needed for computation of the query. For example, a view v may in-
clude the join of instructor and department, but a use of the view v may use only
attributes from instructor. The join attribute dept name of instructor is a foreign
key referencing department. Assuming that instructor.dept name has been declared
not null, the join with department can be dropped, with no impact on the query.
For, under the above assumption, the join with department does not eliminate any
tuples from instructor, nor does it result in extra copies of any instructor tuple.

Dropping a relation from a join as above is an example of join minimization.
In fact, join minimization can be performed in other situations as well. See the
bibliographical notes for references on join minimization.

13.6.3 Optimization of Updates

Update queries often involve subqueries in the set and where clauses, which
must also be taken into account in optimizing the update. Updates that involve
a selection on the updated column (e.g., give a 10 percent salary raise to all
employees whose salary is ≥ $100,000) must be handled carefully. If the update
is done while the selection is being evaluated by an index scan, an updated tuple
may be reinserted in the index ahead of the scan and seen again by the scan;
the same employee tuple may then get incorrectly updated multiple times (an
infinite number of times, in this case). A similar problem also arises with updates
involving subqueries whose result is affected by the update.

The problem of an update affecting the execution of a query associated with
the update is known as the Halloween problem (named so because it was first
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recognized on a Halloween day, at IBM). The problem can be avoided by executing
the queries defining the update first, creating a list of affected tuples, and updating
the tuples and indices as the last step. However, breaking up the execution plan
in such a fashion increases the execution cost. Update plans can be optimized by
checking if the Halloween problem can occur, and if it cannot occur, updates can
be performed while the query is being processed, reducing the update overheads.
For example, the Halloween problem cannot occur if the update does not affect
index attributes. Even if it does, if the updates decrease the value, while the index
is scanned in increasing order, updated tuples will not be encountered again
during the scan. In such cases, the index can be updated even while the query is
being executed, reducing the overall cost.

Update queries that result in a large number of updates can also be optimized
by collecting the updates as a batch, and then applying the batch of updates
separately to each affected index. When applying the batch of updates to an
index, the batch is first sorted in the index order for that index; such sorting can
greatly reduce the amount of random I/O required for updating indices.

Such optimizations of updates are implemented in most database systems.
See the bibliographical notes for references to such optimization.

13.6.4 Multiquery Optimization and Shared Scans

When a batch of queries are submitted together, a query optimizer can poten-
tially exploit common subexpressions between the different queries, evaluating
them once and reusing them where required. Complex queries may in fact have
subexpressions repeated in different parts of the query, which can be similarly
exploited, to reduce query evaluation cost. Such optimization is known as multi-
query optimization.

Common subexpression elimination optimizes subexpressions shared by
different expressions in a program, by computing and storing the result, and
reusing it wherever the subexpression occurs. Common subexpression elimina-
tion is a standard optimization applied on arithmetic expressions by programming-
language compilers. Exploiting common subexpressions among evaluation plans
chosen for each of a batch of queries is just as useful in database query evalua-
tion, and is implemented by some databases. However, multiquery optimization
can do even better in some cases: A query typically has more than one evalua-
tion plan, and a judiciously chosen set of query evaluation plans for the queries
may provide for a greater sharing and lesser cost than that afforded by choos-
ing the lowest cost evaluation plan for each query. More details on multiquery
optimization may be found in references cited in the bibliographical notes.

Sharing of relation scans between queries is another limited form of mul-
tiquery optimization that is implemented in some databases. The shared-scan
optimization works as follows: Instead of reading the relation repeatedly from
disk, once for each query that needs to scan a relation, data are read once from
disk, and pipelined to each of the queries. The shared-scan optimization is par-
ticularly useful when multiple queries perform a scan on a single large relation
(typically a “fact table”).



13.7 Summary 615

13.6.5 Parametric Query Optimization

Plan caching, which we saw earlier in Section 13.4.3, is used as a heuristic in
many databases. Recall that with plan caching, if a query is invoked with some
constants, the plan chosen by the optimizer is cached, and reused if the query
is submitted again, even if the constants in the query are different. For example,
suppose a query takes a department name as a parameter, and retrieves all courses
of the department. With plan caching, a plan chosen when the query is executed
for the first time, say for the Music department, is reused if the query is executed
for any other department.

Such reuse of plans by plan caching is reasonable if the optimal query plan is
not significantly affected by the exact value of the constants in the query. However,
if the plan is affected by the value of the constants, parametric query optimization
is an alternative.

In parametric query optimization, a query is optimized without being pro-
vided specific values for its parameters, for example, dept name in the preceding
example. The optimizer then outputs several plans, each optimal for a different
parameter value. A plan would be output by the optimizer only if it is optimal
for some possible value of the parameters. The set of alternative plans output by
the optimizer are stored. When a query is submitted with specific values for its
parameters, instead of performing a full optimization, the cheapest plan from the
set of alternative plans computed earlier is used. Finding the cheapest such plan
usually takes much less time than reoptimization. See the bibliographical notes
for references on parametric query optimization.

13.7 Summary

• Given a query, there are generally a variety of methods for computing the
answer. It is the responsibility of the system to transform the query as entered
by the user into an equivalent query that can be computed more efficiently.
The process of finding a good strategy for processing a query is called query
optimization.

• The evaluation of complex queries involves many accesses to disk. Since the
transfer of data from disk is slow relative to the speed of main memory and
the CPU of the computer system, it is worthwhile to allocate a considerable
amount of processing to choose a method that minimizes disk accesses.

• There are a number of equivalence rules that we can use to transform an ex-
pression into an equivalent one. We use these rules to generate systematically
all expressions equivalent to the given query.

• Each relational-algebra expression represents a particular sequence of op-
erations. The first step in selecting a query-processing strategy is to find a
relational-algebra expression that is equivalent to the given expression and
is estimated to cost less to execute.
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• The strategy that the database system chooses for evaluating an operation
depends on the size of each relation and on the distribution of values within
columns. So that they can base the strategy choice on reliable information,
database systems may store statistics for each relation r. These statistics in-
clude:

◦ The number of tuples in the relation r.

◦ The size of a record (tuple) of relation r in bytes.

◦ The number of distinct values that appear in the relation r for a particular
attribute.

• Most database systems use histograms to store the number of values for
an attribute within each of several ranges of values. Histograms are often
computed using sampling.

• These statistics allow us to estimate the sizes of the results of various opera-
tions, as well as the cost of executing the operations. Statistical information
about relations is particularly useful when several indices are available to
assist in the processing of a query. The presence of these structures has a
significant influence on the choice of a query-processing strategy.

• Alternative evaluation plans for each expression can be generated by equiv-
alence rules, and the cheapest plan across all expressions can be chosen.
Several optimization techniques are available to reduce the number of alter-
native expressions and plans that need to be generated.

• We use heuristics to reduce the number of plans considered, and thereby to
reduce the cost of optimization. Heuristic rules for transforming relational-
algebra queries include “Perform selection operations as early as possible,”
“Perform projections early,” and “Avoid Cartesian products.”

• Materialized views can be used to speed up query processing. Incremental
view maintenance is needed to efficiently update materialized views when
the underlying relations are modified. The differential of an operation can
be computed by means of algebraic expressions involving differentials of the
inputs of the operation. Other issues related to materialized views include
how to optimize queries by making use of available materialized views, and
how to select views to be materialized.

• A number of advanced optimization techniques have been proposed such as
top-K optimization, join minimization, optimization of updates, multiquery
optimization, and parametric query optimization.

Review Terms

• Query optimization
• Transformation of expressions

• Equivalence of expressions
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• Equivalence rules

◦ Join commutativity

◦ Join associativity

• Minimal set of equivalence rules
• Enumeration of equivalent

expressions
• Statistics estimation
• Catalog information
• Size estimation

◦ Selection

◦ Selectivity

◦ Join

• Histograms
• Distinct value estimation
• Random sample
• Choice of evaluation plans
• Interaction of evaluation

techniques
• Cost-based optimization
• Join-order optimization

◦ Dynamic-programming
algorithm

◦ Left-deep join order

◦ Interesting sort order

• Heuristic optimization
• Plan caching
• Access-plan selection
• Correlated evaluation
• Decorrelation
• Materialized views
• Materialized view maintenance

◦ Recomputation

◦ Incremental maintenance

◦ Insertion

◦ Deletion

◦ Updates

• Query optimization with
materialized views

• Index selection
• Materialized view selection
• Top-K optimization
• Join minimization
• Halloween problem
• Multiquery optimization

Practice Exercises

13.1 Show that the following equivalences hold. Explain how you can apply
them to improve the efficiency of certain queries:

a. E1 �� (E2 − E3) = (E1 �� E2 − E1 �� E3).

b. ��( AGF (E)) = AGF (��(E)), where � uses only attributes from A.

c. ��(E1 � E2) = ��(E1) � E2, where � uses only attributes from E1.

13.2 For each of the following pairs of expressions, give instances of relations
that show the expressions are not equivalent.

a. �A(R − S) and �A(R) − �A(S).

b. �B<4( AGmax (B) as B(R)) and AGmax (B) as B(�B<4(R)).
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c. In the preceding expressions, if both occurrences of max were re-
placed by min would the expressions be equivalent?

d. (R � S) � T and R � (S � T)
In other words, the natural left outer join is not associative. (Hint:
Assume that the schemas of the three relations are R(a , b1), S(a , b2),
and T(a , b3), respectively.)

e. ��(E1 � E2) and E1 � ��(E2), where � uses only attributes from E2.

13.3 SQL allows relations with duplicates (Chapter 3).

a. Define versions of the basic relational-algebra operations �, �, ×,
�, −, ∪, and ∩ that work on relations with duplicates, in a way
consistent with SQL.

b. Check which of the equivalence rules 1 through 7.b hold for the
multiset version of the relational-algebra defined in part a.

13.4 Consider the relations r1(A, B, C), r2(C, D, E), and r3(E, F ), with primary
keys A, C, and E, respectively. Assume that r1 has 1000 tuples, r2 has 1500
tuples, and r3 has 750 tuples. Estimate the size of r1 � r2 � r3, and give
an efficient strategy for computing the join.

13.5 Consider the relations r1(A, B, C), r2(C, D, E), and r3(E, F ) of Practice
Exercise 13.4. Assume that there are no primary keys, except the entire
schema. Let V(C, r1) be 900, V(C, r2) be 1100, V(E, r2) be 50, and V(E, r3)
be 100. Assume that r1 has 1000 tuples, r2 has 1500 tuples, and r3 has 750
tuples. Estimate the size of r1 � r2 � r3 and give an efficient strategy for
computing the join.

13.6 Suppose that a B+-tree index on building is available on relation department,
and that no other index is available. What would be the best way to handle
the following selections that involve negation?

a. �¬(building <“Watson”)(department)

b. �¬(building =“Watson”)(department)

c. �¬(building <“Watson” ∨ budget <50000)(department)

13.7 Consider the query:

select *
from r , s
where upper(r.A) = upper(s.A);

where “upper” is a function that returns its input argument with all low-
ercase letters replaced by the corresponding uppercase letters.

a. Find out what plan is generated for this query on the database system
you use.



Practice Exercises 619

b. Some database systems would use a (block) nested-loop join for this
query, which can be very inefficient. Briefly explain how hash-join
or merge-join can be used for this query.

13.8 Give conditions under which the following expressions are equivalent

A,BGagg(C)(E1 � E2) and (AGagg(C)(E1)) � E2

where agg denotes any aggregation operation. How can the above condi-
tions be relaxed if agg is one of min or max?

13.9 Consider the issue of interesting orders in optimization. Suppose you are
given a query that computes the natural join of a set of relations S. Given
a subset S1 of S, what are the interesting orders of S1?

13.10 Show that, with n relations, there are (2(n − 1))!/(n − 1)! different join
orders. Hint: A complete binary tree is one where every internal node has
exactly two children. Use the fact that the number of different complete
binary trees with n leaf nodes is:

1
n

(
2(n − 1)
(n − 1)

)

If you wish, you can derive the formula for the number of complete binary
trees with n nodes from the formula for the number of binary trees with
n nodes. The number of binary trees with n nodes is:

1
n + 1

(
2n
n

)

This number is known as the Catalan number, and its derivation can be
found in any standard textbook on data structures or algorithms.

13.11 Show that the lowest-cost join order can be computed in time O(3n).
Assume that you can store and look up information about a set of relations
(such as the optimal join order for the set, and the cost of that join order)
in constant time. (If you find this exercise difficult, at least show the looser
time bound of O(22n).)

13.12 Show that, if only left-deep join trees are considered, as in the System R
optimizer, the time taken to find the most efficient join order is around
n2n. Assume that there is only one interesting sort order.

13.13 Consider the bank database of Figure 13.9, where the primary keys are un-
derlined. Construct the following SQL queries for this relational database.

a. Write a nested query on the relation account to find, for each branch
with name starting with B, all accounts with the maximum balance
at the branch.
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branch(branch name, branch city, assets)
customer (customer name, customer street, customer city)
loan (loan number, branch name, amount)
borrower (customer name, loan number)
account (account number, branch name, balance)
depositor (customer name, account number)

Figure 13.9 Banking database for Exercise 13.13.

b. Rewrite the preceding query, without using a nested subquery; in
other words, decorrelate the query.

c. Give a procedure (similar to that described in Section 13.4.4) for
decorrelating such queries.

13.14 The set version of the semijoin operator � is defined as follows:

r �� s = �R(r �� s)

where R is the set of attributes in the schema of r . The multiset version of
the semijoin operation returns the same set of tuples, but each tuple has
exactly as many copies as it had in r .
Consider the nested query we saw in Section 13.4.4 which finds the names
of all instructors who taught a course in 2007. Write the query in relational
algebra using the multiset semjoin operation, ensuring that the number
of duplicates of each name is the same as in the SQL query. (The semijoin
operation is widely used for decorrelation of nested queries.)

Exercises

13.15 Suppose that a B+-tree index on (dept name, building) is available on re-
lation department. What would be the best way to handle the following
selection?

�(building < “Watson”) ∧ (budget < 55000) ∧ (dept name = “Music”)(department)

13.16 Show how to derive the following equivalences by a sequence of trans-
formations using the equivalence rules in Section 13.2.1.

a. ��1∧�2∧�3 (E) = ��1 (��2 (��3 (E)))

b. ��1∧�2 (E1 ��3 E2) = ��1 (E1 ��3 (��2 (E2))), where �2 involves only
attributes from E2
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13.17 Consider the two expressions ��(E1 � E2) and ��(E1 � E2).

a. Show using an example that the two expressions are not equivalent
in general.

b. Give a simple condition on the predicate �, which if satisfied will
ensure that the two expressions are equivalent.

13.18 A set of equivalence rules is said to be complete if, whenever two expres-
sions are equivalent, one can be derived from the other by a sequence
of uses of the equivalence rules. Is the set of equivalence rules that we
considered in Section 13.2.1 complete? Hint: Consider the equivalence
�3=5(r ) = { }.

13.19 Explain how to use a histogram to estimate the size of a selection of the
form �A≤v(r ).

13.20 Suppose two relations r and s have histograms on attributes r.A and s.A,
respectively, but with different ranges. Suggest how to use the histograms
to estimate the size of r � s. Hint: Split the ranges of each histogram
further.

13.21 Consider the query

select A, B
from r
where r.B < some (select B

from s
where s.A = r.A)

Show how to decorrelate the above query using the multiset version of
the semijoin operation, defined in Exercise 13.14.

13.22 Describe how to incrementally maintain the results of the following oper-
ations, on both insertions and deletions:

a. Union and set difference.

b. Left outer join.

13.23 Give an example of an expression defining a materialized view and two
situations (sets of statistics for the input relations and the differentials)
such that incremental view maintenance is better than recomputation in
one situation, and recomputation is better in the other situation.

13.24 Suppose you want to get answers to r � s sorted on an attribute of r , and
want only the top K answers for some relatively small K . Give a good
way of evaluating the query:

a. When the join is on a foreign key of r referencing s, where the foreign
key attribute is declared to be not null.

b. When the join is not on a foreign key.
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13.25 Consider a relation r (A, B, C), with an index on attribute A. Give an
example of a query that can be answered by using the index only, without
looking at the tuples in the relation. (Query plans that use only the index,
without accessing the actual relation, are called index-only plans.)

13.26 Suppose you have an update query U. Give a simple sufficient condition
on U that will ensure that the Halloween problem cannot occur, regardless
of the execution plan chosen, or the indices that exist.
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view maintenance plans and integrity constraint checking, along with techniques
to handle the Halloween problem.
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PART 4

TRANSACTION
MANAGEMENT

The term transaction refers to a collection of operations that form a single logical
unit of work. For instance, transfer of money from one account to another is a
transaction consisting of two updates, one to each account.

It is important that either all actions of a transaction be executed completely,
or, in case of some failure, partial effects of each incomplete transaction be un-
done. This property is called atomicity. Further, once a transaction is successfully
executed, its effects must persist in the database—a system failure should not
result in the database forgetting about a transaction that successfully completed.
This property is called durability.

In a database system where multiple transactions are executing concurrently,
if updates to shared data are not controlled there is potential for transactions
to see inconsistent intermediate states created by updates of other transactions.
Such a situation can result in erroneous updates to data stored in the database.
Thus, database systems must provide mechanisms to isolate transactions from
the effects of other concurrently executing transactions. This property is called
isolation.

Chapter 14 describes the concept of a transaction in detail, including the
properties of atomicity, durability, isolation, and other properties provided by
the transaction abstraction. In particular, the chapter makes precise the notion of
isolation by means of a concept called serializability.

Chapter 15 describes several concurrency-control techniques that help im-
plement the isolation property. Chapter 16 describes the recovery management
component of a database, which implements the atomicity and durability prop-
erties.

Taken as a whole, the transaction-management component of a database sys-
tem allows application developers to focus on the implementation of individual
transactions, ignoring the issues of concurrency and fault tolerance.
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C H A P T E R14
Transactions

Often, a collection of several operations on the database appears to be a single unit
from the point of view of the database user. For example, a transfer of funds from
a checking account to a savings account is a single operation from the customer’s
standpoint; within the database system, however, it consists of several operations.
Clearly, it is essential that all these operations occur, or that, in case of a failure,
none occur. It would be unacceptable if the checking account were debited but
the savings account not credited.

Collections of operations that form a single logical unit of work are called
transactions. A database system must ensure proper execution of transactions
despite failures—either the entire transaction executes, or none of it does. Fur-
thermore, it must manage concurrent execution of transactions in a way that
avoids the introduction of inconsistency. In our funds-transfer example, a trans-
action computing the customer’s total balance might see the checking-account
balance before it is debited by the funds-transfer transaction, but see the savings
balance after it is credited. As a result, it would obtain an incorrect result.

This chapter introduces the basic concepts of transaction processing. Details
on concurrent transaction processing and recovery from failures are in Chapters
15 and 16, respectively. Further topics in transaction processing are discussed in
Chapter 26.

14.1 Transaction Concept

A transaction is a unit of program execution that accesses and possibly updates
various data items. Usually, a transaction is initiated by a user program written
in a high-level data-manipulation language (typically SQL), or programming lan-
guage (for example, C++, or Java), with embedded database accesses in JDBC or
ODBC. A transaction is delimited by statements (or function calls) of the form
begin transaction and end transaction. The transaction consists of all operations
executed between the begin transaction and end transaction.

This collection of steps must appear to the user as a single, indivisible unit.
Since a transaction is indivisible, it either executes in its entirety or not at all. Thus,
if a transaction begins to execute but fails for whatever reason, any changes to the
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database that the transaction may have made must be undone. This requirement
holds regardless of whether the transaction itself failed (for example, if it divided
by zero), the operating system crashed, or the computer itself stopped operating.
As we shall see, ensuring that this requirement is met is difficult since some
changes to the database may still be stored only in the main-memory variables of
the transaction, while others may have been written to the database and stored
on disk. This “all-or-none” property is referred to as atomicity.

Furthermore, since a transaction is a single unit, its actions cannot appear to
be separated by other database operations not part of the transaction. While we
wish to present this user-level impression of transactions, we know that reality is
quite different. Even a single SQL statement involves many separate accesses to
the database, and a transaction may consist of several SQL statements. Therefore,
the database system must take special actions to ensure that transactions operate
properly without interference from concurrently executing database statements.
This property is referred to as isolation.

Even if the system ensures correct execution of a transaction, this serves little
purpose if the system subsequently crashes and, as a result, the system “forgets”
about the transaction. Thus, a transaction’s actions must persist across crashes.
This property is referred to as durability.

Because of the above three properties, transactions are an ideal way of struc-
turing interaction with a database. This leads us to impose a requirement on
transactions themselves. A transaction must preserve database consistency—if a
transaction is run atomically in isolation starting from a consistent database, the
database must again be consistent at the end of the transaction. This consistency
requirement goes beyond the data integrity constraints we have seen earlier (such
as primary-key constraints, referential integrity, check constraints, and the like).
Rather, transactions are expected to go beyond that to ensure preservation of those
application-dependent consistency constraints that are too complex to state using
the SQL constructs for data integrity. How this is done is the responsibility of the
programmer who codes a transaction. This property is referred to as consistency.

To restate the above more concisely, we require that the database system
maintain the following properties of the transactions:

• Atomicity. Either all operations of the transaction are reflected properly in
the database, or none are.

• Consistency. Execution of a transaction in isolation (that is, with no other
transaction executing concurrently) preserves the consistency of the data-
base.

• Isolation. Even though multiple transactions may execute concurrently, the
system guarantees that, for every pair of transactions Ti and Tj , it appears to Ti
that either Tj finished execution before Ti started or Tj started execution after
Ti finished. Thus, each transaction is unaware of other transactions executing
concurrently in the system.

• Durability. After a transaction completes successfully, the changes it has
made to the database persist, even if there are system failures.
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These properties are often called the ACID properties; the acronym is derived
from the first letter of each of the four properties.

As we shall see later, ensuring the isolation property may have a significant
adverse effect on system performance. For this reason, some applications com-
promise on the isolation property. We shall study these compromises after first
studying the strict enforcement of the ACID properties.

14.2 A Simple Transaction Model

Because SQL is a powerful and complex language, we begin our study of transac-
tions with a simple database language that focuses on when data are moved from
disk to main memory and from main memory to disk. In doing this, we ignore
SQL insert and delete operations, and defer considering them until Section 15.8.
The only actual operations on the data are restricted in our simple language to
arithmetic operations. Later we shall discuss transactions in a realistic, SQL-based
context with a richer set of operations. The data items in our simplified model con-
tain a single data value (a number in our examples). Each data item is identified
by a name (typically a single letter in our examples, that is, A, B, C , etc.).

We shall illustrate the transaction concept using a simple bank application
consisting of several accounts and a set of transactions that access and update
those accounts. Transactions access data using two operations:

• read(X), which transfers the data item X from the database to a variable,
also called X, in a buffer in main memory belonging to the transaction that
executed the read operation.

• write(X), which transfers the value in the variable X in the main-memory
buffer of the transaction that executed the write to the data item X in the
database.

It is important to know if a change to a data item appears only in main memory
or if it has been written to the database on disk. In a real database system, the
write operation does not necessarily result in the immediate update of the data on
the disk; the write operation may be temporarily stored elsewhere and executed
on the disk later. For now, however, we shall assume that the write operation
updates the database immediately. We shall return to this subject in Chapter 16.

Let Ti be a transaction that transfers $50 from account A to account B. This
transaction can be defined as:

Ti : read(A);
A := A − 50;
write(A);
read(B);
B := B + 50;
write(B).
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Let us now consider each of the ACID properties. (For ease of presentation, we
consider them in an order different from the order A-C-I-D.)

• Consistency: The consistency requirement here is that the sum of A and B
be unchanged by the execution of the transaction. Without the consistency
requirement, money could be created or destroyed by the transaction! It can
be verified easily that, if the database is consistent before an execution of
the transaction, the database remains consistent after the execution of the
transaction.

Ensuring consistency for an individual transaction is the responsibility
of the application programmer who codes the transaction. This task may be
facilitated by automatic testing of integrity constraints, as we discussed in
Section 4.4.

• Atomicity: Suppose that, just before the execution of transaction Ti , the val-
ues of accounts A and B are $1000 and $2000, respectively. Now suppose
that, during the execution of transaction Ti , a failure occurs that prevents Ti
from completing its execution successfully. Further, suppose that the failure
happened after the write(A) operation but before the write(B) operation. In
this case, the values of accounts A and B reflected in the database are $950
and $2000. The system destroyed $50 as a result of this failure. In particular,
we note that the sum A + B is no longer preserved.

Thus, because of the failure, the state of the system no longer reflects
a real state of the world that the database is supposed to capture. We term
such a state an inconsistent state. We must ensure that such inconsistencies
are not visible in a database system. Note, however, that the system must at
some point be in an inconsistent state. Even if transaction Ti is executed to
completion, there exists a point at which the value of account A is $950 and the
value of account B is $2000, which is clearly an inconsistent state. This state,
however, is eventually replaced by the consistent state where the value of
account A is $950, and the value of account B is $2050. Thus, if the transaction
never started or was guaranteed to complete, such an inconsistent state would
not be visible except during the execution of the transaction. That is the reason
for the atomicity requirement: If the atomicity property is present, all actions
of the transaction are reflected in the database, or none are.

The basic idea behind ensuring atomicity is this: The database system
keeps track (on disk) of the old values of any data on which a transaction
performs a write. This information is written to a file called the log. If the
transaction does not complete its execution, the database system restores the
old values from the log to make it appear as though the transaction never
executed. We discuss these ideas further in Section 14.4. Ensuring atomicity
is the responsibility of the database system; specifically, it is handled by a
component of the database called the recovery system, which we describe in
detail in Chapter 16.

• Durability: Once the execution of the transaction completes successfully, and
the user who initiated the transaction has been notified that the transfer of
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funds has taken place, it must be the case that no system failure can result in
a loss of data corresponding to this transfer of funds. The durability property
guarantees that, once a transaction completes successfully, all the updates
that it carried out on the database persist, even if there is a system failure
after the transaction completes execution.

We assume for now that a failure of the computer system may result in loss
of data in main memory, but data written to disk are never lost. Protection
against loss of data on disk is discussed in Chapter 16. We can guarantee
durability by ensuring that either:

1. The updates carried out by the transaction have been written to disk
before the transaction completes.

2. Information about the updates carried out by the transaction and writ-
ten to disk is sufficient to enable the database to reconstruct the updates
when the database system is restarted after the failure.

The recovery system of the database, described in Chapter 16, is responsible
for ensuring durability, in addition to ensuring atomicity.

• Isolation: Even if the consistency and atomicity properties are ensured for
each transaction, if several transactions are executed concurrently, their op-
erations may interleave in some undesirable way, resulting in an inconsistent
state.

For example, as we saw earlier, the database is temporarily inconsistent
while the transaction to transfer funds from A to B is executing, with the
deducted total written to A and the increased total yet to be written to B. If a
second concurrently running transaction reads A and B at this intermediate
point and computes A+ B, it will observe an inconsistent value. Furthermore,
if this second transaction then performs updates on A and B based on the
inconsistent values that it read, the database may be left in an inconsistent
state even after both transactions have completed.

A way to avoid the problem of concurrently executing transactions is to
execute transactions serially—that is, one after the other. However, concur-
rent execution of transactions provides significant performance benefits, as
we shall see in Section 14.5. Other solutions have therefore been developed;
they allow multiple transactions to execute concurrently.

We discuss the problems caused by concurrently executing transactions
in Section 14.5. The isolation property of a transaction ensures that the con-
current execution of transactions results in a system state that is equivalent
to a state that could have been obtained had these transactions executed one
at a time in some order. We shall discuss the principles of isolation further in
Section 14.6. Ensuring the isolation property is the responsibility of a com-
ponent of the database system called the concurrency-control system, which
we discuss later, in Chapter 15.
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14.3 Storage Structure

To understand how to ensure the atomicity and durability properties of a trans-
action, we must gain a better understanding of how the various data items in the
database may be stored and accessed.

In Chapter 10 we saw that storage media can be distinguished by their relative
speed, capacity, and resilience to failure, and classified as volatile storage or
nonvolatile storage. We review these terms, and introduce another class of storage,
called stable storage.

• Volatile storage. Information residing in volatile storage does not usually
survive system crashes. Examples of such storage are main memory and
cache memory. Access to volatile storage is extremely fast, both because of
the speed of the memory access itself, and because it is possible to access any
data item in volatile storage directly.

• Nonvolatile storage. Information residing in nonvolatile storage survives
system crashes. Examples of nonvolatile storage include secondary storage
devices such as magnetic disk and flash storage, used for online storage, and
tertiary storage devices such as optical media, and magnetic tapes, used for
archival storage. At the current state of technology, nonvolatile storage is
slower than volatile storage, particularly for random access. Both secondary
and tertiary storage devices, however, are susceptible to failure which may
result in loss of information.

• Stable storage. Information residing in stable storage is never lost (never
should be taken with a grain of salt, since theoretically never cannot be
guaranteed—for example, it is possible, although extremely unlikely, that
a black hole may envelop the earth and permanently destroy all data!). Al-
though stable storage is theoretically impossible to obtain, it can be closely
approximated by techniques that make data loss extremely unlikely. To im-
plement stable storage, we replicate the information in several nonvolatile
storage media (usually disk) with independent failure modes. Updates must
be done with care to ensure that a failure during an update to stable storage
does not cause a loss of information. Section 16.2.1 discusses stable-storage
implementation.

The distinctions among the various storage types can be less clear in practice
than in our presentation. For example, certain systems, for example some RAID
controllers, provide battery backup, so that some main memory can survive
system crashes and power failures.

For a transaction to be durable, its changes need to be written to stable storage.
Similarly, for a transaction to be atomic, log records need to be written to stable
storage before any changes are made to the database on disk. Clearly, the degree
to which a system ensures durability and atomicity depends on how stable its
implementation of stable storage really is. In some cases, a single copy on disk is
considered sufficient, but applications whose data are highly valuable and whose
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transactions are highly important require multiple copies, or, in other words, a
closer approximation of the idealized concept of stable storage.

14.4 Transaction Atomicity and Durability

As we noted earlier, a transaction may not always complete its execution suc-
cessfully. Such a transaction is termed aborted. If we are to ensure the atomicity
property, an aborted transaction must have no effect on the state of the database.
Thus, any changes that the aborted transaction made to the database must be
undone. Once the changes caused by an aborted transaction have been undone,
we say that the transaction has been rolled back. It is part of the responsibility of
the recovery scheme to manage transaction aborts. This is done typically by main-
taining a log. Each database modification made by a transaction is first recorded
in the log. We record the identifier of the transaction performing the modification,
the identifier of the data item being modified, and both the old value (prior to
modification) and the new value (after modification) of the data item. Only then
is the database itself modified. Maintaining a log provides the possibility of redo-
ing a modification to ensure atomicity and durability as well as the possibility of
undoing a modification to ensure atomicity in case of a failure during transaction
execution. Details of log-based recovery are discussed in Chapter 16.

A transaction that completes its execution successfully is said to be commit-
ted. A committed transaction that has performed updates transforms the database
into a new consistent state, which must persist even if there is a system failure.

Once a transaction has committed, we cannot undo its effects by aborting
it. The only way to undo the effects of a committed transaction is to execute a
compensating transaction. For instance, if a transaction added $20 to an account,
the compensating transaction would subtract $20 from the account. However, it
is not always possible to create such a compensating transaction. Therefore, the
responsibility of writing and executing a compensating transaction is left to the
user, and is not handled by the database system. Chapter 26 includes a discussion
of compensating transactions.

We need to be more precise about what we mean by successful completion
of a transaction. We therefore establish a simple abstract transaction model. A
transaction must be in one of the following states:

• Active, the initial state; the transaction stays in this state while it is executing.

• Partially committed, after the final statement has been executed.

• Failed, after the discovery that normal execution can no longer proceed.

• Aborted, after the transaction has been rolled back and the database has been
restored to its state prior to the start of the transaction.

• Committed, after successful completion.

The state diagram corresponding to a transaction appears in Figure 14.1. We
say that a transaction has committed only if it has entered the committed state.
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active

failed

partially
commi�ed commi�ed

aborted

Figure 14.1 State diagram of a transaction.

Similarly, we say that a transaction has aborted only if it has entered the aborted
state. A transaction is said to have terminated if it has either committed or aborted.

A transaction starts in the active state. When it finishes its final statement, it
enters the partially committed state. At this point, the transaction has completed
its execution, but it is still possible that it may have to be aborted, since the actual
output may still be temporarily residing in main memory, and thus a hardware
failure may preclude its successful completion.

The database system then writes out enough information to disk that, even in
the event of a failure, the updates performed by the transaction can be re-created
when the system restarts after the failure. When the last of this information is
written out, the transaction enters the committed state.

As mentioned earlier, we assume for now that failures do not result in loss of
data on disk. Chapter 16 discusses techniques to deal with loss of data on disk.

A transaction enters the failed state after the system determines that the
transaction can no longer proceed with its normal execution (for example, because
of hardware or logical errors). Such a transaction must be rolled back. Then, it
enters the aborted state. At this point, the system has two options:

• It can restart the transaction, but only if the transaction was aborted as a
result of some hardware or software error that was not created through the
internal logic of the transaction. A restarted transaction is considered to be a
new transaction.

• It can kill the transaction. It usually does so because of some internal logical
error that can be corrected only by rewriting the application program, or
because the input was bad, or because the desired data were not found in the
database.

We must be cautious when dealing with observable external writes, such as
writes to a user’s screen, or sending email. Once such a write has occurred, it
cannot be erased, since it may have been seen external to the database system.
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Most systems allow such writes to take place only after the transaction has entered
the committed state. One way to implement such a scheme is for the database
system to store any value associated with such external writes temporarily in
a special relation in the database, and to perform the actual writes only after
the transaction enters the committed state. If the system should fail after the
transaction has entered the committed state, but before it could complete the
external writes, the database system will carry out the external writes (using the
data in nonvolatile storage) when the system is restarted.

Handling external writes can be more complicated in some situations. For
example, suppose the external action is that of dispensing cash at an automated
teller machine, and the system fails just before the cash is actually dispensed (we
assume that cash can be dispensed atomically). It makes no sense to dispense
cash when the system is restarted, since the user may have left the machine. In
such a case a compensating transaction, such as depositing the cash back in the
user’s account, needs to be executed when the system is restarted.

As another example, consider a user making a booking over the Web. It is
possible that the database system or the application server crashes just after the
booking transaction commits. It is also possible that the network connection to
the user is lost just after the booking transaction commits. In either case, even
though the transaction has committed, the external write has not taken place.
To handle such situations, the application must be designed such that when the
user connects to the Web application again, she will be able to see whether her
transaction had succeeded or not.

For certain applications, it may be desirable to allow active transactions to
display data to users, particularly for long-duration transactions that run for
minutes or hours. Unfortunately, we cannot allow such output of observable
data unless we are willing to compromise transaction atomicity. In Chapter 26,
we discuss alternative transaction models that support long-duration, interactive
transactions.

14.5 Transaction Isolation

Transaction-processing systems usually allow multiple transactions to run con-
currently. Allowing multiple transactions to update data concurrently causes
several complications with consistency of the data, as we saw earlier. Ensuring
consistency in spite of concurrent execution of transactions requires extra work;
it is far easier to insist that transactions run serially—that is, one at a time, each
starting only after the previous one has completed. However, there are two good
reasons for allowing concurrency:

• Improved throughput and resource utilization. A transaction consists of
many steps. Some involve I/O activity; others involve CPU activity. The CPU
and the disks in a computer system can operate in parallel. Therefore, I/O
activity can be done in parallel with processing at the CPU. The parallelism
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of the CPU and the I/O system can therefore be exploited to run multiple
transactions in parallel. While a read or write on behalf of one transaction
is in progress on one disk, another transaction can be running in the CPU,
while another disk may be executing a read or write on behalf of a third
transaction. All of this increases the throughput of the system—that is, the
number of transactions executed in a given amount of time. Correspondingly,
the processor and disk utilization also increase; in other words, the processor
and disk spend less time idle, or not performing any useful work.

• Reduced waiting time. There may be a mix of transactions running on a
system, some short and some long. If transactions run serially, a short trans-
action may have to wait for a preceding long transaction to complete, which
can lead to unpredictable delays in running a transaction. If the transactions
are operating on different parts of the database, it is better to let them run
concurrently, sharing the CPU cycles and disk accesses among them. Con-
current execution reduces the unpredictable delays in running transactions.
Moreover, it also reduces the average response time: the average time for a
transaction to be completed after it has been submitted.

The motivation for using concurrent execution in a database is essentially the
same as the motivation for using multiprogramming in an operating system.

When several transactions run concurrently, the isolation property may be vi-
olated, resulting in database consistency being destroyed despite the correctness
of each individual transaction. In this section, we present the concept of sched-
ules to help identify those executions that are guaranteed to ensure the isolation
property and thus database consistency.

The database system must control the interaction among the concurrent trans-
actions to prevent them from destroying the consistency of the database. It does so
through a variety of mechanisms called concurrency-control schemes. We study
concurrency-control schemes in Chapter 15; for now, we focus on the concept of
correct concurrent execution.

Consider again the simplified banking system of Section 14.1, which has
several accounts, and a set of transactions that access and update those accounts.
Let T1 and T2 be two transactions that transfer funds from one account to another.
Transaction T1 transfers $50 from account A to account B. It is defined as:

T1: read(A);
A := A − 50;
write(A);
read(B);
B := B + 50;
write(B).

Transaction T2 transfers 10 percent of the balance from account A to account B. It
is defined as:
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TRENDS IN CONCURRENCY

Several current trends in the field of computing are giving rise to an increase
in the amount of concurrency possible. As database systems exploit this con-
currency to increase overall system performance, there will necessarily be an
increasing number of transactions run concurrently.

Early computers had only one processor. Therefore, there was never any real
concurrency in the computer. The only concurrency was apparent concurrency
created by the operating system as it shared the processor among several distinct
tasks or processes. Modern computers are likely to have many processors. These
may be truly distinct processors all part of the one computer. However even a
single processor may be able to run more than one process at a time by having
multiple cores. The Intel Core Duo processor is a well-known example of such a
multicore processor.

For database systems to take advantage of multiple processors and multiple
cores, two approaches are being taken. One is to find parallelism within a single
transaction or query. Another is to support a very large number of concurrent
transactions.

Many service providers now use large collections of computers rather than
large mainframe computers to provide their services. They are making this
choice based on the lower cost of this approach. A result of this is yet a further
increase in the degree of concurrency that can be supported.

The bibliographic notes refer to texts that describe these advances in com-
puter architecture and parallel computing. Chapter 18 describes algorithms for
building parallel database systems, which exploit multiple processors and mul-
tiple cores.

T2: read(A);
temp := A * 0.1;
A := A − temp;
write(A);
read(B);
B := B + temp;
write(B).

Suppose the current values of accounts A and B are $1000 and $2000, respec-
tively. Suppose also that the two transactions are executed one at a time in the
order T1 followed by T2. This execution sequence appears in Figure 14.2. In the
figure, the sequence of instruction steps is in chronological order from top to
bottom, with instructions of T1 appearing in the left column and instructions of
T2 appearing in the right column. The final values of accounts A and B, after the
execution in Figure 14.2 takes place, are $855 and $2145, respectively. Thus, the
total amount of money in accounts A and B—that is, the sum A + B—is preserved
after the execution of both transactions.
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T1 T2

read(A)
A := A − 50
write(A)
read(B)
B := B + 50
write(B)
commit

read(A)
temp := A ∗ 0.1
A := A − temp
write(A)
read(B)
B := B + temp
write(B)
commit

Figure 14.2 Schedule 1—a serial schedule in which T1 is followed by T2.

Similarly, if the transactions are executed one at a time in the order T2 followed
by T1, then the corresponding execution sequence is that of Figure 14.3. Again, as
expected, the sum A + B is preserved, and the final values of accounts A and B
are $850 and $2150, respectively.

T1 T2

read(A)
temp := A ∗ 0.1
A := A − temp
write(A)
read(B)
B := B + temp
write(B)
commit

read(A)
A := A − 50
write(A)
read(B)
B := B + 50
write(B)
commit

Figure 14.3 Schedule 2—a serial schedule in which T2 is followed by T1.
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The execution sequences just described are called schedules. They represent
the chronological order in which instructions are executed in the system. Clearly,
a schedule for a set of transactions must consist of all instructions of those trans-
actions, and must preserve the order in which the instructions appear in each
individual transaction. For example, in transaction T1, the instruction write(A)
must appear before the instruction read(B), in any valid schedule. Note that we
include in our schedules the commit operation to indicate that the transaction
has entered the committed state. In the following discussion, we shall refer to
the first execution sequence (T1 followed by T2) as schedule 1, and to the second
execution sequence (T2 followed by T1) as schedule 2.

These schedules are serial: Each serial schedule consists of a sequence of
instructions from various transactions, where the instructions belonging to one
single transaction appear together in that schedule. Recalling a well-known for-
mula from combinatorics, we note that, for a set of n transactions, there exist n
factorial (n!) different valid serial schedules.

When the database system executes several transactions concurrently, the
corresponding schedule no longer needs to be serial. If two transactions are
running concurrently, the operating system may execute one transaction for a
little while, then perform a context switch, execute the second transaction for
some time, and then switch back to the first transaction for some time, and so on.
With multiple transactions, the CPU time is shared among all the transactions.

Several execution sequences are possible, since the various instructions from
both transactions may now be interleaved. In general, it is not possible to predict
exactly how many instructions of a transaction will be executed before the CPU
switches to another transaction.1

Returning to our previous example, suppose that the two transactions are
executed concurrently. One possible schedule appears in Figure 14.4. After this
execution takes place, we arrive at the same state as the one in which the transac-
tions are executed serially in the order T1 followed by T2. The sum A + B is indeed
preserved.

Not all concurrent executions result in a correct state. To illustrate, consider
the schedule of Figure 14.5. After the execution of this schedule, we arrive at a
state where the final values of accounts A and B are $950 and $2100, respectively.
This final state is an inconsistent state, since we have gained $50 in the process of
the concurrent execution. Indeed, the sum A + B is not preserved by the execution
of the two transactions.

If control of concurrent execution is left entirely to the operating system, many
possible schedules, including ones that leave the database in an inconsistent state,
such as the one just described, are possible. It is the job of the database system to
ensure that any schedule that is executed will leave the database in a consistent
state. The concurrency-control component of the database system carries out this
task.

1The number of possible schedules for a set of n transactions is very large. There are n! different serial schedules.
Considering all the possible ways that steps of transactions might be interleaved, the total number of possible schedules
is much larger than n!.
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T1 T2

read(A)
A := A − 50
write(A)

read(A)
temp := A ∗ 0.1
A := A − temp
write(A)

read(B)
B := B + 50
write(B)
commit

read(B)
B := B + temp
write(B)
commit

Figure 14.4 Schedule 3—a concurrent schedule equivalent to schedule 1.

We can ensure consistency of the database under concurrent execution by
making sure that any schedule that is executed has the same effect as a schedule
that could have occurred without any concurrent execution. That is, the schedule
should, in some sense, be equivalent to a serial schedule. Such schedules are
called serializable schedules.

T1 T2

read(A)
A := A − 50

read(A)
temp := A ∗ 0.1
A := A − temp
write(A)
read(B)

write(A)
read(B)
B := B + 50
write(B)
commit

B := B + temp
write(B)
commit

Figure 14.5 Schedule 4—a concurrent schedule resulting in an inconsistent state.
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14.6 Serializability

Before we can consider how the concurrency-control component of the database
system can ensure serializability, we consider how to determine when a schedule
is serializable. Certainly, serial schedules are serializable, but if steps of multiple
transactions are interleaved, it is harder to determine whether a schedule is seri-
alizable. Since transactions are programs, it is difficult to determine exactly what
operations a transaction performs and how operations of various transactions in-
teract. For this reason, we shall not consider the various types of operations that a
transaction can perform on a data item, but instead consider only two operations:
read and write. We assume that, between a read(Q) instruction and a write(Q)
instruction on a data item Q, a transaction may perform an arbitrary sequence of
operations on the copy of Q that is residing in the local buffer of the transaction.
In this model, the only significant operations of a transaction, from a scheduling
point of view, are its read and write instructions. Commit operations, though
relevant, are not considered until Section 14.7. We therefore may show only read
and write instructions in schedules, as we do for schedule 3 in Figure 14.6.

In this section, we discuss different forms of schedule equivalence, but focus
on a particular form called conflict serializability.

Let us consider a schedule S in which there are two consecutive instructions,
I and J , of transactions Ti and Tj , respectively (i �= j). If I and J refer to different
data items, then we can swap I and J without affecting the results of any instruc-
tion in the schedule. However, if I and J refer to the same data item Q, then the
order of the two steps may matter. Since we are dealing with only read and write
instructions, there are four cases that we need to consider:

1. I = read(Q), J = read(Q). The order of I and J does not matter, since the
same value of Q is read by Ti and Tj , regardless of the order.

2. I = read(Q), J = write(Q). If I comes before J , then Ti does not read the value
of Q that is written by Tj in instruction J . If J comes before I , then Ti reads
the value of Q that is written by Tj . Thus, the order of I and J matters.

T1 T2

read(A)
write(A)

read(A)
write(A)

read(B)
write(B)

read(B)
write(B)

Figure 14.6 Schedule 3—showing only the read and write instructions.



642 Chapter 14 Transactions

T1 T2

read(A)
write(A)

read(A)
read(B)

write(A)
write(B)

read(B)
write(B)

Figure 14.7 Schedule 5—schedule 3 after swapping of a pair of instructions.

3. I = write(Q), J = read(Q). The order of I and J matters for reasons similar
to those of the previous case.

4. I = write(Q), J = write(Q). Since both instructions are write operations, the
order of these instructions does not affect either Ti or Tj . However, the value
obtained by the next read(Q) instruction of S is affected, since the result of
only the latter of the two write instructions is preserved in the database. If
there is no other write(Q) instruction after I and J in S, then the order of I
and J directly affects the final value of Q in the database state that results
from schedule S.

Thus, only in the case where both I and J are read instructions does the relative
order of their execution not matter.

We say that I and J conflict if they are operations by different transactions
on the same data item, and at least one of these instructions is a write operation.

To illustrate the concept of conflicting instructions, we consider schedule 3in
Figure 14.6. The write(A) instruction of T1 conflicts with the read(A) instruction
of T2. However, the write(A) instruction of T2 does not conflict with the read(B)
instruction of T1, because the two instructions access different data items.

T1 T2

read(A)
write(A)
read(B)
write(B)

read(A)
write(A)
read(B)
write(B)

Figure 14.8 Schedule 6—a serial schedule that is equivalent to schedule 3.
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T3 T4

read(Q)
write(Q)

write(Q)

Figure 14.9 Schedule 7.

Let I and J be consecutive instructions of a schedule S. If I and J are in-
structions of different transactions and I and J do not conflict, then we can swap
the order of I and J to produce a new schedule S′. S is equivalent to S′, since all
instructions appear in the same order in both schedules except for I and J , whose
order does not matter.

Since the write(A) instruction of T2 in schedule 3 of Figure 14.6 does not conflict
with the read(B) instruction of T1, we can swap these instructions to generate an
equivalent schedule, schedule 5, in Figure 14.7. Regardless of the initial system
state, schedules 3 and 5 both produce the same final system state.

We continue to swap nonconflicting instructions:

• Swap the read(B) instruction of T1 with the read(A) instruction of T2.

• Swap the write(B) instruction of T1 with the write(A) instruction of T2.

• Swap the write(B) instruction of T1 with the read(A) instruction of T2.

The final result of these swaps, schedule 6 of Figure 14.8, is a serial schedule.
Note that schedule 6 is exactly the same as schedule 1, but it shows only the
read and write instructions. Thus, we have shown that schedule 3 is equivalent
to a serial schedule. This equivalence implies that, regardless of the initial system
state, schedule 3 will produce the same final state as will some serial schedule.

If a schedule S can be transformed into a schedule S′ by a series of swaps of
nonconflicting instructions, we say that S and S′ are conflict equivalent.2

Not all serial schedules are conflict equivalent to each other. For example,
schedules 1 and 2 are not conflict equivalent.

The concept of conflict equivalence leads to the concept of conflict serializ-
ability. We say that a schedule S is conflict serializable if it is conflict equivalent
to a serial schedule. Thus, schedule 3 is conflict serializable, since it is conflict
equivalent to the serial schedule 1.

Finally, consider schedule 7 of Figure 14.9; it consists of only the significant
operations (that is, the read and write) of transactions T3 and T4. This schedule
is not conflict serializable, since it is not equivalent to either the serial schedule
<T3,T4> or the serial schedule <T4,T3>.

2We use the term conflict equivalent to distinguish the way we have just defined equivalence from other definitions that
we shall discuss later on in this section.
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(a) (b)

T1 T2 T2 T1

Figure 14.10 Precedence graph for (a) schedule 1 and (b) schedule 2.

We now present a simple and efficient method for determining conflict seri-
alizability of a schedule. Consider a schedule S. We construct a directed graph,
called a precedence graph, from S. This graph consists of a pair G = (V, E), where
V is a set of vertices and E is a set of edges. The set of vertices consists of all the
transactions participating in the schedule. The set of edges consists of all edges
Ti → Tj for which one of three conditions holds:

1. Ti executes write(Q) before Tj executes read(Q).

2. Ti executes read(Q) before Tj executes write(Q).

3. Ti executes write(Q) before Tj executes write(Q).

If an edge Ti → Tj exists in the precedence graph, then, in any serial schedule S′
equivalent to S, Ti must appear before Tj .

For example, the precedence graph for schedule 1 in Figure 14.10a contains
the single edge T1 → T2, since all the instructions of T1 are executed before the
first instruction of T2 is executed. Similarly, Figure 14.10b shows the precedence
graph for schedule 2 with the single edge T2 → T1, since all the instructions of T2
are executed before the first instruction of T1 is executed.

The precedence graph for schedule 4 appears in Figure 14.11. It contains
the edge T1 → T2, because T1 executes read(A) before T2 executes write(A). It also
contains the edge T2 → T1, because T2 executes read(B) before T1 executes write(B).

If the precedence graph for S has a cycle, then schedule S is not conflict serial-
izable. If the graph contains no cycles, then the schedule S is conflict serializable.

A serializability order of the transactions can be obtained by finding a linear
order consistent with the partial order of the precedence graph. This process is
called topological sorting. There are, in general, several possible linear orders that

T1 T2

Figure 14.11 Precedence graph for schedule 4.
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(b) (c)

(a)

Tm

Tk

Tk

Tk

Tj

Ti

Tm

Tj

Ti

Tm

Ti

Tj

Figure 14.12 Illustration of topological sorting.

can be obtained through a topological sort. For example, the graph of Figure 14.12a
has the two acceptable linear orderings shown in Figures 14.12b and 14.12c.

Thus, to test for conflict serializability, we need to construct the precedence
graph and to invoke a cycle-detection algorithm. Cycle-detection algorithms can
be found in standard textbooks on algorithms. Cycle-detection algorithms, such
as those based on depth-first search, require on the order of n2 operations, where
n is the number of vertices in the graph (that is, the number of transactions).

Returning to our previous examples, note that the precedence graphs for
schedules 1 and 2 (Figure 14.10) indeed do not contain cycles. The precedence
graph for schedule 4 (Figure 14.11), on the other hand, contains a cycle, indicating
that this schedule is not conflict serializable.

It is possible to have two schedules that produce the same outcome, but that
are not conflict equivalent. For example, consider transaction T5, which transfers
$10 from account B to account A. Let schedule 8 be as defined in Figure 14.13.
We claim that schedule 8 is not conflict equivalent to the serial schedule <T1,T5>,
since, in schedule 8, the write(B) instruction of T5 conflicts with the read(B) in-
struction of T1. This creates an edge T5 → T1 in the precedence graph. Similarly,
we see that the write(A) instruction of T1 conflicts with the read instruction of T5
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T1 T5

read(A)
A := A − 50
write(A)

read(B)
B := B − 10
write(B)

read(B)
B := B + 50
write(B)

read(A)
A := A + 10
write(A)

Figure 14.13 Schedule 8.

creating an edge T1 → T5. This shows that the precedence graph has a cycle and
that schedule 8 is not serializable. However, the final values of accounts A and
B after the execution of either schedule 8 or the serial schedule <T1,T5> are the
same—$960 and $2040, respectively.

We can see from this example that there are less-stringent definitions of sched-
ule equivalence than conflict equivalence. For the system to determine that sched-
ule 8 produces the same outcome as the serial schedule <T1,T5>, it must analyze
the computation performed by T1 and T5, rather than just the read and write op-
erations. In general, such analysis is hard to implement and is computationally
expensive. In our example, the final result is the same as that of a serial schedule
because of the mathematical fact that addition and subtraction are commutative.
While this may be easy to see in our simple example, the general case is not so
easy since a transaction may be expressed as a complex SQL statement, a Java
program with JDBC calls, etc.

However, there are other definitions of schedule equivalence based purely on
the read and write operations. One such definition is view equivalence, a definition
that leads to the concept of view serializability. View serializability is not used in
practice due to its high degree of computational complexity.3 We therefore defer
discussion of view serializability to Chapter 15, but, for completeness, note here
that the example of schedule 8 is not view serializable.

14.7 Transaction Isolation and Atomicity

So far, we have studied schedules while assuming implicitly that there are no
transaction failures. We now address the effect of transaction failures during
concurrent execution.

3Testing for view serializability has been proven to be NP-complete, which means that it is virtually certain that no
efficient test for view serializability exists.
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T6 T7

read(A)
write(A)

read(A)
commit

read(B)

Figure 14.14 Schedule 9, a nonrecoverable schedule.

If a transaction Ti fails, for whatever reason, we need to undo the effect of
this transaction to ensure the atomicity property of the transaction. In a system
that allows concurrent execution, the atomicity property requires that any trans-
action Tj that is dependent on Ti (that is, Tj has read data written by Ti ) is also
aborted. To achieve this, we need to place restrictions on the type of schedules
permitted in the system.

In the following two subsections, we address the issue of what schedules are
acceptable from the viewpoint of recovery from transaction failure. We describe
in Chapter 15 how to ensure that only such acceptable schedules are generated.

14.7.1 Recoverable Schedules

Consider the partial schedule 9 in Figure 14.14, in which T7 is a transaction that
performs only one instruction: read(A). We call this a partial schedule because
we have not included a commit or abort operation for T6. Notice that T7 commits
immediately after executing the read(A) instruction. Thus, T7 commits while T6
is still in the active state. Now suppose that T6 fails before it commits. T7 has read
the value of data item A written by T6. Therefore, we say that T7 is dependent
on T6. Because of this, we must abort T7 to ensure atomicity. However, T7 has
already committed and cannot be aborted. Thus, we have a situation where it is
impossible to recover correctly from the failure of T6.

Schedule 9 is an example of a nonrecoverable schedule. A recoverable schedule
is one where, for each pair of transactions Ti and Tj such that Tj reads a data item
previously written by Ti , the commit operation of Ti appears before the commit
operation of Tj . For the example of schedule 9 to be recoverable, T7 would have
to delay committing until after T6 commits.

14.7.2 Cascadeless Schedules

Even if a schedule is recoverable, to recover correctly from the failure of a trans-
action Ti , we may have to roll back several transactions. Such situations occur if
transactions have read data written by Ti . As an illustration, consider the partial
schedule of Figure 14.15. Transaction T8 writes a value of A that is read by transac-
tion T9. Transaction T9 writes a value of A that is read by transaction T10. Suppose
that, at this point, T8 fails. T8 must be rolled back. Since T9 is dependent on T8, T9
must be rolled back. Since T10 is dependent on T9, T10 must be rolled back. This
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T8 T9 T10

read(A)
read(B)
write(A)

read(A)
write(A)

read(A)
abort

Figure 14.15 Schedule 10.

phenomenon, in which a single transaction failure leads to a series of transaction
rollbacks, is called cascading rollback.

Cascading rollback is undesirable, since it leads to the undoing of a significant
amount of work. It is desirable to restrict the schedules to those where cascading
rollbacks cannot occur. Such schedules are called cascadeless schedules. Formally,
a cascadeless schedule is one where, for each pair of transactions Ti and Tj such
that Tj reads a data item previously written by Ti , the commit operation of Ti
appears before the read operation of Tj . It is easy to verify that every cascadeless
schedule is also recoverable.

14.8 Transaction Isolation Levels

Serializability is a useful concept because it allows programmers to ignore issues
related to concurrency when they code transactions. If every transaction has the
property that it maintains database consistency if executed alone, then serial-
izability ensures that concurrent executions maintain consistency. However, the
protocols required to ensure serializability may allow too little concurrency for
certain applications. In these cases, weaker levels of consistency are used. The
use of weaker levels of consistency places additional burdens on programmers
for ensuring database correctness.

The SQL standard also allows a transaction to specify that it may be executed in
such a way that it becomes nonserializable with respect to other transactions. For
instance, a transaction may operate at the isolation level of read uncommitted,
which permits the transaction to read a data item even if it was written by a
transaction that has not been committed. SQL provides such features for the
benefit of long transactions whose results do not need to be precise. If these
transactions were to execute in a serializable fashion, they could interfere with
other transactions, causing the others’ execution to be delayed.

The isolation levels specified by the SQL standard are as follows:

• Serializable usually ensures serializable execution. However, as we shall
explain shortly, some database systems implement this isolation level in a
manner that may, in certain cases, allow nonserializable executions.
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• Repeatable read allows only committed data to be read and further requires
that, between two reads of a data item by a transaction, no other transaction
is allowed to update it. However, the transaction may not be serializable
with respect to other transactions. For instance, when it is searching for data
satisfying some conditions, a transaction may find some of the data inserted
by a committed transaction, but may not find other data inserted by the same
transaction.

• Read committed allows only committed data to be read, but does not require
repeatable reads. For instance, between two reads of a data item by the trans-
action, another transaction may have updated the data item and committed.

• Read uncommitted allows uncommitted data to be read. It is the lowest
isolation level allowed by SQL.

All the isolation levels above additionally disallow dirty writes, that is, they
disallow writes to a data item that has already been written by another transaction
that has not yet committed or aborted.

Many database systems run, by default, at the read-committed isolation level.
In SQL, it is possible to set the isolation level explicitly, rather than accepting the
system’s default setting. For example, the statement “set transaction isolation
level serializable;” sets the isolation level to serializable; any of the other isola-
tion levels may be specified instead. The above syntax is supported by Oracle,
PostgreSQL and SQL Server; DB2 uses the syntax “change isolation level,” with its
own abbreviations for isolation levels.

Changing of the isolation level must be done as the first statement of a
transaction. Further, automatic commit of individual statements must be turned
off, if it is on by default; API functions, such as the JDBC method Connec-
tion.setAutoCommit(false) which we saw in Section 5.1.1.7, can be used to do
so. Further, in JDBC the method Connection.setTransactionIsolation(int level) can
be used to set the isolation level; see the JDBC manuals for details.

An application designer may decide to accept a weaker isolation level in order
to improve system performance. As we shall see in Section 14.9 and Chapter 15,
ensuring serializability may force a transaction to wait for other transactions or,
in some cases, to abort because the transaction can no longer be executed as
part of a serializable execution. While it may seem shortsighted to risk database
consistency for performance, this trade-off makes sense if we can be sure that the
inconsistency that may occur is not relevant to the application.

There are many means of implementing isolation levels. As long as the im-
plementation ensures serializability, the designer of a database application or a
user of an application does not need to know the details of such implementations,
except perhaps for dealing with performance issues. Unfortunately, even if the
isolation level is set to serializable, some database systems actually implement a
weaker level of isolation, which does not rule out every possible nonserializable
execution; we revisit this issue in Section 14.9. If weaker levels of isolation are
used, either explicitly or implicitly, the application designer has to be aware of
some details of the implementation, to avoid or minimize the chance of inconsis-
tency due to lack of serializability.



650 Chapter 14 Transactions

SERIALIZABILITY IN THE REAL WORLD

Serializable schedules are the ideal way to ensure consistency, but in our day-
to-day lives, we don’t impose such stringent requirements. A Web site offering
goods for sale may list an item as being in stock, yet by the time a user selects
the item and goes through the checkout process, that item might no longer be
available. Viewed from a database perspective, this would be a nonrepeatable
read.

As another example, consider seat selection for air travel. Assume that a
traveler has already booked an itinerary and now is selecting seats for each
flight. Many airline Web sites allow the user to step through the various flights
and choose a seat, after which the user is asked to confirm the selection. It could
be that other travelers are selecting seats or changing their seat selections for
the same flights at the same time. The seat availability that the traveler was
shown is thus actually changing, but the traveler is shown a snapshot of the seat
availability as of when the traveler started the seat selection process.

Even if two travelers are selecting seats at the same time, most likely they
will select different seats, and if so there would be no real conflict. However,
the transactions are not serializable, since each traveler has read data that was
subsequently updated by the other traveler, leading to a cycle in the precedence
graph. If two travelers performing seat selection concurrently actually selected
the same seat, one of them would not be able to get the seat they selected;
however, the situation could be easily resolved by asking the traveler to perform
the selection again, with updated seat availability information.

It is possible to enforce serializability by allowing only one traveler to do
seat selection for a particular flight at a time. However, doing so could cause
significant delays as travelers would have to wait for their flight to become
available for seat selection; in particular a traveler who takes a long time to
make a choice could cause serious problems for other travelers. Instead, any such
transaction is typically broken up into a part that requires user interaction, and
a part that runs exclusively on the database. In the example above, the database
transaction would check if the seats chosen by the user are still available, and
if so update the seat selection in the database. Serializability is ensured only for
the transactions that run on the database, without user interaction.

14.9 Implementation of Isolation Levels

So far, we have seen what properties a schedule must have if it is to leave the
database in a consistent state and allow transaction failures to be handled in a
safe manner.

There are various concurrency-control policies that we can use to ensure
that, even when multiple transactions are executed concurrently, only acceptable
schedules are generated, regardless of how the operating system time-shares
resources (such as CPU time) among the transactions.
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As a trivial example of a concurrency-control policy, consider this: A trans-
action acquires a lock on the entire database before it starts and releases the lock
after it has committed. While a transaction holds a lock, no other transaction is
allowed to acquire the lock, and all must therefore wait for the lock to be released.
As a result of the locking policy, only one transaction can execute at a time. There-
fore, only serial schedules are generated. These are trivially serializable, and it is
easy to verify that they are recoverable and cascadeless as well.

A concurrency-control policy such as this one leads to poor performance,
since it forces transactions to wait for preceding transactions to finish before they
can start. In other words, it provides a poor degree of concurrency (indeed, no con-
currency at all). As we saw in Section 14.5, concurrent execution has substantial
performance benefits.

The goal of concurrency-control policies is to provide a high degree of con-
currency, while ensuring that all schedules that can be generated are conflict or
view serializable, recoverable, and cascadeless.

Here we provide an overview of how some of most important concurrency-
control mechanisms work, and we defer the details to Chapter 15.

14.9.1 Locking

Instead of locking the entire database, a transaction could, instead, lock only those
data items that it accesses. Under such a policy, the transaction must hold locks
long enough to ensure serializability, but for a period short enough not to harm
performance excessively. Complicating matters are SQL statements like those we
saw in Section 14.10, where the data items accessed depend on a where clause.
In Chapter 15, we present the two-phase locking protocol, a simple, widely used
technique that ensures serializability. Stated simply, two-phase locking requires
a transaction to have two phases, one where it acquires locks but does not release
any, and a second phase where the transaction releases locks but does not acquire
any. (In practice, locks are usually released only when the transaction completes
its execution and has been either committed or aborted.)

Further improvements to locking result if we have two kinds of locks: shared
and exclusive. Shared locks are used for data that the transaction reads and
exclusive locks are used for those it writes. Many transactions can hold shared
locks on the same data item at the same time, but a transaction is allowed an
exclusive lock on a data item only if no other transaction holds any lock (regardless
of whether shared or exclusive) on the data item. This use of two modes of
locks along with two-phase locking allows concurrent reading of data while still
ensuring serializability.

14.9.2 Timestamps

Another category of techniques for the implementation of isolation assigns each
transaction a timestamp, typically when it begins. For each data item, the system
keeps two timestamps. The read timestamp of a data item holds the largest (that
is, the most recent) timestamp of those transactions that read the data item.
The write timestamp of a data item holds the timestamp of the transaction that
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wrote the current value of the data item. Timestamps are used to ensure that
transactions access each data item in order of the transactions’ timestamps if their
accesses conflict. When this is not possible, offending transactions are aborted
and restarted with a new timestamp.

14.9.3 Multiple Versions and Snapshot Isolation

By maintaining more than one version of a data item, it is possible to allow a
transaction to read an old version of a data item rather than a newer version
written by an uncommitted transaction or by a transaction that should come
later in the serialization order. There are a variety of multiversion concurrency-
control techniques. One in particular, called snapshot isolation, is widely used
in practice.

In snapshot isolation, we can imagine that each transaction is given its own
version, or snapshot, of the database when it begins.4 It reads data from this
private version and is thus isolated from the updates made by other transactions.
If the transaction updates the database, that update appears only in its own
version, not in the actual database itself. Information about these updates is
saved so that the updates can be applied to the “real” database if the transaction
commits.

When a transaction T enters the partially committed state, it then proceeds to
the committed state only if no other concurrent transaction has modified data that
T intends to update. Transactions that, as a result, cannot commit abort instead.

Snapshot isolation ensures that attempts to read data never need to wait
(unlike locking). Read-only transactions cannot be aborted; only those that modify
data run a slight risk of aborting. Since each transaction reads its own version
or snapshot of the database, reading data does not cause subsequent update
attempts by other transactions to wait (unlike locking). Since most transactions
are read-only (and most others read more data than they update), this is often a
major source of performance improvement as compared to locking.

The problem with snapshot isolation is that, paradoxically, it provides too
much isolation. Consider two transactions T and T ′. In a serializable execution,
either T sees all the updates made by T ′ or T ′ sees all the updates made by
T , because one must follow the other in the serialization order. Under snapshot
isolation, there are cases where neither transaction sees the updates of the other.
This is a situation that cannot occur in a serializable execution. In many (indeed,
most) cases, the data accesses by the two transactions do not conflict and there
is no problem. However, if T reads some data item that T ′ updates and T ′ reads
some data item that T updates, it is possible that both transactions fail to read
the update made by the other. The result, as we shall see in Chapter 15, may
be an inconsistent database state that, of course, could not be obtained in any
serializable execution.

4Of course, in reality, the entire database is not copied. Multiple versions are kept only of those data items that are
changed.
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Oracle, PostgreSQL, and SQL Server offer the option of snapshot isolation.
Oracle and PostgreSQL implement the serializable isolation level using snapshot
isolation. As a result, their implementation of serializability can, in exceptional
circumstances, result in a nonserializable execution being allowed. SQL Server
instead includes an additional isolation level beyond the standard ones, called
snapshot, to offer the option of snapshot isolation.

14.10 Transactions as SQL Statements

In Section 4.3, we presented the SQL syntax for specifying the beginning and end
of transactions. Now that we have seen some of the issues in ensuring the ACID
properties for transactions, we are ready to consider how those properties are
ensured when transactions are specified as a sequence of SQL statements rather
than the restricted model of simple reads and writes that we considered up to
this point.

In our simple model, we assumed a set of data items exists. While our simple
model allowed data-item values to be changed, it did not allow data items to
be created or deleted. In SQL, however, insert statements create new data and
delete statements delete data. These two statements are, in effect, write opera-
tions, since they change the database, but their interactions with the actions of
other transactions are different from what we saw in our simple model. As an
example, consider the following SQL query on our university database that finds
all instructors who earn more than $90,000.

select ID, name
from instructor
where salary > 90000;

Using our sample instructor relation (Appendix A.3), we find that only Ein-
stein and Brandt satisfy the condition. Now assume that around the same time
we are running our query, another user inserts a new instructor named “James”
whose salary is $100,000.

insert into instructor values (’11111’, ’James’, ’Marketing’, 100000);

The result of our query will be different depending on whether this insert comes
before or after our query is run. In a concurrent execution of these transactions,
it is intuitively clear that they conflict, but this is a conflict not captured by our
simple model. This situation is referred to as the phantom phenomenon, because
a conflict may exist on “phantom” data.

Our simple model of transactions required that operations operate on a spe-
cific data item given as an argument to the operation. In our simple model, we can
look at the read and write steps to see which data items are referenced. But in an
SQL statement, the specific data items (tuples) referenced may be determined by
a where clause predicate. So the same transaction, if run more than once, might



654 Chapter 14 Transactions

reference different data items each time it is run if the values in the database
change between runs.

One way of dealing with the above problem is to recognize that it is not
sufficient for concurrency control to consider only the tuples that are accessed
by a transaction; the information used to find the tuples that are accessed by the
transaction must also be considered for the purpose of concurrency control. The
information used to find tuples could be updated by an insertion or deletion, or
in the case of an index, even by an update to a search-key attribute. For example,
if locking is used for concurrency control, the data structures that track the tuples
in a relation, as well as index structures, must be appropriately locked. However,
such locking can lead to poor concurrency in some situations; index-locking
protocols which maximize concurrency, while ensuring serializability in spite of
inserts, deletes, and predicates in queries, are discussed in Section 15.8.3.

Let us consider again the query:

select ID, name
from instructor
where salary> 90000;

and the following SQL update:

update instructor
set salary = salary * 0.9
where name = ’Wu’;

We now face an interesting situation in determining whether our query conflicts
with the update statement. If our query reads the entire instructor relation, then
it reads the tuple with Wu’s data and conflicts with the update. However, if an
index were available that allowed our query direct access to those tuples with
salary > 90000, then our query would not have accessed Wu’s data at all because
Wu’s salary is initially $90,000 in our example instructor relation, and reduces to
$81,000 after the update.

However, using the above approach, it would appear that the existence of
a conflict depends on a low-level query processing decision by the system that
is unrelated to a user-level view of the meaning of the two SQL statements! An
alternative approach to concurrency control treats an insert, delete or update as
conflicting with a predicate on a relation, if it could affect the set of tuples selected
by a predicate. In our example query above, the predicate is “salary > 90000”, and
an update of Wu’s salary from $90,000 to a value greater than $90,000, or an
update of Einstein’s salary from a value greater that $90,000 to a value less than
or equal to $90,000, would conflict with this predicate. Locking based on this idea
is called predicate locking; however predicate locking is expensive, and not used
in practice.
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14.11 Summary

• A transaction is a unit of program execution that accesses and possibly updates
various data items. Understanding the concept of a transaction is critical for
understanding and implementing updates of data in a database in such a
way that concurrent executions and failures of various forms do not result in
the database becoming inconsistent.

• Transactions are required to have the ACID properties: atomicity, consistency,
isolation, and durability.

◦ Atomicity ensures that either all the effects of a transaction are reflected
in the database, or none are; a failure cannot leave the database in a state
where a transaction is partially executed.

◦ Consistency ensures that, if the database is initially consistent, the ex-
ecution of the transaction (by itself) leaves the database in a consistent
state.

◦ Isolation ensures that concurrently executing transactions are isolated
from one another, so that each has the impression that no other trans-
action is executing concurrently with it.

◦ Durability ensures that, once a transaction has been committed, that trans-
action’s updates do not get lost, even if there is a system failure.

• Concurrent execution of transactions improves throughput of transactions
and system utilization, and also reduces waiting time of transactions.

• The various types of storage in a computer are volatile storage, nonvolatile
storage, and stable storage. Data in volatile storage, such as in RAM, are lost
when the computer crashes. Data in nonvolatile storage, such as disk, are
not lost when the computer crashes, but may occasionally be lost because of
failures such as disk crashes. Data in stable storage are never lost.

• Stable storage that must be accessible online is approximated with mirrored
disks, or other forms of RAID, which provide redundant data storage. Offline,
or archival, stable storage may consist of multiple tape copies of data stored
in physically secure locations.

• When several transactions execute concurrently on the database, the consis-
tency of data may no longer be preserved. It is therefore necessary for the
system to control the interaction among the concurrent transactions.

◦ Since a transaction is a unit that preserves consistency, a serial execution
of transactions guarantees that consistency is preserved.

◦ A schedule captures the key actions of transactions that affect concurrent
execution, such as read and write operations, while abstracting away in-
ternal details of the execution of the transaction.
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◦ We require that any schedule produced by concurrent processing of a set
of transactions will have an effect equivalent to a schedule produced when
these transactions are run serially in some order.

◦ A system that guarantees this property is said to ensure serializability.

◦ There are several different notions of equivalence leading to the concepts
of conflict serializability and view serializability.

• Serializability of schedules generated by concurrently executing transactions
can be ensured through one of a variety of mechanisms called concurrency-
control policies.

• We can test a given schedule for conflict serializability by constructing a
precedence graph for the schedule, and by searching for absence of cycles in
the graph. However, there are more efficient concurrency-control policies for
ensuring serializability.

• Schedules must be recoverable, to make sure that if transaction a sees the
effects of transaction b, and b then aborts, then a also gets aborted.

• Schedules should preferably be cascadeless, so that the abort of a transaction
does not result in cascading aborts of other transactions. Cascadelessness is
ensured by allowing transactions to only read committed data.

• The concurrency-control–management component of the database is respon-
sible for handling the concurrency-control policies. Chapter 15 describes
concurrency-control policies.

Review Terms

• Transaction
• ACID properties

◦ Atomicity

◦ Consistency

◦ Isolation

◦ Durability

• Inconsistent state
• Storage types

◦ Volatile storage

◦ Nonvolatile storage

◦ Stable storage

• Concurrency control system

• Recovery system
• Transaction state

◦ Active

◦ Partially committed

◦ Failed

◦ Aborted

◦ Committed

◦ Terminated

• Transaction

◦ Restart

◦ Kill
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• Observable external writes
• Concurrent executions
• Serial execution
• Schedules
• Conflict of operations
• Conflict equivalence
• Conflict serializability
• Serializability testing
• Precedence graph

• Serializability order
• Recoverable schedules
• Cascading rollback
• Cascadeless schedules
• Concurrency-control
• Locking
• Multiple versions
• Snapshot isolation

Practice Exercises

14.1 Suppose that there is a database system that never fails. Is a recovery
manager required for this system?

14.2 Consider a file system such as the one on your favorite operating system.

a. What are the steps involved in creation and deletion of files, and in
writing data to a file?

b. Explain how the issues of atomicity and durability are relevant to
the creation and deletion of files and to writing data to files.

14.3 Database-system implementers have paid much more attention to the
ACID properties than have file-system implementers. Why might this be
the case?

14.4 Justify the following statement: Concurrent execution of transactions is
more important when data must be fetched from (slow) disk or when
transactions are long, and is less important when data are in memory and
transactions are very short.

14.5 Since every conflict-serializable schedule is view serializable, why do we
emphasize conflict serializability rather than view serializability?

14.6 Consider the precedence graph of Figure 14.16. Is the corresponding
schedule conflict serializable? Explain your answer.

14.7 What is a cascadeless schedule? Why is cascadelessness of schedules de-
sirable? Are there any circumstances under which it would be desirable
to allow noncascadeless schedules? Explain your answer.

14.8 The lost update anomaly is said to occur if a transaction Tj reads a data
item, then another transaction Tk writes the data item (possibly based on a
previous read), after which Tj writes the data item. The update performed
by Tk has been lost, since the update done by Tj ignored the value written
by Tk .
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T1

T4

T5

T3

T2

Figure 14.16 Precedence graph for Practice Exercise 14.6.

a. Give an example of a schedule showing the lost update anomaly.

b. Give an example schedule to show that the lost update anomaly is
possible with the read committed isolation level.

c. Explain why the lost update anomaly is not possible with the re-
peatable read isolation level.

14.9 Consider a database for a bank where the database system uses snap-
shot isolation. Describe a particular scenario in which a nonserializable
execution occurs that would present a problem for the bank.

14.10 Consider a database for an airline where the database system uses snap-
shot isolation. Describe a particular scenario in which a nonserializable
execution occurs, but the airline may be willing to accept it in order to
gain better overall performance.

14.11 The definition of a schedule assumes that operations can be totally or-
dered by time. Consider a database system that runs on a system with
multiple processors, where it is not always possible to establish an ex-
act ordering between operations that executed on different processors.
However, operations on a data item can be totally ordered.

Does the above situation cause any problem for the definition of conflict
serializability? Explain your answer.

Exercises

14.12 List the ACID properties. Explain the usefulness of each.

14.13 During its execution, a transaction passes through several states, until it
finally commits or aborts. List all possible sequences of states through
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which a transaction may pass. Explain why each state transition may
occur.

14.14 Explain the distinction between the terms serial schedule and serializable
schedule.

14.15 Consider the following two transactions:

T13: read(A);
read(B);
if A = 0 then B := B + 1;
write(B).

T14: read(B);
read(A);
if B = 0 then A := A + 1;
write(A).

Let the consistency requirement be A = 0 ∨ B = 0, with A = B = 0
the initial values.

a. Show that every serial execution involving these two transactions
preserves the consistency of the database.

b. Show a concurrent execution of T13 and T14 that produces a nonseri-
alizable schedule.

c. Is there a concurrent execution of T13 and T14 that produces a serial-
izable schedule?

14.16 Give an example of a serializable schedule with two transactions such
that the order in which the transactions commit is different from the
serialization order.

14.17 What is a recoverable schedule? Why is recoverability of schedules desir-
able? Are there any circumstances under which it would be desirable to
allow nonrecoverable schedules? Explain your answer.

14.18 Why do database systems support concurrent execution of transactions,
in spite of the extra programming effort needed to ensure that concurrent
execution does not cause any problems?

14.19 Explain why the read-committed isolation level ensures that schedules
are cascade-free.

14.20 For each of the following isolation levels, give an example of a schedule
that respects the specified level of isolation, but is not serializable:

a. Read uncommitted

b. Read committed

c. Repeatable read
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14.21 Suppose that in addition to the operations read and write, we allow an
operation pred read(r, P), which reads all tuples in relation r that satisfy
predicate P .

a. Give an example of a schedule using the pred read operation that
exhibits the phantom phenomenon, and is nonserializable as a result.

b. Give an example of a schedule where one transaction uses the
pred read operation on relation r and another concurrent transac-
tions deletes a tuple from r , but the schedule does not exhibit a
phantom conflict. (To do so, you have to give the schema of relation
r , and show the attribute values of the deleted tuple.)
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processing concepts, techniques and implementation details, including concur-
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C H A P T E R15
Concurrency Control

We saw in Chapter 14 that one of the fundamental properties of a transaction is
isolation. When several transactions execute concurrently in the database, how-
ever, the isolation property may no longer be preserved. To ensure that it is,
the system must control the interaction among the concurrent transactions; this
control is achieved through one of a variety of mechanisms called concurrency-
control schemes. In Chapter 26, we discuss concurrency-control schemes that
admit nonserializable schedules. In this chapter, we consider the management of
concurrently executing transactions, and we ignore failures. In Chapter 16, we
shall see how the system can recover from failures.

As we shall see, there are a variety of concurrency-control schemes. No one
scheme is clearly the best; each one has advantages. In practice, the most fre-
quently used schemes are two-phase locking and snapshot isolation.

15.1 Lock-Based Protocols

One way to ensure isolation is to require that data items be accessed in a mutually
exclusive manner; that is, while one transaction is accessing a data item, no
other transaction can modify that data item. The most common method used to
implement this requirement is to allow a transaction to access a data item only if
it is currently holding a lock on that item. We introduced the concept of locking
in Section 14.9.

15.1.1 Locks

There are various modes in which a data item may be locked. In this section, we
restrict our attention to two modes:

1. Shared. If a transaction Ti has obtained a shared-mode lock (denoted by S)
on item Q, then Ti can read, but cannot write, Q.

2. Exclusive. If a transaction Ti has obtained an exclusive-mode lock (denoted
by X) on item Q, then Ti can both read and write Q.

661
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S X

S true false

X false false

Figure 15.1 Lock-compatibility matrix comp.

We require that every transaction request a lock in an appropriate mode
on data item Q, depending on the types of operations that it will perform on
Q. The transaction makes the request to the concurrency-control manager. The
transaction can proceed with the operation only after the concurrency-control
manager grants the lock to the transaction. The use of these two lock modes
allows multiple transactions to read a data item but limits write access to just one
transaction at a time.

To state this more generally, given a set of lock modes, we can define a
compatibility function on them as follows: Let A and B represent arbitrary lock
modes. Suppose that a transaction Ti requests a lock of mode A on item Q on
which transaction Tj (Ti �= Tj ) currently holds a lock of mode B. If transaction Ti
can be granted a lock on Q immediately, in spite of the presence of the mode B
lock, then we say mode A is compatible with mode B. Such a function can be
represented conveniently by a matrix. The compatibility relation between the two
modes of locking discussed in this section appears in the matrix comp of Figure
15.1. An element comp(A, B) of the matrix has the value true if and only if mode
A is compatible with mode B.

Note that shared mode is compatible with shared mode, but not with exclusive
mode. At any time, several shared-mode locks can be held simultaneously (by
different transactions) on a particular data item. A subsequent exclusive-mode
lock request has to wait until the currently held shared-mode locks are released.

A transaction requests a shared lock on data item Q by executing the lock-
S(Q) instruction. Similarly, a transaction requests an exclusive lock through the
lock-X(Q) instruction. A transaction can unlock a data item Q by the unlock(Q)
instruction.

To access a data item, transaction Ti must first lock that item. If the data item is
already locked by another transaction in an incompatible mode, the concurrency-
control manager will not grant the lock until all incompatible locks held by other
transactions have been released. Thus, Ti is made to wait until all incompatible
locks held by other transactions have been released.

Transaction Ti may unlock a data item that it had locked at some earlier point.
Note that a transaction must hold a lock on a data item as long as it accesses that
item. Moreover, it is not necessarily desirable for a transaction to unlock a data
item immediately after its final access of that data item, since serializability may
not be ensured.

As an illustration, consider again the banking example that we introduced
in Chapter 14. Let A and B be two accounts that are accessed by transactions T1
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T1: lock-X(B);
read(B);
B := B − 50;
write(B);
unlock(B);
lock-X(A);
read(A);
A := A + 50;
write(A);
unlock(A).

Figure 15.2 Transaction T1.

and T2. Transaction T1 transfers $50 from account B to account A (Figure 15.2).
Transaction T2 displays the total amount of money in accounts A and B—that is,
the sum A + B (Figure 15.3).

Suppose that the values of accounts A and B are $100 and $200, respectively.
If these two transactions are executed serially, either in the order T1, T2 or the
order T2, T1, then transaction T2 will display the value $300. If, however, these
transactions are executed concurrently, then schedule 1, in Figure 15.4, is possible.
In this case, transaction T2 displays $250, which is incorrect. The reason for this
mistake is that the transaction T1 unlocked data item B too early, as a result of
which T2 saw an inconsistent state.

The schedule shows the actions executed by the transactions, as well as the
points at which the concurrency-control manager grants the locks. The transac-
tion making a lock request cannot execute its next action until the concurrency-
control manager grants the lock. Hence, the lock must be granted in the interval
of time between the lock-request operation and the following action of the trans-
action. Exactly when within this interval the lock is granted is not important;
we can safely assume that the lock is granted just before the following action
of the transaction. We shall therefore drop the column depicting the actions of
the concurrency-control manager from all schedules depicted in the rest of the
chapter. We let you infer when locks are granted.

T2: lock-S(A);
read(A);
unlock(A);
lock-S(B);
read(B);
unlock(B);
display(A + B).

Figure 15.3 Transaction T2.
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T1 T2 concurreny-control manager

lock-X(B)
grant-X(B, T1)

read(B)
B := B − 50
write(B )
unlock(B )

lock-S(A)
grant-S(A, T2)

read(A)
unlock(A)
lock-S(B)

grant-S(B, T2)
read(B )
unlock(B )
display(A + B)

lock-X(A)
grant-X(A, T1)

read(A)
A := A − 50
write(A)
unlock(A)

Figure 15.4 Schedule 1.

Suppose now that unlocking is delayed to the end of the transaction. Trans-
action T3 corresponds to T1 with unlocking delayed (Figure 15.5). Transaction T4
corresponds to T2 with unlocking delayed (Figure 15.6).

You should verify that the sequence of reads and writes in schedule 1, which
lead to an incorrect total of $250 being displayed, is no longer possible with T3

T3: lock-X(B);
read(B);
B := B − 50;
write(B);
lock-X(A);
read(A);
A := A + 50;
write(A);
unlock(B);
unlock(A).

Figure 15.5 Transaction T3 (transaction T1 with unlocking delayed).
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T4: lock-S(A);
read(A);
lock-S(B);
read(B);
display(A + B);
unlock(A);
unlock(B).

Figure 15.6 Transaction T4 (transaction T2 with unlocking delayed).

and T4. Other schedules are possible. T4 will not print out an inconsistent result
in any of them; we shall see why later.

Unfortunately, locking can lead to an undesirable situation. Consider the
partial schedule of Figure 15.7 for T3 and T4. Since T3 is holding an exclusive-
mode lock on B and T4 is requesting a shared-mode lock on B, T4 is waiting for
T3 to unlock B. Similarly, since T4 is holding a shared-mode lock on A and T3 is
requesting an exclusive-mode lock on A, T3 is waiting for T4 to unlock A. Thus, we
have arrived at a state where neither of these transactions can ever proceed with
its normal execution. This situation is called deadlock. When deadlock occurs, the
system must roll back one of the two transactions. Once a transaction has been
rolled back, the data items that were locked by that transaction are unlocked.
These data items are then available to the other transaction, which can continue
with its execution. We shall return to the issue of deadlock handling in Section
15.2.

If we do not use locking, or if we unlock data items too soon after reading
or writing them, we may get inconsistent states. On the other hand, if we do
not unlock a data item before requesting a lock on another data item, deadlocks
may occur. There are ways to avoid deadlock in some situations, as we shall see
in Section 15.1.5. However, in general, deadlocks are a necessary evil associated
with locking, if we want to avoid inconsistent states. Deadlocks are definitely

T3 T4

lock-X(B)
read(B)
B := B − 50
write(B)

lock-S(A)
read(A)
lock-S(B)

lock-X(A)

Figure 15.7 Schedule 2.
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preferable to inconsistent states, since they can be handled by rolling back trans-
actions, whereas inconsistent states may lead to real-world problems that cannot
be handled by the database system.

We shall require that each transaction in the system follow a set of rules, called
a locking protocol, indicating when a transaction may lock and unlock each of the
data items. Locking protocols restrict the number of possible schedules. The set of
all such schedules is a proper subset of all possible serializable schedules. We shall
present several locking protocols that allow only conflict-serializable schedules,
and thereby ensure isolation. Before doing so, we introduce some terminology.

Let {T0, T1, . . . , Tn} be a set of transactions participating in a schedule S. We
say that Ti precedes Tj in S, written Ti → Tj , if there exists a data item Q such
that Ti has held lock mode A on Q, and Tj has held lock mode B on Q later, and
comp(A,B) = false. If Ti → Tj , then that precedence implies that in any equivalent
serial schedule, Ti must appear before Tj . Observe that this graph is similar to the
precedence graph that we used in Section 14.6 to test for conflict serializability.
Conflicts between instructions correspond to noncompatibility of lock modes.

We say that a schedule S is legal under a given locking protocol if S is a
possible schedule for a set of transactions that follows the rules of the locking
protocol. We say that a locking protocol ensures conflict serializability if and only
if all legal schedules are conflict serializable; in other words, for all legal schedules
the associated → relation is acyclic.

15.1.2 Granting of Locks

When a transaction requests a lock on a data item in a particular mode, and no
other transaction has a lock on the same data item in a conflicting mode, the lock
can be granted. However, care must be taken to avoid the following scenario.
Suppose a transaction T2 has a shared-mode lock on a data item, and another
transaction T1 requests an exclusive-mode lock on the data item. Clearly, T1 has
to wait for T2 to release the shared-mode lock. Meanwhile, a transaction T3 may
request a shared-mode lock on the same data item. The lock request is compatible
with the lock granted to T2, so T3 may be granted the shared-mode lock. At this
point T2 may release the lock, but still T1 has to wait for T3 to finish. But again,
there may be a new transaction T4 that requests a shared-mode lock on the same
data item, and is granted the lock before T3 releases it. In fact, it is possible that
there is a sequence of transactions that each requests a shared-mode lock on the
data item, and each transaction releases the lock a short while after it is granted,
but T1 never gets the exclusive-mode lock on the data item. The transaction T1
may never make progress, and is said to be starved.

We can avoid starvation of transactions by granting locks in the following
manner: When a transaction Ti requests a lock on a data item Q in a particular
mode M, the concurrency-control manager grants the lock provided that:

1. There is no other transaction holding a lock on Q in a mode that conflicts
with M.
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2. There is no other transaction that is waiting for a lock on Q and that made
its lock request before Ti .

Thus, a lock request will never get blocked by a lock request that is made later.

15.1.3 The Two-Phase Locking Protocol

One protocol that ensures serializability is the two-phase locking protocol. This
protocol requires that each transaction issue lock and unlock requests in two
phases:

1. Growing phase. A transaction may obtain locks, but may not release any
lock.

2. Shrinking phase. A transaction may release locks, but may not obtain any
new locks.

Initially, a transaction is in the growing phase. The transaction acquires locks as
needed. Once the transaction releases a lock, it enters the shrinking phase, and it
can issue no more lock requests.

For example, transactions T3 and T4 are two phase. On the other hand, trans-
actions T1 and T2 are not two phase. Note that the unlock instructions do not need
to appear at the end of the transaction. For example, in the case of transaction T3,
we could move the unlock(B) instruction to just after the lock-X(A) instruction,
and still retain the two-phase locking property.

We can show that the two-phase locking protocol ensures conflict serializabil-
ity. Consider any transaction. The point in the schedule where the transaction has
obtained its final lock (the end of its growing phase) is called the lock point of
the transaction. Now, transactions can be ordered according to their lock points—
this ordering is, in fact, a serializability ordering for the transactions. We leave
the proof as an exercise for you to do (see Practice Exercise 15.1).

Two-phase locking does not ensure freedom from deadlock. Observe that
transactions T3 and T4 are two phase, but, in schedule 2 (Figure 15.7), they are
deadlocked.

Recall from Section 14.7.2 that, in addition to being serializable, schedules
should be cascadeless. Cascading rollback may occur under two-phase locking.
As an illustration, consider the partial schedule of Figure 15.8. Each transaction
observes the two-phase locking protocol, but the failure of T5 after the read(A)
step of T7 leads to cascading rollback of T6 and T7.

Cascading rollbacks can be avoided by a modification of two-phase locking
called the strict two-phase locking protocol. This protocol requires not only that
locking be two phase, but also that all exclusive-mode locks taken by a transaction
be held until that transaction commits. This requirement ensures that any data
written by an uncommitted transaction are locked in exclusive mode until the
transaction commits, preventing any other transaction from reading the data.

Another variant of two-phase locking is the rigorous two-phase locking
protocol, which requires that all locks be held until the transaction commits.
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T5 T6 T7

lock-X(A)
read(A)
lock-S(B)
read(B)
write(A)
unlock(A)

lock-X(A)
read(A)
write(A)
unlock(A)

lock-S(A)
read(A)

Figure 15.8 Partial schedule under two-phase locking.

We can easily verify that, with rigorous two-phase locking, transactions can be
serialized in the order in which they commit.

Consider the following two transactions, for which we have shown only some
of the significant read and write operations:

T8: read(a1);
read(a2);
. . .
read(an);
write(a1).

T9: read(a1);
read(a2);
display(a1 + a2).

If we employ the two-phase locking protocol, then T8 must lock a1 in exclusive
mode. Therefore, any concurrent execution of both transactions amounts to a
serial execution. Notice, however, that T8 needs an exclusive lock on a1 only at
the end of its execution, when it writes a1. Thus, if T8 could initially lock a1 in
shared mode, and then could later change the lock to exclusive mode, we could
get more concurrency, since T8 and T9 could access a1 and a2 simultaneously.

This observation leads us to a refinement of the basic two-phase locking
protocol, in which lock conversions are allowed. We shall provide a mechanism
for upgrading a shared lock to an exclusive lock, and downgrading an exclusive
lock to a shared lock. We denote conversion from shared to exclusive modes by
upgrade, and from exclusive to shared by downgrade. Lock conversion cannot be
allowed arbitrarily. Rather, upgrading can take place in only the growing phase,
whereas downgrading can take place in only the shrinking phase.
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T8 T9

lock-S(a1)
lock-S(a1)

lock-S(a2)
lock-S(a2)

lock-S(a3)
lock-S(a4)

unlock(a1)
unlock(a2)

lock-S(an)
upgrade(a1)

Figure 15.9 Incomplete schedule with a lock conversion.

Returning to our example, transactions T8 and T9 can run concurrently under
the refined two-phase locking protocol, as shown in the incomplete schedule of
Figure 15.9, where only some of the locking instructions are shown.

Note that a transaction attempting to upgrade a lock on an item Q may
be forced to wait. This enforced wait occurs if Q is currently locked by another
transaction in shared mode.

Just like the basic two-phase locking protocol, two-phase locking with lock
conversion generates only conflict-serializable schedules, and transactions can be
serialized by their lock points. Further, if exclusive locks are held until the end of
the transaction, the schedules are cascadeless.

For a set of transactions, there may be conflict-serializable schedules that
cannot be obtained through the two-phase locking protocol. However, to obtain
conflict-serializable schedules through non-two-phase locking protocols, we need
either to have additional information about the transactions or to impose some
structure or ordering on the set of data items in the database. We shall see examples
when we consider other locking protocols later in this chapter.

Strict two-phase locking and rigorous two-phase locking (with lock conver-
sions) are used extensively in commercial database systems.

A simple but widely used scheme automatically generates the appropriate
lock and unlock instructions for a transaction, on the basis of read and write
requests from the transaction:

• When a transaction Ti issues a read(Q) operation, the system issues a lock-
S(Q) instruction followed by the read(Q) instruction.

• When Ti issues a write(Q) operation, the system checks to see whether Ti
already holds a shared lock on Q. If it does, then the system issues an up-
grade(Q) instruction, followed by the write(Q) instruction. Otherwise, the
system issues a lock-X(Q) instruction, followed by the write(Q) instruction.

• All locks obtained by a transaction are unlocked after that transaction com-
mits or aborts.
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15.1.4 Implementation of Locking

A lock manager can be implemented as a process that receives messages from
transactions and sends messages in reply. The lock-manager process replies to
lock-request messages with lock-grant messages, or with messages requesting
rollback of the transaction (in case of deadlocks). Unlock messages require only
an acknowledgment in response, but may result in a grant message to another
waiting transaction.

The lock manager uses this data structure: For each data item that is currently
locked, it maintains a linked list of records, one for each request, in the order in
which the requests arrived. It uses a hash table, indexed on the name of a data
item, to find the linked list (if any) for a data item; this table is called the lock
table. Each record of the linked list for a data item notes which transaction made
the request, and what lock mode it requested. The record also notes if the request
has currently been granted.

Figure 15.10 shows an example of a lock table. The table contains locks for
five different data items, I4, I7, I23, I44, and I912. The lock table uses overflow
chaining, so there is a linked list of data items for each entry in the lock table.
There is also a list of transactions that have been granted locks, or are waiting for
locks, for each of the data items. Granted locks are the rectangles filled in a darker
shade, while waiting requests are the rectangles filled in a lighter shade. We have
omitted the lock mode to keep the figure simple. It can be seen, for example, that
T23 has been granted locks on I912 and I7, and is waiting for a lock on I4.

Although the figure does not show it, the lock table should also maintain an
index on transaction identifiers, so that it is possible to determine efficiently the
set of locks held by a given transaction.

The lock manager processes requests this way:

• When a lock request message arrives, it adds a record to the end of the linked
list for the data item, if the linked list is present. Otherwise it creates a new
linked list, containing only the record for the request.

It always grants a lock request on a data item that is not currently locked.
But if the transaction requests a lock on an item on which a lock is currently
held, the lock manager grants the request only if it is compatible with the locks
that are currently held, and all earlier requests have been granted already.
Otherwise the request has to wait.

• When the lock manager receives an unlock message from a transaction, it
deletes the record for that data item in the linked list corresponding to that
transaction. It tests the record that follows, if any, as described in the previous
paragraph, to see if that request can now be granted. If it can, the lock manager
grants that request, and processes the record following it, if any, similarly,
and so on.

• If a transaction aborts, the lock manager deletes any waiting request made
by the transaction. Once the database system has taken appropriate actions
to undo the transaction (see Section 16.3), it releases all locks held by the
aborted transaction.
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Figure 15.10 Lock table.

This algorithm guarantees freedom from starvation for lock requests, since
a request can never be granted while a request received earlier is waiting to be
granted. We study how to detect and handle deadlocks later, in Section 15.2.2.
Section 17.2.1 describes an alternative implementation—one that uses shared
memory instead of message passing for lock request/grant.

15.1.5 Graph-Based Protocols

As noted in Section 15.1.3, if we wish to develop protocols that are not two phase,
we need additional information on how each transaction will access the database.
There are various models that can give us the additional information, each dif-
fering in the amount of information provided. The simplest model requires that
we have prior knowledge about the order in which the database items will be
accessed. Given such information, it is possible to construct locking protocols that
are not two phase, but that, nevertheless, ensure conflict serializability.

To acquire such prior knowledge, we impose a partial ordering → on the set
D = {d1, d2, . . . , dh} of all data items. If di → d j , then any transaction accessing
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both di and d j must access di before accessing d j . This partial ordering may be
the result of either the logical or the physical organization of the data, or it may
be imposed solely for the purpose of concurrency control.

The partial ordering implies that the set D may now be viewed as a directed
acyclic graph, called a database graph. In this section, for the sake of simplicity,
we will restrict our attention to only those graphs that are rooted trees. We shall
present a simple protocol, called the tree protocol, which is restricted to employ only
exclusive locks. References to other, more complex, graph-based locking protocols
are in the bibliographical notes.

In the tree protocol, the only lock instruction allowed is lock-X. Each trans-
action Ti can lock a data item at most once, and must observe the following
rules:

1. The first lock by Ti may be on any data item.

2. Subsequently, a data item Q can be locked by Ti only if the parent of Q is
currently locked by Ti .

3. Data items may be unlocked at any time.

4. A data item that has been locked and unlocked by Ti cannot subsequently
be relocked by Ti .

All schedules that are legal under the tree protocol are conflict serializable.
To illustrate this protocol, consider the database graph of Figure 15.11. The

following four transactions follow the tree protocol on this graph. We show only
the lock and unlock instructions:

A

CB

F

E

IH

J

D

G

Figure 15.11 Tree-structured database graph.
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T10: lock-X(B); lock-X(E); lock-X(D); unlock(B); unlock(E); lock-X(G);
unlock(D); unlock(G).

T11: lock-X(D); lock-X(H); unlock(D); unlock(H).
T12: lock-X(B); lock-X(E); unlock(E); unlock(B).
T13: lock-X(D); lock-X(H); unlock(D); unlock(H).

One possible schedule in which these four transactions participated appears
in Figure 15.12. Note that, during its execution, transaction T10 holds locks on two
disjoint subtrees.

Observe that the schedule of Figure 15.12 is conflict serializable. It can be
shown not only that the tree protocol ensures conflict serializability, but also that
this protocol ensures freedom from deadlock.

The tree protocol in Figure 15.12 does not ensure recoverability and cas-
cadelessness. To ensure recoverability and cascadelessness, the protocol can be
modified to not permit release of exclusive locks until the end of the transaction.
Holding exclusive locks until the end of the transaction reduces concurrency.
Here is an alternative that improves concurrency, but ensures only recoverabil-
ity: For each data item with an uncommitted write, we record which transaction
performed the last write to the data item. Whenever a transaction Ti performs a
read of an uncommitted data item, we record a commit dependency of Ti on the

T10 T11 T12 T13

lock-X(B)
lock-X(D)
lock-X(H)
unlock(D)

lock-X(E)
lock-X(D)
unlock(B)
unlock(E)

lock-X(B)
lock-X(E)

unlock(H)
lock-X(G)
unlock(D)

lock-X(D)
lock-X(H)
unlock(D)
unlock(H)

unlock(E)
unlock(B)

unlock(G)

Figure 15.12 Serializable schedule under the tree protocol.
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transaction that performed the last write to the data item. Transaction Ti is then
not permitted to commit until the commit of all transactions on which it has a
commit dependency. If any of these transactions aborts, Ti must also be aborted.

The tree-locking protocol has an advantage over the two-phase locking pro-
tocol in that, unlike two-phase locking, it is deadlock-free, so no rollbacks are
required. The tree-locking protocol has another advantage over the two-phase
locking protocol in that unlocking may occur earlier. Earlier unlocking may lead
to shorter waiting times, and to an increase in concurrency.

However, the protocol has the disadvantage that, in some cases, a transaction
may have to lock data items that it does not access. For example, a transaction that
needs to access data items A and J in the database graph of Figure 15.11 must lock
not only A and J, but also data items B, D, and H. This additional locking results
in increased locking overhead, the possibility of additional waiting time, and a
potential decrease in concurrency. Further, without prior knowledge of what data
items will need to be locked, transactions will have to lock the root of the tree,
and that can reduce concurrency greatly.

For a set of transactions, there may be conflict-serializable schedules that
cannot be obtained through the tree protocol. Indeed, there are schedules possible
under the two-phase locking protocol that are not possible under the tree protocol,
and vice versa. Examples of such schedules are explored in the exercises.

15.2 Deadlock Handling

A system is in a deadlock state if there exists a set of transactions such that every
transaction in the set is waiting for another transaction in the set. More precisely,
there exists a set of waiting transactions {T0, T1, . . . , Tn} such that T0 is waiting
for a data item that T1 holds, and T1 is waiting for a data item that T2 holds, and
. . . , and Tn−1 is waiting for a data item that Tn holds, and Tn is waiting for a data
item that T0 holds. None of the transactions can make progress in such a situation.

The only remedy to this undesirable situation is for the system to invoke
some drastic action, such as rolling back some of the transactions involved in
the deadlock. Rollback of a transaction may be partial: That is, a transaction may
be rolled back to the point where it obtained a lock whose release resolves the
deadlock.

There are two principal methods for dealing with the deadlock problem. We
can use a deadlock prevention protocol to ensure that the system will never enter
a deadlock state. Alternatively, we can allow the system to enter a deadlock state,
and then try to recover by using a deadlock detection and deadlock recovery
scheme. As we shall see, both methods may result in transaction rollback. Preven-
tion is commonly used if the probability that the system would enter a deadlock
state is relatively high; otherwise, detection and recovery are more efficient.

Note that a detection and recovery scheme requires overhead that includes not
only the run-time cost of maintaining the necessary information and of executing
the detection algorithm, but also the potential losses inherent in recovery from a
deadlock.
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15.2.1 Deadlock Prevention

There are two approaches to deadlock prevention. One approach ensures that no
cyclic waits can occur by ordering the requests for locks, or requiring all locks
to be acquired together. The other approach is closer to deadlock recovery, and
performs transaction rollback instead of waiting for a lock, whenever the wait
could potentially result in a deadlock.

The simplest scheme under the first approach requires that each transaction
locks all its data items before it begins execution. Moreover, either all are locked
in one step or none are locked. There are two main disadvantages to this protocol:
(1) it is often hard to predict, before the transaction begins, what data items need
to be locked; (2) data-item utilization may be very low, since many of the data
items may be locked but unused for a long time.

Another approach for preventing deadlocks is to impose an ordering of all
data items, and to require that a transaction lock data items only in a sequence
consistent with the ordering. We have seen one such scheme in the tree protocol,
which uses a partial ordering of data items.

A variation of this approach is to use a total order of data items, in conjunction
with two-phase locking. Once a transaction has locked a particular item, it cannot
request locks on items that precede that item in the ordering. This scheme is easy
to implement, as long as the set of data items accessed by a transaction is known
when the transaction starts execution. There is no need to change the underlying
concurrency-control system if two-phase locking is used: All that is needed is to
ensure that locks are requested in the right order.

The second approach for preventing deadlocks is to use preemption and
transaction rollbacks. In preemption, when a transaction Tj requests a lock that
transaction Ti holds, the lock granted to Ti may be preempted by rolling back
of Ti , and granting of the lock to Tj . To control the preemption, we assign a
unique timestamp, based on a counter or on the system clock, to each transaction
when it begins. The system uses these timestamps only to decide whether a
transaction should wait or roll back. Locking is still used for concurrency control.
If a transaction is rolled back, it retains its old timestamp when restarted. Two
different deadlock-prevention schemes using timestamps have been proposed:

1. The wait–die scheme is a nonpreemptive technique. When transaction Ti
requests a data item currently held by Tj , Ti is allowed to wait only if it has
a timestamp smaller than that of Tj (that is, Ti is older than Tj ). Otherwise,
Ti is rolled back (dies).

For example, suppose that transactions T14, T15, and T16 have timestamps
5, 10, and 15, respectively. If T14 requests a data item held by T15, then T14
will wait. If T24 requests a data item held by T15, then T16 will be rolled back.

2. The wound–wait scheme is a preemptive technique. It is a counterpart to
the wait–die scheme. When transaction Ti requests a data item currently
held by Tj , Ti is allowed to wait only if it has a timestamp larger than that of
Tj (that is, Ti is younger than Tj ). Otherwise, Tj is rolled back (Tj is wounded
by Ti ).
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Returning to our example, with transactions T14, T15, and T16, if T14
requests a data item held by T15, then the data item will be preempted from
T15, and T15 will be rolled back. If T16 requests a data item held by T15, then
T16 will wait.

The major problem with both of these schemes is that unnecessary rollbacks
may occur.

Another simple approach to deadlock prevention is based on lock timeouts.
In this approach, a transaction that has requested a lock waits for at most a
specified amount of time. If the lock has not been granted within that time, the
transaction is said to time out, and it rolls itself back and restarts. If there was
in fact a deadlock, one or more transactions involved in the deadlock will time
out and roll back, allowing the others to proceed. This scheme falls somewhere
between deadlock prevention, where a deadlock will never occur, and deadlock
detection and recovery, which Section 15.2.2 discusses.

The timeout scheme is particularly easy to implement, and works well if
transactions are short and if long waits are likely to be due to deadlocks. However,
in general it is hard to decide how long a transaction must wait before timing
out. Too long a wait results in unnecessary delays once a deadlock has occurred.
Too short a wait results in transaction rollback even when there is no deadlock,
leading to wasted resources. Starvation is also a possibility with this scheme.
Hence, the timeout-based scheme has limited applicability.

15.2.2 Deadlock Detection and Recovery

If a system does not employ some protocol that ensures deadlock freedom, then
a detection and recovery scheme must be used. An algorithm that examines the
state of the system is invoked periodically to determine whether a deadlock has
occurred. If one has, then the system must attempt to recover from the deadlock.
To do so, the system must:

• Maintain information about the current allocation of data items to transac-
tions, as well as any outstanding data item requests.

• Provide an algorithm that uses this information to determine whether the
system has entered a deadlock state.

• Recover from the deadlock when the detection algorithm determines that a
deadlock exists.

In this section, we elaborate on these issues.

15.2.2.1 Deadlock Detection

Deadlocks can be described precisely in terms of a directed graph called a wait-
for graph. This graph consists of a pair G = (V, E), where V is a set of vertices and
E is a set of edges. The set of vertices consists of all the transactions in the system.
Each element in the set E of edges is an ordered pair Ti → Tj . If Ti → Tj is in E,
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T18 T20

T17

T19

Figure 15.13 Wait-for graph with no cycle.

then there is a directed edge from transaction Ti to Tj , implying that transaction
Ti is waiting for transaction Tj to release a data item that it needs.

When transaction Ti requests a data item currently being held by transaction
Tj , then the edge Ti → Tj is inserted in the wait-for graph. This edge is removed
only when transaction Tj is no longer holding a data item needed by transaction
Ti .

A deadlock exists in the system if and only if the wait-for graph contains a
cycle. Each transaction involved in the cycle is said to be deadlocked. To detect
deadlocks, the system needs to maintain the wait-for graph, and periodically to
invoke an algorithm that searches for a cycle in the graph.

To illustrate these concepts, consider the wait-for graph in Figure 15.13, which
depicts the following situation:

• Transaction T17 is waiting for transactions T18 and T19.

• Transaction T19 is waiting for transaction T18.

• Transaction T18 is waiting for transaction T20.

Since the graph has no cycle, the system is not in a deadlock state.
Suppose now that transaction T20 is requesting an item held by T19. The edge

T20 → T19 is added to the wait-for graph, resulting in the new system state in
Figure 15.14. This time, the graph contains the cycle:

T18 → T20 → T19 → T18

implying that transactions T18, T19, and T20 are all deadlocked.
Consequently, the question arises: When should we invoke the detection

algorithm? The answer depends on two factors:

1. How often does a deadlock occur?

2. How many transactions will be affected by the deadlock?

If deadlocks occur frequently, then the detection algorithm should be in-
voked more frequently. Data items allocated to deadlocked transactions will be
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Figure 15.14 Wait-for graph with a cycle.

unavailable to other transactions until the deadlock can be broken. In addition,
the number of cycles in the graph may also grow. In the worst case, we would
invoke the detection algorithm every time a request for allocation could not be
granted immediately.

15.2.2.2 Recovery from Deadlock

When a detection algorithm determines that a deadlock exists, the system must
recover from the deadlock. The most common solution is to roll back one or more
transactions to break the deadlock. Three actions need to be taken:

1. Selection of a victim. Given a set of deadlocked transactions, we must deter-
mine which transaction (or transactions) to roll back to break the deadlock.
We should roll back those transactions that will incur the minimum cost.
Unfortunately, the term minimum cost is not a precise one. Many factors may
determine the cost of a rollback, including:

a. How long the transaction has computed, and how much longer the
transaction will compute before it completes its designated task.

b. How many data items the transaction has used.

c. How many more data items the transaction needs for it to complete.

d. How many transactions will be involved in the rollback.

2. Rollback. Once we have decided that a particular transaction must be rolled
back, we must determine how far this transaction should be rolled back.

The simplest solution is a total rollback: Abort the transaction and then
restart it. However, it is more effective to roll back the transaction only as
far as necessary to break the deadlock. Such partial rollback requires the
system to maintain additional information about the state of all the running
transactions. Specifically, the sequence of lock requests/grants and updates
performed by the transaction needs to be recorded. The deadlock detection
mechanism should decide which locks the selected transaction needs to
release in order to break the deadlock. The selected transaction must be
rolled back to the point where it obtained the first of these locks, undoing
all actions it took after that point. The recovery mechanism must be capable
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of performing such partial rollbacks. Furthermore, the transactions must be
capable of resuming execution after a partial rollback. See the bibliographical
notes for relevant references.

3. Starvation. In a system where the selection of victims is based primarily on
cost factors, it may happen that the same transaction is always picked as
a victim. As a result, this transaction never completes its designated task,
thus there is starvation. We must ensure that a transaction can be picked as
a victim only a (small) finite number of times. The most common solution
is to include the number of rollbacks in the cost factor.

15.3 Multiple Granularity

In the concurrency-control schemes described thus far, we have used each indi-
vidual data item as the unit on which synchronization is performed.

There are circumstances, however, where it would be advantageous to group
several data items, and to treat them as one individual synchronization unit. For
example, if a transaction Ti needs to access the entire database, and a locking
protocol is used, then Ti must lock each item in the database. Clearly, executing
these locks is time-consuming. It would be better if Ti could issue a single lock
request to lock the entire database. On the other hand, if transaction Tj needs to
access only a few data items, it should not be required to lock the entire database,
since otherwise concurrency is lost.

What is needed is a mechanism to allow the system to define multiple levels of
granularity. This is done by allowing data items to be of various sizes and defining
a hierarchy of data granularities, where the small granularities are nested within
larger ones. Such a hierarchy can be represented graphically as a tree. Note that
the tree that we describe here is significantly different from that used by the
tree protocol (Section 15.1.5). A nonleaf node of the multiple-granularity tree
represents the data associated with its descendants. In the tree protocol, each
node is an independent data item.

As an illustration, consider the tree of Figure 15.15, which consists of four
levels of nodes. The highest level represents the entire database. Below it are
nodes of type area; the database consists of exactly these areas. Each area in turn
has nodes of type file as its children. Each area contains exactly those files that
are its child nodes. No file is in more than one area. Finally, each file has nodes of
type record. As before, the file consists of exactly those records that are its child
nodes, and no record can be present in more than one file.

Each node in the tree can be locked individually. As we did in the two-
phase locking protocol, we shall use shared and exclusive lock modes. When a
transaction locks a node, in either shared or exclusive mode, the transaction also
has implicitly locked all the descendants of that node in the same lock mode.
For example, if transaction Ti gets an explicit lock on file Fc of Figure 15.15,
in exclusive mode, then it has an implicit lock in exclusive mode on all the
records belonging to that file. It does not need to lock the individual records of
Fc explicitly.
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Figure 15.15 Granularity hierarchy.

Suppose that transaction Tj wishes to lock record rb6 of file Fb . Since Ti has
locked Fb explicitly, it follows that rb6 is also locked (implicitly). But, when Tj
issues a lock request for rb6 , rb6 is not explicitly locked! How does the system
determine whether Tj can lock rb6 ? Tj must traverse the tree from the root to
record rb6 . If any node in that path is locked in an incompatible mode, then Tj
must be delayed.

Suppose now that transaction Tk wishes to lock the entire database. To do so,
it simply must lock the root of the hierarchy. Note, however, that Tk should not
succeed in locking the root node, since Ti is currently holding a lock on part of
the tree (specifically, on file Fb). But how does the system determine if the root
node can be locked? One possibility is for it to search the entire tree. This solution,
however, defeats the whole purpose of the multiple-granularity locking scheme.
A more efficient way to gain this knowledge is to introduce a new class of lock
modes, called intention lock modes. If a node is locked in an intention mode,
explicit locking is done at a lower level of the tree (that is, at a finer granularity).
Intention locks are put on all the ancestors of a node before that node is locked
explicitly. Thus, a transaction does not need to search the entire tree to determine
whether it can lock a node successfully. A transaction wishing to lock a node—say,
Q—must traverse a path in the tree from the root to Q. While traversing the tree,
the transaction locks the various nodes in an intention mode.

There is an intention mode associated with shared mode, and there is one
with exclusive mode. If a node is locked in intention-shared (IS) mode, explicit
locking is being done at a lower level of the tree, but with only shared-mode
locks. Similarly, if a node is locked in intention-exclusive (IX) mode, then explicit
locking is being done at a lower level, with exclusive-mode or shared-mode
locks. Finally, if a node is locked in shared and intention-exclusive (SIX) mode,
the subtree rooted by that node is locked explicitly in shared mode, and that
explicit locking is being done at a lower level with exclusive-mode locks. The
compatibility function for these lock modes is in Figure 15.16.
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IS IX S SIX X

IS true true true true false

IX true true false false false

S true false true false false

SIX true false false false false

X false false false false false

Figure 15.16 Compatibility matrix.

The multiple-granularity locking protocol uses these lock modes to ensure
serializability. It requires that a transaction Ti that attempts to lock a node Q must
follow these rules:

1. Transaction Ti must observe the lock-compatibility function of Figure 15.16.

2. Transaction Ti must lock the root of the tree first, and can lock it in any mode.

3. Transaction Ti can lock a node Q in S or IS mode only if Ti currently has the
parent of Q locked in either IX or IS mode.

4. Transaction Ti can lock a node Q in X, SIX, or IX mode only if Ti currently
has the parent of Q locked in either IX or SIX mode.

5. Transaction Ti can lock a node only if Ti has not previously unlocked any
node (that is, Ti is two phase).

6. Transaction Ti can unlock a node Q only if Ti currently has none of the
children of Q locked.

Observe that the multiple-granularity protocol requires that locks be acquired in
top-down (root-to-leaf) order, whereas locks must be released in bottom-up (leaf-
to-root) order.

As an illustration of the protocol, consider the tree of Figure 15.15 and these
transactions:

• Suppose that transaction T21 reads record ra2 in file Fa . Then, T21 needs to lock
the database, area A1, and Fa in IS mode (and in that order), and finally to
lock ra2 in S mode.

• Suppose that transaction T22 modifies record ra9 in file Fa . Then, T22 needs
to lock the database, area A1, and file Fa (and in that order) in IX mode, and
finally to lock ra9 in X mode.

• Suppose that transaction T23 reads all the records in file Fa . Then, T23 needs
to lock the database and area A1 (and in that order) in IS mode, and finally to
lock Fa in S mode.
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• Suppose that transaction T24 reads the entire database. It can do so after
locking the database in S mode.

We note that transactions T21, T23, and T24 can access the database concurrently.
Transaction T22 can execute concurrently with T21, but not with either T23 or T24.

This protocol enhances concurrency and reduces lock overhead. It is particu-
larly useful in applications that include a mix of:

• Short transactions that access only a few data items.

• Long transactions that produce reports from an entire file or set of files.

There is a similar locking protocol that is applicable to database systems in
which data granularities are organized in the form of a directed acyclic graph.
See the bibliographical notes for additional references. Deadlock is possible in the
multiple-granularity protocol, as it is in the two-phase locking protocol. There
are techniques to reduce deadlock frequency in the multiple-granularity protocol,
and also to eliminate deadlock entirely. These techniques are referenced in the
bibliographical notes.

15.4 Timestamp-Based Protocols

The locking protocols that we have described thus far determine the order be-
tween every pair of conflicting transactions at execution time by the first lock
that both members of the pair request that involves incompatible modes. An-
other method for determining the serializability order is to select an ordering
among transactions in advance. The most common method for doing so is to use
a timestamp-ordering scheme.

15.4.1 Timestamps

With each transaction Ti in the system, we associate a unique fixed timestamp,
denoted by TS(Ti ). This timestamp is assigned by the database system before the
transaction Ti starts execution. If a transaction Ti has been assigned timestamp
TS(Ti ), and a new transaction Tj enters the system, then TS(Ti ) < TS(Tj ). There
are two simple methods for implementing this scheme:

1. Use the value of the s
¯
ystem clock as the timestamp; that is, a transaction’s

timestamp is equal to the value of the clock when the transaction enters the
system.

2. Use a logical counter that is incremented after a new timestamp has been
assigned; that is, a transaction’s timestamp is equal to the value of the
counter when the transaction enters the system.
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The timestamps of the transactions determine the serializability order. Thus,
if TS(Ti ) < TS(Tj ), then the system must ensure that the produced schedule is
equivalent to a serial schedule in which transaction Ti appears before transaction
Tj .

To implement this scheme, we associate with each data item Q two timestamp
values:

• W-timestamp(Q) denotes the largest timestamp of any transaction that exe-
cuted write(Q) successfully.

• R-timestamp(Q) denotes the largest timestamp of any transaction that exe-
cuted read(Q) successfully.

These timestamps are updated whenever a new read(Q) or write(Q) instruction
is executed.

15.4.2 The Timestamp-Ordering Protocol

The timestamp-ordering protocol ensures that any conflicting read and write
operations are executed in timestamp order. This protocol operates as follows:

1. Suppose that transaction Ti issues read(Q).

a. If TS(Ti ) < W-timestamp(Q), then Ti needs to read a value of Q that
was already overwritten. Hence, the read operation is rejected, and Ti
is rolled back.

b. If TS(Ti ) ≥ W-timestamp(Q), then the read operation is executed, and
R-timestamp(Q) is set to the maximum of R-timestamp(Q) and TS(Ti ).

2. Suppose that transaction Ti issues write(Q).

a. If TS(Ti ) < R-timestamp(Q), then the value of Q that Ti is producing
was needed previously, and the system assumed that that value would
never be produced. Hence, the system rejects the write operation and
rolls Ti back.

b. If TS(Ti ) < W-timestamp(Q), then Ti is attempting to write an obsolete
value of Q. Hence, the system rejects this write operation and rolls Ti
back.

c. Otherwise, the system executes the write operation and sets W-time-
stamp(Q) to TS(Ti ).

If a transaction Ti is rolled back by the concurrency-control scheme as result of
issuance of either a read or write operation, the system assigns it a new timestamp
and restarts it.

To illustrate this protocol, we consider transactions T25 and T26. Transaction
T25 displays the contents of accounts A and B:
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T25: read(B);
read(A);
display(A + B).

Transaction T26 transfers $50 from account B to account A, and then displays the
contents of both:

T26: read(B);
B := B − 50;
write(B);
read(A);
A := A + 50;
write(A);
display(A + B).

In presenting schedules under the timestamp protocol, we shall assume that a
transaction is assigned a timestamp immediately before its first instruction. Thus,
in schedule 3 of Figure 15.17, TS(T25) < TS(T26), and the schedule is possible under
the timestamp protocol.

We note that the preceding execution can also be produced by the two-phase
locking protocol. There are, however, schedules that are possible under the two-
phase locking protocol, but are not possible under the timestamp protocol, and
vice versa (see Exercise 15.29).

The timestamp-ordering protocol ensures conflict serializability. This is be-
cause conflicting operations are processed in timestamp order.

The protocol ensures freedom from deadlock, since no transaction ever waits.
However, there is a possibility of starvation of long transactions if a sequence of
conflicting short transactions causes repeated restarting of the long transaction.
If a transaction is suffering from repeated restarts, conflicting transactions need
to be temporarily blocked to enable the transaction to finish.

T25 T26

read(B)
read(B)
B := B − 50
write(B)

read(A)
read(A)

display(A + B)
A := A + 50
write(A)
display(A + B)

Figure 15.17 Schedule 3.
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The protocol can generate schedules that are not recoverable. However, it can
be extended to make the schedules recoverable, in one of several ways:

• Recoverability and cascadelessness can be ensured by performing all writes
together at the end of the transaction. The writes must be atomic in the
following sense: While the writes are in progress, no transaction is permitted
to access any of the data items that have been written.

• Recoverability and cascadelessness can also be guaranteed by using a limited
form of locking, whereby reads of uncommitted items are postponed until
the transaction that updated the item commits (see Exercise 15.30).

• Recoverability alone can be ensured by tracking uncommitted writes, and al-
lowing a transaction Ti to commit only after the commit of any transaction that
wrote a value that Ti read. Commit dependencies, outlined in Section 15.1.5,
can be used for this purpose.

15.4.3 Thomas’ Write Rule

We now present a modification to the timestamp-ordering protocol that allows
greater potential concurrency than does the protocol of Section 15.4.2. Let us
consider schedule 4 of Figure 15.18, and apply the timestamp-ordering protocol.
Since T27 starts before T28, we shall assume that TS(T27) < TS(T28). The read(Q)
operation of T27 succeeds, as does the write(Q) operation of T28. When T27 at-
tempts its write(Q) operation, we find that TS(T27) < W-timestamp(Q), since W-
timestamp(Q) = TS(T28). Thus, the write(Q) by T27 is rejected and transaction T27
must be rolled back.

Although the rollback of T27 is required by the timestamp-ordering protocol,
it is unnecessary. Since T28 has already written Q, the value that T27 is attempting
to write is one that will never need to be read. Any transaction Ti with TS(Ti ) <

TS(T28) that attempts a read(Q) will be rolled back, since TS(Ti) < W-timestamp(Q).
Any transaction Tj with TS(Tj ) > TS(T28) must read the value of Q written by T28,
rather than the value that T27 is attempting to write.

This observation leads to a modified version of the timestamp-ordering proto-
col in which obsolete write operations can be ignored under certain circumstances.
The protocol rules for read operations remain unchanged. The protocol rules for
write operations, however, are slightly different from the timestamp-ordering
protocol of Section 15.4.2.

T27 T28

read(Q)
write(Q)

write(Q)

Figure 15.18 Schedule 4.
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The modification to the timestamp-ordering protocol, called Thomas’ write
rule, is this: Suppose that transaction Ti issues write(Q).

1. If TS(Ti ) < R-timestamp(Q), then the value of Q that Ti is producing was
previously needed, and it had been assumed that the value would never be
produced. Hence, the system rejects the write operation and rolls Ti back.

2. If TS(Ti ) < W-timestamp(Q), then Ti is attempting to write an obsolete value
of Q. Hence, this write operation can be ignored.

3. Otherwise, the system executes the write operation and sets W-timestamp(Q)
to TS(Ti ).

The difference between these rules and those of Section 15.4.2 lies in the
second rule. The timestamp-ordering protocol requires that Ti be rolled back if
Ti issues write(Q) and TS(Ti ) < W-timestamp(Q). However, here, in those cases
where TS(Ti ) ≥ R-timestamp(Q), we ignore the obsolete write.

By ignoring the write, Thomas’ write rule allows schedules that are not conflict
serializable but are nevertheless correct. Those non-conflict-serializable sched-
ules allowed satisfy the definition of view serializable schedules (see example box).
Thomas’ write rule makes use of view serializability by, in effect, deleting ob-
solete write operations from the transactions that issue them. This modification
of transactions makes it possible to generate serializable schedules that would
not be possible under the other protocols presented in this chapter. For example,
schedule 4 of Figure 15.18 is not conflict serializable and, thus, is not possible un-
der the two-phase locking protocol, the tree protocol, or the timestamp-ordering
protocol. Under Thomas’ write rule, the write(Q) operation of T27 would be ig-
nored. The result is a schedule that is view equivalent to the serial schedule <T27,
T28>.

15.5 Validation-Based Protocols

In cases where a majority of transactions are read-only transactions, the rate of
conflicts among transactions may be low. Thus, many of these transactions, if
executed without the supervision of a concurrency-control scheme, would nev-
ertheless leave the system in a consistent state. A concurrency-control scheme
imposes overhead of code execution and possible delay of transactions. It may
be better to use an alternative scheme that imposes less overhead. A difficulty
in reducing the overhead is that we do not know in advance which transactions
will be involved in a conflict. To gain that knowledge, we need a scheme for
monitoring the system.

The validation protocol requires that each transaction Ti executes in two or
three different phases in its lifetime, depending on whether it is a read-only or an
update transaction. The phases are, in order:
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VIEW SERIALIZABILITY

There is another form of equivalence that is less stringent than conflict equiv-
alence, but that, like conflict equivalence, is based on only the read and write
operations of transactions.

Consider two schedules S and S′, where the same set of transactions partici-
pates in both schedules. The schedules S and S′ are said to be view equivalent
if three conditions are met:

1. For each data item Q, if transaction Ti reads the initial value of Q in schedule S,
then transaction Ti must, in schedule S′, also read the initial value of Q.

2. For each data item Q, if transaction Ti executes read(Q) in schedule S, and if that
value was produced by a write(Q) operation executed by transaction Tj , then
the read(Q) operation of transaction Ti must, in schedule S′, also read the value
of Q that was produced by the same write(Q) operation of transaction Tj .

3. For each data item Q, the transaction (if any) that performs the final write(Q)
operation in schedule S must perform the final write(Q) operation in schedule S′.

Conditions 1 and 2 ensure that each transaction reads the same values in both
schedules and, therefore, performs the same computation. Condition 3, coupled
with conditions 1 and 2, ensures that both schedules result in the same final
system state.

The concept of view equivalence leads to the concept of view serializability.
We say that a schedule S is view serializable if it is view equivalent to a serial
schedule.

As an illustration, suppose that we augment schedule 4 with transaction T29,
and obtain the following view serializable (schedule 5):

T27 T28 T29

read (Q)

write (Q)
write (Q)

write (Q)

Indeed, schedule 5 is view equivalent to the serial schedule <T27, T28, T29>, since
the one read(Q) instruction reads the initial value of Q in both schedules and
T29 performs the final write of Q in both schedules.

Every conflict-serializable schedule is also view serializable, but there are
view-serializable schedules that are not conflict serializable. Indeed, schedule 5
is not conflict serializable, since every pair of consecutive instructions conflicts,
and, thus, no swapping of instructions is possible.

Observe that, in schedule 5, transactions T28 and T29 perform write(Q) oper-
ations without having performed a read(Q) operation. Writes of this sort are
called blind writes. Blind writes appear in any view-serializable schedule that
is not conflict serializable.
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1. Read phase. During this phase, the system executes transaction Ti . It reads
the values of the various data items and stores them in variables local to
Ti . It performs all write operations on temporary local variables, without
updates of the actual database.

2. Validation phase. The validation test (described below) is applied to trans-
action Ti . This determines whether Ti is allowed to proceed to the write
phase without causing a violation of serializability. If a transaction fails the
validation test, the system aborts the transaction.

3. Write phase. If the validation test succeeds for transaction Ti , the temporary
local variables that hold the results of any write operations performed by Ti
are copied to the database. Read-only transactions omit this phase.

Each transaction must go through the phases in the order shown. However, phases
of concurrently executing transactions can be interleaved.

To perform the validation test, we need to know when the various phases of
transactions took place. We shall, therefore, associate three different timestamps
with each transaction Ti :

1. Start(Ti ), the time when Ti started its execution.

2. Validation(Ti ), the time when Ti finished its read phase and started its
validation phase.

3. Finish(Ti ), the time when Ti finished its write phase.

We determine the serializability order by the timestamp-ordering technique,
using the value of the timestamp Validation(Ti ). Thus, the value TS(Ti ) = Valida-
tion(Ti ) and, if TS(Tj ) < TS(Tk), then any produced schedule must be equivalent
to a serial schedule in which transaction Tj appears before transaction Tk . The
reason we have chosen Validation(Ti ), rather than Start(Ti ), as the timestamp of
transaction Ti is that we can expect faster response time provided that conflict
rates among transactions are indeed low.

The validation test for transaction Ti requires that, for all transactions Tk with
TS(Tk) < TS(Ti ), one of the following two conditions must hold:

1. Finish(Tk) < Start(Ti ). Since Tk completes its execution before Ti started, the
serializability order is indeed maintained.

2. The set of data items written by Tk does not intersect with the set of data items
read by Ti , and Tk completes its write phase before Ti starts its validation
phase (Start(Ti ) < Finish(Tk) < Validation(Ti )). This condition ensures that
the writes of Tk and Ti do not overlap. Since the writes of Tk do not affect the
read of Ti , and since Ti cannot affect the read of Tk , the serializability order
is indeed maintained.
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T25 T26

read(B)
read(B)
B := B − 50
read(A)
A := A + 50

read(A)
< validate>
display(A + B)

< validate>
write(B)
write(A)

Figure 15.19 Schedule 6, a schedule produced by using validation.

As an illustration, consider again transactions T25 and T26. Suppose that TS(T25)
< TS(T26). Then, the validation phase succeeds in the schedule 6 in Figure 15.19.
Note that the writes to the actual variables are performed only after the validation
phase of T26. Thus, T25 reads the old values of B and A, and this schedule is
serializable.

The validation scheme automatically guards against cascading rollbacks,
since the actual writes take place only after the transaction issuing the write
has committed. However, there is a possibility of starvation of long transactions,
due to a sequence of conflicting short transactions that cause repeated restarts of
the long transaction. To avoid starvation, conflicting transactions must be tem-
porarily blocked, to enable the long transaction to finish.

This validation scheme is called the optimistic concurrency-control scheme
since transactions execute optimistically, assuming they will be able to finish
execution and validate at the end. In contrast, locking and timestamp ordering are
pessimistic in that they force a wait or a rollback whenever a conflict is detected,
even though there is a chance that the schedule may be conflict serializable.

15.6 Multiversion Schemes

The concurrency-control schemes discussed thus far ensure serializability by ei-
ther delaying an operation or aborting the transaction that issued the operation.
For example, a read operation may be delayed because the appropriate value
has not been written yet; or it may be rejected (that is, the issuing transaction
must be aborted) because the value that it was supposed to read has already been
overwritten. These difficulties could be avoided if old copies of each data item
were kept in a system.

In multiversion concurrency-control schemes, each write(Q) operation cre-
ates a new version of Q. When a transaction issues a read(Q) operation, the
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concurrency-control manager selects one of the versions of Q to be read. The
concurrency-control scheme must ensure that the version to be read is selected in
a manner that ensures serializability. It is also crucial, for performance reasons,
that a transaction be able to determine easily and quickly which version of the
data item should be read.

15.6.1 Multiversion Timestamp Ordering

The timestamp-ordering protocol can be extended to a multiversion protocol.
With each transaction Ti in the system, we associate a unique static timestamp,
denoted by TS(Ti ). The database system assigns this timestamp before the trans-
action starts execution, as described in Section 15.4.

With each data item Q, a sequence of versions <Q1, Q2, . . . , Qm> is associated.
Each version Qk contains three data fields:

• Content is the value of version Qk .

• W-timestamp(Qk) is the timestamp of the transaction that created version
Qk .

• R-timestamp(Qk) is the largest timestamp of any transaction that successfully
read version Qk .

A transaction—say, Ti —creates a new version Qk of data item Q by issuing
a write(Q) operation. The content field of the version holds the value written by
Ti . The system initializes the W-timestamp and R-timestamp to TS(Ti ). It updates
the R-timestamp value of Qk whenever a transaction Tj reads the content of Qk ,
and R-timestamp(Qk) < TS(Tj ).

The multiversion timestamp-ordering scheme presented next ensures seri-
alizability. The scheme operates as follows: Suppose that transaction Ti issues
a read(Q) or write(Q) operation. Let Qk denote the version of Q whose write
timestamp is the largest write timestamp less than or equal to TS(Ti ).

1. If transaction Ti issues a read(Q), then the value returned is the content of
version Qk .

2. If transaction Ti issues write(Q), and if TS(Ti ) < R-timestamp(Qk), then
the system rolls back transaction Ti . On the other hand, if TS(Ti ) = W-
timestamp(Qk), the system overwrites the contents of Qk ; otherwise (if TS(Ti )
> R-timestamp(Qk)), it creates a new version of Q.

The justification for rule 1 is clear. A transaction reads the most recent version
that comes before it in time. The second rule forces a transaction to abort if it
is “too late” in doing a write. More precisely, if Ti attempts to write a version
that some other transaction would have read, then we cannot allow that write to
succeed.

Versions that are no longer needed are removed according to the following
rule: Suppose that there are two versions, Qk and Q j , of a data item, and that both



15.6 Multiversion Schemes 691

versions have a W-timestamp less than the timestamp of the oldest transaction in
the system. Then, the older of the two versions Qk and Q j will not be used again,
and can be deleted.

The multiversion timestamp-ordering scheme has the desirable property that
a read request never fails and is never made to wait. In typical database systems,
where reading is a more frequent operation than is writing, this advantage may
be of major practical significance.

The scheme, however, suffers from two undesirable properties. First, the read-
ing of a data item also requires the updating of the R-timestamp field, resulting in
two potential disk accesses, rather than one. Second, the conflicts between trans-
actions are resolved through rollbacks, rather than through waits. This alternative
may be expensive. Section 15.6.2 describes an algorithm to alleviate this problem.

This multiversion timestamp-ordering scheme does not ensure recoverabil-
ity and cascadelessness. It can be extended in the same manner as the basic
timestamp-ordering scheme, to make it recoverable and cascadeless.

15.6.2 Multiversion Two-Phase Locking

The multiversion two-phase locking protocol attempts to combine the advan-
tages of multiversion concurrency control with the advantages of two-phase
locking. This protocol differentiates between read-only transactions and update
transactions.

Update transactions perform rigorous two-phase locking; that is, they hold
all locks up to the end of the transaction. Thus, they can be serialized according
to their commit order. Each version of a data item has a single timestamp. The
timestamp in this case is not a real clock-based timestamp, but rather is a counter,
which we will call the ts-counter, that is incremented during commit processing.

The database system assigns read-only transactions a timestamp by read-
ing the current value of ts-counter before they start execution; they follow the
multiversion timestamp-ordering protocol for performing reads. Thus, when a
read-only transaction Ti issues a read(Q), the value returned is the contents of the
version whose timestamp is the largest timestamp less than or equal to TS(Ti ).

When an update transaction reads an item, it gets a shared lock on the item,
and reads the latest version of that item. When an update transaction wants to
write an item, it first gets an exclusive lock on the item, and then creates a new
version of the data item. The write is performed on the new version, and the
timestamp of the new version is initially set to a value ∞, a value greater than
that of any possible timestamp.

When the update transaction Ti completes its actions, it carries out commit
processing: First, Ti sets the timestamp on every version it has created to 1 more
than the value of ts-counter; then, Ti increments ts-counter by 1. Only one update
transaction is allowed to perform commit processing at a time.

As a result, read-only transactions that start after Ti increments ts-counter
will see the values updated by Ti , whereas those that start before Ti increments
ts-counter will see the value before the updates by Ti . In either case, read-only
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transactions never need to wait for locks. Multiversion two-phase locking also
ensures that schedules are recoverable and cascadeless.

Versions are deleted in a manner like that of multiversion timestamp ordering.
Suppose there are two versions, Qk and Q j , of a data item, and that both versions
have a timestamp less than or equal to the timestamp of the oldest read-only
transaction in the system. Then, the older of the two versions Qk and Q j will not
be used again and can be deleted.

15.7 Snapshot Isolation

Snapshot isolation is a particular type of concurrency-control scheme that has
gained wide acceptance in commercial and open-source systems, including Ora-
cle, PostgreSQL, and SQL Server. We introduced snapshot isolation in Section 14.9.3.
Here, we take a more detailed look into how it works.

Conceptually, snapshot isolation involves giving a transaction a “snapshot” of
the database at the time when it begins its execution. It then operates on that snap-
shot in complete isolation from concurrent transactions. The data values in the
snapshot consist only of values written by committed transactions. This isolation
is ideal for read-only transactions since they never wait and are never aborted by
the concurrency manager. Transactions that update the database must, of course,
interact with potentially conflicting concurrent update transactions before up-
dates are actually placed in the database. Updates are kept in the transaction’s
private workspace until the transaction successfully commits, at which point the
updates are written to the database. When a transaction T is allowed to commit,
the transition of T to the committed state and the writing of all of the updates
made by T to the database must be done as an atomic action so that any snapshot
created for another transaction either includes all updates by transaction T or
none of them.

15.7.1 Validation Steps for Update Transactions

Deciding whether or not to allow an update transaction to commit requires some
care. Potentially, two transactions running concurrently might both update the
same data item. Since these two transactions operate in isolation using their own
private snapshots, neither transaction sees the update made by the other. If both
transactions are allowed to write to the database, the first update written will
be overwritten by the second. The result is a lost update. Clearly, this must be
prevented. There are two variants of snapshot isolation, both of which prevent lost
updates. They are called first committer wins and first updater wins. Both approaches
are based on testing the transaction against concurrent transactions. A transaction
is said to be concurrent with T if it was active or partially committed at any point
from the start of T up to and including the time when this test is being performed.

Under first committer wins, when a transaction T enters the partially com-
mitted state, the following actions are taken in an atomic action:
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• A test is made to see if any transaction that was concurrent with T has already
written an update to the database for some data item that T intends to write.

• If some such transaction is found, then T aborts.

• If no such transaction is found, then T commits and its updates are written
to the database.

This approach is called “first committer wins” because if transactions conflict, the
first one to be tested using the above rule succeeds in writing its updates, while
the subsequent ones are forced to abort. Details of how to implement the above
tests are addressed in Exercise 15.19.

Under first updater wins the system uses a locking mechanism that applies
only to updates (reads are unaffected by this, since they do not obtain locks).
When a transaction Ti attempts to update a data item, it requests a write lock on
that data item. If the lock is not held by a concurrent transaction, the following
steps are taken after the lock is acquired:

• If the item has been updated by any concurrent transaction, then Ti aborts.

• Otherwise Ti may proceed with its execution including possibly committing.

If, however, some other concurrent transaction Tj already holds a write lock on
that data item, then Ti cannot proceed and the following rules are followed:

• Ti waits until Tj aborts or commits.

◦ If Tj aborts, then the lock is released and Ti can obtain the lock. After the
lock is acquired, the check for an update by a concurrent transaction is
performed as described earlier: Ti aborts if a concurrent transaction had
updated the data item, and proceeds with its execution otherwise.

◦ If Tj commits, then Ti must abort.

Locks are released when the transaction commits or aborts.
This approach is called “first updater wins” because if transactions conflict,

the first one to obtain the lock is the one that is permitted to commit and perform
its update. Those that attempt the update later abort unless the first updater
subsequently aborts for some other reason. (As an alternative to waiting to see if
the first updater Tj aborts, a subsequent updater Ti can be aborted as soon as it
finds that the write lock it wishes to obtain is held by Tj .)

15.7.2 Serializability Issues

Snapshot isolation is attractive in practice because the overhead is low and no
aborts occur unless two concurrent transactions update the same data item.

There is, however, one serious problem with the snapshot isolation scheme as
we have presented it, and as it is implemented in practice: snapshot isolation does
not ensure serializability. This is true even in Oracle, which uses snapshot isolation
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as the implementation for the serializable isolation level! Next, we give examples
of possible nonserializable executions under snapshot isolation and show how to
deal with them.

1. Suppose that we have two concurrent transactions Ti and Tj and two data
items A and B. Suppose that Ti reads A and B, then updates B, while Tj
reads A and B, then updates A. For simplicity, we assume there are no other
concurrent transactions. Since Ti and Tj are concurrent, neither transaction
sees the update by the other in its snapshot. But, since they update different
data items, both are allowed to commit regardless of whether the system
uses the first-update-wins policy or the first-committer-wins policy.

However, the precedence graph has a cycle. There is an edge in the
precedence graph from Ti to Tj because Ti reads the value of A that existed
before Tj writes A. There is also an edge in the precedence graph from Tj to
Ti because Tj reads the value of B that existed before Ti writes B. Since there
is a cycle in the precedence graph, the result is a nonserializable schedule.

This situation, where each of a pair of transactions has read data that
is written by the other, but there is no data written by both transactions, is
referred to as write skew. As a concrete example of write skew, consider
a banking scenario. Suppose that the bank enforces the integrity constraint
that the sum of the balances in the checking and the savings account of a
customer must not be negative. Suppose the checking and savings balances
for a customer are $100 and $200, respectively. Suppose that transaction T36
withdraws $200 from the checking account, after verifying the integrity con-
straint by reading both balances. Suppose that concurrently transaction T37
withdraws $200 from the savings account, again after verifying the integrity
constraint. Since each of the transactions checks the integrity constraint on
its own snapshot, if they run concurrently each will believe that the sum of
the balances after the withdrawal is $100, and therefore its withdrawal does
not violate the constraint. Since the two transactions update different data
items, they do not have any update conflict, and under snapshot isolation
both of them can commit.

Unfortunately, in the final state after both T36 and T37 have committed,
the sum of the balances is $-100, violating the integrity constraint. Such a
violation could never have occurred in any serial execution of T36 and T37.

It is worth noting that integrity constraints that are enforced by the
database, such as primary-key and foreign-key constraints, cannot be check-
ed on a snapshot; otherwise it would be possible for two concurrent trans-
actions to insert two tuples with the same primary key value, or for a
transaction to insert a foreign key value that is concurrently deleted from
the referenced table. Instead, the database system must check these con-
straints on the current state of the database, as part of validation at the time
of commit.

2. For the next example, we shall consider two concurrent update transactions
that do not themselves present any problem as regards serializability unless
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a read-only transaction happens to show up at just the right time to cause a
problem.

Suppose that we have two concurrent transactions Ti and Tj and two data
items Aand B. Suppose that Ti reads B and then updates B, while Tj reads A
and B, then updates A. Running these two transactions concurrently causes
no problem. Since Ti accesses only data item B, there are no conflicts on data
item A and therefore there is no cycle in the precedence graph. The only
edge in the precedence graph is the edge from Tj to Ti because Tj reads the
value of B that existed before Ti writes B.

However, let us suppose that Ti commits while Tj is still active. Suppose
that, after Ti commits but before Tj commits, a new read-only transaction
Tk enters the system and Tk reads both A and B. Its snapshot includes the
update by Ti because Ti has already committed. However, since Tj has not
committed, its update has not yet been written to the database and is not
included in the snapshot seen by Tk .

Consider the edges that are added to the precedence graph on account
of Tk . There is an edge in the precedence graph from Ti to Tk because Ti
writes the value of B that existed before Tk reads B. There is an edge in the
precedence graph from Tk to Tj because Tk reads the value of A that existed
before Tj writes A. That leads to a cycle in the precedence graph, showing
that the resulting schedule is nonserializable.

The above anomalies may not be as troublesome as they first appear. Recall
that the reason for serializability is to ensure that, despite concurrent execution
of transactions, database consistency is preserved. Since consistency is the goal,
we can accept the potential for nonserializable executions if we are sure that
those nonserializable executions that might occur will not lead to inconsistency.
The second example above is a problem only if the application that submits the
read-only transaction (Tk) cares about seeing updates to A and B out of order. In
that example, we did not specify the database consistency constraints that each
transaction expects to hold. If we are dealing with a financial database, it might
be a very serious matter for Tk to read updates out of proper serial order. On the
other hand, if A and B are enrollments in two sections of the same course, then Tk
may not demand perfect serialization and we may know from our applications
that update rates are low enough that any inaccuracy in what Tk reads is not
significant.

The fact that the database must check integrity constraints at the time of com-
mit, and not on a snapshot, also helps avoid inconsistencies in some situations.
Some financial applications create consecutive sequence numbers, for example to
number bills, by taking the maximum current bill number and adding 1 to the
value to get a new bill number. If two such transactions run concurrently, each
would see the same set of bills in its snapshot, and each would create a new bill
with the same number. Both transactions pass the validation tests for snapshot
isolation, since they do not update any tuple in common. However, the execution
is not serializable; the resultant database state cannot be obtained by any serial
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execution of the two transactions. Creating two bills with the same number could
have serious legal implications.

The above problem is an example of the phantom phenomenon, since the
insert performed by each transaction conflicts with the read performed by the
other transaction to find the maximum bill number, but the conflict is not detected
by snapshot isolation.1

Luckily, in most such applications the bill number would have been declared
as a primary key, and the database system would detect the primary key violation
outside the snapshot, and roll back one of the two transactions.2

An application developer can guard against certain snapshot anomalies by
appending a for update clause to the SQL select query as illustrated below:

select *
from instructor
where ID = 22222
for update;

Adding the for update clause causes the system to treat data that are read as if
they had been updated for purposes of concurrency control. In our first example
of write skew, if the for update clause is appended to the select queries that
read the account balances, only one of the two concurrent transactions would be
allowed to commit since it appears that both transactions have updated both the
checking and savings balances.

In our second example of nonserializable execution, if the author of transac-
tion Tk wished to avoid this anomaly, the for update clause could be appended to
the select query, even though there is in fact no update. In our example, if Tk used
select for update, it would be treated as if it had updated A and B when it read
them. The result would be that either Tk or Tj would be aborted, and retried later
as a new transaction. This would lead to a serializable execution. In this example,
the queries in the other two transactions do not need the for update clause to be
added; unnecessary use of the for update clause can cause significant reduction
in concurrency.

Formal methods exist (see the bibliographical notes) to determine whether a
given mix of transactions runs the risk of nonserializable execution under snap-
shot isolation, and to decide on what conflicts to introduce (using the for update
clause, for example), to ensure serializability. Of course, such methods can work
only if we know in advance what transactions are being executed. In some ap-
plications, all transactions are from a predetermined set of transactions making
this analysis possible. However, if the application allows unrestricted, ad-hoc
transactions, then no such analysis is possible.

1The SQL standard uses the term phantom problem to refer to non-repeatable predicate reads, leading some to claim
that snapshot isolation avoids the phantom problem; however, such a claim is not valid under our definition of phantom
conflict.
2The problem of duplicate bill numbers actually occurred several times in a financial application in I.I.T. Bombay, where
(for reasons too complex to discuss here) the bill number was not a primary key, and was detected by financial auditors.
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Of the three widely used systems that support snapshot isolation, SQL Server
offers the option of a serializable isolation level that truly ensures serializability
along with a snapshot isolation level that provides the performance advantages of
snapshot isolation (along with the potential for the anomalies discussed above).
In Oracle and PostgreSQL, the serializable isolation level offers only snapshot iso-
lation.

15.8 Insert Operations, Delete Operations, and Predicate Reads

Until now, we have restricted our attention to read and write operations. This
restriction limits transactions to data items already in the database. Some trans-
actions require not only access to existing data items, but also the ability to create
new data items. Others require the ability to delete data items. To examine how
such transactions affect concurrency control, we introduce these additional oper-
ations:

• delete(Q) deletes data item Q from the database.

• insert(Q) inserts a new data item Q into the database and assigns Q an initial
value.

An attempt by a transaction Ti to perform a read(Q) operation after Q has been
deleted results in a logical error in Ti . Likewise, an attempt by a transaction Ti to
perform a read(Q) operation before Q has been inserted results in a logical error
in Ti . It is also a logical error to attempt to delete a nonexistent data item.

15.8.1 Deletion

To understand how the presence of delete instructions affects concurrency control,
we must decide when a delete instruction conflicts with another instruction. Let
Ii and I j be instructions of Ti and Tj , respectively, that appear in schedule S in
consecutive order. Let Ii = delete(Q). We consider several instructions I j .

• I j = read(Q). Ii and I j conflict. If Ii comes before I j , Tj will have a logical
error. If I j comes before Ii , Tj can execute the read operation successfully.

• I j = write(Q). Ii and I j conflict. If Ii comes before I j , Tj will have a logical
error. If I j comes before Ii , Tj can execute the write operation successfully.

• I j = delete(Q). Ii and I j conflict. If Ii comes before I j , Ti will have a logical
error. If I j comes before Ii , Ti will have a logical error.

• I j = insert(Q). Ii and I j conflict. Suppose that data item Q did not exist prior
to the execution of Ii and I j . Then, if Ii comes before I j , a logical error results
for Ti . If I j comes before Ii , then no logical error results. Likewise, if Q existed
prior to the execution of Ii and I j , then a logical error results if I j comes
before Ii , but not otherwise.
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We can conclude the following:

• Under the two-phase locking protocol, an exclusive lock is required on a data
item before that item can be deleted.

• Under the timestamp-ordering protocol, a test similar to that for a write must
be performed. Suppose that transaction Ti issues delete(Q).

◦ If TS(Ti ) < R-timestamp(Q), then the value of Q that Ti was to delete has
already been read by a transaction Tj with TS(Tj ) > TS(Ti ). Hence, the
delete operation is rejected, and Ti is rolled back.

◦ If TS(Ti ) < W-timestamp(Q), then a transaction Tj with TS(Tj ) > TS(Ti ) has
written Q. Hence, this delete operation is rejected, and Ti is rolled back.

◦ Otherwise, the delete is executed.

15.8.2 Insertion

We have already seen that an insert(Q) operation conflicts with a delete(Q) opera-
tion. Similarly, insert(Q) conflicts with a read(Q) operation or a write(Q) operation;
no read or write can be performed on a data item before it exists.

Since an insert(Q) assigns a value to data item Q, an insert is treated similarly
to a write for concurrency-control purposes:

• Under the two-phase locking protocol, if Ti performs an insert(Q) operation,
Ti is given an exclusive lock on the newly created data item Q.

• Under the timestamp-ordering protocol, if Ti performs an insert(Q) operation,
the values R-timestamp(Q) and W-timestamp(Q) are set to TS(Ti ).

15.8.3 Predicate Reads and The Phantom Phenomenon

Consider transaction T30 that executes the following SQL query on the university
database:

select count(*)
from instructor
where dept name = ’Physics’ ;

Transaction T30 requires access to all tuples of the instructor relation pertaining to
the Physics department.

Let T31 be a transaction that executes the following SQL insertion:

insert into instructor
values (11111,’Feynman’, ’Physics’, 94000);

Let S be a schedule involving T30 and T31. We expect there to be potential for
a conflict for the following reasons:
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• If T30 uses the tuple newly inserted by T31 in computing count(*), then T30
reads a value written by T31. Thus, in a serial schedule equivalent to S, T31
must come before T30.

• If T30 does not use the tuple newly inserted by T31 in computing count(*),
then in a serial schedule equivalent to S, T30 must come before T31.

The second of these two cases is curious. T30 and T31 do not access any tuple
in common, yet they conflict with each other! In effect, T30 and T31 conflict on
a phantom tuple. If concurrency control is performed at the tuple granularity,
this conflict would go undetected. As a result, the system could fail to prevent a
nonserializable schedule. This problem is called the phantom phenomenon.

In addition to the phantom problem, we also need to deal with the situation
we saw in Section 14.10, where a transaction used an index to find only tuples
with dept name = “Physics”, and as a result did not read any tuples with other
department names. If another transaction updates one of these tuples, changing
its department name to Physics, a problem equivalent to the phantom problem
occurs. Both problems are rooted in predicate reads, and have a common solution.

To prevent the above problems, we allow transaction T30 to prevent other
transactions from creating new tuples in the instructor relation with dept name =
“Physics”, and from updating the department name of an existing instructor tuple
to Physics.

To find all instructor tuples with dept name = “Physics”, T30 must search either
the whole instructor relation, or at least an index on the relation. Up to now, we
have assumed implicitly that the only data items accessed by a transaction are
tuples. However, T30 is an example of a transaction that reads information about
what tuples are in a relation, and T31 is an example of a transaction that updates
that information.

Clearly, it is not sufficient merely to lock the tuples that are accessed; the
information used to find the tuples that are accessed by the transaction must also
be locked.

Locking of information used to find tuples can be implemented by associating
a data item with the relation; the data item represents the information used to
find the tuples in the relation. Transactions, such as T30, that read the information
about what tuples are in a relation would then have to lock the data item corre-
sponding to the relation in shared mode. Transactions, such as T31, that update the
information about what tuples are in a relation would have to lock the data item
in exclusive mode. Thus, T30 and T31 would conflict on a real data item, rather
than on a phantom. Similarly, transactions that use an index to retrieve tuples
must lock the index itself.

Do not confuse the locking of an entire relation, as in multiple-granularity
locking, with the locking of the data item corresponding to the relation. By locking
the data item, a transaction only prevents other transactions from updating infor-
mation about what tuples are in the relation. Locking is still required on tuples. A
transaction that directly accesses a tuple can be granted a lock on the tuples even
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when another transaction has an exclusive lock on the data item corresponding
to the relation itself.

The major disadvantage of locking a data item corresponding to the relation,
or locking an entire index, is the low degree of concurrency— two transactions that
insert different tuples into a relation are prevented from executing concurrently.

A better solution is an index-locking technique that avoids locking the whole
index. Any transaction that inserts a tuple into a relation must insert information
into every index maintained on the relation. We eliminate the phantom phe-
nomenon by imposing a locking protocol for indices. For simplicity we shall
consider only B+-tree indices.

As we saw in Chapter 11, every search-key value is associated with an index
leaf node. A query will usually use one or more indices to access a relation. An
insert must insert the new tuple in all indices on the relation. In our example, we
assume that there is an index on instructor for dept name. Then, T31 must modify
the leaf containing the key “Physics”. If T30 reads the same leaf node to locate all
tuples pertaining to the Physics department, then T30 and T31 conflict on that leaf
node.

The index-locking protocol takes advantage of the availability of indices on a
relation, by turning instances of the phantom phenomenon into conflicts on locks
on index leaf nodes. The protocol operates as follows:

• Every relation must have at least one index.

• A transaction Ti can access tuples of a relation only after first finding them
through one or more of the indices on the relation. For the purpose of the
index-locking protocol, a relation scan is treated as a scan through all the
leaves of one of the indices.

• A transaction Ti that performs a lookup (whether a range lookup or a point
lookup) must acquire a shared lock on all the index leaf nodes that it accesses.

• A transaction Ti may not insert, delete, or update a tuple ti in a relation
r without updating all indices on r. The transaction must obtain exclusive
locks on all index leaf nodes that are affected by the insertion, deletion, or
update. For insertion and deletion, the leaf nodes affected are those that
contain (after insertion) or contained (before deletion) the search-key value
of the tuple. For updates, the leaf nodes affected are those that (before the
modification) contained the old value of the search key, and nodes that (after
the modification) contain the new value of the search key.

• Locks are obtained on tuples as usual.

• The rules of the two-phase locking protocol must be observed.

Note that the index-locking protocol does not address concurrency control on
internal nodes of an index; techniques for concurrency control on indices, which
minimize lock conflicts, are presented in Section 15.10.

Locking an index leaf node prevents any update to the node, even if the
update did not actually conflict with the predicate. A variant called key-value



15.9 Weak Levels of Consistency in Practice 701

locking, which minimizes such false lock conflicts, is presented in Section 15.10
as part of index concurrency control.

As noted in Section 14.10, it would appear that the existence of a conflict
between transactions depends on a low-level query-processing decision by the
system that is unrelated to a user-level view of the meaning of the two transac-
tions. An alternative approach to concurrency control acquires shared locks on
predicates in a query, such as the predicate “salary > 90000” on the instructor
relation. Inserts and deletes of the relation must then be checked to see if they
satisfy the predicate; if they do, there is a lock conflict, forcing the insert or delete
to wait till the predicate lock is released. For updates, both the initial value and
the final value of the tuple must be checked against the predicate. Such conflict-
ing inserts, deletes and updates affect the set of tuples selected by the predicate,
and cannot be allowed to execute concurrently with the query that acquired the
(shared) predicate lock. We call the above protocol predicate locking;3 predicate
locking is not used in practice since it is more expensive to implement than the
index-locking protocol, and does not give significant additional benefits.

Variants of the predicate-locking technique can be used for eliminating the
phantom phenomenon under the other concurrency-control protocols presented
in this chapter. However, many database systems, such as PostgreSQL (as of ver-
sion 8.1) and (to the best of our knowledge) Oracle (as of version 10g) do not
implement index locking or predicate locking, and are vulnerable to nonserializ-
ability due to phantom problems even if the isolation level is set to serializable.

15.9 Weak Levels of Consistency in Practice

In Section 14.5, we discussed the isolation levels specified by the SQL standard:
serializable, repeatable read, read committed, and read uncommitted. In this
section, we first briefly outline some older terminology relating to consistency
levels weaker than serializability and relate it to the SQL standard levels. We
then discuss the issue of concurrency control for transactions that involve user
interaction, an issue that we briefly discussed earlier in Section 14.8.

15.9.1 Degree-Two Consistency

The purpose of degree-two consistency is to avoid cascading aborts without nec-
essarily ensuring serializability. The locking protocol for degree-two consistency
uses the same two lock modes that we used for the two-phase locking protocol:
shared (S) and exclusive (X). A transaction must hold the appropriate lock mode
when it accesses a data item, but two-phase behavior is not required.

In contrast to the situation in two-phase locking, S-locks may be released
at any time, and locks may be acquired at any time. Exclusive locks, however,

3The term predicate locking was used for a version of the protocol that used shared and exclusive locks on predicates,
and was thus more complicated. The version we present here, with only shared locks on predicates, is also referred to as
precision locking.
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T32 T33

lock-S(Q)
read(Q)
unlock(Q)

lock-X(Q)
read(Q)
write(Q)
unlock(Q)

lock-S(Q)
read(Q)
unlock(Q)

Figure 15.20 Nonserializable schedule with degree-two consistency.

cannot be released until the transaction either commits or aborts. Serializability is
not ensured by this protocol. Indeed, a transaction may read the same data item
twice and obtain different results. In Figure 15.20, T32 reads the value of Q before
and after that value is written by T33.

Clearly, reads are not repeatable, but since exclusive locks are held until
transaction commit, no transaction can read an uncommitted value. Thus, degree-
two consistency is one particular implementation of the read-committed isolation
level.

15.9.2 Cursor Stability

Cursor stability is a form of degree-two consistency designed for programs that
iterate over tuples of a relation by using cursors. Instead of locking the entire
relation, cursor stability ensures that:

• The tuple that is currently being processed by the iteration is locked in shared
mode.

• Any modified tuples are locked in exclusive mode until the transaction com-
mits.

These rules ensure that degree-two consistency is obtained. Two-phase lock-
ing is not required. Serializability is not guaranteed. Cursor stability is used in
practice on heavily accessed relations as a means of increasing concurrency and
improving system performance. Applications that use cursor stability must be
coded in a way that ensures database consistency despite the possibility of non-
serializable schedules. Thus, the use of cursor stability is limited to specialized
situations with simple consistency constraints.

15.9.3 Concurrency Control Across User Interactions

Concurrency-control protocols usually consider transactions that do not involve
user interaction. Consider the airline seat selection example from Section 14.8,
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which involved user interaction. Suppose we treat all the steps from when the
seat availability is initially shown to the user, till the seat selection is confirmed,
as a single transaction.

If two-phase locking is used, the entire set of seats on a flight would be
locked in shared mode till the user has completed the seat selection, and no
other transaction would be able to update the seat allocation information in this
period. Clearly such locking would be a very bad idea since a user may take
a long time to make a selection, or even just abandon the transaction without
explicitly cancelling it. Timestamp protocols or validation could be used instead,
which avoid the problem of locking, but both these protocols would abort the
transaction for a user A if any other user B has updated the seat allocation
information, even if the seat selected by B does not conflict with the seat selected
by user A. Snapshot isolation is a good option in this situation, since it would not
abort the transaction of user A as long as B did not select the same seat as A.

However, snapshot isolation requires the database to remember information
about updates performed by a transaction even after it has committed, as long as
any other concurrent transaction is still active, which can be problematic for long
duration transactions.

Another option is to split a transaction that involves user interaction into two
or more transactions, such that no transaction spans a user interaction. If our
seat selection transaction is split thus, the first transaction would read the seat
availability, while the second transaction would complete the allocation of the
selected seat. If the second transaction is written carelessly, it could assign the
selected seat to the user, without checking if the seat was meanwhile assigned to
some other user, resulting in a lost-update problem. To avoid the problem, as we
outlined in Section 14.8, the second transaction should perform the seat allocation
only if the seat was not meanwhile assigned to some other user.

The above idea has been generalized in an alternative concurrency control
scheme, which uses version numbers stored in tuples to avoid lost updates. The
schema of each relation is altered by adding an extra version number attribute,
which is initialized to 0 when the tuple is created. When a transaction reads (for
the first time) a tuple that it intends to update, it remembers the version number
of that tuple. The read is performed as a stand-alone transaction on the database,
and hence any locks that may be obtained are released immediately. Updates are
done locally, and copied to the database as part of commit processing, using the
following steps which are executed atomically (that is, as part of a single database
transaction):

• For each updated tuple, the transaction checks if the current version number
is the same as the version number of the tuple when it was first read by the
transaction.

1. If the version numbers match, the update is performed on the tuple in
the database, and its version number is incremented by 1.

2. If the version numbers do not match, the transaction is aborted, rolling
back all the updates it performed.
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If the version number check succeeds for all updated tuples, the transaction
commits. It is worth noting that a timestamp could be used instead of the version
number, without impacting the scheme in any way.

Observe the close similarity between the above scheme and snapshot isola-
tion. The version number check implements the first-committer-wins rule used
in snapshot isolation, and can be used even if the transaction was active for
a very long time. However, unlike snapshot isolation, the reads performed by
transaction may not correspond to a snapshot of the database; and unlike the
validation-based protocol, reads performed by the transaction are not validated.

We refer to the above scheme as optimistic concurrency control without read
validation. Optimistic concurrency control without read validation provides a
weak level of serializability, and does not ensure serializability. A variant of this
scheme uses version numbers to validate reads at the time of commit, in addition
to validating writes, to ensure that the tuples read by the transaction were not
updated subsequent to the initial read; this scheme is equivalent to the optimistic
concurrency-control scheme which we saw earlier.

The above scheme has been widely used by application developers to handle
transactions that involve user interaction. An attractive feature of the scheme is
that it can be implemented easily on top of a database system. The validation and
update steps performed as part of commit processing are then executed as a single
transaction in the database, using the concurrency-control scheme of the database
to ensure atomicity for commit processing. The above scheme is also used by
the Hibernate object-relational mapping system (Section 9.4.2), and other object-
relational mapping systems, where it is referred to as optimistic concurrency
control (even though reads are not validated by default). Transactions that involve
user interaction are called conversations in Hibernate to differentiate them from
regular transactions validation using version numbers is very useful for such
transactions. Object-relational mapping systems also cache database tuples in the
form of objects in memory, and execute transactions on the cached objects; updates
on the objects are converted into updates on the database when the transaction
commits. Data may remain in cache for a long time, and if transactions update such
cached data, there is a risk of lost updates. Hibernate and other object-relational
mapping systems therefore perform the version number checks transparently as
part of commit processing. (Hibernate allows programmers to bypass the cache
and execute transactions directly on the database, if serializability is desired.)

15.10 Concurrency in Index Structures**

It is possible to treat access to index structures like any other database struc-
ture, and to apply the concurrency-control techniques discussed earlier. However,
since indices are accessed frequently, they would become a point of great lock
contention, leading to a low degree of concurrency. Luckily, indices do not have
to be treated like other database structures. It is perfectly acceptable for a trans-
action to perform a lookup on an index twice, and to find that the structure of the
index has changed in between, as long as the index lookup returns the correct set
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of tuples. Thus, it is acceptable to have nonserializable concurrent access to an
index, as long as the accuracy of the index is maintained.

We outline two techniques for managing concurrent access to B+-trees. The
bibliographical notes reference other techniques for B+-trees, as well as techniques
for other index structures.

The techniques that we present for concurrency control on B+-trees are based
on locking, but neither two-phase locking nor the tree protocol is employed. The
algorithms for lookup, insertion, and deletion are those used in Chapter 11, with
only minor modifications.

The first technique is called the crabbing protocol:

• When searching for a key value, the crabbing protocol first locks the root
node in shared mode. When traversing down the tree, it acquires a shared
lock on the child node to be traversed further. After acquiring the lock on the
child node, it releases the lock on the parent node. It repeats this process until
it reaches a leaf node.

• When inserting or deleting a key value, the crabbing protocol takes these
actions:

◦ It follows the same protocol as for searching until it reaches the desired
leaf node. Up to this point, it obtains (and releases) only shared locks.

◦ It locks the leaf node in exclusive mode and inserts or deletes the key
value.

◦ If it needs to split a node or coalesce it with its siblings, or redistribute
key values between siblings, the crabbing protocol locks the parent of the
node in exclusive mode. After performing these actions, it releases the
locks on the node and siblings.

If the parent requires splitting, coalescing, or redistribution of key
values, the protocol retains the lock on the parent, and splitting, coalescing,
or redistribution propagates further in the same manner. Otherwise, it
releases the lock on the parent.

The protocol gets its name from the way in which crabs advance by moving
sideways, moving the legs on one side, then the legs on the other, and so on
alternately. The progress of locking while the protocol both goes down the tree
and goes back up (in case of splits, coalescing, or redistribution) proceeds in a
similar crab-like manner.

Once a particular operation releases a lock on a node, other operations can
access that node. There is a possibility of deadlocks between search operations
coming down the tree, and splits, coalescing, or redistribution propagating up
the tree. The system can easily handle such deadlocks by restarting the search
operation from the root, after releasing the locks held by the operation.

The second technique achieves even more concurrency, avoiding even holding
the lock on one node while acquiring the lock on another node, by using a
modified version of B+-trees called B-link trees; B-link trees require that every
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node (including internal nodes, not just the leaves) maintain a pointer to its right
sibling. This pointer is required because a lookup that occurs while a node is being
split may have to search not only that node but also that node’s right sibling (if
one exists). We shall illustrate this technique with an example later, but we first
present the modified procedures of the B-link-tree locking protocol.

• Lookup. Each node of the B+-tree must be locked in shared mode before it is
accessed. A lock on a nonleaf node is released before any lock on any other
node in the B+-tree is requested. If a split occurs concurrently with a lookup,
the desired search-key value may no longer appear within the range of values
represented by a node accessed during lookup. In such a case, the search-key
value is in the range represented by a sibling node, which the system locates
by following the pointer to the right sibling. However, the system locks leaf
nodes following the two-phase locking protocol, as Section 15.8.3 describes,
to avoid the phantom phenomenon.

• Insertion and deletion. The system follows the rules for lookup to locate the
leaf node into which it will make the insertion or deletion. It upgrades the
shared-mode lock on this node to exclusive mode, and performs the insertion
or deletion. It locks leaf nodes affected by insertion or deletion following the
two-phase locking protocol, as Section 15.8.3 describes, to avoid the phantom
phenomenon.

• Split. If the transaction splits a node, it creates a new node according to the
algorithm of Section 11.3 and makes it the right sibling of the original node.
The right-sibling pointers of both the original node and the new node are
set. Following this, the transaction releases the exclusive lock on the original
node (provided it is an internal node; leaf nodes are locked in two-phase
manner), and then requests an exclusive lock on the parent, so that it can
insert a pointer to the new node. (There is no need to lock or unlock the new
node.)

• Coalescence. If a node has too few search-key values after a deletion, the
node with which it will be coalesced must be locked in exclusive mode. Once
the transaction has coalesced these two nodes, it requests an exclusive lock
on the parent so that the deleted node can be removed. At this point, the
transaction releases the locks on the coalesced nodes. Unless the parent node
must be coalesced also, its lock is released.

Observe this important fact: An insertion or deletion may lock a node, unlock it,
and subsequently relock it. Furthermore, a lookup that runs concurrently with
a split or coalescence operation may find that the desired search key has been
moved to the right-sibling node by the split or coalescence operation.

As an illustration, consider the B-link tree in Figure 15.21. Assume that there
are two concurrent operations on this B-link tree:

1. Insert “Chemistry”.

2. Look up “Comp. Sci.”
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Figure 15.21 B-link tree for department file with n = 3.

Let us assume that the insertion operation begins first. It does a lookup on
“Chemistry”, and finds that the node into which “Chemistry” should be inserted is
full. It therefore converts its shared lock on the node to exclusive mode, and creates
a new node. The original node now contains the search-key values “Biology” and
“Chemistry”. The new node contains the search-key value “Comp. Sci.”

Now assume that a context switch occurs that results in control passing to
the lookup operation. This lookup operation accesses the root, and follows the
pointer to the left child of the root. It then accesses that node, and obtains a pointer
to the left child. This left-child node originally contained the search-key values
“Biology” and “Comp. Sci.”. Since this node is currently locked by the insertion
operation in exclusive mode, the lookup operation must wait. Note that, at this
point, the lookup operation holds no locks at all!

The insertion operation now unlocks the leaf node and relocks its parent, this
time in exclusive mode. It completes the insertion, leaving the B-link tree as in
Figure 15.22. The lookup operation proceeds. However, it is holding a pointer
to an incorrect leaf node. It therefore follows the right-sibling pointer to locate
the next node. If this node, too, turns out to be incorrect, the lookup follows that
node’s right-sibling pointer. It can be shown that, if a lookup holds a pointer
to an incorrect node, then, by following right-sibling pointers, the lookup must
eventually reach the correct node.

Lookup and insertion operations cannot lead to deadlock. Coalescing of nodes
during deletion can cause inconsistencies, since a lookup may have read a pointer
to a deleted node from its parent, before the parent node was updated, and may

History

Elec. Eng.

Biology .celEyrtsimehC Eng. FinanceComp. Sci.

Music

Music Physics

Comp. Sci.

History

Figure 15.22 Insertion of “Chemistry” into the B-link tree of Figure 15.21.
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then try to access the deleted node. The lookup would then have to restart from
the root. Leaving nodes uncoalesced avoids such inconsistencies. This solution
results in nodes that contain too few search-key values and that violate some
properties of B+-trees. In most databases, however, insertions are more frequent
than deletions, so it is likely that nodes that have too few search-key values will
gain additional values relatively quickly.

Instead of locking index leaf nodes in a two-phase manner, some index
concurrency-control schemes use key-value locking on individual key values,
allowing other key values to be inserted or deleted from the same leaf. Key-value
locking thus provides increased concurrency. Using key-value locking naı̈vely,
however, would allow the phantom phenomenon to occur; to prevent the phan-
tom phenomenon, the next-key locking technique is used. In this technique,
every index lookup must lock not only the keys found within the range (or the
single key, in case of a point lookup) but also the next-key value—that is, the
key value just greater than the last key value that was within the range. Also,
every insert must lock not only the value that is inserted, but also the next-key
value. Thus, if a transaction attempts to insert a value that was within the range
of the index lookup of another transaction, the two transactions would conflict on
the key value next to the inserted key value. Similarly, deletes must also lock the
next-key value to the value being deleted, to ensure that conflicts with subsequent
range lookups of other queries are detected.

15.11 Summary

• When several transactions execute concurrently in the database, the consis-
tency of data may no longer be preserved. It is necessary for the system to
control the interaction among the concurrent transactions, and this control is
achieved through one of a variety of mechanisms called concurrency-control
schemes.

• To ensure serializability, we can use various concurrency-control schemes. All
these schemes either delay an operation or abort the transaction that issued
the operation. The most common ones are locking protocols, timestamp-
ordering schemes, validation techniques, and multiversion schemes.

• A locking protocol is a set of rules that state when a transaction may lock and
unlock each of the data items in the database.

• The two-phase locking protocol allows a transaction to lock a new data item
only if that transaction has not yet unlocked any data item. The protocol
ensures serializability, but not deadlock freedom. In the absence of informa-
tion concerning the manner in which data items are accessed, the two-phase
locking protocol is both necessary and sufficient for ensuring serializability.

• The strict two-phase locking protocol permits release of exclusive locks only
at the end of transaction, in order to ensure recoverability and cascadelessness
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of the resulting schedules. The rigorous two-phase locking protocol releases
all locks only at the end of the transaction.

• Graph-based locking protocols impose restrictions on the order in which
items are accessed, and can thereby ensure serializability without requiring
the use of two-phase locking, and can additionally ensure deadlock freedom.

• Various locking protocols do not guard against deadlocks. One way to pre-
vent deadlock is to use an ordering of data items, and to request locks in a
sequence consistent with the ordering.

• Another way to prevent deadlock is to use preemption and transaction roll-
backs. To control the preemption, we assign a unique timestamp to each
transaction. The system uses these timestamps to decide whether a transac-
tion should wait or roll back. If a transaction is rolled back, it retains its old
timestamp when restarted. The wound–wait scheme is a preemptive scheme.

• If deadlocks are not prevented, the system must deal with them by using
a deadlock detection and recovery scheme. To do so, the system constructs
a wait-for graph. A system is in a deadlock state if and only if the wait-for
graph contains a cycle. When the deadlock detection algorithm determines
that a deadlock exists, the system must recover from the deadlock. It does so
by rolling back one or more transactions to break the deadlock.

• There are circumstances where it would be advantageous to group several
data items, and to treat them as one aggregate data item for purposes of
working, resulting in multiple levels of granularity. We allow data items of
various sizes, and define a hierarchy of data items, where the small items are
nested within larger ones. Such a hierarchy can be represented graphically as
a tree. Locks are acquired in root-to-leaf order; they are released in leaf-to-root
order. The protocol ensures serializability, but not freedom from deadlock.

• A timestamp-ordering scheme ensures serializability by selecting an ordering
in advance between every pair of transactions. A unique fixed timestamp
is associated with each transaction in the system. The timestamps of the
transactions determine the serializability order. Thus, if the timestamp of
transaction Ti is smaller than the timestamp of transaction Tj , then the scheme
ensures that the produced schedule is equivalent to a serial schedule in which
transaction Ti appears before transaction Tj . It does so by rolling back a
transaction whenever such an order is violated.

• A validation scheme is an appropriate concurrency-control method in cases
where a majority of transactions are read-only transactions, and thus the rate
of conflicts among these transactions is low. A unique fixed timestamp is
associated with each transaction in the system. The serializability order is
determined by the timestamp of the transaction. A transaction in this scheme
is never delayed. It must, however, pass a validation test to complete. If it
does not pass the validation test, the system rolls it back to its initial state.
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• A multiversion concurrency-control scheme is based on the creation of a new
version of a data item for each transaction that writes that item. When a read
operation is issued, the system selects one of the versions to be read. The
concurrency-control scheme ensures that the version to be read is selected in
a manner that ensures serializability, by using timestamps. A read operation
always succeeds.

◦ In multiversion timestamp ordering, a write operation may result in the
rollback of the transaction.

◦ In multiversion two-phase locking, write operations may result in a lock
wait or, possibly, in deadlock.

• Snapshot isolation is a multiversion concurrency-control protocol based on
validation, which, unlike multiversion two-phase locking, does not require
transactions to be declared as read-only or update. Snapshot isolation does
not guarantee serializability, but is nevertheless supported by many database
systems.

• A delete operation may be performed only if the transaction deleting the
tuple has an exclusive lock on the tuple to be deleted. A transaction that
inserts a new tuple into the database is given an exclusive lock on the tuple.

• Insertions can lead to the phantom phenomenon, in which an insertion log-
ically conflicts with a query even though the two transactions may access
no tuple in common. Such conflict cannot be detected if locking is done
only on tuples accessed by the transactions. Locking is required on the data
used to find the tuples in the relation. The index-locking technique solves
this problem by requiring locks on certain index nodes. These locks ensure
that all conflicting transactions conflict on a real data item, rather than on a
phantom.

• Weak levels of consistency are used in some applications where consistency of
query results is not critical, and using serializability would result in queries
adversely affecting transaction processing. Degree-two consistency is one
such weaker level of consistency; cursor stability is a special case of degree-
two consistency, and is widely used.

• Concurrency control is a challenging task for transactions that span user
interactions. Applications often implement a scheme based on validation
of writes using version numbers stored in tuples; this scheme provides a
weak level of serializability, and can be implemented at the application level
without modifications to the database.

• Special concurrency-control techniques can be developed for special data
structures. Often, special techniques are applied in B+-trees to allow greater
concurrency. These techniques allow nonserializable access to the B+-tree,
but they ensure that the B+-tree structure is correct, and ensure that accesses
to the database itself are serializable.
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Review Terms

• Concurrency control
• Lock types

◦ Shared-mode (S) lock

◦ Exclusive-mode (X) lock

• Lock

◦ Compatibility

◦ Request

◦ Wait

◦ Grant

• Deadlock
• Starvation
• Locking protocol
• Legal schedule
• Two-phase locking protocol

◦ Growing phase

◦ Shrinking phase

◦ Lock point

◦ Strict two-phase locking

◦ Rigorous two-phase locking

• Lock conversion

◦ Upgrade

◦ Downgrade

• Graph-based protocols

◦ Tree protocol

◦ Commit dependency

• Deadlock handling

◦ Prevention

◦ Detection

◦ Recovery

• Deadlock prevention

◦ Ordered locking

◦ Preemption of locks

◦ Wait–die scheme

◦ Wound–wait scheme

◦ Timeout-based schemes

• Deadlock detection

◦ Wait-for graph

• Deadlock recovery

◦ Total rollback

◦ Partial rollback

• Multiple granularity

◦ Explicit locks

◦ Implicit locks

◦ Intention locks

• Intention lock modes

◦ Intention-shared (IS)

◦ Intention-exclusive (IX)

◦ Shared and intention-
exclusive (SIX)

• Multiple-granularity locking
protocol

• Timestamp

◦ System clock

◦ Logical counter

◦ W-timestamp(Q)

◦ R-timestamp(Q)

• Timestamp-ordering protocol

◦ Thomas’ write rule

• Validation-based protocols

◦ Read phase
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◦ Validation phase

◦ Write phase

◦ Validation test

• Multiversion timestamp ordering
• Multiversion two-phase locking

◦ Read-only transactions

◦ Update transactions

• Snapshot isolation

◦ Lost update

◦ First committer wins

◦ First updater wins

◦ Write skew

◦ Select for update

• Insert and delete operations
• Phantom phenomenon
• Index-locking protocol
• Predicate locking
• Weak levels of consistency

◦ Degree-two consistency

◦ Cursor stability

• Optimistic concurrency control
without read validation

• Conversations
• Concurrency in indices

◦ Crabbing

◦ B-link trees

◦ B-link-tree locking protocol

◦ Next-key locking

Practice Exercises

15.1 Show that the two-phase locking protocol ensures conflict serializability,
and that transactions can be serialized according to their lock points.

15.2 Consider the following two transactions:

T34: read(A);
read(B);
if A = 0 then B := B + 1;
write(B).

T35: read(B);
read(A);
if B = 0 then A := A + 1;
write(A).

Add lock and unlock instructions to transactions T31 and T32, so that
they observe the two-phase locking protocol. Can the execution of these
transactions result in a deadlock?

15.3 What benefit does rigorous two-phase locking provide? How does it com-
pare with other forms of two-phase locking?
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15.4 Consider a database organized in the form of a rooted tree. Suppose that
we insert a dummy vertex between each pair of vertices. Show that, if we
follow the tree protocol on the new tree, we get better concurrency than
if we follow the tree protocol on the original tree.

15.5 Show by example that there are schedules possible under the tree protocol
that are not possible under the two-phase locking protocol, and vice versa.

15.6 Consider the following extension to the tree-locking protocol, which al-
lows both shared and exclusive locks:

• A transaction can be either a read-only transaction, in which case it
can request only shared locks, or an update transaction, in which case
it can request only exclusive locks.

• Each transaction must follow the rules of the tree protocol. Read-only
transactions may lock any data item first, whereas update transactions
must lock the root first.

Show that the protocol ensures serializability and deadlock freedom.

15.7 Consider the following graph-based locking protocol, which allows only
exclusive lock modes, and which operates on data graphs that are in the
form of a rooted directed acyclic graph.

• A transaction can lock any vertex first.

• To lock any other vertex, the transaction must be holding a lock on
the majority of the parents of that vertex.

Show that the protocol ensures serializability and deadlock freedom.

15.8 Consider the following graph-based locking protocol, which allows only
exclusive lock modes and which operates on data graphs that are in the
form of a rooted directed acyclic graph.

• A transaction can lock any vertex first.

• To lock any other vertex, the transaction must have visited all the
parents of that vertex and must be holding a lock on one of the
parents of the vertex.

Show that the protocol ensures serializability and deadlock freedom.

15.9 Locking is not done explicitly in persistent programming languages.
Rather, objects (or the corresponding pages) must be locked when the
objects are accessed. Most modern operating systems allow the user to
set access protections (no access, read, write) on pages, and memory ac-
cess that violate the access protections result in a protection violation (see
the Unix mprotect command, for example). Describe how the access-
protection mechanism can be used for page-level locking in a persistent
programming language.
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S X I

S true false false

X false false false

I false false true

Figure 15.23 Lock-compatibility matrix.

15.10 Consider a database system that includes an atomic increment operation,
in addition to the read and write operations. Let V be the value of data
item X. The operation

increment(X) by C

sets the value of X to V + C in an atomic step. The value of X is not available
to the transaction unless the latter executes a read(X). Figure 15.23 shows
a lock-compatibility matrix for three lock modes: share mode, exclusive
mode, and incrementation mode.

a. Show that, if all transactions lock the data that they access in the
corresponding mode, then two-phase locking ensures serializability.

b. Show that the inclusion of increment mode locks allows for in-
creased concurrency. (Hint: Consider check-clearing transactions in
our bank example.)

15.11 In timestamp ordering, W-timestamp(Q) denotes the largest timestamp of
any transaction that executed write(Q) successfully. Suppose that, instead,
we defined it to be the timestamp of the most recent transaction to execute
write(Q) successfully. Would this change in wording make any difference?
Explain your answer.

15.12 Use of multiple-granularity locking may require more or fewer locks than
an equivalent system with a single lock granularity. Provide examples of
both situations, and compare the relative amount of concurrency allowed.

15.13 Consider the validation-based concurrency-control scheme of Section 15.5.
Show that by choosing Validation(Ti ), rather than Start(Ti ), as the time-
stamp of transaction Ti , we can expect better response time, provided that
conflict rates among transactions are indeed low.

15.14 For each of the following protocols, describe aspects of practical applica-
tions that would lead you to suggest using the protocol, and aspects that
would suggest not using the protocol:

• Two-phase locking.

• Two-phase locking with multiple-granularity locking.
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• The tree protocol.

• Timestamp ordering.

• Validation.

• Multiversion timestamp ordering.

• Multiversion two-phase locking.

15.15 Explain why the following technique for transaction execution may pro-
vide better performance than just using strict two-phase locking: First
execute the transaction without acquiring any locks and without per-
forming any writes to the database as in the validation-based techniques,
but unlike the validation techniques do not perform either validation or
writes on the database. Instead, rerun the transaction using strict two-
phase locking. (Hint: Consider waits for disk I/O.)

15.16 Consider the timestamp-ordering protocol, and two transactions, one that
writes two data items p and q , and another that reads the same two data
items. Give a schedule whereby the timestamp test for a write operation
fails and causes the first transaction to be restarted, in turn causing a
cascading abort of the other transaction. Show how this could result in
starvation of both transactions. (Such a situation, where two or more
processes carry out actions, but are unable to complete their task because
of interaction with the other processes, is called a livelock.)

15.17 Devise a timestamp-based protocol that avoids the phantom phenomenon.

15.18 Suppose that we use the tree protocol of Section 15.1.5 to manage concur-
rent access to a B+-tree. Since a split may occur on an insert that affects
the root, it appears that an insert operation cannot release any locks un-
til it has completed the entire operation. Under what circumstances is it
possible to release a lock earlier?

15.19 The snapshot isolation protocol uses a validation step which, before per-
forming a write of a data item by transaction T , checks if a transaction
concurrent with T has already written the data item.

a. A straightforward implementation uses a start timestamp and a
commit timestamp for each transaction, in addition to an update set,
that is the set of data items updated by the transaction. Explain
how to perform validation for the first-committer-wins scheme by
using the transaction timestamps along with the update sets. You
may assume that validation and other commit processing steps are
executed serially, that is for one transaction at a time,

b. Explain how the validation step can be implemented as part of com-
mit processing for the first-committer-wins scheme, using a mod-
ification of the above scheme, where instead of using update sets,
each data item has a write timestamp associated with it. Again, you
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may assume that validation and other commit processing steps are
executed serially.

c. The first-updater-wins scheme can be implemented using times-
tamps as described above, except that validation is done imme-
diately after acquiring an exclusive lock, instead of being done at
commit time.
i. Explain how to assign write timestamps to data items to imple-

ment the first-updater-wins scheme.
ii. Show that as a result of locking, if the validation is repeated at

commit time the result would not change.
iii. Explain why there is no need to perform validation and other

commit processing steps serially in this case.

Exercises

15.20 What benefit does strict two-phase locking provide? What disadvantages
result?

15.21 Most implementations of database systems use strict two-phase locking.
Suggest three reasons for the popularity of this protocol.

15.22 Consider a variant of the tree protocol called the forest protocol. The
database is organized as a forest of rooted trees. Each transaction Ti must
follow the following rules:

• The first lock in each tree may be on any data item.

• The second, and all subsequent, locks in a tree may be requested only
if the parent of the requested node is currently locked.

• Data items may be unlocked at any time.

• A data item may not be relocked by Ti after it has been unlocked by
Ti .

Show that the forest protocol does not ensure serializability.

15.23 Under what conditions is it less expensive to avoid deadlock than to allow
deadlocks to occur and then to detect them?

15.24 If deadlock is avoided by deadlock-avoidance schemes, is starvation still
possible? Explain your answer.

15.25 In multiple-granularity locking, what is the difference between implicit
and explicit locking?

15.26 Although SIX mode is useful in multiple-granularity locking, an exclusive
and intention-shared (XIS) mode is of no use. Why is it useless?
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15.27 The multiple-granularity protocol rules specify that a transaction Ti can
lock a node Q in S or IS mode only if Ti currently has the parent of Q
locked in either IX or IS mode. Given that SIX and S locks are stronger than
IX or IS locks, why does the protocol not allow locking a node in S or IS
mode if the parent is locked in either SIX or S mode?

15.28 When a transaction is rolled back under timestamp ordering, it is assigned
a new timestamp. Why can it not simply keep its old timestamp?

15.29 Show that there are schedules that are possible under the two-phase lock-
ing protocol, but are not possible under the timestamp protocol, and vice
versa.

15.30 Under a modified version of the timestamp protocol, we require that a
commit bit be tested to see whether a read request must wait. Explain how
the commit bit can prevent cascading abort. Why is this test not necessary
for write requests?

15.31 As discussed in Exercise 15.19, snapshot isolation can be implemented
using a form of timestamp validation. However, unlike the multiversion
timestamp-ordering scheme, which guarantees serializability, snapshot
isolation does not guarantee serializability. Explain what is the key differ-
ence between the protocols that results in this difference.

15.32 Outline the key similarities and differences between the timestamp based
implementation of the first-committer-wins version of snapshot isola-
tion, described in Exercise 15.19, and the optimistic-concurrency-control-
without-read-validation scheme, described in Section 15.9.3.

15.33 Explain the phantom phenomenon. Why may this phenomenon lead to
an incorrect concurrent execution despite the use of the two-phase locking
protocol?

15.34 Explain the reason for the use of degree-two consistency. What disadvan-
tages does this approach have?

15.35 Give example schedules to show that with key-value locking, if any of
lookup, insert, or delete do not lock the next-key value, the phantom
phenomenon could go undetected.

15.36 Many transactions update a common item (e.g., the cash balance at a
branch), and private items (e.g., individual account balances). Explain
how you can increase concurrency (and throughput) by ordering the op-
erations of the transaction.

15.37 Consider the following locking protocol: All items are numbered, and
once an item is unlocked, only higher-numbered items may be locked.
Locks may be released at any time. Only X-locks are used. Show by an
example that this protocol does not guarantee serializability.
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C H A P T E R16
Recovery System

A computer system, like any other device, is subject to failure from a variety
of causes: disk crash, power outage, software error, a fire in the machine room,
even sabotage. In any failure, information may be lost. Therefore, the database
system must take actions in advance to ensure that the atomicity and durability
properties of transactions, introduced in Chapter 14, are preserved. An integral
part of a database system is a recovery scheme that can restore the database to
the consistent state that existed before the failure. The recovery scheme must
also provide high availability; that is, it must minimize the time for which the
database is not usable after a failure.

16.1 Failure Classification

There are various types of failure that may occur in a system, each of which needs
to be dealt with in a different manner. In this chapter, we shall consider only the
following types of failure:

• Transaction failure. There are two types of errors that may cause a transaction
to fail:

◦ Logical error. The transaction can no longer continue with its normal
execution because of some internal condition, such as bad input, data not
found, overflow, or resource limit exceeded.

◦ System error. The system has entered an undesirable state (for example,
deadlock), as a result of which a transaction cannot continue with its
normal execution. The transaction, however, can be reexecuted at a later
time.

• System crash. There is a hardware malfunction, or a bug in the database
software or the operating system, that causes the loss of the content of volatile
storage, and brings transaction processing to a halt. The content of nonvolatile
storage remains intact, and is not corrupted.

721
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The assumption that hardware errors and bugs in the software bring the
system to a halt, but do not corrupt the nonvolatile storage contents, is known
as the fail-stop assumption. Well-designed systems have numerous internal
checks, at the hardware and the software level, that bring the system to a halt
when there is an error. Hence, the fail-stop assumption is a reasonable one.

• Disk failure. A disk block loses its content as a result of either a head crash or
failure during a data-transfer operation. Copies of the data on other disks, or
archival backups on tertiary media, such as DVD or tapes, are used to recover
from the failure.

To determine how the system should recover from failures, we need to iden-
tify the failure modes of those devices used for storing data. Next, we must
consider how these failure modes affect the contents of the database. We can
then propose algorithms to ensure database consistency and transaction atomic-
ity despite failures. These algorithms, known as recovery algorithms, have two
parts:

1. Actions taken during normal transaction processing to ensure that enough
information exists to allow recovery from failures.

2. Actions taken after a failure to recover the database contents to a state that
ensures database consistency, transaction atomicity, and durability.

16.2 Storage

As we saw in Chapter 10, the various data items in the database may be stored
and accessed in a number of different storage media. In Section 14.3, we saw
that storage media can be distinguished by their relative speed, capacity, and
resilience to failure. We identified three categories of storage:

• Volatile storage

• Nonvolatile storage

• Stable storage

Stable storage or, more accurately, an approximation thereof, plays a critical role
in recovery algorithms.

16.2.1 Stable-Storage Implementation

To implement stable storage, we need to replicate the needed information in
several nonvolatile storage media (usually disk) with independent failure modes,
and to update the information in a controlled manner to ensure that failure during
data transfer does not damage the needed information.
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Recall (from Chapter 10) that RAID systems guarantee that the failure of a
single disk (even during data transfer) will not result in loss of data. The simplest
and fastest form of RAID is the mirrored disk, which keeps two copies of each
block, on separate disks. Other forms of RAID offer lower costs, but at the expense
of lower performance.

RAID systems, however, cannot guard against data loss due to disasters such
as fires or flooding. Many systems store archival backups of tapes off site to guard
against such disasters. However, since tapes cannot be carried off site continually,
updates since the most recent time that tapes were carried off site could be lost in
such a disaster. More secure systems keep a copy of each block of stable storage
at a remote site, writing it out over a computer network, in addition to storing
the block on a local disk system. Since the blocks are output to a remote system as
and when they are output to local storage, once an output operation is complete,
the output is not lost, even in the event of a disaster such as a fire or flood. We
study such remote backup systems in Section 16.9.

In the remainder of this section, we discuss how storage media can be pro-
tected from failure during data transfer. Block transfer between memory and disk
storage can result in:

• Successful completion. The transferred information arrived safely at its des-
tination.

• Partial failure. A failure occurred in the midst of transfer, and the destination
block has incorrect information.

• Total failure. The failure occurred sufficiently early during the transfer that
the destination block remains intact.

We require that, if a data-transfer failure occurs, the system detects it and
invokes a recovery procedure to restore the block to a consistent state. To do so,
the system must maintain two physical blocks for each logical database block;
in the case of mirrored disks, both blocks are at the same location; in the case of
remote backup, one of the blocks is local, whereas the other is at a remote site. An
output operation is executed as follows:

1. Write the information onto the first physical block.

2. When the first write completes successfully, write the same information onto
the second physical block.

3. The output is completed only after the second write completes successfully.

If the system fails while blocks are being written, it is possible that the two
copies of a block are inconsistent with each other. During recovery, for each block,
the system would need to examine two copies of the blocks. If both are the same
and no detectable error exists, then no further actions are necessary. (Recall that
errors in a disk block, such as a partial write to the block, are detected by storing
a checksum with each block.) If the system detects an error in one block, then it
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replaces its content with the content of the other block. If both blocks contain no
detectable error, but they differ in content, then the system replaces the content of
the first block with the value of the second. This recovery procedure ensures that
a write to stable storage either succeeds completely (that is, updates all copies) or
results in no change.

The requirement of comparing every corresponding pair of blocks during
recovery is expensive to meet. We can reduce the cost greatly by keeping track of
block writes that are in progress, using a small amount of nonvolatile RAM. On
recovery, only blocks for which writes were in progress need to be compared.

The protocols for writing out a block to a remote site are similar to the protocols
for writing blocks to a mirrored disk system, which we examined in Chapter 10,
and particularly in Practice Exercise 10.3.

We can extend this procedure easily to allow the use of an arbitrarily large
number of copies of each block of stable storage. Although a large number of
copies reduces the probability of a failure to even lower than two copies do, it is
usually reasonable to simulate stable storage with only two copies.

16.2.2 Data Access

As we saw in Chapter 10, the database system resides permanently on nonvolatile
storage (usually disks) and only parts of the database are in memory at any time.1
The database is partitioned into fixed-length storage units called blocks. Blocks
are the units of data transfer to and from disk, and may contain several data items.
We shall assume that no data item spans two or more blocks. This assumption is
realistic for most data-processing applications, such as a bank or a university.

Transactions input information from the disk to main memory, and then
output the information back onto the disk. The input and output operations are
done in block units. The blocks residing on the disk are referred to as physical
blocks; the blocks residing temporarily in main memory are referred to as buffer
blocks. The area of memory where blocks reside temporarily is called the disk
buffer.

Block movements between disk and main memory are initiated through the
following two operations:

1. input(B) transfers the physical block B to main memory.

2. output(B) transfers the buffer block B to the disk, and replaces the appro-
priate physical block there.

Figure 16.1 illustrates this scheme.
Conceptually, each transaction Ti has a private work area in which copies of

data items accessed and updated by Ti are kept. The system creates this work
area when the transaction is initiated; the system removes it when the transaction

1There is a special category of database system, called main-memory database systems, where the entire database can be
loaded into memory at once. We consider such systems in Section 26.4.
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Figure 16.1 Block storage operations.

either commits or aborts. Each data item X kept in the work area of transaction Ti
is denoted by xi . Transaction Ti interacts with the database system by transferring
data to and from its work area to the system buffer. We transfer data by these two
operations:

1. read(X) assigns the value of data item X to the local variable xi . It executes
this operation as follows:

a. If block BX on which X resides is not in main memory, it issues
input(BX).

b. It assigns to xi the value of X from the buffer block.

2. write(X) assigns the value of local variable xi to data item X in the buffer
block. It executes this operation as follows:

a. If block BX on which X resides is not in main memory, it issues
input(BX).

b. It assigns the value of xi to X in buffer BX.

Note that both operations may require the transfer of a block from disk to main
memory. They do not, however, specifically require the transfer of a block from
main memory to disk.

A buffer block is eventually written out to the disk either because the buffer
manager needs the memory space for other purposes or because the database
system wishes to reflect the change to B on the disk. We shall say that the database
system performs a force-output of buffer B if it issues an output(B).

When a transaction needs to access a data item X for the first time, it must
execute read(X). The system then performs all updates to X on xi . At any point
during its execution a transaction may execute write(X) to reflect the change to X
in the database itself; write(X) must certainly be done after the final write to X.
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The output(BX) operation for the buffer block BX on which X resides does not
need to take effect immediately after write(X) is executed, since the block BX may
contain other data items that are still being accessed. Thus, the actual output may
take place later. Notice that, if the system crashes after the write(X) operation was
executed but before output(BX) was executed, the new value of X is never written
to disk and, thus, is lost. As we shall see shortly, the database system executes
extra actions to ensure that updates performed by committed transactions are not
lost even if there is a system crash.

16.3 Recovery and Atomicity

Consider again our simplified banking system and a transaction Ti that transfers
$50 from account A to account B, with initial values of A and B being $1000 and
$2000, respectively. Suppose that a system crash has occurred during the execution
of Ti , after output(BA) has taken place, but before output(BB) was executed, where
BA and BB denote the buffer blocks on which A and B reside. Since the memory
contents were lost, we do not know the fate of the transaction.

When the system restarts, the value of A would be $950, while that of B
would be $2000, which is clearly inconsistent with the atomicity requirement
for transaction Ti . Unfortunately, there is no way to find out by examining the
database state what blocks had been output, and what had not, before the crash.
It is possible that the transaction completed, updating the database on stable
storage from an initial state with the values of A and B being $1000 and $1950;
it is also possible that the transaction did not affect the stable storage at all, and
the values of A and B were $950 and $2000 initially; or that the updated B was
output but not the updated A; or that the updated A was output but the updated
B was not.

Our goal is to perform either all or no database modifications made by Ti .
However, if Ti performed multiple database modifications, several output opera-
tions may be required, and a failure may occur after some of these modifications
have been made, but before all of them are made.

To achieve our goal of atomicity, we must first output to stable storage infor-
mation describing the modifications, without modifying the database itself. As we
shall see, this information can help us ensure that all modifications performed by
committed transactions are reflected in the database (perhaps during the course
of recovery actions after a crash). This information can also help us ensure that
no modifications made by an aborted transaction persist in the database.

16.3.1 Log Records

The most widely used structure for recording database modifications is the log.
The log is a sequence of log records, recording all the update activities in the
database.

There are several types of log records. An update log record describes a single
database write. It has these fields:
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SHADOW COPIES AND SHADOW PAGING

In the shadow-copy scheme, a transaction that wants to update the database
first creates a complete copy of the database. All updates are done on the new
database copy, leaving the original copy, the shadow copy, untouched. If at any
point the transaction has to be aborted, the system merely deletes the new copy.
The old copy of the database has not been affected. The current copy of the
database is identified by a pointer, called db-pointer, which is stored on disk.

If the transaction partially commits (that is, executes its final statement) it
is committed as follows: First, the operating system is asked to make sure that
all pages of the new copy of the database have been written out to disk. (Unix
systems use the fsync command for this purpose.) After the operating system
has written all the pages to disk, the database system updates the pointer db-
pointer to point to the new copy of the database; the new copy then becomes
the current copy of the database. The old copy of the database is then deleted.
The transaction is said to have been committed at the point where the updated
db-pointer is written to disk.

The implementation actually depends on the write to db-pointer being atomic;
that is, either all its bytes are written or none of its bytes are written. Disk sys-
tems provide atomic updates to entire blocks, or at least to a disk sector. In other
words, the disk system guarantees that it will update db-pointer atomically, as
long as we make sure that db-pointer lies entirely in a single sector, which we
can ensure by storing db-pointer at the beginning of a block.

Shadow copy schemes are commonly used by text editors (saving the file is
equivalent to transaction commit, while quitting without saving the file is equiv-
alent to transaction abort). Shadow copying can be used for small databases, but
copying a large database would be extremely expensive. A variant of shadow-
copying, called shadow-paging, reduces copying as follows: the scheme uses a
page table containing pointers to all pages; the page table itself and all updated
pages are copied to a new location. Any page which is not updated by a trans-
action is not copied, but instead the new page table just stores a pointer to the
original page. When a transaction commits, it atomically updates the pointer to
the page table, which acts as db-pointer, to point to the new copy.

Shadow paging unfortunately does not work well with concurrent transac-
tions and is not widely used in databases.

• Transaction identifier, which is the unique identifier of the transaction that
performed the write operation.

• Data-item identifier, which is the unique identifier of the data item written.
Typically, it is the location on disk of the data item, consisting of the block
identifier of the block on which the data item resides, and an offset within
the block.

• Old value, which is the value of the data item prior to the write.
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• New value, which is the value that the data item will have after the write.

We represent an update log record as <Ti, Xj , V1, V2>, indicating that transaction
Ti has performed a write on data item Xj . Xj had value V1 before the write, and
has value V2 after the write. Other special log records exist to record significant
events during transaction processing, such as the start of a transaction and the
commit or abort of a transaction. Among the types of log records are:

• <Ti start>. Transaction Ti has started.

• <Ti commit>. Transaction Ti has committed.

• <Ti abort>. Transaction Ti has aborted.

We shall introduce several other types of log records later.
Whenever a transaction performs a write, it is essential that the log record

for that write be created and added to the log, before the database is modified.
Once a log record exists, we can output the modification to the database if that is
desirable. Also, we have the ability to undo a modification that has already been
output to the database. We undo it by using the old-value field in log records.

For log records to be useful for recovery from system and disk failures, the
log must reside in stable storage. For now, we assume that every log record is
written to the end of the log on stable storage as soon as it is created. In Section
16.5, we shall see when it is safe to relax this requirement so as to reduce the
overhead imposed by logging. Observe that the log contains a complete record of
all database activity. As a result, the volume of data stored in the log may become
unreasonably large. In Section 16.3.6, we shall show when it is safe to erase log
information.

16.3.2 Database Modification

As we noted earlier, a transaction creates a log record prior to modifying the
database. The log records allow the system to undo changes made by a transaction
in the event that the transaction must be aborted; they allow the system also to
redo changes made by a transaction if the transaction has committed but the
system crashed before those changes could be stored in the database on disk. In
order for us to understand the role of these log records in recovery, we need to
consider the steps a transaction takes in modifying a data item:

1. The transaction performs some computations in its own private part of main
memory.

2. The transaction modifies the data block in the disk buffer in main memory
holding the data item.

3. The database system executes the output operation that writes the data block
to disk.
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We say a transaction modifies the database if it performs an update on a disk
buffer, or on the disk itself; updates to the private part of main memory do not
count as database modifications. If a transaction does not modify the database
until it has committed, it is said to use the deferred-modification technique. If
database modifications occur while the transaction is still active, the transaction is
said to use the immediate-modification technique. Deferred modification has the
overhead that transactions need to make local copies of all updated data items;
further, if a transaction reads a data item that it has updated, it must read the
value from its local copy.

The recovery algorithms we describe in this chapter support immediate mod-
ification. As described, they work correctly even with deferred modification, but
can be optimized to reduce overhead when used with deferred modification; we
leave details as an exercise.

A recovery algorithm must take into account a variety of factors, including:

• The possibility that a transaction may have committed although some of its
database modifications exist only in the disk buffer in main memory and not
in the database on disk.

• The possibility that a transaction may have modified the database while in
the active state and, as a result of a subsequent failure, may need to abort.

Because all database modifications must be preceded by the creation of a log
record, the system has available both the old value prior to the modification of
the data item and the new value that is to be written for the data item. This allows
the system to perform undo and redo operations as appropriate.

• Undo using a log record sets the data item specified in the log record to the
old value.

• Redo using a log record sets the data item specified in the log record to the
new value.

16.3.3 Concurrency Control and Recovery

If the concurrency control scheme allows a data item X that has been modified
by a transaction T1 to be further modified by another transaction T2 before T1
commits, then undoing the effects of T1 by restoring the old value of X (before T1
updated X) would also undo the effects of T2. To avoid such situations, recovery
algorithms usually require that if a data item has been modified by a transaction,
no other transaction can modify the data item until the first transaction commits
or aborts.

This requirement can be ensured by acquiring an exclusive lock on any up-
dated data item and holding the lock until the transaction commits; in other
words, by using strict two-phase locking. Snapshot-isolation and validation-
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based concurrency-control techniques also acquire exclusive locks on data items
at the time of validation, before modifying the data items, and hold the locks until
the transaction is committed; as a result the above requirement is satisfied even
by these concurrency control protocols.

We discuss later, in Section 16.7, how the above requirement can be relaxed
in certain cases.

When either snapshot-isolation or validation is used for concurrency control,
database updates of a transaction are (conceptually) deferred until the transac-
tion is partially committed; the deferred-modification technique is a natural fit
with these concurrency control schemes. However, it is worth noting that some
implementations of snapshot isolation use immediate modification, but provide
a logical snapshot on demand: when a transaction needs to read an item that
a concurrent transaction has updated, a copy of the (already updated) item is
made, and updates made by concurrent transactions are rolled back on the copy
of the item. Similarly, immediate modification of the database is a natural fit with
two-phase locking, but deferred modification can also be used with two-phase
locking.

16.3.4 Transaction Commit

We say that a transaction has committed when its commit log record, which is the
last log record of the transaction, has been output to stable storage; at that point
all earlier log records have already been output to stable storage. Thus, there is
enough information in the log to ensure that even if there is a system crash, the
updates of the transaction can be redone. If a system crash occurs before a log
record < Ti commit> is output to stable storage, transaction Ti will be rolled
back. Thus, the output of the block containing the commit log record is the single
atomic action that results in a transaction getting committed.2

With most log-based recovery techniques, including the ones we describe in
this chapter, blocks containing the data items modified by a transaction do not
have to be output to stable storage when the transaction commits, but can be
output some time later. We discuss this issue further in Section 16.5.2.

16.3.5 Using the Log to Redo and Undo Transactions

We now provide an overview of how the log can be used to recover from a
system crash, and to roll back transactions during normal operation. However, we
postpone details of the procedures for failure recovery and rollback to Section 16.4.

Consider our simplified banking system. Let T0 be a transaction that transfers
$50 from account A to account B:

2The output of a block can be made atomic by techniques for dealing with data-transfer failure, as described earlier in
Section 16.2.1.



16.3 Recovery and Atomicity 731

<T0  start>
<T0 ,  A,  1000,  950>
<T0 ,  B,  2000,  2050>
<T0  commit>
<T1  start>
<T1 ,  C,  700,  600>
<T1  commit>

Figure 16.2 Portion of the system log corresponding to T0 and T1.

T0: read(A);
A := A − 50;
write(A);
read(B);
B := B + 50;
write(B).

Let T1 be a transaction that withdraws $100 from account C:

T1: read(C);
C := C − 100;
write(C).

The portion of the log containing the relevant information concerning these two
transactions appears in Figure 16.2.

Figure 16.3 shows one possible order in which the actual outputs took place
in both the database system and the log as a result of the execution of T0 and T1.3

Using the log, the system can handle any failure that does not result in the
loss of information in nonvolatile storage. The recovery scheme uses two recovery
procedures. Both these procedures make use of the log to find the set of data items
updated by each transaction Ti , and their respective old and new values.

• redo(Ti ) sets the value of all data items updated by transaction Ti to the new
values.

The order in which updates are carried out by redo is important; when
recovering from a system crash, if updates to a particular data item are
applied in an order different from the order in which they were applied
originally, the final state of that data item will have a wrong value. Most
recovery algorithms, including the one we describe in Section 16.4, do not
perform redo of each transaction separately; instead they perform a single
scan of the log, during which redo actions are performed for each log record
as it is encountered. This approach ensures the order of updates is preserved,

3Notice that this order could not be obtained using the deferred-modification technique, because the database is modified
by T0 before it commits, and likewise for T1.
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Log Database

A = 950
B = 2050

C = 600

<T0  start>
<T0 ,  A,  1000,  950>
<T0 ,  B,  2000,  2050>

<T0  commit>
<T1  start>
<T1 ,  C,  700,  600>

<T1  commit>

Figure 16.3 State of system log and database corresponding to T0 and T1.

and is more efficient since the log needs to be read only once overall, instead
of once per transaction.

• undo(Ti ) restores the value of all data items updated by transaction Ti to the
old values.

In the recovery scheme that we describe in Section 16.4:

◦ The undo operation not only restores the data items to their old value,
but also writes log records to record the updates performed as part of the
undo process. These log records are special redo-only log records, since
they do not need to contain the old-value of the updated data item.

As with the redo procedure, the order in which undo operations are
performed is important; again we postpone details to Section 16.4.

◦ When the undo operation for transaction Ti completes, it writes a <Ti
abort> log record, indicating that the undo has completed.

As we shall see in Section 16.4, the undo(Ti ) procedure is executed
only once for a transaction, if the transaction is rolled back during normal
processing or if on recovering from a system crash, neither a commit nor
an abort record is found for transaction Ti . As a result, every transaction
will eventually have either a commit or an abort record in the log.

After a system crash has occurred, the system consults the log to determine
which transactions need to be redone, and which need to be undone so as to
ensure atomicity.

• Transaction Ti needs to be undone if the log contains the record <Ti start>,
but does not contain either the record <Ti commit> or the record <Ti abort>.

• Transaction Ti needs to be redone if the log contains the record <Ti start> and
either the record <Ti commit> or the record <Ti abort>. It may seem strange
to redo Ti if the record <Ti abort> is in the log. To see why this works, note
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<T0  start>
<T0 ,  A,  1000,  950>
<T0 ,  B,  2000,  2050>

<T0  start>
<T0 ,  A,  1000,  950>
<T0 ,  B,  2000,  2050>
<T0  commit>
<T1  start>
<T1 ,  C,  700,  600>

<T0  start>
<T0 ,  A,  1000,  950>
<T0 ,  B,  2000,  2050>
<T0  commit>
<T1  start>
<T1 ,  C,  700,  600>
<T1  commit>

(a) (b) (c)

Figure 16.4 The same log, shown at three different times.

that if <Ti abort> is in the log, so are the redo-only records written by the
undo operation. Thus, the end result will be to undo Ti ’s modifications in this
case. This slight redundancy simplifies the recovery algorithm and enables
faster overall recovery time.

As an illustration, return to our banking example, with transaction T0 and
T1 executed one after the other in the order T0 followed by T1. Suppose that the
system crashes before the completion of the transactions. We shall consider three
cases. The state of the logs for each of these cases appears in Figure 16.4.

First, let us assume that the crash occurs just after the log record for the step:

write(B)

of transaction T0 has been written to stable storage (Figure 16.4a). When the system
comes back up, it finds the record <T0 start> in the log, but no corresponding
<T0 commit> or <T0 abort> record. Thus, transaction T0 must be undone, so an
undo(T0) is performed. As a result, the values in accounts A and B (on the disk)
are restored to $1000 and $2000, respectively.

Next, let us assume that the crash comes just after the log record for the step:

write(C)

of transaction T1 has been written to stable storage (Figure 16.4b). When the
system comes back up, two recovery actions need to be taken. The operation
undo(T1) must be performed, since the record <T1 start> appears in the log, but
there is no record <T1 commit> or <T1 abort>. The operation redo(T0) must be
performed, since the log contains both the record <T0 start> and the record <T0
commit>. At the end of the entire recovery procedure, the values of accounts A,
B, and C are $950, $2050, and $700, respectively.

Finally, let us assume that the crash occurs just after the log record:

<T1 commit>
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has been written to stable storage (Figure 16.4c). When the system comes back up,
both T0 and T1 need to be redone, since the records <T0 start> and <T0 commit>
appear in the log, as do the records <T1 start> and <T1 commit>. After the system
performs the recovery procedures redo(T0) and redo(T1), the values in accounts
A, B, and C are $950, $2050, and $600, respectively.

16.3.6 Checkpoints

When a system crash occurs, we must consult the log to determine those trans-
actions that need to be redone and those that need to be undone. In principle, we
need to search the entire log to determine this information. There are two major
difficulties with this approach:

1. The search process is time-consuming.

2. Most of the transactions that, according to our algorithm, need to be redone
have already written their updates into the database. Although redoing
them will cause no harm, it will nevertheless cause recovery to take longer.

To reduce these types of overhead, we introduce checkpoints.
We describe below a simple checkpoint scheme that (a) does not permit any

updates to be performed while the checkpoint operation is in progress, and (b)
outputs all modified buffer blocks to disk when the checkpoint is performed.
We discuss later how to modify the checkpointing and recovery procedures to
provide more flexibility by relaxing both these requirements.

A checkpoint is performed as follows:

1. Output onto stable storage all log records currently residing in main mem-
ory.

2. Output to the disk all modified buffer blocks.

3. Output onto stable storage a log record of the form <checkpoint L>, where
L is a list of transactions active at the time of the checkpoint.

Transactions are not allowed to perform any update actions, such as writing
to a buffer block or writing a log record, while a checkpoint is in progress. We
discuss how this requirement can be enforced, later, in Section 16.5.2.

The presence of a <checkpoint L> record in the log allows the system to
streamline its recovery procedure. Consider a transaction Ti that completed prior
to the checkpoint. For such a transaction, the <Ti commit> record (or < Ti abort>
record) appears in the log before the <checkpoint> record. Any database mod-
ifications made by Ti must have been written to the database either prior to the
checkpoint or as part of the checkpoint itself. Thus, at recovery time, there is no
need to perform a redo operation on Ti .

After a system crash has occurred, the system examines the log to find the last
<checkpoint L> record (this can be done by searching the log backward, from
the end of the log, until the first <checkpoint L> record is found).
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The redo or undo operations need to be applied only to transactions in L, and
to all transactions that started execution after the <checkpoint L> record was
written to the log. Let us denote this set of transactions as T .

• For all transactions Tk in T that have no <Tk commit> record or <Tk abort>
record in the log, execute undo(Tk).

• For all transactions Tk in T such that either the record <Tk commit> or the
record <Tk abort> appears in the log, execute redo(Tk).

Note that we need only examine the part of the log starting with the last check-
point log record to find the set of transactions T , and to find out whether a commit
or abort record occurs in the log for each transaction in T .

As an illustration, consider the set of transactions {T0, T1, . . . , T100}. Suppose
that the most recent checkpoint took place during the execution of transaction T67
and T69, while T68 and all transactions with subscripts lower than 67 completed
before the checkpoint. Thus, only transactions T67, T69, . . . , T100 need to be con-
sidered during the recovery scheme. Each of them needs to be redone if it has
completed (that is, either committed or aborted); otherwise, it was incomplete,
and needs to be undone.

Consider the set of transactions L in a checkpoint log record. For each trans-
action Ti in L, log records of the transaction that occur prior to the checkpoint
log record may be needed to undo the transaction, in case it does not commit.
However, all log records prior to the earliest of the < Ti start> log records, among
transactions Ti in L, are not needed once the checkpoint has completed. These log
records can be erased whenever the database system needs to reclaim the space
occupied by these records.

The requirement that transactions must not perform any updates to buffer
blocks or to the log during checkpointing can be bothersome, since transaction
processing has to halt while a checkpoint is in progress. A fuzzy checkpoint
is a checkpoint where transactions are allowed to perform updates even while
buffer blocks are being written out. Section 16.5.4 describes fuzzy-checkpointing
schemes. Later in Section 16.8 we describe a checkpoint scheme that is not only
fuzzy, but does not even require all modified buffer blocks to be output to disk at
the time of the checkpoint.

16.4 Recovery Algorithm

Until now, in discussing recovery, we have identified transactions that need to
be redone and those that need to be undone, but we have not given a precise
algorithm for performing these actions. We are now ready to present the full
recovery algorithm using log records for recovery from transaction failure and
a combination of the most recent checkpoint and log records to recover from a
system crash.
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The recovery algorithm described in this section requires that a data item
that has been updated by an uncommitted transaction cannot be modified by
any other transaction, until the first transaction has either committed or aborted.
Recall that this restriction was discussed earlier, in Section 16.3.3.

16.4.1 Transaction Rollback

First consider transaction rollback during normal operation (that is, not during
recovery from a system crash). Rollback of a transaction Ti is performed as follows:

1. The log is scanned backward, and for each log record of Ti of the form
<Ti , Xj , V1, V2> that is found:

a. The value V1 is written to data item Xj , and

b. A special redo-only log record <Ti, Xj , V1> is written to the log, where
V1 is the value being restored to data item Xj during the rollback.
These log records are sometimes called compensation log records.
Such records do not need undo information, since we never need to
undo such an undo operation. We shall explain later how they are
used.

2. Once the log record <Ti start> is found the backward scan is stopped, and
a log record <Ti abort> is written to the log.

Observe that every update action performed by the transaction or on behalf
of the transaction, including actions taken to restore data items to their old value,
have now been recorded in the log. In Section 16.4.2 we shall see why this is a
good idea.

16.4.2 Recovery After a System Crash

Recovery actions, when the database system is restarted after a crash, take place
in two phases:

1. In the redo phase, the system replays updates of all transactions by scanning
the log forward from the last checkpoint. The log records that are replayed
include log records for transactions that were rolled back before system
crash, and those that had not committed when the system crash occurred.
This phase also determines all transactions that were incomplete at the time
of the crash, and must therefore be rolled back. Such incomplete transactions
would either have been active at the time of the checkpoint, and thus would
appear in the transaction list in the checkpoint record, or would have started
later; further, such incomplete transactions would have neither a <Ti abort>
nor a <Ti commit> record in the log.

The specific steps taken while scanning the log are as follows:

a. The list of transactions to be rolled back, undo-list, is initially set to the
list L in the <checkpoint L> log record.
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b. Whenever a normal log record of the form <Ti , Xj , V1, V2>, or a
redo-only log record of the form <Ti , Xj , V2> is encountered, the
operation is redone; that is, the value V2 is written to data item Xj .

c. Whenever a log record of the form <Ti start> is found, Ti is added to
undo-list.

d. Whenever a log record of the form <Ti abort> or <Ti commit> is
found, Ti is removed from undo-list.

At the end of the redo phase, undo-list contains the list of all transactions
that are incomplete, that is, they neither committed nor completed rollback
before the crash.

2. In the undo phase, the system rolls back all transactions in the undo-list. It
performs rollback by scanning the log backward from the end.

a. Whenever it finds a log record belonging to a transaction in the undo-
list, it performs undo actions just as if the log record had been found
during the rollback of a failed transaction.

b. When the system finds a <Ti start> log record for a transaction Ti in
undo-list, it writes a <Ti abort> log record to the log, and removes Ti
from undo-list.

c. The undo phase terminates once undo-list becomes empty, that is, the
system has found <Ti start> log records for all transactions that were
initially in undo-list.

After the undo phase of recovery terminates, normal transaction processing
can resume.

Observe that the redo phase replays every log record since the most recent
checkpoint record. In other words, this phase of restart recovery repeats all the
update actions that were executed after the checkpoint, and whose log records
reached the stable log. The actions include actions of incomplete transactions and
the actions carried out to rollback failed transactions. The actions are repeated
in the same order in which they were originally carried out; hence, this process
is called repeating history. Although it may appear wasteful, repeating history
even for failed transactions simplifies recovery schemes.

Figure 16.5 shows an example of actions logged during normal operation,
and actions performed during failure recovery. In the log shown in the figure,
transaction T1 had committed, and transaction T0 had been completely rolled
back, before the system crashed. Observe how the value of data item B is restored
during the rollback of T0. Observe also the checkpoint record, with the list of
active transactions containing T0 and T1.

When recovering from a crash, in the redo phase, the system performs a redo
of all operations after the last checkpoint record. In this phase, the list undo-list
initially contains T0 and T1; T1 is removed first when its commit log record is
found, while T2 is added when its start log record is found. Transaction T0 is
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Figure 16.5 Example of logged actions, and actions during recovery.

removed from undo-list when its abort log record is found, leaving only T2 in
undo-list. The undo phase scans the log backwards from the end, and when it
finds a log record of T2 updating A, the old value of A is restored, and a redo-only
log record written to the log. When the start record for T2 is found, an abort record
is added for T2. Since undo-list contains no more transactions, the undo phase
terminates, completing recovery.

16.5 Buffer Management

In this section, we consider several subtle details that are essential to the imple-
mentation of a crash-recovery scheme that ensures data consistency and imposes
a minimal amount of overhead on interactions with the database.

16.5.1 Log-Record Buffering

So far, we have assumed that every log record is output to stable storage at the
time it is created. This assumption imposes a high overhead on system execution
for several reasons: Typically, output to stable storage is in units of blocks. In
most cases, a log record is much smaller than a block. Thus, the output of each
log record translates to a much larger output at the physical level. Furthermore,
as we saw in Section 16.2.1, the output of a block to stable storage may involve
several output operations at the physical level.

The cost of outputting a block to stable storage is sufficiently high that it is
desirable to output multiple log records at once. To do so, we write log records to
a log buffer in main memory, where they stay temporarily until they are output to
stable storage. Multiple log records can be gathered in the log buffer and output
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to stable storage in a single output operation. The order of log records in the stable
storage must be exactly the same as the order in which they were written to the
log buffer.

As a result of log buffering, a log record may reside in only main memory
(volatile storage) for a considerable time before it is output to stable storage.
Since such log records are lost if the system crashes, we must impose additional
requirements on the recovery techniques to ensure transaction atomicity:

• Transaction Ti enters the commit state after the <Ti commit> log record has
been output to stable storage.

• Before the <Ti commit> log record can be output to stable storage, all log
records pertaining to transaction Ti must have been output to stable storage.

• Before a block of data in main memory can be output to the database (in
nonvolatile storage), all log records pertaining to data in that block must
have been output to stable storage.

This rule is called the write-ahead logging (WAL) rule. (Strictly speaking,
the WAL rule requires only that the undo information in the log has been
output to stable storage, and it permits the redo information to be written
later. The difference is relevant in systems where undo information and redo
information are stored in separate log records.)

The three rules state situations in which certain log records must have been output
to stable storage. There is no problem resulting from the output of log records
earlier than necessary. Thus, when the system finds it necessary to output a log
record to stable storage, it outputs an entire block of log records, if there are
enough log records in main memory to fill a block. If there are insufficient log
records to fill the block, all log records in main memory are combined into a
partially full block and are output to stable storage.

Writing the buffered log to disk is sometimes referred to as a log force.

16.5.2 Database Buffering

In Section 16.2.2, we described the use of a two-level storage hierarchy. The system
stores the database in nonvolatile storage (disk), and brings blocks of data into
main memory as needed. Since main memory is typically much smaller than the
entire database, it may be necessary to overwrite a block B1 in main memory
when another block B2 needs to be brought into memory. If B1 has been modified,
B1 must be output prior to the input of B2. As discussed in Section 10.8.1 in
Chapter 10, this storage hierarchy is similar to the standard operating-system
concept of virtual memory.

One might expect that transactions would force-output all modified blocks to
disk when they commit. Such a policy is called the force policy. The alternative,
the no-force policy, allows a transaction to commit even if it has modified some
blocks that have not yet been written back to disk. All the recovery algorithms
described in this chapter work correctly even with the no-force policy. The no-
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force policy allows faster commit of transactions; moreover it allows multiple
updates to accumulate on a block before it is output to stable storage, which can
reduce the number of output operations greatly for frequently updated blocks.
As a result, the standard approach taken by most systems is the no-force policy.

Similarly, one might expect that blocks modified by a transaction that is still
active should not be written to disk. This policy is called the no-steal policy. The
alternative, the steal policy, allows the system to write modified blocks to disk
even if the transactions that made those modifications have not all committed. As
long as the write-ahead logging rule is followed, all the recovery algorithms we
study in the chapter work correctly even with the steal policy. Further, the no-steal
policy does not work with transactions that perform a large number of updates,
since the buffer may get filled with updated pages that cannot be evicted to disk,
and the transaction cannot then proceed. As a result, the standard approach taken
by most systems is the steal policy.

To illustrate the need for the write-ahead logging requirement, consider our
banking example with transactions T0 and T1. Suppose that the state of the log is:

<T0 start>
<T0, A, 1000, 950>

and that transaction T0 issues a read(B). Assume that the block on which B resides
is not in main memory, and that main memory is full. Suppose that the block on
which A resides is chosen to be output to disk. If the system outputs this block
to disk and then a crash occurs, the values in the database for accounts A, B,
and C are $950, $2000, and $700, respectively. This database state is inconsistent.
However, because of the WAL requirements, the log record:

<T0, A, 1000, 950>

must be output to stable storage prior to output of the block on which A resides.
The system can use the log record during recovery to bring the database back to
a consistent state.

When a block B1 is to be output to disk, all log records pertaining to data in
B1 must be output to stable storage before B1 is output. It is important that no
writes to the block B1 be in progress while the block is being output, since such a
write could violate the write-ahead logging rule. We can ensure that there are no
writes in progress by using a special means of locking:

• Before a transaction performs a write on a data item, it acquires an exclu-
sive lock on the block in which the data item resides. The lock is released
immediately after the update has been performed.

• The following sequence of actions is taken when a block is to be output:

◦ Obtain an exclusive lock on the block, to ensure that no transaction is
performing a write on the block.
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◦ Output log records to stable storage until all log records pertaining to
block B1 have been output.

◦ Output block B1 to disk.

◦ Release the lock once the block output has completed.

Locks on buffer blocks are unrelated to locks used for concurrency-control of
transactions, and releasing them in a non-two-phase manner does not have any
implications on transaction serializability. These locks, and other similar locks
that are held for a short duration, are often referred to as latches.

Locks on buffer blocks can also be used to ensure that buffer blocks are not
updated, and log records are not generated, while a checkpoint is in progress. This
restriction may be enforced by acquiring exclusive locks on all buffer blocks, as
well as an exclusive lock on the log, before the checkpoint operation is performed.
These locks can be released as soon as the checkpoint operation has completed.

Database systems usually have a process that continually cycles through
the buffer blocks, outputting modified buffer blocks back to disk. The above
locking protocol must of course be followed when the blocks are output. As a
result of continuous output of modified blocks, the number of dirty blocks in
the buffer, that is, blocks that have been modified in the buffer but have not
been subsequently output, is minimized. Thus, the number of blocks that have
to be output during a checkpoint is minimized; further, when a block needs to be
evicted from the buffer it is likely that there will be a non-dirty block available
for eviction, allowing the input to proceed immediately instead of waiting for an
output to complete.

16.5.3 Operating System Role in Buffer Management

We can manage the database buffer by using one of two approaches:

1. The database system reserves part of main memory to serve as a buffer that
it, rather than the operating system, manages. The database system manages
data-block transfer in accordance with the requirements in Section 16.5.2.

This approach has the drawback of limiting flexibility in the use of main
memory. The buffer must be kept small enough that other applications have
sufficient main memory available for their needs. However, even when the
other applications are not running, the database will not be able to make
use of all the available memory. Likewise, non-database applications may
not use that part of main memory reserved for the database buffer, even if
some of the pages in the database buffer are not being used.

2. The database system implements its buffer within the virtual memory pro-
vided by the operating system. Since the operating system knows about the
memory requirements of all processes in the system, ideally it should be
in charge of deciding what buffer blocks must be force-output to disk, and
when. But, to ensure the write-ahead logging requirements in Section 16.5.1,
the operating system should not write out the database buffer pages itself,
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but instead should request the database system to force-output the buffer
blocks. The database system in turn would force-output the buffer blocks to
the database, after writing relevant log records to stable storage.

Unfortunately, almost all current-generation operating systems retain
complete control of virtual memory. The operating system reserves space
on disk for storing virtual-memory pages that are not currently in main
memory; this space is called swap space. If the operating system decides
to output a block Bx, that block is output to the swap space on disk, and
there is no way for the database system to get control of the output of buffer
blocks.

Therefore, if the database buffer is in virtual memory, transfers between
database files and the buffer in virtual memory must be managed by the
database system, which enforces the write-ahead logging requirements that
we discussed.

This approach may result in extra output of data to disk. If a block Bx
is output by the operating system, that block is not output to the database.
Instead, it is output to the swap space for the operating system’s virtual
memory. When the database system needs to output Bx, the operating sys-
tem may need first to input Bx from its swap space. Thus, instead of a single
output of Bx, there may be two outputs of Bx (one by the operating system,
and one by the database system) and one extra input of Bx.

Although both approaches suffer from some drawbacks, one or the other must
be chosen unless the operating system is designed to support the requirements
of database logging.

16.5.4 Fuzzy Checkpointing

The checkpointing technique described in Section 16.3.6 requires that all updates
to the database be temporarily suspended while the checkpoint is in progress.
If the number of pages in the buffer is large, a checkpoint may take a long
time to finish, which can result in an unacceptable interruption in processing of
transactions.

To avoid such interruptions, the checkpointing technique can be modified to
permit updates to start once the checkpoint record has been written, but before
the modified buffer blocks are written to disk. The checkpoint thus generated is
a fuzzy checkpoint.

Since pages are output to disk only after the checkpoint record has been
written, it is possible that the system could crash before all pages are written.
Thus, a checkpoint on disk may be incomplete. One way to deal with incomplete
checkpoints is this: The location in the log of the checkpoint record of the last
completed checkpoint is stored in a fixed position, last-checkpoint, on disk. The
system does not update this information when it writes the checkpoint record.
Instead, before it writes the checkpoint record, it creates a list of all modified
buffer blocks. The last-checkpoint information is updated only after all buffer
blocks in the list of modified buffer blocks have been output to disk.
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Even with fuzzy checkpointing, a buffer block must not be updated while
it is being output to disk, although other buffer blocks may be updated concur-
rently. The write-ahead log protocol must be followed so that (undo) log records
pertaining to a block are on stable storage before the block is output.

16.6 Failure with Loss of Nonvolatile Storage

Until now, we have considered only the case where a failure results in the loss
of information residing in volatile storage while the content of the nonvolatile
storage remains intact. Although failures in which the content of nonvolatile
storage is lost are rare, we nevertheless need to be prepared to deal with this type
of failure. In this section, we discuss only disk storage. Our discussions apply as
well to other nonvolatile storage types.

The basic scheme is to dump the entire contents of the database to stable
storage periodically—say, once per day. For example, we may dump the database
to one or more magnetic tapes. If a failure occurs that results in the loss of physical
database blocks, the system uses the most recent dump in restoring the database
to a previous consistent state. Once this restoration has been accomplished, the
system uses the log to bring the database system to the most recent consistent
state.

One approach to database dumping requires that no transaction may be active
during the dump procedure, and uses a procedure similar to checkpointing:

1. Output all log records currently residing in main memory onto stable stor-
age.

2. Output all buffer blocks onto the disk.

3. Copy the contents of the database to stable storage.

4. Output a log record <dump> onto the stable storage.

Steps 1, 2, and 4 correspond to the three steps used for checkpoints in Section
16.3.6.

To recover from the loss of nonvolatile storage, the system restores the
database to disk by using the most recent dump. Then, it consults the log and
redoes all the actions since the most recent dump occurred. Notice that no undo
operations need to be executed.

In case of a partial failure of nonvolatile storage, such as the failure of a single
block or a few blocks, only those blocks need to be restored, and redo actions
performed only for those blocks.

A dump of the database contents is also referred to as an archival dump,
since we can archive the dumps and use them later to examine old states of the
database. Dumps of a database and checkpointing of buffers are similar.

Most database systems also support an SQL dump, which writes out SQL DDL
statements and SQL insert statements to a file, which can then be reexecuted to
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re-create the database. Such dumps are useful when migrating data to a different
instance of the database, or to a different version of the database software, since
the physical locations and layout may be different in the other database instance
or database software version.

The simple dump procedure described here is costly for the following two
reasons. First, the entire database must be copied to stable storage, resulting in
considerable data transfer. Second, since transaction processing is halted during
the dump procedure, CPU cycles are wasted. Fuzzy dump schemes have been
developed that allow transactions to be active while the dump is in progress.
They are similar to fuzzy-checkpointing schemes; see the bibliographical notes
for more details.

16.7 Early Lock Release and Logical Undo Operations

Any index used in processing a transaction, such as a B+-tree, can be treated as
normal data, but to increase concurrency, we can use the B+-tree concurrency-
control algorithm described in Section 15.10 to allow locks to be released early,
in a non-two-phase manner. As a result of early lock release, it is possible that a
value in a B+-tree node is updated by one transaction T1, which inserts an entry
(V1, R1), and subsequently by another transaction T2, which inserts an entry
(V2, R2) in the same node, moving the entry (V1, R1) even before T1 completes
execution.4 At this point, we cannot undo transaction T1 by replacing the contents
of the node with the old value prior to T1 performing its insert, since that would
also undo the insert performed by T2; transaction T2 may still commit (or may
have already committed). In this example, the only way to undo the effect of
insertion of (V1, R1) is to execute a corresponding delete operation.

In the rest of this section, we see how to extend the recovery algorithm of
Section 16.4 to support early lock release.

16.7.1 Logical Operations

The insertion and deletion operations are examples of a class of operations that
require logical undo operations since they release locks early; we call such opera-
tions logical operations. Such early lock release is important not only for indices,
but also for operations on other system data structures that are accessed and
updated very frequently; examples include data structures that track the blocks
containing records of a relation, the free space in a block, and the free blocks
in a database. If locks were not released early after performing operations on
such data structures, transactions would tend to run serially, affecting system
performance.

The theory of conflict serializability has been extended to operations, based
on what operations conflict with what other operations. For example, two insert

4Recall that an entry consists of a key value and a record identifier, or a key value and a record in the case of the leaf
level of a B+-tree file organization.



16.7 Early Lock Release and Logical Undo Operations 745

operations on a B+-tree do not conflict if they insert different key values, even if
they both update overlapping areas of the same index page. However, insert and
delete operations conflict with other insert and delete operations, as well as with
read operations, if they use the same key value. See the bibliographical notes for
references to more information on this topic.

Operations acquire lower-level locks while they execute, but release them when
they complete; the corresponding transaction must however retain a higher-level
lock in a two-phase manner to prevent concurrent transactions from executing
conflicting actions. For example, while an insert operation is being performed
on a B+-tree page, a short-term lock is obtained on the page, allowing entries in
the page to be shifted during the insert; the short-term lock is released as soon
as the page has been updated. Such early lock release allows a second insert
to execute on the same page. However, each transaction must obtain a lock on
the key values being inserted or deleted, and retain it in a two-phase manner,
to prevent a concurrent transaction from executing a conflicting read, insert or
delete operation on the same key value.

Once the lower-level lock is released, the operation cannot be undone by using
the old values of updated data items, and must instead be undone by executing a
compensating operation; such an operation is called a logical undo operation. It
is important that the lower-level locks acquired during an operation are sufficient
to perform a subsequent logical undo of the operation, for reasons explained later
in Section 16.7.4.

16.7.2 Logical Undo Log Records

To allow logical undo of operations, before an operation is performed to modify
an index, the transaction creates a log record <Ti , Oj , operation-begin>, where
Oj is a unique identifier for the operation instance.5 While the system is executing
the operation, it creates update log records in the normal fashion for all updates
performed by the operation. Thus, the usual old-value and new-value information
is written out as usual for each update performed by the operation; the old-value
information is required in case the transaction needs to be rolled back before
the operation completes. When the operation finishes, it writes an operation-end
log record of the form <Ti , Oj , operation-end, U>, where the U denotes undo
information.

For example, if the operation inserted an entry in a B+-tree, the undo infor-
mation U would indicate that a deletion operation is to be performed, and would
identify the B+-tree and what entry to delete from the tree. Such logging of infor-
mation about operations is called logical logging. In contrast, logging of old-value
and new-value information is called physical logging, and the corresponding log
records are called physical log records.

Note that in the above scheme, logical logging is used only for undo, not for
redo; redo operations are performed exclusively using physical log record. This is
because the state of the database after a system failure may reflect some updates

5The position in the log of the operation-begin log record can be used as the unique identifier.
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of an operation and not other operations, depending on what buffer blocks had
been written to disk before the failure. Data structures such as B+-trees would not
be in a consistent state, and neither logical redo nor logical undo operations can
be performed on an inconsistent data structure. To perform logical redo or undo,
the database state on disk must be operation consistent, that is, it should not
have partial effects of any operation. However, as we shall see, the physical redo
processing in the redo phase of the recovery scheme, along with undo processing
using physical log records ensures that the parts of the database accessed by a
logical undo operation are in an operation consistent state, before the logical undo
operation is performed.

An operation is said to be idempotent if executing it several times in a row
gives the same result as executing it once. Operations such as inserting an entry
into a B+-tree may not be idempotent, and the recovery algorithm must therefore
make sure that an operation that has already been performed is not performed
again. On the other hand, a physical log record is idempotent, since the corre-
sponding data item would have the same value regardless of whether the logged
update is executed one or multiple times.

16.7.3 Transaction Rollback With Logical Undo

When rolling back a transaction Ti , the log is scanned backwards, and log records
corresponding to Ti are processed as follows:

1. Physical log records encountered during the scan are handled as described
earlier, except those that are skipped as described shortly. Incomplete logical
operations are undone using the physical log records generated by the
operation.

2. Completed logical operations, identified by operation-end records, are rolled
back differently. Whenever the system finds a log record <Ti , Oj , operation-
end, U>, it takes special actions:

a. It rolls back the operation by using the undo information U in the
log record. It logs the updates performed during the rollback of the
operation just like updates performed when the operation was first
executed.

At the end of the operation rollback, instead of generating a log
record <Ti , Oj , operation-end, U>, the database system generates a
log record <Ti , Oj , operation-abort>.

b. As the backward scan of the log continues, the system skips all log
records of transaction Ti until it finds the log record <Ti , Oj , operation-
begin>. After it finds the operation-begin log record, it processes log
records of transaction Ti in the normal manner again.

Observe that the system logs physical undo information for the updates
performed during rollback, instead of using a redo-only compensation log
records. This is because a crash may occur while a logical undo is in progress,
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and on recovery the system has to complete the logical undo; to do so, restart
recovery will undo the partial effects of the earlier undo, using the physical
undo information, and then perform the logical undo again.

Observe also that skipping over physical log records when the operation-
end log record is found during rollback ensures that the old values in the
physical log record are not used for rollback, once the operation completes.

3. If the system finds a record <Ti , Oj , operation-abort>, it skips all preceding
records (including the operation-end record for Oj ) until it finds the record
<Ti , Oj , operation-begin>.

An operation-abort log record would be found only if a transaction that
is being rolled back had been partially rolled back earlier. Recall that logical
operations may not be idempotent, and hence a logical undo operation
must not be performed multiple times. These preceding log records must
be skipped to prevent multiple rollback of the same operation, in case there
had been a crash during an earlier rollback, and the transaction had already
been partly rolled back.

4. As before, when the <Ti start> log record has been found, the transaction
rollback is complete, and the system adds a record <Ti abort> to the log.

If a failure occurs while a logical operation is in progress, the operation-end
log record for the operation will not be found when the transaction is rolled back.
However, for every update performed by the operation, undo information—in
the form of the old value in the physical log records—is available in the log. The
physical log records will be used to roll back the incomplete operation.

Now suppose an operation undo was in progress when the system crash
occurred, which could happen if a transaction was being rolled back when the
crash occurred. Then the physical log records written during operation undo
would be found, and the partial operation undo would itself be undone using
these physical log records. Continuing in the backward scan of the log, the original
operation’s operation-end record would then be found, and the operation undo
would be executed again. Rolling back the partial effects of the earlier undo
operation using the physical log records brings the database to a consistent state,
allowing the logical undo operation to be executed again.

Figure 16.6 shows an example of a log generated by two transactions, which
add or subtract a value from a data item. Early lock release on the data item C
by transaction T0 after operation O1 completes allows transaction T1 to update
the data item using O2, even before T0 completes, but necessitates logical undo.
The logical undo operation needs to add or subtract a value from the data item,
instead of restoring an old value to the data item.

The annotations on the figure indicate that before an operation completes,
rollback can perform physical undo; after the operation completes and releases
lower-level locks, the undo must be performed by subtracting or adding a value,
instead of restoring the old value. In the example in the figure, T0 rolls back
operation O1 by adding 100 to C ; on the other hand, for data item B, which was
not subject to early lock release, undo is performed physically. Observe that T1,
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Figure 16.6 Transaction rollback with logical undo operations.

which had performed an update on C commits, and its update O2, which added
200 to C and was performed before the undo of O1, has persisted even though O1
has been undone.

Figure 16.7 shows an example of recovery from a crash, with logical undo
logging. In this example, operation T1 was active and executing operation O4
at the time of checkpoint. In the redo pass, the actions of O4 that are after the
checkpoint log record are redone. At the time of crash, operation O5 was being
executed by T2, but the operation was not complete. The undo-list contains T1
and T2 at the end of the redo pass. During the undo pass, the undo of operation
O5 is carried out using the old value in the physical log record, setting C to
400; this operation is logged using a redo-only log record. The start record of T2 is
encountered next, resulting in the addition of < T2 abort> to the log, and removal
of T2 from undo-list.

The next log record encountered is the operation-end record of O4; logical
undo is performed for this operation by adding 300 to C , which is logged physi-
cally, and an operation-abort log record is added for O4. The physical log records
that were part of O4 are skipped until the operation-begin log record for O4 is
encountered. In this example, there are no other intervening log records, but in
general log records from other transactions may be found before we reach the
operation-begin log record; such log records should of course not be skipped
(unless they are part of a completed operation for the corresponding transaction
and the algorithm skips those records). After the operation-begin log record is
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            was

Figure 16.7 Failure recovery actions with logical undo operations

found for O4, a physical log record is found for T1, which is rolled back physically.
Finally the start log record for T1 is found; this results in < T1 abort> being added
to the log, and T1 being deleted from undo-list. At this point undo-list is empty,
and the undo phase is complete.

16.7.4 Concurrency Issues in Logical Undo

As mentioned earlier, it is important that the lower-level locks acquired during
an operation are sufficient to perform a subsequent logical undo of the oper-
ation; otherwise concurrent operations that execute during normal processing
may cause problems in the undo-phase. For example, suppose the logical undo of
operation O1 of transaction T1 can conflict at the data item level with a concurrent
operation O2 of transaction T2, and O1 completes while O2 does not. Assume also
that neither transaction had committed when the system crashed. The physical
update log records of O2 may appear before and after the operation-end record
for O1, and during recovery updates done during the logical undo of O1 may get
fully or partially overwritten by old values during the physical undo of O2. This
problem cannot occur if O1 had obtained all the lower-level locks required for the
logical undo of O1, since then there cannot be such a concurrent O2.
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If both the original operation and its logical undo operation access a single
page (such operations are called physiological operations, and are discussed in
Section 16.8), the locking requirement above is met easily. Otherwise the details of
the specific operation need to be considered when deciding on what lower-level
locks need to be obtained. For example, update operations on a B+-tree could
obtain a short-term lock on the root, to ensure that operations execute serially.
See the bibliographical notes for references on B+-tree concurrency control and
recovery exploiting logical undo logging. See the bibliographical notes also for
references to an alternative approach, called multi-level recovery, which relaxes
this locking requirement.

16.8 ARIES**

The state of the art in recovery methods is best illustrated by the ARIES recovery
method. The recovery technique that we described in Section 16.4, along with the
logical undo logging techniques described in Section 16.7, is modeled after ARIES,
but has been simplified significantly to bring out key concepts and make it easier
to understand. In contrast, ARIES uses a number of techniques to reduce the time
taken for recovery, and to reduce the overhead of checkpointing. In particular,
ARIES is able to avoid redoing many logged operations that have already been
applied and to reduce the amount of information logged. The price paid is greater
complexity; the benefits are worth the price.

The major differences between ARIES and the recovery algorithm presented
earlier are that ARIES:

1. Uses a log sequence number (LSN) to identify log records, and stores LSNs in
database pages to identify which operations have been applied to a database
page.

2. Supports physiological redo operations, which are physical in that the af-
fected page is physically identified, but can be logical within the page.

For instance, the deletion of a record from a page may result in many other
records in the page being shifted, if a slotted page structure (Section 10.5.2)
is used. With physical redo logging, all bytes of the page affected by the
shifting of records must be logged. With physiological logging, the deletion
operation can be logged, resulting in a much smaller log record. Redo of
the deletion operation would delete the record and shift other records as
required.

3. Uses a dirty page table to minimize unnecessary redos during recovery. As
mentioned earlier, dirty pages are those that have been updated in memory,
and the disk version is not up-to-date.

4. Uses a fuzzy-checkpointing scheme that records only information about
dirty pages and associated information and does not even require writing
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of dirty pages to disk. It flushes dirty pages in the background, continuously,
instead of writing them during checkpoints.

In the rest of this section, we provide an overview of ARIES. The bibliographical
notes list references that provide a complete description of ARIES.

16.8.1 Data Structures

Each log record in ARIES has a log sequence number (LSN) that uniquely identifies
the record. The number is conceptually just a logical identifier whose value is
greater for log records that occur later in the log. In practice, the LSN is generated
in such a way that it can also be used to locate the log record on disk. Typically,
ARIES splits a log into multiple log files, each of which has a file number. When a
log file grows to some limit, ARIES appends further log records to a new log file;
the new log file has a file number that is higher by 1 than the previous log file.
The LSN then consists of a file number and an offset within the file.

Each page also maintains an identifier called the PageLSN. Whenever an up-
date operation (whether physical or physiological) occurs on a page, the operation
stores the LSN of its log record in the PageLSN field of the page. During the redo
phase of recovery, any log records with LSN less than or equal to the PageLSN of a
page should not be executed on the page, since their actions are already reflected
on the page. In combination with a scheme for recording PageLSNs as part of
checkpointing, which we present later, ARIES can avoid even reading many pages
for which logged operations are already reflected on disk. Thereby, recovery time
is reduced significantly.

The PageLSN is essential for ensuring idempotence in the presence of physi-
ological redo operations, since reapplying a physiological redo that has already
been applied to a page could cause incorrect changes to a page.

Pages should not be flushed to disk while an update is in progress, since
physiological operations cannot be redone on the partially updated state of the
page on disk. Therefore, ARIES uses latches on buffer pages to prevent them from
being written to disk while they are being updated. It releases the buffer page
latch only after the update is completed, and the log record for the update has
been written to the log.

Each log record also contains the LSN of the previous log record of the same
transaction. This value, stored in the PrevLSN field, permits log records of a trans-
action to be fetched backward, without reading the whole log. There are special
redo-only log records generated during transaction rollback, called compensa-
tion log records (CLRs) in ARIES. These serve the same purpose as the redo-only
log records in our earlier recovery scheme. In addition CLRs serve the role of the
operation-abort log records in our scheme. The CLRs have an extra field, called
the UndoNextLSN, that records the LSN of the log that needs to be undone next,
when the transaction is being rolled back. This field serves the same purpose as
the operation identifier in the operation-abort log record in our earlier recovery
scheme, which helps to skip over log records that have already been rolled back.
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Figure 16.8 Data structures used in ARIES.

The DirtyPageTable contains a list of pages that have been updated in the
database buffer. For each page, it stores the PageLSN and a field called the RecLSN,
which helps identify log records that have been applied already to the version
of the page on disk. When a page is inserted into the DirtyPageTable (when it
is first modified in the buffer pool), the value of RecLSN is set to the current
end of log. Whenever the page is flushed to disk, the page is removed from the
DirtyPageTable.

A checkpoint log record contains the DirtyPageTable and a list of active
transactions. For each transaction, the checkpoint log record also notes LastLSN,
the LSN of the last log record written by the transaction. A fixed position on disk
also notes the LSN of the last (complete) checkpoint log record.

Figure 16.8 illustrates some of the data structures used in ARIES. The log
records shown in the figure are prefixed by their LSN; these may not be explicitly
stored, but inferred from the position in the log, in an actual implementation. The
data item identifier in a log record is shown in two parts, for example 4894.1; the
first identifies the page, and the second part identifies a record within the page
(we assume a slotted page record organization within a page). Note that the log
is shown with newest records on top, since older log records, which are on disk,
are shown lower in the figure.
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Each page (whether in the buffer or on disk) has an associated PageLSN field.
You can verify that the LSN for the last log record that updated page 4894 is 7567.
By comparing PageLSNs for the pages in the buffer with the PageLSNs for the
corresponding pages in stable storage, you can observe that the DirtyPageTable
contains entries for all pages in the buffer that have been modified since they
were fetched from stable storage. The RecLSN entry in the DirtyPageTable reflects
the LSN at the end of the log when the page was added to DirtyPageTable, and
would be greater than or equal to the PageLSN for that page on stable storage.

16.8.2 Recovery Algorithm

ARIES recovers from a system crash in three passes.

• Analysis pass: This pass determines which transactions to undo, which pages
were dirty at the time of the crash, and the LSN from which the redo pass
should start.

• Redo pass: This pass starts from a position determined during analysis, and
performs a redo, repeating history, to bring the database to a state it was in
before the crash.

• Undo pass: This pass rolls back all transactions that were incomplete at the
time of crash.

16.8.2.1 Analysis Pass

The analysis pass finds the last complete checkpoint log record, and reads in the
DirtyPageTable from this record. It then sets RedoLSN to the minimum of the
RecLSNs of the pages in the DirtyPageTable. If there are no dirty pages, it sets
RedoLSN to the LSN of the checkpoint log record. The redo pass starts its scan
of the log from RedoLSN. All the log records earlier than this point have already
been applied to the database pages on disk. The analysis pass initially sets the list
of transactions to be undone, undo-list, to the list of transactions in the checkpoint
log record. The analysis pass also reads from the checkpoint log record the LSNs
of the last log record for each transaction in undo-list.

The analysis pass continues scanning forward from the checkpoint. Whenever
it finds a log record for a transaction not in the undo-list, it adds the transaction to
undo-list. Whenever it finds a transaction end log record, it deletes the transaction
from undo-list. All transactions left in undo-list at the end of analysis have to be
rolled back later, in the undo pass. The analysis pass also keeps track of the last
record of each transaction in undo-list, which is used in the undo pass.

The analysis pass also updates DirtyPageTable whenever it finds a log record
for an update on a page. If the page is not in DirtyPageTable, the analysis pass
adds it to DirtyPageTable, and sets the RecLSN of the page to the LSN of the log
record.



754 Chapter 16 Recovery System

16.8.2.2 Redo Pass

The redo pass repeats history by replaying every action that is not already reflected
in the page on disk. The redo pass scans the log forward from RedoLSN. Whenever
it finds an update log record, it takes this action:

1. If the page is not in DirtyPageTable or the LSN of the update log record is
less than the RecLSN of the page in DirtyPageTable, then the redo pass skips
the log record.

2. Otherwise the redo pass fetches the page from disk, and if the PageLSN is
less than the LSN of the log record, it redoes the log record.

Note that if either of the tests is negative, then the effects of the log record
have already appeared on the page; otherwise the effects of the log record are
not reflected on the page. Since ARIES allows non-idempotent physiological log
records, a log record should not be redone if its effect is already reflected on the
page. If the first test is negative, it is not even necessary to fetch the page from
disk to check its PageLSN.

16.8.2.3 Undo Pass and Transaction Rollback

The undo pass is relatively straightforward. It performs a single backward scan
of the log, undoing all transactions in undo-list. The undo pass examines only
log records of transactions in undo-list; the last LSN recorded during the analysis
pass is used to find the last log record for each transaction in undo-list.

Whenever an update log record is found, it is used to perform an undo
(whether for transaction rollback during normal processing, or during the restart
undo pass). The undo pass generates a CLR containing the undo action performed
(which must be physiological). It sets the UndoNextLSN of the CLR to the PrevLSN
value of the update log record.

If a CLR is found, its UndoNextLSN value indicates the LSN of the next log
record to be undone for that transaction; later log records for that transaction
have already been rolled back. For log records other than CLRs, the PrevLSN field
of the log record indicates the LSN of the next log record to be undone for that
transaction. The next log record to be processed at each stop in the undo pass is
the maximum, across all transactions in undo-list, of next log record LSN.

Figure 16.9 illustrates the recovery actions performed by ARIES, on an example
log. We assume that the last completed checkpoint pointer on disk points to the
checkpoint log record with LSN 7568. The PrevLSN values in the log records are
shown using arrows in the figure, while the UndoNextLSN value is shown using
a dashed arrow for the one compensation log record, with LSN 7565, in the figure.
The analysis pass would start from LSN 7568, and when it is complete, RedoLSN
would be 7564. Thus, the redo pass must start at the log record with LSN 7564.
Note that this LSN is less than the LSN of the checkpoint log record, since the
ARIES checkpointing algorithm does not flush modified pages to stable storage.
The DirtyPageTable at the end of analysis would include pages 4894, 7200 from
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Figure 16.9 Recovery actions in ARIES.

the checkpoint log record, and 2390 which is updated by the log record with LSN
7570. At the end of the analysis pass, the list of transactions to be undone consists
of only T145 in this example.

The redo pass for the above example starts from LSN 7564 and performs redo
of log records whose pages appear in DirtyPageTable. The undo pass needs to
undo only transaction T145, and hence starts from its LastLSN value 7567, and
continues backwards until the record < T145 start> is found at LSN 7563.

16.8.3 Other Features

Among other key features that ARIES provides are:

• Nested top actions: ARIES allows the logging of operations that should not
be undone even if a transaction gets rolled back; for example, if a transaction
allocates a page to a relation, even if the transaction is rolled back the page
allocation should not be undone since other transactions may have stored
records in the page. Such operations that should not be undone are called
nested top actions. Such operations can be modeled as operations whose undo
action does nothing. In ARIES, such operations are implemented by creating a
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dummy CLR whose UndoNextLSN is set such that transaction rollback skips
the log records generated by the operation.

• Recovery independence: Some pages can be recovered independently from
others, so that they can be used even while other pages are being recovered. If
some pages of a disk fail, they can be recovered without stopping transaction
processing on other pages.

• Savepoints: Transactions can record savepoints, and can be rolled back par-
tially, up to a savepoint. This can be quite useful for deadlock handling, since
transactions can be rolled back up to a point that permits release of required
locks, and then restarted from that point.

Programmers can also use savepoints to undo a transaction partially, and
then continue execution; this approach can be useful to handle certain kinds
of errors detected during the transaction execution.

• Fine-grained locking: The ARIES recovery algorithm can be used with index
concurrency-control algorithms that permit tuple-level locking on indices,
instead of page-level locking, which improves concurrency significantly.

• Recovery optimizations: The DirtyPageTable can be used to prefetch pages
during redo, instead of fetching a page only when the system finds a log
record to be applied to the page. Out-of-order redo is also possible: Redo can
be postponed on a page being fetched from disk, and performed when the
page is fetched. Meanwhile, other log records can continue to be processed.

In summary, the ARIES algorithm is a state-of-the-art recovery algorithm,
incorporating a variety of optimizations designed to improve concurrency, reduce
logging overhead, and reduce recovery time.

16.9 Remote Backup Systems

Traditional transaction-processing systems are centralized or client–server sys-
tems. Such systems are vulnerable to environmental disasters such as fire, flood-
ing, or earthquakes. Increasingly, there is a need for transaction-processing sys-
tems that can function in spite of system failures or environmental disasters. Such
systems must provide high availability; that is, the time for which the system is
unusable must be extremely small.

We can achieve high availability by performing transaction processing at one
site, called the primary site, and having a remote backup site where all the data
from the primary site are replicated. The remote backup site is sometimes also
called the secondary site. The remote site must be kept synchronized with the
primary site, as updates are performed at the primary. We achieve synchronization
by sending all log records from primary site to the remote backup site. The remote
backup site must be physically separated from the primary—for example, we can
locate it in a different state—so that a disaster at the primary does not damage
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Figure 16.10 Architecture of remote backup system.

the remote backup site. Figure 16.10 shows the architecture of a remote backup
system.

When the primary site fails, the remote backup site takes over processing.
First, however, it performs recovery, using its (perhaps outdated) copy of the
data from the primary, and the log records received from the primary. In effect,
the remote backup site is performing recovery actions that would have been
performed at the primary site when the latter recovered. Standard recovery algo-
rithms, with minor modifications, can be used for recovery at the remote backup
site. Once recovery has been performed, the remote backup site starts processing
transactions.

Availability is greatly increased over a single-site system, since the system
can recover even if all data at the primary site are lost.

Several issues must be addressed in designing a remote backup system:

• Detection of failure. It is important for the remote backup system to detect
when the primary has failed. Failure of communication lines can fool the
remote backup into believing that the primary has failed. To avoid this prob-
lem, we maintain several communication links with independent modes of
failure between the primary and the remote backup. For example, several
independent network connections, including perhaps a modem connection
over a telephone line, may be used. These connections may be backed up via
manual intervention by operators, who can communicate over the telephone
system.

• Transfer of control. When the primary fails, the backup site takes over pro-
cessing and becomes the new primary. When the original primary site re-
covers, it can either play the role of remote backup, or take over the role
of primary site again. In either case, the old primary must receive a log of
updates carried out by the backup site while the old primary was down.

The simplest way of transferring control is for the old primary to receive
redo logs from the old backup site, and to catch up with the updates by
applying them locally. The old primary can then act as a remote backup site.
If control must be transferred back, the old backup site can pretend to have
failed, resulting in the old primary taking over.
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• Time to recover. If the log at the remote backup grows large, recovery will
take a long time. The remote backup site can periodically process the redo
log records that it has received and can perform a checkpoint, so that earlier
parts of the log can be deleted. The delay before the remote backup takes
over can be significantly reduced as a result.

A hot-spare configuration can make takeover by the backup site almost
instantaneous. In this configuration, the remote backup site continually pro-
cesses redo log records as they arrive, applying the updates locally. As soon
as the failure of the primary is detected, the backup site completes recov-
ery by rolling back incomplete transactions; it is then ready to process new
transactions.

• Time to commit. To ensure that the updates of a committed transaction are
durable, a transaction must not be declared committed until its log records
have reached the backup site. This delay can result in a longer wait to commit
a transaction, and some systems therefore permit lower degrees of durability.
The degrees of durability can be classified as follows:

◦ One-safe. A transaction commits as soon as its commit log record is writ-
ten to stable storage at the primary site.

The problem with this scheme is that the updates of a committed
transaction may not have made it to the backup site, when the backup
site takes over processing. Thus, the updates may appear to be lost. When
the primary site recovers, the lost updates cannot be merged in directly,
since the updates may conflict with later updates performed at the backup
site. Thus, human intervention may be required to bring the database to
a consistent state.

◦ Two-very-safe. A transaction commits as soon as its commit log record is
written to stable storage at the primary and the backup site.

The problem with this scheme is that transaction processing cannot
proceed if either the primary or the backup site is down. Thus, availability
is actually less than in the single-site case, although the probability of data
loss is much less.

◦ Two-safe. This scheme is the same as two-very-safe if both primary and
backup sites are active. If only the primary is active, the transaction is
allowed to commit as soon as its commit log record is written to stable
storage at the primary site.

This scheme provides better availability than does two-very-safe, while
avoiding the problem of lost transactions faced by the one-safe scheme.
It results in a slower commit than the one-safe scheme, but the benefits
generally outweigh the cost.

Several commercial shared-disk systems provide a level of fault tolerance that is
intermediate between centralized and remote backup systems. In these commer-
cial systems, the failure of a CPU does not result in system failure. Instead, other
CPUs take over, and they carry out recovery. Recovery actions include rollback
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of transactions running on the failed CPU, and recovery of locks held by those
transactions. Since data are on a shared disk, there is no need for transfer of log
records. However, we should safeguard the data from disk failure by using, for
example, a RAID disk organization.

An alternative way of achieving high availability is to use a distributed
database, with data replicated at more than one site. Transactions are then re-
quired to update all replicas of any data item that they update. We study dis-
tributed databases, including replication, in Chapter 19.

16.10 Summary

• A computer system, like any other mechanical or electrical device, is sub-
ject to failure. There are a variety of causes of such failure, including disk
crash, power failure, and software errors. In each of these cases, information
concerning the database system is lost.

• In addition to system failures, transactions may also fail for various reasons,
such as violation of integrity constraints or deadlocks.

• An integral part of a database system is a recovery scheme that is responsible
for the detection of failures and for the restoration of the database to a state
that existed before the occurrence of the failure.

• The various types of storage in a computer are volatile storage, nonvolatile
storage, and stable storage. Data in volatile storage, such as in RAM, are lost
when the computer crashes. Data in nonvolatile storage, such as disk, are
not lost when the computer crashes, but may occasionally be lost because of
failures such as disk crashes. Data in stable storage are never lost.

• Stable storage that must be accessible online is approximated with mirrored
disks, or other forms of RAID, which provide redundant data storage. Offline,
or archival, stable storage may consist of multiple tape copies of data stored
in a physically secure location.

• In case of failure, the state of the database system may no longer be consistent;
that is, it may not reflect a state of the world that the database is supposed to
capture. To preserve consistency, we require that each transaction be atomic.
It is the responsibility of the recovery scheme to ensure the atomicity and
durability property.

• In log-based schemes, all updates are recorded on a log, which must be kept
in stable storage. A transaction is considered to have committed when its
last log record, which is the commit log record for the transaction, has been
output to stable storage.

• Log records contain old values and new values for all updated data items.
The new values are used in case the updates need to be redone after a system
crash. The old values are used to roll back the updates of the transaction if
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the transaction aborts during normal operation, as well as to roll back the
updates of the transaction in case the system crashed before the transaction
committed.

• In the deferred-modifications scheme, during the execution of a transaction,
all the write operations are deferred until the transaction has been committed,
at which time the system uses the information on the log associated with the
transaction in executing the deferred writes. With deferred modification, log
records do not need to contain old values of updated data items.

• To reduce the overhead of searching the log and redoing transactions, we can
use checkpointing techniques.

• Modern recovery algorithms are based on the concept of repeating history,
whereby all actions taken during normal operation (since the last completed
checkpoint) are replayed during the redo pass of recovery. Repeating history
restores the system state to what it was at the time the last log record was
output to stable storage before the system crashed. Undo is then performed
from this state, by executing an undo pass that processes log records of
incomplete transactions in reverse order.

• Undo of an incomplete transaction writes out special redo-only log records,
and an abort log record. After that, the transaction can be considered to have
completed, and it will not be undone again.

• Transaction processing is based on a storage model in which main memory
holds a log buffer, a database buffer, and a system buffer. The system buffer
holds pages of system object code and local work areas of transactions.

• Efficient implementation of a recovery scheme requires that the number of
writes to the database and to stable storage be minimized. Log records may
be kept in volatile log buffer initially, but must be written to stable storage
when one of the following conditions occurs:

◦ Before the <Ti commit> log record may be output to stable storage, all
log records pertaining to transaction Ti must have been output to stable
storage.

◦ Before a block of data in main memory is output to the database (in
nonvolatile storage), all log records pertaining to data in that block must
have been output to stable storage.

• Modern recovery techniques support high-concurrency locking techniques,
such as those used for B+-tree concurrency control. These techniques allow
early release of lower-level locks obtained by operations such as inserts or
deletes, which allows other such operations to be performed by other trans-
actions. After lower-level locks are released, physical undo is not possible,
and instead logical undo, such as a deletion to undo an insertion, is required.
Transactions retain higher-level locks that ensure that concurrent transac-
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tions cannot perform actions that could make logical undo of an operation
impossible.

• To recover from failures that result in the loss of nonvolatile storage, we must
dump the entire contents of the database onto stable storage periodically—
say, once per day. If a failure occurs that results in the loss of physical database
blocks, we use the most recent dump in restoring the database to a previous
consistent state. Once this restoration has been accomplished, we use the log
to bring the database system to the most recent consistent state.

• The ARIES recovery scheme is a state-of-the-art scheme that supports a num-
ber of features to provide greater concurrency, reduce logging overheads,
and minimize recovery time. It is also based on repeating history, and allows
logical undo operations. The scheme flushes pages on a continuous basis and
does not need to flush all pages at the time of a checkpoint. It uses log se-
quence numbers (LSNs) to implement a variety of optimizations that reduce
the time taken for recovery.

• Remote backup systems provide a high degree of availability, allowing trans-
action processing to continue even if the primary site is destroyed by a fire,
flood, or earthquake. Data and log records from a primary site are continu-
ally backed up to a remote backup site. If the primary site fails, the remote
backup site takes over transaction processing, after executing certain recovery
actions.

Review Terms

• Recovery scheme
• Failure classification

◦ Transaction failure

◦ Logical error

◦ System error

◦ System crash

◦ Data-transfer failure

• Fail-stop assumption
• Disk failure
• Storage types

◦ Volatile storage

◦ Nonvolatile storage

◦ Stable storage

• Blocks

◦ Physical blocks

◦ Buffer blocks

• Disk buffer
• Force-output
• Log-based recovery
• Log
• Log records
• Update log record
• Deferred modification
• Immediate modification
• Uncommitted modifications
• Checkpoints
• Recovery algorithm
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• Restart recovery
• Transaction rollback
• Physical undo
• Physical logging
• Transaction rollback
• Checkpoints
• Restart recovery
• Redo phase
• Undo phase
• Repeating history
• Buffer management
• Log-record buffering
• Write-ahead logging (WAL)
• Log force
• Database buffering
• Latches
• Operating system and buffer

management
• Fuzzy checkpointing
• Early lock release
• Logical operations
• Logical logging
• Logical undo
• Loss of nonvolatile storage
• Archival dump
• Fuzzy dump
• ARIES

◦ Log sequence number (LSN)

◦ PageLSN

◦ Physiological redo

◦ Compensation log record
(CLR)

◦ DirtyPageTable

◦ Checkpoint log record

◦ Analysis phase

◦ Redo phase

◦ Undo phase

• High availability
• Remote backup systems

◦ Primary site

◦ Remote backup site

◦ Secondary site

• Detection of failure
• Transfer of control
• Time to recover
• Hot-spare configuration
• Time to commit

◦ One-safe

◦ Two-very-safe

◦ Two-safe

Practice Exercises

16.1 Explain why log records for transactions on the undo-list must be pro-
cessed in reverse order, whereas redo is performed in a forward direction.

16.2 Explain the purpose of the checkpoint mechanism. How often should
checkpoints be performed? How does the frequency of checkpoints affect:

• System performance when no failure occurs?

• The time it takes to recover from a system crash?

• The time it takes to recover from a media (disk) failure?
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16.3 Some database systems allow the administrator to choose between two
forms of logging: normal logging, used to recover from system crashes, and
archival logging, used to recover from media (disk) failure. When can a log
record be deleted, in each of these cases, using the recovery algorithm of
Section 16.4?

16.4 Describe how to modify the recovery algorithm of Section 16.4 to imple-
ment savepoints, and to perform rollback to a savepoint. (Savepoints are
described in Section 16.8.3.)

16.5 Suppose the deferred modification technique is used in a database.

a. Is the old-value part of an update log record required any more?
Why or why not?

b. If old values are not stored in update log records, transaction undo
is clearly not feasible. How would the redo-phase of recovery have
to be modified as a result?

c. Deferred modification can be implemented by keeping updated data
items in local memory of transactions, and reading data items that
have not been updated directly from the database buffer. Suggest
how to efficiently implement a data item read, ensuring that a trans-
action sees its own updates.

d. What problem would arise with the above technique, if transactions
perform a large number of updates?

16.6 The shadow-paging scheme requires the page table to be copied. Suppose
the page table is represented as a B+-tree.

a. Suggest how to share as many nodes as possible between the new
copy and the shadow-copy of the B+-tree, assuming that updates
are made only to leaf entries, with no insertions and deletions.

b. Even with the above optimization, logging is much cheaper than a
shadow-copy scheme, for transactions that perform small updates.
Explain why.

16.7 Suppose we (incorrectly) modify the recovery algorithm of Section 16.4 to
not log actions taken during transaction rollback. When recovering from
a system crash, transactions that were rolled back earlier would then be
included in undo-list, and rolled back again. Give an example to show
how actions taken during the undo phase of recovery could result in
an incorrect database state. (Hint: Consider a data item updated by an
aborted transaction, and then updated by a transaction that commits.)

16.8 Disk space allocated to a file as a result of a transaction should not be
released even if the transaction is rolled back. Explain why, and explain
how ARIES ensures that such actions are not rolled back.
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16.9 Suppose a transaction deletes a record, and the free space generated thus
is allocated to a record inserted by another transaction, even before the
first transaction commits.

a. What problem can occur if the first transaction needs to be rolled
back?

b. Would this problem be an issue if page-level locking is used instead
of tuple-level locking?

c. Suggest how to solve this problem while supporting tuple-level
locking, by logging post-commit actions in special log records, and
executing them after commit. Make sure your scheme ensures that
such actions are performed exactly once.

16.10 Explain the reasons why recovery of interactive transactions is more dif-
ficult to deal with than is recovery of batch transactions. Is there a simple
way to deal with this difficulty? (Hint: Consider an automatic teller ma-
chine transaction in which cash is withdrawn.)

16.11 Sometimes a transaction has to be undone after it has committed because
it was erroneously executed, for example because of erroneous input by
a bank teller.

a. Give an example to show that using the normal transaction undo
mechanism to undo such a transaction could lead to an inconsistent
state.

b. One way to handle this situation is to bring the whole database
to a state prior to the commit of the erroneous transaction (called
point-in-time recovery). Transactions that committed later have their
effects rolled back with this scheme.

Suggest a modification to the recovery algorithm of Section 16.4
to implement point-in-time recovery using database dumps.

c. Later nonerroneous transactions can be re-executed logically, if the
updates are available in the form of SQL but cannot be re-executed
using their log records. Why?

Exercises

16.12 Explain the difference between the three storage types—volatile, non-
volatile, and stable—in terms of I/O cost.

16.13 Stable storage cannot be implemented.

a. Explain why it cannot be.

b. Explain how database systems deal with this problem.
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16.14 Explain how the database may become inconsistent if some log records
pertaining to a block are not output to stable storage before the block is
output to disk.

16.15 Outline the drawbacks of the no-steal and force buffer management poli-
cies.

16.16 Physiological redo logging can reduce logging overheads significantly,
especially with a slotted page record organization. Explain why.

16.17 Explain why logical undo logging is used widely, whereas logical redo
logging (other than physiological redo logging) is rarely used.

16.18 Consider the log in Figure 16.5. Suppose there is a crash just before the
< T0 abort> log record is written out. Explain what would happen during
recovery.

16.19 Suppose there is a transaction that has been running for a very long time,
but has performed very few updates.

a. What effect would the transaction have on recovery time with the
recovery algorithm of Section 16.4, and with the ARIES recovery
algorithm.

b. What effect would the transaction have on deletion of old log records?

16.20 Consider the log in Figure 16.6. Suppose there is a crash during recovery,
just after before the operation abort log record is written for operation O1.
Explain what would happen when the system recovers again.

16.21 Compare log-based recovery with the shadow-copy scheme in terms of
their overheads, for the case when data is being added to newly allocated
disk pages (in other words, there is no old value to be restored in case the
transaction aborts).

16.22 In the ARIES recovery algorithm:
a. If at the beginning of the analysis pass, a page is not in the checkpoint

dirty page table, will we need to apply any redo records to it? Why?

b. What is RecLSN, and how is it used to minimize unnecessary redos?

16.23 Explain the difference between a system crash and a “disaster.”

16.24 For each of the following requirements, identify the best choice of degree
of durability in a remote backup system:

a. Data loss must be avoided but some loss of availability may be
tolerated.

b. Transaction commit must be accomplished quickly, even at the cost
of loss of some committed transactions in a disaster.

c. A high degree of availability and durability is required, but a longer
running time for the transaction commit protocol is acceptable.
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16.25 The Oracle database system uses undo log records to provide a snapshot
view of the database, under snapshot-isolation. The snapshot view seen
by transaction Ti reflects updates of all transactions that had committed
when Ti started, and the updates of Ti ; updates of all other transactions
are not visible to Ti .

Describe a scheme for buffer handling whereby transactions are given
a snapshot view of pages in the buffer. Include details of how to use the
log to generate the snapshot view. You can assume that operations as well
as their undo actions affect only one page.

Bibliographical Notes

Gray and Reuter [1993] is an excellent textbook source of information about
recovery, including interesting implementation and historical details. Bernstein
and Goodman [1981] is an early textbook source of information on concurrency
control and recovery.

An overview of the recovery scheme of System R is presented by Gray et al.
[1981]. Tutorial and survey papers on various recovery techniques for database
systems include Gray [1978], Lindsay et al. [1980], and Verhofstad [1978]. The
concepts of fuzzy checkpointing and fuzzy dumps are described in Lindsay et al.
[1980]. A comprehensive presentation of the principles of recovery is offered by
Haerder and Reuter [1983].

The state-of-the-art in recovery methods is best illustrated by the ARIES re-
covery method, described in Mohan et al. [1992] and Mohan [1990b]. Mohan and
Levine [1992] presents ARIES IM, an extension of ARIES to optimize B+-tree concur-
rency control and recovery using logical undo logging. ARIES and its variants are
used in several database products, including IBM DB2 and Microsoft SQL Server.
Recovery in Oracle is described in Lahiri et al. [2001].

Specialized recovery techniques for index structures are described in Mohan
and Levine [1992] and Mohan [1993]; Mohan and Narang [1994] describes recov-
ery techniques for client–server architectures, while Mohan and Narang [1992]
describes recovery techniques for parallel-database architectures.

A generalized version of the theory of serializability, with short duration
lower-level locks during operations, combined with longer duration higher-level
locks, is described by Weikum [1991]. In Section 16.7.3, we saw the requirement
that an operation should acquire all lower-level locks that may be needed for the
logical undo of the operation. This requirement can be relaxed by performing all
physical undo operations first, before perfoming any logical undo operations. A
generalized version of this idea, called multi-level recovery, presented in Weikum
et al. [1990], allows multiple levels of logical operations, with level-by-level undo
passes during recovery.

Remote backup algorithms for disaster recovery are presented in King et al.
[1991] and Polyzois and Garcia-Molina [1994].



PART 5

SYSTEM ARCHITECTURE
The architecture of a database system is greatly influenced by the underlying
computer system on which the database system runs. Database systems can
be centralized, where one server machine executes operations on the database.
Database systems can also be designed to exploit parallel computer architectures.
Distributed databases span multiple geographically separated machines.

Chapter 17 first outlines the architectures of database systems running on
server systems, which are used in centralized and client–server architectures.
The various processes that together implement the functionality of a database
are outlined here. The chapter then outlines parallel computer architectures, and
parallel database architectures designed for different types of parallel computers.
Finally, the chapter outlines architectural issues in building a distributed database
system.

Chapter 18 describes how various actions of a database, in particular query
processing, can be implemented to exploit parallel processing.

Chapter 19 presents a number of issues that arise in a distributed database,
and describes how to deal with each issue. The issues include how to store data,
how to ensure atomicity of transactions that execute at multiple sites, how to
perform concurrency control, and how to provide high availability in the presence
of failures.a Cloud-based data storage systems, distributed query processing and
directory systems are also described in this chapter.

767



This page intentionally left blank 



C H A P T E R17
Database-System Architectures

The architecture of a database system is greatly influenced by the underlying
computer system on which it runs, in particular by such aspects of computer
architecture as networking, parallelism, and distribution:

• Networking of computers allows some tasks to be executed on a server system
and some tasks to be executed on client systems. This division of work has
led to client–server database systems.

• Parallel processing within a computer system allows database-system activi-
ties to be speeded up, allowing faster response to transactions, as well as more
transactions per second. Queries can be processed in a way that exploits the
parallelism offered by the underlying computer system. The need for parallel
query processing has led to parallel database systems.

• Distributing data across sites in an organization allows those data to reside
where they are generated or most needed, but still to be accessible from other
sites and from other departments. Keeping multiple copies of the database
across different sites also allows large organizations to continue their database
operations even when one site is affected by a natural disaster, such as flood,
fire, or earthquake. Distributed database systems handle geographically or ad-
ministratively distributed data spread across multiple database systems.

We study the architecture of database systems in this chapter, starting with
the traditional centralized systems, and covering client–server, parallel, and dis-
tributed database systems.

17.1 Centralized and Client–Server Architectures

Centralized database systems are those that run on a single computer system
and do not interact with other computer systems. Such database systems span
a range from single-user database systems running on personal computers to
high-performance database systems running on high-end server systems. Client
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–server systems, on the other hand, have functionality split between a server
system and multiple client systems.

17.1.1 Centralized Systems

A modern, general-purpose computer system consists of one to a few processors
and a number of device controllers that are connected through a common bus that
provides access to shared memory (Figure 17.1). The processors have local cache
memories that store local copies of parts of the memory, to speed up access to data.
Each processor may have several independent cores, each of which can execute
a separate instruction stream. Each device controller is in charge of a specific
type of device (for example, a disk drive, an audio device, or a video display).
The processors and the device controllers can execute concurrently, competing
for memory access. Cache memory reduces the contention for memory access,
since it reduces the number of times that the processor needs to access the shared
memory.

We distinguish two ways in which computers are used: as single-user systems
and as multiuser systems. Personal computers and workstations fall into the first
category. A typical single-user system is a desktop unit used by a single person,
usually with only one processor and one or two hard disks, and usually only one
person using the machine at a time. A typical multiuser system, on the other
hand, has more disks and more memory and may have multiple processors. It
serves a large number of users who are connected to the system remotely.

Database systems designed for use by single users usually do not provide
many of the facilities that a multiuser database provides. In particular, they may
not support concurrency control, which is not required when only a single user
can generate updates. Provisions for crash recovery in such systems are either
absent or primitive—for example, they may consist of simply making a backup
of the database before any update. Some such systems do not support SQL, and
they provide a simpler query language, such as a variant of QBE. In contrast,

USB controller

keyboard printermouse monitor
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controller

memory

CPU

on-line

Figure 17.1 A centralized computer system.
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database systems designed for multiuser systems support the full transactional
features that we have studied earlier.

Although most general-purpose computer systems in use today have multiple
processors, they have coarse-granularity parallelism, with only a few processors
(about two to four, typically), all sharing the main memory. Databases running
on such machines usually do not attempt to partition a single query among the
processors; instead, they run each query on a single processor, allowing multiple
queries to run concurrently. Thus, such systems support a higher throughput;
that is, they allow a greater number of transactions to run per second, although
individual transactions do not run any faster.

Databases designed for single-processor machines already provide multitask-
ing, allowing multiple processes to run on the same processor in a time-shared
manner, giving a view to the user of multiple processes running in parallel. Thus,
coarse-granularity parallel machines logically appear to be identical to single-
processor machines, and database systems designed for time-shared machines
can be easily adapted to run on them.

In contrast, machines with fine-granularity parallelism have a large num-
ber of processors, and database systems running on such machines attempt to
parallelize single tasks (queries, for example) submitted by users. We study the
architecture of parallel database systems in Section 17.3.

Parallelism is emerging as a critical issue in the future design of database
systems. Whereas today those computer systems with multicore processors have
only a few cores, future processors will have large numbers of cores.1 As a re-
sult, parallel database systems, which once were specialized systems running on
specially designed hardware, will become the norm.

17.1.2 Client–Server Systems

As personal computers became faster, more powerful, and cheaper, there was
a shift away from the centralized system architecture. Personal computers sup-
planted terminals connected to centralized systems. Correspondingly, personal
computers assumed the user-interface functionality that used to be handled di-
rectly by the centralized systems. As a result, centralized systems today act as
server systems that satisfy requests generated by client systems. Figure 17.2 shows
the general structure of a client–server system.

Functionality provided by database systems can be broadly divided into two
parts—the front end and the back end. The back end manages access structures,
query evaluation and optimization, concurrency control, and recovery. The front
end of a database system consists of tools such as the SQL user interface, forms
interfaces, report generation tools, and data mining and analysis tools (see Fig-
ure 17.3). The interface between the front end and the back end is through SQL,
or through an application program.

1The reasons for this pertain to issues in computer architecture related to heat generation and power consumption.
Rather than make processors significantly faster, computer architects are using advances in chip design to put more
cores on a single chip, a trend likely to continue for some time.
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Figure 17.2 General structure of a client–server system.

Standards such as ODBC and JDBC, which we saw in Chapter 3, were developed
to interface clients with servers. Any client that uses the ODBC or JDBC interface
can connect to any server that provides the interface.

Certain application programs, such as spreadsheets and statistical-analysis
packages, use the client–server interface directly to access data from a back-end
server. In effect, they provide front ends specialized for particular tasks.

Systems that deal with large numbers of users adopt a three-tier architecture,
which we saw earlier in Figure 1.6 (Chapter 1), where the front end is a Web
browser that talks to an application server. The application server, in effect, acts
as a client to the database server.

Some transaction-processing systems provide a transactional remote proce-
dure call interface to connect clients with a server. These calls appear like ordi-
nary procedure calls to the programmer, but all the remote procedure calls from a
client are enclosed in a single transaction at the server end. Thus, if the transaction
aborts, the server can undo the effects of the individual remote procedure calls.

17.2 Server System Architectures

Server systems can be broadly categorized as transaction servers and data servers.
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Figure 17.3 Front-end and back-end functionality.
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• Transaction-server systems, also called query-server systems, provide an in-
terface to which clients can send requests to perform an action, in response
to which they execute the action and send back results to the client. Usually,
client machines ship transactions to the server systems, where those transac-
tions are executed, and results are shipped back to clients that are in charge
of displaying the data. Requests may be specified by using SQL, or through a
specialized application program interface.

• Data-server systems allow clients to interact with the servers by making
requests to read or update data, in units such as files or pages. For example,
file servers provide a file-system interface where clients can create, update,
read, and delete files. Data servers for database systems offer much more
functionality; they support units of data—such as pages, tuples, or objects
—that are smaller than a file. They provide indexing facilities for data, and
provide transaction facilities so that the data are never left in an inconsistent
state if a client machine or process fails.

Of these, the transaction-server architecture is by far the more widely used archi-
tecture. We shall elaborate on the transaction-server and data-server architectures
in Sections 17.2.1 and 17.2.2.

17.2.1 Transaction Servers

A typical transaction-server system today consists of multiple processes accessing
data in shared memory, as in Figure 17.4. The processes that form part of the
database system include:

• Server processes: These are processes that receive user queries (transactions),
execute them, and send the results back. The queries may be submitted to the
server processes from a user interface, or from a user process running embed-
ded SQL, or via JDBC, ODBC, or similar protocols. Some database systems use
a separate process for each user session, and a few use a single database pro-
cess for all user sessions, but with multiple threads so that multiple queries
can execute concurrently. (A thread is like a process, but multiple threads
execute as part of the same process, and all threads within a process run in
the same virtual-memory space. Multiple threads within a process can exe-
cute concurrently.) Many database systems use a hybrid architecture, with
multiple processes, each one running multiple threads.

• Lock manager process: This process implements lock manager functionality,
which includes lock grant, lock release, and deadlock detection.

• Database writer process: There are one or more processes that output modi-
fied buffer blocks back to disk on a continuous basis.

• Log writer process: This process outputs log records from the log record
buffer to stable storage. Server processes simply add log records to the log
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Figure 17.4 Shared memory and process structure.

record buffer in shared memory, and if a log force is required, they request
the log writer process to output log records.

• Checkpoint process: This process performs periodic checkpoints.

• Process monitor process: This process monitors other processes, and if any
of them fails, it takes recovery actions for the process, such as aborting any
transaction being executed by the failed process, and then restarting the
process.

The shared memory contains all shared data, such as:

• Buffer pool.

• Lock table.

• Log buffer, containing log records waiting to be output to the log on stable
storage.
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• Cached query plans, which can be reused if the same query is submitted
again.

All database processes can access the data in shared memory. Since multiple
processes may read or perform updates on data structures in shared memory,
there must be a mechanism to ensure that a data structure is modified by at
most one process at a time, and no process is reading a data structure while it is
being written by others. Such mutual exclusion can be implemented by means
of operating system functions called semaphores. Alternative implementations,
with less overhead, use special atomic instructions supported by the computer
hardware; one type of atomic instruction tests a memory location and sets it to 1
atomically. Further implementation details of mutual exclusion can be found in
any standard operating system textbook. The mutual exclusion mechanisms are
also used to implement latches.

To avoid the overhead of message passing, in many database systems,
server processes implement locking by directly updating the lock table (which is
in shared memory), instead of sending lock request messages to a lock manager
process. The lock request procedure executes the actions that the lock manager
process would take on getting a lock request. The actions on lock request and
release are like those in Section 15.1.4, but with two significant differences:

• Since multiple server processes may access shared memory, mutual exclusion
must be ensured on the lock table.

• If a lock cannot be obtained immediately because of a lock conflict, the lock
request code may monitor the lock table to check when the lock has been
granted. The lock release code updates the lock table to note which process
has been granted the lock.

To avoid repeated checks on the lock table, operating system semaphores
can be used by the lock request code to wait for a lock grant notification. The
lock release code must then use the semaphore mechanism to notify waiting
transactions that their locks have been granted.

Even if the system handles lock requests through shared memory, it still uses the
lock manager process for deadlock detection.

17.2.2 Data Servers

Data-server systems are used in local-area networks, where there is a high-speed
connection between the clients and the server, the client machines are comparable
in processing power to the server machine, and the tasks to be executed are
computation intensive. In such an environment, it makes sense to ship data to
client machines, to perform all processing at the client machine (which may
take a while), and then to ship the data back to the server machine. Note that
this architecture requires full back-end functionality at the clients. Data-server
architectures have been particularly popular in object-oriented database systems
(Chapter 22).
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Interesting issues arise in such an architecture, since the time cost of com-
munication between the client and the server is high compared to that of a local
memory reference (milliseconds, versus less than 100 nanoseconds):

• Page shipping versus item shipping. The unit of communication for data
can be of coarse granularity, such as a page, or fine granularity, such as a tuple
(or an object, in the context of object-oriented database systems). We use the
term item to refer to both tuples and objects.

If the unit of communication is a single item, the overhead of message
passing is high compared to the amount of data transmitted. Instead, when an
item is requested, it makes sense also to send back other items that are likely
to be used in the near future. Fetching items even before they are requested
is called prefetching. Page shipping can be considered a form of prefetching
if multiple items reside on a page, since all the items in the page are shipped
when a process desires to access a single item in the page.

• Adaptive lock granularity. Locks are usually granted by the server for the
data items that it ships to the client machines. A disadvantage of page ship-
ping is that client machines may be granted locks of too coarse a granularity
—a lock on a page implicitly locks all items contained in the page. Even if the
client is not accessing some items in the page, it has implicitly acquired locks
on all prefetched items. Other client machines that require locks on those
items may be blocked unnecessarily. Techniques for lock de-escalation have
been proposed where the server can request its clients to transfer back locks
on prefetched items. If the client machine does not need a prefetched item,
it can transfer locks on the item back to the server, and the locks can then be
allocated to other clients.

• Data caching. Data that are shipped to a client on behalf of a transaction
can be cached at the client, even after the transaction completes, if sufficient
storage space is available. Successive transactions at the same client may be
able to make use of the cached data. However, cache coherency is an issue:
Even if a transaction finds cached data, it must make sure that those data
are up to date, since they may have been updated by a different client after
they were cached. Thus, a message must still be exchanged with the server
to check validity of the data, and to acquire a lock on the data.

• Lock caching. If the use of data is mostly partitioned among the clients, with
clients rarely requesting data that are also requested by other clients, locks can
also be cached at the client machine. Suppose that a client finds a data item in
the cache, and that it also finds the lock required for an access to the data item
in the cache. Then, the access can proceed without any communication with
the server. However, the server must keep track of cached locks; if a client
requests a lock from the server, the server must call back all conflicting locks
on the data item from any other client machines that have cached the locks.
The task becomes more complicated when machine failures are taken into
account. This technique differs from lock de-escalation in that lock caching
takes place across transactions; otherwise, the two techniques are similar.
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The bibliographical references provide more information about client–server
database systems.

17.2.3 Cloud-Based Servers

Servers are usually owned by the enterprise providing the service, but there is an
increasing trend for service providers to rely at least in part upon servers that are
owned by a “third party” that is neither the client nor the service provider.

One model for using third-party servers is to outsource the entire service
to another company that hosts the service on its own computers using its own
software. This allows the service provider to ignore most details of technology
and focus on the marketing of the service.

Another model for using third-party servers is cloud computing, in which
the service provider runs its own software, but runs it on computers provided by
another company. Under this model, the third party does not provide any of the
application software; it provides only a collection of machines. These machines
are not “real” machines, but rather simulated by software that allows a single real
computer to simulate several independent computers. Such simulated machines
are called virtual machines. The service provider runs its software (possibly
including a database system) on these virtual machines. A major advantage of
cloud computing is that the service provider can add machines as needed to
meet demand and release them at times of light load. This can prove to be highly
cost-effective in terms of both money and energy.

A third model uses a cloud computing service as a data server; such cloud-based
data storage systems are covered in detail in Section 19.9. Database applications
using cloud-based storage may run on the same cloud (that is, the same set
of machines), or on another cloud. The bibliographical references provide more
information about cloud-computing systems.

17.3 Parallel Systems

Parallel systems improve processing and I/O speeds by using multiple processors
and disks in parallel. Parallel machines are becoming increasingly common, mak-
ing the study of parallel database systems correspondingly more important. The
driving force behind parallel database systems is the demands of applications that
have to query extremely large databases (of the order of terabytes—that is, 1012

bytes) or that have to process an extremely large number of transactions per sec-
ond (of the order of thousands of transactions per second). Centralized and client
–server database systems are not powerful enough to handle such applications.

In parallel processing, many operations are performed simultaneously, as
opposed to serial processing, in which the computational steps are performed se-
quentially. A coarse-grain parallel machine consists of a small number of powerful
processors; a massively parallel or fine-grain parallel machine uses thousands
of smaller processors. Virtually all high-end machines today offer some degree of
coarse-grain parallelism: at least two or four processors. Massively parallel com-
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puters can be distinguished from the coarse-grain parallel machines by the much
larger degree of parallelism that they support. Parallel computers with hundreds
of processors and disks are available commercially.

There are two main measures of performance of a database system: (1)
throughput, the number of tasks that can be completed in a given time inter-
val, and (2) response time, the amount of time it takes to complete a single task
from the time it is submitted. A system that processes a large number of small
transactions can improve throughput by processing many transactions in paral-
lel. A system that processes large transactions can improve response time as well
as throughput by performing subtasks of each transaction in parallel.

17.3.1 Speedup and Scaleup

Two important issues in studying parallelism are speedup and scaleup. Running
a given task in less time by increasing the degree of parallelism is called speedup.
Handling larger tasks by increasing the degree of parallelism is called scaleup.

Consider a database application running on a parallel system with a certain
number of processors and disks. Now suppose that we increase the size of the
system by increasing the number of processors, disks, and other components of
the system. The goal is to process the task in time inversely proportional to the
number of processors and disks allocated. Suppose that the execution time of a
task on the larger machine is TL , and that the execution time of the same task on
the smaller machine is TS. The speedup due to parallelism is defined as TS/TL . The
parallel system is said to demonstrate linear speedup if the speedup is N when
the larger system has N times the resources (processors, disk, and so on) of the
smaller system. If the speedup is less than N, the system is said to demonstrate
sublinear speedup. Figure 17.5 illustrates linear and sublinear speedup.

Scaleup relates to the ability to process larger tasks in the same amount of time
by providing more resources. Let Q be a task, and let QN be a task that is N times
bigger than Q. Suppose that the execution time of task Q on a given machine

linear speedup

sublinear speedup

resources

sp
ee

d

Figure 17.5 Speedup with increasing resources.
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MS is TS, and the execution time of task QN on a parallel machine ML , which is
N times larger than MS, is TL . The scaleup is then defined as TS/TL . The parallel
system ML is said to demonstrate linear scaleup on task Q if TL = TS. If TL > TS,
the system is said to demonstrate sublinear scaleup. Figure 17.6 illustrates linear
and sublinear scaleups (where the resources increase in proportion to problem
size). There are two kinds of scaleup that are relevant in parallel database systems,
depending on how the size of the task is measured:

• In batch scaleup, the size of the database increases, and the tasks are large jobs
whose runtime depends on the size of the database. An example of such a task
is a scan of a relation whose size is proportional to the size of the database.
Thus, the size of the database is the measure of the size of the problem. Batch
scaleup also applies in scientific applications, such as executing a query at an
N-times finer resolution or performing an N-times longer simulation.

• In transaction scaleup, the rate at which transactions are submitted to the
database increases and the size of the database increases proportionally to
the transaction rate. This kind of scaleup is what is relevant in transaction-
processing systems where the transactions are small updates—for example,
a deposit or withdrawal from an account—and transaction rates grow as
more accounts are created. Such transaction processing is especially well
adapted for parallel execution, since transactions can run concurrently and
independently on separate processors, and each transaction takes roughly
the same amount of time, even if the database grows.

Scaleup is usually the more important metric for measuring efficiency of par-
allel database systems. The goal of parallelism in database systems is usually to
make sure that the database system can continue to perform at an acceptable
speed, even as the size of the database and the number of transactions increases.
Increasing the capacity of the system by increasing the parallelism provides a
smoother path for growth for an enterprise than does replacing a centralized
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system with a faster machine (even assuming that such a machine exists). How-
ever, we must also look at absolute performance numbers when using scaleup
measures; a machine that scales up linearly may perform worse than a machine
that scales less than linearly, simply because the latter machine is much faster to
start off with.

A number of factors work against efficient parallel operation and can diminish
both speedup and scaleup.

• Start-up costs. There is a start-up cost associated with initiating a single
process. In a parallel operation consisting of thousands of processes, the
start-up time may overshadow the actual processing time, affecting speedup
adversely.

• Interference. Since processes executing in a parallel system often access
shared resources, a slowdown may result from the interference of each new
process as it competes with existing processes for commonly held resources,
such as a system bus, or shared disks, or even locks. Both speedup and scaleup
are affected by this phenomenon.

• Skew. By breaking down a single task into a number of parallel steps, we
reduce the size of the average step. Nonetheless, the service time for the
single slowest step will determine the service time for the task as a whole. It
is often difficult to divide a task into exactly equal-sized parts, and the way
that the sizes are distributed is therefore skewed. For example, if a task of size
100 is divided into 10 parts, and the division is skewed, there may be some
tasks of size less than 10 and some tasks of size more than 10; if even one
task happens to be of size 20, the speedup obtained by running the tasks in
parallel is only five, instead of ten as we would have hoped.

17.3.2 Interconnection Networks

Parallel systems consist of a set of components (processors, memory, and disks)
that can communicate with each other via an interconnection network. Fig-
ure 17.7 shows three commonly used types of interconnection networks:

• Bus. All the system components can send data on and receive data from a sin-
gle communication bus. This type of interconnection is shown in Figure 17.7a.
The bus could be an Ethernet or a parallel interconnect. Bus architectures
work well for small numbers of processors. However, they do not scale well
with increasing parallelism, since the bus can handle communication from
only one component at a time.

• Mesh. The components are nodes in a grid, and each component connects to
all its adjacent components in the grid. In a two-dimensional mesh each node
connects to four adjacent nodes, while in a three-dimensional mesh each node
connects to six adjacent nodes. Figure 17.7b shows a two-dimensional mesh.
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Figure 17.7 Interconnection networks.

Nodes that are not directly connected can communicate with one another
by routing messages via a sequence of intermediate nodes that are directly
connected to one another. The number of communication links grows as the
number of components grows, and the communication capacity of a mesh
therefore scales better with increasing parallelism.

• Hypercube. The components are numbered in binary, and a component is
connected to another if the binary representations of their numbers differ
in exactly one bit. Thus, each of the n components is connected to log(n)
other components. Figure 17.7c shows a hypercube with eight nodes. In
a hypercube interconnection, a message from a component can reach any
other component by going through at most log(n) links. In contrast, in a
mesh architecture a component may be 2(

√
n − 1) links away from some of

the other components (or
√

n links away, if the mesh interconnection wraps
around at the edges of the grid). Thus communication delays in a hypercube
are significantly lower than in a mesh.

17.3.3 Parallel Database Architectures

There are several architectural models for parallel machines. Among the most
prominent ones are those in Figure 17.8 (in the figure, M denotes memory, P
denotes a processor, and disks are shown as cylinders):

• Shared memory. All the processors share a common memory (Figure 17.8a).

• Shared disk. All the processors share a common set of disks (Figure 17.8b).
Shared-disk systems are sometimes called clusters.

• Shared nothing. The processors share neither a common memory nor com-
mon disk (Figure 17.8c).

• Hierarchical. This model is a hybrid of the preceding three architectures
(Figure 17.8d).

In Sections 17.3.3.1 through 17.3.3.4, we elaborate on each of these models.
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Figure 17.8 Parallel database architectures.

Techniques used to speed up transaction processing on data-server systems,
such as data and lock caching and lock de-escalation, outlined in Section 17.2.2,
can also be used in shared-disk parallel databases as well as in shared-nothing
parallel databases. In fact, they are very important for efficient transaction pro-
cessing in such systems.

17.3.3.1 Shared Memory

In a shared-memory architecture, the processors and disks have access to a com-
mon memory, typically via a bus or through an interconnection network. The
benefit of shared memory is extremely efficient communication between proces-
sors—data in shared memory can be accessed by any processor without being
moved with software. A processor can send messages to other processors much
faster by using memory writes (which usually take less than a microsecond) than
by sending a message through a communication mechanism. The downside of
shared-memory machines is that the architecture is not scalable beyond 32 or 64
processors because the bus or the interconnection network becomes a bottleneck
(since it is shared by all processors). Adding more processors does not help after
a point, since the processors will spend most of their time waiting for their turn
on the bus to access memory.

Shared-memory architectures usually have large memory caches at each pro-
cessor, so that referencing of the shared memory is avoided whenever possible.
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However, at least some of the data will not be in the cache, and accesses will have
to go to the shared memory. Moreover, the caches need to be kept coherent; that
is, if a processor performs a write to a memory location, the data in that memory
location should be either updated at or removed from any processor where the
data are cached. Maintaining cache coherency becomes an increasing overhead
with increasing numbers of processors. Consequently, shared-memory machines
are not capable of scaling up beyond a point; current shared-memory machines
cannot support more than 64 processors.

17.3.3.2 Shared Disk

In the shared-disk model, all processors can access all disks directly via an in-
terconnection network, but the processors have private memories. There are two
advantages of this architecture over a shared-memory architecture. First, since
each processor has its own memory, the memory bus is not a bottleneck. Second,
it offers a cheap way to provide a degree of fault tolerance: If a processor (or its
memory) fails, the other processors can take over its tasks, since the database is
resident on disks that are accessible from all processors. We can make the disk
subsystem itself fault tolerant by using a RAID architecture, as described in Chap-
ter 10. The shared-disk architecture has found acceptance in many applications.

The main problem with a shared-disk system is again scalability. Although
the memory bus is no longer a bottleneck, the interconnection to the disk sub-
system is now a bottleneck; it is particularly so in a situation where the database
makes a large number of accesses to disks. Compared to shared-memory systems,
shared-disk systems can scale to a somewhat larger number of processors, but
communication across processors is slower (up to a few milliseconds in the ab-
sence of special-purpose hardware for communication), since it has to go through
a communication network.

17.3.3.3 Shared Nothing

In a shared-nothing system, each node of the machine consists of a processor,
memory, and one or more disks. The processors at one node may communicate
with another processor at another node by a high-speed interconnection network.
A node functions as the server for the data on the disk or disks that the node
owns. Since local disk references are serviced by local disks at each processor,
the shared-nothing model overcomes the disadvantage of requiring all I/O to go
through a single interconnection network; only queries, accesses to nonlocal disks,
and result relations pass through the network. Moreover, the interconnection
networks for shared-nothing systems are usually designed to be scalable, so that
their transmission capacity increases as more nodes are added. Consequently,
shared-nothing architectures are more scalable and can easily support a large
number of processors. The main drawbacks of shared-nothing systems are the
costs of communication and of nonlocal disk access, which are higher than in a
shared-memory or shared-disk architecture since sending data involves software
interaction at both ends.
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17.3.3.4 Hierarchical

The hierarchical architecture combines the characteristics of shared-memory,
shared-disk, and shared-nothing architectures. At the top level, the system con-
sists of nodes that are connected by an interconnection network and do not share
disks or memory with one another. Thus, the top level is a shared-nothing ar-
chitecture. Each node of the system could actually be a shared-memory system
with a few processors. Alternatively, each node could be a shared-disk system,
and each of the systems sharing a set of disks could be a shared-memory system.
Thus, a system could be built as a hierarchy, with shared-memory architecture
with a few processors at the base, and a shared-nothing architecture at the top,
with possibly a shared-disk architecture in the middle. Figure 17.8d illustrates
a hierarchical architecture with shared-memory nodes connected together in a
shared-nothing architecture. Commercial parallel database systems today run on
several of these architectures.

Attempts to reduce the complexity of programming such systems have yielded
distributed virtual-memory architectures, where logically there is a single shared
memory, but physically there are multiple disjoint memory systems; the virtual-
memory-mapping hardware, coupled with system software, allows each pro-
cessor to view the disjoint memories as a single virtual memory. Since access
speeds differ, depending on whether the page is available locally or not, such an
architecture is also referred to as a nonuniform memory architecture (NUMA).

17.4 Distributed Systems

In a distributed database system, the database is stored on several computers.
The computers in a distributed system communicate with one another through
various communication media, such as high-speed private networks or the In-
ternet. They do not share main memory or disks. The computers in a distributed
system may vary in size and function, ranging from workstations up to mainframe
systems.

The computers in a distributed system are referred to by a number of dif-
ferent names, such as sites or nodes, depending on the context in which they
are mentioned. We mainly use the term site, to emphasize the physical distribu-
tion of these systems. The general structure of a distributed system appears in
Figure 17.9.

The main differences between shared-nothing parallel databases and dis-
tributed databases are that distributed databases are typically geographically
separated, are separately administered, and have a slower interconnection. An-
other major difference is that, in a distributed database system, we differentiate
between local and global transactions. A local transaction is one that accesses
data only from sites where the transaction was initiated. A global transaction, on
the other hand, is one that either accesses data in a site different from the one at
which the transaction was initiated, or accesses data in several different sites.
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Figure 17.9 A distributed system.

There are several reasons for building distributed database systems, including
sharing of data, autonomy, and availability.

• Sharing data. The major advantage in building a distributed database system
is the provision of an environment where users at one site may be able to
access the data residing at other sites. For instance, in a distributed university
system, where each campus stores data related to that campus, it is possible
for a user in one campus to access data in another campus. Without this
capability, the transfer of student records from one campus to another campus
would have to resort to some external mechanism that would couple existing
systems.

• Autonomy. The primary advantage of sharing data by means of data dis-
tribution is that each site is able to retain a degree of control over data that
are stored locally. In a centralized system, the database administrator of the
central site controls the database. In a distributed system, there is a global
database administrator responsible for the entire system. A part of these re-
sponsibilities is delegated to the local database administrator for each site.
Depending on the design of the distributed database system, each adminis-
trator may have a different degree of local autonomy. The possibility of local
autonomy is often a major advantage of distributed databases.

• Availability. If one site fails in a distributed system, the remaining sites may
be able to continue operating. In particular, if data items are replicated in
several sites, a transaction needing a particular data item may find that item
in any of several sites. Thus, the failure of a site does not necessarily imply
the shutdown of the system.
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The failure of one site must be detected by the system, and appropriate
action may be needed to recover from the failure. The system must no longer
use the services of the failed site. Finally, when the failed site recovers or is
repaired, mechanisms must be available to integrate it smoothly back into
the system.

Although recovery from failure is more complex in distributed systems than
in centralized systems, the ability of most of the system to continue to operate
despite the failure of one site results in increased availability. Availability is
crucial for database systems used for real-time applications. Loss of access
to data by, for example, an airline may result in the loss of potential ticket
buyers to competitors.

17.4.1 An Example of a Distributed Database

Consider a banking system consisting of four branches in four different cities.
Each branch has its own computer, with a database of all the accounts maintained
at that branch. Each such installation is thus a site. There also exists one single
site that maintains information about all the branches of the bank.

To illustrate the difference between the two types of transactions—local and
global—at the sites, consider a transaction to add $50 to account number A-177
located at the Valleyview branch. If the transaction was initiated at the Valleyview
branch, then it is considered local; otherwise, it is considered global. A transaction
to transfer $50 from account A-177 to account A-305, which is located at the
Hillside branch, is a global transaction, since accounts in two different sites are
accessed as a result of its execution.

In an ideal distributed database system, the sites would share a common
global schema (although some relations may be stored only at some sites), all
sites would run the same distributed database-management software, and the
sites would be aware of each other’s existence. If a distributed database is built
from scratch, it would indeed be possible to achieve the above goals. However,
in reality a distributed database has to be constructed by linking together mul-
tiple already-existing database systems, each with its own schema and possibly
running different database-management software. Such systems are sometimes
called multidatabase systems or heterogeneous distributed database systems.
We discuss these systems in Section 19.8, where we show how to achieve a degree
of global control despite the heterogeneity of the component systems.

17.4.2 Implementation Issues

Atomicity of transactions is an important issue in building a distributed database
system. If a transaction runs across two sites, unless the system designers are
careful, it may commit at one site and abort at another, leading to an inconsistent
state. Transaction commit protocols ensure such a situation cannot arise. The
two-phase commit protocol (2PC) is the most widely used of these protocols.
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The basic idea behind 2PC is for each site to execute the transaction until it
enters the partially committed state, and then leave the commit decision to a sin-
gle coordinator site; the transaction is said to be in the ready state at a site at this
point. The coordinator decides to commit the transaction only if the transaction
reaches the ready state at every site where it executed; otherwise (for example, if
the transaction aborts at any site), the coordinator decides to abort the transaction.
Every site where the transaction executed must follow the decision of the coor-
dinator. If a site fails when a transaction is in ready state, when the site recovers
from failure it should be in a position to either commit or abort the transaction,
depending on the decision of the coordinator. The 2PC protocol is described in
detail in Section 19.4.1.

Concurrency control is another issue in a distributed database. Since a trans-
action may access data items at several sites, transaction managers at several sites
may need to coordinate to implement concurrency control. If locking is used, lock-
ing can be performed locally at the sites containing accessed data items, but there
is also a possibility of deadlock involving transactions originating at multiple
sites. Therefore deadlock detection needs to be carried out across multiple sites.
Failures are more common in distributed systems since not only may computers
fail, but communication links may also fail. Replication of data items, which is
the key to the continued functioning of distributed databases when failures occur,
further complicates concurrency control. Section 19.5 provides detailed coverage
of concurrency control in distributed databases.

The standard transaction models, based on multiple actions carried out by a
single program unit, are often inappropriate for carrying out tasks that cross the
boundaries of databases that cannot or will not cooperate to implement protocols
such as 2PC. Alternative approaches, based on persistent messaging for commu-
nication, are generally used for such tasks; persistent messaging is discussed in
Section 19.4.3.

When the tasks to be carried out are complex, involving multiple databases
and/or multiple interactions with humans, coordination of the tasks and en-
suring transaction properties for the tasks become more complicated. Workflow
management systems are systems designed to help with carrying out such tasks,
and are described in Section 26.2.

In case an organization has to choose between a distributed architecture and
a centralized architecture for implementing an application, the system architect
must balance the advantages against the disadvantages of distribution of data.
We have already seen the advantages of using distributed databases. The primary
disadvantage of distributed database systems is the added complexity required
to ensure proper coordination among the sites. This increased complexity takes
various forms:

• Software-development cost. It is more difficult to implement a distributed
database system; thus, it is more costly.

• Greater potential for bugs. Since the sites that constitute the distributed
system operate in parallel, it is harder to ensure the correctness of algorithms,
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especially operation during failures of part of the system, and recovery from
failures. The potential exists for extremely subtle bugs.

• Increased processing overhead. The exchange of messages and the addi-
tional computation required to achieve intersite coordination are a form of
overhead that does not arise in centralized systems.

There are several approaches to distributed database design, ranging from
fully distributed designs to ones that include a large degree of centralization. We
study them in Chapter 19.

17.5 Network Types

Distributed databases and client–server systems are built around communica-
tion networks. There are basically two types of networks: local-area networks
and wide-area networks. The main difference between the two is the way in
which they are distributed geographically. In local-area networks, processors are
distributed over small geographical areas, such as a single building or a number
of adjacent buildings. In wide-area networks, on the other hand, a number of
autonomous processors are distributed over a large geographical area (such as
the United States or the entire world). These differences imply major variations
in the speed and reliability of the communication network, and are reflected in
the distributed operating-system design.

printer laptop file server

workstation workstation workstation

gateway

application server

Figure 17.10 Local-area network.
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17.5.1 Local-Area Networks

Local-area networks (LANs) (Figure 17.10) emerged in the early 1970s as a way for
computers to communicate and to share data with one another. People recognized
that, for many enterprises, numerous small computers, each with its own self-
contained applications, are more economical than a single large system. Because
each small computer is likely to need access to a full complement of peripheral
devices (such as disks and printers), and because some form of data sharing is
likely to occur in a single enterprise, it was a natural step to connect these small
systems into a network.

LANs are generally used in an office environment. All the sites in such systems
are close to one another, so the communication links tend to have a higher speed
and lower error rate than do their counterparts in wide-area networks. The most
common links in a local-area network are twisted pair, coaxial cable, fiber optics,
and wireless connections. Communication speeds range from tens of megabits
per second (for wireless local-area networks), to 1 gigabit per second for Gigabit
Ethernet. The most recent Ethernet standard is 10-gigabit Ethernet.

A storage-area network (SAN) is a special type of high-speed local-area net-
work designed to connect large banks of storage devices (disks) to computers
that use the data (see Figure 17.11).

Thus storage-area networks help build large-scale shared-disk systems. The
motivation for using storage-area networks to connect multiple computers to
large banks of storage devices is essentially the same as that for shared-disk
databases, namely:

• Scalability by adding more computers.

• High availability, since data are still accessible even if a computer fails.

LAN/WAN

storage
array

storage
array

data-processing
center

Web content
provider

server
client

client

client
server

tape
library

SAN

Figure 17.11 Storage-area network.
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RAID organizations are used in the storage devices to ensure high availability
of the data, permitting processing to continue even if individual disks fail. Storage-
area networks are usually built with redundancy, such as multiple paths between
nodes, so if a component such as a link or a connection to the network fails, the
network continues to function.

17.5.2 Wide-Area Networks

Wide-area networks (WANs) emerged in the late 1960s, mainly as an academic re-
search project to provide efficient communication among sites, allowing hardware
and software to be shared conveniently and economically by a wide community
of users. Systems that allowed remote terminals to be connected to a central com-
puter via telephone lines were developed in the early 1960s, but they were not
true WANs. The first WAN to be designed and developed was the Arpanet. Work on
the Arpanet began in 1968. The Arpanet has grown from a four-site experimental
network to a worldwide network of networks, the Internet, comprising hundreds
of millions of computer systems. Typical links on the Internet are fiber-optic lines
and, sometimes, satellite channels. Data rates for wide-area links typically range
from a few megabits per second to hundreds of gigabits per second. The last link,
to end user sites, has traditionally been the slowest link, using such technologies
as digital subscriber line (DSL) technology (supporting a few megabits per second)
or dial-up modem connections over land-based telephone lines (supporting up
to 56 kilobits per second). Today, the last link is typically a cable modem or fiber
optic connection (each supporting tens of megabits per second), or a wireless
connection supporting several megabits per second.

In addition to limits on data rates, communication in a WAN must also contend
with significant latency: a message may take up to a few hundred milliseconds to
be delivered across the world, both due to speed of light delays, and due to queu-
ing delays at a number of routers in the path of the message. Applications whose
data and computing resources are distributed geographically have to be carefully
designed to ensure latency does not affect system performance excessively.

WANs can be classified into two types:

• In discontinuous connection WANs, such as those based on mobile wireless
connections, hosts are connected to the network only part of the time.

• In continuous connection WANs, such as the wired Internet, hosts are con-
nected to the network at all times.

Networks that are not continuously connected typically do not allow transac-
tions across sites, but may keep local copies of remote data, and refresh the copies
periodically (every night, for instance). For applications where consistency is not
critical, such as sharing of documents, groupware systems such as Lotus Notes
allow updates of remote data to be made locally, and the updates are then prop-
agated back to the remote site periodically. There is a potential for conflicting
updates at different sites, conflicts that have to be detected and resolved. A mech-
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anism for detecting conflicting updates is described later, in Section 25.5.4; the
resolution mechanism for conflicting updates is, however, application dependent.

17.6 Summary

• Centralized database systems run entirely on a single computer. With the
growth of personal computers and local-area networking, the database front-
end functionality has moved increasingly to clients, with server systems
providing the back-end functionality. Client–server interface protocols have
helped the growth of client–server database systems.

• Servers can be either transaction servers or data servers, although the use
of transaction servers greatly exceeds the use of data servers for providing
database services.

◦ Transaction servers have multiple processes, possibly running on multiple
processors. So that these processes have access to common data, such as
the database buffer, systems store such data in shared memory. In addition
to processes that handle queries, there are system processes that carry out
tasks such as lock and log management and checkpointing.

◦ Data-server systems supply raw data to clients. Such systems strive to
minimize communication between clients and servers by caching data and
locks at the clients. Parallel database systems use similar optimizations.

• Parallel database systems consist of multiple processors and multiple disks
connected by a fast interconnection network. Speedup measures how much
we can increase processing speed by increasing parallelism for a single trans-
action. Scaleup measures how well we can handle an increased number of
transactions by increasing parallelism. Interference, skew, and start-up costs
act as barriers to getting ideal speedup and scaleup.

• Parallel database architectures include the shared-memory, shared-disk, share-
d-nothing, and hierarchical architectures. These architectures have different
trade-offs of scalability versus communication speed.

• A distributed database system is a collection of partially independent database
systems that (ideally) share a common schema, and coordinate processing of
transactions that access nonlocal data. The systems communicate with one
another through a communication network.

• Local-area networks connect nodes that are distributed over small geograph-
ical areas, such as a single building or a few adjacent buildings. Wide-area
networks connect nodes spread over a large geographical area. The Internet
is the most extensively used wide-area network today.

• Storage-area networks are a special type of local-area network designed to
provide fast interconnection between large banks of storage devices and
multiple computers.
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Review Terms

• Centralized systems
• Server systems
• Coarse-granularity parallelism
• Fine-granularity parallelism
• Database process structure
• Mutual exclusion
• Thread
• Server processes

◦ Lock manager process

◦ Database writer process

◦ Log writer process

◦ Checkpoint process

◦ Process monitor process

• Client–server systems
• Transaction server
• Query server
• Data server

◦ Prefetching

◦ De-escalation

◦ Data caching

◦ Cache coherency

◦ Lock caching

◦ Call back

• Parallel systems
• Throughput
• Response time
• Speedup

◦ Linear speedup

◦ Sublinear speedup

• Scaleup

◦ Linear scaleup

◦ Sublinear scaleup

◦ Batch scaleup

◦ Transaction scaleup

• Start-up costs
• Interference
• Skew
• Interconnection networks

◦ Bus

◦ Mesh

◦ Hypercube

• Parallel database architectures

◦ Shared memory

◦ Shared disk (clusters)

◦ Shared nothing

◦ Hierarchical

• Fault tolerance
• Distributed virtual memory
• Nonuniform memory architecture

(NUMA)
• Distributed systems
• Distributed database

◦ Sites (nodes)

◦ Local transaction

◦ Global transaction

◦ Local autonomy

• Multidatabase systems
• Network types

◦ Local-area networks (LAN)

◦ Wide-area networks (WAN)

◦ Storage-area network (SAN)
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Practice Exercises

17.1 Instead of storing shared structures in shared memory, an alternative
architecture would be to store them in the local memory of a special
process, and access the shared data by interprocess communication with
the process. What would be the drawback of such an architecture?

17.2 In typical client–server systems the server machine is much more pow-
erful than the clients; that is, its processor is faster, it may have multiple
processors, and it has more memory and disk capacity. Consider instead a
scenario where client and server machines have exactly the same power.
Would it make sense to build a client–server system in such a scenario?
Why? Which scenario would be better suited to a data-server architecture?

17.3 Consider a database system based on a client–server architecture, with
the server acting as a data server.

a. What is the effect of the speed of the interconnection between the
client and the server on the choice between tuple and page shipping?

b. If page shipping is used, the cache of data at the client can be orga-
nized either as a tuple cache or a page cache. The page cache stores
data in units of a page, while the tuple cache stores data in units of
tuples. Assume tuples are smaller than pages. Describe one benefit
of a tuple cache over a page cache.

17.4 Suppose a transaction is written in C with embedded SQL, and about 80
percent of the time is spent in the SQL code, with the remaining 20 percent
spent in C code. How much speedup can one hope to attain if parallelism
is used only for the SQL code? Explain.

17.5 Some database operations such as joins can see a significant difference in
speed when data (for example, one of the relations involved in a join) fits
in memory as compared to the situation where the data does not fit in
memory. Show how this fact can explain the phenomenon of superlinear
speedup, where an application sees a speedup greater than the amount
of resources allocated to it.

17.6 Parallel systems often have a network structure where sets of n processors
connect to a single Ethernet switch, and the Ethernet switches themselves
connect to another Ethernet switch. Does this architecture correspond to
a bus, mesh or hypercube architecture? If not, how would you describe
this interconnection architecture?

Exercises

17.7 Why is it relatively easy to port a database from a single processor machine
to a multiprocessor machine if individual queries need not be parallelized?
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17.8 Transaction-server architectures are popular for client–server relational
databases, where transactions are short. On the other hand, data-server
architectures are popular for client–server object-oriented database sys-
tems, where transactions are expected to be relatively long. Give two
reasons why data servers may be popular for object-oriented databases
but not for relational databases.

17.9 What is lock de-escalation, and under what conditions is it required? Why
is it not required if the unit of data shipping is an item?

17.10 Suppose you were in charge of the database operations of a company
whose main job is to process transactions. Suppose the company is grow-
ing rapidly each year, and has outgrown its current computer system.
When you are choosing a new parallel computer, what measure is most
relevant—speedup, batch scaleup, or transaction scaleup? Why?

17.11 Database systems are typically implemented as a set of processes (or
threads) sharing a shared memory area.

a. How is access to the shared memory area controlled?

b. Is two-phase locking appropriate for serializing access to the data
structures in shared memory? Explain your answer.

17.12 Is it wise to allow a user process to access the shared memory area of a
database system? Explain your answer.

17.13 What are the factors that can work against linear scaleup in a transaction
processing system? Which of the factors are likely to be the most important
in each of the following architectures: shared memory, shared disk, and
shared nothing?

17.14 Memory systems can be divided into multiple modules, each of which
can be serving a separate request at a given time. What impact would
such a memory architecture have on the number of processors that can be
supported in a shared-memory system?

17.15 Consider a bank that has a collection of sites, each running a database sys-
tem. Suppose the only way the databases interact is by electronic transfer
of money between themselves, using persistent messaging. Would such a
system qualify as a distributed database? Why?
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C H A P T E R18
Parallel Databases

In this chapter, we discuss fundamental algorithms for parallel database systems
that are based on the relational data model. In particular, we focus on the place-
ment of data on multiple disks and the parallel evaluation of relational operations,
both of which have been instrumental in the success of parallel databases.

18.1 Introduction

At one point over two decades ago, parallel database systems had been nearly
written off, even by some of their staunchest advocates. Today, they are suc-
cessfully marketed by practically every database-system vendor. Several trends
fueled this transition:

• The transaction requirements of organizations have grown with increasing
use of computers. Moreover, the growth of the World Wide Web has created
many sites with millions of viewers, and the increasing amounts of data
collected from these viewers has produced extremely large databases at many
companies.

• Organizations are using these increasingly large volumes of data—such as
data about what items people buy, what Web links users click on, and when
people make telephone calls—to plan their activities and pricing. Queries
used for such purposes are called decision-support queries, and the data
requirements for such queries may run into terabytes. Single-processor sys-
tems are not capable of handling such large volumes of data at the required
rates.

• The set-oriented nature of database queries naturally lends itself to paral-
lelization. A number of commercial and research systems have demonstrated
the power and scalability of parallel query processing.

• As microprocessors have become cheap, parallel machines have become com-
mon and relatively inexpensive.

• Individual processors have themselves become parallel machines using mul-
ticore architectures.

797
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As we discussed in Chapter 17, parallelism is used to provide speedup, where
queries are executed faster because more resources, such as processors and disks,
are provided. Parallelism is also used to provide scaleup, where increasing work-
loads are handled without increased response time, via an increase in the degree
of parallelism.

We outlined in Chapter 17 the different architectures for parallel database
systems: shared-memory, shared-disk, shared-nothing, and hierarchical architec-
tures. Briefly, in shared-memory architectures, all processors share a common
memory and disks; in shared-disk architectures, processors have independent
memories, but share disks; in shared-nothing architectures, processors share nei-
ther memory nor disks; and hierarchical architectures have nodes that share
neither memory nor disks with each other, but internally each node has a shared-
memory or a shared-disk architecture.

18.2 I/O Parallelism

In its simplest form, I/O parallelism refers to reducing the time required to retrieve
relations from disk by partitioning the relations over multiple disks. The most
common form of data partitioning in a parallel database environment is horizontal
partitioning. In horizontal partitioning, the tuples of a relation are divided (or
declustered) among many disks, so that each tuple resides on one disk. Several
partitioning strategies have been proposed.

18.2.1 Partitioning Techniques

We present three basic data-partitioning strategies. Assume that there are n disks,
D0, D1, . . . , Dn−1, across which the data are to be partitioned.

• Round-robin. This strategy scans the relation in any order and sends the
ith tuple to disk number Di mod n. The round-robin scheme ensures an even
distribution of tuples across disks; that is, each disk has approximately the
same number of tuples as the others.

• Hash partitioning. This declustering strategy designates one or more attrib-
utes from the given relation’s schema as the partitioning attributes. A hash
function is chosen whose range is {0, 1, . . . , n − 1}. Each tuple of the original
relation is hashed on the partitioning attributes. If the hash function returns
i , then the tuple is placed on disk Di .1

• Range partitioning. This strategy distributes tuples by assigning contiguous
attribute-value ranges to each disk. It chooses a partitioning attribute, A, and
a partitioning vector [v0, v1, . . . , vn−2], such that, if i < j , then vi < v j . The
relation is partitioned as follows: Consider a tuple t such that t[A] = x. If

1Hash-function design is discussed in Section 11.6.1.
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x < v0, then t goes on disk D0. If x ≥ vn−2, then t goes on disk Dn−1. If
vi ≤ x < vi+1, then t goes on disk Di+1.

For example, range partitioning with three disks numbered 0, 1, and 2
may assign tuples with values less than 5 to disk 0, values between 5 and 40
to disk 1, and values greater than 40 to disk 2.

18.2.2 Comparison of Partitioning Techniques

Once a relation has been partitioned among several disks, we can retrieve it in
parallel, using all the disks. Similarly, when a relation is being partitioned, it can
be written to multiple disks in parallel. Thus, the transfer rates for reading or
writing an entire relation are much faster with I/O parallelism than without it.
However, reading an entire relation, or scanning a relation, is only one kind of
access to data. Access to data can be classified as follows:

1. Scanning the entire relation.

2. Locating a tuple associatively (for example, employee name = “Campbell”);
these queries, called point queries, seek tuples that have a specified value
for a specific attribute.

3. Locating all tuples for which the value of a given attribute lies within a
specified range (for example, 10000 < salar y < 20000); these queries are
called range queries.

The different partitioning techniques support these types of access at different
levels of efficiency:

• Round-robin. The scheme is ideally suited for applications that wish to read
the entire relation sequentially for each query. With this scheme, both point
queries and range queries are complicated to process, since each of the n disks
must be used for the search.

• Hash partitioning. This scheme is best suited for point queries based on
the partitioning attribute. For example, if a relation is partitioned on the
telephone number attribute, then we can answer the query “Find the record of
the employee with telephone number = 555-3333” by applying the partitioning
hash function to 555-3333 and then searching that disk. Directing a query to
a single disk saves the start-up cost of initiating a query on multiple disks,
and leaves the other disks free to process other queries.

Hash partitioning is also useful for sequential scans of the entire relation.
If the hash function is a good randomizing function, and the partitioning
attributes form a key of the relation, then the number of tuples in each of
the disks is approximately the same, without much variance. Hence, the time
taken to scan the relation is approximately 1/n of the time required to scan
the relation in a single disk system.

The scheme, however, is not well suited for point queries on nonpartitioning
attributes. Hash-based partitioning is also not well suited for answering range
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queries, since, typically, hash functions do not preserve proximity within a
range. Therefore, all the disks need to be scanned for range queries to be
answered.

• Range partitioning. This scheme is well suited for point and range queries on
the partitioning attribute. For point queries, we can consult the partitioning
vector to locate the disk where the tuple resides. For range queries, we consult
the partitioning vector to find the range of disks on which the tuples may
reside. In both cases, the search narrows to exactly those disks that might
have any tuples of interest.

An advantage of this feature is that, if there are only a few tuples in the
queried range, then the query is typically sent to one disk, as opposed to
all the disks. Since other disks can be used to answer other queries, range
partitioning results in higher throughput while maintaining good response
time. On the other hand, if there are many tuples in the queried range (as
there are when the queried range is a larger fraction of the domain of the
relation), many tuples have to be retrieved from a few disks, resulting in
an I/O bottleneck (hot spot) at those disks. In this example of execution
skew, all processing occurs in one—or only a few—partitions. In contrast,
hash partitioning and round-robin partitioning would engage all the disks
for such queries, giving a faster response time for approximately the same
throughput.

The type of partitioning also affects other relational operations, such as joins,
as we shall see in Section 18.5. Thus, the choice of partitioning technique also
depends on the operations that need to be executed. In general, hash partitioning
or range partitioning are preferred to round-robin partitioning.

In a system with many disks, the number of disks across which to partition
a relation can be chosen in this way: If a relation contains only a few tuples that
will fit into a single disk block, then it is better to assign the relation to a single
disk. Large relations are preferably partitioned across all the available disks. If a
relation consists of m disk blocks and there are n disks available in the system,
then the relation should be allocated min(m, n) disks.

18.2.3 Handling of Skew

When a relation is partitioned (by a technique other than round-robin), there may
be a skew in the distribution of tuples, with a high percentage of tuples placed
in some partitions and fewer tuples in other partitions. The ways that skew may
appear are classified as:

• Attribute-value skew.

• Partition skew.

Attribute-value skew refers to the fact that some values appear in the par-
titioning attributes of many tuples. All the tuples with the same value for the
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partitioning attribute end up in the same partition, resulting in skew. Partition
skew refers to the fact that there may be load imbalance in the partitioning, even
when there is no attribute skew.

Attribute-value skew can result in skewed partitioning regardless of whether
range partitioning or hash partitioning is used. If the partition vector is not chosen
carefully, range partitioning may result in partition skew. Partition skew is less
likely with hash partitioning, if a good hash function is chosen.

As Section 17.3.1 noted, even a small skew can result in a significant decrease
in performance. Skew becomes an increasing problem with a higher degree of
parallelism. For example, if a relation of 1000 tuples is divided into 10 parts, and
the division is skewed, then there may be some partitions of size less than 100
and some partitions of size more than 100; if even one partition happens to be of
size 200, the speedup that we would obtain by accessing the partitions in parallel
is only 5, instead of the 10 for which we would have hoped. If the same relation
has to be partitioned into 100 parts, a partition will have 10 tuples on an average.
If even one partition has 40 tuples (which is possible, given the large number of
partitions) the speedup that we would obtain by accessing them in parallel would
be 25, rather than 100. Thus, we see that the loss of speedup due to skew increases
with parallelism.

A balanced range-partitioning vector can be constructed by sorting: The
relation is first sorted on the partitioning attributes. The relation is then scanned
in sorted order. After every 1/n of the relation has been read, the value of the
partitioning attribute of the next tuple is added to the partition vector. Here, n
denotes the number of partitions to be constructed. In case there are many tuples
with the same value for the partitioning attribute, the technique can still result
in some skew. The main disadvantage of this method is the extra I/O overhead
incurred in doing the initial sort.

The I/O overhead for constructing balanced range-partition vectors can be
reduced by constructing and storing a frequency table, or histogram, of the at-
tribute values for each attribute of each relation. Figure 18.1 shows an example of
a histogram for an integer-valued attribute that takes values in the range 1 to 25. A
histogram takes up only a little space, so histograms on several different attributes
can be stored in the system catalog. It is straightforward to construct a balanced
range-partitioning function given a histogram on the partitioning attributes. If
the histogram is not stored, it can be computed approximately by sampling the
relation, using only tuples from a randomly chosen subset of the disk blocks of
the relation.

Another approach to minimizing the effect of skew, particularly with range
partitioning, is to use virtual processors. In the virtual processor approach, we
pretend there are several times as many virtual processors as the number of real
processors. Any of the partitioning techniques and query-evaluation techniques
that we study later in this chapter can be used, but they map tuples and work
to virtual processors instead of to real processors. Virtual processors, in turn, are
mapped to real processors, usually by round-robin partitioning.

The idea is that even if one range had many more tuples than the others
because of skew, these tuples would get split across multiple virtual processor
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Figure 18.1 Example of histogram.

ranges. Round-robin allocation of virtual processors to real processors would
distribute the extra work among multiple real processors, so that one processor
does not have to bear all the burden.

18.3 Interquery Parallelism

In interquery parallelism, different queries or transactions execute in parallel
with one another. Transaction throughput can be increased by this form of paral-
lelism. However, the response times of individual transactions are no faster than
they would be if the transactions were run in isolation. Thus, the primary use of
interquery parallelism is to scale up a transaction-processing system to support
a larger number of transactions per second.

Interquery parallelism is the easiest form of parallelism to support in a
database system—particularly in a shared-memory parallel system. Database
systems designed for single-processor systems can be used with few or no changes
on a shared-memory parallel architecture, since even sequential database systems
support concurrent processing. Transactions that would have operated in a time-
shared concurrent manner on a sequential machine operate in parallel in the
shared-memory parallel architecture.

Supporting interquery parallelism is more complicated in a shared-disk or
shared-nothing architecture. Processors have to perform some tasks, such as
locking and logging, in a coordinated fashion, and that requires that they pass
messages to each other. A parallel database system must also ensure that two
processors do not update the same data independently at the same time. Further,
when a processor accesses or updates data, the database system must ensure that
the processor has the latest version of the data in its buffer pool. The problem of
ensuring that the version is the latest is known as the cache-coherency problem.
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Various protocols are available to guarantee cache coherency; often, cache-
coherency protocols are integrated with concurrency-control protocols so that
their overhead is reduced. One such protocol for a shared-disk system is this:

1. Before any read or write access to a page, a transaction locks the page in
shared or exclusive mode, as appropriate. Immediately after the transaction
obtains either a shared or exclusive lock on a page, it also reads the most
recent copy of the page from the shared disk.

2. Before a transaction releases an exclusive lock on a page, it flushes the page
to the shared disk; then, it releases the lock.

This protocol ensures that, when a transaction sets a shared or exclusive lock on
a page, it gets the correct copy of the page.

More complex protocols avoid the repeated reading and writing to disk re-
quired by the preceding protocol. Such protocols do not write pages to disk when
exclusive locks are released. When a shared or exclusive lock is obtained, if the
most recent version of a page is in the buffer pool of some processor, the page
is obtained from there. The protocols have to be designed to handle concurrent
requests. The shared-disk protocols can be extended to shared-nothing architec-
tures by this scheme: Each page has a home processor Pi , and is stored on disk
Di . When other processors want to read or write the page, they send requests to
the home processor Pi of the page, since they cannot directly communicate with
the disk. The other actions are the same as in the shared-disk protocols.

The Oracle and Oracle Rdb systems are examples of shared-disk parallel
database systems that support interquery parallelism.

18.4 Intraquery Parallelism

Intraquery parallelism refers to the execution of a single query in parallel on
multiple processors and disks. Using intraquery parallelism is important for
speeding up long-running queries. Interquery parallelism does not help in this
task, since each query is run sequentially.

To illustrate the parallel evaluation of a query, consider a query that requires
a relation to be sorted. Suppose that the relation has been partitioned across
multiple disks by range partitioning on some attribute, and the sort is requested
on the partitioning attribute. The sort operation can be implemented by sorting
each partition in parallel, then concatenating the sorted partitions to get the final
sorted relation.

Thus, we can parallelize a query by parallelizing individual operations. There
is another source of parallelism in evaluating a query: The operator tree for a query
can contain multiple operations. We can parallelize the evaluation of the operator
tree by evaluating in parallel some of the operations that do not depend on one
another. Further, as Chapter 12 mentions, we may be able to pipeline the output
of one operation to another operation. The two operations can be executed in
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parallel on separate processors, one generating output that is consumed by the
other, even as it is generated.

In summary, the execution of a single query can be parallelized in two different
ways:

• Intraoperation parallelism. We can speed up processing of a query by par-
allelizing the execution of each individual operation, such as sort, select,
project, and join. We consider intraoperation parallelism in Section 18.5.

• Interoperation parallelism. We can speed up processing of a query by exe-
cuting in parallel the different operations in a query expression. We consider
this form of parallelism in Section 18.6.

The two forms of parallelism are complementary, and can be used simulta-
neously on a query. Since the number of operations in a typical query is small,
compared to the number of tuples processed by each operation, the first form of
parallelism can scale better with increasing parallelism. However, with the rela-
tively small number of processors in typical parallel systems today, both forms of
parallelism are important.

In the following discussion of parallelization of queries, we assume that the
queries are read only. The choice of algorithms for parallelizing query evalu-
ation depends on the machine architecture. Rather than present algorithms for
each architecture separately, we use a shared-nothing architecture model in our
description. Thus, we explicitly describe when data have to be transferred from
one processor to another. We can simulate this model easily by using the other
architectures, since transfer of data can be done via shared memory in a shared-
memory architecture, and via shared disks in a shared-disk architecture. Hence,
algorithms for shared-nothing architectures can be used on the other architec-
tures, too. We mention occasionally how the algorithms can be further optimized
for shared-memory or shared-disk systems.

To simplify the presentation of the algorithms, assume that there are n proces-
sors, P0, P1, . . . , Pn−1, and n disks D0, D1, . . . , Dn−1, where disk Di is associated
with processor Pi . A real system may have multiple disks per processor. It is not
hard to extend the algorithms to allow multiple disks per processor: We simply
allow Di to be a set of disks. However, for simplicity, we assume here that Di is a
single disk.

18.5 Intraoperation Parallelism

Since relational operations work on relations containing large sets of tuples, we
can parallelize the operations by executing them in parallel on different subsets
of the relations. Since the number of tuples in a relation can be large, the degree of
parallelism is potentially enormous. Thus, intraoperation parallelism is natural
in a database system. We shall study parallel versions of some common relational
operations in Sections 18.5.1 through 18.5.3.
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18.5.1 Parallel Sort

Suppose that we wish to sort a relation that resides on n disks D0, D1, . . . , Dn−1.
If the relation has been range-partitioned on the attributes on which it is to be
sorted, then, as noted in Section 18.2.2, we can sort each partition separately, and
can concatenate the results to get the full sorted relation. Since the tuples are
partitioned on n disks, the time required for reading the entire relation is reduced
by the parallel access.

If the relation has been partitioned in any other way, we can sort it in one of
two ways:

1. We can range-partition it on the sort attributes, and then sort each partition
separately.

2. We can use a parallel version of the external sort–merge algorithm.

18.5.1.1 Range-Partitioning Sort

Range-partitioning sort works in two steps: first range partitioning the relation,
then sorting each partition separately. When we sort by range partitioning the
relation, it is not necessary to range-partition the relation on the same set of
processors or disks as those on which that relation is stored. Suppose that we
choose processors P0, P1, . . . , Pm, where m < n, to sort the relation. There are two
steps involved in this operation:

1. Redistribute the tuples in the relation, using a range-partition strategy, so
that all tuples that lie within the ith range are sent to processor Pi , which
stores the relation temporarily on disk Di .

To implement range partitioning, in parallel every processor reads the
tuples from its disk and sends the tuples to their destination processors.
Each processor P0, P1, . . . , Pm also receives tuples belonging to its partition,
and stores them locally. This step requires disk I/O and communication
overhead.

2. Each of the processors sorts its partition of the relation locally, without
interaction with the other processors. Each processor executes the same
operation—namely, sorting—on a different data set. (Execution of the same
operation in parallel on different sets of data is called data parallelism.)

The final merge operation is trivial, because the range partitioning in the
first phase ensures that, for 1 ≤ i < j ≤ m, the key values in processor Pi
are all less than the key values in Pj .

We must do range partitioning with a good range-partition vector, so that each
partition will have approximately the same number of tuples. Virtual processor
partitioning can also be used to reduce skew.
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18.5.1.2 Parallel External Sort–Merge

Parallel external sort–merge is an alternative to range partitioning. Suppose that
a relation has already been partitioned among disks D0, D1, . . . , Dn−1 (it does not
matter how the relation has been partitioned). Parallel external sort–merge then
works this way:

1. Each processor Pi locally sorts the data on disk Di .

2. The system then merges the sorted runs on each processor to get the final
sorted output.

The merging of the sorted runs in step 2 can be parallelized by this sequence
of actions:

1. The system range-partitions the sorted partitions at each processor Pi (all
by the same partition vector) across the processors P0, P1, . . . , Pm−1. It sends
the tuples in sorted order, so that each processor receives the tuples in sorted
streams.

2. Each processor Pi performs a merge on the streams as they are received, to
get a single sorted run.

3. The system concatenates the sorted runs on processors P0, P1, . . . , Pm−1 to
get the final result.

As described, this sequence of actions results in an interesting form of execution
skew, since at first every processor sends all blocks of partition 0 to P0, then
every processor sends all blocks of partition 1 to P1, and so on. Thus, while
sending happens in parallel, receiving tuples becomes sequential: First only P0
receives tuples, then only P1 receives tuples, and so on. To avoid this problem,
each processor repeatedly sends a block of data to each partition. In other words,
each processor sends the first block of every partition, then sends the second block
of every partition, and so on. As a result, all processors receive data in parallel.

Some machines, such as the Teradata Purpose-Built Platform Family ma-
chines, use specialized hardware to perform merging. The BYNET interconnection
network in the Teradata machines can merge output from multiple processors to
give a single sorted output.

18.5.2 Parallel Join

The join operation requires that the system test pairs of tuples to see whether
they satisfy the join condition; if they do, the system adds the pair to the join
output. Parallel join algorithms attempt to split the pairs to be tested over several
processors. Each processor then computes part of the join locally. Then, the system
collects the results from each processor to produce the final result.
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18.5.2.1 Partitioned Join

For certain kinds of joins, such as equi-joins and natural joins, it is possible to
partition the two input relations across the processors and to compute the join
locally at each processor. Suppose that we are using n processors and that the
relations to be joined are r and s. Partitioned join then works this way: The system
partitions the relations r and s each into n partitions, denoted r0, r1, . . . , rn−1 and
s0, s1, . . . , sn−1. The system sends partitions ri and si to processor Pi , where their
join is computed locally.

The partitioned join technique works correctly only if the join is an equi-join
(for example, r �r.A=s.B s) and if we partition r and s by the same partitioning
function on their join attributes. The idea of partitioning is exactly the same as
that behind the partitioning step of hash join. In a partitioned join, however, there
are two different ways of partitioning r and s:

• Range partitioning on the join attributes.

• Hash partitioning on the join attributes.

In either case, the same partitioning function must be used for both relations.
For range partitioning, the same partition vector must be used for both relations.
For hash partitioning, the same hash function must be used on both relations.
Figure 18.2 depicts the partitioning in a partitioned parallel join.

Once the relations are partitioned, we can use any join technique locally at
each processor Pi to compute the join of ri and si . For example, hash join, merge
join, or nested-loop join could be used. Thus, we can use partitioning to parallelize
any join technique.
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Figure 18.2 Partitioned parallel join.
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If one or both of the relations r and s are already partitioned on the join
attributes (by either hash partitioning or range partitioning), the work needed
for partitioning is reduced greatly. If the relations are not partitioned, or are
partitioned on attributes other than the join attributes, then the tuples need to
be repartitioned. Each processor Pi reads in the tuples on disk Di , computes for
each tuple t the partition j to which t belongs, and sends tuple t to processor Pj .
Processor Pj stores the tuples on disk Dj .

We can optimize the join algorithm used locally at each processor to reduce
I/O by buffering some of the tuples to memory, instead of writing them to disk.
We describe such optimizations in Section 18.5.2.3.

Skew presents a special problem when range partitioning is used, since a
partition vector that splits one relation of the join into equal-sized partitions
may split the other relations into partitions of widely varying size. The partition
vector should be such that |ri | + |si | (that is, the sum of the sizes of ri and si ) is
roughly equal over all the i = 0, 1, . . . , n − 1. With a good hash function, hash
partitioning is likely to have a smaller skew, except when there are many tuples
with the same values for the join attributes.

18.5.2.2 Fragment-and-Replicate Join

Partitioning is not applicable to all types of joins. For instance, if the join condition
is an inequality, such as r �r.a<s.b s, it is possible that all tuples in r join with some
tuple in s (and vice versa). Thus, there may be no easy way of partitioning r and
s so that tuples in partition ri join with only tuples in partition si .

We can parallelize such joins by using a technique called fragment and replicate.
We first consider a special case of fragment and replicate—asymmetric fragment-
and-replicate join—which works as follows:

1. The system partitions one of the relations—say, r . Any partitioning tech-
nique can be used on r , including round-robin partitioning.

2. The system replicates the other relation, s, across all the processors.

3. Processor Pi then locally computes the join of ri with all of s, using any join
technique.

The asymmetric fragment-and-replicate scheme appears in Figure 18.3a. If r is
already stored by partitioning, there is no need to partition it further in step 1. All
that is required is to replicate s across all processors.

The general case of fragment-and-replicate join appears in Figure 18.3b; it
works this way: The system partitions relation r into n partitions, r0, r1, . . . , rn−1,
and partitions s into m partitions, s0, s1, . . . , sm−1. As before, any partitioning
technique may be used on r and on s. The values of m and n do not need to
be equal, but they must be chosen so that there are at least m ∗ n processors.
Asymmetric fragment and replicate is simply a special case of general fragment
and replicate, where m = 1. Fragment and replicate reduces the sizes of the
relations at each processor, compared to asymmetric fragment and replicate.
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Figure 18.3 Fragment-and-replicate schemes.

Let the processors be P0,0, P0,1, . . . , P0,m−1, P1,0, . . . , Pn−1,m−1. Processor Pi, j
computes the join of ri with s j . Each processor must get those tuples in the
partitions on which it works. To accomplish this, the system replicates ri to pro-
cessors Pi,0, Pi,1, . . . , Pi,m−1 (which form a row in Figure 18.3b), and replicates si
to processors P0,i , P1,i , . . . , Pn−1,i (which form a column in Figure 18.3b). Any join
technique can be used at each processor Pi, j .

Fragment and replicate works with any join condition, since every tuple in
r can be tested with every tuple in s. Thus, it can be used where partitioning
cannot be.

Fragment and replicate usually has a higher cost than partitioning when both
relations are of roughly the same size, since at least one of the relations has to be
replicated. However, if one of the relations—say, s —is small, it may be cheaper
to replicate s across all processors, rather than to repartition r and s on the join
attributes. In such a case, asymmetric fragment and replicate is preferable, even
though partitioning could be used.

18.5.2.3 Partitioned Parallel Hash Join

The partitioned hash join of Section 12.5.5 can be parallelized. Suppose that we
have n processors, P0, P1, . . . , Pn−1, and two relations r and s, such that the
relations r and s are partitioned across multiple disks. Recall from Section 12.5.5
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that the smaller relation is chosen as the build relation. If the size of s is less than
that of r , the parallel hash-join algorithm proceeds this way:

1. Choose a hash function—say, h1 —that takes the join attribute value of
each tuple in r and s and maps the tuple to one of the n processors. Let ri
denote the tuples of relation r that are mapped to processor Pi ; similarly,
let si denote the tuples of relation s that are mapped to processor Pi . Each
processor Pi reads the tuples of s that are on its disk Di and sends each tuple
to the appropriate processor on the basis of hash function h1.

2. As the destination processor Pi receives the tuples of si , it further partitions
them by another hash function, h2, which the processor uses to compute the
hash join locally. The partitioning at this stage is exactly the same as in the
partitioning phase of the sequential hash-join algorithm. Each processor Pi
executes this step independently from the other processors.

3. Once the tuples of s have been distributed, the system redistributes the larger
relation r across the n processors by the hash function h1, in the same way
as before. As it receives each tuple, the destination processor repartitions it
by the function h2, just as the probe relation is partitioned in the sequential
hash-join algorithm.

4. Each processor Pi executes the build and probe phases of the hash-join
algorithm on the local partitions ri and si of r and s to produce a partition
of the final result of the hash join.

The hash join at each processor is independent of that at other processors, and
receiving the tuples of ri and si is similar to reading them from disk. Therefore,
any of the optimizations of the hash join described in Chapter 12 can be applied as
well to the parallel case. In particular, we can use the hybrid hash-join algorithm
to cache some of the incoming tuples in memory, and thus avoid the costs of
writing them and of reading them back in.

18.5.2.4 Parallel Nested-Loop Join

To illustrate the use of fragment-and-replicate–based parallelization, consider the
case where the relation s is much smaller than relation r . Suppose that relation r
is stored by partitioning; the attribute on which it is partitioned does not matter.
Suppose too that there is an index on a join attribute of relation r at each of the
partitions of relation r .

We use asymmetric fragment and replicate, with relation s being replicated
and with the existing partitioning of relation r . Each processor Pj where a partition
of relation s is stored reads the tuples of relation s stored in Dj , and replicates the
tuples to every other processor Pi . At the end of this phase, relation s is replicated
at all sites that store tuples of relation r .

Now, each processor Pi performs an indexed nested-loop join of relation s
with the ith partition of relation r . We can overlap the indexed nested-loop join
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with the distribution of tuples of relation s, to reduce the costs of writing the
tuples of relation s to disk, and of reading them back. However, the replication of
relation s must be synchronized with the join so that there is enough space in the
in-memory buffers at each processor Pi to hold the tuples of relation s that have
been received but that have not yet been used in the join.

18.5.3 Other Relational Operations

The evaluation of other relational operations also can be parallelized:

• Selection. Let the selection be ��(r ). Consider first the case where � is of the
form ai = v, where ai is an attribute and v is a value. If the relation r is
partitioned on ai , the selection proceeds at a single processor. If � is of the
form l ≤ ai ≤ u—that is, � is a range selection—and the relation has been
range-partitioned on ai , then the selection proceeds at each processor whose
partition overlaps with the specified range of values. In all other cases, the
selection proceeds in parallel at all the processors.

• Duplicate elimination. Duplicates can be eliminated by sorting; either of
the parallel sort techniques can be used, optimized to eliminate duplicates
as soon as they appear during sorting. We can also parallelize duplicate
elimination by partitioning the tuples (by either range or hash partitioning)
and eliminating duplicates locally at each processor.

• Projection. Projection without duplicate elimination can be performed as
tuples are read in from disk in parallel. If duplicates are to be eliminated,
either of the techniques just described can be used.

• Aggregation. Consider an aggregation operation. We can parallelize the op-
eration by partitioning the relation on the grouping attributes, and then com-
puting the aggregate values locally at each processor. Either hash partitioning
or range partitioning can be used. If the relation is already partitioned on the
grouping attributes, the first step can be skipped.

We can reduce the cost of transferring tuples during partitioning by partly
computing aggregate values before partitioning, at least for the commonly
used aggregate functions. Consider an aggregation operation on a relation r ,
using the sum aggregate function on attribute B, with grouping on attribute
A. The system can perform the operation at each processor Pi on those r tuples
stored on disk Di . This computation results in tuples with partial sums at each
processor; there is one tuple at Pi for each value for attribute A present in r
tuples stored on Di . The system partitions the result of the local aggregation
on the grouping attribute A, and performs the aggregation again (on tuples
with the partial sums) at each processor Pi to get the final result.

As a result of this optimization, fewer tuples need to be sent to other
processors during partitioning. This idea can be extended easily to the min
and max aggregate functions. Extensions to the count and avg aggregate
functions are left for you to do in Exercise 18.12.
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The parallelization of other operations is covered in several of the exercises.

18.5.4 Cost of Parallel Evaluation of Operations

We achieve parallelism by partitioning the I/O among multiple disks, and par-
titioning the CPU work among multiple processors. If such a split is achieved
without any overhead, and if there is no skew in the splitting of work, a parallel
operation using n processors will take 1/n times as long as the same operation
on a single processor. We already know how to estimate the cost of an operation
such as a join or a selection. The time cost of parallel processing would then be
1/n of the time cost of sequential processing of the operation.

We must also account for the following costs:

• Start-up costs for initiating the operation at multiple processors.

• Skew in the distribution of work among the processors, with some processors
getting a larger number of tuples than others.

• Contention for resources—such as memory, disk, and the communication
network—resulting in delays.

• Cost of assembling the final result by transmitting partial results from each
processor.

The time taken by a parallel operation can be estimated as:

Tpart + Tasm + max(T0, T1, . . . , Tn−1)

where Tpart is the time for partitioning the relations, Tasm is the time for assembling
the results, and Ti is the time taken for the operation at processor Pi . Assuming
that the tuples are distributed without any skew, the number of tuples sent to
each processor can be estimated as 1/n of the total number of tuples. Ignoring
contention, the cost Ti of the operations at each processor Pi can then be estimated
by the techniques in Chapter 12.

The preceding estimate will be an optimistic estimate, since skew is common.
Even though breaking down a single query into a number of parallel steps reduces
the size of the average step, it is the time for processing the single slowest step
that determines the time taken for processing the query as a whole. A partitioned
parallel evaluation, for instance, is only as fast as the slowest of the parallel
executions. Thus, any skew in the distribution of the work across processors
greatly affects performance.

The problem of skew in partitioning is closely related to the problem of
partition overflow in sequential hash joins (Chapter 12). We can use overflow
resolution and avoidance techniques developed for hash joins to handle skew
when hash partitioning is used. We can use balanced range partitioning and
virtual processor partitioning to minimize skew due to range partitioning, as in
Section 18.2.3.
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18.6 Interoperation Parallelism

There are two forms of interoperation parallelism: pipelined parallelism and
independent parallelism.

18.6.1 Pipelined Parallelism

As discussed in Chapter 12, pipelining forms an important source of economy of
computation for database query processing. Recall that, in pipelining, the output
tuples of one operation, A, are consumed by a second operation, B, even before
the first operation has produced the entire set of tuples in its output. The major
advantage of pipelined execution in a sequential evaluation is that we can carry
out a sequence of such operations without writing any of the intermediate results
to disk.

Parallel systems use pipelining primarily for the same reason that sequential
systems do. However, pipelines are a source of parallelism as well, in the same
way that instruction pipelines are a source of parallelism in hardware design. It is
possible to run operations Aand B simultaneously on different processors, so that
B consumes tuples in parallel with A producing them. This form of parallelism
is called pipelined parallelism.

Consider a join of four relations:

r1 � r2 � r3 � r4

We can set up a pipeline that allows the three joins to be computed in parallel.
Suppose processor P1 is assigned the computation of temp1 ← r1 � r2, and P2
is assigned the computation of r3 � temp1. As P1 computes tuples in r1 � r2,
it makes these tuples available to processor P2. Thus, P2 has available to it some
of the tuples in r1 � r2 before P1 has finished its computation. P2 can use those
tuples that are available to begin computation of temp1 � r3, even before r1 � r2
is fully computed by P1. Likewise, as P2 computes tuples in (r1 � r2) � r3, it
makes these tuples available to P3, which computes the join of these tuples with
r4.

Pipelined parallelism is useful with a small number of processors, but does
not scale up well. First, pipeline chains generally do not attain sufficient length
to provide a high degree of parallelism. Second, it is not possible to pipeline rela-
tional operators that do not produce output until all inputs have been accessed,
such as the set-difference operation. Third, only marginal speedup is obtained for
the frequent cases in which one operator’s execution cost is much higher than are
those of the others.

All things considered, when the degree of parallelism is high, pipelining is a
less important source of parallelism than partitioning. The real reason for using
pipelining is that pipelined executions can avoid writing intermediate results to
disk.
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18.6.2 Independent Parallelism

Operations in a query expression that do not depend on one another can be
executed in parallel. This form of parallelism is called independent parallelism.

Consider the join r1 � r2 � r3 � r4. Clearly, we can compute temp1 ←
r1 � r2 in parallel with temp2 ← r3 � r4. When these two computations
complete, we compute:

temp1 � temp2

To obtain further parallelism, we can pipeline the tuples in temp1 and temp2 into
the computation of temp1 � temp2, which is itself carried out by a pipelined join
(Section 12.7.2.2).

Like pipelined parallelism, independent parallelism does not provide a high
degree of parallelism and is less useful in a highly parallel system, although it is
useful with a lower degree of parallelism.

18.7 Query Optimization

Query optimizers account in large measure for the success of relational technol-
ogy. Recall that a query optimizer takes a query and finds the cheapest execution
plan among the many possible execution plans that give the same answer.

Query optimizers for parallel query evaluation are more complicated than
query optimizers for sequential query evaluation. First, the cost models are more
complicated, since partitioning costs have to be accounted for, and issues such as
skew and resource contention must be taken into account. More important is the
issue of how to parallelize a query. Suppose that we have somehow chosen an
expression (from among those equivalent to the query) to be used for evaluating
the query. The expression can be represented by an operator tree, as in Section 12.1.

To evaluate an operator tree in a parallel system, we must make the following
decisions:

• How to parallelize each operation, and how many processors to use for it.

• What operations to pipeline across different processors, what operations to
execute independently in parallel, and what operations to execute sequen-
tially, one after the other.

These decisions constitute the task of scheduling the execution tree.
Determining the resources of each kind—such as processors, disks, and mem-

ory—that should be allocated to each operation in the tree is another aspect of
the optimization problem. For instance, it may appear wise to use the maximum
amount of parallelism available, but it is a good idea not to execute certain opera-
tions in parallel. Operations whose computational requirements are significantly
smaller than the communication overhead should be clustered with one of their



18.8 Design of Parallel Systems 815

neighbors. Otherwise, the advantage of parallelism is negated by the overhead
of communication.

One concern is that long pipelines do not lend themselves to good resource
utilization. Unless the operations are coarse grained, the final operation of the
pipeline may wait for a long time to get inputs, while holding precious resources,
such as memory. Hence, long pipelines should be avoided.

The number of parallel evaluation plans from which to choose is much larger
than the number of sequential evaluation plans. Optimizing parallel queries by
considering all alternatives is therefore much more expensive than optimizing
sequential queries. Hence, we usually adopt heuristic approaches to reduce the
number of parallel execution plans that we have to consider. We describe two
popular heuristics here.

The first heuristic is to consider only evaluation plans that parallelize every
operation across all processors, and that do not use any pipelining. This approach
is used in the Teradata systems. Finding the best such execution plan is like doing
query optimization in a sequential system. The main differences lie in how the
partitioning is performed and what cost-estimation formula is used.

The second heuristic is to choose the most efficient sequential evaluation plan,
and then to parallelize the operations in that evaluation plan. The Volcano paral-
lel database popularized a model of parallelization called the exchange-operator
model. This model uses existing implementations of operations, operating on
local copies of data, coupled with an exchange operation that moves data around
between different processors. Exchange operators can be introduced into an eval-
uation plan to transform it into a parallel evaluation plan.

Yet another dimension of optimization is the design of physical-storage or-
ganization to speed up queries. The optimal physical organization differs for
different queries. The database administrator must choose a physical organiza-
tion that appears to be good for the expected mix of database queries. Thus, the
area of parallel query optimization is complex, and it is still an area of active
research.

18.8 Design of Parallel Systems

So far this chapter has concentrated on parallelization of data storage and of
query processing. Since large-scale parallel database systems are used primarily
for storing large volumes of data, and for processing decision-support queries
on those data, these topics are the most important in a parallel database system.
Parallel loading of data from external sources is an important requirement, if we
are to handle large volumes of incoming data.

A large parallel database system must also address these availability issues:

• Resilience to failure of some processors or disks.

• Online reorganization of data and schema changes.

We consider these issues here.
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With a large number of processors and disks, the probability that at least
one processor or disk will malfunction is significantly greater than in a single-
processor system with one disk. A poorly designed parallel system will stop
functioning if any component (processor or disk) fails. Assuming that the proba-
bility of failure of a single processor or disk is small, the probability of failure of
the system goes up linearly with the number of processors and disks. If a single
processor or disk would fail once every 5 years, a system with 100 processors
would have a failure every 18 days.

Therefore, large-scale parallel database systems, such as Teradata, and IBM
Informix XPS, are designed to operate even if a processor or disk fails. Data are
replicated across at least two processors. If a processor fails, the data that it stored
can still be accessed from the other processors. The system keeps track of failed
processors and distributes the work among functioning processors. Requests for
data stored at the failed site are automatically routed to the backup sites that
store a replica of the data. If all the data of a processor A are replicated at a single
processor B, B will have to handle all the requests to A as well as those to itself,
and that will result in B becoming a bottleneck. Therefore, the replicas of the data
of a processor are partitioned across multiple other processors.

When we are dealing with large volumes of data (ranging in the terabytes),
simple operations, such as creating indices, and changes to schema, such as
adding a column to a relation, can take a long time—perhaps hours or even days.
Therefore, it is unacceptable for the database system to be unavailable while such
operations are in progress. Most database systems allow such operations to be
performed online, that is, while the system is executing other transactions.

Consider, for instance, online index construction. A system that supports this
feature allows insertions, deletions, and updates on a relation even as an index
is being built on the relation. The index-building operation therefore cannot lock
the entire relation in shared mode, as it would have done otherwise. Instead,
the process keeps track of updates that occur while it is active and incorporates
the changes into the index being constructed. (Most database systems today
support online index construction, since this feature is very important even for
non-parallel database systems.)

In recent years, a number of companies have developed new parallel database
products, including Netezza, DATAllegro (which was acquired by Microsoft),
Greenplum, and Aster Data. Each of these products runs on systems containing
tens to thousands of nodes, with each node running an instance of an underlying
database; Each product manages the partitioning of data, as well as parallel
processing of queries, across the database instances.

Netezza, Greenplum and Aster Data use PostgreSQL as the underlying data-
base; DATAllegro originally used Ingres as the underlying database system, but
moved to SQL Server subsequent to its acquisition by Microsoft. By building on
top of an existing database system, these systems are able to leverage the data stor-
age, query processing, and transaction management features of the underlying
database, leaving them free to focus on data partitioning (including replication
for fault tolerance), fast interprocessor communication, parallel query process-
ing, and parallel-query optimization. Another benefit of using a public domain
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database such as PostgreSQL is that the software cost per node is very low; in
contrast commercial databases have a significant per-processor cost.

It is also worth mentioning that Netezza and DATAllegro actually sell data
warehouse “appliances”, which include hardware and software, allowing cus-
tomers to build parallel databases with minimal effort.

18.9 Parallelism on Multicore Processors

Parallelism has become commonplace on most computers today, even some of
the smallest, due to current trends in computer architecture. As a result, virtually
all database systems today run on a parallel platform. In this section, we shall
explore briefly the reasons for this architectural trend and the effects this has on
database system design and implementation.

18.9.1 Parallelism versus Raw Speed

Since the dawn of computers, processor speed has increased at an exponential
rate, doubling every 18 to 24 months. This increase results from an exponential
growth in the number of transistors that could be fit within a unit area of a silicon
chip, and is known popularly as Moore’s law, named after Intel co-founder
Gordon Moore. Technically, Moore’s law is not a law, but rather an observation
and a prediction regarding technology trends. Until recently, the increase in the
number of transistors and the decrease in their size led to ever-faster processors.
Although technological progress continues to behave as predicted by Moore’s law,
another factor has emerged to slow the growth in processor speed. Fast processors
are power inefficient. This is problematic in terms of energy consumption and
cost, battery life for mobile computers, and heat dissipation (all the power used
eventually turns into heat). As a result, modern processors typically are not one
single processor but rather consist of several processors on one chip. To maintain a
distinction between on-chip multiprocessors and traditional processors, the term
core is used for an on-chip processor. Thus we say that a machine has a multicore
processor.2

18.9.2 Cache Memory and Multithreading

Each core is capable of processing an independent stream of machine instructions.
However, because processors are able to process data faster than it can be accessed
from main memory, main memory can become a bottleneck that limits overall
performance. For this reason, computer designers include one or more levels of
cache memory in a computer system. Cache memory is more costly than main
memory on a per-byte basis, but offers a faster access time. In multilevel cache
designs, the levels are called L1, L2, and so on, with L1 being the fastest cache
(and thus the most costly per byte and therefore the smallest), L2 the next fastest,

2The use of the term core here is different from the use of that term in the early days of computing to refer to a
main-memory technology based on magnetic cores.
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and so on. The result is an extension of the storage hierarchy that we discussed
in Chapter 10 to include the various levels of cache below main memory.

Although the database system can control the transfer of data between disk
and main memory, the computer hardware maintains control over the transfer
of data among the various levels of cache and between cache and main memory.
Despite this lack of direct control, the database system’s performance can be
affected by how cache is utilized. If a core needs to access a data item that is not in
cache, it must be fetched from main memory. Because main memory is so much
slower than processors, a significant amount of potential processing speed may
be lost while a core waits for data from main memory. These waits are referred to
as cache misses.

One way in which computer designers attempt to limit the impact of cache
misses is via multithreading. A thread is an execution stream that shares memory3

with other threads running on the same core. If the thread currently executing on
a core suffers a cache miss (or other type of wait), the core proceeds to execute
another thread, thereby not wasting computing speed while waiting.

Threads introduce yet another source of parallelism beyond the multiplicity of
cores. Each new generation of processors supports more cores and more threads.
The Sun UltraSPARC T2 processor has 8 cores, each of which supports 8 threads,
for a total of 64 threads on one processor chip.

The architecture trend of slower increase in raw speed accompanied by the
growth in the number of cores has significant implications for database system
design, as we shall see shortly.

18.9.3 Adapting Database System Design for Modern Architectures

It would appear that database systems are an ideal application to take advantage
of large numbers of cores and threads, since database systems support large
numbers of concurrent transactions. However, there are a variety of factors that
make optimal use of modern processors challenging.

As we allow a higher degree of concurrency to take advantage of the par-
allelism of modern processors, we increase the amount of data that needs to be
in cache. This can result in more cache misses, perhaps so many that even a
multithreaded core has to wait for data from memory.

Concurrent transactions need some sort of concurrency control to ensure the
ACID properties that we discussed in Chapter 14. When concurrent transactions
access data in common, some sort of restrictions must be imposed on that concur-
rent access. Those restrictions, whether based on locks, timestamps, or validation,
result in waiting or the loss of work due to transaction aborts. To avoid excessive
amounts of waiting or lost work, it is ideal that concurrent transactions conflict
rarely, but attempting to ensure that can increase the amount of data needed in
cache, resulting in more cache misses.

Finally, there are components of a database system shared by all transactions.
In a system using locking, the lock table is shared by all transactions and access to

3Technically, in operating-system terminology, its address space.
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it can become a bottleneck. Similar problems exist for other forms of concurrency
control. Similarly, the buffer manager, the log manager, and the recovery manager
serve all transactions and are potential bottlenecks.

Because having a large number of concurrent transactions may not take opti-
mal advantage of modern processors, it is desirable to find ways to allow multiple
cores to work on a single transaction. This requires the database query processor
to find effective ways to parallelize queries without creating excessive demands
on cache. This can be done by creating pipelines of database operations from
queries and by finding ways to parallelize individual database operations.

The adaptation of database system design and database query processing to
multicore and multithreaded systems remains an area of active research. See the
bibliographical notes for further details.

18.10 Summary

• Parallel databases have gained significant commercial acceptance in the past
20 years.

• In I/O parallelism, relations are partitioned among available disks so that
they can be retrieved faster. Three commonly used partitioning techniques
are round-robin partitioning, hash partitioning, and range partitioning.

• Skew is a major problem, especially with increasing degrees of parallelism.
Balanced partitioning vectors, using histograms, and virtual processor parti-
tioning are among the techniques used to reduce skew.

• In interquery parallelism, we run different queries concurrently to increase
throughput.

• Intraquery parallelism attempts to reduce the cost of running a query. There
are two types of intraquery parallelism: intraoperation parallelism and inter-
operation parallelism.

• We use intraoperation parallelism to execute relational operations, such as
sorts and joins, in parallel. Intraoperation parallelism is natural for relational
operations, since they are set oriented.

• There are two basic approaches to parallelizing a binary operation such as a
join.

◦ In partitioned parallelism, the relations are split into several parts, and
tuples in ri are joined only with tuples from si . Partitioned parallelism can
be used only for natural and equi-joins.

◦ In fragment and replicate, both relations are partitioned and each partition
is replicated. In asymmetric fragment and replicate, one of the relations is
replicated while the other is partitioned. Unlike partitioned parallelism,
fragment and replicate and asymmetric fragment and replicate can be
used with any join condition.
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Both parallelization techniques can work in conjunction with any join tech-
nique.

• In independent parallelism, different operations that do not depend on one
another are executed in parallel.

• In pipelined parallelism, processors send the results of one operation to an-
other operation as those results are computed, without waiting for the entire
operation to finish.

• Query optimization in parallel databases is significantly more complex than
query optimization in sequential databases.

• Modern multicore processors are introducing new research problems in par-
allel databases.

Review Terms

• Decision-support queries
• I/O parallelism
• Horizontal partitioning
• Partitioning techniques

◦ Round-robin

◦ Hash partitioning

◦ Range partitioning

• Partitioning attribute
• Partitioning vector
• Point query
• Range query
• Skew

◦ Execution skew

◦ Attribute-value skew

◦ Partition skew

• Handling of skew

◦ Balanced range-partitioning
vector

◦ Histogram

◦ Virtual processors

• Interquery parallelism

• Cache coherency
• Intraquery parallelism

◦ Intraoperation parallelism

◦ Interoperation parallelism

• Parallel sort

◦ Range-partitioning sort

◦ Parallel external sort–merge

• Data parallelism
• Parallel join

◦ Partitioned join

◦ Fragment-and-replicate join

◦ Asymmetric fragment-and-
replicate join

◦ Partitioned parallel hash join

◦ Parallel nested-loop join

• Parallel selection
• Parallel duplicate elimination
• Parallel projection
• Parallel aggregation
• Cost of parallel evaluation
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• Interoperation parallelism

◦ Pipelined parallelism

◦ Independent parallelism

• Query optimization

• Scheduling
• Exchange-operator model
• Design of parallel systems
• Online index construction
• Multicore processors

Practice Exercises

18.1 In a range selection on a range-partitioned attribute, it is possible that only
one disk may need to be accessed. Describe the benefits and drawbacks
of this property.

18.2 What form of parallelism (interquery, interoperation, or intraoperation) is
likely to be the most important for each of the following tasks?

a. Increasing the throughput of a system with many small queries

b. Increasing the throughput of a system with a few large queries, when
the number of disks and processors is large

18.3 With pipelined parallelism, it is often a good idea to perform several
operations in a pipeline on a single processor, even when many processors
are available.

a. Explain why.

b. Would the arguments you advanced in part a hold if the machine
has a shared-memory architecture? Explain why or why not.

c. Would the arguments in part a hold with independent parallelism?
(That is, are there cases where, even if the operations are not pipelined
and there are many processors available, it is still a good idea to per-
form several operations on the same processor?)

18.4 Consider join processing using symmetric fragment and replicate with
range partitioning. How can you optimize the evaluation if the join con-
dition is of the form | r.A− s.B | ≤ k, where k is a small constant? Here,
| x | denotes the absolute value of x. A join with such a join condition is
called a band join.

18.5 Recall that histograms are used for constructing load-balanced range par-
titions.

a. Suppose you have a histogram where values are between 1 and 100,
and are partitioned into 10 ranges, 1–10, 11–20, . . . , 91–100, with
frequencies 15, 5, 20, 10, 10, 5, 5, 20, 5, and 5, respectively. Give a
load-balanced range partitioning function to divide the values into
5 partitions.
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b. Write an algorithm for computing a balanced range partition with p
partitions, given a histogram of frequency distributions containing
n ranges.

18.6 Large-scale parallel database systems store an extra copy of each data
item on disks attached to a different processor, to avoid loss of data if one
of the processors fails.

a. Instead of keeping the extra copy of data items from a processor at
a single backup processor, it is a good idea to partition the copies
of the data items of a processor across multiple processors. Explain
why.

b. Explain how virtual-processor partitioning can be used to efficiently
implement the partitioning of the copies as described above.

c. What are the benefits and drawbacks of using RAID storage instead
of storing an extra copy of each data item?

18.7 Suppose we wish to index a large relation that is partitioned. Can the
idea of partitioning (including virtual processor partitioning) be applied
to indices? Explain your answer, considering the following two cases
(assuming for simplicity that partitioning as well as indexing are on single
attributes):

a. Where the index is on the partitioning attribute of the relation.

b. Where the index is on an attribute other than the partitioning at-
tribute of the relation.

18.8 Suppose a well-balanced range-partitioning vector had been chosen for a
relation, but the relation is subsequently updated, making the partitioning
unbalanced. Even if virtual-processor partitioning is used, a particular
virtual processor may end up with a very large number of tuples after the
update, and repartitioning would then be required.

a. Suppose a virtual processor has a significant excess of tuples (say,
twice the average). Explain how repartitioning can be done by split-
ting the partition, thereby increasing the number of virtual proces-
sors.

b. If, instead of round-robin allocation of virtual processors, virtual
partitions can be allocated to processors in an arbitrary fashion,
with a mapping table tracking the allocation. If a particular node
has excess load (compared to the others), explain how load can be
balanced.

c. Assuming there are no updates, does query processing have to be
stopped while repartitioning, or reallocation of virtual processors,
is carried out? Explain your answer.
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Exercises

18.9 For each of the three partitioning techniques, namely round-robin, hash
partitioning, and range partitioning, give an example of a query for which
that partitioning technique would provide the fastest response.

18.10 What factors could result in skew when a relation is partitioned on one of
its attributes by:

a. Hash partitioning?

b. Range partitioning?

In each case, what can be done to reduce the skew?

18.11 Give an example of a join that is not a simple equi-join for which parti-
tioned parallelism can be used. What attributes should be used for parti-
tioning?

18.12 Describe a good way to parallelize each of the following:

a. The difference operation

b. Aggregation by the count operation

c. Aggregation by the count distinct operation

d. Aggregation by the avg operation

e. Left outer join, if the join condition involves only equality

f. Left outer join, if the join condition involves comparisons other than
equality

g. Full outer join, if the join condition involves comparisons other than
equality

18.13 Describe the benefits and drawbacks of pipelined parallelism.

18.14 Suppose you wish to handle a workload consisting of a large number of
small transactions by using shared-nothing parallelism.

a. Is intraquery parallelism required in such a situation? If not, why,
and what form of parallelism is appropriate?

b. What form of skew would be of significance with such a workload?

c. Suppose most transactions accessed one account record, which in-
cludes an account type attribute, and an associated account type master
record, which provides information about the account type. How
would you partition and/or replicate data to speed up transactions?
You may assume that the account type master relation is rarely up-
dated.
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18.15 The attribute on which a relation is partitioned can have a significant
impact on the cost of a query.

a. Given a workload of SQL queries on a single relation, what attributes
would be candidates for partitioning?

b. How would you choose between the alternative partitioning tech-
niques, based on the workload?

c. Is it possible to partition a relation on more than one attribute?
Explain your answer.
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Distributed Databases

Unlike parallel systems, in which the processors are tightly coupled and consti-
tute a single database system, a distributed database system consists of loosely
coupled sites that share no physical components. Furthermore, the database sys-
tems that run on each site may have a substantial degree of mutual independence.
We discussed the basic structure of distributed systems in Chapter 17.

Each site may participate in the execution of transactions that access data at
one site, or several sites. The main difference between centralized and distributed
database systems is that, in the former, the data reside in one single location,
whereas in the latter, the data reside in several locations. This distribution of data
is the cause of many difficulties in transaction processing and query processing.
In this chapter, we address these difficulties.

We start by classifying distributed databases as homogeneous or heteroge-
neous, in Section 19.1. We then address the question of how to store data in a
distributed database in Section 19.2. In Section 19.3, we outline a model for trans-
action processing in a distributed database. In Section 19.4, we describe how to
implement atomic transactions in a distributed database by using special com-
mit protocols. In Section 19.5, we describe concurrency control in distributed
databases. In Section 19.6, we outline how to provide high availability in a dis-
tributed database by exploiting replication, so the system can continue processing
transactions even when there is a failure. We address query processing in dis-
tributed databases in Section 19.7. In Section 19.8, we outline issues in handling
heterogeneous databases. In Section 19.10, we describe directory systems, which
can be viewed as a specialized form of distributed databases.

In this chapter, we illustrate all our examples using the bank database of
Figure 19.1.

19.1 Homogeneous and Heterogeneous Databases

In a homogeneous distributed database system, all sites have identical database-
management system software, are aware of one another, and agree to cooperate in
processing users’ requests. In such a system, local sites surrender a portion of their
autonomy in terms of their right to change schemas or database-management

825



826 Chapter 19 Distributed Databases

branch(branch name, branch city, assets)
account (account number, branch name, balance)
depositor (customer name, account number)

Figure 19.1 Banking database.

system software. That software must also cooperate with other sites in exchanging
information about transactions, to make transaction processing possible across
multiple sites.

In contrast, in a heterogeneous distributed database, different sites may use
different schemas, and different database-management system software. The sites
may not be aware of one another, and they may provide only limited facilities
for cooperation in transaction processing. The differences in schemas are often a
major problem for query processing, while the divergence in software becomes a
hindrance for processing transactions that access multiple sites.

In this chapter, we concentrate on homogeneous distributed databases. How-
ever, in Section 19.8 we briefly discuss issues in heterogeneous distributed database
systems.

19.2 Distributed Data Storage

Consider a relation r that is to be stored in the database. There are two approaches
to storing this relation in the distributed database:

• Replication. The system maintains several identical replicas (copies) of the
relation, and stores each replica at a different site. The alternative to replica-
tion is to store only one copy of relation r.

• Fragmentation. The system partitions the relation into several fragments,
and stores each fragment at a different site.

Fragmentation and replication can be combined: A relation can be partitioned
into several fragments and there may be several replicas of each fragment. In the
following subsections, we elaborate on each of these techniques.

19.2.1 Data Replication

If relation r is replicated, a copy of relation r is stored in two or more sites. In the
most extreme case, we have full replication, in which a copy is stored in every
site in the system.

There are a number of advantages and disadvantages to replication.

• Availability. If one of the sites containing relation r fails, then the relation r
can be found in another site. Thus, the system can continue to process queries
involving r, despite the failure of one site.
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• Increased parallelism. In the case where the majority of accesses to the rela-
tion r result in only the reading of the relation, then several sites can process
queries involving r in parallel. The more replicas of r there are, the greater the
chance that the needed data will be found in the site where the transaction
is executing. Hence, data replication minimizes movement of data between
sites.

• Increased overhead on update. The system must ensure that all replicas of a
relation r are consistent; otherwise, erroneous computations may result. Thus,
whenever r is updated, the update must be propagated to all sites containing
replicas. The result is increased overhead. For example, in a banking system,
where account information is replicated in various sites, it is necessary to
ensure that the balance in a particular account agrees in all sites.

In general, replication enhances the performance of read operations and in-
creases the availability of data to read-only transactions. However, update trans-
actions incur greater overhead. Controlling concurrent updates by several trans-
actions to replicated data is more complex than in centralized systems, which we
studied in Chapter 15. We can simplify the management of replicas of relation
r by choosing one of them as the primary copy of r. For example, in a banking
system, an account can be associated with the site in which the account has been
opened. Similarly, in an airline-reservation system, a flight can be associated with
the site at which the flight originates. We shall examine the primary copy scheme
and other options for distributed concurrency control in Section 19.5.

19.2.2 Data Fragmentation

If relation r is fragmented, r is divided into a number of fragments r1, r2, . . . , rn.
These fragments contain sufficient information to allow reconstruction of the
original relation r. There are two different schemes for fragmenting a relation:
horizontal fragmentation and vertical fragmentation. Horizontal fragmentation
splits the relation by assigning each tuple of r to one or more fragments. Vertical
fragmentation splits the relation by decomposing the scheme R of relation r.

In horizontal fragmentation, a relation r is partitioned into a number of
subsets, r1, r2, . . . , rn. Each tuple of relation r must belong to at least one of the
fragments, so that the original relation can be reconstructed, if needed.

As an illustration, the account relation can be divided into several different
fragments, each of which consists of tuples of accounts belonging to a particular
branch. If the banking system has only two branches—Hillside and Valleyview
—then there are two different fragments:

account1 = �branch name = “Hillside” (account)
account2 = �branch name = “Valleyview” (account)

Horizontal fragmentation is usually used to keep tuples at the sites where they
are used the most, to minimize data transfer.
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In general, a horizontal fragment can be defined as a selection on the global
relation r. That is, we use a predicate Pi to construct fragment ri :

ri = �Pi (r )

We reconstruct the relation r by taking the union of all fragments; that is:

r = r1 ∪ r2 ∪ · · · ∪ rn

In our example, the fragments are disjoint. By changing the selection predi-
cates used to construct the fragments, we can have a particular tuple of r appear
in more than one of the ri .

In its simplest form, vertical fragmentation is the same as decomposition
(see Chapter 8). Vertical fragmentation of r(R) involves the definition of several
subsets of attributes R1, R2, . . . , Rn of the schema R so that:

R = R1 ∪ R2 ∪ · · · ∪ Rn

Each fragment ri of r is defined by:

ri = �Ri (r )

The fragmentation should be done in such a way that we can reconstruct relation
r from the fragments by taking the natural join:

r = r1 � r2 � r3 � · · · � rn

One way of ensuring that the relation r can be reconstructed is to include the
primary-key attributes of R in each Ri . More generally, any superkey can be used.
It is often convenient to add a special attribute, called a tuple-id, to the schema
R. The tuple-id value of a tuple is a unique value that distinguishes the tuple
from all other tuples. The tuple-id attribute thus serves as a candidate key for the
augmented schema, and is included in each Ri . The physical or logical address
for a tuple can be used as a tuple-id, since each tuple has a unique address.

To illustrate vertical fragmentation, consider a university database with a re-
lation employee info that stores, for each employee, employee id, name, designation,
and salary. For privacy reasons, this relation may be fragmented into a relation em-
ployee private info containing employee id and salary, and another relation employee
public info containing attributes employee id, name, and designation. These may be

stored at different sites, again, possibly for security reasons.
The two types of fragmentation can be applied to a single schema; for instance,

the fragments obtained by horizontally fragmenting a relation can be further
partitioned vertically. Fragments can also be replicated. In general, a fragment
can be replicated, replicas of fragments can be fragmented further, and so on.
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19.2.3 Transparency

The user of a distributed database system should not be required to know where
the data are physically located nor how the data can be accessed at the specific
local site. This characteristic, called data transparency, can take several forms:

• Fragmentation transparency. Users are not required to know how a relation
has been fragmented.

• Replication transparency. Users view each data object as logically unique.
The distributed system may replicate an object to increase either system
performance or data availability. Users do not have to be concerned with
what data objects have been replicated, or where replicas have been placed.

• Location transparency. Users are not required to know the physical location
of the data. The distributed database system should be able to find any data
as long as the data identifier is supplied by the user transaction.

Data items—such as relations, fragments, and replicas—must have unique
names. This property is easy to ensure in a centralized database. In a distributed
database, however, we must take care to ensure that two sites do not use the same
name for distinct data items.

One solution to this problem is to require all names to be registered in a
central name server. The name server helps to ensure that the same name does
not get used for different data items. We can also use the name server to locate a
data item, given the name of the item. This approach, however, suffers from two
major disadvantages. First, the name server may become a performance bottle-
neck when data items are located by their names, resulting in poor performance.
Second, if the name server crashes, it may not be possible for any site in the
distributed system to continue to run.

A more widely used alternative approach requires that each site prefix its
own site identifier to any name that it generates. This approach ensures that
no two sites generate the same name (since each site has a unique identifier).
Furthermore, no central control is required. This solution, however, fails to achieve
location transparency, since site identifiers are attached to names. Thus, the account
relation might be referred to as site17. account, or account@site17, rather than as
simply account. Many database systems use the Internet address (IP address) of a
site to identify it.

To overcome this problem, the database system can create a set of alternative
names, or aliases, for data items. A user may thus refer to data items by simple
names that are translated by the system to complete names. The mapping of
aliases to the real names can be stored at each site. With aliases, the user can be
unaware of the physical location of a data item. Furthermore, the user will be
unaffected if the database administrator decides to move a data item from one
site to another.

Users should not have to refer to a specific replica of a data item. Instead,
the system should determine which replica to reference on a read request, and
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should update all replicas on a write request. We can ensure that it does so by
maintaining a catalog table, which the system uses to determine all replicas for
the data item.

19.3 Distributed Transactions

Access to the various data items in a distributed system is usually accomplished
through transactions, which must preserve the ACID properties (Section 14.1).
There are two types of transaction that we need to consider. The local transactions
are those that access and update data in only one local database; the global
transactions are those that access and update data in several local databases.
Ensuring the ACID properties of the local transactions can be done as described in
Chapters 14, 15, and 16. However, for global transactions, this task is much more
complicated, since several sites may be participating in execution. The failure of
one of these sites, or the failure of a communication link connecting these sites,
may result in erroneous computations.

In this section, we study the system structure of a distributed database and
its possible failure modes. In Section 19.4, we study protocols for ensuring atomic
commit of global transactions, and in Section 19.5 we study protocols for concur-
rency control in distributed databases. In Section 19.6, we study how a distributed
database can continue functioning even in the presence of various types of failure.

19.3.1 System Structure

Each site has its own local transaction manager, whose function is to ensure the
ACID properties of those transactions that execute at that site. The various trans-
action managers cooperate to execute global transactions. To understand how
such a manager can be implemented, consider an abstract model of a transaction
system, in which each site contains two subsystems:

• The transaction manager manages the execution of those transactions (or
subtransactions) that access data stored in a local site. Note that each such
transaction may be either a local transaction (that is, a transaction that exe-
cutes at only that site) or part of a global transaction (that is, a transaction
that executes at several sites).

• The transaction coordinator coordinates the execution of the various trans-
actions (both local and global) initiated at that site.

The overall system architecture appears in Figure 19.2.
The structure of a transaction manager is similar in many respects to the

structure of a centralized system. Each transaction manager is responsible for:

• Maintaining a log for recovery purposes.
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Figure 19.2 System architecture.

• Participating in an appropriate concurrency-control scheme to coordinate the
concurrent execution of the transactions executing at that site.

As we shall see, we need to modify both the recovery and concurrency schemes
to accommodate the distribution of transactions.

The transaction coordinator subsystem is not needed in the centralized en-
vironment, since a transaction accesses data at only a single site. A transaction
coordinator, as its name implies, is responsible for coordinating the execution of
all the transactions initiated at that site. For each such transaction, the coordinator
is responsible for:

• Starting the execution of the transaction.

• Breaking the transaction into a number of subtransactions and distributing
these subtransactions to the appropriate sites for execution.

• Coordinating the termination of the transaction, which may result in the
transaction being committed at all sites or aborted at all sites.

19.3.2 System Failure Modes

A distributed system may suffer from the same types of failure that a centralized
system does (for example, software errors, hardware errors, or disk crashes).
There are, however, additional types of failure with which we need to deal in a
distributed environment. The basic failure types are:

• Failure of a site.

• Loss of messages.
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• Failure of a communication link.

• Network partition.

The loss or corruption of messages is always a possibility in a distributed
system. The system uses transmission-control protocols, such as TCP/IP, to handle
such errors. Information about such protocols may be found in standard textbooks
on networking (see the bibliographical notes).

However, if two sites A and B are not directly connected, messages from
one to the other must be routed through a sequence of communication links. If a
communication link fails, messages that would have been transmitted across the
link must be rerouted. In some cases, it is possible to find another route through
the network, so that the messages are able to reach their destination. In other
cases, a failure may result in there being no connection between some pairs of
sites. A system is partitioned if it has been split into two (or more) subsystems,
called partitions, that lack any connection between them. Note that, under this
definition, a partition may consist of a single node.

19.4 Commit Protocols

If we are to ensure atomicity, all the sites in which a transaction T executed must
agree on the final outcome of the execution. T must either commit at all sites, or
it must abort at all sites. To ensure this property, the transaction coordinator of T
must execute a commit protocol.

Among the simplest and most widely used commit protocols is the two-phase
commit protocol (2PC), which is described in Section 19.4.1. An alternative is the
three-phase commit protocol (3PC), which avoids certain disadvantages of the
2PC protocol but adds to complexity and overhead. Section 19.4.2 briefly outlines
the 3PC protocol.

19.4.1 Two-Phase Commit

We first describe how the two-phase commit protocol (2PC) operates during nor-
mal operation, then describe how it handles failures and finally how it carries out
recovery and concurrency control.

Consider a transaction T initiated at site Si , where the transaction coordinator
is Ci .

19.4.1.1 The Commit Protocol

When T completes its execution—that is, when all the sites at which T has exe-
cuted inform Ci that T has completed—Ci starts the 2PC protocol.

• Phase 1. Ci adds the record <prepare T> to the log, and forces the log onto
stable storage. It then sends a prepare T message to all sites at which T
executed. On receiving such a message, the transaction manager at that site
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determines whether it is willing to commit its portion of T. If the answer is
no, it adds a record <no T> to the log, and then responds by sending an abort
T message to Ci . If the answer is yes, it adds a record <ready T> to the log,
and forces the log (with all the log records corresponding to T) onto stable
storage. The transaction manager then replies with a ready T message to Ci .

• Phase 2. When Ci receives responses to the prepare T message from all the
sites, or when a prespecified interval of time has elapsed since the prepare
T message was sent out, Ci can determine whether the transaction T can be
committed or aborted. Transaction T can be committed if Ci received a ready
T message from all the participating sites. Otherwise, transaction T must be
aborted. Depending on the verdict, either a record <commit T> or a record
<abort T> is added to the log and the log is forced onto stable storage. At this
point, the fate of the transaction has been sealed. Following this point, the
coordinator sends either a commit T or an abort T message to all participating
sites. When a site receives that message, it records the message in the log.

A site at which T executed can unconditionally abort T at any time before
it sends the message ready T to the coordinator. Once the message is sent, the
transaction is said to be in the ready state at the site. The ready T message is,
in effect, a promise by a site to follow the coordinator’s order to commit T or to
abort T. To make such a promise, the needed information must first be stored
in stable storage. Otherwise, if the site crashes after sending ready T, it may be
unable to make good on its promise. Further, locks acquired by the transaction
must continue to be held until the transaction completes.

Since unanimity is required to commit a transaction, the fate of T is sealed as
soon as at least one site responds abort T. Since the coordinator site Si is one of
the sites at which T executed, the coordinator can decide unilaterally to abort T.
The final verdict regarding T is determined at the time that the coordinator writes
that verdict (commit or abort) to the log and forces that verdict to stable storage.
In some implementations of the 2PC protocol, a site sends an acknowledge T
message to the coordinator at the end of the second phase of the protocol. When
the coordinator receives the acknowledge T message from all the sites, it adds the
record <complete T> to the log.

19.4.1.2 Handling of Failures

The 2PC protocol responds in different ways to various types of failures:

• Failure of a participating site. If the coordinator Ci detects that a site has
failed, it takes these actions: If the site fails before responding with a ready
T message to Ci , the coordinator assumes that it responded with an abort T
message. If the site fails after the coordinator has received the ready T message
from the site, the coordinator executes the rest of the commit protocol in the
normal fashion, ignoring the failure of the site.

When a participating site Sk recovers from a failure, it must examine its log
to determine the fate of those transactions that were in the midst of execution
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when the failure occurred. Let T be one such transaction. We consider each
of the possible cases:

◦ The log contains a <commit T> record. In this case, the site executes
redo(T).

◦ The log contains an <abort T> record. In this case, the site executes
undo(T).

◦ The log contains a <ready T> record. In this case, the site must consult
Ci to determine the fate of T. If Ci is up, it notifies Sk regarding whether
T committed or aborted. In the former case, it executes redo(T); in the
latter case, it executes undo(T). If Ci is down, Sk must try to find the
fate of T from other sites. It does so by sending a querystatus T message
to all the sites in the system. On receiving such a message, a site must
consult its log to determine whether T has executed there, and if T has,
whether T committed or aborted. It then notifies Sk about this outcome. If
no site has the appropriate information (that is, whether T committed or
aborted), then Sk can neither abort nor commit T. The decision concerning
T is postponed until Sk can obtain the needed information. Thus, Sk must
periodically resend the querystatus message to the other sites. It continues
to do so until a site that contains the needed information recovers. Note
that the site at which Ci resides always has the needed information.

◦ The log contains no control records (abort, commit, ready) concerning T.
Thus, we know that Sk failed before responding to the prepare T message
from Ci . Since the failure of Sk precludes the sending of such a response,
by our algorithm Ci must abort T. Hence, Sk must execute undo(T).

• Failure of the coordinator. If the coordinator fails in the midst of the execution
of the commit protocol for transaction T, then the participating sites must
decide the fate of T. We shall see that, in certain cases, the participating sites
cannot decide whether to commit or abort T, and therefore these sites must
wait for the recovery of the failed coordinator.

◦ If an active site contains a <commit T> record in its log, then T must be
committed.

◦ If an active site contains an <abort T> record in its log, then T must be
aborted.

◦ If some active site does not contain a <ready T> record in its log, then
the failed coordinator Ci cannot have decided to commit T, because a site
that does not have a <ready T> record in its log cannot have sent a ready
T message to Ci . However, the coordinator may have decided to abort T,
but not to commit T. Rather than wait for Ci to recover, it is preferable to
abort T.

◦ If none of the preceding cases holds, then all active sites must have a
<ready T> record in their logs, but no additional control records (such
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as <abort T> or <commit T>). Since the coordinator has failed, it is
impossible to determine whether a decision has been made, and if one
has, what that decision is, until the coordinator recovers. Thus, the active
sites must wait for Ci to recover. Since the fate of T remains in doubt, T may
continue to hold system resources. For example, if locking is used, T may
hold locks on data at active sites. Such a situation is undesirable, because
it may be hours or days before Ci is again active. During this time, other
transactions may be forced to wait for T. As a result, data items may be
unavailable not only on the failed site (Ci ), but on active sites as well. This
situation is called the blocking problem, because T is blocked pending
the recovery of site Ci .

• Network partition. When a network partitions, two possibilities exist:

1. The coordinator and all its participants remain in one partition. In this
case, the failure has no effect on the commit protocol.

2. The coordinator and its participants belong to several partitions. From
the viewpoint of the sites in one of the partitions, it appears that the
sites in other partitions have failed. Sites that are not in the partition
containing the coordinator simply execute the protocol to deal with
failure of the coordinator. The coordinator and the sites that are in the
same partition as the coordinator follow the usual commit protocol,
assuming that the sites in the other partitions have failed.

Thus, the major disadvantage of the 2PC protocol is that coordinator failure may
result in blocking, where a decision either to commit or to abort T may have to be
postponed until Ci recovers.

19.4.1.3 Recovery and Concurrency Control

When a failed site restarts, we can perform recovery by using, for example, the
recovery algorithm described in Section 16.4. To deal with distributed commit
protocols, the recovery procedure must treat in-doubt transactions specially; in-
doubt transactions are transactions for which a <ready T> log record is found,
but neither a <commit T> log record nor an <abort T> log record is found. The
recovering site must determine the commit–abort status of such transactions by
contacting other sites, as described in Section 19.4.1.2.

If recovery is done as just described, however, normal transaction processing
at the site cannot begin until all in-doubt transactions have been committed or
rolled back. Finding the status of in-doubt transactions can be slow, since multiple
sites may have to be contacted. Further, if the coordinator has failed, and no other
site has information about the commit–abort status of an incomplete transaction,
recovery potentially could become blocked if 2PC is used. As a result, the site
performing restart recovery may remain unusable for a long period.

To circumvent this problem, recovery algorithms typically provide support
for noting lock information in the log. (We are assuming here that locking is used
for concurrency control.) Instead of writing a <ready T> log record, the algorithm
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writes a <ready T, L> log record, where L is a list of all write locks held by the
transaction T when the log record is written. At recovery time, after performing
local recovery actions, for every in-doubt transaction T , all the write locks noted
in the <ready T, L> log record (read from the log) are reacquired.

After lock reacquisition is complete for all in-doubt transactions, transaction
processing can start at the site, even before the commit–abort status of the in-
doubt transactions is determined. The commit or rollback of in-doubt transactions
proceeds concurrently with the execution of new transactions. Thus, site recovery
is faster, and never gets blocked. Note that new transactions that have a lock
conflict with any write locks held by in-doubt transactions will be unable to make
progress until the conflicting in-doubt transactions have been committed or rolled
back.

19.4.2 Three-Phase Commit

The three-phase commit (3PC) protocol is an extension of the two-phase commit
protocol that avoids the blocking problem under certain assumptions. In partic-
ular, it is assumed that no network partition occurs, and not more than k sites
fail, where k is some predetermined number. Under these assumptions, the pro-
tocol avoids blocking by introducing an extra third phase where multiple sites
are involved in the decision to commit. Instead of directly noting the commit
decision in its persistent storage, the coordinator first ensures that at least k other
sites know that it intended to commit the transaction. If the coordinator fails, the
remaining sites first select a new coordinator. This new coordinator checks the
status of the protocol from the remaining sites; if the coordinator had decided
to commit, at least one of the other k sites that it informed will be up and will
ensure that the commit decision is respected. The new coordinator restarts the
third phase of the protocol if some site knew that the old coordinator intended to
commit the transaction. Otherwise the new coordinator aborts the transaction.

While the 3PC protocol has the desirable property of not blocking unless k
sites fail, it has the drawback that a partitioning of the network may appear to be
the same as more than k sites failing, which would lead to blocking. The protocol
also has to be implemented carefully to ensure that network partitioning (or
more than k sites failing) does not result in inconsistencies, where a transaction
is committed in one partition and aborted in another. Because of its overhead,
the 3PC protocol is not widely used. See the bibliographical notes for references
giving more details of the 3PC protocol.

19.4.3 Alternative Models of Transaction Processing

For many applications, the blocking problem of two-phase commit is not accept-
able. The problem here is the notion of a single transaction that works across
multiple sites. In this section, we describe how to use persistent messaging to avoid
the problem of distributed commit, and then briefly outline the larger issue of
workflows; workflows are considered in more detail in Section 26.2.

To understand persistent messaging, consider how one might transfer funds
between two different banks, each with its own computer. One approach is to have
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a transaction span the two sites and use two-phase commit to ensure atomicity.
However, the transaction may have to update the total bank balance, and blocking
could have a serious impact on all other transactions at each bank, since almost
all transactions at the bank would update the total bank balance.

In contrast, consider how funds transfer by a bank check occurs. The bank
first deducts the amount of the check from the available balance and prints out
a check. The check is then physically transferred to the other bank where it is
deposited. After verifying the check, the bank increases the local balance by the
amount of the check. The check constitutes a message sent between the two banks.
So that funds are not lost or incorrectly increased, the check must not be lost, and
must not be duplicated and deposited more than once. When the bank computers
are connected by a network, persistent messages provide the same service as the
check (but much faster, of course).

Persistent messages are messages that are guaranteed to be delivered to
the recipient exactly once (neither less nor more), regardless of failures, if the
transaction sending the message commits, and are guaranteed to not be delivered
if the transaction aborts. Database recovery techniques are used to implement
persistent messaging on top of the normal network channels, as we shall see
shortly. In contrast, regular messages may be lost or may even be delivered
multiple times in some situations.

Error handling is more complicated with persistent messaging than with two-
phase commit. For instance, if the account where the check is to be deposited has
been closed, the check must be sent back to the originating account and credited
back there. Both sites must therefore be provided with error-handling code, along
with code to handle the persistent messages. In contrast, with two-phase commit,
the error would be detected by the transaction, which would then never deduct
the amount in the first place.

The types of exception conditions that may arise depend on the application,
so it is not possible for the database system to handle exceptions automatically.
The application programs that send and receive persistent messages must include
code to handle exception conditions and bring the system back to a consistent
state. For instance, it is not acceptable to just lose the money being transferred if
the receiving account has been closed; the money must be credited back to the
originating account, and if that is not possible for some reason, humans must be
alerted to resolve the situation manually.

There are many applications where the benefit of eliminating blocking is well
worth the extra effort to implement systems that use persistent messages. In fact,
few organizations would agree to support two-phase commit for transactions
originating outside the organization, since failures could result in blocking of
access to local data. Persistent messaging therefore plays an important role in
carrying out transactions that cross organizational boundaries.

Workflows provide a general model of transaction processing involving mul-
tiple sites and possibly human processing of certain steps. For instance, when
a bank receives a loan application, there are many steps it must take, including
contacting external credit-checking agencies, before approving or rejecting a loan
application. The steps, together, form a workflow. We study workflows in more
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detail in Section 26.2. We also note that persistent messaging forms the underlying
basis for workflows in a distributed environment.

We now consider the implementation of persistent messaging. Persistent
messaging can be implemented on top of an unreliable messaging infrastructure,
which may lose messages or deliver them multiple times, by these protocols:

• Sending site protocol. When a transaction wishes to send a persistent mes-
sage, it writes a record containing the message in a special relation messages to
send, instead of directly sending out the message. The message is also given

a unique message identifier.
A message delivery process monitors the relation, and when a new mes-

sage is found, it sends the message to its destination. The usual database
concurrency-control mechanisms ensure that the system process reads the
message only after the transaction that wrote the message commits; if the
transaction aborts, the usual recovery mechanism would delete the message
from the relation.

The message delivery process deletes a message from the relation only
after it receives an acknowledgment from the destination site. If it receives
no acknowledgement from the destination site, after some time it sends the
message again. It repeats this until an acknowledgment is received. In case
of permanent failures, the system will decide, after some period of time,
that the message is undeliverable. Exception handling code provided by the
application is then invoked to deal with the failure.

Writing the message to a relation and processing it only after the trans-
action commits ensures that the message will be delivered if and only if the
transaction commits. Repeatedly sending it guarantees it will be delivered
even if there are (temporary) system or network failures.

• Receiving site protocol. When a site receives a persistent message, it runs
a transaction that adds the message to a special received messages relation,
provided it is not already present in the relation (the unique message iden-
tifier allows duplicates to be detected). After the transaction commits, or if
the message was already present in the relation, the receiving site sends an
acknowledgment back to the sending site.

Note that sending the acknowledgment before the transaction commits
is not safe, since a system failure may then result in loss of the message.
Checking whether the message has been received earlier is essential to avoid
multiple deliveries of the message.

In many messaging systems, it is possible for messages to get delayed
arbitrarily, although such delays are very unlikely. Therefore, to be safe, the
message must never be deleted from the received messages relation. Deleting
it could result in a duplicate delivery not being detected. But as a result,
the received messages relation may grow indefinitely. To deal with this prob-
lem, each message is given a timestamp, and if the timestamp of a received
message is older than some cutoff, the message is discarded. All messages
recorded in the received messages relation that are older than the cutoff can be
deleted.
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19.5 Concurrency Control in Distributed Databases

We show here how some of the concurrency-control schemes discussed in Chap-
ter 15 can be modified so that they can be used in a distributed environment. We
assume that each site participates in the execution of a commit protocol to ensure
global transaction atomicity.

The protocols we describe in this section require updates to be done on
all replicas of a data item. If any site containing a replica of a data item has
failed, updates to the data item cannot be processed. In Section 19.6, we describe
protocols that can continue transaction processing even if some sites or links have
failed, thereby providing high availability.

19.5.1 Locking Protocols

The various locking protocols described in Chapter 15 can be used in a distributed
environment. The only change that needs to be incorporated is in the way the lock
manager deals with replicated data. We present several possible schemes that are
applicable to an environment where data can be replicated in several sites. As in
Chapter 15, we shall assume the existence of the shared and exclusive lock modes.

19.5.1.1 Single Lock-Manager Approach

In the single lock-manager approach, the system maintains a single lock manager
that resides in a single chosen site—say Si . All lock and unlock requests are made
at site Si . When a transaction needs to lock a data item, it sends a lock request to
Si . The lock manager determines whether the lock can be granted immediately. If
the lock can be granted, the lock manager sends a message to that effect to the site
at which the lock request was initiated. Otherwise, the request is delayed until
it can be granted, at which time a message is sent to the site at which the lock
request was initiated. The transaction can read the data item from any one of the
sites at which a replica of the data item resides. In the case of a write, all the sites
where a replica of the data item resides must be involved in the writing.

The scheme has these advantages:

• Simple implementation. This scheme requires two messages for handling
lock requests and one message for handling unlock requests.

• Simple deadlock handling. Since all lock and unlock requests are made at
one site, the deadlock-handling algorithms discussed in Chapter 15 can be
applied directly.

The disadvantages of the scheme are:

• Bottleneck. The site Si becomes a bottleneck, since all requests must be pro-
cessed there.

• Vulnerability. If the site Si fails, the concurrency controller is lost. Either
processing must stop, or a recovery scheme must be used so that a backup
site can take over lock management from Si , as described in Section 19.6.5.
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19.5.1.2 Distributed Lock Manager

A compromise between the advantages and disadvantages can be achieved
through the distributed-lock-manager approach, in which the lock-manager
function is distributed over several sites.

Each site maintains a local lock manager whose function is to administer the
lock and unlock requests for those data items that are stored in that site. When a
transaction wishes to lock a data item Q that is not replicated and resides at site
Si , a message is sent to the lock manager at site Si requesting a lock (in a particular
lock mode). If data item Q is locked in an incompatible mode, then the request is
delayed until it can be granted. Once it has determined that the lock request can
be granted, the lock manager sends a message back to the initiator indicating that
it has granted the lock request.

We discuss several alternative ways of dealing with replication of data items
in Sections 19.5.1.3 to 19.5.1.6.

The distributed-lock-manager scheme has the advantage of simple imple-
mentation, and reduces the degree to which the coordinator is a bottleneck. It
has a reasonably low overhead, requiring two message transfers for handling
lock requests, and one message transfer for handling unlock requests. However,
deadlock handling is more complex, since the lock and unlock requests are no
longer made at a single site: There may be intersite deadlocks even when there
is no deadlock within a single site. The deadlock-handling algorithms discussed
in Chapter 15 must be modified, as we shall discuss in Section 19.5.4, to detect
global deadlocks.

19.5.1.3 Primary Copy

When a system uses data replication, we can choose one of the replicas as the
primary copy. For each data item Q, the primary copy of Q must reside in precisely
one site, which we call the primary site of Q.

When a transaction needs to lock a data item Q, it requests a lock at the
primary site of Q. As before, the response to the request is delayed until it can
be granted. The primary copy enables concurrency control for replicated data
to be handled like that for unreplicated data. This similarity allows for a simple
implementation. However, if the primary site of Q fails, Q is inaccessible, even
though other sites containing a replica may be accessible.

19.5.1.4 Majority Protocol

The majority protocol works this way: If data item Q is replicated in n different
sites, then a lock-request message must be sent to more than one-half of the n
sites in which Q is stored. Each lock manager determines whether the lock can be
granted immediately (as far as it is concerned). As before, the response is delayed
until the request can be granted. The transaction does not operate on Q until it
has successfully obtained a lock on a majority of the replicas of Q.

We assume for now that writes are performed on all replicas, requiring all sites
containing replicas to be available. However, the major benefit of the majority
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protocol is that it can be extended to deal with site failures, as we shall see in
Section 19.6.1. The protocol also deals with replicated data in a decentralized
manner, thus avoiding the drawbacks of central control. However, it suffers from
these disadvantages:

• Implementation. The majority protocol is more complicated to implement
than are the previous schemes. It requires at least 2(n/2 + 1) messages for
handling lock requests and at least (n/2 + 1) messages for handling unlock
requests.

• Deadlock handling. In addition to the problem of global deadlocks due to
the use of a distributed-lock-manager approach, it is possible for a deadlock
to occur even if only one data item is being locked. As an illustration, consider
a system with four sites and full replication. Suppose that transactions T1 and
T2 wish to lock data item Q in exclusive mode. Transaction T1 may succeed
in locking Q at sites S1 and S3, while transaction T2 may succeed in locking
Q at sites S2 and S4. Each then must wait to acquire the third lock; hence, a
deadlock has occurred. Luckily, we can avoid such deadlocks with relative
ease, by requiring all sites to request locks on the replicas of a data item in
the same predetermined order.

19.5.1.5 Biased Protocol

The biased protocol is another approach to handling replication. The difference
from the majority protocol is that requests for shared locks are given more favor-
able treatment than requests for exclusive locks.

• Shared locks. When a transaction needs to lock data item Q, it simply requests
a lock on Q from the lock manager at one site that contains a replica of Q.

• Exclusive locks. When a transaction needs to lock data item Q, it requests a
lock on Q from the lock manager at all sites that contain a replica of Q.

As before, the response to the request is delayed until it can be granted.
The biased scheme has the advantage of imposing less overhead on read

operations than does the majority protocol. This savings is especially significant
in common cases in which the frequency of read is much greater than the fre-
quency of write. However, the additional overhead on writes is a disadvantage.
Furthermore, the biased protocol shares the majority protocol’s disadvantage of
complexity in handling deadlock.

19.5.1.6 Quorum Consensus Protocol

The quorum consensus protocol is a generalization of the majority protocol. The
quorum consensus protocol assigns each site a nonnegative weight. It assigns
read and write operations on an item x two integers, called read quorum Qr and
write quorum Qw, that must satisfy the following condition, where S is the total
weight of all sites at which x resides:
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Qr + Qw > S and 2 ∗ Qw > S

To execute a read operation, enough replicas must be locked that their total
weight is at least r . To execute a write operation, enough replicas must be locked
so that their total weight is at least w.

A benefit of the quorum consensus approach is that it can permit the cost of
either read or write locking to be selectively reduced by appropriately defining
the read and write quorums. For instance, with a small read quorum, reads need
to obtain fewer locks, but the write quorum will be higher, hence writes need to
obtain more locks. Also, if higher weights are given to some sites (for example,
those less likely to fail), fewer sites need to be accessed for acquiring locks. In fact,
by setting weights and quorums appropriately, the quorum consensus protocol
can simulate the majority protocol and the biased protocols.

Like the majority protocol, quorum consensus can be extended to work even
in the presence of site failures, as we shall see in Section 19.6.1.

19.5.2 Timestamping

The principal idea behind the timestamping scheme in Section 15.4 is that each
transaction is given a unique timestamp that the system uses in deciding the
serialization order. Our first task, then, in generalizing the centralized scheme to
a distributed scheme is to develop a scheme for generating unique timestamps.
Then, the various protocols can operate directly to the nonreplicated environment.

There are two primary methods for generating unique timestamps, one cen-
tralized and one distributed. In the centralized scheme, a single site distributes
the timestamps. The site can use a logical counter or its own local clock for this
purpose.

In the distributed scheme, each site generates a unique local timestamp by
using either a logical counter or the local clock. We obtain the unique global
timestamp by concatenating the unique local timestamp with the site identifier,
which also must be unique (Figure 19.3). The order of concatenation is important!
We use the site identifier in the least significant position to ensure that the global
timestamps generated in one site are not always greater than those generated in
another site. Compare this technique for generating unique timestamps with the
one that we presented in Section 19.2.3 for generating unique names.

site
identifier

global unique
identifier

local unique
timestamp

Figure 19.3 Generation of unique timestamps.
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We may still have a problem if one site generates local timestamps at a rate
faster than that of the other sites. In such a case, the fast site’s logical counter
will be larger than that of other sites. Therefore, all timestamps generated by
the fast site will be larger than those generated by other sites. What we need
is a mechanism to ensure that local timestamps are generated fairly across the
system. We define within each site Si a logical clock (LCi ), which generates the
unique local timestamp. The logical clock can be implemented as a counter that is
incremented after a new local timestamp is generated. To ensure that the various
logical clocks are synchronized, we require that a site Si advance its logical clock
whenever a transaction Ti with timestamp <x,y> visits that site and x is greater
than the current value of LCi . In this case, site Si advances its logical clock to the
value x + 1.

If the system clock is used to generate timestamps, then timestamps will be
assigned fairly, provided that no site has a system clock that runs fast or slow.
Since clocks may not be perfectly accurate, a technique similar to that for logical
clocks must be used to ensure that no clock gets far ahead of or behind another
clock.

19.5.3 Replication with Weak Degrees of Consistency

Many commercial databases today support replication, which can take one of
several forms. With master–slave replication, the database allows updates at
a primary site, and automatically propagates updates to replicas at other sites.
Transactions may read the replicas at other sites, but are not permitted to update
them.

An important feature of such replication is that transactions do not obtain
locks at remote sites. To ensure that transactions running at the replica sites see
a consistent (but perhaps outdated) view of the database, the replica should
reflect a transaction-consistent snapshot of the data at the primary; that is, the
replica should reflect all updates of transactions up to some transaction in the
serialization order, and should not reflect any updates of later transactions in the
serialization order.

The database may be configured to propagate updates immediately after they
occur at the primary, or to propagate updates only periodically.

Master–slave replication is particularly useful for distributing information,
for instance from a central office to branch offices of an organization. Another use
for this form of replication is in creating a copy of the database to run large queries,
so that queries do not interfere with transactions. Updates should be propagated
periodically—every night, for example—so that update propagation does not
interfere with query processing.

The Oracle database system supports a create snapshot statement, which can
create a transaction-consistent snapshot copy of a relation, or set of relations,
at a remote site. It also supports snapshot refresh, which can be done either
by recomputing the snapshot or by incrementally updating it. Oracle supports
automatic refresh, either continuously or at periodic intervals.
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With multimaster replication (also called update-anywhere replication) up-
dates are permitted at any replica of a data item, and are automatically propa-
gated to all replicas. This model is the basic model used to manage replicas in
distributed databases. Transactions update the local copy and the system updates
other replicas transparently.

One way of updating replicas is to apply immediate update with two-phase
commit, using one of the distributed concurrency-control techniques we have
seen. Many database systems use the biased protocol, where writes have to lock
and update all replicas and reads lock and read any one replica, as their currency-
control technique.

Many database systems provide an alternative form of updating: They update
at one site, with lazy propagation of updates to other sites, instead of immedi-
ately applying updates to all replicas as part of the transaction performing the
update. Schemes based on lazy propagation allow transaction processing (in-
cluding updates) to proceed even if a site is disconnected from the network, thus
improving availability, but, unfortunately, do so at the cost of consistency. One of
two approaches is usually followed when lazy propagation is used:

• Updates at replicas are translated into updates at a primary site, which are
then propagated lazily to all replicas. This approach ensures that updates
to an item are ordered serially, although serializability problems can occur,
since transactions may read an old value of some other data item and use it
to perform an update.

• Updates are performed at any replica and propagated to all other replicas.
This approach can cause even more problems, since the same data item may
be updated concurrently at multiple sites.

Some conflicts due to the lack of distributed concurrency control can be detected
when updates are propagated to other sites (we shall see how in Section 25.5.4),
but resolving the conflict involves rolling back committed transactions, and dura-
bility of committed transactions is therefore not guaranteed. Further, human in-
tervention may be required to deal with conflicts. The above schemes should
therefore be avoided or used with care.

19.5.4 Deadlock Handling

The deadlock-prevention and deadlock-detection algorithms in Chapter 15 can be
used in a distributed system, provided that modifications are made. For example,
we can use the tree protocol by defining a global tree among the system data
items. Similarly, the timestamp-ordering approach could be directly applied to a
distributed environment, as we saw in Section 19.5.2.

Deadlock prevention may result in unnecessary waiting and rollback. Fur-
thermore, certain deadlock-prevention techniques may require more sites to be
involved in the execution of a transaction than would otherwise be the case.

If we allow deadlocks to occur and rely on deadlock detection, the main
problem in a distributed system is deciding how to maintain the wait-for graph.
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T2 T4T1 T2

T5 T3 T3

site S1 site S2

Figure 19.4 Local wait-for graphs.

Common techniques for dealing with this issue require that each site keep a local
wait-for graph. The nodes of the graph correspond to all the transactions (local as
well as nonlocal) that are currently either holding or requesting any of the items
local to that site. For example, Figure 19.4 depicts a system consisting of two sites,
each maintaining its local wait-for graph. Note that transactions T2 and T3 appear
in both graphs, indicating that the transactions have requested items at both sites.

These local wait-for graphs are constructed in the usual manner for local
transactions and data items. When a transaction Ti on site S1 needs a resource in
site S2, it sends a request message to site S2. If the resource is held by transaction
Tj , the system inserts an edge Ti → Tj in the local wait-for graph of site S2.

Clearly, if any local wait-for graph has a cycle, deadlock has occurred. On the
other hand, the fact that there are no cycles in any of the local wait-for graphs does
not mean that there are no deadlocks. To illustrate this problem, we consider the
local wait-for graphs of Figure 19.4. Each wait-for graph is acyclic; nevertheless,
a deadlock exists in the system because the union of the local wait-for graphs
contains a cycle. This graph appears in Figure 19.5.

In the centralized deadlock detection approach, the system constructs and
maintains a global wait-for graph (the union of all the local graphs) in a single
site: the deadlock-detection coordinator. Since there is communication delay in
the system, we must distinguish between two types of wait-for graphs. The real
graph describes the real but unknown state of the system at any instance in
time, as would be seen by an omniscient observer. The constructed graph is an

T1 T4

T5

T2

T3

Figure 19.5 Global wait-for graph for Figure 19.4.
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Figure 19.6 False cycles in the global wait-for graph.

approximation generated by the controller during the execution of the controller’s
algorithm. Obviously, the controller must generate the constructed graph in such
a way that, whenever the detection algorithm is invoked, the reported results are
correct. Correct means in this case that, if a deadlock exists, it is reported promptly,
and if the system reports a deadlock, it is indeed in a deadlock state.

The global wait-for graph can be reconstructed or updated under these con-
ditions:

• Whenever a new edge is inserted in or removed from one of the local wait-for
graphs.

• Periodically, when a number of changes have occurred in a local wait-for
graph.

• Whenever the coordinator needs to invoke the cycle-detection algorithm.

When the coordinator invokes the deadlock-detection algorithm, it searches
its global graph. If it finds a cycle, it selects a victim to be rolled back. The
coordinator must notify all the sites that a particular transaction has been selected
as victim. The sites, in turn, roll back the victim transaction.

This scheme may produce unnecessary rollbacks if:

• False cycles exist in the global wait-for graph. As an illustration, consider a
snapshot of the system represented by the local wait-for graphs of Figure 19.6.
Suppose that T2 releases the resource that it is holding in site S1, resulting
in the deletion of the edge T1 → T2 in S1. Transaction T2 then requests a
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resource held by T3 at site S2, resulting in the addition of the edge T2 → T3 in
S2. If the insert T2 → T3 message from S2 arrives before the remove T1 → T2
message from S1, the coordinator may discover the false cycle T1 → T2 → T3
after the insert (but before the remove). Deadlock recovery may be initiated,
although no deadlock has occurred.

Note that the false-cycle situation could not occur under two-phase locking.
The likelihood of false cycles is usually sufficiently low that they do not cause
a serious performance problem.

• A deadlock has indeed occurred and a victim has been picked, while one of the
transactions was aborted for reasons unrelated to the deadlock. For example,
suppose that site S1 in Figure 19.4 decides to abort T2. At the same time, the
coordinator has discovered a cycle, and has picked T3 as a victim. Both T2 and
T3 are now rolled back, although only T2 needed to be rolled back.

Deadlock detection can be done in a distributed manner, with several sites
taking on parts of the task, instead of it being done at a single site. However, such
algorithms are more complicated and more expensive. See the bibliographical
notes for references to such algorithms.

19.6 Availability

One of the goals in using distributed databases is high availability; that is, the
database must function almost all the time. In particular, since failures are more
likely in large distributed systems, a distributed database must continue func-
tioning even when there are various types of failures. The ability to continue
functioning even during failures is referred to as robustness.

For a distributed system to be robust, it must detect failures, reconfigure the
system so that computation may continue, and recover when a processor or a link
is repaired.

The different types of failures are handled in different ways. For example,
message loss is handled by retransmission. Repeated retransmission of a message
across a link, without receipt of an acknowledgment, is usually a symptom of a
link failure. The network usually attempts to find an alternative route for the
message. Failure to find such a route is usually a symptom of network partition.

It is generally not possible, however, to differentiate clearly between site
failure and network partition. The system can usually detect that a failure has
occurred, but it may not be able to identify the type of failure. For example,
suppose that site S1 is not able to communicate with S2. It could be that S2 has
failed. However, another possibility is that the link between S1 and S2 has failed,
resulting in network partition. The problem is partly addressed by using multiple
links between sites, so that even if one link fails the sites will remain connected.
However, multiple link failure can still occur, so there are situations where we
cannot be sure whether a site failure or network partition has occurred.
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Suppose that site S1 has discovered that a failure has occurred. It must then
initiate a procedure that will allow the system to reconfigure, and to continue
with the normal mode of operation.

• If transactions were active at a failed/inaccessible site at the time of the
failure, these transactions should be aborted. It is desirable to abort such
transactions promptly, since they may hold locks on data at sites that are
still active; waiting for the failed/inaccessible site to become accessible again
may impede other transactions at sites that are operational. However, in
some cases, when data objects are replicated it may be possible to proceed
with reads and updates even though some replicas are inaccessible. In this
case, when a failed site recovers, if it had replicas of any data object, it must
obtain the current values of these data objects, and must ensure that it receives
all future updates. We address this issue in Section 19.6.1.

• If replicated data are stored at a failed/inaccessible site, the catalog should
be updated so that queries do not reference the copy at the failed site. When
a site rejoins, care must be taken to ensure that data at the site are consistent,
as we shall see in Section 19.6.3.

• If a failed site is a central server for some subsystem, an election must be
held to determine the new server (see Section 19.6.5). Examples of central
servers include a name server, a concurrency coordinator, or a global deadlock
detector.

Since it is, in general, not possible to distinguish between network link failures
and site failures, any reconfiguration scheme must be designed to work correctly
in case of a partitioning of the network. In particular, these situations must be
avoided to ensure consistency:

• Two or more central servers are elected in distinct partitions.

• More than one partition updates a replicated data item.

Although traditional database systems place a premium on consistency, there
are many applications today that value availability more than consistency. The
design of replication protocols is different for such systems, and is discussed in
Section 19.6.6.

19.6.1 Majority-Based Approach

The majority-based approach to distributed concurrency control in Section 19.5.1.4
can be modified to work in spite of failures. In this approach, each data object
stores with it a version number to detect when it was last written. Whenever a
transaction writes an object it also updates the version number in this way:

• If data object a is replicated in n different sites, then a lock-request message
must be sent to more than one-half of the n sites at which a is stored. The
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transaction does not operate on a until it has successfully obtained a lock on
a majority of the replicas of a.

• Read operations look at all replicas on which a lock has been obtained, and
read the value from the replica that has the highest version number. (Op-
tionally, they may also write this value back to replicas with lower version
numbers.) Writes read all the replicas just like reads to find the highest ver-
sion number (this step would normally have been performed earlier in the
transaction by a read, and the result can be reused). The new version number
is one more than the highest version number. The write operation writes all
the replicas on which it has obtained locks, and sets the version number at
all the replicas to the new version number.

Failures during a transaction (whether network partitions or site failures) can be
tolerated as long as (1) the sites available at commit contain a majority of replicas
of all the objects written to and (2) during reads, a majority of replicas are read
to find the version numbers. If these requirements are violated, the transaction
must be aborted. As long as the requirements are satisfied, the two-phase commit
protocol can be used, as usual, on the sites that are available.

In this scheme, reintegration is trivial; nothing needs to be done. This is
because writes would have updated a majority of the replicas, while reads will
read a majority of the replicas and find at least one replica that has the latest
version.

The version numbering technique used with the majority protocol can also be
used to make the quorum consensus protocol work in the presence of failures. We
leave the (straightforward) details to the reader. However, the danger of failures
preventing the system from processing transactions increases if some sites are
given higher weights.

19.6.2 Read One, Write All Available Approach

As a special case of quorum consensus, we can employ the biased protocol by
giving unit weights to all sites, setting the read quorum to 1, and setting the
write quorum to n (all sites). In this special case, there is no need to use version
numbers; however, if even a single site containing a data item fails, no write to
the item can proceed, since the write quorum will not be available. This protocol
is called the read one, write all protocol since all replicas must be written.

To allow work to proceed in the event of failures, we would like to be able
to use a read one, write all available protocol. In this approach, a read operation
proceeds as in the read one, write all scheme; any available replica can be read,
and a read lock is obtained at that replica. A write operation is shipped to all
replicas; and write locks are acquired on all the replicas. If a site is down, the
transaction manager proceeds without waiting for the site to recover.

While this approach appears very attractive, there are several complications.
In particular, temporary communication failure may cause a site to appear to
be unavailable, resulting in a write not being performed, but when the link is
restored, the site is not aware that it has to perform some reintegration actions to
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catch up on writes it has lost. Further, if the network partitions, each partition may
proceed to update the same data item, believing that sites in the other partitions
are all dead.

The read one, write all available scheme can be used if there is never any
network partitioning, but it can result in inconsistencies in the event of network
partitions.

19.6.3 Site Reintegration

Reintegration of a repaired site or link into the system requires care. When a
failed site recovers, it must initiate a procedure to update its system tables to
reflect changes made while it was down. If the site had replicas of any data items,
it must obtain the current values of these data items and ensure that it receives all
future updates. Reintegration of a site is more complicated than it may seem to
be at first glance, since there may be updates to the data items processed during
the time that the site is recovering.

An easy solution is to halt the entire system temporarily while the failed site
rejoins it. In most applications, however, such a temporary halt is unacceptably
disruptive. Techniques have been developed to allow failed sites to reintegrate
while concurrent updates to data items proceed concurrently. Before a read or
write lock is granted on any data item, the site must ensure that it has caught up
on all updates to the data item. If a failed link recovers, two or more partitions can
be rejoined. Since a partitioning of the network limits the allowable operations
by some or all sites, all sites should be informed promptly of the recovery of the
link. See the bibliographical notes for more information on recovery in distributed
systems.

19.6.4 Comparison with Remote Backup

Remote backup systems, which we studied in Section 16.9, and replication in dis-
tributed databases are two alternative approaches to providing high availability.
The main difference between the two schemes is that with remote backup sys-
tems, actions such as concurrency control and recovery are performed at a single
site, and only data and log records are replicated at the other site. In particular, re-
mote backup systems help avoid two-phase commit, and its resultant overheads.
Also, transactions need to contact only one site (the primary site), and thus avoid
the overhead of running transaction code at multiple sites. Thus remote backup
systems offer a lower-cost approach to high availability than replication.

On the other hand, replication can provide greater availability by having
multiple replicas available and using the majority protocol.

19.6.5 Coordinator Selection

Several of the algorithms that we have presented require the use of a coordinator.
If the coordinator fails because of a failure of the site at which it resides, the system
can continue execution only by restarting a new coordinator on another site. One
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way to continue execution is by maintaining a backup to the coordinator, which
is ready to assume responsibility if the coordinator fails.

A backup coordinator is a site that, in addition to other tasks, maintains
enough information locally to allow it to assume the role of coordinator with
minimal disruption to the distributed system. All messages directed to the co-
ordinator are received by both the coordinator and its backup. The backup co-
ordinator executes the same algorithms and maintains the same internal state
information (such as, for a concurrency coordinator, the lock table) as does the
actual coordinator. The only difference in function between the coordinator and
its backup is that the backup does not take any action that affects other sites. Such
actions are left to the actual coordinator.

In the event that the backup coordinator detects the failure of the actual coor-
dinator, it assumes the role of coordinator. Since the backup has all the information
available to it that the failed coordinator had, processing can continue without
interruption.

The prime advantage to the backup approach is the ability to continue pro-
cessing immediately. If a backup were not ready to assume the coordinator’s re-
sponsibility, a newly appointed coordinator would have to seek information from
all sites in the system so that it could execute the coordination tasks. Frequently,
the only source of some of the requisite information is the failed coordinator. In
this case, it may be necessary to abort several (or all) active transactions, and to
restart them under the control of the new coordinator.

Thus, the backup-coordinator approach avoids a substantial amount of delay
while the distributed system recovers from a coordinator failure. The disadvan-
tage is the overhead of duplicate execution of the coordinator’s tasks. Further-
more, a coordinator and its backup need to communicate regularly to ensure that
their activities are synchronized.

In short, the backup-coordinator approach incurs overhead during normal
processing to allow fast recovery from a coordinator failure.

In the absence of a designated backup coordinator, or in order to handle
multiple failures, a new coordinator may be chosen dynamically by sites that are
live. Election algorithms enable the sites to choose the site for the new coordinator
in a decentralized manner. Election algorithms require that a unique identification
number be associated with each active site in the system.

The bully algorithm for election works as follows: To keep the notation
and the discussion simple, assume that the identification number of site Si is i
and that the chosen coordinator will always be the active site with the largest
identification number. Hence, when a coordinator fails, the algorithm must elect
the active site that has the largest identification number. The algorithm must send
this number to each active site in the system. In addition, the algorithm must
provide a mechanism by which a site recovering from a crash can identify the
current coordinator. Suppose that site Si sends a request that is not answered
by the coordinator within a prespecified time interval T. In this situation, it is
assumed that the coordinator has failed, and Si tries to elect itself as the site for
the new coordinator.
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Site Si sends an election message to every site that has a higher identification
number. Site Si then waits, for a time interval T, for an answer from any one
of these sites. If it receives no response within time T, it assumes that all sites
with numbers greater than i have failed, and it elects itself as the site for the
new coordinator and sends a message to inform all active sites with identification
numbers lower than i that it is the site at which the new coordinator resides.

If Si does receive an answer, it begins a time interval T ′, to receive a message
informing it that a site with a higher identification number has been elected.
(Some other site is electing itself coordinator, and should report the results within
time T ′.) If Si receives no message within T ′, then it assumes the site with a higher
number has failed, and site Si restarts the algorithm.

After a failed site recovers, it immediately begins execution of the same algo-
rithm. If there are no active sites with higher numbers, the recovered site forces
all sites with lower numbers to let it become the coordinator site, even if there is
a currently active coordinator with a lower number. It is for this reason that the
algorithm is termed the bully algorithm. If the network partitions, the bully algo-
rithm elects a separate coordinator in each partition; to ensure that at most one
coordinator is elected, winning sites should additionally verify that a majority of
the sites are in their partition.

19.6.6 Trading Off Consistency for Availability

The protocols we have seen so far require a (weighted) majority of sites be in
a partition for updates to proceed. Sites that are in a minority partition cannot
process updates; if a network failure results in more than two partitions, no
partition may have a majority of sites. Under such a situation, the system would
be completely unavailable for updates, and depending on the read-quorum, may
even become unavailable for reads. The write-all-available protocol which we
saw earlier provides availability, but not consistency.

Ideally, we would like to have consistency and availability, even in the face
of partitions. Unfortunately, this is not possible, a fact that is crystallized in the
so-called CAP theorem, which states that any distributed database can have at
most two of the following three properties:

• Consistency.

• Availability.

• Partition-tolerance.

The proof of the CAP theorem uses the following definition of consistency, with
replicated data: an execution of a set of operations (reads and writes) on replicated
data is said to be consistent if its result is the same as if the operations were
executed on a single site, in some sequential order, and the sequential order is
consistent with the ordering of operations issued by each process (transaction).
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The notion of consistency is similar to atomicity of transactions, but with each
operation treated as a transaction, and is weaker than the atomicity property of
transactions.

In any large-scale distributed system, partitions cannot be prevented, and as
a result either of availability or consistency has to be sacrificed. The schemes we
have seen earlier sacrifice availability for consistency in the face of partitions.

Consider a Web-based social-networking system that replicates its data on
three servers, and a network partition occurs that prevents the servers from
communicating with each other. Since none of the partitions has a majority, it
would not be possible to execute updates on any of the partitions. If one of these
servers is in the same partition as a user, the user actually has access to data,
but would be unable to update the data, since another user may be concurrently
updating the same object in another partition, which could potentially lead to
inconsistency. Inconsistency is not as great a risk in a social-networking system
as in a banking database. A designer of such a system may decide that a user
who can access the system should be allowed to perform updates on whatever
replicas are accessible, even at the risk of inconsistency.

In contrast to systems such as banking databases that require the ACID prop-
erties, systems such as the social-networking system mentioned above are said to
require the BASE properties:

• Basically available.

• Soft state.

• Eventually consistent.

The primary requirement is availability, even at the cost of consistency. Updates
should be allowed, even in the event of partitioning, following for example the
write-all-available protocol (which is similar to multimaster replication described
in Section 19.5.3). Soft state refers to the property that the state of the database may
not be precisely defined, with each replica possibly having a somewhat different
state due to partitioning of the network. Eventually consistent is the requirement
that once a partitioning is resolved, eventually all replicas will become consistent
with each other.

This last step requires that inconsistent copies of data items be identified; if
one is an earlier version of the other, the earlier version can be replaced by the later
version. It is possible, however, that the two copies were the result of independent
updates to a common base copy. A scheme for detecting such inconsistent updates,
called the version-vector scheme, is described in Section 25.5.4.

Restoring consistency in the face of inconsistent updates requires that the
updates be merged in some way that is meaningful to the application. This step
cannot be handled by the database; instead the database detects and informs
the application about the inconsistency, and the application then decides how to
resolve the inconsistency.
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19.7 Distributed Query Processing

In Chapter 13, we saw that there are a variety of methods for computing the
answer to a query. We examined several techniques for choosing a strategy for
processing a query that minimize the amount of time that it takes to compute the
answer. For centralized systems, the primary criterion for measuring the cost of
a particular strategy is the number of disk accesses. In a distributed system, we
must take into account several other matters, including:

• The cost of data transmission over the network.

• The potential gain in performance from having several sites process parts of
the query in parallel.

The relative cost of data transfer over the network and data transfer to and from
disk varies widely depending on the type of network and on the speed of the
disks. Thus, in general, we cannot focus solely on disk costs or on network costs.
Rather, we must find a good trade-off between the two.

19.7.1 Query Transformation

Consider an extremely simple query: “Find all the tuples in the account relation.”
Although the query is simple—indeed, trivial—processing it is not trivial, since
the account relation may be fragmented, replicated, or both, as we saw in Sec-
tion 19.2. If the account relation is replicated, we have a choice of replica to make.
If no replicas are fragmented, we choose the replica for which the transmission
cost is lowest. However, if a replica is fragmented, the choice is not so easy to
make, since we need to compute several joins or unions to reconstruct the account
relation. In this case, the number of strategies for our simple example may be
large. Query optimization by exhaustive enumeration of all alternative strategies
may not be practical in such situations.

Fragmentation transparency implies that a user may write a query such as:

�branch name = “Hillside” (account)

Since account is defined as:

account1 ∪ account2

the expression that results from the name translation scheme is:

�branch name = “Hillside” (account1 ∪ account2)

Using the query-optimization techniques of Chapter 13, we can simplify the
preceding expression automatically. The result is the expression:
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�branch name = “Hillside” (account1) ∪ �branch name = “Hillside” (account2)

which includes two subexpressions. The first involves only account1, and thus
can be evaluated at the Hillside site. The second involves only account2, and thus
can be evaluated at the Valleyview site.

There is a further optimization that can be made in evaluating:

�branch name = “Hillside” (account1)

Since account1 has only tuples pertaining to the Hillside branch, we can eliminate
the selection operation. In evaluating:

�branch name = “Hillside” (account2)

we can apply the definition of the account2 fragment to obtain:

�branch name = “Hillside” (�branch name = “Valleyview” (account))

This expression is the empty set, regardless of the contents of the account relation.
Thus, our final strategy is for the Hillside site to return account1 as the result

of the query.

19.7.2 Simple Join Processing

As we saw in Chapter 13, a major decision in the selection of a query-processing
strategy is choosing a join strategy. Consider the following relational-algebra
expression:

account � depositor � branch

Assume that the three relations are neither replicated nor fragmented, and that
account is stored at site S1, depositor at S2, and branch at S3. Let SI denote the site
at which the query was issued. The system needs to produce the result at site SI .
Among the possible strategies for processing this query are these:

• Ship copies of all three relations to site SI . Using the techniques of Chapter
13, choose a strategy for processing the entire query locally at site SI .

• Ship a copy of the account relation to site S2, and compute temp1 = account �

depositor at S2. Ship temp1 from S2 to S3, and compute temp2 = temp1 � branch
at S3. Ship the result temp2 to SI .

• Devise strategies similar to the previous one, with the roles of S1, S2, S3
exchanged.

No one strategy is always the best one. Among the factors that must be
considered are the volume of data being shipped, the cost of transmitting a block
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of data between a pair of sites, and the relative speed of processing at each site.
Consider the first two strategies listed. Suppose indices present at S2 and S3 are
useful for computing the join. If we ship all three relations to SI , we would need to
either re-create these indices at SI , or use a different, possibly more expensive, join
strategy. Re-creation of indices entails extra processing overhead and extra disk
accesses. With the second strategy a potentially large relation (account � depositor)
must be shipped from S2 to S3. This relation repeats the name of a customer once
for each account that the customer has. Thus, the second strategy may result in
extra network transmission compared to the first strategy.

19.7.3 Semijoin Strategy

Suppose that we wish to evaluate the expression r1 � r2, where r1 and r2 are
stored at sites S1 and S2, respectively. Let the schemas of r1 and r2 be R1 and R2.
Suppose that we wish to obtain the result at S1. If there are many tuples of r2 that
do not join with any tuple of r1, then shipping r2 to S1 entails shipping tuples that
fail to contribute to the result. We want to remove such tuples before shipping
data to S1, particularly if network costs are high.

A possible strategy to accomplish all this is:

1. Compute temp1 ← �R1 ∩ R2 (r1) at S1.

2. Ship temp1 from S1 to S2.

3. Compute temp2 ← r2 � temp1 at S2.

4. Ship temp2 from S2 to S1.

5. Compute r1 � temp2 at S1. The resulting relation is the same as r1 � r2.

Before considering the efficiency of this strategy, let us verify that the strategy
computes the correct answer. In step 3, temp2 has the result of r2 � �R1 ∩ R2 (r1).
In step 5, we compute:

r1 � r2 � �R1 ∩ R2 (r1)

Since join is associative and commutative, we can rewrite this expression as:

(r1 � �R1 ∩ R2 (r1)) � r2

Since r1 � �(R1 ∩ R2) (r1) = r1, the expression is, indeed, equal to r1 � r2, the
expression we are trying to evaluate.

This strategy is particularly advantageous when relatively few tuples of r2
contribute to the join. This situation is likely to occur if r1 is the result of a
relational-algebra expression involving selection. In such a case, temp2 may have
significantly fewer tuples than r2. The cost savings of the strategy result from
having to ship only temp2, rather than all of r2, to S1. Additional cost is incurred
in shipping temp1 to S2. If a sufficiently small fraction of tuples in r2 contribute
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to the join, the overhead of shipping temp1 will be dominated by the savings of
shipping only a fraction of the tuples in r2.

This strategy is called a semijoin strategy, after the semijoin operator of the
relational algebra, denoted �. The semijoin of r1 with r2, denoted r1 � r2, is:

�R1 (r1 � r2)

Thus, r1 � r2 selects those tuples of relation r1 that contributed to r1 � r2. In step
3, temp2 = r2 � r1.

For joins of several relations, this strategy can be extended to a series of
semijoin steps. A substantial body of theory has been developed regarding the
use of semijoins for query optimization. Some of this theory is referenced in the
bibliographical notes.

19.7.4 Join Strategies that Exploit Parallelism

Consider a join of four relations:

r1 � r2 � r3 � r4

where relation ri is stored at site Si . Assume that the result must be presented
at site S1. There are many possible strategies for parallel evaluation. (We studied
the issue of parallel processing of queries in detail in Chapter 18.) In one such
strategy, r1 is shipped to S2, and r1 � r2 computed at S2. At the same time, r3 is
shipped to S4, and r3 � r4 computed at S4. Site S2 can ship tuples of (r1 � r2)
to S1 as they are produced, rather than wait for the entire join to be computed.
Similarly, S4 can ship tuples of (r3 � r4) to S1. Once tuples of (r1 � r2) and (r3 � r4)
arrive at S1, the computation of (r1 � r2) � (r3 � r4) can begin, with the pipelined
join technique of Section 12.7.2.2. Thus, computation of the final join result at
S1 can be done in parallel with the computation of (r1 � r2) at S2, and with the
computation of (r3 � r4) at S4.

19.8 Heterogeneous Distributed Databases

Many new database applications require data from a variety of preexisting
databases located in a heterogeneous collection of hardware and software en-
vironments. Manipulation of information located in a heterogeneous distributed
database requires an additional software layer on top of existing database sys-
tems. This software layer is called a multidatabase system. The local database
systems may employ different logical models and data-definition and data-
manipulation languages, and may differ in their concurrency-control and trans-
action-management mechanisms. A multidatabase system creates the illusion of
logical database integration without requiring physical database integration.

Full integration of heterogeneous systems into a homogeneous distributed
database is often difficult or impossible:
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• Technical difficulties. The investment in application programs based on ex-
isting database systems may be huge, and the cost of converting these appli-
cations may be prohibitive.

• Organizational difficulties. Even if integration is technically possible, it may
not be politically possible, because the existing database systems belong to
different corporations or organizations. In such cases, it is important for
a multidatabase system to allow the local database systems to retain a high
degree of autonomy over the local database and transactions running against
that data.

For these reasons, multidatabase systems offer significant advantages that
outweigh their overhead. In this section, we provide an overview of the challenges
faced in constructing a multidatabase environment from the standpoint of data
definition and query processing.

19.8.1 Unified View of Data

Each local database management system may use a different data model. For
instance, some may employ the relational model, whereas others may employ
older data models, such as the network model (see Appendix D) or the hierarchical
model (see Appendix E).

Since the multidatabase system is supposed to provide the illusion of a single,
integrated database system, a common data model must be used. A commonly
used choice is the relational model, with SQL as the common query language.
Indeed, there are several systems available today that allow SQL queries to a
nonrelational database-management system.

Another difficulty is the provision of a common conceptual schema. Each
local system provides its own conceptual schema. The multidatabase system must
integrate these separate schemas into one common schema. Schema integration
is a complicated task, mainly because of the semantic heterogeneity.

Schema integration is not simply straightforward translation between data-
definition languages. The same attribute names may appear in different local
databases but with different meanings. The data types used in one system may not
be supported by other systems, and translation between types may not be simple.
Even for identical data types, problems may arise from the physical representation
of data: One system may use 8-bit ASCII, another 16-bit Unicode, and yet another
EBCDIC; floating-point representations may differ; integers may be represented
in big-endian or little-endian form. At the semantic level, an integer value for
length may be inches in one system and millimeters in another, thus creating an
awkward situation in which equality of integers is only an approximate notion
(as is always the case for floating-point numbers). The same name may appear
in different languages in different systems. For example, a system based in the
United States may refer to the city “Cologne,” whereas one in Germany refers to
it as “Köln.”

All these seemingly minor distinctions must be properly recorded in the com-
mon global conceptual schema. Translation functions must be provided. Indices
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must be annotated for system-dependent behavior (for example, the sort order of
nonalphanumeric characters is not the same in ASCII as in EBCDIC). As we noted
earlier, the alternative of converting each database to a common format may not
be feasible without obsoleting existing application programs.

19.8.2 Query Processing

Query processing in a heterogeneous database can be complicated. Some of the
issues are:

• Given a query on a global schema, the query may have to be translated
into queries on local schemas at each of the sites where the query has to be
executed. The query results have to be translated back into the global schema.

The task is simplified by writing wrappers for each data source, which
provide a view of the local data in the global schema. Wrappers also translate
queries on the global schema into queries on the local schema, and translate
results back into the global schema. Wrappers may be provided by individual
sites, or may be written separately as part of the multidatabase system.

Wrappers can even be used to provide a relational view of nonrelational
data sources, such as Web pages (possibly with forms interfaces), flat files,
hierarchical and network databases, and directory systems.

• Some data sources may provide only limited query capabilities; for instance,
they may support selections, but not joins. They may even restrict the form of
selections, allowing selections only on certain fields; Web data sources with
form interfaces are an example of such data sources. Queries may therefore
have to be broken up, to be partly performed at the data source and partly at
the site issuing the query.

• In general, more than one site may need to be accessed to answer a given
query. Answers retrieved from the sites may have to be processed to remove
duplicates. Suppose one site contains account tuples satisfying the selection
balance < 100, while another contains account tuples satisfying balance > 50.
A query on the entire account relation would require access to both sites and
removal of duplicate answers resulting from tuples with balance between 50
and 100, which are replicated at both sites.

• Global query optimization in a heterogeneous database is difficult, since
the query execution system may not know what the costs are of alternative
query plans at different sites. The usual solution is to rely on only local-level
optimization, and just use heuristics at the global level.

Mediator systems are systems that integrate multiple heterogeneous data
sources, providing an integrated global view of the data and providing query
facilities on the global view. Unlike full-fledged multidatabase systems, mediator
systems do not bother about transaction processing. (The terms mediator and
multidatabase are often used in an interchangeable fashion, and systems that are
called mediators may support limited forms of transactions.) The term virtual
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database is used to refer to multidatabase/mediator systems, since they provide
the appearance of a single database with a global schema, although data exist on
multiple sites in local schemas.

19.8.3 Transaction Management in Multidatabases

A multidatabase system supports two types of transactions:

1. Local transactions. These transactions are executed by each local database
system outside of the multidatabase system’s control.

2. Global transactions. These transactions are executed under the multidata-
base system’s control.

The multidatabase system is aware of the fact that local transactions may run at
the local sites, but it is not aware of what specific transactions are being executed,
or of what data they may access.

Ensuring the local autonomy of each database system requires that no changes
be made to its software. A database system at one site thus is not able to commu-
nicate directly with one at any other site to synchronize the execution of a global
transaction active at several sites.

Since the multidatabase system has no control over the execution of local
transactions, each local system must use a concurrency-control scheme (for exam-
ple, two-phase locking or timestamping) to ensure that its schedule is serializable.
In addition, in case of locking, the local system must be able to guard against the
possibility of local deadlocks.

The guarantee of local serializability is not sufficient to ensure global serial-
izability. As an illustration, consider two global transactions T1 and T2, each of
which accesses and updates two data items, A and B, located at sites S1 and S2,
respectively. Suppose that the local schedules are serializable. It is still possible
to have a situation where, at site S1, T2 follows T1, whereas, at S2, T1 follows T2,
resulting in a nonserializable global schedule. Indeed, even if there is no concur-
rency among global transactions (that is, a global transaction is submitted only
after the previous one commits or aborts), local serializability is not sufficient to
ensure global serializability (see Practice Exercise 19.14).

Depending on the implementation of the local database systems, a global
transaction may not be able to control the precise locking behavior of its local
subtransactions. Thus, even if all local database systems follow two-phase lock-
ing, it may be possible only to ensure that each local transaction follows the rules
of the protocol. For example, one local database system may commit its subtrans-
action and release locks, while the subtransaction at another local system is still
executing. If the local systems permit control of locking behavior and all systems
follow two-phase locking, then the multidatabase system can ensure that global
transactions lock in a two-phase manner and the lock points of conflicting transac-
tions would then define their global serialization order. If different local systems
follow different concurrency-control mechanisms, however, this straightforward
sort of global control does not work.
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There are many protocols for ensuring consistency despite concurrent execu-
tion of global and local transactions in multidatabase systems. Some are based on
imposing sufficient conditions to ensure global serializability. Others ensure only
a form of consistency weaker than serializability, but achieve this consistency by
less restrictive means. Section 26.6 describes approaches to consistency without
serializability; other approaches are cited in the bibliographical notes.

Early multidatabase systems restricted global transactions to be read only.
They thus avoided the possibility of global transactions introducing inconsistency
to the data, but were not sufficiently restrictive to ensure global serializability. It
is indeed possible to get such global schedules and to develop a scheme to ensure
global serializability, and we ask you to do both in Practice Exercise 19.15.

There are a number of general schemes to ensure global serializability in an
environment where update as well as read-only transactions can execute. Several
of these schemes are based on the idea of a ticket. A special data item called
a ticket is created in each local database system. Every global transaction that
accesses data at a site must write the ticket at that site. This requirement ensures
that global transactions conflict directly at every site they visit. Furthermore, the
global transaction manager can control the order in which global transactions are
serialized, by controlling the order in which the tickets are accessed. References
to such schemes appear in the bibliographical notes.

If we want to ensure global serializability in an environment where no direct
local conflicts are generated in each site, some assumptions must be made about
the schedules allowed by the local database system. For example, if the local
schedules are such that the commit order and serialization order are always
identical, we can ensure serializability by controlling only the order in which
transactions commit.

A related problem in multidatabase systems is that of global atomic commit.
If all local systems follow the two-phase commit protocol, that protocol can be
used to achieve global atomicity. However, local systems not designed to be part
of a distributed system may not be able to participate in such a protocol. Even if a
local system is capable of supporting two-phase commit, the organization owning
the system may be unwilling to permit waiting in cases where blocking occurs. In
such cases, compromises may be made that allow for lack of atomicity in certain
failure modes. Further discussion of these matters appears in the literature (see
the bibliographical notes).

19.9 Cloud-Based Databases

Cloud computing is a relatively new concept in computing that emerged in
the late 1990s and the 2000s, first under the name software as a service. Initial
vendors of software services provided specific customizable applications that
they hosted on their own machines. The concept of cloud computing developed
as vendors began to offer generic computers as a service on which clients could
run software applications of their choosing. A client can make arrangements
with a cloud-computing vendor to obtain a certain number of machines of a
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certain capacity as well as a certain amount of data storage. Both the number of
machines and the amount of storage can grow and shrink as needed. In addition
to providing computing services, many vendors also provide other services such
as data storage services, map services, and other services that can be accessed
using a Web-service application programming interface.

Many enterprises are finding the model of cloud computing and services
beneficial. It saves client enterprises the need to maintain a large system-support
staff and allows new enterprises to begin operation without having to make a
large, up-front capital investment in computing systems. Further, as the needs
of the enterprise grow, more resources (computing and storage) can be added
as required; the cloud-computing vendor generally has very large clusters of
computers, making it easy for the vendor to allocate resources on demand.

A variety of vendors offer cloud services. They include traditional computing
vendors as well as companies, such as Amazon and Google, that are seeking to
leverage the large infrastructure they have in place for their core businesses.

Web applications that need to store and retrieve data for very large numbers
of users (ranging from millions to hundreds of millions) have been a major driver
of cloud-based databases. The needs of these applications differ from those of
traditional database applications, since they value availability and scalability over
consistency. Several cloud-based data-storage systems have been developed in
recent years to serve the needs of such applications. We discuss issues in building
such data-storage systems on the cloud in Section 19.9.1.

In Section 19.9.2, we consider issues in running traditional database systems
on a cloud. Cloud-based databases have features of both homogeneous and het-
erogeneous systems. Although the data are owned by one organization (the client)
and are part of one unified distributed database, the underlying computers are
owned and operated by another organization (the service vendor). The comput-
ers are remote from the client’s location(s) and are accessed over the Internet. As a
result, some of the challenges of heterogeneous distributed systems remain, par-
ticularly as regards transaction processing. However, many of the organizational
and political challenges of heterogeneous systems are avoided.

Finally, in Section 19.9.3, we discuss several technical as well as nontechnical
challenges that cloud databases face today.

19.9.1 Data Storage Systems on the Cloud

Applications on the Web have extremely high scalability requirements. Popular
applications have hundreds of millions of users, and many applications have seen
their load increase manyfold within a single year, or even within a few months. To
handle the data management needs of such applications, data must be partitioned
across thousands of processors.

A number of systems for data storage on the cloud have been developed
and deployed over the past few years to address data management requirements
of such applications; these include Bigtable from Google, Simple Storage Service
(S3) from Amazon, which provides a Web interface to Dynamo, which is a key-
value storage system, Cassandra, from FaceBook, which is similar to Bigtable, and
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Sherpa/PNUTS from Yahoo!, the data storage component of the Azure environment
from Microsoft, and several other systems.

In this section, we provide an overview of the architecture of such data-
storage systems. Although some people refer to these systems as distributed
database systems, they do not provide many of the features which are viewed as
standard on database systems today, such as support for SQL, or for transactions
with the ACID properties.

19.9.1.1 Data Representation

As an example of data management needs of Web applications, consider the pro-
file of a user, which needs to be accessible to a number of different applications that
are run by an organization. The profile contains a variety of attributes, and there
are frequent additions to the attributes stored in the profile. Some attributes may
contain complex data. A simple relational representation is often not sufficient
for such complex data.

Some cloud-based data-storage systems support XML (described in Chap-
ter 23) for representing such complex data. Others support the JavaScript Object
Notation (JSON) representation, which has found increasing acceptance for repre-
senting complex data. The XML and JSON representations provide flexibility in the
set of attributes that a record contains, as well as the types of these attributes. Yet
others, such as Bigtable, define their own data model for complex data including
support for records with a very large number of optional columns. We revisit the
Bigtable data model later in this section.

Further, many such Web applications either do not need extensive query
language support, or at least, can manage without such support. The primary
mode of data access is to store data with an associated key, and to retrieve data
with that key. In the above user profile example, the key for user-profile data
would be the user’s identifier. There are applications that conceptually require
joins, but implement the joins by a form of view materialization. For example,
in a social-networking application, each user should be shown new posts from
all her friends. Unfortunately, finding the set of friends and then querying each
one to find their posts may lead to a significant amount of delay when the data
are distributed across a large number of machines. An alternative is as follows:
whenever a user makes a post, a message is sent to all friends of that user, and
the data associated with each of the friends is updated with a summary of the
new post. When that user checks for updates, all required data are available in
one place and can be retrieved quickly.

Thus, cloud data-storage systems are, at their core, based on two primitive
functions, put(key, value), used to store values with an associated key, and get(key),
which retrieves the stored value associated with the specified key. Some systems
such as Bigtable additionally provide range queries on key values.

In Bigtable, a record is not stored as a single value, but is instead split into
component attributes that are stored separately. Thus, the key for an attribute
value conceptually consists of (record-identifier, attribute-name). Each attribute
value is just a string as far as Bigtable is concerned. To fetch all attributes of a
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JSON

JavaScript Object Notation, or JSON, is a textual representation of complex data
types which is widely used for transmitting data between applications, as well
as to store complex data. JSON supports the primitive data types integer, real and
string, as well as arrays, and “objects”, which are a collection of (attribute-name,
value) pairs. An example of a JSON object is:

{
"ID": "22222",
"name": {

"firstname: "Albert",
"lastname: "Einstein"

},
"deptname": "Physics",
"children": [

{ "firstname": "Hans", "lastname": "Einstein" },
{ "firstname": "Eduard", "lastname": "Einstein" }

]
}

The above example illustrates objects, which contain (attribute-name, value)
pairs, as well as arrays, delimited by square brackets. JSON can be viewed as a
simplified form of XML; XML is covered in Chapter 23.

Libraries have been developed to transform data between the JSON represen-
tation and the object representation used in the JavaScript and PHP scripting
languages, as well as other programming languages.

record, a range query, or more precisely a prefix-match query consisting of just the
record identifier, is used. The get() function returns the attribute names along with
the values. For efficient retrieval of all attributes of a record, the storage system
stores entries sorted by the key, so all attribute values of a particular record are
clustered together.

In fact, the record identifier can itself be structured hierarchically, although
to Bigtable itself the record identifier is just a string. For example, an application
that stores pages retrieved from a web crawl could map a URL of the form:

www.cs.yale.edu/people/silberschatz.html

to the record identifier:

edu.yale.cs.www/people/silberschatz.html

so that pages are clustered in a useful order. As another example, the record shown
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in the JSON example (see example box on JSON) can be represented by a record
with identifier “22222”, with multiple attribute names such as “name.firstname”,
“deptname”, “children[1].firstname” or “children[2].lastname”.

Further, a single instance of Bigtable can store data for multiple applications,
with multiple tables per application, by simply prefixing the application name
and table name to the record identifier.

Data-storage systems typically allow multiple versions of data items to be
stored. Versions are often identified by timestamp, but may be alternatively iden-
tified by an integer value that is incremented whenever a new version of a data
item is created. Lookups can specify the required version of a data item, or can
pick the version with the highest version number. In Bigtable, for example, a key
actually consists of three parts: (record-identifier, attribute-name, timestamp).

19.9.1.2 Partitioning and Retrieving Data

Partitioning of data is, of course, the key to handling extremely large scale in
data-storage systems. Unlike regular parallel databases, it is usually not possible
to decide on a partitioning function ahead of time. Further, if load increases, more
servers need to be added and each server should be able to take on parts of the
load incrementally.

To solve both these problems, data-storage systems typically partition data
into relatively small units (small on such systems may mean of the order of
hundreds of megabytes). These partitions are often called tablets, reflecting the
fact that each tablet is a fragment of a table. The partitioning of data should be
done on the search key, so that a request for a specific key value is directed to a
single tablet; otherwise each request would require processing at multiple sites,
increasing the load on the system greatly. Two approaches are used: either range
partitioning is used directly on the key, or a hash function is applied on the key,
and range partitioning is applied on the result of the hash function.

The site to which a tablet is assigned acts as the master site for that tablet. All
updates are routed through this site, and updates are then propagated to replicas
of the tablet. Lookups are also sent to the same site, so that reads are consistent
with writes.

The partitioning of data into tablets is not fixed up front, but happens dy-
namically. As data are inserted, if a tablet grows too big, it is broken into smaller
parts. Further, even if a tablet is not large enough to merit being broken up, if the
load (get/put operations) on that tablet are excessive, the tablet may be broken
into smaller tablets, which can be distributed across two or more sites to share
the load. Usually the number of tablets is much larger than the number of sites,
for the same reason that virtual partitioning is used in parallel databases.

It is important to know which site in the overall system is responsible for a
particular tablet. This can be done by having a tablet controller site which tracks
the partitioning function, to map a get() request to one or more tablets, and a
mapping function from tablets to sites, to find which site were responsible for
which tablet. Each request coming into the system must be routed to the correct
site; if a single tablet controller site is responsible for this task, it would soon
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Figure 19.7 Architecture of a cloud data storage system.

get overloaded. Instead, the mapping information can be replicated on a set of
router sites, which route requests to the site with the appropriate tablet. Protocols
to update mapping information when a tablet is split or moved are designed in
such a way that no locking is used; a request may as a result end up at a wrong
site. The problem is handled by detecting that the site is no longer responsible for
the key specified by the request, and rerouting the request based on up-to-date
mapping information.

Figure 19.7 depicts the architecture of a cloud data-storage system, based
loosely on the PNUTS architecture. Other systems provide similar functionality,
although their architecture may vary. For example, Bigtable does not have sepa-
rate routers; the partitioning and tablet-server mapping information is stored in
the Google file system, and clients read the information from the file system, and
decide where to send their requests.

19.9.1.3 Transactions and Replication

Data-storage systems on the cloud typically do not fully support ACID trans-
actions. The cost of two-phase commit is too high, and two-phase commit can
lead to blocking in the event of failures, which is not acceptable to typical Web
applications. This means that such systems typically do not even support a trans-
actionally consistent secondary index: the secondary index would be partitioned
on a different attribute from the key used for storing the data, and an insert or
update would then need to update two sites, which would require two-phase
commit. At best, such systems support transactions on data within a single tablet,
which is controlled by a a single master site. Sherpa/PNUTS also provides a test-
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and-set function, which allows an update to a data item to be conditional on the
current version of the data item being the same as a specified version number. If
the current version number of the data item is more recent than the specified ver-
sion number, the update is not performed. The test-and-set function can be used
by applications to implement a limited form of validation-based concurrency
control, with validation restricted to data items in a single tablet.

In a system with thousands of sites, at any time it is almost guaranteed that
several of the sites will be down. A data-storage system on the cloud must be
able to continue normal processing even with many sites down. Such systems
replicate data (such as tablets) to multiple machines in a cluster, so that a copy of
the data is likely to be available even if some machines of a cluster are down. (A
cluster is a collection of machines in a data center.) For example, the Google File
System (GFS), which is a distributed fault-tolerant file system, replicates all file
system blocks at three or more nodes in a cluster. Normal operation can continue
as long as at least one copy of the data is available (key system data, such as
the mapping of files to nodes, is replicated at more nodes, a majority of which
need to be available). In addition, replication is also used across geographically
distributed clusters, for reasons that we shall see shortly.

Since each tablet is controlled by a single master site, if the site fails the tablet
should be reassigned to a different site that has a copy of the tablet, which becomes
the new master site for the tablet. Updates to a tablet are logged, and the log is
itself replicated. When a site fails, the tablets at the site are assigned to other sites;
the new master site of each tablet is responsible for performing recovery actions
using the log to bring its copy of the tablet to an up-to-date consistent state, after
which updates and lookups can be performed on the tablet.

In Bigtable, as an example, mapping information is stored in an index struc-
ture, and the index as well as the actual tablet data are stored in the file system.
Tablet data updates are not flushed immediately, but log data are. The file system
ensures that the file system data are replicated and will be available even in the
face of failure of a few nodes in the cluster. Thus, when a tablet is reassigned,
the new master site for the tablet has access to up-to-date log data. Yahoo!’s
Sherpa/PNUTS system, on the other hand, explicitly replicates tablets to multiple
nodes in a cluster, instead of using a distributed file system, and uses a reliable
distributed-messaging system to implement a highly available log.

Unfortunately, it is not uncommon for an entire data center to become unavail-
able-for example, due to natural disasters or fires. Replication at a remote site is
therefore essential for high availability. For many Web applications, round-trip
delays across a long-distance network can affect performance significantly, a
problem that is increasing with the use of Ajax applications that require multiple
rounds of communication between the browser and the application. To deal with
this problem, users are connected with application servers that are closest to them
geographically, and data are replicated at multiple data centers so that one of the
replicas is likely to be close to the application server.

However, the danger of partitioning of the network is increased as a result.
Given that most Web applications place a greater premium on availability than on
consistency, data-storage systems on the cloud usually allow updates to proceed
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even in the event of a partitioning, and provide support for restoring consis-
tency later, as discussed earlier in Section 19.6.6. Multimaster replication with
lazy propagation of updates, which we saw in Section 19.5.3, is typically used
for processing updates. Lazy propagation implies that updates are not propa-
gated to replicas as part of the updating transaction, although they are typically
propagated as soon as possible, typically using a messaging infrastructure.

In addition to propagating updates to replicas of a data item, updates to
secondary indices, or to certain kinds of materialized views (such as the updates
from friends, in a social-networking application we saw earlier in Section 19.9.1.1),
can be sent using the messaging infrastructure. Secondary indices are basically
tables, partitioned just like regular tables, based on the index search key; an
update of a record in a table can be mapped to updates of one or more tablets in a
secondary index on the table. There is no transactional guarantee on the updates
of such secondary indices or materialized views, and only a best-effort guarantee
in terms of when the updates reach their destination.

19.9.2 Traditional Databases on the Cloud

We now consider the issue of implementing a traditional distributed database
system, supporting ACID properties and queries, on a cloud.

The concept of computing utilities is an old one, envisioned back in the 1960s.
The first manifestation of the concept was in timesharing systems in which several
users shared access to a single mainframe computer. Later, in the late 1960s, the
concept of virtual machines was developed, in which a user was given the illusion
of having a private computer, while in reality a single computer simulated several
virtual machines.

Cloud computing makes extensive use of the virtual-machine concept to pro-
vide computing services. Virtual machines provide great flexibility since clients
may choose their own software environment including not only the application
software but also the operating system. Virtual machines of several clients can
run on a single physical computer, if the computing needs of the clients are low.
On the other hand, an entire computer can be allocated to each virtual machine
of a client whose virtual machines have a high load. A client may request several
virtual machines over which to run an application. This makes it easy to add or
subtract computing power as workloads grow and shrink simply by adding or
releasing virtual machines.

Having a set of virtual machines works well for applications that are easily
parallelized. Database systems, as we have seen, fall into this category. Each
virtual machine can run database system code locally and behave in a manner
similar to a site in a homogeneous distributed database system.

19.9.3 Challenges with Cloud-Based Databases

Cloud-based databases certainly have several important advantages compared
to building a computing infrastructure from scratch, and are in fact essential for
certain applications.
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However, cloud-based database systems also have several disadvantages that
we shall now explore. Unlike purely computational applications in which parallel
computations run largely independently, distributed database systems require
frequent communication and coordination among sites for:

• access to data on another physical machine, either because the data are owned
by another virtual machine or because the data are stored on a storage server
separate from the computer hosting the virtual machine.

• obtaining locks on remote data.

• ensuring atomic transaction commit via two-phase commit.

In our earlier study of distributed databases, we assumed (implicitly) that
the database administrator had control over the physical location of data. In a
cloud system, the physical location of data is under the control of the vendor,
not the client. As a result, the physical placement of data may be suboptimal in
terms of communication cost, and this may result in a large number of remote
lock requests and large transfers of data across virtual machines. Effective query
optimization requires that the optimizer have accurate cost measures for opera-
tions. Lacking knowledge of the physical placement of data, the optimizer has
to rely on estimates that may be highly inaccurate, resulting in poor execution
strategies. Because remote accesses are relatively slow compared to local access,
these issues can have a significant impact on performance.

The above issues are a particular challenge for implementing traditional
database applications on the cloud, although less challenging for simple data-
storage systems. The next few challenges we discuss apply equally to both appli-
cation scenarios.

The matter of replication further complicates cloud-based data management.
Cloud systems replicate client data for availability. Indeed many contracts have
clauses imposing penalties on the vendor if a certain level of availability is not
maintained. This replication is done by the vendor without specific knowledge
of the application. Since replication is under control of the cloud and not under
the control of the database system, care must be used when the database system
accesses data so as to ensure that the latest versions of the data are read. Failure
to take these issues properly into account can result in a loss of the atomicity or
isolation properties. In many current cloud database applications, the application
itself may need to take some responsibility for consistency.

Users of cloud computing must be willing to accept that their data are held
by another organization. This may present a variety of risks in terms of security
and legal liability. If the cloud vendor suffers a security breach, client data may
be divulged, causing the client to face legal challenges from its customers. Yet
the client has no direct control over cloud-vendor security. These issues become
more complex if the cloud vendor chooses to store data (or replicas of data) in
a foreign country. Various legal jurisdictions differ in their privacy laws. So, for
example, if a German company’s data are replicated on a server in New York,
then the privacy laws of the United States rather than those of Germany or the
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European Union apply. The cloud vendor might be required to release client data
to the U.S. government even though the client never knew that its data would
wind up under U.S. jurisdiction.

Specific cloud vendors offer their clients varying degrees of control over how
their data are distributed and replicated. Some vendors offer database services
directly to their clients rather than require clients to contract for raw storage and
virtual machines over which to run their own database systems.

The market for cloud services continues to evolve rapidly, but it is clear that
a database administrator who is contracting for cloud services has to consider
a wide variety of technical, economic, and legal issues in order to ensure the
privacy and security of data, guarantees of the ACID properties (or an acceptable
approximation thereof), and adequate performance despite the likelihood of data
being distributed over a wide geographic area. The bibliographical notes provide
some of the current thinking on these topics. Much new literature is likely to
appear in the next few years, and many of the current issues in cloud databases
are being addressed by the research community.

19.10 Directory Systems

Consider an organization that wishes to make data about its employees avail-
able to a variety of people in the organization; examples of the kinds of data
include name, designation, employee-id, address, email address, phone number,
fax number, and so on. In the precomputerization days, organizations would cre-
ate physical directories of employees and distribute them across the organization.
Even today, telephone companies create physical directories of customers.

In general, a directory is a listing of information about some class of objects
such as persons. Directories can be used to find information about a specific object,
or in the reverse direction to find objects that meet a certain requirement. In the
world of physical telephone directories, directories that satisfy lookups in the
forward direction are called white pages, while directories that satisfy lookups
in the reverse direction are called yellow pages.

In today’s networked world, the need for directories is still present and, if
anything, even more important. However, directories today need to be available
over a computer network, rather than in a physical (paper) form.

19.10.1 Directory Access Protocols

Directory information can be made available through Web interfaces, as many
organizations, and phone companies in particular, do. Such interfaces are good
for humans. However, programs too need to access directory information. Direc-
tories can be used for storing other types of information, much like file system
directories. For instance, Web browsers can store personal bookmarks and other
browser settings in a directory system. A user can thus access the same settings
from multiple locations, such as at home and at work, without having to share a
file system.
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Several directory access protocols have been developed to provide a stan-
dardized way of accessing data in a directory. The most widely used among them
today is the Lightweight Directory Access Protocol (LDAP).

Obviously all the types of data in our examples can be stored without much
trouble in a database system, and accessed through protocols such as JDBC or
ODBC. The question then is, why come up with a specialized protocol for accessing
directory information? There are at least two answers to the question.

• First, directory access protocols are simplified protocols that cater to a limited
type of access to data. They evolved in parallel with the database access
protocols.

• Second, and more important, directory systems provide a simple mecha-
nism to name objects in a hierarchical fashion, similar to file system directory
names, which can be used in a distributed directory system to specify what
information is stored in each of the directory servers. For example, a partic-
ular directory server may store information for Bell Laboratories employees
in Murray Hill, while another may store information for Bell Laboratories
employees in Bangalore, giving both sites autonomy in controlling their lo-
cal data. The directory access protocol can be used to obtain data from both
directories across a network. More important, the directory system can be
set up to automatically forward queries made at one site to the other site,
without user intervention.

For these reasons, several organizations have directory systems to make or-
ganizational information available online through a directory access protocol.
Information in an organizational directory can be used for a variety of purposes,
such as to find addresses, phone numbers, or email addresses of people, to find
which departments people are in, and to track department hierarchies. Directories
are also used to authenticate users: applications can collect authentication infor-
mation such as passwords from users and authenticate them using the directory.

As may be expected, several directory implementations find it beneficial to
use relational databases to store data, instead of creating special-purpose storage
systems.

19.10.2 LDAP: Lightweight Directory Access Protocol

In general a directory system is implemented as one or more servers, which service
multiple clients. Clients use the application programmer interface defined by the
directory system to communicate with the directory servers. Directory access
protocols also define a data model and access control.

The X.500 directory access protocol, defined by the International Organiza-
tion for Standardization (ISO), is a standard for accessing directory information.
However, the protocol is rather complex, and is not widely used. The Lightweight
Directory Access Protocol (LDAP) provides many of the X.500 features, but with
less complexity, and is widely used. In the rest of this section, we shall outline the
data model and access protocol details of LDAP.
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19.10.2.1 LDAP Data Model

In LDAP, directories store entries, which are similar to objects. Each entry must
have a distinguished name (DN), which uniquely identifies the entry. A DN is
in turn made up of a sequence of relative distinguished names (RDNs). For
example, an entry may have the following distinguished name:

cn=Silberschatz, ou=Computer Science, o=Yale University, c=USA

As you can see, the distinguished name in this example is a combination of a
name and (organizational) address, starting with a person’s name, then giving
the organizational unit (ou), the organization (o), and country (c). The order of
the components of a distinguished name reflects the normal postal address order,
rather than the reverse order used in specifying path names for files. The set of
RDNs for a DN is defined by the schema of the directory system.

Entries can also have attributes. LDAP provides binary, string, and time types,
and additionally the types tel for telephone numbers, and PostalAddress for
addresses (lines separated by a “$” character). Unlike those in the relational model,
attributes are multivalued by default, so it is possible to store multiple telephone
numbers or addresses for an entry.

LDAP allows the definition of object classes with attribute names and types.
Inheritance can be used in defining object classes. Moreover, entries can be spec-
ified to be of one or more object classes. It is not necessary that there be a single
most-specific object class to which an entry belongs.

Entries are organized into a directory information tree (DIT), according to
their distinguished names. Entries at the leaf level of the tree usually represent
specific objects. Entries that are internal nodes represent objects such as orga-
nizational units, organizations, or countries. The children of a node have a DN
containing all the RDNs of the parent, and one or more additional RDNs. For in-
stance, an internal node may have a DN c=USA, and all entries below it have the
value USA for the RDN c.

The entire distinguished name need not be stored in an entry. The system can
generate the distinguished name of an entry by traversing up the DIT from the
entry, collecting the RDN=value components to create the full distinguished name.

Entries may have more than one distinguished name—for example, an entry
for a person in more than one organization. To deal with such cases, the leaf level
of a DIT can be an alias, which points to an entry in another branch of the tree.

19.10.2.2 Data Manipulation

Unlike SQL, LDAP does not define either a data-definition language or a data-
manipulation language. However, LDAP defines a network protocol for carrying
out data definition and manipulation. Users of LDAP can either use an application
programming interface or use tools provided by various vendors to perform
data definition and manipulation. LDAP also defines a file format called LDAP
Data Interchange Format (LDIF) that can be used for storing and exchanging
information.
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The querying mechanism in LDAP is very simple, consisting of just selections
and projections, without any join. A query must specify the following:

• A base—that is, a node within a DIT—by giving its distinguished name (the
path from the root to the node).

• A search condition, which can be a Boolean combination of conditions on
individual attributes. Equality, matching by wild-card characters, and ap-
proximate equality (the exact definition of approximate equality is system
dependent) are supported.

• A scope, which can be just the base, the base and its children, or the entire
subtree beneath the base.

• Attributes to return.

• Limits on number of results and resource consumption.

The query can also specify whether to automatically dereference aliases; if alias
dereferences are turned off, alias entries can be returned as answers.

One way of querying an LDAP data source is by using LDAP URLs. Examples
of LDAP URLs are:

ldap:://codex.cs.yale.edu/o=Yale University,c=USA
ldap:://codex.cs.yale.edu/o=Yale University,c=USA??sub?cn=Silberschatz

The first URL returns all attributes of all entries at the server with organization
being Yale University, and country being USA. The second URL executes a search
query (selection) cn=Silberschatz on the subtree of the node with distinguished
name o=Yale University, c=USA. The question marks in the URL separate different
fields. The first field is the distinguished name, here o=Yale University,c=USA.
The second field, the list of attributes to return, is left empty, meaning return
all attributes. The third attribute, sub, indicates that the entire subtree is to be
searched. The last parameter is the search condition.

A second way of querying an LDAP directory is by using an application
programming interface. Figure 19.8 shows a piece of C code used to connect
to an LDAP server and run a query against the server. The code first opens a
connection to an LDAP server by ldap open and ldap bind. It then executes a
query by ldap search s. The arguments to ldap search s are the LDAP connection
handle, the DN of the base from which the search should be done, the scope of
the search, the search condition, the list of attributes to be returned, and an
attribute called attrsonly, which, if set to 1, would result in only the schema of the
result being returned, without any actual tuples. The last argument is an output
argument that returns the result of the search as an LDAPMessage structure.

The first for loop iterates over and prints each entry in the result. Note that an
entry may have multiple attributes, and the second for loop prints each attribute.
Since attributes in LDAP may be multivalued, the third for loop prints each value
of an attribute. The calls ldap msgfree and ldap value free free memory that is
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#include <stdio.h>

#include <ldap.h>

main() {
LDAP *ld;
LDAPMessage *res, *entry;
char *dn, *attr, *attrList[] = {“telephoneNumber”, NULL};
BerElement *ptr;
int vals, i;
ld = ldap open(“codex.cs.yale.edu”, LDAP PORT);
ldap simple bind(ld, “avi”, “avi-passwd”) ;
ldap search s(ld, “o=Yale University, c=USA”, LDAP SCOPE SUBTREE,

“cn=Silberschatz”, attrList, /*attrsonly*/ 0, &res);
printf(“found %d entries”, ldap count entries(ld, res));
for (entry=ldap first entry(ld, res); entry != NULL;

entry = ldap next entry(ld, entry))
{

dn = ldap get dn(ld, entry);
printf(“dn: %s”, dn);
ldap memfree(dn);
for (attr = ldap first attribute(ld, entry, &ptr);

attr ! NULL;
attr = ldap next attribute(ld, entry, ptr))

{
printf(“%s: ”, attr);
vals = ldap get values(ld, entry, attr);
for (i=0; vals[i] != NULL; i++)

printf(“%s, ”, vals[i]);
ldap value free(vals);

}
}
ldap msgfree(res);
ldap unbind(ld);

}

Figure 19.8 Example of LDAP code in C.

allocated by the LDAP libraries. Figure 19.8 does not show code for handling error
conditions.

The LDAP API also contains functions to create, update, and delete entries, as
well as other operations on the DIT. Each function call behaves like a separate
transaction; LDAP does not support atomicity of multiple updates.

19.10.2.3 Distributed Directory Trees

Information about an organization may be split into multiple DITs, each of which
stores information about some entries. The suffix of a DIT is a sequence of
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RDN=value pairs that identify what information the DIT stores; the pairs are con-
catenated to the rest of the distinguished name generated by traversing from the
entry to the root. For instance, the suffix of a DIT may be o=Lucent, c=USA, while
another may have the suffix o=Lucent, c=India. The DITs may be organizationally
and geographically separated.

A node in a DIT may contain a referral to another node in another DIT; for
instance, the organizational unit Bell Labs under o=Lucent, c=USA may have its
own DIT, in which case the DIT for o=Lucent, c=USA would have a node ou=Bell
Labs representing a referral to the DIT for Bell Labs.

Referrals are the key component that help organize a distributed collection
of directories into an integrated system. When a server gets a query on a DIT, it
may return a referral to the client, which then issues a query on the referenced
DIT. Access to the referenced DIT is transparent, proceeding without the user’s
knowledge. Alternatively, the server itself may issue the query to the referred DIT
and return the results along with locally computed results.

The hierarchical naming mechanism used by LDAP helps break up control
of information across parts of an organization. The referral facility then helps
integrate all the directories in an organization into a single virtual directory.

Although it is not an LDAP requirement, organizations often choose to break
up information either by geography (for instance, an organization may maintain
a directory for each site where the organization has a large presence) or by orga-
nizational structure (for instance, each organizational unit, such as department,
maintains its own directory).

Many LDAP implementations support master–slave and multimaster repli-
cation of DITs, although replication is not part of the current LDAP version 3
standard. Work on standardizing replication in LDAP is in progress.

19.11 Summary

• A distributed database system consists of a collection of sites, each of which
maintains a local database system. Each site is able to process local transac-
tions: those transactions that access data in only that single site. In addition, a
site may participate in the execution of global transactions: those transactions
that access data in several sites. The execution of global transactions requires
communication among the sites.

• Distributed databases may be homogeneous, where all sites have a common
schema and database system code, or heterogeneous, where the schemas and
system codes may differ.

• There are several issues involved in storing a relation in the distributed data-
base, including replication and fragmentation. It is essential that the system
minimize the degree to which a user needs to be aware of how a relation is
stored.

• A distributed system may suffer from the same types of failure that can afflict
a centralized system. There are, however, additional failures with which we
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need to deal in a distributed environment, including the failure of a site,
the failure of a link, loss of a message, and network partition. Each of these
problems needs to be considered in the design of a distributed recovery
scheme.

• To ensure atomicity, all the sites in which a transaction T executed must agree
on the final outcome of the execution. T either commits at all sites or aborts at
all sites. To ensure this property, the transaction coordinator of T must execute
a commit protocol. The most widely used commit protocol is the two-phase
commit protocol.

• The two-phase commit protocol may lead to blocking, the situation in which
the fate of a transaction cannot be determined until a failed site (the coordi-
nator) recovers. We can use the three-phase commit protocol to reduce the
probability of blocking.

• Persistent messaging provides an alternative model for handling distributed
transactions. The model breaks a single transaction into parts that are exe-
cuted at different databases. Persistent messages (which are guaranteed to
be delivered exactly once, regardless of failures), are sent to remote sites
to request actions to be taken there. While persistent messaging avoids the
blocking problem, application developers have to write code to handle vari-
ous types of failures.

• The various concurrency-control schemes used in a centralized system can
be modified for use in a distributed environment.

◦ In the case of locking protocols, the only change that needs to be incor-
porated is in the way that the lock manager is implemented. There are
a variety of different approaches here. One or more central coordinators
may be used. If, instead, a distributed-lock-manager approach is taken,
replicated data must be treated specially.

◦ Protocols for handling replicated data include the primary copy, majority,
biased, and quorum consensus protocols. These have different trade-offs
in terms of cost and ability to work in the presence of failures.

◦ In the case of timestamping and validation schemes, the only needed
change is to develop a mechanism for generating unique global times-
tamps.

◦ Many database systems support lazy replication, where updates are prop-
agated to replicas outside the scope of the transaction that performed the
update. Such facilities must be used with great care, since they may result
in nonserializable executions.

• Deadlock detection in a distributed-lock-manager environment requires co-
operation between multiple sites, since there may be global deadlocks even
when there are no local deadlocks.
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• To provide high availability, a distributed database must detect failures, re-
configure itself so that computation may continue, and recover when a pro-
cessor or a link is repaired. The task is greatly complicated by the fact that it
is hard to distinguish between network partitions and site failures.

The majority protocol can be extended by using version numbers to permit
transaction processing to proceed even in the presence of failures. While the
protocol has a significant overhead, it works regardless of the type of failure.
Less-expensive protocols are available to deal with site failures, but they
assume network partitioning does not occur.

• Some of the distributed algorithms require the use of a coordinator. To pro-
vide high availability, the system must maintain a backup copy that is ready to
assume responsibility if the coordinator fails. Another approach is to choose
the new coordinator after the coordinator has failed. The algorithms that de-
termine which site should act as a coordinator are called election algorithms.

• Queries on a distributed database may need to access multiple sites. Several
optimization techniques are available to identify the best set of sites to access.
Queries can be rewritten automatically in terms of fragments of relations and
then choices can be made among the replicas of each fragment. Semijoin
techniques may be employed to reduce data transfer involved in joining
relations (or fragments or relicas thereof) across distinct sites.

• Heterogeneous distributed databases allow sites to have their own schemas
and database system code. A multidatabase system provides an environment
in which new database applications can access data from a variety of pre-
existing databases located in various heterogeneous hardware and software
environments. The local database systems may employ different logical mod-
els and data-definition and data-manipulation languages, and may differ in
their concurrency-control and transaction-management mechanisms. A mul-
tidatabase system creates the illusion of logical database integration, without
requiring physical database integration.

• A large number of data-storage systems on the cloud have been built in
recent years, in response to data storage needs of extremely large-scale Web
applications. These data-storage systems allow scalability to thousands of
nodes, with geographic distribution, and high availability. However, they do
not support the usual ACID properties, and they achieve availability during
partitions at the cost of consistency of replicas. Current data-storage systems
also do not support SQL, and provide only a simple put()/get() interface.
While cloud computing is attractive even for traditional databases, there are
several challenges due to lack of control on data placement and geographic
replication.

• Directory systems can be viewed as a specialized form of database, where
information is organized in a hierarchical fashion similar to the way files are
organized in a file system. Directories are accessed by standardized directory
access protocols such as LDAP. Directories can be distributed across multiple
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sites to provide autonomy to individual sites. Directories can contain referrals
to other directories, which help build an integrated view whereby a query
is sent to a single directory, and it is transparently executed at all relevant
directories.

Review Terms

• Homogeneous distributed
database

• Heterogeneous distributed
database

• Data replication
• Primary copy
• Data fragmentation

◦ Horizontal fragmentation

◦ Vertical fragmentation

• Data transparency

◦ Fragmentation transparency

◦ Replication transparency

◦ Location transparency

• Name server
• Aliases
• Distributed transactions

◦ Local transactions

◦ Global transactions

• Transaction manager
• Transaction coordinator
• System failure modes
• Network partition
• Commit protocols
• Two-phase commit protocol (2PC)

◦ Ready state

◦ In-doubt transactions

◦ Blocking problem

• Three-phase commit protocol
(3PC)

• Persistent messaging
• Concurrency control
• Single lock manager
• Distributed lock manager
• Protocols for replicas

◦ Primary copy

◦ Majority protocol

◦ Biased protocol
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• Timestamping
• Master–slave replication
• Multimaster (update-anywhere)

replication
• Transaction-consistent snapshot
• Lazy propagation
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◦ Global wait-for graph

◦ False cycles

• Availability
• Robustness

◦ Majority-based approach

◦ Read one, write all

◦ Read one, write all available

◦ Site reintegration
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• Backup coordinator
• Election algorithms
• Bully algorithm
• Distributed query processing
• Semijoin strategy
• Multidatabase system

◦ Autonomy

◦ Mediators

◦ Local transactions

◦ Global transactions

◦ Ensuring global serializability

◦ Ticket

• Cloud computing

• Cloud data storage
• Tablet
• Directory systems
• LDAP: Lightweight Directory

Access Protocol

◦ Distinguished name (DN)

◦ Relative distinguished names
(RDNs)

◦ Directory information
tree (DIT)

• Distributed directory trees

◦ DIT suffix

◦ Referral

Practice Exercises

19.1 How might a distributed database designed for a local-area network differ
from one designed for a wide-area network?

19.2 To build a highly available distributed system, you must know what kinds
of failures can occur.

a. List possible types of failure in a distributed system.

b. Which items in your list from part a are also applicable to a central-
ized system?

19.3 Consider a failure that occurs during 2PC for a transaction. For each pos-
sible failure that you listed in Practice Exercise 19.2a, explain how 2PC
ensures transaction atomicity despite the failure.

19.4 Consider a distributed system with two sites, A and B. Can site A distin-
guish among the following?

• B goes down.

• The link between A and B goes down.

• B is extremely overloaded and response time is 100 times longer than
normal.

What implications does your answer have for recovery in distributed
systems?
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19.5 The persistent messaging scheme described in this chapter depends on
timestamps combined with discarding of received messages if they are too
old. Suggest an alternative scheme based on sequence numbers instead
of timestamps.

19.6 Give an example where the read one, write all available approach leads
to an erroneous state.

19.7 Explain the difference between data replication in a distributed system
and the maintenance of a remote backup site.

19.8 Give an example where lazy replication can lead to an inconsistent database
state even when updates get an exclusive lock on the primary (master)
copy.

19.9 Consider the following deadlock-detection algorithm. When transaction
Ti , at site S1, requests a resource from Tj , at site S3, a request message with
timestamp n is sent. The edge (Ti , Tj , n) is inserted in the local wait-for
graph of S1. The edge (Ti , Tj , n) is inserted in the local wait-for graph of
S3 only if Tj has received the request message and cannot immediately
grant the requested resource. A request from Ti to Tj in the same site is
handled in the usual manner; no timestamps are associated with the edge
(Ti , Tj ). A central coordinator invokes the detection algorithm by sending
an initiating message to each site in the system.

On receiving this message, a site sends its local wait-for graph to the
coordinator. Note that such a graph contains all the local information that
the site has about the state of the real graph. The wait-for graph reflects
an instantaneous state of the site, but it is not synchronized with respect
to any other site.

When the controller has received a reply from each site, it constructs a
graph as follows:

• The graph contains a vertex for every transaction in the system.

• The graph has an edge (Ti , Tj ) if and only if:

◦ There is an edge (Ti , Tj ) in one of the wait-for graphs.

◦ An edge (Ti , Tj , n) (for some n) appears in more than one wait-for
graph.

Show that, if there is a cycle in the constructed graph, then the system is
in a deadlock state, and that, if there is no cycle in the constructed graph,
then the system was not in a deadlock state when the execution of the
algorithm began.

19.10 Consider a relation that is fragmented horizontally by plant number:

employee (name, address, salary, plant number)
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Assume that each fragment has two replicas: one stored at the New York
site and one stored locally at the plant site. Describe a good processing
strategy for the following queries entered at the San Jose site.

a. Find all employees at the Boca plant.

b. Find the average salary of all employees.

c. Find the highest-paid employee at each of the following sites: Toronto,
Edmonton, Vancouver, Montreal.

d. Find the lowest-paid employee in the company.

19.11 Compute r � s for the relations of Figure 19.9.

19.12 Give an example of an application ideally suited for the cloud and another
that would be hard to implement successfully in the cloud. Explain your
answer.

19.13 Given that the LDAP functionality can be implemented on top of a database
system, what is the need for the LDAP standard?

19.14 Consider a multidatabase system in which it is guaranteed that at most
one global transaction is active at any time, and every local site ensures
local serializability.

a. Suggest ways in which the multidatabase system can ensure that
there is at most one active global transaction at any time.

b. Show by example that it is possible for a nonserializable global
schedule to result despite the assumptions.

19.15 Consider a multidatabase system in which every local site ensures local
serializability, and all global transactions are read only.

a. Show by example that nonserializable executions may result in such
a system.

b. Show how you could use a ticket scheme to ensure global serializ-
ability.

r

A B C

s

C D E
1 2 3 3 4 5
4 5 6 3 6 8
1 2 4 2 3 2
5 3 2 1 4 1
8 9 7 1 2 3

Figure 19.9 Relations for Practice Exercise 19.11.
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Exercises

19.16 Discuss the relative advantages of centralized and distributed databases.

19.17 Explain how the following differ: fragmentation transparency, replication
transparency, and location transparency.

19.18 When is it useful to have replication or fragmentation of data? Explain
your answer.

19.19 Explain the notions of transparency and autonomy. Why are these notions
desirable from a human-factors standpoint?

19.20 If we apply a distributed version of the multiple-granularity protocol of
Chapter 15 to a distributed database, the site responsible for the root of
the DAG may become a bottleneck. Suppose we modify that protocol as
follows:

• Only intention-mode locks are allowed on the root.

• All transactions are given all possible intention-mode locks on the
root automatically.

Show that these modifications alleviate this problem without allowing
any nonserializable schedules.

19.21 Study and summarize the facilities that the database system you are using
provides for dealing with inconsistent states that can be reached with lazy
propagation of updates.

19.22 Discuss the advantages and disadvantages of the two methods that we
presented in Section 19.5.2 for generating globally unique timestamps.

19.23 Consider the relations:

employee (name, address, salary, plant number)
machine (machine number, type, plant number)

Assume that the employee relation is fragmented horizontally by plant
number, and that each fragment is stored locally at its corresponding

plant site. Assume that the machine relation is stored in its entirety at the
Armonk site. Describe a good strategy for processing each of the following
queries.

a. Find all employees at the plant that contains machine number 1130.

b. Find all employees at plants that contain machines whose type is
“milling machine.”

c. Find all machines at the Almaden plant.

d. Find employee � machine.
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19.24 For each of the strategies of Exercise 19.23, state how your choice of a
strategy depends on:

a. The site at which the query was entered.

b. The site at which the result is desired.

19.25 Is the expression ri � r j necessarily equal to r j � ri ? Under what
conditions does ri � r j = r j � ri hold?

19.26 If a cloud data-storage service is used to store two relations r and s and
we need to join r and s, why might it be useful to maintain the join
as a materialized view? In your answer, be sure to distinguish among
various meanings of “useful”: overall throughput, efficient use of space,
and response time to user queries.

19.27 Why do cloud-computing services support traditional database systems
best by using a virtual machine instead of running directly on the service
provider’s actual machine?

19.28 Describe how LDAP can be used to provide multiple hierarchical views of
data, without replicating the base-level data.
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PART 6

DATA WAREHOUSING, DATA
MINING, AND

INFORMATION RETRIEVAL

Database queries are often designed to extract specific information, such as the
balance of an account or the sum of a customer’s account balances. However,
queries designed to help formulate a corporate strategy usually requires access
to large amounts of data originating at multiple sources.

A data warehouse is a repository of data gathered from multiple sources and
stored under a common, unified database schema. Data stored in warehouse are
analyzed by a variety of complex aggregations and statistical analyses, often ex-
ploiting SQL constructs for data analysis which we saw in Chapter 5. Furthermore,
knowledge-discovery techniques may be used to attempt to discover rules and
patterns from the data. For example, a retailer may discover that certain products
tend to be purchased together, and may use that information to develop mar-
keting strategies. This process of knowledge discovery from data is called data
mining. Chapter 20 addresses the issues of data warehousing and data mining.

In our discussions so far, we have focused on relatively simple, well-structured
data. However, there is an enormous amount of unstructured textual data on the
Internet, on intranets within organizations, and on the computers of individual
users. Users wish to find relevant information from this vast body of mostly tex-
tual information, using simple query mechanisms such as keyword queries. The
field of information retrieval deals with querying of such unstructured data, and
pays particular attention to the ranking of query results. Although this area of
research is several decades old, it has undergone tremendous growth with the
development of the World Wide Web. Chapter 21 provides an introduction to the
field of information retrieval.
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C H A P T E R20
Data Warehousing and Mining

Businesses have begun to exploit the burgeoning data online to make better
decisions about their activities, such as what items to stock and how best to target
customers to increase sales. There are two aspects to exploiting such data. The
first aspect is to gather data from multiple sources into a central repository, called
a data warehouse. Issues involved in warehousing include techniques for dealing
with dirty data, that is, data with some errors, and with techniques for efficient
storage and indexing of large volumes of data.

The second aspect is to analyze the gathered data to find information or
knowledge that can be the basis for business decisions. Some kinds of data anal-
ysis can be done by using SQL constructs for online analytical processing (OLAP),
which we saw in Section 5.6 (Chapter 5), and by using tools and graphical in-
terfaces for OLAP. Another approach to getting knowledge from data is to use
data mining, which aims at detecting various types of patterns in large volumes
of data. Data mining supplements various types of statistical techniques with
similar goals.

20.1 Decision-Support Systems

Database applications can be broadly classified into transaction-processing and
decision-support systems. Transaction-processing systems are systems that record
information about transactions, such as product sales information for compa-
nies, or course registration and grade information for universities. Transaction-
processing systems are widely used today, and organizations have accumulated
a vast amount of information generated by these systems. Decision-support sys-
tems aim to get high-level information out of the detailed information stored in
transaction-processing systems, and to use the high-level information to make
a variety of decisions. Decision-support systems help managers to decide what
products to stock in a shop, what products to manufacture in a factory, or which
of the applicants should be admitted to a university.

For example, company databases often contain enormous quantities of in-
formation about customers and transactions. The size of the information storage
required may range up to hundreds of gigabytes, or even terabytes, for large

887



888 Chapter 20 Data Warehousing and Mining

retail chains. Transaction information for a retailer may include the name or iden-
tifier (such as credit-card number) of the customer, the items purchased, the price
paid, and the dates on which the purchases were made. Information about the
items purchased may include the name of the item, the manufacturer, the model
number, the color, and the size. Customer information may include credit history,
annual income, residence, age, and even educational background.

Such large databases can be treasure troves of information for making busi-
ness decisions, such as what items to stock and what discounts to offer. For
instance, a retail company may notice a sudden spurt in purchases of flannel
shirts in the Pacific Northwest, may realize that there is a trend, and may start
stocking a larger number of such shirts in shops in that area. As another example,
a car company may find, on querying its database, that most of its small sports
cars are bought by young women whose annual incomes are above $50,000. The
company may then target its marketing to attract more such women to buy its
small sports cars, and may avoid wasting money trying to attract other categories
of people to buy those cars. In both cases, the company has identified patterns in
customer behavior and has used the patterns to make business decisions.

The storage and retrieval of data for decision support raises several issues:

• Although many decision-support queries can be written in SQL, others either
cannot be expressed in SQL or cannot be expressed easily in SQL. Several
SQL extensions have therefore been proposed to make data analysis easier. In
Section 5.6, we covered SQL extensions for data analysis and techniques for
online analytical processing (OLAP).

• Database query languages are not suited to the performance of detailed sta-
tistical analyses of data. There are several packages, such as SAS and S++,
that help in statistical analysis. Such packages have been interfaced with
databases, to allow large volumes of data to be stored in the database and
retrieved efficiently for analysis. The field of statistical analysis is a large dis-
cipline on its own; see the references in the bibliographical notes for more
information.

• Large companies have diverse sources of data that they need to use for making
business decisions. The sources may store the data under different schemas.
For performance reasons (as well as for reasons of organization control), the
data sources usually will not permit other parts of the company to retrieve
data on demand.

To execute queries efficiently on such diverse data, companies have
built data warehouses. Data warehouses gather data from multiple sources
under a unified schema, at a single site. Thus, they provide the user a single
uniform interface to data. We study issues in building and maintaining a data
warehouse in Section 20.2.

• Knowledge-discovery techniques attempt to discover automatically statisti-
cal rules and patterns from data. The field of data mining combines knowledge-
discovery techniques invented by artificial intelligence researchers and sta-



20.2 Data Warehousing 889

tistical analysts, with efficient implementation techniques that enable them
to be used on extremely large databases. Section 20.3 discusses data mining.

The area of decision support can be broadly viewed as covering all the above
areas, although some people use the term in a narrower sense that excludes
statistical analysis and data mining.

20.2 Data Warehousing

Large companies have presences in many places, each of which may generate
a large volume of data. For instance, large retail chains have hundreds or thou-
sands of stores, whereas insurance companies may have data from thousands
of local branches. Further, large organizations have a complex internal organiza-
tion structure, and therefore different data may be present in different locations,
or on different operational systems, or under different schemas. For instance,
manufacturing-problem data and customer-complaint data may be stored on dif-
ferent database systems. Organizations often purchase data from external sources,
such as mailing lists that are used for product promotions, or credit scores of cus-
tomers that are provided by credit bureaus, to decide on credit-worthiness of
customers.1

Corporate decision makers require access to information from multiple such
sources. Setting up queries on individual sources is both cumbersome and ineffi-
cient. Moreover, the sources of data may store only current data, whereas decision
makers may need access to past data as well; for instance, information about how
purchase patterns have changed in the past year could be of great importance.
Data warehouses provide a solution to these problems.

A data warehouse is a repository (or archive) of information gathered from
multiple sources, stored under a unified schema, at a single site. Once gathered,
the data are stored for a long time, permitting access to historical data. Thus,
data warehouses provide the user a single consolidated interface to data, mak-
ing decision-support queries easier to write. Moreover, by accessing information
for decision support from a data warehouse, the decision maker ensures that
online transaction-processing systems are not affected by the decision-support
workload.

20.2.1 Components of a Data Warehouse

Figure 20.1 shows the architecture of a typical data warehouse, and illustrates the
gathering of data, the storage of data, and the querying and data analysis support.
Among the issues to be addressed in building a warehouse are the following:

1Credit bureaus are companies that gather information about consumers from multiple sources and compute a credit-
worthiness score for each consumer.
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data
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data source 2
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...

Figure 20.1 Data-warehouse architecture.

• When and how to gather data. In a source-driven architecture for gather-
ing data, the data sources transmit new information, either continually (as
transaction processing takes place), or periodically (nightly, for example).
In a destination-driven architecture, the data warehouse periodically sends
requests for new data to the sources.

Unless updates at the sources are replicated at the warehouse via two-
phase commit, the warehouse will never be quite up-to-date with the sources.
Two-phase commit is usually far too expensive to be an option, so data
warehouses typically have slightly out-of-date data. That, however, is usually
not a problem for decision-support systems.

• What schema to use. Data sources that have been constructed independently
are likely to have different schemas. In fact, they may even use different data
models. Part of the task of a warehouse is to perform schema integration,
and to convert data to the integrated schema before they are stored. As a
result, the data stored in the warehouse are not just a copy of the data at the
sources. Instead, they can be thought of as a materialized view of the data at
the sources.

• Data transformation and cleansing. The task of correcting and preprocessing
data is called data cleansing. Data sources often deliver data with numerous
minor inconsistencies, which can be corrected. For example, names are often
misspelled, and addresses may have street, area, or city names misspelled, or
postal codes entered incorrectly. These can be corrected to a reasonable extent
by consulting a database of street names and postal codes in each city. The
approximate matching of data required for this task is referred to as fuzzy
lookup.

Address lists collected from multiple sources may have duplicates that
need to be eliminated in a merge–purge operation (this operation is also
referred to as deduplication). Records for multiple individuals in a house
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may be grouped together so only one mailing is sent to each house; this
operation is called householding.

Data may be transformed in ways other than cleansing, such as changing
the units of measure, or converting the data to a different schema by joining
data from multiple source relations. Data warehouses typically have graphi-
cal tools to support data transformation. Such tools allow transformation to
be specified as boxes, and edges can be created between boxes to indicate the
flow of data. Conditional boxes can route data to an appropriate next step in
transformation. See Figure 30.7 for an example of a transformation specified
using the graphical tool provided by Microsoft SQL Server.

• How to propagate updates. Updates on relations at the data sources must
be propagated to the data warehouse. If the relations at the data warehouse
are exactly the same as those at the data source, the propagation is straight-
forward. If they are not, the problem of propagating updates is basically the
view-maintenance problem, which was discussed in Section 13.5.

• What data to summarize. The raw data generated by a transaction-processing
system may be too large to store online. However, we can answer many
queries by maintaining just summary data obtained by aggregation on a
relation, rather than maintaining the entire relation. For example, instead of
storing data about every sale of clothing, we can store total sales of clothing
by item name and category.

Suppose that a relation r has been replaced by a summary relation s.
Users may still be permitted to pose queries as though the relation r were
available online. If the query requires only summary data, it may be possible
to transform it into an equivalent one using s instead; see Section 13.5.

The different steps involved in getting data into a data warehouse are called
extract, transform, and load or ETL tasks; extraction refers to getting data from
the sources, while load refers to loading the data into the data warehouse.

20.2.2 Warehouse Schemas

Data warehouses typically have schemas that are designed for data analysis, using
tools such as OLAP tools. Thus, the data are usually multidimensional data, with
dimension attributes and measure attributes. Tables containing multidimensional
data are called fact tables and are usually very large. A table recording sales
information for a retail store, with one tuple for each item that is sold, is a typical
example of a fact table. The dimensions of the sales table would include what the
item is (usually an item identifier such as that used in bar codes), the date when
the item is sold, which location (store) the item was sold from, which customer
bought the item, and so on. The measure attributes may include the number of
items sold and the price of the items.

To minimize storage requirements, dimension attributes are usually short
identifiers that are foreign keys into other tables called dimension tables. For
instance, a fact table sales would have attributes item id, store id, customer id, and
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Figure 20.2 Star schema for a data warehouse.

date, and measure attributes number and price. The attribute store id is a foreign
key into a dimension table store, which has other attributes such as store location
(city, state, country). The item id attribute of the sales table would be a foreign key
into a dimension table item info, which would contain information such as the
name of the item, the category to which the item belongs, and other item details
such as color and size. The customer id attribute would be a foreign key into a
customer table containing attributes such as name and address of the customer.
We can also view the date attribute as a foreign key into a date info table giving the
month, quarter, and year of each date.

The resultant schema appears in Figure 20.2. Such a schema, with a fact table,
multiple dimension tables, and foreign keys from the fact table to the dimension
tables, is called a star schema. More complex data-warehouse designs may have
multiple levels of dimension tables; for instance, the item info table may have an
attribute manufacturer id that is a foreign key into another table giving details of
the manufacturer. Such schemas are called snowflake schemas. Complex data-
warehouse designs may also have more than one fact table.

20.2.3 Column-Oriented Storage

Databases traditionally store all attributes of a tuple together, and tuples are stored
sequentially in a file. Such a storage layout is referred to as row-oriented storage.
In contrast, in column-oriented storage, each attribute of a relation is stored in a
separate file, with values from successive tuples stored at successive positions in
the file. Assuming fixed-size data types, the value of attribute A of the ith tuple
of a relation can be found by accessing the file corresponding to attribute A, and
reading the value at offset (i − 1) times the size (in bytes) of values in attribute A.
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Column-oriented storage has at least two major benefits over row-oriented
storage:

1. When a query needs to access only a few attributes of a relation with a
large number of attributes, the remaining attributes need not be fetched
from disk into memory. In contrast, in row-oriented storage, not only are
irrelevant attributes fetched into memory, but they may also get prefetched
into processor cache, wasting cache space and memory bandwidth, if they
are stored adjacent to attributes used in the query.

2. Storing values of the same type together increases the effectiveness of com-
pression; compression can greatly reduce both the disk storage cost and the
time to retrieve data from disk.

On the other hand, column-oriented storage has the drawback that storing or
fetching a single tuple requires multiple I/O operations.

As a result of the above trade-offs, column-oriented storage is not widely
used for transaction-processing applications. However, column-oriented storage
is gaining increasing acceptance for data-warehousing applications, where ac-
cesses are rarely to individual tuples, but rather require scanning and aggregating
multiple tuples.

Sybase IQ was one of the early products to use column-oriented storage,
but there are now several research projects and companies that have developed
databases based on column-oriented storage systems. These systems have been
able to demonstrate significant performance gains for many data-warehousing
applications. See the bibliographical notes for references on how column-oriented
stores are implemented, and queries optimized and processed on such stores.

20.3 Data Mining

The term data mining refers loosely to the process of semiautomatically analyzing
large databases to find useful patterns. Like knowledge discovery in artificial
intelligence (also called machine learning) or statistical analysis, data mining
attempts to discover rules and patterns from data. However, data mining differs
from machine learning and statistics in that it deals with large volumes of data,
stored primarily on disk. That is, data mining deals with “knowledge discovery
in databases.”

Some types of knowledge discovered from a database can be represented by
a set of rules. The following is an example of a rule, stated informally: “Young
women with annual incomes greater than $50,000 are the most likely people to
buy small sports cars.” Of course such rules are not universally true, and have
degrees of “support” and “confidence,” as we shall see. Other types of knowledge
are represented by equations relating different variables to each other, or by
other mechanisms for predicting outcomes when the values of some variables are
known.
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There are a variety of possible types of patterns that may be useful, and
different techniques are used to find different types of patterns. We shall study a
few examples of patterns and see how they may be automatically derived from a
database.

Usually there is a manual component to data mining, consisting of preprocess-
ing data to a form acceptable to the algorithms and postprocessing of discovered
patterns to find novel ones that could be useful. There may also be more than
one type of pattern that can be discovered from a given database, and manual
interaction may be needed to pick useful types of patterns. For this reason, data
mining is really a semiautomatic process in real life. However, in our description
we concentrate on the automatic aspect of mining.

The discovered knowledge has numerous applications. The most widely used
applications are those that require some sort of prediction. For instance, when a
person applies for a credit card, the credit-card company wants to predict if the
person is a good credit risk. The prediction is to be based on known attributes of
the person, such as age, income, debts, and past debt-repayment history. Rules for
making the prediction are derived from the same attributes of past and current
credit-card holders, along with their observed behavior, such as whether they
defaulted on their credit-card dues. Other types of prediction include predicting
which customers may switch over to a competitor (these customers may be offered
special discounts to tempt them not to switch), predicting which people are likely
to respond to promotional mail (“junk mail”), or predicting what types of phone
calling card usage are likely to be fraudulent.

Another class of applications looks for associations, for instance, books that
tend to be bought together. If a customer buys a book, an online bookstore may
suggest other associated books. If a person buys a camera, the system may suggest
accessories that tend to be bought along with cameras. A good salesperson is
aware of such patterns and exploits them to make additional sales. The challenge
is to automate the process. Other types of associations may lead to discovery of
causation. For instance, discovery of unexpected associations between a newly
introduced medicine and cardiac problems led to the finding that the medicine
may cause cardiac problems in some people. The medicine was then withdrawn
from the market.

Associations are an example of descriptive patterns. Clusters are another
example of such patterns. For example, over a century ago a cluster of typhoid
cases was found around a well, which led to the discovery that the water in
the well was contaminated and was spreading typhoid. Detection of clusters of
disease remains important even today.

20.4 Classification

As mentioned in Section 20.3, prediction is one of the most important types
of data mining. We describe classification, study techniques for building one
type of classifiers, called decision-tree classifiers, and then study other prediction
techniques.
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Abstractly, the classification problem is this: Given that items belong to one
of several classes, and given past instances (called training instances) of items
along with the classes to which they belong, the problem is to predict the class to
which a new item belongs. The class of the new instance is not known, so other
attributes of the instance must be used to predict the class.

Classification can be done by finding rules that partition the given data into
disjoint groups. For instance, suppose that a credit-card company wants to decide
whether or not to give a credit card to an applicant. The company has a variety of
information about the person, such as her age, educational background, annual
income, and current debts, that it can use for making a decision.

Some of this information could be relevant to the credit-worthiness of the
applicant, whereas some may not be. To make the decision, the company assigns
a credit-worthiness level of excellent, good, average, or bad to each of a sample
set of current customers according to each customer’s payment history. Then, the
company attempts to find rules that classify its current customers into excellent,
good, average, or bad, on the basis of the information about the person, other
than the actual payment history (which is unavailable for new customers). Let us
consider just two attributes: education level (highest degree earned) and income.
The rules may be of the following form:

∀person P, P .degree = masters and P .income > 75, 000
⇒ P .credit = excellent

∀ person P, P .degree = bachelors or
(P .income ≥ 25, 000 and P .income ≤ 75, 000) ⇒ P .credit = good

Similar rules would also be present for the other credit-worthiness levels (average
and bad).

The process of building a classifier starts from a sample of data, called a train-
ing set. For each tuple in the training set, the class to which the tuple belongs is
already known. For instance, the training set for a credit-card application may
be the existing customers, with their credit-worthiness determined from their
payment history. The actual data, or population, may consist of all people, in-
cluding those who are not existing customers. There are several ways of building
a classifier, as we shall see.

20.4.1 Decision-Tree Classifiers

The decision-tree classifier is a widely used technique for classification. As the
name suggests, decision-tree classifiers use a tree; each leaf node has an associ-
ated class, and each internal node has a predicate (or more generally, a function)
associated with it. Figure 20.3 shows an example of a decision tree.

To classify a new instance, we start at the root and traverse the tree to reach
a leaf; at an internal node we evaluate the predicate (or function) on the data
instance, to find which child to go to. The process continues until we reach a leaf
node. For example, if the degree level of a person is masters, and the person’s
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degree

income income income income

bachelors masters doctoratenone

bad average good

bad average good excellent

 <50K >100K
<25K >=25K

>=50K<50K

<25K >75K

25 to 75K50 to 100K

Figure 20.3 Classification tree.

income is 40K, starting from the root we follow the edge labeled “masters,” and
from there the edge labeled “25K to 75K,” to reach a leaf. The class at the leaf is
“good,” so we predict that the credit risk of that person is good.

20.4.1.1 Building Decision-Tree Classifiers

The question then is how to build a decision-tree classifier, given a set of training
instances. The most common way of doing so is to use a greedy algorithm, which
works recursively, starting at the root and building the tree downward. Initially
there is only one node, the root, and all training instances are associated with that
node.

At each node, if all, or “almost all” training instances associated with the node
belong to the same class, then the node becomes a leaf node associated with that
class. Otherwise, a partitioning attribute and partitioning conditions must be
selected to create child nodes. The data associated with each child node is the set
of training instances that satisfy the partitioning condition for that child node.
In our example, the attribute degree is chosen, and four children, one for each
value of degree, are created. The conditions for the four children nodes are degree
= none, degree = bachelors, degree = masters, and degree = doctorate, respectively.
The data associated with each child consist of training instances satisfying the
condition associated with that child. At the node corresponding to masters, the
attribute income is chosen, with the range of values partitioned into intervals 0 to
25K, 25K to 50K, 50K to 75K, and over 75K. The data associated with each node
consist of training instances with the degree attribute being masters and the income
attribute being in each of these ranges, respectively. As an optimization, since the
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class for the range 25K to 50K and the range 50K to 75K is the same under the
node degree = masters, the two ranges have been merged into a single range 25K
to 75K.

20.4.1.2 Best Splits

Intuitively, by choosing a sequence of partitioning attributes, we start with the set
of all training instances, which is “impure” in the sense that it contains instances
from many classes, and ends up with leaves which are “pure” in the sense that
at each leaf all training instances belong to only one class. We shall see shortly
how to measure purity quantitatively. To judge the benefit of picking a particular
attribute and condition for partitioning of the data at a node, we measure the
purity of the data at the children resulting from partitioning by that attribute. The
attribute and condition that result in the maximum purity are chosen.

The purity of a set S of training instances can be measured quantitatively in
several ways. Suppose there are k classes, and of the instances in S the fraction of
instances in class i is pi . One measure of purity, the Gini measure, is defined as:

Gini(S) = 1 −
k∑

i−1

p2
i

When all instances are in a single class, the Gini value is 0, while it reaches its
maximum (of 1 − 1/k) if each class has the same number of instances. Another
measure of purity is the entropy measure, which is defined as:

Entropy(S) = −
k∑

i−1

pi log2 pi

The entropy value is 0 if all instances are in a single class, and reaches its maximum
when each class has the same number of instances. The entropy measure derives
from information theory.

When a set S is split into multiple sets Si , i = 1, 2, . . . , r , we can measure the
purity of the resultant set of sets as:

Purity(S1, S2, . . . , Sr ) =
r∑

i=1

|Si |
|S| purity(Si )

That is, the purity is the weighted average of the purity of the sets Si . The above
formula can be used with both the Gini measure and the entropy measure of
purity.

The information gain due to a particular split of S into Si , i = 1, 2, . . . , r is
then:

Information gain(S, {S1, S2, . . . , Sr }) = purity(S) − purity(S1, S2, . . . , Sr )
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Splits into fewer sets are preferable to splits into many sets, since they lead
to simpler and more meaningful decision trees. The number of elements in each
of the sets Si may also be taken into account; otherwise, whether a set Si has 0
elements or 1 element would make a big difference in the number of sets, although
the split is the same for almost all the elements. The information content of a
particular split can be defined in terms of entropy as:

Information content(S, {S1, S2, . . . , Sr }) = −
r∑

i−1

|Si |
|S| log2

|Si |
|S|

All of this leads to a definition: The best split for an attribute is the one that
gives the maximum information gain ratio, defined as:

Information gain(S, {S1, S2, . . . , Sr })
Information content(S, {S1, S2, . . . , Sr })

20.4.1.3 Finding Best Splits

How do we find the best split for an attribute? How to split an attribute depends
on the type of the attribute. Attributes can be either continuous valued, that is,
the values can be ordered in a fashion meaningful to classification, such as age
or income, or they can be categorical; that is, they have no meaningful order,
such as department names or country names. We do not expect the sort order of
department names or country names to have any significance to classification.

Usually attributes that are numbers (integers/reals) are treated as continuous
valued while character string attributes are treated as categorical, but this may be
controlled by the user of the system. In our example, we have treated the attribute
degree as categorical, and the attribute income as continuous valued.

We first consider how to find best splits for continuous-valued attributes. For
simplicity, we shall consider only binary splits of continuous-valued attributes,
that is, splits that result in two children. The case of multiway splits is more
complicated; see the bibliographical notes for references on the subject.

To find the best binary split of a continuous-valued attribute, we first sort the
attribute values in the training instances. We then compute the information gain
obtained by splitting at each value. For example, if the training instances have
values 1, 10, 15, and 25 for an attribute, the split points considered are 1, 10, and
15; in each case values less than or equal to the split point form one partition
and the rest of the values form the other partition. The best binary split for the
attribute is the split that gives the maximum information gain.

For a categorical attribute, we can have a multiway split, with a child for
each value of the attribute. This works fine for categorical attributes with only
a few distinct values, such as degree or gender. However, if the attribute has
many distinct values, such as department names in a large company, creating a
child for each value is not a good idea. In such cases, we would try to combine
multiple values into each child, to create a smaller number of children. See the
bibliographical notes for references on how to do so.
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procedure GrowTree(S)
Partition(S);

procedure Partition (S)
if (purity(S) > �p or |S| < �s ) then

return;
for each attribute A

evaluate splits on attribute A;
Use best split found (across all attributes) to partition

S into S1, S2, . . . , Sr ;
for i = 1, 2, . . . , r

Partition(Si );

Figure 20.4 Recursive construction of a decision tree.

20.4.1.4 Decision-Tree Construction Algorithm

The main idea of decision-tree construction is to evaluate different attributes and
different partitioning conditions, and pick the attribute and partitioning condi-
tion that results in the maximum information-gain ratio. The same procedure
works recursively on each of the sets resulting from the split, thereby recursively
constructing a decision tree. If the data can be perfectly classified, the recursion
stops when the purity of a set is 0. However, often data are noisy, or a set may be
so small that partitioning it further may not be justified statistically. In this case,
the recursion stops when the purity of a set is “sufficiently high,” and the class of
the resulting leaf is defined as the class of the majority of the elements of the set.
In general, different branches of the tree could grow to different levels.

Figure 20.4 shows pseudocode for a recursive tree-construction procedure,
which takes a set of training instances S as parameter. The recursion stops when
the set is sufficiently pure or the set S is too small for further partitioning to be
statistically significant. The parameters �p and �s define cutoffs for purity and size;
the system may give them default values, which may be overridden by users.

There are a wide variety of decision-tree construction algorithms, and we
outline the distinguishing features of a few of them. See the bibliographical notes
for details. With very large data sets, partitioning may be expensive, since it
involves repeated copying. Several algorithms have therefore been developed to
minimize the I/O and computation cost when the training data are larger than
available memory.

Several of the algorithms also prune subtrees of the generated decision tree
to reduce overfitting: A subtree is overfitted if it has been so highly tuned to the
specifics of the training data that it makes many classification errors on other
data. A subtree is pruned by replacing it with a leaf node. There are different
pruning heuristics; one heuristic uses part of the training data to build the tree
and another part of the training data to test it. The heuristic prunes a subtree if it
finds that misclassification on the test instances would be reduced if the subtree
were replaced by a leaf node.
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We can generate classification rules from a decision tree, if we so desire. For
each leaf we generate a rule as follows: The left-hand side is the conjunction of all
the split conditions on the path to the leaf, and the class is the class of the majority
of the training instances at the leaf. An example of such a classification rule is:

degree = masters and income > 75000 ⇒ excellent

20.4.2 Other Types of Classifiers

There are several types of classifiers other than decision-tree classifiers. Two
types that have been quite useful are neural-net classifiers, Bayesian classifiers, and
Support Vector Machine classifiers. Neural-net classifiers use the training data to
train artificial neural nets. There is a large body of literature on neural nets, and
we do not consider them further here.

Bayesian classifiers find the distribution of attribute values for each class
in the training data; when given a new instance d, they use the distribution
information to estimate, for each class c j , the probability that instance d belongs
to class c j , denoted by p(c j |d), in a manner outlined here. The class with maximum
probability becomes the predicted class for instance d.

To find the probability p(c j |d) of instance d being in class c j , Bayesian classi-
fiers use Bayes’ theorem, which says:

p(c j |d) = p(d|c j )p(c j )
p(d)

where p(d|c j ) is the probability of generating instance d given class c j , p(c j ) is
the probability of occurrence of class c j , and p(d) is the probability of instance d
occurring. Of these, p(d) can be ignored since it is the same for all classes. p(c j ) is
simply the fraction of training instances that belong to class c j .

For example, let us consider a special case where only one attribute, income, is
used for classification, and suppose we need to classify a person whose income is
76000. We assume that income values are broken up into buckets, and assume that
the bucket containing 76000 contains values in the range (75000, 80000). Suppose
among instances of class excellent, the probability of income being in (75000,
80000) is 0.1, while among instances of class good, the probability of income being
in (75000, 80000) is 0.05. Suppose also that overall 0.1 fraction of people are
classified as excellent, and 0.3 are classified as good. Then, p(d|c j )p(c j ) for class
excellent is .01, while for class good, it is 0.015. The person would therefore be
classified in class good.

In general, multiple attributes need to be considered for classification. Then,
finding p(d|c j ) exactly is difficult, since it requires the distribution of instances
of c j , across all combinations of values for the attributes used for classification.
The number of such combinations (for example of income buckets, with degree
values and other attributes) can be very large. With a limited training set used to
find the distribution, most combinations would not have even a single training
set matching them, leading to incorrect classification decisions. To avoid this



20.4 Classification 901

problem, as well as to simplify the task of classification, naive Bayesian classifiers
assume attributes have independent distributions, and thereby estimate:

p(d|c j ) = p(d1|c j ) ∗ p(d2|c j ) ∗ · · · ∗ p(dn|c j )

That is, the probability of the instance d occurring is the product of the probability
of occurrence of each of the attribute values di of d, given the class is c j .

The probabilities p(di |c j ) derive from the distribution of values for each at-
tribute i , for each class c j . This distribution is computed from the training in-
stances that belong to each class c j ; the distribution is usually approximated by
a histogram. For instance, we may divide the range of values of attribute i into
equal intervals, and store the fraction of instances of class c j that fall in each
interval. Given a value di for attribute i , the value of p(di |c j ) is simply the fraction
of instances belonging to class c j that fall in the interval to which di belongs.

A significant benefit of Bayesian classifiers is that they can classify instances
with unknown and null attribute values—unknown or null attributes are just
omitted from the probability computation. In contrast, decision-tree classifiers
cannot meaningfully handle situations where an instance to be classified has a
null value for a partitioning attribute used to traverse further down the decision
tree.

The Support Vector Machine (SVM) is a type of classifier that has been found
to give very accurate classification across a range of applications. We provide some
basic intuition about Support Vector Machine classifiers here; see the references
in the bibliographical notes for further information.

Support Vector Machine classifiers can best be understood geometrically. In
the simplest case, consider a set of points in a two-dimensional plane, some
belonging to class A, and some belonging to class B. We are given a training set of
points whose class (A or B) is known, and we need to build a classifier of points,
using these training points. This situation is illustrated in Figure 20.5, where the
points in class A are denoted by X marks, while those in class B are denoted by O
marks.

Suppose we can draw a line on the plane, such that all points in class A lie
to one side and all points in line B lie to the other. Then, the line can be used to
classify new points, whose class we don’t already know. But there may be many
possible such lines that can separate points in class A from points in class B. A
few such lines are shown in Figure 20.5. The Support Vector Machine classifier
chooses the line whose distance from the nearest point in either class (from the
points in the training data set) is maximum. This line (called the maximum margin
line) is then used to classify other points into class A or B, depending on which
side of the line they lie on. In Figure 20.5, the maximum margin line is shown in
bold, while the other lines are shown as dashed lines.

The above intuition can be generalized to more than two dimensions, allowing
multiple attributes to be used for classification; in this case, the classifier finds a
dividing plane, not a line. Further, by first transforming the input points using
certain functions, called kernel functions, Support Vector Machine classifiers can
find nonlinear curves separating the sets of points. This is important for cases



902 Chapter 20 Data Warehousing and Mining

Figure 20.5 Example of a support vector machine classifier.

where the points are not separable by a line or plane. In the presence of noise,
some points of one class may lie in the midst of points of the other class. In such
cases, there may not be any line or meaningful curve that separates the points
in the two classes; then, the line or curve that most accurately divides the points
into the two classes is chosen.

Although the basic formulation of Support Vector Machines is for binary
classifiers, i.e., those with only two classes, they can be used for classification into
multiple classes as follows: If there are N classes, we build N classifiers, with
classifier i performing a binary classification, classifying a point either as in class
i or not in class i . Given a point, each classifier i also outputs a value indicating
how related a given point is to class i . We then apply all N classifiers on a given
point, and choose the class for which the relatedness value is the highest.

20.4.3 Regression

Regression deals with the prediction of a value, rather than a class. Given values
for a set of variables, X1, X2, . . . , Xn, we wish to predict the value of a variable
Y. For instance, we could treat the level of education as a number and income as
another number, and, on the basis of these two variables, we wish to predict the
likelihood of default, which could be a percentage chance of defaulting, or the
amount involved in the default.

One way is to infer coefficients a0, a1, a2, . . . , an such that:

Y = a0 + a1 ∗ X1 + a2 ∗ X2 + · · · + an ∗ Xn

Finding such a linear polynomial is called linear regression. In general, we wish
to find a curve (defined by a polynomial or other formula) that fits the data; the
process is also called curve fitting.
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The fit may be only approximate, because of noise in the data or because the
relationship is not exactly a polynomial, so regression aims to find coefficients
that give the best possible fit. There are standard techniques in statistics for
finding regression coefficients. We do not discuss these techniques here, but the
bibliographical notes provide references.

20.4.4 Validating a Classifier

It is important to validate a classifier, that is, to measure its classification error
rate, before deciding to use it for an application. Consider an example of a classi-
fication problem where a classifier has to predict, based on some inputs (the exact
inputs are not relevant here), whether a person is suffering from a particular dis-
ease X or not. A positive prediction says that the person has the disease, and a
negative prediction says the person does not have the disease. (The terminology
of positive/negative prediction can be used for any binary classification problem,
not just disease classification.)

A set of test cases where the outcome is already known (in our example, cases
where it is already known whether or not the person actually has the disease)
is used to measure the quality (that is, the error rate) of the classifier. A true
positive is a case where the prediction was positive, and the person actually had
the disease, while a false positive is a case where the prediction was positive, but
the person did not have the disease. True negative and false negative are defined
similarly for the case where the prediction was negative.

Given a set of test cases, let t pos, f pos, t neg and f neg denote the number of
true positives, false positives, true negatives and false negatives generated. Let
pos and neg denote the actual number of positives and negatives (it is easy to see
that pos = t pos + f neg, and neg = f pos + t neg).

The quality of classification can be measured in several different ways:

1. Accuracy, defined as (t pos + t neg)/(pos+neg), that is, the fraction of the time
when the classifier gives the correct classification.

2. Recall (also known as sensitivity) defined as t pos/pos, that is, how many of
the actual positive cases are classified as positive.

3. Precision, defined as t pos/(t pos+f pos), that is, how often the positive pre-
diction is correct.

4. Specificity, defined as t neg/neg.

Which of these measures should be used for a specific application depends on the
needs of that application. For example, a high recall is important for a screening
test, which is to be followed up by a more precise test, so that patients with
the disease are not missed out. In contrast a researcher who wants to find a
few actual patients of the disease for further follow up, but is not interested in
finding all patients, may value high precision over recall. Different classifiers
may be appropriate for each of these applications. This issue is explored further
in Exercise 20.5.
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A set of test cases where the outcome is already known can be used either to
train or to measure the quality the classifier. It is a bad idea to use exactly the same
set of test cases to train as well as to measure the quality of the classifier, since
the classifier has already seen the correct classification of the test cases during
training; this can lead to artificially high measures of quality. The quality of a
classifier must therefore be measured on test cases that have not been seen during
training.

Therefore, a subset of the available test cases is used for training and a disjoint
subset is used for validation. In cross validation, the available test cases are
divided into k parts numbered 1 to k, from which k different test sets are created
as follows: test set i uses the ith part for validation, after training the classifier
using the other k−1 parts. The results (t pos, f pos, etc.) from all k test sets are added
up before computing the quality measures. Cross validation provides much more
accurate measures than merely partitioning the data into a single training and a
single test set.

20.5 Association Rules

Retail shops are often interested in associations between different items that
people buy. Examples of such associations are:

• Someone who buys bread is quite likely also to buy milk.

• A person who bought the book Database System Concepts is quite likely also
to buy the book Operating System Concepts.

Association information can be used in several ways. When a customer buys a
particular book, an online shop may suggest associated books. A grocery shop
may decide to place bread close to milk, since they are often bought together, to
help shoppers finish their task faster. Or, the shop may place them at opposite
ends of a row, and place other associated items in between to tempt people to buy
those items as well, as the shoppers walk from one end of the row to the other. A
shop that offers discounts on one associated item may not offer a discount on the
other, since the customer will probably buy the other anyway.

An example of an association rule is:

bread ⇒ milk

In the context of grocery-store purchases, the rule says that customers who buy
bread also tend to buy milk with a high probability. An association rule must
have an associated population: The population consists of a set of instances.
In the grocery-store example, the population may consist of all grocery-store
purchases; each purchase is an instance. In the case of a bookstore, the population
may consist of all people who made purchases, regardless of when they made a
purchase. Each customer is an instance. In the bookstore example, the analyst has
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decided that when a purchase is made is not significant, whereas for the grocery-
store example, the analyst may have decided to concentrate on single purchases,
ignoring multiple visits by the same customer.

Rules have an associated support, as well as an associated confidence. These
are defined in the context of the population:

• Support is a measure of what fraction of the population satisfies both the
antecedent and the consequent of the rule.

For instance, suppose only 0.001 percent of all purchases include milk and
screwdrivers. The support for the rule:

milk ⇒ screwdrivers

is low. The rule may not even be statistically significant—perhaps there was
only a single purchase that included both milk and screwdrivers. Businesses
are usually not interested in rules that have low support, since they involve
few customers, and are not worth bothering about.

On the other hand, if 50 percent of all purchases involve milk and bread,
then support for rules involving bread and milk (and no other item) is rela-
tively high, and such rules may be worth attention. Exactly what minimum
degree of support is considered desirable depends on the application.

• Confidence is a measure of how often the consequent is true when the an-
tecedent is true. For instance, the rule:

bread ⇒ milk

has a confidence of 80 percent if 80 percent of the purchases that include
bread also include milk. A rule with a low confidence is not meaningful. In
business applications, rules usually have confidences significantly less than
100 percent, whereas in other domains, such as in physics, rules may have
high confidences.

Note that the confidence of bread ⇒ milk may be very different from the
confidence of milk ⇒ bread , although both have the same support.

To discover association rules of the form:

i1, i2, . . . , in ⇒ i0

we first find sets of items with sufficient support, called large itemsets. In our
example, we find sets of items that are included in a sufficiently large number of
instances. We shall see shortly how to compute large itemsets.

For each large itemset, we then output all rules with sufficient confidence
that involve all and only the elements of the set. For each large itemset S, we
output a rule S − s ⇒ s for every subset s ⊂ S, provided S − s ⇒ s has sufficient
confidence; the confidence of the rule is given by support of s divided by support
of S.
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We now consider how to generate all large itemsets. If the number of possible
sets of items is small, a single pass over the data suffices to detect the level of
support for all the sets. A count, initialized to 0, is maintained for each set of
items. When a purchase record is fetched, the count is incremented for each set of
items such that all items in the set are contained in the purchase. For instance, if
a purchase included items a , b, and c, counts would be incremented for {a}, {b},
{c}, {a , b}, {b, c}, {a , c}, and {a , b, c}. Those sets with a sufficiently high count at
the end of the pass correspond to items that have a high degree of association.

The number of sets grows exponentially, making the procedure just described
infeasible if the number of items is large. Luckily, almost all the sets would
normally have very low support; optimizations have been developed to eliminate
most such sets from consideration. These techniques use multiple passes on the
database, considering only some sets in each pass.

In the a priori technique for generating large itemsets, only sets with single
items are considered in the first pass. In the second pass, sets with two items are
considered, and so on.

At the end of a pass, all sets with sufficient support are output as large
itemsets. Sets found to have too little support at the end of a pass are eliminated.
Once a set is eliminated, none of its supersets needs to be considered. In other
words, in pass i we need to count only supports for sets of size i such that all
subsets of the set have been found to have sufficiently high support; it suffices
to test all subsets of size i − 1 to ensure this property. At the end of some pass i ,
we would find that no set of size i has sufficient support, so we do not need to
consider any set of size i + 1. Computation then terminates.

20.6 Other Types of Associations

Using plain association rules has several shortcomings. One of the major short-
comings is that many associations are not very interesting, since they can be
predicted. For instance, if many people buy cereal and many people buy bread,
we can predict that a fairly large number of people would buy both, even if there
is no connection between the two purchases. In fact, even if buying cereal has a
mild negative influence on buying bread (that is, customers who buy cereal tend
to purchase bread less often than the average customer), the association between
cereal and bread may still have a high support.

What would be more interesting is if there is a deviation from the expected
co-occurrence of the two. In statistical terms, we look for correlations between
items; correlations can be positive, in that the co-occurrence is higher than would
have been expected, or negative, in that the items co-occur less frequently than
predicted. Thus, if purchase of bread is not correlated with cereal, it would not
be reported, even if there was a strong association between the two. There are
standard measures of correlation, widely used in the area of statistics. See a
standard textbook on statistics for more information about correlations.

Another important class of data-mining applications is sequence associations
(or sequence correlations). Time-series data, such as stock prices on a sequence
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of days, form an example of sequence data. Stock-market analysts want to find
associations among stock-market price sequences. An example of such an associ-
ation is the following rule: “Whenever bond rates go up, the stock prices go down
within 2 days.” Discovering such associations between sequences can help us to
make intelligent investment decisions. See the bibliographical notes for references
to research on this topic.

Deviations from temporal patterns are often interesting. For instance, if a
company has been growing at a steady rate each year, a deviation from the usual
growth rate is surprising. If sales of winter clothes go down in summer, it is
not surprising, since we can predict it from past years; a deviation that we could
not have predicted from past experience would be considered interesting. Mining
techniques can find deviations from what one would have expected on the basis of
past temporal or sequential patterns. See the bibliographical notes for references
to research on this topic.

20.7 Clustering

Intuitively, clustering refers to the problem of finding clusters of points in the
given data. The problem of clustering can be formalized from distance metrics
in several ways. One way is to phrase it as the problem of grouping points into
k sets (for a given k) so that the average distance of points from the centroid of
their assigned cluster is minimized.2 Another way is to group points so that the
average distance between every pair of points in each cluster is minimized. There
are other definitions too; see the bibliographical notes for details. But the intuition
behind all these definitions is to group similar points together in a single set.

Another type of clustering appears in classification systems in biology. (Such
classification systems do not attempt to predict classes; rather they attempt to
cluster related items together.) For instance, leopards and humans are clustered
under the class mammalia, while crocodiles and snakes are clustered under rep-
tilia. Both mammalia and reptilia come under the common class chordata. The
clustering of mammalia has further subclusters, such as carnivora and primates.
We thus have hierarchical clustering. Given characteristics of different species,
biologists have created a complex hierarchical clustering scheme grouping related
species together at different levels of the hierarchy.

Hierarchical clustering is also useful in other domains—for clustering doc-
uments, for example. Internet directory systems (such as the Yahoo! directory)
cluster related documents in a hierarchical fashion (see Section 21.9). Hierarchical
clustering algorithms can be classified as agglomerative clustering algorithms,
which start by building small clusters and then create higher levels, or divisive

2The centroid of a set of points is defined as a point whose coordinate on each dimension is the average of the coordinates
of all the points of that set on that dimension. For example in two dimensions, the centroid of a set of points { (x1, y1),

(x2, y2), . . . , (xn, yn) } is given by
( ∑n

i=1 xi
n ,

∑n
i=1 yi
n

)
.
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clustering algorithms, which first create higher levels of the hierarchical cluster-
ing, then refine each resulting cluster into lower-level clusters.

The statistics community has studied clustering extensively. Database re-
search has provided scalable clustering algorithms that can cluster very large
data sets (that may not fit in memory). The Birch clustering algorithm is one such
algorithm. Intuitively, data points are inserted into a multidimensional tree struc-
ture (based on R-trees, described in Section 25.3.5.3), and guided to appropriate
leaf nodes on the basis of nearness to representative points in the internal nodes
of the tree. Nearby points are thus clustered together in leaf nodes, and summa-
rized if there are more points than fit in memory. The result of this first phase of
clustering is to create a partially clustered data set that fits in memory. Standard
clustering techniques can then be executed on the in-memory data to get the final
clustering. See the bibliographical notes for references to the Birch algorithm, and
other techniques for clustering, including algorithms for hierarchical clustering.

An interesting application of clustering is to predict what new movies (or
books or music) a person is likely to be interested in, on the basis of:

1. The person’s past preferences in movies.

2. Other people with similar past preferences.

3. The preferences of such people for new movies.

One approach to this problem is as follows: To find people with similar past
preferences we create clusters of people based on their preferences for movies.
The accuracy of clustering can be improved by previously clustering movies by
their similarity, so even if people have not seen the same movies, if they have seen
similar movies they would be clustered together. We can repeat the clustering,
alternately clustering people, then movies, then people, and so on until we reach
an equilibrium. Given a new user, we find a cluster of users most similar to
that user, on the basis of the user’s preferences for movies already seen. We
then predict movies in movie clusters that are popular with that user’s cluster
as likely to be interesting to the new user. In fact, this problem is an instance of
collaborative filtering, where users collaborate in the task of filtering information
to find information of interest.

20.8 Other Forms of Data Mining

Text mining applies data-mining techniques to textual documents. For instance,
there are tools that form clusters on pages that a user has visited; this helps users
when they browse the history of their browsing to find pages they have visited
earlier. The distance between pages can be based, for instance, on common words
in the pages (see Section 21.2.2). Another application is to classify pages into a
Web directory automatically, according to their similarity with other pages (see
Section 21.9).



20.9 Summary 909

Data-visualization systems help users to examine large volumes of data, and
to detect patterns visually. Visual displays of data—such as maps, charts, and
other graphical representations—allow data to be presented compactly to users.
A single graphical screen can encode as much information as a far larger number
of text screens. For example, if the user wants to find out whether production
problems at plants are correlated to the locations of the plants, the problem
locations can be encoded in a special color—say, red—on a map. The user can
then quickly discover locations where problems are occurring. The user may then
form hypotheses about why problems are occurring in those locations, and may
verify the hypotheses quantitatively against the database.

As another example, information about values can be encoded as a color, and
can be displayed with as little as one pixel of screen area. To detect associations
between pairs of items, we can use a two-dimensional pixel matrix, with each
row and each column representing an item. The percentage of transactions that
buy both items can be encoded by the color intensity of the pixel. Items with high
association will show up as bright pixels in the screen—easy to detect against the
darker background.

Data-visualization systems do not automatically detect patterns, but they
provide system support for users to detect patterns. Since humans are very good
at detecting visual patterns, data visualization is an important component of data
mining.

20.9 Summary

• Decision-support systems analyze online data collected by transaction-pro-
cessing systems, to help people make business decisions. Since most organi-
zations are extensively computerized today, a very large body of information
is available for decision support. Decision-support systems come in various
forms, including OLAP systems and data-mining systems.

• Data warehouses help gather and archive important operational data. Ware-
houses are used for decision support and analysis on historical data, for
instance, to predict trends. Data cleansing from input data sources is often a
major task in data warehousing. Warehouse schemas tend to be multidimen-
sional, involving one or a few very large fact tables and several much smaller
dimension tables.

• Column-oriented storage systems provide good performance for many data
warehousing applications.

• Data mining is the process of semiautomatically analyzing large databases
to find useful patterns. There are a number of applications of data mining,
such as prediction of values based on past examples, finding of associations
between purchases, and automatic clustering of people and movies.

• Classification deals with predicting the class of test instances by using at-
tributes of the test instances, based on attributes of training instances, and
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the actual class of training instances. There are several types of classifiers,
such as:

◦ Decision-tree classifiers, which perform classification by constructing a
tree based on training instances with leaves having class labels. The tree
is traversed for each test instance to find a leaf, and the class of the leaf is
the predicted class. Several techniques are available to construct decision
trees, most of them based on greedy heuristics.

◦ Bayesian classifiers are simpler to construct than decision-tree classifiers,
and they work better in the case of missing/null attribute values.

◦ The Support Vector Machine is another widely used classification tech-
nique.

• Association rules identify items that co-occur frequently, for instance, items
that tend to be bought by the same customer. Correlations look for deviations
from expected levels of association.

• Other types of data mining include clustering, text mining, and data visual-
ization.

Review Terms

• Decision-support systems
• Statistical analysis
• Data warehousing

◦ Gathering data

◦ Source-driven architecture

◦ Destination-driven architec-
ture

◦ Data cleansing
	 Merge–purge
	 Householding

◦ Extract, transform, load
(ETL)

• Warehouse schemas

◦ Fact table

◦ Dimension tables

◦ Star schema

• Column-oriented storage

• Data mining
• Prediction
• Associations
• Classification

◦ Training data

◦ Test data

• Decision-tree classifiers

◦ Partitioning attribute

◦ Partitioning condition

◦ Purity

	 Gini measure

	 Entropy measure

◦ Information gain

◦ Information content

◦ Information gain ratio

◦ Continuous-valued attribute
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◦ Categorical attribute

◦ Binary split

◦ Multiway split

◦ Overfitting

• Bayesian classifiers

◦ Bayes’ theorem

◦ Naive Bayesian classifiers

• Support Vector Machine (SVM)
• Regression

◦ Linear regression

◦ Curve fitting

• Validation

◦ Accuracy

◦ Recall

◦ Precision

◦ Specificity

◦ Cross validation

• Association rules

◦ Population

◦ Support

◦ Confidence

◦ Large itemsets

• Other types of associations
• Clustering

◦ Hierarchical clustering

◦ Agglomerative clustering

◦ Divisive clustering

• Text mining
• Data visualization

Practice Exercises

20.1 Describe benefits and drawbacks of a source-driven architecture for gath-
ering of data at a data warehouse, as compared to a destination-driven
architecture.

20.2 Why is column-oriented storage potentially advantageous in a database
system that supports a data warehouse?

20.3 Suppose that there are two classification rules, one that says that people
with salaries between $10,000 and $20,000 have a credit rating of good, and
another that says that people with salaries between $20,000 and $30,000
have a credit rating of good. Under what conditions can the rules be re-
placed, without any loss of information, by a single rule that says people
with salaries between $10,000 and $30,000 have a credit rating of good?

20.4 Consider the schema depicted in Figure 20.2. Give an SQL query to summa-
rize sales numbers and price by store and date, along with the hierarchies
on store and date.

20.5 Consider a classification problem where the classifier predicts whether a
person has a particular disease. Suppose that 95% of the people tested do
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not suffer from the disease. (That is, pos corresponds to 5% and neg to 95%
of the test cases.) Consider the following classifiers:

• Classifier C1 which always predicts negative (a rather useless classifier
of course).

• Classifier C2 which predicts positive in 80% of the cases where the
person actually has the disease, but also predicts positive in 5% of the
cases where the person does not have the disease.

• Classifier C3 which predicts positive in 95% of the cases where the
person actually has the disease, but also predicts positive in 20% of
the cases where the person does not have the disease.

Given the above classifiers, answer the following questions.

a. For each of the above classifiers, compute the accuracy, precision,
recall and specificity.

b. If you intend to use the results of classification to perform further
screening for the disease, how would you choose between the clas-
sifiers.

c. On the other hand, if you intend to use the result of classification to
start medication, where the medication could have harmful effects
if given to someone who does not have the disease, how would you
choose between the classifiers?

Exercises

20.6 Draw a diagram that shows how the classroom relation of our university
example as shown in Appendix A would be stored under a column-
oriented storage structure.

20.7 Explain why the nested-loops join algorithm (see Section 12.5.1) would
work poorly on database stored in a column-oriented manner. Describe
an alternative algorithm that would work better and explain why your
solution is better.

20.8 Construct a decision-tree classifier with binary splits at each node, using
tuples in relation r (A, B, C) shown below as training data; attribute C
denotes the class. Show the final tree, and with each node show the best
split for each attribute along with its information gain value.

(1, 2, a), (2, 1, a), (2, 5, b), (3, 3, b), (3, 6, b),
(4, 5, b), (5, 5, c), (6, 3, b), (6, 7, c)

20.9 Suppose half of all the transactions in a clothes shop purchase jeans, and
one third of all transactions in the shop purchase T-shirts. Suppose also
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that half of the transactions that purchase jeans also purchase T-shirts.
Write down all the (nontrivial) association rules you can deduce from the
above information, giving support and confidence of each rule.

20.10 Consider the problem of finding large itemsets.

a. Describe how to find the support for a given collection of itemsets
by using a single scan of the data. Assume that the itemsets and
associated information, such as counts, will fit in memory.

b. Suppose an itemset has support less than j . Show that no superset
of this itemset can have support greater than or equal to j .

20.11 Create a small example of a set of transactions showing that although
many transactions contain two items, that is, the itemset containing the
two items has a high support, purchase of one of the items may have a
negative correlation with purchase of the other.

20.12 The organization of parts, chapters, sections, and subsections in a book is
related to clustering. Explain why, and to what form of clustering.

20.13 Suggest how predictive mining techniques can be used by a sports team,
using your favorite sport as an example.

Tools

A variety of tools are available for each of the applications we have studied in
this chapter. Most database vendors provide OLAP tools as part of their database
systems, or as add-on applications. These include OLAP tools from Microsoft
Corp., SAP, IBM and Oracle. The Mondrian OLAP server is a public-domain OLAP
server. Many companies also provide analysis tools for specific applications, such
as customer relationship management.

Major database vendors also offer data warehousing products coupled with
their database systems. These provide support functionality for data modeling,
cleansing, loading, and querying. The Web site www.dwinfocenter.org provides in-
formation on data-warehousing products.

There is also a wide variety of general-purpose data-mining tools, including
data-mining suites from the SAS Institute, IBM Intelligent Miner, and Oracle. There
are also several open-source data-mining tools, such as the widely used Weka,
and RapidMiner. The open-source business intelligence suite Pentaho has several
components including an ETL tool, the Mondrian OLAP server, and data-mining
tools based on Weka.

A good deal of expertise is required to apply general-purpose mining tools
for specific applications. As a result, a large number of mining tools have been
developed to address specialized applications. The Web site www.kdnuggets.com
provides an extensive directory of mining software, solutions, publications, and
so on.
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Information Retrieval

Textual data is unstructured, unlike the rigidly structured data in relational
databases. The term information retrieval generally refers to the querying of
unstructured textual data. Information-retrieval systems have much in common
with database systems, in particular, the storage and retrieval of data on sec-
ondary storage. However, the emphasis in the field of information systems is
different from that in database systems, concentrating on issues such as querying
based on keywords; the relevance of documents to the query; and the analysis,
classification, and indexing of documents. Web search engines today go beyond
the paradigm of retrieving documents, and address broader issues such as what
information to display in response to a keyword query, to satisfy the information
needs of a user.

21.1 Overview

The field of information retrieval has developed in parallel with the field of
databases. In the traditional model used in the field of information retrieval,
information is organized into documents, and it is assumed that there is a large
number of documents. Data contained in documents are unstructured, without
any associated schema. The process of information retrieval consists of locating
relevant documents, on the basis of user input, such as keywords or example
documents.

The Web provides a convenient way to get to, and to interact with, information
sources across the Internet. However, a persistent problem facing the Web is the
explosion of stored information, with little guidance to help the user to locate
what is interesting. Information retrieval has played a critical role in making the
Web a productive and useful tool, especially for researchers.

Traditional examples of information-retrieval systems are online library cata-
logs and online document-management systems such as those that store newspa-
per articles. The data in such systems are organized as a collection of documents;
a newspaper article and a catalog entry (in a library catalog) are examples of
documents. In the context of the Web, usually each HTML page is considered to
be a document.

915
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A user of such a system may want to retrieve a particular document or a
particular class of documents. The intended documents are typically described by
a set of keywords—for example, the keywords “database system” may be used
to locate books on database systems, and the keywords “stock” and “scandal”
may be used to locate articles about stock-market scandals. Documents have
associated with them a set of keywords, and documents whose keywords contain
those supplied by the user are retrieved.

Keyword-based information retrieval can be used not only for retrieving
textual data, but also for retrieving other types of data, such as video and audio
data, that have descriptive keywords associated with them. For instance, a video
movie may have associated with it keywords such as its title, director, actors,
and genre, while an image or video clip may have tags, which are keywords
describing the image or video clip, associated with it.

There are several differences between this model and the models used in
traditional database systems.

• Database systems deal with several operations that are not addressed in infor-
mation-retrieval systems. For instance, database systems deal with updates
and with the associated transactional requirements of concurrency control
and durability. These matters are viewed as less important in information
systems. Similarly, database systems deal with structured information or-
ganized with relatively complex data models (such as the relational model
or object-oriented data models), whereas information-retrieval systems tra-
ditionally have used a much simpler model, where the information in the
database is organized simply as a collection of unstructured documents.

• Information-retrieval systems deal with several issues that have not been
addressed adequately in database systems. For instance, the field of informa-
tion retrieval has dealt with the issue of querying collections of unstructured
documents, focusing on issues such as keyword queries, and of ranking of
documents on estimated degree of relevance of the documents to the query.

In addition to simple keyword queries that are just sets of words, information-
retrieval systems typically allow query expressions formed using keywords and
the logical connectives and, or, and not. For example, a user could ask for all doc-
uments that contain the keywords “motorcycle and maintenance,” or documents
that contain the keywords “computer or microprocessor,” or even documents
that contain the keyword “computer but not database.” A query containing key-
words without any of the above connectives is assumed to have ands implicitly
connecting the keywords.

In full text retrieval, all the words in each document are considered to be
keywords. For unstructured documents, full text retrieval is essential since there
may be no information about what words in the document are keywords. We
shall use the word term to refer to the words in a document, since all words are
keywords.
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In its simplest form, an information-retrieval system locates and returns all
documents that contain all the keywords in the query, if the query has no connec-
tives; connectives are handled as you would expect. More-sophisticated systems
estimate relevance of documents to a query so that the documents can be shown
in order of estimated relevance. They use information about term occurrences, as
well as hyperlink information, to estimate relevance.

Information-retrieval systems, as exemplified by Web search engines, have
today evolved beyond just retrieving documents based on a ranking scheme.
Today, search engines aim to satisfy a user’s information needs, by judging what
topic a query is about, and displaying not only Web pages judged as relevant, but
also displaying other kinds of information about the topic. For example, given a
query term “cricket”, a search engine may display scores from ongoing or recent
cricket matches, rather than just display top-ranked documents related to cricket.
As another example, in response to a query “New York”, a search engine may
show a map of New York, and images of New York, in addition to Web pages
related to New York.

21.2 Relevance Ranking Using Terms

The set of all documents that satisfy a query expression may be very large; in
particular, there are billions of documents on the Web, and most keyword queries
on a Web search engine find hundreds of thousands of documents containing
the keywords. Full text retrieval makes this problem worse: each document may
contain many terms, and even terms that are mentioned only in passing are
treated equivalently with documents where the term is indeed relevant. Irrelevant
documents may be retrieved as a result.

Information-retrieval systems therefore estimate relevance of documents to a
query, and return only highly ranked documents as answers. Relevance ranking
is not an exact science, but there are some well-accepted approaches.

21.2.1 Ranking Using TF-IDF

The first question to address is, given a particular term t, how relevant is a particu-
lar document d to the term. One approach is to use the the number of occurrences
of the term in the document as a measure of its relevance, on the assumption
that relevant terms are likely to be mentioned many times in a document. Just
counting the number of occurrences of a term is usually not a good indicator: first,
the number of occurrences depends on the length of the document, and second,
a document containing 10 occurrences of a term may not be 10 times as relevant
as a document containing one occurrence.

One way of measuring TF (d, t), the relevance of a document d to a term t, is:

TF (d, t) = log
(

1 + n(d, t)
n(d)

)
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where n(d) denotes the number of terms in the document and n(d, t) denotes
the number of occurrences of term t in the document d. Observe that this metric
takes the length of the document into account. The relevance grows with more
occurrences of a term in the document, although it is not directly proportional to
the number of occurrences.

Many systems refine the above metric by using other information. For in-
stance, if the term occurs in the title, or the author list, or the abstract, the document
would be considered more relevant to the term. Similarly, if the first occurrence
of a term is late in the document, the document may be considered less relevant
than if the first occurrence is early in the document. The above notions can be
formalized by extensions of the formula we have shown for TF (d, t). In the in-
formation retrieval community, the relevance of a document to a term is referred
to as term frequency (TF), regardless of the exact formula used.

A query Q may contain multiple keywords. The relevance of a document to a
query with two or more keywords is estimated by combining the relevance mea-
sures of the document to each keyword. A simple way of combining the measures
is to add them up. However, not all terms used as keywords are equal. Suppose
a query uses two terms, one of which occurs frequently, such as “database”,
and another that is less frequent, such as “Silberschatz”. A document contain-
ing “Silberschatz” but not “database” should be ranked higher than a document
containing the term “database” but not “Silberschatz”.

To fix the above problem, weights are assigned to terms using the inverse
document frequency (IDF), defined as:

IDF (t) = 1
n(t)

where n(t) denotes the number of documents (among those indexed by the sys-
tem) that contain the term t. The relevance of a document d to a set of terms Q is
then defined as:

r (d, Q) =
∑
t∈Q

T F (d, t) ∗ IDF (t)

This measure can be further refined if the user is permitted to specify weights
w(t) for terms in the query, in which case the user-specified weights are also taken
into account by multiplying T F (t) by w(t) in the above formula.

The above approach of using term frequency and inverse document frequency
as a measure of the relevance of a document is called the TF–IDF approach.

Almost all text documents (in English) contain words such as “and,” “or,”
“a,” and so on, and hence these words are useless for querying purposes since
their inverse document frequency is extremely low. Information-retrieval systems
define a set of words, called stop words, containing 100 or so of the most common
words, and ignore these words when indexing a document. Such words are not
used as keywords, and are discarded if present in the keywords supplied by the
user.
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Another factor taken into account when a query contains multiple terms is
the proximity of the terms in the document. If the terms occur close to each other
in the document, the document would be ranked higher than if they occur far
apart. The formula for r (d, Q) can be modified to take proximity of the terms into
account.

Given a query Q, the job of an information-retrieval system is to return doc-
uments in descending order of their relevance to Q. Since there may be a very
large number of documents that are relevant, information-retrieval systems typ-
ically return only the first few documents with the highest degree of estimated
relevance, and permit users to interactively request further documents.

21.2.2 Similarity-Based Retrieval

Certain information-retrieval systems permit similarity-based retrieval. Here,
the user can give the system document A, and ask the system to retrieve docu-
ments that are “similar” to A. The similarity of a document to another may be
defined, for example, on the basis of common terms. One approach is to find k
terms in A with highest values of TF (A, t) ∗ IDF (t), and to use these k terms as a
query to find relevance of other documents. The terms in the query are themselves
weighted by TF (A, t) ∗ IDF (t).

More generally, the similarity of documents is defined by the cosine similarity
metric. Let the terms occurring in either of the two documents be t1, t2, . . . , tn. Let
r (d, t) = TF (d , t) ∗ IDF (t). Then the cosine similarity metric between documents
d and e is defined as:

∑n
i=1 r (d, ti )r (e, ti )√∑n

i=1 r (d, ti )2
√∑n

i=1 r (e, ti )2

You can easily verify that the cosine similarity metric of a document with itself is
1, while that between two documents that do not share any terms is 0.

The name “cosine similarity” comes from the fact that the above formula
computes the cosine of the angle between two vectors, one representing each
document, defined as follows: Let there be n words overall across all the docu-
ments being considered. An n-dimensional space is defined, with each word as
one of the dimensions. A document d is represented by a point in this space, with
the value of the ith coordinate of the point being r (d, ti ). The vector for document
d connects the origin (all coordinates = 0) to the point representing the document.
The model of documents as points and vectors in an n-dimensional space is called
the vector space model.

If the set of documents similar to a query document A is large, the system
may present the user a few of the similar documents, allow the user to choose
the most relevant few, and start a new search based on similarity to A and to the
chosen documents. The resultant set of documents is likely to be what the user
intended to find. This idea is called relevance feedback.

Relevance feedback can also be used to help users find relevant documents
from a large set of documents matching the given query keywords. In such a
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situation, users may be allowed to identify one or a few of the returned documents
as relevant; the system then uses the identified documents to find other similar
ones. The resultant set of documents is likely to be what the user intended to find.
An alternative to the relevance feedback approach is to require users to modify
the query by adding more keywords; relevance feedback can be easier to use, in
addition to giving a better final set of documents as the answer.

In order to show the user a representative set of documents when the number
of documents is very large, a search system may cluster the documents, based on
their cosine similarity. Then, a few documents from each cluster may be shown,
so that more than one cluster is represented in the set of answers. Clustering was
described earlier in Section 20.7, and several techniques have been developed to
cluster sets of documents. See the bibliographical notes for references to more
information on clustering.

As a special case of similarity, there are often multiple copies of a document
on the Web; this could happen, for example, if a Web site mirrors the contents
of another Web site. In this case, it makes no sense to return multiple copies of a
highly ranked document as separate answers; duplicates should be detected, and
only one copy should be returned as an answer.

21.3 Relevance Using Hyperlinks

Early Web-search engines ranked documents by using only TF–IDF based rele-
vance measures like those described in Section 21.2. However, these techniques
had some limitations when used on very large collections of documents, such as
the set of all Web pages. In particular, many Web pages have all the keywords
specified in a typical search engine query; further, some of the pages that users
want as answers often have just a few occurrences of the query terms, and would
not get a very high TF–IDF score.

However, researchers soon realized that Web pages have very important
information that plain text documents do not have, namely hyperlinks. These can
be exploited to get better relevance ranking; in particular, the relevance ranking
of a page is influenced greatly by hyperlinks that point to the page. In this section,
we study how hyperlinks are used for ranking of Web pages.

21.3.1 Popularity Ranking

The basic idea of popularity ranking (also called prestige ranking) is to find
pages that are popular, and to rank them higher than other pages that contain the
specified keywords. Since most searches are intended to find information from
popular pages, ranking such pages higher is generally a good idea. For instance,
the term “google” may occur in vast numbers of pages, but the page google.com
is the most popular among the pages that contain the term “google.” The page
google.com should therefore be ranked as the most relevant answer to a query
consisting of the term “google”.
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Traditional measures of relevance of a page such as the TF–IDF based measures
that we saw in Section 21.2, can be combined with the popularity of the page to
get an overall measure of the relevance of the page to the query. Pages with the
highest overall relevance value are returned as the top answers to a query.

This raises the question of how to define and how to find the popularity of a
page. One way would be to find how many times a page is accessed and use the
number as a measure of the site’s popularity. However, getting such information
is impossible without the cooperation of the site, and while a few sites may be
persuaded to reveal this information, it is difficult to get it for all sites. Further,
sites may lie about their access frequency, in order to get ranked higher.

A very effective alternative is to use hyperlinks to a page as a measure of
its popularity. Many people have bookmark files that contain links to sites that
they use frequently. Sites that appear in a large number of bookmark files can
be inferred to be very popular sites. Bookmark files are usually stored privately
and not accessible on the Web. However, many users do maintain Web pages
with links to their favorite Web pages. Many Web sites also have links to other
related sites, which can also be used to infer the popularity of the linked sites. A
Web search engine can fetch Web pages (by a process called crawling, which we
describe in Section 21.7), and analyze them to find links between the pages.

A first solution to estimating the popularity of a page is to use the number of
pages that link to the page as a measure of its popularity. However, this by itself
has the drawback that many sites have a number of useful pages, yet external
links often point only to the root page of the site. The root page in turn has links
to other pages in the site. These other pages would then be wrongly inferred to
be not very popular, and would have a low ranking in answering queries.

One alternative is to associate popularity with sites, rather than with pages.
All pages at a site then get the popularity of the site, and pages other than the root
page of a popular site would also benefit from the site’s popularity. However,
the question of what constitutes a site then arises. In general the Internet address
prefix of a page URL would constitute the site corresponding to the page. However,
there are many sites that host a large number of mostly unrelated pages, such as
home page servers in universities and Web portals such as groups.yahoo.com or
groups.google.com. For such sites, the popularity of one part of the site does not
imply popularity of another part of the site.

A simpler alternative is to allow transfer of prestige from popular pages to
pages to which they link. Under this scheme, in contrast to the one-person one-
vote principles of democracy, a link from a popular page x to a page y is treated
as conferring more prestige to page y than a link from a not-so-popular page z.1

This notion of popularity is in fact circular, since the popularity of a page
is defined by the popularity of other pages, and there may be cycles of links
between pages. However, the popularity of pages can be defined by a system
of simultaneous linear equations, which can be solved by matrix manipulation

1This is similar in some sense to giving extra weight to endorsements of products by celebrities (such as film stars), so
its significance is open to question, although it is effective and widely used in practice.
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techniques. The linear equations can be defined in such a way that they have a
unique and well-defined solution.

It is interesting to note that the basic idea underlying popularity ranking is
actually quite old, and first appeared in a theory of social networking developed
by sociologists in the 1950s. In the social-networking context, the goal was to
define the prestige of people. For example, the president of the United States has
high prestige since a large number of people know him. If someone is known by
multiple prestigious people, then she also has high prestige, even if she is not
known by as large a number of people. The use of a set of linear equations to
define the popularity measure also dates back to this work.

21.3.2 PageRank

The Web search engine Google introduced PageRank, which is a measure of
popularity of a page based on the popularity of pages that link to the page. Using
the PageRank popularity measure to rank answers to a query gave results so
much better than previously used ranking techniques that Google became the
most widely used search engine, in a rather short period of time.

PageRank can be understood intuitively using a random walk model. Sup-
pose a person browsing the Web performs a random walk (traversal) on Web
pages as follows: the first step starts at a random Web page, and in each step,
the random walker does one of the following. With a probability � the walker
jumps to a randomly chosen Web page, and with a probability of 1 − � the walker
randomly chooses one of the outlinks from the current Web page and follows the
link. The PageRank of a page is then the probability that the random walker is
visiting the page at any given point in time.

Note that pages that are pointed to from many Web pages are more likely
to be visited, and thus will have a higher PageRank. Similarly, pages pointed to
by Web pages with a high PageRank will also have a higher probability of being
visited, and thus will have a higher PageRank.

PageRank can be defined by a set of linear equations, as follows: First, Web
pages are given integer identifiers. The jump probability matrix T is defined with
T[i, j] set to the probability that a random walker who is following a link out of
page i follows the link to page j . Assuming that each link from i has an equal
probability of being followed T [i, j] = 1/Ni , where Ni is the number of links out
of page i . Most entries of T are 0 and it is best represented as an adjacency list.
Then the PageRank P[ j] for each page j can be defined as:

P[ j] = �/N + (1 − �) ∗
N∑

i=1

(T[i, j] ∗ P[i])

where � is a constant between 0 and 1, and N the number of pages; � represents
the probability of a step in the random walk being a jump.

The set of equations generated as above are usually solved by an an iterative
technique, starting with each P[i] set to 1/N. Each step of the iteration computes
new values for each P[i] using the P values from the previous iteration. Iteration
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stops when the maximum change in any P[i] value in an iteration goes below
some cutoff value.

21.3.3 Other Measures of Popularity

Basic measures of popularity such as PageRank play an important role in ranking
of query answers, but are by no means the only factor. The TF–IDF scores of a page
are used to judge its relevance to the query keywords, and must be combined
with the popularity ranking. Other factors must also be taken into account, to
handle limitations of PageRank and related popularity measures.

Information about how often a site is visited would be a useful measure of
popularity, but as mentioned earlier it is hard to obtain in general. However,
search engines do track what fraction of times users click on a page, when it
is returned as an answer. This fraction can be used as a measure of the site’s
popularity. To measure the click fraction, instead of providing a direct link to
the page, the search engine provides an indirect link through the search engine’s
site, which records the page click, and transparently redirects the browser to the
original link.2

One drawback of the PageRank algorithm is that it assigns a measure of
popularity that does not take query keywords into account. For example, the page
google.com is likely to have a very high PageRank because many sites contain a
link to it. Suppose it contains a word mentioned in passing, such as “Stanford” (the
advanced search page at Google did in fact contain this word at one point several
years ago). A search on the keyword Stanford would then return google.com as
the highest-ranked answer, ahead of a more relevant answer such as the Stanford
University Web page.

One widely used solution to this problem is to use keywords in the anchor
text of links to a page to judge what topics the page is highly relevant to. The
anchor text of a link consists of the text that appears within the HTML a href tag.
For example, the anchor text of the link:

<a href="http://stanford.edu"> Stanford University</a>

is “Stanford University”. If many links to the page stanford.edu have the word
Stanford in their anchor text, the page can be judged to be very relevant to the
keyword Stanford. Text near the anchor text may also be taken into account; for
example, a Web site may contain the text “Stanford’s home page is here”, but may
have used only the word “here” as anchor text in the link to the Stanford Web site.

Popularity based on anchor text is combined with other measures of popu-
larity, and with TF–IDF measures, to get an overall ranking for query answers, as
discussed in Section 21.3.5. As an implementation trick, the words in the anchor

2Sometimes this indirection is hidden from the user. For example when you point the mouse at a link (such as db-
book.com) in a Google query result, the link appears to point directly to the site. However, at least as of mid 2009,
when you actually click on the link, Javascript code associated with the page actually rewrites the link to go indirectly
through Google’s site. If you use the back button of the browser to go back to the query result page, and point to the link
again, the change in the linked URL becomes visible.
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text are often treated as part of the page, with a term frequency based on the
the popularity of the pages where the anchor text appears. Then, TF–IDF ranking
automatically takes anchor text into account.

An alternative approach to taking keywords into account when defining
popularity is to compute a measure of popularity using only pages that contain the
query keywords, instead of computing popularity using all available Web pages.
This approach is more expensive, since the computation of popularity ranking has
to be done dynamically when a query is received, whereas PageRank is computed
statically once, and reused for all queries. Web search engines handling billions
of queries per day cannot afford to spend so much time answering a query. As a
result, although this approach can give better answers, it is not very widely used.

The HITS algorithm was based on the above idea of first finding pages that
contain the query keywords, and then computing a popularity measure using just
this set of related pages. In addition it introduced a notion of hubs and authorities.
A hub is a page that stores links to many related pages; it may not in itself contain
actual information on a topic, but points to pages that contain actual information.
In contrast, an authority is a page that contains actual information on a topic,
although it may not store links to many related pages. Each page then gets a
prestige value as a hub (hub-prestige), and another prestige value as an authority
(authority-prestige). The definitions of prestige, as before, are cyclic and are defined
by a set of simultaneous linear equations. A page gets higher hub-prestige if it
points to many pages with high authority-prestige, while a page gets higher
authority-prestige if it is pointed to by many pages with high hub-prestige. Given
a query, pages with highest authority-prestige are ranked higher than other pages.
See the bibliographical notes for references giving further details.

21.3.4 Search Engine Spamming

Search engine spamming refers to the practice of creating Web pages, or sets of
Web pages, designed to get a high relevance rank for some queries, even though
the sites are not actually popular sites. For example, a travel site may want to be
ranked high for queries with the keyword “travel”. It can get high TF–IDF scores
by repeating the word “travel” many times in its page.3 Even a site unrelated
to travel, such as a pornographic site, could do the same thing, and would get
highly ranked for a query on the word travel. In fact, this sort of spamming of
TF–IDF was common in the early days of Web search, and there was a constant
battle between such sites and search engines that tried to detect spamming and
deny them a high ranking.

Popularity ranking schemes such as PageRank make the job of search engine
spamming more difficult, since just repeating words to get a high TF–IDF score was
no longer sufficient. However, even these techniques can be spammed, by creating
a collection of Web pages that point to each other, increasing their popularity

3Repeated words in a Web page may confuse users; spammers can tackle this problem by delivering different pages
to search engines than to other users, for the same URL, or by making the repeated words invisible, for example, by
formatting the words in small white font on a white background.
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rank. Techniques such as using sites instead of pages as the unit of ranking
(with appropriately normalized jump probabilities) have been proposed to avoid
some spamming techniques, but are not fully effective against other spamming
techniques. The war between search engine spammers and the search engines
continues even today.

The hubs and authorities approach of the HITS algorithm is more susceptible to
spamming. A spammer can create a Web page containing links to good authorities
on a topic, and gains a high hub score as a result. In addition the spammer’s Web
page includes links to pages that they wish to popularize, which may not have
any relevance to the topic. Because these linked pages are pointed to by a page
with high hub score, they get a high but undeserved authority score.

21.3.5 Combining TF-IDF and Popularity Ranking Measures

We have seen two broad kinds of features used in ranking, namely TF–IDF and
popularity scores such as PageRank. TF–IDF itself reflects a combination of several
factors including raw term frequency and inverse document frequency, occur-
rence of a term in anchor text linking to the page, and a variety of other factors
such as occurrence of the term in the title, occurrence of the term early in the
document, and larger font size for the term, among other factors.

How to combine the scores of a page on each these factors, to generate an
overall page score, is a major problem that must be addressed by any information
retrieval system. In the early days of search engines, humans created functions
to combine scores into an overall score. But today, search engines use machine-
learning techniques to decide how to combine scores. Typically, a score combining
formula is fixed, but the formula takes as parameters weights for different scoring
factors. By using a training set of query results ranked by humans, a machine-
learning algorithm can come up with an assignment of weights for each scoring
factor that results in the best ranking performance across multiple queries.

We note that most search engines do not reveal how they compute relevance
rankings; they believe that revealing their ranking techniques would allow com-
petitors to catch up, and would make the job of search engine spamming easier,
resulting in poorer quality of results.

21.4 Synonyms, Homonyms, and Ontologies

Consider the problem of locating documents about motorcycle maintenance, us-
ing the query “motorcycle maintenance”. Suppose that the keywords for each
document are the words in the title and the names of the authors. The document
titled Motorcycle Repair would not be retrieved, since the word “maintenance”
does not occur in its title.

We can solve that problem by making use of synonyms. Each word can have
a set of synonyms defined, and the occurrence of a word can be replaced by the or
of all its synonyms (including the word itself). Thus, the query “motorcycle and
repair” can be replaced by “motorcycle and (repair or maintenance).” This query
would find the desired document.



926 Chapter 21 Information Retrieval

Keyword-based queries also suffer from the opposite problem, of homonyms,
that is single words with multiple meanings. For instance, the word “object” has
different meanings as a noun and as a verb. The word “table” may refer to a
dinner table, or to a table in a relational database.

In fact, a danger even with using synonyms to extend queries is that the
synonyms may themselves have different meanings. For example, “allowance”
is a synonym for one meaning of the word “maintenance”, but has a different
meaning than what the user intended in the query “motorcycle maintenance”.
Documents that use the synonyms with an alternative intended meaning would
be retrieved. The user is then left wondering why the system thought that a par-
ticular retrieved document (for example, using the word “allowance”) is relevant,
if it contains neither the keywords the user specified, nor words whose intended
meaning in the document is synonymous with specified keywords! It is there-
fore a bad idea to use synonyms to extend a query without first verifying the
synonyms with the user.

A better approach to the above problem is for the system to understand what
concept each word in a document represents, and similarly to understand what
concepts a user is looking for, and to return documents that address the concepts
that the user is interested in. A system that supports concept-based querying
has to analyze each document to disambiguate each word in the document, and
replace it with the concept that it represents; disambiguation is usually done by
looking at other surrounding words in the document. For example, if a document
contains words such as database or query, the word table probably should be
replaced by the concept “table: data” whereas if the document contains words
such as furniture, chair, or wood near the word table, the word table should
be replaced by the concept “table: furniture.” Disambiguation based on nearby
words is usually harder for user queries, since queries contain very few words,
so concept-based query systems would offer several alternative concepts to the
user, who picks one or more before the search continues.

Concept-based querying has several advantages; for example, a query in one
language can retrieve documents in other languages, so long as they relate to
the same concept. Automated translation mechanisms can be used subsequently
if the user does not understand the language in which the document is writ-
ten. However, the overhead of processing documents to disambiguate words is
very high when billions of documents are being handled. Internet search engines
therefore generally did not support concept-based querying initially, but interest
in concept-based approaches is growing rapidly. However, concept-based query-
ing systems have been built and used for other large collections of documents.

Querying based on concepts can be extended further by exploiting concept
hierarchies. For example, suppose a person issues a query “flying animals”; a
document containing information about “flying mammals” is certainly relevant,
since a mammal is an animal. However, the two concepts are not the same, and just
matching concepts would not allow the document to be returned as an answer.
Concept-based querying systems can support retrieval of documents based on
concept hierarchies.
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Ontologies are hierarchical structures that reflect relationships between con-
cepts. The most common relationship is the is-a relationship; for example, a
leopard is-a mammal, and a mammal is-a animal. Other relationships, such as
part-of are also possible; for example, an airplane wing is part-of an airplane.

The WordNet system defines a large variety of concepts with associated words
(called a synset in WordNet terminology). The words associated with a synset
are synonyms for the concept; a word may of course be a synonym for several
different concepts. In addition to synonyms, WordNet defines homonyms and
other relationships. In particular, the is-a and part-of relationships that it defines
connect concepts, and in effect define an ontology. The Cyc project is another
effort to create an ontology.

In addition to language-wide ontologies, ontologies have been defined for
specific areas to deal with terminology relevant to those areas. For example, on-
tologies have been created to standardize terms used in businesses; this is an
important step in building a standard infrastructure for handling order process-
ing and other interorganization flow of data. As another example, consider a
medical insurance company that needs to get reports from hospitals containing
diagnosis and treatment information. An ontology that standardizes the terms
helps hospital staff to understand the reports unambiguously. This can greatly
help in analysis of the reports, for example to track how many cases of a particular
disease occurred in a particular time frame.

It is also possible to build ontologies that link multiple languages. For ex-
ample, WordNets have been built for different languages, and common concepts
between languages can be linked to each other. Such a system can be used for
translation of text. In the context of information retrieval, a multilingual ontology
can be used to implement a concept-based search across documents in multiple
languages.

The largest effort in using ontologies for concept-based queries is the Se-
mantic Web. The Semantic Web is led by the World Wide Web Consortium and
consists of a collection of tools, standards, and languages that permit data on the
Web to be connected based on their semantics, or meaning. Instead of being a
centralized repository, the Semantic Web is designed to permit the same kind of
decentralized, distributed growth that has made the World Wide Web so success-
ful. Key to this is the capability to integrate multiple, distributed ontologies. As a
result, anyone with access to the Internet can add to the Semantic Web.

21.5 Indexing of Documents

An effective index structure is important for efficient processing of queries in
an information-retrieval system. Documents that contain a specified keyword
can be located efficiently by using an inverted index that maps each keyword
Ki to a list Si of (identifiers of) the documents that contain Ki . For example, if
documents d1, d9 and d21 contain the term “Silberschatz”, the inverted list for the
keyword Silberschatz would be “d1; d9; d21”. To support relevance ranking based
on proximity of keywords, such an index may provide not just identifiers of
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documents, but also a list of locations within the document where the keyword
appears. For example, if “Silberschatz” appeared at position 21 in d1, positions
1 and 19 in d2, and positions 4, 29 and 46 in d3, the inverted list with positions
would be “d1/21; d9/1, 19; d21/4, 29, 46”. The inverted lists may also include with
each document the term frequency of the term.

Such indices must be stored on disk, and each list Si can span multiple disk
pages. To minimize the number of I/O operations to retrieve each list Si , the
system would attempt to keep each list Si in a set of consecutive disk pages, so
the entire list can be retrieved with just one disk seek. A B+-tree index can be used
to map each keyword Ki to its associated inverted list Si .

The and operation finds documents that contain all of a specified set of key-
words K1, K2, . . . , Kn. We implement the and operation by first retrieving the sets
of document identifiers S1, S2, . . . , Sn of all documents that contain the respective
keywords. The intersection, S1 ∩ S2 ∩ · · · ∩ Sn, of the sets gives the document
identifiers of the desired set of documents. The or operation gives the set of all
documents that contain at least one of the keywords K1, K2, . . . , Kn. We imple-
ment the or operation by computing the union, S1 ∪ S2 ∪ · · · ∪ Sn, of the sets.
The not operation finds documents that do not contain a specified keyword Ki .
Given a set of document identifiers S, we can eliminate documents that contain
the specified keyword Ki by taking the difference S − Si , where Si is the set of
identifiers of documents that contain the keyword Ki .

Given a set of keywords in a query, many information-retrieval systems do
not insist that the retrieved documents contain all the keywords (unless an and
operation is used explicitly). In this case, all documents containing at least one of
the words are retrieved (as in the or operation), but are ranked by their relevance
measure.

To use term frequency for ranking, the index structure should additionally
maintain the number of times terms occur in each document. To reduce this effort,
they may use a compressed representation with only a few bits that approximates
the term frequency. The index should also store the document frequency of each
term (that is, the number of documents in which the term appears).

If the popularity ranking is independent of the index term (as is the case for
Page Rank), the list Si can be sorted on the popularity ranking (and secondarily, for
documents with the same popularity ranking, on document-id). Then, a simple
merge can be used to compute and and or operations. For the case of the and
operation, if we ignore the TF–IDF contribution to the relevance score, and merely
require that the document should contain the given keywords, merging can stop
once K answers have been obtained, if the user requires only the top K answers.
In general, the results with highest final score (after including TF–IDF scores) are
likely to have high popularity scores, and would appear near the front of the lists.
Techniques have been developed to estimate the best possible scores of remaining
results, and these can be used to recognize that answers not yet seen cannot be
part of the top K answers. Processing of the lists can then terminate early.

However, sorting on popularity score is not fully effective in avoiding long
inverted list scans, since it ignores the contribution of the TF–IDF scores. An
alternative in such cases is to break up the inverted list for each term into two
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parts. The first part contains documents that have a high TF–IDF score for that
term (for example, documents where the term occurs in the document title, or in
anchor text referencing the document). The second part contains all documents.
Each part of the list can be sorted in order of (popularity, document-id). Given
a query, merging the first parts of the list for each term is likely to give several
answers with an overall high score. If sufficient high-scoring answers are not
found using the first parts of the lists, the second parts of the lists are used to
find all remaining answers. If a document scores high on TF–IDF, it is likely to be
found when merging the first parts of the lists. See the bibliographical notes for
related references.

21.6 Measuring Retrieval Effectiveness

Each keyword may be contained in a large number of documents; hence, a com-
pact representation is critical to keep space usage of the index low. Thus, the
sets of documents for a keyword are maintained in a compressed form. So that
storage space is saved, the index is sometimes stored such that the retrieval is
approximate; a few relevant documents may not be retrieved (called a false drop
or false negative), or a few irrelevant documents may be retrieved (called a false
positive). A good index structure will not have any false drops, but may permit
a few false positives; the system can filter them away later by looking at the key-
words that they actually contain. In Web indexing, false positives are not desirable
either, since the actual document may not be quickly accessible for filtering.

Two metrics are used to measure how well an information-retrieval system
is able to answer queries. The first, precision, measures what percentage of the
retrieved documents are actually relevant to the query. The second, recall, mea-
sures what percentage of the documents relevant to the query were retrieved.
Ideally both should be 100 percent.

Precision and recall are also important measures for understanding how well
a particular document-ranking strategy performs. Ranking strategies can result
in false negatives and false positives, but in a more subtle sense.

• False negatives may occur when documents are ranked, as a result of rele-
vant documents receiving a low ranking. If the system fetched all documents
down to those with very low ranking there would be very few false neg-
atives. However, humans would rarely look beyond the first few tens of
returned documents, and may thus miss relevant documents because they
are not ranked high. Exactly what is a false negative depends on how many
documents are examined. Therefore instead of having a single number as the
measure of recall, we can measure the recall as a function of the number of
documents fetched.

• False positives may occur because irrelevant documents get higher rankings
than relevant documents. This too depends on how many documents are
examined. One option is to measure precision as a function of number of
documents fetched.
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A better and more intuitive alternative for measuring precision is to measure
it as a function of recall. With this combined measure, both precision and recall
can be computed as a function of number of documents, if required.

For instance, we can say that with a recall of 50 percent the precision was 75
percent, whereas at a recall of 75 percent the precision dropped to 60 percent. In
general, we can draw a graph relating precision to recall. These measures can be
computed for individual queries, then averaged out across a suite of queries in a
query benchmark.

Yet another problem with measuring precision and recall lies in how to de-
fine which documents are really relevant and which are not. In fact, it requires
understanding of natural language, and understanding of the intent of the query,
to decide if a document is relevant or not. Researchers therefore have created
collections of documents and queries, and have manually tagged documents as
relevant or irrelevant to the queries. Different ranking systems can be run on these
collections to measure their average precision and recall across multiple queries.

21.7 Crawling and Indexing the Web

Web crawlers are programs that locate and gather information on the Web. They
recursively follow hyperlinks present in known documents to find other docu-
ments. Crawlers start from an initial set of URLs, which may be created manually.
Each of the pages identified by these URLs are fetched from the Web. The Web
crawler then locates all URL links in these pages, and adds them to the set of URLs
to be crawled, if they have not already been fetched, or added to the to-be-crawled
set. This process is again repeated by fetching all pages in the to-be-crawled set,
and processing the links in these pages in the same fashion. By repeating the
process, all pages that are reachable by any sequence of links from the initial set
of URLs would be eventually fetched.

Since the number of documents on the Web is very large, it is not possible
to crawl the whole Web in a short period of time; and in fact, all search engines
cover only some portions of the Web, not all of it, and their crawlers may take
weeks or months to perform a single crawl of all the pages they cover. There are
usually many processes, running on multiple machines, involved in crawling. A
database stores a set of links (or sites) to be crawled; it assigns links from this set to
each crawler process. New links found during a crawl are added to the database,
and may be crawled later if they are not crawled immediately. Pages have to be
refetched (that is, links recrawled) periodically to obtain updated information,
and to discard sites that no longer exist, so that the information in the search
index is kept reasonably up-to-date.

See the references in the bibliography for a number of practical details in
performing a Web crawl, such as infinite sequences of links created by dynam-
ically generated pages (called a spider trap), prioritization of page fetches, and
ensuring that Web sites are not flooded by a burst of requests from a crawler.

Pages fetched during a crawl are handed over to a prestige computation and
indexing system, which may be running on a different machine. The prestige
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computation and indexing systems themselves run on multiple machines in par-
allel. Pages can be discarded after they are used for prestige computation and
added to the index; however, they are usually cached by the search engine, to
give search engine users fast access to a cached copy of a page, even if the original
Web site containing the page is not accessible.

It is not a good idea to add pages to the same index that is being used for
queries, since doing so would require concurrency control on the index, and
would affect query and update performance. Instead, one copy of the index is
used to answer queries while another copy is updated with newly crawled pages.
At periodic intervals the copies switch over, with the old one being updated while
the new copy is being used for queries.

To support very high query rates, the indices may be kept in main memory,
and there are multiple machines; the system selectively routes queries to the
machines to balance the load among them. Popular search engines often have tens
of thousands of machines carrying out the various tasks of crawling, indexing,
and answering user queries.

Web crawlers depend on all relevant pages being reachable through hyper-
links. However, many sites containing large collections of data may not make all
the data available as hyperlinked pages. Instead, they provide search interfaces,
where users can enter terms, or select menu options, and get results. As an exam-
ple, a database of flight information is usually made available using such a search
interface, without any hyperlinks to the pages containing flight information. As a
result, the information inside such sites is not accessible to a normal Web crawler.
The information in such sites is often referred to as deep Web information.

Deep Web crawlers extract some such information by guessing what terms
would make sense to enter, or what menu options to choose, in such search inter-
faces. By entering each possible term/option and executing the search interface,
they are able to extract pages with data that they would not have been able to
find otherwise. The pages extracted by a deep Web crawl may be indexed just
like regular Web pages. The Google search engine, for example, includes results
from deep Web crawls.

21.8 Information Retrieval: Beyond Ranking of Pages

Information-retrieval systems were originally designed to find textual documents
related to a query, and later extended to finding pages on the Web that are related
to a query. People use search engines for many different tasks, from simple tasks
such as locating a Web site that they want to use, to a broader goal of finding
information on a topic of interest. Web search engines have become extremely
good at the task of locating Web sites that a user wants to visit. The task of
providing information on a topic of interest is much harder, and we study some
approaches in this section.

There is also an increasing need for systems that try to understand documents
(to a limited extent), and answer questions based on the (limited) understanding.
One approach is to create structured information from unstructured documents
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and to answer questions based on the structured information. Another approach
applies natural language techniques to find documents related to a question
(phrased in natural language) and return relevant segments of the documents as
an answer to the question.

21.8.1 Diversity of Query Results

Today, search engines do not just return a ranked list of Web pages relevant to
a query. They also return image and video results relevant to a query. Further,
there are a variety of sites providing dynamically changing content such as sports
scores, or stock market tickers. To get current information from such sites, users
would have to first click on the query result. Instead, search engines have created
“gadgets,” which take data from a particular domain, such as sports updates,
stock prices, or weather conditions, and format them in a nice graphical manner,
to be displayed as results for a query. Search engines have to rank the set of
gadgets available in terms of relevance to a query, and display the most relevant
gadgets, along with Web pages, images, videos, and other types of results. Thus
a query result has a diverse set of result types.

Search terms are often ambiguous. For example, a query “eclipse” may be
referring to a solar or lunar eclipse, or to the integrated development environment
(IDE) called Eclipse. If all the highly ranked pages for the term “eclipse” are about
the IDE, a user looking for information about solar or lunar eclipses may be very
dissatisfied. Search engines therefore attempt to provide a set of results that are
diverse in terms of their topics, to minimize the chance that a user would be
dissatisfied. To do so, at indexing time the search engine must disambiguate the
sense in which a word is used in a page; for example, it must decide whether
the use of the word “eclipse” in a page refers to the IDE or the astronomical
phenomenon. Then, given a query, the search engine attempts to provide results
that are relevant to the most common senses in which the query words are used.

The results obtained from a Web page need to be summarized as a snippet in
a query result. Traditionally, search engines provided a few words surrounding
the query keywords as a snippet that helps indicate what the page contains.
However, there are many domains where the snippet can be generated in a much
more meaningful manner. For example, if a user queries about a restaurant, a
search engine can generate a snippet containing the restaurant’s rating, a phone
number, and a link to a map, in addition to providing a link to the restaurant’s
home page. Such specialized snippets are often generated for results retrieved
from a database, for example, a database of restaurants.

21.8.2 Information Extraction

Information-extraction systems convert information from textual form to a more
structured form. For example, a real-estate advertisement may describe attributes
of a home in textual form, such as “two-bedroom three-bath house in Queens,
$1 million”, from which an information extraction system may extract attributes
such as number of bedrooms, number of bathrooms, cost and neighborhood. The
original advertisement could have used various terms such as 2BR, or two BR,
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or two bed, to denote two bedrooms. The extracted information can be used
to structure the data in a standard way. Thus, a user could specify that he is
interested in two-bedroom houses, and a search system would be able to return
all relevant houses based on the structured data, regardless of the terms used in
the advertisement.

An organization that maintains a database of company information may
use an information-extraction system to extract information automatically from
newspaper articles; the information extracted would relate to changes in attributes
of interest, such as resignations, dismissals, or appointments of company officers.

As another example, search engines designed for finding scholarly research
articles, such as Citeseer and Google Scholar, crawl the Web to retrieve documents
that are likely to be research articles. They examine some features of each retrieved
document, such as the presence of words such as “bibliography”, “references”,
and “abstract”, to judge if a document is in fact a scholarly research article. They
then extract the title, list of authors, and the citations at the end of the article, by
using information extraction techniques. The extracted citation information can
be used to link each article to articles that it cites, or to articles that cite it; such
citation links between articles can be very useful for a researcher.

Several systems have been built for information extraction for specialized ap-
plications. They use linguistic techniques, page structure, and user-defined rules
for specific domains such as real estate advertisements or scholarly publications.
For limited domains, such as a specific Web site, it is possible for a human to spec-
ify patterns that can be used to extract information. For example, on a particular
Web site, a pattern such as “Price: <number> $”, where <number> indicates any
number, may match locations where the price is specified. Such patterns can be
created manually for a limited number of Web sites.

However, on the Web scale with millions of Web sites, manual creation of
such patterns is not feasible. Machine-learning techniques, which can learn such
patterns given a set of training examples, are widely used to automate the process
of information extraction.

Information extraction usually has errors in some fraction of the extracted
information; typically this is because some page had information in a format
that syntactically matched a pattern, but did not actually specify a value (such
as the price). Information extraction using simple patterns, which separately
match parts of a page, is relatively error prone. Machine-learning techniques
can perform much more sophisticated analysis, based on interactions between
patterns, to minimize errors in the information extracted, while maximizing the
amount of information extracted. See the references in the bibliographical notes
for more information.

21.8.3 Question Answering

Information retrieval systems focus on finding documents relevant to a given
query. However, the answer to a query may lie in just one part of a document,
or in small parts of several documents. Question answering systems attempt to
provide direct answers to questions posed by users. For example, a question of the



934 Chapter 21 Information Retrieval

form “Who killed Lincoln?” may best be answered by a line that says “Abraham
Lincoln was shot by John Wilkes Booth in 1865.” Note that the answer does not
actually contain the words “killed” or “who”, but the system infers that “who”
can be answered by a name, and “killed” is related to “shot”.

Question answering systems targeted at information on the Web typically
generate one or more keyword queries from a submitted question, execute the
keyword queries against Web search engines, and parse returned documents to
find segments of the documents that answer the question. A number of linguistic
techniques and heuristics are used to generate keyword queries, and to find
relevant segments from the document.

An issue in answering questions is that different documents may indicate
different answers to a question. For example, if the question is “How tall is a
giraffe?” different documents may give different numbers as an answer. These
answers form a distribution of values, and a question answering system may
choose the average, or median value of the distribution as the answer to be
returned; to reflect the fact that the answer is not expected to be precise, the
system may return the average along with the standard deviation (for example,
average of 16 feet, with a standard deviation of 2 feet), or a range based on the
average and the standard deviation (for example, between 14 and 18 feet).

Current-generation question answering systems are limited in power, since
they do not really understand either the question or the documents used to
answer the question. However, they are useful for a number of simple question
answering tasks.

21.8.4 Querying Structured Data

Structured data are primarily represented in either relational or XML form. Several
systems have been built to support keyword querying on relational and XML
data (see Chapter 23). A common theme between these systems lies in finding
nodes (tuples or XML elements) containing the specified keywords, and finding
connecting paths (or common ancestors, in the case of XML data) between them.

For example, a query “Zhang Katz” on a university database may find the
name “Zhang” occurring in a student tuple, and the name “Katz” in an instructor
tuple, and a path through the advisor relation connecting the two tuples. Other
paths, such as student “Zhang” taking a course taught by “Katz” may also be
found in response to this query. Such queries may be used for ad hoc browsing
and querying of data, when the user does not know the exact schema and does
not wish to take the effort to write an SQL query defining what she is searching
for. Indeed it is unreasonable to expect lay users to write queries in a structured
query language, whereas keyword querying is quite natural.

Since queries are not fully defined, they may have many different types of
answers, which must be ranked. A number of techniques have been proposed to
rank answers in such a setting, based on the lengths of connecting paths, and on
techniques for assigning directions and weights to edges. Techniques have also
been proposed for assigning popularity ranks to tuples and XML elements, based
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on links such as foreign key and IDREF links. See the bibliographical notes for
more information on keyword searching of relational and XML data.

21.9 Directories and Categories

A typical library user may use a catalog to locate a book for which she is looking.
When she retrieves the book from the shelf, however, she is likely to browse
through other books that are located nearby. Libraries organize books in such a
way that related books are kept close together. Hence, a book that is physically
near the desired book may be of interest as well, making it worthwhile for users
to browse through such books.

To keep related books close together, libraries use a classification hierar-
chy. Books on science are classified together. Within this set of books, there is a
finer classification, with computer-science books organized together, mathematics
books organized together, and so on. Since there is a relation between mathemat-
ics and computer science, relevant sets of books are stored close to each other
physically. At yet another level in the classification hierarchy, computer-science
books are broken down into subareas, such as operating systems, languages, and
algorithms. Figure 21.1 illustrates a classification hierarchy that may be used by
a library. Because books can be kept at only one place, each book in a library is
classified into exactly one spot in the classification hierarchy.

In an information-retrieval system, there is no need to store related documents
close together. However, such systems need to organize documents logically so as to
permit browsing. Thus, such a system could use a classification hierarchy similar

books

algorithms

graph algorithms

math

science fictionengineering

computer science

Figure 21.1 A classification hierarchy for a library system.
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books

algorithms

graph algorithms

math

science fictionengineering

computer science

Figure 21.2 A classification DAG for a library information-retrieval system.

to one that libraries use, and, when it displays a particular document, it can also
display a brief description of documents that are close in the hierarchy.

In an information-retrieval system, there is no need to keep a document in a
single spot in the hierarchy. A document that talks of mathematics for computer
scientists could be classified under mathematics as well as under computer sci-
ence. All that is stored at each spot is an identifier of the document (that is, a
pointer to the document), and it is easy to fetch the contents of the document by
using the identifier.

As a result of this flexibility, not only can a document be classified under two
locations, but also a subarea in the classification hierarchy can itself occur under
two areas. The class of “graph algorithm” documents can appear both under
mathematics and under computer science. Thus, the classification hierarchy is
now a directed acyclic graph (DAG), as shown in Figure 21.2. A graph-algorithm
document may appear in a single location in the DAG, but can be reached via
multiple paths.

A directory is simply a classification DAG structure. Each leaf of the directory
stores links to documents on the topic represented by the leaf. Internal nodes may
also contain links, for example, to documents that cannot be classified under any
of the child nodes.

To find information on a topic, a user would start at the root of the directory
and follow paths down the DAG until reaching a node representing the desired
topic. While browsing down the directory, the user can find not only documents
on the topic he is interested in, but also find related documents and related classes
in the classification hierarchy. The user may learn new information by browsing
through documents (or subclasses) within the related classes.
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Organizing the enormous amount of information available on the Web into a
directory structure is a daunting task.

• The first problem is determining what exactly the directory hierarchy should
be.

• The second problem is, given a document, deciding which nodes of the
directory are categories relevant to the document.

To tackle the first problem, portals such as Yahoo! have teams of “Internet
librarians” who come up with the classification hierarchy and continually refine
it.

The second problem can also be tackled manually by librarians, or Web site
maintainers may be responsible for deciding where their sites should lie in the
hierarchy. There are also techniques for deciding automatically the location of
documents based on computing their similarity to documents that have already
been classified.

Wikipedia, the online encyclopedia, addresses the classification problem in
the reverse direction. Each page in Wikipedia has a list of categories to which
it belongs. For example, as of 2009, the Wikipedia page on giraffes had several
categories including “Mammals of Africa”. In turn, the “Mammals of Africa”
category itself belongs to the category “Mammals by geography”, which in turn
belongs to the category “Mammals”, which in turn has a category “Vertebrates”,
and so on. The category structure is useful to browse other instances of the
same category, for example, to find other mammals of Africa, or other mammals.
Conversely, a query that looks for mammals can use the category information to
infer that a giraffe is a mammal. The Wikipedia category structure is not a tree,
but is almost a DAG; it is not actually a DAG since it has a few instances of loops,
which probably reflect categorization errors.

21.10 Summary

• Information-retrieval systems are used to store and query textual data such
as documents. They use a simpler data model than do database systems, but
provide more powerful querying capabilities within the restricted model.

• Queries attempt to locate documents that are of interest by specifying, for
example, sets of keywords. The query that a user has in mind usually cannot
be stated precisely; hence, information-retrieval systems order answers on
the basis of potential relevance.

• Relevance ranking makes use of several types of information, such as:

◦ Term frequency: how important each term is to each document.

◦ Inverse document frequency.

◦ Popularity ranking.
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• Similarity of documents is used to retrieve documents similar to an example
document. The cosine metric is used to define similarity, and is based on the
vector space model.

• PageRank and hub/authority rank are two ways to assign prestige to pages
on the basis of links to the page. The PageRank measure can be understood in-
tuitively using a random-walk model. Anchor text information is also used to
compute a per-keyword notion of popularity. Information-retrieval systems
need to combine scores on multiple factors such as TF–IDF and PageRank, to
get an overall score for a page.

• Search engine spamming attempts to get (an undeserved) high ranking for a
page.

• Synonyms and homonyms complicate the task of information retrieval. Con-
cept-based querying aims at finding documents containing specified con-
cepts, regardless of the exact words (or language) in which the concept is
specified. Ontologies are used to relate concepts using relationships such as
is-a or part-of.

• Inverted indices are used to answer keyword queries.

• Precision and recall are two measures of the effectiveness of an information
retrieval system.

• Web search engines crawl the Web to find pages, analyze them to compute
prestige measures, and index them.

• Techniques have been developed to extract structured information from tex-
tual data, to perform keyword querying on structured data, and to give direct
answers to simple questions posed in natural language.

• Directory structures and categories are used to classify documents with other
similar documents.

Review Terms

• Information-retrieval systems
• Keyword search
• Full text retrieval
• Term
• Relevance ranking

◦ Term frequency

◦ Inverse document frequency

◦ Relevance

◦ Proximity

• Similarity-based retrieval

◦ Vector space model

◦ Cosine similarity metric

◦ Relevance feedback

• Stop words
• Relevance using hyperlinks

◦ Popularity/prestige
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◦ Transfer of prestige

• PageRank

◦ Random walk model

• Anchor-text–based relevance
• Hub/authority ranking
• Search engine spamming
• Synonyms
• Homonyms
• Concepts
• Concept-based querying
• Ontologies
• Semantic Web
• Inverted index

• False drop
• False negative
• False positive
• Precision
• Recall
• Web crawlers
• Deep Web
• Query result diversity
• Information extraction
• Question answering
• Querying structured data
• Directories
• Classification hierarchy
• Categories

Practice Exercises

21.1 Compute the relevance (using appropriate definitions of term frequency
and inverse document frequency) of each of the Practice Exercises in this
chapter to the query “SQL relation”.

21.2 Suppose you want to find documents that contain at least k of a given set
of n keywords. Suppose also you have a keyword index that gives you a
(sorted) list of identifiers of documents that contain a specified keyword.
Give an efficient algorithm to find the desired set of documents.

21.3 Suggest how to implement the iterative technique for computing Page-
Rank given that the T matrix (even in adjacency list representation) does
not fit in memory.

21.4 Suggest how a document containing a word (such as “leopard”) can be
indexed such that it is efficiently retrieved by queries using a more gen-
eral concept (such as “carnivore” or “mammal”). You can assume that
the concept hierarchy is not very deep, so each concept has only a few
generalizations (a concept can, however, have a large number of special-
izations). You can also assume that you are provided with a function that
returns the concept for each word in a document. Also suggest how a
query using a specialized concept can retrieve documents using a more
general concept.

21.5 Suppose inverted lists are maintained in blocks, with each block noting the
largest popularity rank and TF–IDF scores of documents in the remaining
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blocks in the list. Suggest how merging of inverted lists can stop early if
the user wants only the top K answers.

Exercises

21.6 Using a simple definition of term frequency as the number of occurrences
of the term in a document, give the TF–IDF scores of each term in the set
of documents consisting of this and the next exercise.

21.7 Create a small example of four small documents, each with a PageRank,
and create inverted lists for the documents sorted by the PageRank. You
do not need to compute PageRank, just assume some values for each page.

21.8 Suppose you wish to perform keyword querying on a set of tuples in
a database, where each tuple has only a few attributes, each containing
only a few words. Does the concept of term frequency make sense in this
context? And that of inverse document frequency? Explain your answer.
Also suggest how you can define the similarity of two tuples using TF–
IDF concepts.

21.9 Web sites that want to get some publicity can join a Web ring, where they
create links to other sites in the ring, in exchange for other sites in the ring
creating links to their site. What is the effect of such rings on popularity
ranking techniques such as PageRank?

21.10 The Google search engine provides a feature whereby Web sites can dis-
play advertisements supplied by Google. The advertisements supplied
are based on the contents of the page. Suggest how Google might choose
which advertisements to supply for a page, given the page contents.

21.11 One way to create a keyword-specific version of PageRank is to modify
the random jump such that a jump is only possible to pages containing
the keyword. Thus pages that do not contain the keyword but are close
(in terms of links) to pages that contain the keyword also get a nonzero
rank for that keyword.

a. Give equations defining such a keyword-specific version of Page-
Rank.

b. Give a formula for computing the relevance of a page to a query
containing multiple keywords.

21.12 The idea of popularity ranking using hyperlinks can be extended to re-
lational and XML data, using foreign key and IDREF edges in place of
hyperlinks. Suggest how such a ranking scheme may be of value in the
following applications:

a. A bibliographic database that has links from articles to authors of the
articles and links from each article to every article that it references.
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b. A sales database that has links from each sales record to the items
that were sold.

Also suggest why prestige ranking can give less than meaningful results
in a movie database that records which actor has acted in which movies.

21.13 What is the difference between a false positive and a false drop? If it
is essential that no relevant information be missed by an information
retrieval query, is it acceptable to have either false positives or false drops?
Why?

Tools

Google (www.google.com) is currently the most popular search engine, but there
are a number of other search engines, such as Microsoft Bing (www.bing.com)
and Yahoo! search (search.yahoo.com). The site searchenginewatch.com provides a
variety of information about search engines. Yahoo! (dir.yahoo.com) and the Open
Directory Project (dmoz.org) provide classification hierarchies for Web sites.

Bibliographical Notes

Manning et al. [2008], Chakrabarti [2002], Grossman and Frieder [2004], Witten
et al. [1999], and Baeza-Yates and Ribeiro-Neto [1999] provide textbook descrip-
tions of information retrieval. In particular, Chakrabarti [2002] and Manning
et al. [2008] provide detailed coverage of Web crawling, ranking techniques, and
mining techniques related to information retrieval such as text classification and
clustering.

Brin and Page [1998] describes the anatomy of the Google search engine,
including the PageRank technique, while a hubs- and authorities-based rank-
ing technique called HITS is described by Kleinberg [1999]. Bharat and Hen-
zinger [1998] presents a refinement of the HITS ranking technique. These tech-
niques, as well as other popularity-based ranking techniques (and techniques
to avoid search engine spamming) are described in detail in Chakrabarti [2002].
Chakrabarti et al. [1999] addresses focused crawling of the Web to find pages
related to a specific topic. Chakrabarti [1999] provides a survey of Web resource
discovery.

Indexing of documents is covered in detail by Witten et al. [1999]. Jones and
Willet [1997] is a collection of articles on information retrieval. Salton [1989] is an
early textbook on information-retrieval systems. A number of practical issues in
ranking and indexing of Web pages, as done in an early version of the Google
search engine, are discussed in Brin and Page [1998]. Unfortunately, there are no
publicly available details of how exactly ranking is done currently by any of the
leading search engines.

The Citeseer system (citeseer.ist.psu.edu) maintains a very large database of re-
search articles, with citation links between the publications, and uses citations to
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rank publications. It includes a technique for adjusting the citation ranking based
on the age of a publication, to compensate for the fact that citations to a publi-
cation increase as time passes; without the adjustment, older documents tend to
get a higher ranking than they truly deserve. Google Scholar (scholar.google.com)
provides a similar searchable database of research articles incorporating citations
between articles. It is worth noting that these systems use information extraction
techniques to infer the title and list of authors of an article, as well as the citations
at the end of the article. They then create citation links between articles based on
(approximate) matching of the article title and author list with the citation text.

Information extraction and question answering have had a fairly long history
in the artificial intelligence community. Jackson and Moulinier [2002] provides
textbook coverage of natural language processing techniques with an empha-
sis on information extraction. Soderland [1999] describes information extraction
using the WHISK system, while Appelt and Israel [1999] provides a tutorial on
information extraction.

The annual Text Retrieval Conference (TREC) has a number of tracks, each of
which defines a problem and infrastructure to test the quality of solutions to the
problem. Details on TREC may be found at trec.nist.gov. More information about
WordNet can be found at wordnet.princeton.edu and globalwordnet.org. The goal of
the Cyc system is to provide a formal representation of large amounts of human
knowledge. Its knowledge base contains a large number of terms, and assertions
about each term. Cyc also includes a support for natural language understanding
and disambiguation. Information about the Cyc system may be found at cyc.com
and opencyc.org.

The evolution of Web search toward concepts and semantics rather than
keywords is discussed in Dalvi et al. [2009]. The annual International Semantic
Web Conference (ISWC) is one of the major conferences where new developments
in the Semantic Web are presented. Details may be found at semanticweb.org.

Agrawal et al. [2002], Bhalotia et al. [2002] and Hristidis and Papakonstanti-
nou [2002] cover keyword querying of relational data. Keyword querying of XML
data is addressed by Florescu et al. [2000] and Guo et al. [2003], among others.



PART 7

SPECIALTY DATABASES
Several application areas for database systems are limited by the restrictions of
the relational data model. As a result, researchers have developed several data
models based on an object-oriented approach, to deal with these application
domains.

The object-relational model, described in Chapter 22, combines features of the
relational and object-oriented models. This model provides the rich type system
of object-oriented languages, combined with relations as the basis for storage of
data. It applies inheritance to relations, not just to types. The object-relational
data model provides a smooth migration path from relational databases, which
is attractive to relational database vendors. As a result, starting with SQL:1999, the
SQL standard includes a number of object-oriented features in its type system,
while continuing to use the relational model as the underlying model.

The term object-oriented database is used to describe a database system that
supports direct access to data from object-oriented programming languages, with-
out requiring a relational query language as the database interface. Chapter 22
also provides a brief overview of object-oriented databases.

The XML language was initially designed as a way of adding markup infor-
mation to text documents, but has become important because of its applications in
data exchange. XML provides a way to represent data that have nested structure,
and furthermore allows a great deal of flexibility in structuring of data, which
is important for certain kinds of nontraditional data. Chapter 23 describes the
XML language, and then presents different ways of expressing queries on data
represented in XML, including the XQuery XML query language, and SQL/XML, an
extension of SQL which allows the creation of nested XML output.
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C H A P T E R22
Object-Based Databases

Traditional database applications consist of data-processing tasks, such as bank-
ing and payroll management, with relatively simple data types that are well
suited to the relational data model. As database systems were applied to a wider
range of applications, such as computer-aided design and geographical informa-
tion systems, limitations imposed by the relational model emerged as an obstacle.
The solution was the introduction of object-based databases, which allow one to
deal with complex data types.

22.1 Overview

The first obstacle faced by programmers using the relational data model was
the limited type system supported by the relational model. Complex applica-
tion domains require correspondingly complex data types, such as nested record
structures, multivalued attributes, and inheritance, which are supported by tradi-
tional programming languages. Such features are in fact supported in the E-R and
extended E-R notations, but had to be translated to simpler SQL data types. The
object-relational data model extends the relational data model by providing a
richer type system including complex data types and object orientation. Relational
query languages, in particular SQL, need to be correspondingly extended to deal
with the richer type system. Such extensions attempt to preserve the relational
foundations—in particular, the declarative access to data—while extending the
modeling power. Object-relational database systems, that is, database systems
based on the object-relation model, provide a convenient migration path for users
of relational databases who wish to use object-oriented features.

The second obstacle was the difficulty in accessing database data from pro-
grams written in programming languages such as C++ or Java. Merely extending
the type system supported by the database was not enough to solve this problem
completely. Differences between the type system of the database and the type
system of the programming language make data storage and retrieval more com-
plicated, and need to be minimized. Having to express database access using a
language (SQL) that is different from the programming language again makes
the job of the programmer harder. It is desirable, for many applications, to have

945
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programming language constructs or extensions that permit direct access to data
in the database, without having to go through an intermediate language such as
SQL.

In this chapter, we first explain the motivation for the development of complex
data types. We then study object-relational database systems, specifically using
features that were introduced in SQL:1999 and SQL:2003. Note that most database
products support only a subset of the SQL features described here and for sup-
ported features, the syntax often differs slightly from the standard. This is the
result of commercial systems introducing object-relational features to the market
before the standards were finalized. Refer to the user manual of the database
system you use to find out what features it supports.

We then address the issue of supporting persistence for data that is in the
native type system of an object-oriented programming language. Two approaches
are used in practice:

1. Build an object-oriented database system, that is, a database system that
natively supports an object-oriented type system, and allows direct access to
data from an object-oriented programming language using the native type
system of the language.

2. Automatically convert data from the native type system of the programming
language to a relational representation, and vice versa. Data conversion is
specified using an object-relational mapping.

We provide a brief introduction to both these approaches.
Finally, we outline situations in which the object-relational approach is bet-

ter than the object-oriented approach, and vice versa, and mention criteria for
choosing between them.

22.2 Complex Data Types

Traditional database applications have conceptually simple data types. The basic
data items are records that are fairly small and whose fields are atomic—that
is, they are not further structured, and first normal form holds (see Chapter 8).
Further, there are only a few record types.

In recent years, demand has grown for ways to deal with more complex
data types. Consider, for example, addresses. While an entire address could be
viewed as an atomic data item of type string, this view would hide details such
as the street address, city, state, and postal code, which could be of interest
to queries. On the other hand, if an address were represented by breaking it
into the components (street address, city, state, and postal code), writing queries
would be more complicated since they would have to mention each field. A better
alternative is to allow structured data types that allow a type address with subparts
street address, city, state, and postal code.

As another example, consider multivalued attributes from the E-R model. Such
attributes are natural, for example, for representing phone numbers, since people
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title author_array publisher keyword_set
(name, branch)

Compilers [Smith, Jones] (McGraw-Hill, NewYork) {parsing, analysis}
Networks [Jones, Frick] (Oxford, London) {Internet, Web}

Figure 22.1 Non-1NF books relation, books.

may have more than one phone. The alternative of normalization by creating a
new relation is expensive and artificial for this example.

With complex type systems we can represent E-R model concepts, such as
composite attributes, multivalued attributes, generalization, and specialization
directly, without a complex translation to the relational model.

In Chapter 8, we defined first normal form (1NF), which requires that all at-
tributes have atomic domains. Recall that a domain is atomic if elements of the
domain are considered to be indivisible units.

The assumption of 1NF is a natural one in the database application examples
we have considered. However, not all applications are best modeled by 1NF
relations. For example, rather than view a database as a set of records, users of
certain applications view it as a set of objects (or entities). These objects may
require several records for their representation. A simple, easy-to-use interface
requires a one-to-one correspondence between the user’s intuitive notion of an
object and the database system’s notion of a data item.

Consider, for example, a library application, and suppose we wish to store
the following information for each book:

• Book title.

• List of authors.

• Publisher.

• Set of keywords.

We can see that, if we define a relation for the preceding information, several
domains will be nonatomic.

• Authors. A book may have a list of authors, which we can represent as an
array. Nevertheless, we may want to find all books of which Jones was one
of the authors. Thus, we are interested in a subpart of the domain element
“authors.”

• Keywords. If we store a set of keywords for a book, we expect to be able to
retrieve all books whose keywords include one or more specified keywords.
Thus, we view the domain of the set of keywords as nonatomic.

• Publisher. Unlike keywords and authors, publisher does not have a set-valued
domain. However, we may view publisher as consisting of the subfields name
and branch. This view makes the domain of publisher nonatomic.

Figure 22.1 shows an example relation, books.
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title author position
Compilers Smith
Compilers Jones
Networks Jones
Networks Frick

1
2
1
2

authors

title keyword
Compilers parsing
Compilers analysis
Networks Internet
Networks Web

keywords

title pub_name pub_branch
Compilers McGraw-Hill New York
Networks Oxford London

books4

Figure 22.2 4NF version of the relation books.

For simplicity, we assume that the title of a book uniquely identifies the book.1
We can then represent the same information using the following schema, where
the primary key attributes are underlined:

• authors(title, author, position)

• keywords(title, keyword)

• books4(title, pub name, pub branch)

The above schema satisfies 4NF. Figure 22.2 shows the normalized representation
of the data from Figure 22.1.

Although our example book database can be adequately expressed without
using nested relations, the use of nested relations leads to an easier-to-understand
model. The typical user or programmer of an information-retrieval system thinks
of the database in terms of books having sets of authors, as the non-1NF design
models. The 4NF design requires queries to join multiple relations, whereas the
non-1NF design makes many types of queries easier.

On the other hand, it may be better to use a first normal form representation
in other situations. For instance, consider the takes relationship in our university
example. The relationship is many-to-many between student and section. We could

1This assumption does not hold in the real world. Books are usually identified by a 10-digit ISBN number that uniquely
identifies each published book.



22.3 Structured Types and Inheritance in SQL 949

conceivably store a set of sections with each student, or a set of students with
each section, or both. If we store both, we would have data redundancy (the
relationship of a particular student to a particular section would be stored twice).

The ability to use complex data types such as sets and arrays can be useful in
many applications but should be used with care.

22.3 Structured Types and Inheritance in SQL

Before SQL:1999, the SQL type system consisted of a fairly simple set of predefined
types. SQL:1999 added an extensive type system to SQL, allowing structured types
and type inheritance.

22.3.1 Structured Types

Structured types allow composite attributes of E-R designs to be represented
directly. For instance, we can define the following structured type to represent a
composite attribute name with component attribute firstname and lastname:

create type Name as
(firstname varchar(20),
lastname varchar(20))
final;

Similarly, the following structured type can be used to represent a composite
attribute address:

create type Address as
(street varchar(20),
city varchar(20),
zipcode varchar(9))
not final;

Such types are called user-defined types in SQL2. The above definition corre-
sponds to the E-R diagram in Figure 7.4. The final and not final specifications are
related to subtyping, which we describe later, in Section 22.3.2.3

We can now use these types to create composite attributes in a relation, by
simply declaring an attribute to be of one of these types. For example, we could
create a table person as follows:

2To illustrate our earlier note about commercial implementations defining their syntax before the standards were
developed, we point out that Oracle requires the keyword object following as.
3The final specification for Name indicates that we cannot create subtypes for name, whereas the not final specification
for Address indicates that we can create subtypes of address.
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create table person (
name Name,
address Address,
dateOfBirth date);

The components of a composite attribute can be accessed using a “dot” no-
tation; for instance name.firstname returns the firstname component of the name
attribute. An access to attribute name would return a value of the structured type
Name.

We can also create a table whose rows are of a user-defined type. For example,
we could define a type PersonType and create the table person as follows:4

create type PersonType as (
name Name,
address Address,
dateOfBirth date)
not final

create table person of PersonType;

An alternative way of defining composite attributes in SQL is to use unnamed
row types. For instance, the relation representing person information could have
been created using row types as follows:

create table person r (
name row (firstname varchar(20),

lastname varchar(20)),
address row (street varchar(20),

city varchar(20),
zipcode varchar(9)),

dateOfBirth date);

This definition is equivalent to the preceding table definition, except that the
attributes name and address have unnamed types, and the rows of the table also
have an unnamed type.

The following query illustrates how to access component attributes of a com-
posite attribute. The query finds the last name and city of each person.

select name.lastname, address.city
from person;

A structured type can have methods defined on it. We declare methods as
part of the type definition of a structured type:

4Most actual systems, being case insensitive, would not permit name to be used both as an attribute name and a data
type.
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create type PersonType as (
name Name,
address Address,
dateOfBirth date)
not final

method ageOnDate(onDate date)
returns interval year;

We create the method body separately:

create instance method ageOnDate (onDate date)
returns interval year
for PersonType

begin
return onDate − self.dateOfBirth;

end

Note that the for clause indicates which type this method is for, while the
keyword instance indicates that this method executes on an instance of the Person
type. The variable self refers to the Person instance on which the method is
invoked. The body of the method can contain procedural statements, which we
saw earlier in Section 5.2. Methods can update the attributes of the instance on
which they are executed.

Methods can be invoked on instances of a type. If we had created a table
person of type PersonType, we could invoke the method ageOnDate() as illustrated
below, to find the age of each person.

select name.lastname, ageOnDate(current date)
from person;

In SQL:1999, constructor functions are used to create values of structured
types. A function with the same name as a structured type is a constructor function
for the structured type. For instance, we could declare a constructor for the type
Name like this:

create function Name (firstname varchar(20), lastname varchar(20))
returns Name
begin

set self.firstname = firstname;
set self.lastname = lastname;

end

We can then use new Name(’John’, ’Smith’) to create a value of the type Name.
We can construct a row value by listing its attributes within parentheses. For
instance, if we declare an attribute name as a row type with components firstname
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and lastname we can construct this value for it: (’Ted’, ’Codd’) without using a
constructor.

By default every structured type has a constructor with no arguments, which
sets the attributes to their default values. Any other constructors have to be created
explicitly. There can be more than one constructor for the same structured type;
although they have the same name, they must be distinguishable by the number
of arguments and types of their arguments.

The following statement illustrates how we can create a new tuple in the
Person relation. We assume that a constructor has been defined for Address, just
like the constructor we defined for Name.

insert into Person
values

(new Name(’John’, ’Smith’),
new Address(’20 Main St’, ’New York’, ’11001’),
date ’1960-8-22’);

22.3.2 Type Inheritance

Suppose that we have the following type definition for people:

create type Person
(name varchar(20),
address varchar(20));

We may want to store extra information in the database about people who are
students, and about people who are teachers. Since students and teachers are also
people, we can use inheritance to define the student and teacher types in SQL:

create type Student
under Person
(degree varchar(20),
department varchar(20));

create type Teacher
under Person
(salary integer,
department varchar(20));

Both Student and Teacher inherit the attributes of Person—namely, name and
address. Student and Teacher are said to be subtypes of Person, and Person is a
supertype of Student, as well as of Teacher.

Methods of a structured type are inherited by its subtypes, just as attributes
are. However, a subtype can redefine the effect of a method by declaring the
method again, using overriding method in place of method in the method dec-
laration.
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The SQL standard requires an extra field at the end of the type definition,
whose value is either final or not final. The keyword final says that subtypes may
not be created from the given type, while not final says that subtypes may be
created.

Now suppose that we want to store information about teaching assistants,
who are simultaneously students and teachers, perhaps even in different depart-
ments. We can do this if the type system supports multiple inheritance, where a
type is declared as a subtype of multiple types. Note that the SQL standard does
not support multiple inheritance, although future versions of the SQL standard
may support it, so we discuss the concept here.

For instance, if our type system supports multiple inheritance, we can define
a type for teaching assistant as follows:

create type TeachingAssistant
under Student, Teacher;

TeachingAssistant inherits all the attributes of Student and Teacher. There is a
problem, however, since the attributes name, address, and department are present
in Student, as well as in Teacher.

The attributes name and address are actually inherited from a common source,
Person. So there is no conflict caused by inheriting them from Student as well as
Teacher. However, the attribute department is defined separately in Student and
Teacher. In fact, a teaching assistant may be a student of one department and a
teacher in another department. To avoid a conflict between the two occurrences
of department, we can rename them by using an as clause, as in this definition of
the type TeachingAssistant:

create type TeachingAssistant
under Student with (department as student dept),

Teacher with (department as teacher dept);

In SQL, as in most other languages, a value of a structured type must have ex-
actly one most-specific type. That is, each value must be associated with one specific
type, called its most-specific type, when it is created. By means of inheritance, it is
also associated with each of the supertypes of its most-specific type. For example,
suppose that an entity has the type Person, as well as the type Student. Then, the
most-specific type of the entity is Student, since Student is a subtype of Person.
However, an entity cannot have the type Student as well as the type Teacher unless
it has a type, such as TeachingAssistant, that is a subtype of Teacher, as well as of
Student (which is not possible in SQL since multiple inheritance is not supported
by SQL).
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22.4 Table Inheritance

Subtables in SQL correspond to the E-R notion of specialization/generalization.
For instance, suppose we define the people table as follows:

create table people of Person;

We can then define tables students and teachers as subtables of people, as
follows:

create table students of Student
under people;

create table teachers of Teacher
under people;

The types of the subtables (Student and Teacher in the above example) are subtypes
of the type of the parent table (Person in the above example). As a result, every
attribute present in the table people is also present in the subtables students and
teachers.

Further, when we declare students and teachers as subtables of people, every
tuple present in students or teachers becomes implicitly present in people. Thus,
if a query uses the table people, it will find not only tuples directly inserted into
that table, but also tuples inserted into its subtables, namely students and teachers.
However, only those attributes that are present in people can be accessed by that
query.

SQL permits us to find tuples that are in people but not in its subtables by using
“only people” in place of people in a query. The only keyword can also be used in
delete and update statements. Without the only keyword, a delete statement on
a supertable, such as people, also deletes tuples that were originally inserted in
subtables (such as students); for example, a statement:

delete from people where P;

would delete all tuples from the table people, as well as its subtables students
and teachers, that satisfy P. If the only keyword is added to the above statement,
tuples that were inserted in subtables are not affected, even if they satisfy the
where clause conditions. Subsequent queries on the supertable would continue
to find these tuples.

Conceptually, multiple inheritance is possible with tables, just as it is possible
with types. For example, we can create a table of type TeachingAssistant:

create table teaching assistants
of TeachingAssistant

under students, teachers;
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As a result of the declaration, every tuple present in the teaching assistants
table is also implicitly present in the teachers and in the students table, and in turn
in the people table. We note, however, that multiple inheritance of tables is not
supported by SQL.

There are some consistency requirements for subtables. Before we state the
constraints, we need a definition: we say that tuples in a subtable and parent
table correspond if they have the same values for all inherited attributes. Thus,
corresponding tuples represent the same entity.

The consistency requirements for subtables are:

1. Each tuple of the supertable can correspond to at most one tuple in each of
its immediate subtables.

2. SQL has an additional constraint that all the tuples corresponding to each
other must be derived from one tuple (inserted into one table).

For example, without the first condition, we could have two tuples in students (or
teachers) that correspond to the same person.

The second condition rules out a tuple in people corresponding to both a tuple
in students and a tuple in teachers, unless all these tuples are implicitly present
because a tuple was inserted in a table teaching assistants, which is a subtable of
both teachers and students.

Since SQL does not support multiple inheritance, the second condition actu-
ally prevents a person from being both a teacher and a student. Even if multiple
inheritance were supported, the same problem would arise if the subtable teaching
assistants were absent. Obviously it would be useful to model a situation where

a person can be a teacher and a student, even if a common subtable teaching
assistants is not present. Thus, it can be useful to remove the second consis-

tency constraint. Doing so would allow an object to have multiple types, without
requiring it to have a most-specific type.

For example, suppose we again have the type Person, with subtypes Student
and Teacher, and the corresponding table people, with subtables teachers and stu-
dents. We can then have a tuple in teachers and a tuple in students corresponding to
the same tuple in people. There is no need to have a type TeachingAssistant that is a
subtype of both Student and Teacher. We need not create a type TeachingAssistant
unless we wish to store extra attributes or redefine methods in a manner specific
to people who are both students and teachers.

We note, however, that SQL unfortunately prohibits such a situation, because
of consistency requirement 2. Since SQL also does not support multiple inheri-
tance, we cannot use inheritance to model a situation where a person can be both
a student and a teacher. As a result, SQL subtables cannot be used to represent
overlapping specializations from the E-R model.

We can of course create separate tables to represent the overlapping special-
izations/generalizations without using inheritance. The process was described
earlier, in Section 7.8.6.1. In the above example, we would create tables people, stu-
dents, and teachers, with the students and teachers tables containing the primary-key
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attribute of Person and other attributes specific to Student and Teacher, respectively.
The people table would contain information about all persons, including students
and teachers. We would then have to add appropriate referential-integrity con-
straints to ensure that students and teachers are also represented in the people
table.

In other words, we can create our own improved implementation of the
subtable mechanism using existing features of SQL, with some extra effort in
defining the table, as well as some extra effort at query time to specify joins to
access required attributes.

We note that SQL defines a privilege called under, which is required in order
to create a subtype or subtable under another type or table. The motivation for
this privilege is similar to that for the references privilege.

22.5 Array and Multiset Types in SQL

SQL supports two collection types: arrays and multisets; array types were added
in SQL:1999, while multiset types were added in SQL:2003. Recall that a multiset is
an unordered collection, where an element may occur multiple times. Multisets
are like sets, except that a set allows each element to occur at most once.

Suppose we wish to record information about books, including a set of key-
words for each book. Suppose also that we wished to store the names of authors
of a book as an array; unlike elements in a multiset, the elements of an array are
ordered, so we can distinguish the first author from the second author, and so on.
The following example illustrates how these array and multiset-valued attributes
can be defined in SQL:

create type Publisher as
(name varchar(20),
branch varchar(20));

create type Book as
(title varchar(20),
author array varchar(20) array [10],
pub date date,
publisher Publisher,
keyword set varchar(20) multiset);

create table books of Book;

The first statement defines a type called Publisher with two components: a name
and a branch. The second statement defines a structured type Book that contains
a title, an author array, which is an array of up to 10 author names, a publication
date, a publisher (of type Publisher), and a multiset of keywords. Finally, a table
books containing tuples of type Book is created.
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Note that we used an array, instead of a multiset, to store the names of authors,
since the ordering of authors generally has some significance, whereas we believe
that the ordering of keywords associated with a book is not significant.

In general, multivalued attributes from an E-R schema can be mapped to
multiset-valued attributes in SQL; if ordering is important, SQL arrays can be used
instead of multisets.

22.5.1 Creating and Accessing Collection Values

An array of values can be created in SQL:1999 in this way:

array[’Silberschatz’, ’Korth’, ’Sudarshan’]

Similarly, a multiset of keywords can be constructed as follows:

multiset[’computer’, ’database’, ’SQL’]

Thus, we can create a tuple of the type defined by the books relation as:

(’Compilers’, array[’Smith’, ’Jones’], new Publisher(’McGraw-Hill’, ’New York’),
multiset[’parsing’, ’analysis’])

Here we have created a value for the attribute Publisher by invoking a constructor
function for Publisher with appropriate arguments. Note that this constructor
for Publisher must be created explicitly, and is not present by default; it can be
declared just like the constructor for Name, which we saw earlier in Section 22.3.

If we want to insert the preceding tuple into the relation books, we could
execute the statement:

insert into books
values (’Compilers’, array[’Smith’, ’Jones’],

new Publisher(’McGraw-Hill’, ’New York’),
multiset[’parsing’, ’analysis’]);

We can access or update elements of an array by specifying the array index,
for example author array[1].

22.5.2 Querying Collection-Valued Attributes

We now consider how to handle collection-valued attributes in queries. An ex-
pression evaluating to a collection can appear anywhere that a relation name may
appear, such as in a from clause, as the following paragraphs illustrate. We use
the table books that we defined earlier.

If we want to find all books that have the word “database” as one of their
keywords, we can use this query:
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select title
from books
where ’database’ in (unnest(keyword set));

Note that we have used unnest(keyword set) in a position where SQL without
nested relations would have required a select-from-where subexpression.

If we know that a particular book has three authors, we could write:

select author array[1], author array[2], author array[3]
from books
where title = ’Database System Concepts’;

Now, suppose that we want a relation containing pairs of the form “title,
author name” for each book and each author of the book. We can use this query:

select B.title, A.author
from books as B, unnest(B.author array) as A(author);

Since the author array attribute of books is a collection-valued field, unnest(B.author
array) can be used in a from clause, where a relation is expected. Note that the

tuple variable B is visible to this expression since it is defined earlier in the from
clause.

When unnesting an array, the previous query loses information about the
ordering of elements in the array. The unnest with ordinality clause can be used
to get this information, as illustrated by the following query. This query can be
used to generate the authors relation, which we saw earlier, from the books relation.

select title, A.author, A.position
from books as B,

unnest(B.author array) with ordinality as A(author, position);

The with ordinality clause generates an extra attribute which records the po-
sition of the element in the array. A similar query, but without the with ordinality
clause, can be used to generate the keyword relation.

22.5.3 Nesting and Unnesting

The transformation of a nested relation into a form with fewer (or no) relation-
valued attributes is called unnesting. The books relation has two attributes, author
array and keyword set, that are collections, and two attributes, title and publisher,

that are not. Suppose that we want to convert the relation into a single flat relation,
with no nested relations or structured types as attributes. We can use the following
query to carry out the task:
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title author pub_name pub_branch keyword
Compilers Smith McGraw-Hill New York parsing
Compilers Jones McGraw-Hill New York parsing
Compilers Smith McGraw-Hill New York analysis
Compilers Jones McGraw-Hill New York analysis
Networks Jones Oxford London Internet
Networks Frick Oxford London Internet
Networks Jones Oxford London Web
Networks Frick Oxford London Web

Figure 22.3 flat books: result of unnesting attributes author array and keyword set of relation
books.

select title, A.author, publisher.name as pub name, publisher.branch
as pub branch, K.keyword

from books as B, unnest(B.author array) as A(author),
unnest (B.keyword set) as K(keyword);

The variable B in the from clause is declared to range over books. The variable
A is declared to range over the authors in author array for the book B, and K is
declared to range over the keywords in the keyword set of the book B. Figure 22.1
shows an instance books relation, and Figure 22.3 shows the relation, which we
call flat books, that is the result of the preceding query. Note that the relation flat
books is in 1NF, since all its attributes are atomic valued.

The reverse process of transforming a 1NF relation into a nested relation
is called nesting. Nesting can be carried out by an extension of grouping in
SQL. In the normal use of grouping in SQL, a temporary multiset relation is
(logically) created for each group, and an aggregate function is applied on the
temporary relation to get a single (atomic) value. The collect function returns the
multiset of values, so instead of creating a single value, we can create a nested
relation. Suppose that we are given the 1NF relation flat books, as in Figure 22.3.
The following query nests the relation on the attribute keyword:

select title, author, Publisher(pub name, pub branch) as publisher,
collect(keyword) as keyword set

from flat books
group by title, author, publisher;

The result of the query on the flat books relation from Figure 22.3 appears in
Figure 22.4.

If we want to nest the author attribute also into a multiset, we can use the
query:
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title author publisher keyword_set
(pub_name,pub_branch)

Compilers Smith (McGraw-Hill, New York) {parsing, analysis}
{parsing, analysis}Compilers Jones (McGraw-Hill, New York)

Networks Jones (Oxford, London) {Internet, Web}
{Internet, Web}Networks Frick (Oxford, London)

Figure 22.4 A partially nested version of the flat books relation.

select title, collect(author) as author set,
Publisher(pub name, pub branch) as publisher,

collect(keyword) as keyword set
from flat books
group by title, publisher;

Another approach to creating nested relations is to use subqueries in the select
clause. An advantage of the subquery approach is that an order by clause can be
used in the subquery to generate results in the order desired for the creation of
an array. The following query illustrates this approach; the keywords array and
multiset specify that an array and multiset (respectively) are to be created from
the results of the subqueries.

select title,
array( select author

from authors as A
where A.title = B.title
order by A.position) as author array,

Publisher(pub name, pub branch) as publisher,
multiset( select keyword

from keywords as K
where K.title = B.title) as keyword set,

from books4 as B;

The system executes the nested subqueries in the select clause for each tuple
generated by the from and where clauses of the outer query. Observe that the
attribute B.title from the outer query is used in the nested queries, to ensure that
only the correct sets of authors and keywords are generated for each title.

SQL:2003 provides a variety of operators on multisets, including a function
set(M) that returns a duplicate-free version of a multiset M, an intersection
aggregate operation, which returns the intersection of all the multisets in a group,
a fusion aggregate operation, which returns the union of all multisets in a group,
and a submultiset predicate, which checks if a multiset is contained in another
multiset.
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The SQL standard does not provide any way to update multiset attributes
except by assigning a new value. For example, to delete a value v from a multiset
attribute A, we would have to set it to (A except all multiset[v]).

22.6 Object-Identity and Reference Types in SQL

Object-oriented languages provide the ability to refer to objects. An attribute of
a type can be a reference to an object of a specified type. For example, in SQL we
can define a type Department with a field name and a field head that is a reference
to the type Person, and a table departments of type Department, as follows:

create type Department (
name varchar(20),
head ref(Person) scope people);

create table departments of Department;

Here, the reference is restricted to tuples of the table people. The restriction of
the scope of a reference to tuples of a table is mandatory in SQL, and it makes
references behave like foreign keys.

We can omit the declaration scope people from the type declaration and instead
make an addition to the create table statement:

create table departments of Department
(head with options scope people);

The referenced table must have an attribute that stores the identifier of the
tuple. We declare this attribute, called the self-referential attribute, by adding a
ref is clause to the create table statement:

create table people of Person
ref is person id system generated;

Here, person id is an attribute name, not a keyword, and the create table
statement specifies that the identifier is generated automatically by the database.

In order to initialize a reference attribute, we need to get the identifier of the
tuple that is to be referenced. We can get the identifier value of a tuple by means
of a query. Thus, to create a tuple with the reference value, we may first create the
tuple with a null reference and then set the reference separately:
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insert into departments
values (’CS’, null);

update departments
set head = (select p.person id

from people as p
where name = ’John’)

where name = ’CS’;

An alternative to system-generated identifiers is to allow users to generate
identifiers. The type of the self-referential attribute must be specified as part of
the type definition of the referenced table, and the table definition must specify
that the reference is user generated:

create type Person
(name varchar(20),
address varchar(20))

ref using varchar(20);

create table people of Person
ref is person id user generated;

When inserting a tuple in people, we must then provide a value for the iden-
tifier:

insert into people (person id, name, address) values
(’01284567’, ’John’, ’23 Coyote Run’);

No other tuple for people or its supertables or subtables can have the same
identifier. We can then use the identifier value when inserting a tuple into depart-
ments, without the need for a separate query to retrieve the identifier:

insert into departments
values (’CS’, ’01284567’);

It is even possible to use an existing primary-key value as the identifier, by
including the ref from clause in the type definition:

create type Person
(name varchar(20) primary key,
address varchar(20))

ref from(name);

create table people of Person
ref is person id derived;
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Note that the table definition must specify that the reference is derived, and
must still specify a self-referential attribute name. When inserting a tuple for
departments, we can then use:

insert into departments
values (’CS’, ’John’);

References are dereferenced in SQL:1999 by the −> symbol. Consider the
departments table defined earlier. We can use this query to find the names and
addresses of the heads of all departments:

select head−>name, head−>address
from departments;

An expression such as “head−>name” is called a path expression.
Since head is a reference to a tuple in the people table, the attribute name

in the preceding query is the name attribute of the tuple from the people table.
References can be used to hide join operations; in the preceding example, without
the references, the head field of department would be declared a foreign key of the
table people. To find the name and address of the head of a department, we would
require an explicit join of the relations departments and people. The use of references
simplifies the query considerably.

We can use the operation deref to return the tuple pointed to by a reference,
and then access its attributes, as shown below:

select deref(head).name
from departments;

22.7 Implementing O-R Features

Object-relational database systems are basically extensions of existing relational
database systems. Changes are clearly required at many levels of the database
system. However, to minimize changes to the storage-system code (relation stor-
age, indices, etc.), the complex data types supported by object-relational systems
can be translated to the simpler type system of relational databases.

To understand how to do this translation, we need look only at how some
features of the E-R model are translated into relations. For instance, multivalued
attributes in the E-R model correspond to multiset-valued attributes in the object-
relational model. Composite attributes roughly correspond to structured types.
ISA hierarchies in the E-R model correspond to table inheritance in the object-
relational model.

The techniques for converting E-R model features to tables, which we saw in
Section 7.6, can be used, with some extensions, to translate object-relational data
to relational data at the storage level.
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Subtables can be stored in an efficient manner, without replication of all
inherited fields, in one of two ways:

• Each table stores the primary key (which may be inherited from a parent
table) and the attributes that are defined locally. Inherited attributes (other
than the primary key) do not need to be stored, and can be derived by means
of a join with the supertable, based on the primary key.

• Each table stores all inherited and locally defined attributes. When a tuple is
inserted, it is stored only in the table in which it is inserted, and its presence is
inferred in each of the supertables. Access to all attributes of a tuple is faster,
since a join is not required.

However, in case the type system allows an entity to be represented
in two subtables without being present in a common subtable of both, this
representation can result in replication of information. Further, it is hard
to translate foreign keys referring to a supertable into constraints on the
subtables; to implement such foreign keys efficiently, the supertable has to be
defined as a view, and the database system would have to support foreign
keys on views.

Implementations may choose to represent array and multiset types directly,
or may choose to use a normalized representation internally. Normalized repre-
sentations tend to take up more space and require an extra join/grouping cost to
collect data in an array or multiset. However, normalized representations may be
easier to implement.

The ODBC and JDBC application program interfaces have been extended to
retrieve and store structured types. JDBC provides a method getObject() that
is similar to getString() but returns a Java Struct object, from which the
components of the structured type can be extracted. It is also possible to associate
a Java class with an SQL structured type, and JDBC will then convert between the
types. See the ODBC or JDBC reference manuals for details.

22.8 Persistent Programming Languages

Database languages differ from traditional programming languages in that they
directly manipulate data that are persistent—that is, data that continue to exist
even after the program that created it has terminated. A relation in a database and
tuples in a relation are examples of persistent data. In contrast, the only persistent
data that traditional programming languages directly manipulate are files.

Access to a database is only one component of any real-world application.
While a data-manipulation language like SQL is quite effective for accessing data,
a programming language is required for implementing other components of the
application such as user interfaces or communication with other computers. The
traditional way of interfacing database languages to programming languages is
by embedding SQL within the programming language.
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A persistent programming language is a programming language extended
with constructs to handle persistent data. Persistent programming languages can
be distinguished from languages with embedded SQL in at least two ways:

1. With an embedded language, the type system of the host language usually
differs from the type system of the data-manipulation language. The pro-
grammer is responsible for any type conversions between the host language
and SQL. Having the programmer carry out this task has several drawbacks:

• The code to convert between objects and tuples operates outside the
object-oriented type system, and hence has a higher chance of having
undetected errors.

• Conversion between the object-oriented format and the relational for-
mat of tuples in the database takes a substantial amount of code. The
format translation code, along with the code for loading and unloading
data from a database, can form a significant percentage of the total code
required for an application.

In contrast, in a persistent programming language, the query language is
fully integrated with the host language, and both share the same type sys-
tem. Objects can be created and stored in the database without any explicit
type or format changes; any format changes required are carried out trans-
parently.

2. The programmer using an embedded query language is responsible for
writing explicit code to fetch data from the database into memory. If any
updates are performed, the programmer must write code explicitly to store
the updated data back in the database.

In contrast, in a persistent programming language, the programmer can
manipulate persistent data without writing code explicitly to fetch it into
memory or store it back to disk.

In this section, we describe how object-oriented programming languages,
such as C++ and Java, can be extended to make them persistent programming
languages. These language features allow programmers to manipulate data di-
rectly from the programming language, without having to go through a data-
manipulation language such as SQL. They thereby provide tighter integration of
the programming languages with the database than, for example, embedded SQL.

There are certain drawbacks to persistent programming languages, how-
ever, that we must keep in mind when deciding whether to use them. Since the
programming language is usually a powerful one, it is relatively easy to make
programming errors that damage the database. The complexity of the language
makes automatic high-level optimization, such as to reduce disk I/O, harder. Sup-
port for declarative querying is important for many applications, but persistent
programming languages currently do not support declarative querying well.

In this section, we describe a number of conceptual issues that must be ad-
dressed when adding persistence to an existing programming language. We first
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address language-independent issues, and in subsequent sections we discuss is-
sues that are specific to the C++ language and to the Java language. However,
we do not cover details of language extensions; although several standards have
been proposed, none has met universal acceptance. See the references in the bib-
liographical notes to learn more about specific language extensions and further
details of implementations.

22.8.1 Persistence of Objects

Object-oriented programming languages already have a concept of objects, a
type system to define object types, and constructs to create objects. However,
these objects are transient—they vanish when the program terminates, just as
variables in a Java or C program vanish when the program terminates. If we
wish to turn such a language into a database programming language, the first
step is to provide a way to make objects persistent. Several approaches have been
proposed.

• Persistence by class. The simplest, but least convenient, way is to declare
that a class is persistent. All objects of the class are then persistent objects by
default. Objects of nonpersistent classes are all transient.

This approach is not flexible, since it is often useful to have both transient
and persistent objects in a single class. Many object-oriented database systems
interpret declaring a class to be persistent as saying that objects in the class
potentially can be made persistent, rather than that all objects in the class
are persistent. Such classes might more appropriately be called “persistable”
classes.

• Persistence by creation. In this approach, new syntax is introduced to create
persistent objects, by extending the syntax for creating transient objects. Thus,
an object is either persistent or transient, depending on how it was created.
Several object-oriented database systems follow this approach.

• Persistence by marking. A variant of the preceding approach is to mark
objects as persistent after they are created. All objects are created as transient
objects, but, if an object is to persist beyond the execution of the program, it
must be marked explicitly as persistent before the program terminates. This
approach, unlike the previous one, postpones the decision on persistence or
transience until after the object is created.

• Persistence by reachability. One or more objects are explicitly declared as
(root) persistent objects. All other objects are persistent if (and only if) they are
reachable from the root object through a sequence of one or more references.

Thus, all objects referenced by (that is, whose object identifiers are stored
in) the root persistent objects are persistent. But also, all objects referenced
from these objects are persistent, and objects to which they refer are in turn
persistent, and so on.

A benefit of this scheme is that it is easy to make entire data structures
persistent by merely declaring the root of such structures as persistent. How-
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ever, the database system has the burden of following chains of references to
detect which objects are persistent, and that can be expensive.

22.8.2 Object Identity and Pointers

In an object-oriented programming language that has not been extended to han-
dle persistence, when an object is created, the system returns a transient object
identifier. Transient object identifiers are valid only when the program that cre-
ated them is executing; after that program terminates, the objects are deleted, and
the identifier is meaningless. When a persistent object is created, it is assigned a
persistent object identifier.

The notion of object identity has an interesting relationship to pointers in
programming languages. A simple way to achieve built-in identity is through
pointers to physical locations in storage. In particular, in many object-oriented
languages such as C++, a transient object identifier is actually an in-memory
pointer.

However, the association of an object with a physical location in storage may
change over time. There are several degrees of permanence of identity:

• Intraprocedure. Identity persists only during the execution of a single pro-
cedure. Examples of intraprogram identity are local variables within proce-
dures.

• Intraprogram. Identity persists only during the execution of a single pro-
gram or query. Examples of intraprogram identity are global variables in
programming languages. Main-memory or virtual-memory pointers offer
only intraprogram identity.

• Interprogram. Identity persists from one program execution to another.
Pointers to file-system data on disk offer interprogram identity, but they
may change if the way data is stored in the file system is changed.

• Persistent. Identity persists not only among program executions, but also
among structural reorganizations of the data. It is the persistent form of
identity that is required for object-oriented systems.

In persistent extensions of languages such as C++, object identifiers for per-
sistent objects are implemented as “persistent pointers.” A persistent pointer is
a type of pointer that, unlike in-memory pointers, remains valid even after the
end of a program execution, and across some forms of data reorganization. A
programmer may use a persistent pointer in the same ways that she may use an
in-memory pointer in a programming language. Conceptually, we may think of
a persistent pointer as a pointer to an object in the database.

22.8.3 Storage and Access of Persistent Objects

What does it mean to store an object in a database? Clearly, the data part of
an object has to be stored individually for each object. Logically, the code that
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implements methods of a class should be stored in the database as part of the
database schema, along with the type definitions of the classes. However, many
implementations simply store the code in files outside the database, to avoid
having to integrate system software such as compilers with the database system.

There are several ways to find objects in the database. One way is to give
names to objects, just as we give names to files. This approach works for a rela-
tively small number of objects, but does not scale to millions of objects. A second
way is to expose object identifiers or persistent pointers to the objects, which can
be stored externally. Unlike names, these pointers do not have to be mnemonic,
and they can even be physical pointers into a database.

A third way is to store collections of objects, and to allow programs to iterate
over the collections to find required objects. Collections of objects can themselves
be modeled as objects of a collection type. Collection types include sets, multisets
(that is, sets with possibly many occurrences of a value), lists, and so on. A special
case of a collection is a class extent, which is the collection of all objects belonging
to the class. If a class extent is present for a class, then, whenever an object of
the class is created, that object is inserted in the class extent automatically, and,
whenever an object is deleted, that object is removed from the class extent. Class
extents allow classes to be treated like relations in that we can examine all objects
in the class, just as we can examine all tuples in a relation.

Most object-oriented database systems support all three ways of accessing
persistent objects. They give identifiers to all objects. They usually give names
only to class extents and other collection objects, and perhaps to other selected
objects, but not to most objects. They usually maintain class extents for all classes
that can have persistent objects, but, in many of the implementations, the class
extents contain only persistent objects of the class.

22.8.4 Persistent C++ Systems

There are several object-oriented databases based on persistent extensions to C++
(see the bibliographical notes). There are differences among them in terms of
the system architecture, yet they have many common features in terms of the
programming language.

Several of the object-oriented features of the C++ language provide support
for persistence without changing the language itself. For example, we can de-
clare a class called Persistent Object with attributes and methods to support
persistence; any other class that should be persistent can be made a subclass of
this class, and thereby inherit the support for persistence. The C++ language (like
some other modern programming languages) also lets us redefine standard func-
tion names and operators—such as +, −, the pointer dereference operator −>,
and so on—according to the types of the operands on which they are applied.
This ability is called overloading; it is used to redefine operators to behave in the
required manner when they are operating on persistent objects.

Providing persistence support via class libraries has the benefit of making only
minimal changes to C++ necessary; moreover, it is relatively easy to implement.
However, it has the drawback that the programmer has to spend much more
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time to write a program that handles persistent objects, and it is not easy for
the programmer to specify integrity constraints on the schema or to provide
support for declarative querying. Some persistent C++ implementations support
extensions to the C++ syntax to make these tasks easier.

The following aspects need to be addressed when adding persistence support
to C++ (and other languages):

• Persistent pointers: A new data type has to be defined to represent persistent
pointers. For example, the ODMG C++ standard defines a template class
d Ref< T > to represent persistent pointers to a class T . The dereference
operator on this class is redefined to fetch the object from disk (if not already
present in memory), and it returns an in-memory pointer to the buffer where
the object has been fetched. Thus if p is a persistent pointer to a class T , one
can use standard syntax such as p−>A or p−>f(v) to access attribute A of
class T or invoke method f of class T .

The ObjectStore database system uses a different approach to persistent
pointers. It uses normal pointer types to store persistent pointers. This poses
two problems: (1) in-memory pointer sizes may be only 4 bytes, which is
too small to use with databases larger than 4 gigabytes, and (2) when an
object is moved on disk, in-memory pointers to its old physical location are
meaningless. ObjectStore uses a technique called “hardware swizzling” to
address both problems; it prefetches objects from the database into memory,
and replaces persistent pointers with in-memory pointers, and when data are
stored back on disk, in-memory pointers are replaced by persistent pointers.
When on disk, the value stored in the in-memory pointer field is not the actual
persistent pointer; instead, the value is looked up in a table that contains the
full persistent pointer value.

• Creation of persistent objects: The C++ new operator is used to create per-
sistent objects by defining an “overloaded” version of the operator that takes
extra arguments specifying that it should be created in the database. Thus in-
stead of new T(), one would call new (db) T() to create a persistent object,
where db identifies the database.

• Class extents: Class extents are created and maintained automatically for
each class. The ODMG C++ standard requires the name of the class to be
passed as an additional parameter to the new operation. This also allows
multiple extents to be maintained for a class, by passing different names.

• Relationships: Relationships between classes are often represented by stor-
ing pointers from each object to the objects to which it is related. Objects
related to multiple objects of a given class store a set of pointers. Thus if a
pair of objects is in a relationship, each should store a pointer to the other.
Persistent C++ systems provide a way to specify such integrity constraints
and to enforce them by automatically creating and deleting pointers: For ex-
ample, if a pointer is created from an object a to an object b, a pointer to a is
added automatically to object b.
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• Iterator interface: Since programs need to iterate over class members, an
interface is required to iterate over members of a class extent. The iterator
interface also allows selections to be specified, so that only objects satisfying
the selection predicate need to be fetched.

• Transactions: Persistent C++ systems provide support for starting a transac-
tion, and for committing it or rolling it back.

• Updates: One of the goals of providing persistence support in a programming
language is to allow transparent persistence. That is, a function that operates
on an object should not need to know that the object is persistent; the same
functions can thus be used on objects regardless of whether they are persistent
or not.

However, one resultant problem is that it is difficult to detect when
an object has been updated. Some persistent extensions to C++ require the
programmer to specify explicitly that an object has been modified by calling a
function mark modified(). In addition to increasing programmer effort, this
approach increases the chance that programming errors can result in a corrupt
database. If a programmer omits a call to mark modified(), it is possible that
one update made by a transaction may never be propagated to the database,
while another update made by the same transaction is propagated, violating
atomicity of transactions.

Other systems, such as ObjectStore, use memory-protection support
provided by the operating system/hardware to detect writes to a block of
memory and mark the block as a dirty block that should be written later to
disk.

• Query language: Iterators provide support for simple selection queries. To
support more complex queries, persistent C++ systems define a query lan-
guage.

A large number of object-oriented database systems based on C++ were de-
veloped in the late 1980s and early 1990s. However, the market for such databases
turned out to be much smaller than anticipated, since most application require-
ments are more than met by using SQL through interfaces such as ODBC or JDBC.
As a result, most of the object-oriented database systems developed in that pe-
riod do not exist any longer. In the 1990s, the Object Data Management Group
(ODMG) defined standards for adding persistence to C++ and Java. However, the
group wound up its activities around 2002. ObjectStore and Versant are among
the original object-oriented database systems that are still in existence.

Although object-oriented database systems did not find the commercial suc-
cess that they had hoped for, the motivation for adding persistence to program-
ming language remains. There are several applications with high performance
requirements that run on object-oriented database systems; using SQL would
impose too high a performance overhead for many such systems. With object-
relational database systems now providing support for complex data types, in-
cluding references, it is easier to store programming language objects in an SQL
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database. A new generation of object-oriented database systems using object-
relational databases as a backend may yet emerge.

22.8.5 Persistent Java Systems

The Java language has seen an enormous growth in usage in recent years. Demand
for support for persistence of data in Java programs has grown correspondingly.
Initial attempts at creating a standard for persistence in Java were led by the
ODMG consortium; the consortium wound up its efforts later, but transferred its
design to the Java Database Objects (JDO) effort, which is coordinated by Sun
Microsystems.

The JDO model for object persistence in Java programs differs from the model
for persistence support in C++ programs. Among its features are:

• Persistence by reachability: Objects are not explicitly created in a database.
Explicitly registering an object as persistent (using the makePersistent()
method of the PersistenceManager class) makes the object persistent. In
addition, any object reachable from a persistent object becomes persistent.

• Byte code enhancement: Instead of declaring a class to be persistent in the
Java code, classes whose objects may be made persistent are specified in
a configuration file (with suffix .jdo). An implementation-specific enhancer
program is executed that reads the configuration file and carries out two
tasks. First, it may create structures in a database to store objects of the class.
Second, it modifies the byte code (generated by compiling the Java program)
to handle tasks related to persistence. Below are some examples of such
modifications:

◦ Any code that accesses an object could be changed to check first if the
object is in memory, and if not, take steps to bring it into memory.

◦ Any code that modifies an object is modified to record additionally that
the object has been modified, and perhaps to save a pre-updated value
used in case the update needs to be undone (that is, if the transaction is
rolled back).

Other modifications to the byte code may also be carried out. Such byte code
modification is possible since the byte code is standard across all platforms,
and includes much more information than compiled object code.

• Database mapping: JDO does not define how data are stored in the back-end
database. For example, a common scenario is to store objects in a relational
database. The enhancer program may create an appropriate schema in the
database to store class objects. How exactly it does this is implementation
dependent and not defined by JDO. Some attributes could be mapped to
relational attributes, while others may be stored in a serialized form, treated
as a binary object by the database. JDO implementations may allow existing
relational data to be viewed as objects by defining an appropriate mapping.



972 Chapter 22 Object-Based Databases

• Class extents: Class extents are created and maintained automatically for
each class declared to be persistent. All objects made persistent are added
automatically to the class extent corresponding to their class. JDO programs
may access a class extent, and iterate over selected members. The Iterator
interface provided by Java can be used to create iterators on class extents, and
to step through the members of the class extent. JDO also allows selections
to be specified when an iterator is created on a class extent, and only objects
satisfying the selection are fetched.

• Single reference type: There is no difference in type between a reference to
a transient object and a reference to a persistent object.

One approach to achieving such a unification of pointer types would
be to load the entire database into memory, replacing all persistent pointers
with in-memory pointers. After updates were done, the process would be
reversed, storing updated objects back on disk. Such an approach would be
very inefficient for large databases.

We now describe an alternative approach that allows persistent objects
to be fetched automatically into memory when required, while allowing all
references contained in in-memory objects to be in-memory references. When
an object A is fetched, a hollow object is created for each object Bi that it
references, and the in-memory copy of A has references to the corresponding
hollow object for each Bi . Of course the system has to ensure that if an object
Bi was fetched already, the reference points to the already fetched object
instead of creating a new hollow object. Similarly, if an object Bi has not been
fetched, but is referenced by another object fetched earlier, it would already
have a hollow object created for it; the reference to the existing hollow object
is reused, instead of creating a new hollow object.

Thus, for every object Oi that has been fetched, every reference from Oi
is either to an already fetched object or to a hollow object. The hollow objects
form a fringe surrounding fetched objects.

Whenever the program actually accesses a hollow object O, the enhanced
byte code detects this and fetches the object from the database. When this
object is fetched, the same process of creating hollow objects is carried out
for all objects referenced by O. After this the access to the object is allowed to
proceed.5

An in-memory index structure mapping persistent pointers to in-memory
references is required to implement this scheme. In writing objects back to
disk, this index would be used to replace in-memory references with persis-
tent pointers in the copy written to disk.

5The technique using hollow objects described above is closely related to the hardware swizzling technique (mentioned
earlier in Section 22.8.4). Hardware swizzling is used by some persistent C++ implementations to provide a single pointer
type for persistent and in-memory pointers. Hardware swizzling uses virtual-memory protection techniques provided
by the operating system to detect accesses to pages, and fetches the pages from the database when required. In contrast,
the Java version modifies byte code to check for hollow objects, instead of using memory protection, and fetches objects
when required, instead of fetching whole pages from the database.
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22.9 Object-Relational Mapping

So far we have seen two approaches to integrating object-oriented data models
and programming languages with database systems. Object-relational mapping
systems provide a third approach to integration of object-oriented programming
languages and databases.

Object-relational mapping systems are built on top of a traditional rela-
tional database, and allow a programmer to define a mapping between tuples
in database relations and objects in the programming language. Unlike in per-
sistent programming languages, objects are transient, and there is no permanent
object identity.

An object, or a set of objects, can be retrieved based on a selection condition
on its attributes; relevant data are retrieved from the underlying database based
on the selection conditions, and one or more objects are created from the retrieved
data, based on the prespecified mapping between objects and relations. The pro-
gram can optionally update such objects, create new objects, or specify that an
object is to be deleted, and then issue a save command; the mapping from objects
to relations is then used to correspondingly update, insert or delete tuples in the
database.

Object-relational mapping systems in general, and in particular the widely
used Hibernate system which provides an object-relational mapping to Java, are
described in more detail in Section 9.4.2.

The primary goal of object-relational mapping systems is to ease the job of
programmers who build applications, by providing them an object-model, while
retaining the benefits of using a robust relational database underneath. As an
added benefit, when operating on objects cached in memory, object-relational
systems can provide significant performance gains over direct access to the un-
derlying database.

Object-relational mapping systems also provide query languages that allow
programmers to write queries directly on the object model; such queries are
translated into SQL queries on the underlying relational database, and result
objects created from the SQL query results.

On the negative side, object-relational mapping systems can suffer from sig-
nificant overheads for bulk database updates, and may provide only limited
querying capabilities. However, it is possible to directly update the database,
bypassing the object-relational mapping system, and to write complex queries
directly in SQL. The benefits or object-relational models exceed the drawbacks for
many applications, and object-relational mapping systems have seen widespread
adoption in recent years.

22.10 Object-Oriented versus Object-Relational

We have now studied object-relational databases, which are object-oriented data-
bases built on top of the relation model, as well as object-oriented databases,
which are built around persistent programming languages, and object-relational
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mapping systems, which build an object layer on top of a traditional relational
database.

Each of these approaches targets a different market. The declarative nature
and limited power (compared to a programming language) of the SQL language
provides good protection of data from programming errors, and makes high-level
optimizations, such as reducing I/O, relatively easy. (We covered optimization
of relational expressions in Chapter 13.) Object-relational systems aim at making
data modeling and querying easier by using complex data types. Typical ap-
plications include storage and querying of complex data, including multimedia
data.

A declarative language such as SQL, however, imposes a significant perfor-
mance penalty for certain kinds of applications that run primarily in main mem-
ory, and that perform a large number of accesses to the database. Persistent
programming languages target such applications that have high performance re-
quirements. They provide low-overhead access to persistent data and eliminate
the need for data translation if the data are to be manipulated by a programming
language. However, they are more susceptible to data corruption by program-
ming errors, and they usually do not have a powerful querying capability. Typical
applications include CAD databases.

Object-relational mapping systems allow programmers to build applications
using an object model, while using a traditional database system to store the data.
Thus, they combine the robustness of widely used relational database systems,
with the power of object models for writing applications. However, they suffer
from overheads of data conversion between the object model and the relational
model used to store data.

We can summarize the strengths of the various kinds of database systems in
this way:

• Relational systems: Simple data types, powerful query languages, high pro-
tection.

• Persistent programming language–based OODBs: Complex data types, in-
tegration with programming language, high performance.

• Object-relational systems: Complex data types, powerful query languages,
high protection.

• Object-relational mapping systems: Complex data types integrated with
programming languages, designed as a layer on top of a relational database
system.

These descriptions hold in general, but keep in mind that some database systems
blur the boundaries. For example, object-oriented database systems built around
a persistent programming language can be implemented on top of a relational or
object-relational database system. Such systems may provide lower performance
than object-oriented database systems built directly on a storage system, but
provide some of the stronger protection guarantees of relational systems.
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22.11 Summary

• The object-relational data model extends the relational data model by pro-
viding a richer type system including collection types and object orientation.

• Collection types include nested relations, sets, multisets, and arrays, and the
object-relational model permits attributes of a table to be collections.

• Object orientation provides inheritance with subtypes and subtables, as well
as object (tuple) references.

• The SQL standard includes extensions of the SQL data-definition and query
language to deal with new data types and with object orientation. These
include support for collection-valued attributes, inheritance, and tuple ref-
erences. Such extensions attempt to preserve the relational foundations—
in particular, the declarative access to data—while extending the modeling
power.

• Object-relational database systems (that is, database systems based on the
object-relation model) provide a convenient migration path for users of rela-
tional databases who wish to use object-oriented features.

• Persistent extensions to C++ and Java integrate persistence seamlessly and
orthogonally with existing programming language constructs and so are easy
to use.

• The ODMG standard defines classes and other constructs for creating and ac-
cessing persistent objects from C++, while the JDO standard provides equiv-
alent functionality for Java.

• Object-relational mapping systems provide an object view of data that is
stored in a relational database. Objects are transient, and there is no notion
of persistent object identity. Objects are created on-demand from relational
data, and updates to objects are implemented by updating the relational
data. Object-relational mapping systems have been widely adopted, unlike
the more limited adoption of persistent programming languages.

• We discussed differences between persistent programming languages and
object-relational systems, and we mention criteria for choosing between them.

Review Terms

• Nested relations
• Nested relational model
• Complex types
• Collection types
• Large object types

• Sets
• Arrays
• Multisets
• Structured types
• Methods
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• Row types
• Constructors
• Inheritance

◦ Single inheritance

◦ Multiple inheritance

• Type inheritance
• Most-specific type
• Table inheritance
• Subtable
• Overlapping subtables
• Reference types
• Scope of a reference
• Self-referential attribute
• Path expressions
• Nesting and unnesting
• SQL functions and procedures

• Persistent programming
languages

• Persistence by

◦ Class

◦ Creation

◦ Marking

◦ Reachability

• ODMG C++ binding
• ObjectStore
• JDO

◦ Persistence by reachability

◦ Roots

◦ Hollow objects

• Object-relational mapping

Practice Exercises

22.1 A car-rental company maintains a database for all vehicles in its current
fleet. For all vehicles, it includes the vehicle identification number, license
number, manufacturer, model, date of purchase, and color. Special data
are included for certain types of vehicles:

• Trucks: cargo capacity.

• Sports cars: horsepower, renter age requirement.

• Vans: number of passengers.

• Off-road vehicles: ground clearance, drivetrain (four- or two-wheel
drive).

Construct an SQL schema definition for this database. Use inheritance
where appropriate.

22.2 Consider a database schema with a relation Emp whose attributes are as
shown below, with types specified for multivalued attributes.

Emp = (ename, ChildrenSet multiset(Children), SkillSet multiset(Skills))
Children = (name, birthday)
Skills = (type, ExamSet setof(Exams))
Exams = (year, city)
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a. Define the above schema in SQL, with appropriate types for each
attribute.

b. Using the above schema, write the following queries in SQL.
i. Find the names of all employees who have a child born on or

after January 1, 2000.
ii. Find those employees who took an examination for the skill type

“typing” in the city “Dayton”.
iii. List all skill types in the relation Emp.

22.3 Consider the E-R diagram in Figure 22.5, which contains composite, mul-
tivalued, and derived attributes.

a. Give an SQL schema definition corresponding to the E-R diagram.

b. Give constructors for each of the structured types defined above.

22.4 Consider the relational schema shown in Figure 22.6.

a. Give a schema definition in SQLcorresponding to the relational schema,
but using references to express foreign-key relationships.

b. Write each of the queries given in Exercise 6.13 on the above schema,
using SQL.

instructor
ID
name

first_name
middle_inital
last_name

address
street

street_number
street_name
apt_number

city
state
zip

{phone_number}
date_of_birth
age ( )

Figure 22.5 E-R diagram with composite, multivalued, and derived attributes.
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employee (person name, street, city)
works (person name, company name, salary)
company (company name, city)
manages (person name, manager name)

Figure 22.6 Relational database for Practice Exercise 22.4.

22.5 Suppose that you have been hired as a consultant to choose a database
system for your client’s application. For each of the following applications,
state what type of database system (relational, persistent programming
language–based OODB, object relational; do not specify a commercial
product) you would recommend. Justify your recommendation.

a. A computer-aided design system for a manufacturer of airplanes.

b. A system to track contributions made to candidates for public office.

c. An information system to support the making of movies.

22.6 How does the concept of an object in the object-oriented model differ from
the concept of an entity in the entity-relationship model?

Exercises

22.7 Redesign the database of Practice Exercise 22.2 into first normal form and
fourth normal form. List any functional or multivalued dependencies that
you assume. Also list all referential-integrity constraints that should be
present in the first and fourth normal form schemas.

22.8 Consider the schema from Practice Exercise 22.2.

a. Give SQL DDL statements to create a relation EmpA which has the
same information as Emp, but where multiset-valued attributes Chil-
drenSet, SkillsSet and ExamsSet are replaced by array-valued at-
tributes ChildrenArray, SkillsArray and ExamsArray.

b. Write a query to convert data from the schema of Emp to that of
EmpA, with the array of children sorted by birthday, the array of
skills by the skill type and the array of exams by the year.

c. Write an SQL statement to update the Emp relation by adding a child
Jeb, with a birthdate of February 5, 2001, to the employee named
George.

d. Write an SQL statement to perform the same update as above but
on the EmpA relation. Make sure that the array of children remains
sorted by year.
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person
ID
name
address

student

instructor
rank

secretary
hours_per_week

employee
salary tot_credits

Figure 22.7 Specialization and generalization.

22.9 Consider the schemas for the table people, and the tables students and
teachers, which were created under people, in Section 22.4. Give a relational
schema in third normal form that represents the same information. Re-
call the constraints on subtables, and give all constraints that must be
imposed on the relational schema so that every database instance of the
relational schema can also be represented by an instance of the schema
with inheritance.

22.10 Explain the distinction between a type x and a reference type ref(x). Under
what circumstances would you choose to use a reference type?

22.11 Consider the E-R diagram in Figure 22.7, which contains specializations,
using subtypes and subtables.

a. Give an SQL schema definition of the E-R diagram.

b. Give an SQL query to find the names of all people who are not
secretaries.

c. Give an SQL query to print the names of people who are neither
employees nor students.

d. Can you create a person who is an employee and a student with the
schema you created? Explain how, or explain why it is not possible.

22.12 Suppose a JDO database had an object A, which references object B, which
in turn references object C . Assume all objects are on disk initially. Suppose
a program first dereferences A, then dereferences B by following the
reference from A, and then finally dereferences C . Show the objects that
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are represented in memory after each dereference, along with their state
(hollow or filled, and values in their reference fields).

Tools

There are considerable differences between database products in their support for
object-relational features. Oracle probably has the most extensive support among
the major database vendors. The Informix database system provides support
for many object-relational features. Both Oracle and Informix provided object-
relational features before the SQL:1999 standard was finalized, and have some
features that are not part of SQL:1999.

Information about ObjectStore and Versant, including download of trial ver-
sions, may be obtained from their respective Web sites (objectstore.com and ver-
sant.com). The Apache DB project (db.apache.org) provides an object-relational
mapping tool for Java that supports both an ODMG Java and JDO APIs. A reference
implementation of JDO may be obtained from sun.com; use a search engine to get
the full URL.

Bibliographical Notes

Several object-oriented extensions to SQL have been proposed. POSTGRES (Stone-
braker and Rowe [1986] and Stonebraker [1986]) was an early implementation of
an object-relational system. Other early object-relational systems include the SQL
extensions of O2 (Bancilhon et al. [1989]) and UniSQL (UniSQL [1991]). SQL:1999
was the product of an extensive (and long-delayed) standardization effort, which
originally started off as adding object-oriented features to SQL and ended up
adding many more features, such as procedural constructs, which we saw earlier.
Support for multiset types was added as part of SQL:2003.

Melton [2002] concentrates on the object-relational features of SQL:1999. Eisen-
berg et al. [2004] provides an overview of SQL:2003, including its support for
multisets.

A number of object-oriented database systems were developed in the late
1980s and early 1990s. Among the notable commercial ones were ObjectStore
(Lamb et al. [1991]), O2 (Lecluse et al. [1988]), and Versant. The object database
standard ODMG is described in detail in Cattell [2000]. JDO is described by Roos
[2002], Tyagi et al. [2003], and Jordan and Russell [2003].
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XML

The Extensible Markup Language (XML) was not designed for database appli-
cations. In fact, like the Hyper-Text Markup Language (HTML) on which the World
Wide Web is based, XML has its roots in document management, and is derived
from a language for structuring large documents known as the Standard General-
ized Markup Language (SGML). However, unlike SGML and HTML, XML is designed
to represent data. It is particularly useful as a data format when an applica-
tion must communicate with another application, or integrate information from
several other applications. When XML is used in these contexts, many database
issues arise, including how to organize, manipulate, and query the XML data. In
this chapter, we introduce XML and discuss both the management of XML data
with database techniques and the exchange of data formatted as XML documents.

23.1 Motivation

To understand XML, it is important to understand its roots as a document markup
language. The term markup refers to anything in a document that is not intended
to be part of the printed output. For example, a writer creating text that will
eventually be typeset in a magazine may want to make notes about how the
typesetting should be done. It would be important to type these notes in a way
so that they could be distinguished from the actual content, so that a note like
“set this word in large size, bold font” or “insert a line break here” does not end
up printed in the magazine. Such notes convey extra information about the text.
In electronic document processing, a markup language is a formal description of
what part of the document is content, what part is markup, and what the markup
means.

Just as database systems evolved from physical file processing to provide a
separate logical view, markup languages evolved from specifying instructions
for how to print parts of the document to specifying the function of the content.
For instance, with functional markup, text representing section headings (for this
section, the word “Motivation”) would be marked up as being a section heading,
instead of being marked up as text to be printed in large size, bold font. From
the viewpoint of typesetting, such functional markup allows the document to be

981
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formatted differently in different situations. It also helps different parts of a large
document, or different pages in a large Web site, to be formatted in a uniform
manner. More importantly, functional markup also helps record what each part of
the text represents semantically, and correspondingly helps automate extraction
of key parts of documents.

For the family of markup languages that includes HTML, SGML, and XML,
the markup takes the form of tags enclosed in angle brackets, <>. Tags are
used in pairs, with <tag> and </tag> delimiting the beginning and the end of
the portion of the document to which the tag refers. For example, the title of a
document might be marked up as follows:

<title>Database System Concepts</title>

Unlike HTML, XML does not prescribe the set of tags allowed, and the set may
be chosen as needed by each application. This feature is the key to XML’s major
role in data representation and exchange, whereas HTML is used primarily for
document formatting.

<university>

<department>
<dept name> Comp. Sci. </dept name>

<building> Taylor </building>

<budget> 100000 </budget>
</department>
<department>

<dept name> Biology </dept name>

<building> Watson </building>

<budget> 90000 </budget>
</department>
<course>

<course id> CS-101 </course id>

<title> Intro. to Computer Science </title>

<dept name> Comp. Sci </dept name>

<credits> 4 </credits>

</course>

<course>

<course id> BIO-301 </course id>

<title> Genetics </title>

<dept name> Biology </dept name>

<credits> 4 </credits>

</course>

continued in Figure 23.2

Figure 23.1 XML representation of (part of) university information.
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<instructor>
<IID> 10101 </IID>

<name> Srinivasan </name>

<dept name> Comp. Sci. </dept name>

<salary> 65000 </salary>

</instructor>
<instructor>

<IID> 83821 </IID>

<name> Brandt </name>

<dept name> Comp. Sci. </dept name>

<salary> 92000 </salary>

</instructor>
<instructor>

<IID> 76766 </IID>

<name> Crick </name>

<dept name> Biology </dept name>

<salary> 72000 </salary>

</instructor>
<teaches>

<IID> 10101 </IID>

<course id> CS-101 </course id>

</teaches>

<teaches>

<IID> 83821 </IID>

<course id> CS-101 </course id>

</teaches>

<teaches>

<IID> 76766 </IID>

<course id> BIO-301 </course id>

</teaches>

</university>

Figure 23.2 Continuation of Figure 23.1.

For example, in our running university application, department, course and
instructor information can be represented as part of an XML document as in Fig-
ures 23.1 and 23.2. Observe the use of tags such as department, course, instructor,
and teaches. To keep the example short, we use a simplified version of the uni-
versity schema that ignores section information for courses. We have also used
the tag IID to denote the identifier of the instructor, for reasons we shall see later.

These tags provide context for each value and allow the semantics of the
value to be identified. For this example, the XML data representation does not
provide any significant benefit over the traditional relational data representation;
however, we use this example as our running example because of its simplicity.
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<purchase order>
<identifier> P-101 </identifier>
<purchaser>

<name> Cray Z. Coyote </name>

<address> Mesa Flats, Route 66, Arizona 12345, USA </address>

</purchaser>
<supplier>

<name> Acme Supplies </name>

<address> 1 Broadway, New York, NY, USA </address>

</supplier>
<itemlist>

<item>

<identifier> RS1 </identifier>
<description> Atom powered rocket sled </description>

<quantity> 2 </quantity>

<price> 199.95 </price>

</item>

<item>

<identifier> SG2 </identifier>
<description> Superb glue </description>

<quantity> 1 </quantity>

<unit-of-measure> liter </unit-of-measure>

<price> 29.95 </price>

</item>

</itemlist>
<total cost> 429.85 </total cost>
<payment terms> Cash-on-delivery </payment terms>

<shipping mode> 1-second-delivery </shipping mode>

</purchaseorder>

Figure 23.3 XML representation of a purchase order.

Figure 23.3, which shows how information about a purchase order can be
represented in XML, illustrates a more realistic use of XML. Purchase orders are
typically generated by one organization and sent to another. Traditionally they
were printed on paper by the purchaser and sent to the supplier; the data would be
manually re-entered into a computer system by the supplier. This slow process
can be greatly sped up by sending the information electronically between the
purchaser and supplier. The nested representation allows all information in a
purchase order to be represented naturally in a single document. (Real purchase
orders have considerably more information than that depicted in this simplified
example.) XML provides a standard way of tagging the data; the two organizations
must of course agree on what tags appear in the purchase order, and what they
mean.



23.1 Motivation 985

Compared to storage of data in a relational database, the XML representa-
tion may be inefficient, since tag names are repeated throughout the document.
However, in spite of this disadvantage, an XML representation has significant ad-
vantages when it is used to exchange data between organizations, and for storing
complex structured information in files:

• First, the presence of the tags makes the message self-documenting; that is,
a schema need not be consulted to understand the meaning of the text. We
can readily read the fragment above, for example.

• Second, the format of the document is not rigid. For example, if some sender
adds additional information, such as a tag last accessed noting the last date
on which an account was accessed, the recipient of the XML data may simply
ignore the tag. As another example, in Figure 23.3, the item with identifier
SG2 has a tag called unit-of-measure specified, which the first item does not.
The tag is required for items that are ordered by weight or volume, and may
be omitted for items that are simply ordered by number.

The ability to recognize and ignore unexpected tags allows the format
of the data to evolve over time, without invalidating existing applications.
Similarly, the ability to have multiple occurrences of the same tag makes it
easy to represent multivalued attributes.

• Third, XML allows nested structures. The purchase order shown in Figure 23.3
illustrates the benefits of having a nested structure. Each purchase order has
a purchaser and a list of items as two of its nested structures. Each item in
turn has an item identifier, description and a price nested within it, while the
purchaser has a name and address nested within it.

Such information would have been split into multiple relations in a
relational schema. Item information would have been stored in one relation,
purchaser information in a second relation, purchase orders in a third, and
the relationship between purchase orders, purchasers, and items would have
been stored in a fourth relation.

The relational representation helps to avoid redundancy; for example,
item descriptions would be stored only once for each item identifier in a
normalized relational schema. In the XML purchase order, however, the de-
scriptions may be repeated in multiple purchase orders that order the same
item. However, gathering all information related to a purchase order into a
single nested structure, even at the cost of redundancy, is attractive when
information has to be exchanged with external parties.

• Finally, since the XML format is widely accepted, a wide variety of tools are
available to assist in its processing, including programming language APIs to
create and to read XML data, browser software, and database tools.

We describe several applications for XML data later, in Section 23.7. Just as
SQL is the dominant language for querying relational data, XML has become the
dominant format for data exchange.
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23.2 Structure of XML Data

The fundamental construct in an XML document is the element. An element is
simply a pair of matching start- and end-tags and all the text that appears between
them.

XML documents must have a single root element that encompasses all other
elements in the document. In the example in Figure 23.1, the <university> element
forms the root element. Further, elements in an XML document must nest properly.
For instance:

<course> . . . <title> . . . </title> . . . </course>

is properly nested, whereas:

<course> . . . <title> . . . </course> . . . </title>

is not properly nested.
While proper nesting is an intuitive property, we may define it more formally.

Text is said to appear in the context of an element if it appears between the start-
tag and end-tag of that element. Tags are properly nested if every start-tag has a
unique matching end-tag that is in the context of the same parent element.

Note that text may be mixed with the subelements of an element, as in Fig-
ure 23.4. As with several other features of XML, this freedom makes more sense in
a document-processing context than in a data-processing context, and is not par-
ticularly useful for representing more-structured data such as database content
in XML.

The ability to nest elements within other elements provides an alternative
way to represent information. Figure 23.5 shows a representation of part of the
university information from Figure 23.1, but with course elements nested within
department elements. The nested representation makes it easy to find all courses
offered by a department. Similarly, identifiers of courses taught by an instruc-
tor are nested within the instructor elements. If an instructor teaches more than
one course, there would be multiple course id elements within the correspond-

. . .

<course>

This course is being offered for the first time in 2009.
<course id> BIO-399 </course id>

<title> Computational Biology </title>

<dept name> Biology </dept name>

<credits> 3 </credits>

</course>

. . .

Figure 23.4 Mixture of text with subelements.
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<university-1>

<department>
<dept name> Comp. Sci. </dept name>

<building> Taylor </building>

<budget> 100000 </budget>
<course>

<course id> CS-101 </course id>

<title> Intro. to Computer Science </title>

<credits> 4 </credits>

</course>

<course>

<course id> CS-347 </course id>

<title> Database System Concepts </title>

<credits> 3 </credits>

</course>

</department>
<department>

<dept name> Biology </dept name>

<building> Watson </building>

<budget> 90000 </budget>
<course>

<course id> BIO-301 </course id>

<title> Genetics </title>

<credits> 4 </credits>

</course>

</department>
<instructor>

<IID> 10101 </IID>

<name> Srinivasan </name>

<dept name> Comp. Sci. </dept name>

<salary> 65000. </salary>

<course id> CS-101 </coursr id>

</instructor>
</university-1>

Figure 23.5 Nested XML representation of university information.

ing instructor element. Details of instructors Brandt and Crick are omitted from
Figure 23.5 for lack of space, but are similar in structure to that for Srinivasan.

Although nested representations are natural in XML, they may lead to re-
dundant storage of data. For example, suppose details of courses taught by an
instructor are stored nested within the instructor element as shown in Figure 23.6.
If a course is taught by more than one instructor, course information such as ti-
tle, department, and credits would be stored redundantly with every instructor
associated with the course.
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<university-2>

<instructor>
<ID> 10101 </ID>

<name> Srinivasan </name>

<dept name> Comp. Sci.</dept name>

<salary> 65000 </salary>

<teaches>

<course>

<course id> CS-101 </course id>

<title> Intro. to Computer Science </title>

<dept name> Comp. Sci. </dept name>

<credits> 4 </credits>

</course>

</teaches>

</instructor>

<instructor>
<ID> 83821 </ID>

<name> Brandt </name>

<dept name> Comp. Sci.</dept name>

<salary> 92000 </salary>

<teaches>

<course>

<course id> CS-101 </course id>

<title> Intro. to Computer Science </title>

<dept name> Comp. Sci. </dept name>

<credits> 4 </credits>

</course>

</teaches>

</instructor>
</university-2>

Figure 23.6 Redundancy in nested XML representation.

Nested representations are widely used in XML data interchange applications
to avoid joins. For instance, a purchase order would store the full address of sender
and receiver redundantly on multiple purchase orders, whereas a normalized
representation may require a join of purchase order records with a company address
relation to get address information.

In addition to elements, XML specifies the notion of an attribute. For instance,
the course identifier of a course can be represented as an attribute, as shown in
Figure 23.7. The attributes of an element appear as name=value pairs before the
closing “>” of a tag. Attributes are strings and do not contain markup. Further-
more, attributes can appear only once in a given tag, unlike subelements, which
may be repeated.



23.2 Structure of XML Data 989

. . .

<course course id= “CS-101”>
<title> Intro. to Computer Science</title>

<dept name> Comp. Sci. </dept name>

<credits> 4 </credits>

</course>

. . .

Figure 23.7 Use of attributes.

Note that in a document construction context, the distinction between subele-
ment and attribute is important—an attribute is implicitly text that does not
appear in the printed or displayed document. However, in database and data
exchange applications of XML, this distinction is less relevant, and the choice of
representing data as an attribute or a subelement is frequently arbitrary. In gen-
eral, it is advisable to use attributes only to represent identifiers, and to store all
other data as subelements.

One final syntactic note is that an element of the form <element></element>
that contains no subelements or text can be abbreviated as <element/>; abbrevi-
ated elements may, however, contain attributes.

Since XML documents are designed to be exchanged between applications,
a namespace mechanism has been introduced to allow organizations to specify
globally unique names to be used as element tags in documents. The idea of a
namespace is to prepend each tag or attribute with a universal resource identifier
(for example, a Web address). Thus, for example, if Yale University wanted to
ensure that XML documents it created would not duplicate tags used by any
business partner’s XML documents, it could prepend a unique identifier with a
colon to each tag name. The university may use a Web URL such as:

http://www.yale.edu

as a unique identifier. Using long unique identifiers in every tag would be rather
inconvenient, so the namespace standard provides a way to define an abbreviation
for identifiers.

In Figure 23.8, the root element (university) has an attribute xmlns:yale, which
declares that yale is defined as an abbreviation for the URL given above. The
abbreviation can then be used in various element tags, as illustrated in the figure.

A document can have more than one namespace, declared as part of the root
element. Different elements can then be associated with different namespaces. A
default namespace can be defined by using the attribute xmlns instead of xmlns:yale
in the root element. Elements without an explicit namespace prefix would then
belong to the default namespace.

Sometimes we need to store values containing tags without having the tags
interpreted as XML tags. So that we can do so, XML allows this construct:

<![CDATA[<course> · · ·</course>]]>
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<university xmlns:yale=“http://www.yale.edu”>
. . .

<yale:course>

<yale:course id> CS-101 </yale:course id>

<yale:title> Intro. to Computer Science</yale:title>

<yale:dept name> Comp. Sci. </yale:dept name>

<yale:credits> 4 </yale:credits>

</yale:course>

. . .

</university>

Figure 23.8 Unique tag names can be assigned by using namespaces.

Because it is enclosed within CDATA, the text <course> is treated as normal
text data, not as a tag. The term CDATA stands for character data.

23.3 XML Document Schema

Databases have schemas, which are used to constrain what information can be
stored in the database and to constrain the data types of the stored information.
In contrast, by default, XML documents can be created without any associated
schema: an element may then have any subelement or attribute. While such
freedom may occasionally be acceptable given the self-describing nature of the
data format, it is not generally useful when XML documents must be processed
automatically as part of an application, or even when large amounts of related
data are to be formatted in XML.

Here, we describe the first schema-definition language included as part of the
XML standard, the Document Type Definition, as well as its more recently defined
replacement, XML Schema. Another XML schema-definition language called Relax
NG is also in use, but we do not cover it here; for more information on Relax NG
see the references in the bibliographical notes section.

23.3.1 Document Type Definition

The document type definition (DTD) is an optional part of an XML document. The
main purpose of a DTD is much like that of a schema: to constrain and type the
information present in the document. However, the DTD does not in fact constrain
types in the sense of basic types like integer or string. Instead, it constrains only
the appearance of subelements and attributes within an element. The DTD is
primarily a list of rules for what pattern of subelements may appear within an
element. Figure 23.9 shows a part of an example DTD for a university information
document; the XML document in Figure 23.1 conforms to this DTD.

Each declaration is in the form of a regular expression for the subelements of
an element. Thus, in the DTD in Figure 23.9, a university element consists of one
or more course, department, or instructor elements; the | operator specifies “or”
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<!DOCTYPE university [
<!ELEMENT university ( (department|course|instructor|teaches)+)>
<!ELEMENT department ( dept name, building, budget)>
<!ELEMENT course ( course id, title, dept name, credits)>
<!ELEMENT instructor (IID, name, dept name, salary)>
<!ELEMENT teaches (IID, course id)>
<!ELEMENT dept name( #PCDATA )>
<!ELEMENT building( #PCDATA )>
<!ELEMENT budget( #PCDATA )>
<!ELEMENT course id ( #PCDATA )>
<!ELEMENT title ( #PCDATA )>
<!ELEMENT credits( #PCDATA )>
<!ELEMENT IID( #PCDATA )>
<!ELEMENT name( #PCDATA )>
<!ELEMENT salary( #PCDATA )>

] >

Figure 23.9 Example of a DTD.

while the + operator specifies “one or more.” Although not shown here, the ∗
operator is used to specify “zero or more,” while the ? operator is used to specify
an optional element (that is, “zero or one”).

The course element contains subelements course id, title, dept name, and
credits (in that order). Similarly, department and instructor have the attributes of
their relational schema defined as subelements in the DTD.

Finally, the elements course id, title, dept name, credits, building, budget, IID,
name, and salary are all declared to be of type #PCDATA. The keyword #PCDATA
indicates text data; it derives its name, historically, from “parsed character data.”
Two other special type declarations are empty, which says that the element has
no contents, and any, which says that there is no constraint on the subelements
of the element; that is, any elements, even those not mentioned in the DTD, can
occur as subelements of the element. The absence of a declaration for an element
is equivalent to explicitly declaring the type as any.

The allowable attributes for each element are also declared in the DTD. Unlike
subelements, no order is imposed on attributes. Attributes may be specified to be
of type CDATA, ID, IDREF, or IDREFS; the type CDATA simply says that the attribute
contains character data, while the other three are not so simple; they are explained
in more detail shortly. For instance, the following line from a DTD specifies that
element course has an attribute of type course id, and a value must be present
for this attribute:

<!ATTLIST course course id CDATA #REQUIRED>

Attributes must have a type declaration and a default declaration. The default
declaration can consist of a default value for the attribute or #REQUIRED, meaning
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<!DOCTYPE university-3 [
<!ELEMENT university ( (department|course|instructor)+)>
<!ELEMENT department ( building, budget )>
<!ATTLIST department

dept name ID #REQUIRED >

<!ELEMENT course (title, credits )>
<!ATTLIST course

course id ID #REQUIRED
dept name IDREF #REQUIRED
instructors IDREFS #IMPLIED >

<!ELEMENT instructor ( name, salary )>
<!ATTLIST instructor

IID ID #REQUIRED >

dept name IDREF #REQUIRED >

· · · declarations for title, credits, building,
budget, name and salary · · ·

] >

Figure 23.10 DTD with ID and IDREFS attribute types.

that a value must be specified for the attribute in each element, or #IMPLIED,
meaning that no default value has been provided, and the document may omit
this attribute. If an attribute has a default value, for every element that does not
specify a value for the attribute, the default value is filled in automatically when
the XML document is read.

An attribute of type ID provides a unique identifier for the element; a value
that occurs in an ID attribute of an element must not occur in any other element
in the same document. At most one attribute of an element is permitted to be of
type ID. (We renamed the attribute ID of the instructor relation to IID in the XML
representation, in order to avoid confusion with the type ID.)

An attribute of type IDREF is a reference to an element; the attribute must
contain a value that appears in the ID attribute of some element in the document.
The type IDREFS allows a list of references, separated by spaces.

Figure 23.10 shows an example DTD in which identifiers of course, department
and instructor are represented by ID attributes, and relationships between them are
represented by IDREF and IDREFS attributes. The course elements use course id as
their identifier attribute; to do so, course id has been made an attribute of course
instead of a subelement. Additionally, each course element also contains an IDREF
of the department corresponding to the course, and an IDREFS attribute instructors
identifying the instructors who teach the course. The department elements have
an identifier attribute called dept name. The instructor elements have an identifier
attribute called IID, and an IDREF attribute dept name identifying the department
to which the instructor belongs.

Figure 23.11 shows an example XML document based on the DTD in Fig-
ure 23.10.
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<university-3>

<department dept name=“Comp. Sci.”>
<building> Taylor </building>

<budget> 100000 </budget>
</department>
<department dept name=“Biology”>

<building> Watson </building>

<budget> 90000 </budget>
</department>
<course course id=“CS-101” dept name=“Comp. Sci”

instructors=“10101 83821”>
<title> Intro. to Computer Science </title>

<credits> 4 </credits>

</course>

<course course id=“BIO-301” dept name=“Biology”
instructors=“76766”>

<title> Genetics </title>

<credits> 4 </credits>

</course>

<instructor IID=“10101” dept name=“Comp. Sci.”>
<name> Srinivasan </name>

<salary> 65000 </salary>

</instructor>
<instructor IID=“83821” dept name=“Comp. Sci.”>

<name> Brandt </name>

<salary> 72000 </salary>

</instructor>
<instructor IID=“76766” dept name=“Biology”>

<name> Crick </name>

<salary> 72000 </salary>

</instructor>
</university-3>

Figure 23.11 XML data with ID and IDREF attributes.

The ID and IDREF attributes serve the same role as reference mechanisms in
object-oriented and object-relational databases, permitting the construction of
complex data relationships.

Document type definitions are strongly connected to the document formatting
heritage of XML. Because of this, they are unsuitable in many ways for serving
as the type structure of XML for data-processing applications. Nevertheless, a
number of data exchange formats have been defined in terms of DTDs, since they
were part of the original standard. Here are some of the limitations of DTDs as a
schema mechanism:
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• Individual text elements and attributes cannot be typed further. For instance,
the element balance cannot be constrained to be a positive number. The
lack of such constraints is problematic for data processing and exchange
applications, which must then contain code to verify the types of elements
and attributes.

• It is difficult to use the DTD mechanism to specify unordered sets of subele-
ments. Order is seldom important for data exchange (unlike document lay-
out, where it is crucial). While the combination of alternation (the | operation)
and the ∗ or the + operation as in Figure 23.9 permits the specification of un-
ordered collections of tags, it is much more difficult to specify that each tag
may only appear once.

• There is a lack of typing in IDs and IDREFSs. Thus, there is no way to specify
the type of element to which an IDREF or IDREFS attribute should refer. As a
result, the DTD in Figure 23.10 does not prevent the “dept name” attribute of
a course element from referring to other courses, even though this makes no
sense.

23.3.2 XML Schema

An effort to redress the deficiencies of the DTD mechanism resulted in the devel-
opment of a more sophisticated schema language, XML Schema. We provide a
brief overview of XML Schema, and then we list some areas in which it improves
DTDs.

XML Schema defines a number of built-in types such as string, integer, decimal
date, and boolean. In addition, it allows user-defined types; these may be simple
types with added restrictions, or complex types constructed using constructors
such as complexType and sequence.

Figures 23.12 and 23.13 show how the DTD in Figure 23.9 can be represented
by XML Schema; we describe below XML Schema features illustrated by the figures.

The first thing to note is that schema definitions in XML Schema are themselves
specified in XML syntax, using a variety of tags defined by XML Schema. To avoid
conflicts with user-defined tags, we prefix the XML Schema tag with the namespace
prefix “xs:”; this prefix is associated with the XML Schema namespace by the
xmlns:xs specification in the root element:

<xs:schema xmlns:xs=“http://www.w3.org/2001/XMLSchema”>

Note that any namespace prefix could be used in place of xs; thus we could replace
all occurrences of “xs:” in the schema definition with “xsd:” without changing
the meaning of the schema definition. All types defined by XML Schema must be
prefixed by this namespace prefix.

The first element is the root element university, whose type is specified to be
UniversityType, which is declared later. The example then defines the types of
elements department, course, instructor, and teaches. Note that each of these
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<xs:schema xmlns:xs=“http://www.w3.org/2001/XMLSchema”>
<xs:element name=“university” type=“universityType” />
<xs:element name=“department”>

<xs:complexType>

<xs:sequence>

<xs:element name=“dept name” type=“xs:string”/>
<xs:element name=“building” type=“xs:string”/>
<xs:element name=“budget” type=“xs:decimal”/>

</xs:sequence>

</xs:complexType>

</xs:element>
<xs:element name=“course”>

<xs:element name=“course id” type=“xs:string”/>
<xs:element name=“title” type=“xs:string”/>
<xs:element name=“dept name” type=“xs:string”/>
<xs:element name=“credits” type=“xs:decimal”/>

</xs:element>
<xs:element name=“instructor”>

<xs:complexType>

<xs:sequence>

<xs:element name=“IID” type=“xs:string”/>
<xs:element name=“name” type=“xs:string”/>
<xs:element name=“dept name” type=“xs:string”/>
<xs:element name=“salary” type=“xs:decimal”/>

</xs:sequence>

</xs:complexType>

</xs:element>

continued in Figure 23.13.

Figure 23.12 XML Schema version of DTD from Figure 23.9.

is specified by an element with tag xs:element, whose body contains the type
definition.

The type of department is defined to be a complex type, which is further
specified to consist of a sequence of elements dept name, building, and budget.
Any type that has either attributes or nested subelements must be specified to be
a complex type.

Alternatively, the type of an element can be specified to be a predefined type
by the attribute type; observe how the XML Schema types xs:string and xs:decimal
are used to constrain the types of data elements such as dept name and credits.

Finally the example defines the type UniversityType as containing zero or
more occurrences of each of department, course, instructor, and teaches. Note
the use of ref to specify the occurrence of an element defined earlier. XML Schema
can define the minimum and maximum number of occurrences of subelements by
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<xs:element name=“teaches”>
<xs:complexType>

<xs:sequence>

<xs:element name=“IID” type=“xs:string”/>
<xs:element name=“course id” type=“xs:string”/>

</xs:sequence>

</xs:complexType>

</xs:element>
<xs:complexType name=“UniversityType”>

<xs:sequence>

<xs:element ref=“department” minOccurs=“0”
maxOccurs=“unbounded”/>

<xs:element ref=“course” minOccurs=“0”
maxOccurs=“unbounded”/>

<xs:element ref=“instructor” minOccurs=“0”
maxOccurs=“unbounded”/>

<xs:element ref=“teaches” minOccurs=“0”
maxOccurs=“unbounded”/>

</xs:sequence>

</xs:complexType>

</xs:schema>

Figure 23.13 Continuation of Figure 23.12.

using minOccurs and maxOccurs. The default for both minimum and maximum
occurrences is 1, so these have to be specified explicitly to allow zero or more
department, course, instructor, and teaches elements.

Attributes are specified using the xs:attribute tag. For example, we could have
defined dept name as an attribute by adding:

<xs:attribute name = “dept name”/>

within the declaration of the department element. Adding the attribute use =
“required” to the above attribute specification declares that the attribute must be
specified, whereas the default value of use is optional. Attribute specifications
would appear directly under the enclosing complexType specification, even if
elements are nested within a sequence specification.

We can use the xs:complexType element to create named complex types; the
syntax is the same as that used for the xs:complexType element in Figure 23.12,
except that we add an attribute name = typeName to the xs:complexType element,
where typeName is the name we wish to give to the type. We can then use the
named type to specify the type of an element using the type attribute, just as we
used xs:decimal and xs:string in our example.

In addition to defining types, a relational schema also allows the specification
of constraints. XML Schema allows the specification of keys and key references,
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corresponding to the primary-key and foreign-key definition in SQL. In SQL, a
primary-key constraint or unique constraint ensures that the attribute values
do not recur within the relation. In the context of XML, we need to specify a
scope within which values are unique and form a key. The selector is a path
expression that defines the scope for the constraint, and field declarations specify
the elements or attributes that form the key.1 To specify that dept name forms
a key for department elements under the root university element, we add the
following constraint specification to the schema definition:

<xs:key name = “deptKey”>
<xs:selector xpath = “/university/department”/>
<xs:field xpath = “dept name”/>

</xs:key>

Correspondingly a foreign-key constraint from course to department may be
defined as follows:

<xs: name = “courseDeptFKey” refer=“deptKey”>
<xs:selector xpath = “/university/course”/>
<xs:field xpath = “dept name”/>

</xs:keyref>

Note that the refer attribute specifies the name of the key declaration that is being
referenced, while the field specification identifies the referring attributes.

XML Schema offers several benefits over DTDs, and is widely used today.
Among the benefits that we have seen in the examples above are these:

• It allows the text that appears in elements to be constrained to specific types,
such as numeric types in specific formats or complex types such as sequences
of elements of other types.

• It allows user-defined types to be created.

• It allows uniqueness and foreign-key constraints.

• It is integrated with namespaces to allow different parts of a document to
conform to different schemas.

In addition to the features we have seen, XML Schema supports several other
features that DTDs do not, such as these:

• It allows types to be restricted to create specialized types, for instance by
specifying minimum and maximum values.

• It allows complex types to be extended by using a form of inheritance.

1We use simple path expressions here that are in a familiar syntax. XML has a rich syntax for path expressions, called
XPath, which we explore in Section 23.4.2.
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Our description of XML Schema is just an overview; to learn more about XML
Schema, see the references in the bibliographical notes.

23.4 Querying and Transformation

Given the increasing number of applications that use XML to exchange, mediate,
and store data, tools for effective management of XML data are becoming increas-
ingly important. In particular, tools for querying and transformation of XML data
are essential to extract information from large bodies of XML data, and to convert
data between different representations (schemas) in XML. Just as the output of a
relational query is a relation, the output of an XML query can be an XML document.
As a result, querying and transformation can be combined into a single tool.

In this section, we describe the XPath and XQuery languages:

• XPath is a language for path expressions and is actually a building block for
XQuery.

• XQuery is the standard language for querying XML data. It is modeled after
SQL but is significantly different, since it has to deal with nested XML data.
XQuery also incorporates XPath expressions.

The XSLT language is another language designed for transforming XML. How-
ever, it is used primarily in document-formatting applications, rather in data-
management applications, so we do not discuss it in this book.

The tools section at the end of this chapter provides references to software
that can be used to execute queries written in XPath and XQuery.

23.4.1 Tree Model of XML

A tree model of XML data is used in all these languages. An XML document is
modeled as a tree, with nodes corresponding to elements and attributes. Element
nodes can have child nodes, which can be subelements or attributes of the element.
Correspondingly, each node (whether attribute or element), other than the root
element, has a parent node, which is an element. The order of elements and
attributes in the XML document is modeled by the ordering of children of nodes
of the tree. The terms parent, child, ancestor, descendant, and siblings are used in
the tree model of XML data.

The text content of an element can be modeled as a text-node child of the
element. Elements containing text broken up by intervening subelements can
have multiple text-node children. For instance, an element containing “this is a
<bold> wonderful </bold> book” would have a subelement child corresponding
to the element bold and two text node children corresponding to “this is a” and
“book.” Since such structures are not commonly used in data representation, we
shall assume that elements do not contain both text and subelements.
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23.4.2 XPath

XPath addresses parts of an XML document by means of path expressions. The
language can be viewed as an extension of the simple path expressions in object-
oriented and object-relational databases (see Section 22.6). The current version of
the XPath standard is XPath 2.0, and our description is based on this version.

A path expression in XPath is a sequence of location steps separated by “/”
(instead of the “.” operator that separates location steps in SQL). The result of a
path expression is a set of nodes. For instance, on the document in Figure 23.11,
the XPath expression:

/university-3/instructor/name

returns these elements:

<name>Srinivasan</name>

<name>Brandt</name>

The expression:

/university-3/instructor/name/text()

returns the same names, but without the enclosing tags.
Path expressions are evaluated from left to right. Like a directory hierarchy,

the initial ’/’ indicates the root of the document. Note that this is an abstract root
“above” <university-3> that is the document tag.

As a path expression is evaluated, the result of the path at any point consists of
an ordered set of nodes from the document. Initially, the “current” set of elements
contains only one node, the abstract root. When the next step in a path expression
is an element name, such as instructor, the result of the step consists of the nodes
corresponding to elements of the specified name that are children of elements in
the current element set. These nodes then become the current element set for the
next step of the path expression evaluation. Thus, the expression:

/university-3

returns a single node corresponding to the:

<university-3>

tag, while:

/university-3/instructor

returns the two nodes corresponding to the:



1000 Chapter 23 XML

instructor

elements that are children of the:

university-3

node.
The result of a path expression is then the set of nodes after the last step of

path expression evaluation. The nodes returned by each step appear in the same
order as their appearance in the document.

Since multiple children can have the same name, the number of nodes in
the node set can increase or decrease with each step. Attribute values may also
be accessed, using the “@” symbol. For instance, /university-3/course/@course id
returns a set of all values of course id attributes of course elements. By default,
IDREF links are not followed; we shall see how to deal with IDREFs later.

XPath supports a number of other features:

• Selection predicates may follow any step in a path, and are contained in
square brackets. For example,

/university-3/course[credits >= 4]

returns course elements with a credits value greater than or equal to 4, while:

/university-3/course[credits >= 4]/@course id

returns the course identifiers of those courses.
We can test the existence of a subelement by listing it without any compar-

ison operation; for instance, if we removed just “>= 4” from the above, the
expression would return course identifiers of all courses that have a credits
subelement, regardless of its value.

• XPath provides several functions that can be used as part of predicates, in-
cluding testing the position of the current node in the sibling order and the
aggregate function count(), which counts the number of nodes matched by
the expression to which it is applied. For example, on the XML representation
in Figure 23.6, the path expression:

/university-2/instructor[count(./teaches/course)> 2]

returns instructors who teach more than two courses. Boolean connectives
and and or can be used in predicates, while the function not(. . .) can be used
for negation.

• The function id(“foo”) returns the node (if any) with an attribute of type ID
and value “foo”. The function id can even be applied on sets of references,



23.4 Querying and Transformation 1001

or even strings containing multiple references separated by blanks, such as
IDREFS. For instance, the path:

/university-3/course/id(@dept name)

returns all department elements referred to from the dept name attribute of
course elements, while:

/university-3/course/id(@instructors)

returns the instructor elements referred to in the instuctors attribute of course
elements.

• The | operator allows expression results to be unioned. For example, given
data using the schema from Figure 23.11, we could find the union of Computer
Science and Biology courses using the expression:

/university-3/course[@dept name=“Comp. Sci”] |
/university-3/course[@dept name=“Biology”]

However, the | operator cannot be nested inside other operators. It is also
worth noting that the nodes in the union are returned in the order in which
they appear in the document.

• An XPath expression can skip multiple levels of nodes by using “//”. For
instance, the expression /university-3//name finds all name elements anywhere
under the /university-3 element, regardless of the elements in which they
are contained, and regardless of how many levels of enclosing elements are
present between the university-3 and name elements. This example illustrates
the ability to find required data without full knowledge of the schema.

• A step in the path need not just select from the children of the nodes in the
current node set. In fact, this is just one of several directions along which
a step in the path may proceed, such as parents, siblings, ancestors, and
descendants. We omit details, but note that “//”, described above, is a short
form for specifying “all descendants,” while “..” specifies the parent.

• The built-in function doc(name) returns the root of a named document; the
name could be a file name or a URL. The root returned by the function can
then be used in a path expression to access the contents of the document.
Thus, a path expression can be applied on a specified document, instead of
being applied on the current default document.

For example, if the university data in our university example is contained
in a file “university.xml”, the following path expression would return all
departments at the university:

doc(“university.xml”)/university/department
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The function collection(name) is similar to doc, but returns a collection of doc-
uments identified by name. The function collection can be used, for example,
to open an XML database, which can be viewed as a collection of documents;
the following element in the XPath expression would select the appropriate
document(s) from the collection.

In most of our examples, we assume that the expressions are evaluated in the
context of a database, which implicitly provides a collection of “documents”
on which XPath expressions are evaluated. In such cases, we do not need to
use the functions doc and collection.

23.4.3 XQuery

The World Wide Web Consortium (W3C) has developed XQuery as the standard
query language for XML. Our discussion is based on XQuery 1.0, which was
released as a W3C recommendation on 23 January 2007.

23.4.3.1 FLWOR Expressions

XQuery queries are modeled after SQL queries, but differ significantly from SQL.
They are organized into five sections: for, let, where, order by, and return. They
are referred to as “FLWOR” (pronounced “flower”) expressions, with the letters in
FLWOR denoting the five sections.

A simple FLWOR expression that returns course identifiers of courses with
greater than 3 credits, shown below, is based on the XML document of Figure 23.11,
which uses ID and IDREFS:

for $x in /university-3/course
let $courseId := $x/@course id
where $x/credits > 3
return <course id> { $courseId } </course id>

The for clause is like the from clause of SQL, and specifies variables that range
over the results of XPath expressions. When more than one variable is specified,
the results include the Cartesian product of the possible values the variables can
take, just as the SQL from clause does.

The let clause simply allows the results of XPath expressions to be assigned
to variable names for simplicity of representation. The where clause, like the SQL
where clause, performs additional tests on the joined tuples from the for clause.
The order by clause, like the SQL order by clause, allows sorting of the output.
Finally, the return clause allows the construction of results in XML.

A FLWOR query need not contain all the clauses; for example a query may
contain just the for and return clauses, and omit the let, where, and order by
clauses. The preceding XQuery query did not contain an order by clause. In fact,
since this query is simple, we can easily do away with the let clause, and the
variable $courseId in the return clause could be replaced with $x/@course id.
Note further that, since the for clause uses XPath expressions, selections may
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occur within the XPath expression. Thus, an equivalent query may have only for
and return clauses:

for $x in /university-3/course[credits > 3]
return <course id> { $x/@course id } </course id>

However, the let clause helps simplify complex queries. Note also that variables
assigned by let clauses may contain sequences with multiple elements or values,
if the path expression on the right-hand side returns a sequence of multiple
elements or values.

Observe the use of curly brackets (“{}”) in the return clause. When XQuery
finds an element such as <course id> starting an expression, it treats its contents
as regular XML text, except for portions enclosed within curly brackets, which are
evaluated as expressions. Thus, if we omitted the curly brackets in the above re-
turn clause, the result would contain several copies of the string “$x/@course id”
each enclosed in a course id tag. The contents within the curly brackets are,
however, treated as expressions to be evaluated. Note that this convention ap-
plies even if the curly brackets appear within quotes. Thus, we could modify the
above query to return an element with tag course, with the course identifier as
an attribute, by replacing the return clause with the following:

return <course course id=“{$x/@course id}” />

XQuery provides another way of constructing elements using the element and
attribute constructors. For example, if the return clause in the previous query is
replaced by the following return clause, the query would return course elements
with course id and dept name as attributes and title and credits as subelements.

return element course {
attribute course id {$x/@course id},
attribute dept name {$x/dept name},
element title {$x/title},
element credits {$x/credits}

}

Note that, as before, the curly brackets are required to treat a string as an expres-
sion to be evaluated.

23.4.3.2 Joins

Joins are specified in XQuery much as they are in SQL. The join of course, instructor,
and teaches elements in Figure 23.1 can be written in XQuery this way:
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for $c in /university/course,
$i in /university/instructor,
$t in /university/teaches

where $c/course id= $t/course id
and $t/IID = $i/IID

return <course instructor> { $c $i } </course instructor>

The same query can be expressed with the selections specified as XPath selec-
tions:

for $c in /university/course,
$i in /university/instructor,
$t in /university/teaches[ $c/course id= $t/course id

and $t/IID = $i/IID]
return <course instructor> { $c $i } </course instructor>

Path expressions in XQuery are the same as path expressions in XPath2.0. Path
expressions may return a single value or element, or a sequence of values or
elements. In the absence of schema information, it may not be possible to infer
whether a path expression returns a single value or a sequence of values. Such
path expressions may participate in comparison operations such as =, <, and >=.

XQuery has an interesting definition of comparison operations on sequences.
For example, the expression $x/credits > 3 would have the usual interpretation if
the result of $x/credits is a single value, but if the result is a sequence containing
multiple values, the expression evaluates to true if at least one of the values is
greater than 3. Similarly, the expression $x/credits = $y/credits evaluates to true
if any one of the values returned by the first expression is equal to any one of the
values returned by the second expression. If this behavior is not appropriate, the
operators eq, ne, lt, gt, le, ge can be used instead. These raise an error if either of
their inputs is a sequence with multiple values.

23.4.3.3 Nested Queries

XQuery FLWOR expressions can be nested in the return clause, in order to generate
element nestings that do not appear in the source document. For instance, the XML
structure shown in Figure 23.5, with course elements nested within department
elements, can be generated from the structure in Figure 23.1 by the query shown
in Figure 23.14.

The query also introduces the syntax $d/*, which refers to all the children
of the node (or sequence of nodes) bound to the variable $d. Similarly, $d/text()
gives the text content of an element, without the tags.

XQuery provides a variety of aggregate functions such as sum() and count()
that can be applied on sequences of elements or values. The function distinct-
values() applied on a sequence returns a sequence without duplication. The se-
quence (collection) of values returned by a path expression may have some values
repeated because they are repeated in the document, although an XPath expres-
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<university-1>

{
for $d in /university/department
return

<department>
{ $d/* }
{ for $c in /university/course[dept name = $d/dept name]

return $c }
</department>

}
{

for $i in /university/instructor
return

<instructor>
{ $i/* }
{ for $c in /university/teaches[IID = $i/IID]

return $c/course id }
</instructor>

}
</university-1>

Figure 23.14 Creating nested structures in XQuery

sion result can contain at most one occurrence of each node in the document.
XQuery supports many other functions; see the references in the bibliographical
notes for more information. These functions are actually common to XPath 2.0
and XQuery, and can be used in any XPath path expression.

To avoid namespace conflicts, functions are associated with a namespace:

http://www.w3.org/2005/xpath-functions

which has a default namespace prefix of fn. Thus, these functions can be referred
to unambiguously as fn:sum or fn:count.

While XQuery does not provide a group by construct, aggregate queries can
be written by using the aggregate functions on path or FLWOR expressions nested
within the return clause. For example, the following query on the university XML
schema finds the total salary of all instructors in each department:

for $d in /university/department
return

<department-total-salary>

<dept name> { $d/dept name } </dept name>

<total salary> { fn:sum(
for $i in /university/instructor[dept name = $d/dept name]
return $i/salary

) } </total salary>

</department-total-salary>
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23.4.3.4 Sorting of Results

Results can be sorted in XQuery by using the order by clause. For instance, this
query outputs all instructor elements sorted by the name subelement:

for $i in /university/instructor
order by $i/name
return <instructor> { $i/* } </instructor>

To sort in descending order, we can use order by $i/name descending.
Sorting can be done at multiple levels of nesting. For instance, we can get

a nested representation of university information with departments sorted in
department name order, with courses sorted by course identifiers, as follows:

<university-1> {
for $d in /university/department
order by $d/dept name
return

<department>
{ $d/* }
{ for $c in /university/course[dept name = $d/dept name]
order by $c/course id
return <course> { $c/* } </course> }

</department>
} </university-1>

23.4.3.5 Functions and Types

XQuery provides a variety of built-in functions, such as numeric functions and
string matching and manipulation functions. In addition, XQuery supports user-
defined functions. The following user-defined function takes as input an instruc-
tor identifier, and returns a list of all courses offered by the department to which
the instructor belongs:

declare function local:dept courses($iid as xs:string) as element(course)* {
for $i in /university/instructor[IID = $iid],

$c in /university/courses[dept name = $i/dept name]
return $c

}

The namespace prefix xs: used in the above example is predefined by XQuery
to be associated with the XML Schema namespace, while the namespace local: is
predefined to be associated with XQuery local functions.

The type specifications for function arguments and return values are optional,
and may be omitted. XQuery uses the type system of XML Schema. The type
element allows elements with any tag, while element(course) allows elements
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with the tag course. Types can be suffixed with a * to indicate a sequence of
values of that type; for example, the definition of function dept courses specifies
the return value as a sequence of course elements.

The following query, which illustrates function invocation, prints out the
department courses for the instructor(s) named Srinivasan:

for $i in /university/instructor[name = “Srinivasan”],
returnlocal:inst dept courses($i/IID)

XQuery performs type conversion automatically whenever required. For ex-
ample, if a numeric value represented by a string is compared to a numeric type,
type conversion from string to the numeric type is done automatically. When an
element is passed to a function that expects a string value, type conversion to a
string is done by concatenating all the text values contained (nested) within the
element. Thus, the function contains(a,b), which checks if string a contains string
b, can be used with its first argument set to an element, in which case it checks
if the element a contains the string b nested anywhere inside it. XQuery also
provides functions to convert between types. For instance, number(x) converts a
string to a number.

23.4.3.6 Other Features

XQuery offers a variety of other features, such as if-then-else constructs that can
be used within return clauses, and existential and universal quantification that
can be used in predicates in where clauses. For example, existential quantification
can be expressed in the where clause by using:

some $e in path satisfies P

where path is a path expression and P is a predicate that can use $e. Universal
quantification can be expressed by using every in place of some.

For example, to find departments where every instructor has a salary greater
than $50,000, we can use the following query:

for $d in /university/department
where every $i in /university/instructor[dept name=$d/dept name]

satisfies $i/salary > 50000
return $d

Note, however, that if a department has no instructor, it will trivially satisfy the
above condition. An extra clause:

and fn:exists(/university/instructor[dept name=$d/dept name])
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can be used to ensure that there is at least one instructor in the department. The
built-in function exists() used in the clause returns true if its input argument is
nonempty.

The XQJ standard provides an API to submit XQuery queries to an XML
database system and to retrieve the XML results. Its functionality is similar to
the JDBC API.

23.5 Application Program Interfaces to XML

With the wide acceptance of XML as a data representation and exchange format,
software tools are widely available for manipulation of XML data. There are two
standard models for programmatic manipulation of XML, each available for use
with a number of popular programming languages. Both these APIs can be used to
parse an XML document and create an in-memory representation of the document.
They are used for applications that deal with individual XML documents. Note,
however, that they are not suitable for querying large collections of XML data;
declarative querying mechanisms such as XPath and XQuery are better suited to
this task.

One of the standard APIs for manipulating XML is based on the document object
model (DOM), which treats XML content as a tree, with each element represented
by a node, called a DOMNode. Programs may access parts of the document in a
navigational fashion, beginning with the root.

DOM libraries are available for most common programming languages and
are even present in Web browsers, where they may be used to manipulate the
document displayed to the user. We outline here some of the interfaces and
methods in the Java API for DOM, to give a flavor of DOM.

• The Java DOM API provides an interface called Node, and interfaces Element
and Attribute, which inherit from the Node interface.

• The Node interface provides methods such as getParentNode(), getFirstChild(),
and getNextSibling(), to navigate the DOM tree, starting with the root node.

• Subelements of an element can be accessed by name, using getElementsBy-
TagName(name), which returns a list of all child elements with a specified tag
name; individual members of the list can be accessed by the method item(i),
which returns the ith element in the list.

• Attribute values of an element can be accessed by name, using the method
getAttribute(name).

• The text value of an element is modeled as a Text node, which is a child of
the element node; an element node with no subelements has only one such
child node. The method getData() on the Text node returns the text contents.

DOM also provides a variety of functions for updating the document by adding
and deleting attribute and element children of a node, setting node values, and
so on.
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Many more details are required for writing an actual DOM program; see the
bibliographical notes for references to further information.

DOM can be used to access XML data stored in databases, and an XML database
can be built with DOM as its primary interface for accessing and modifying data.
However, the DOM interface does not support any form of declarative querying.

The second commonly used programming interface, the Simple API for XML
(SAX) is an event model, designed to provide a common interface between parsers
and applications. This API is built on the notion of event handlers, which consist
of user-specified functions associated with parsing events. Parsing events corre-
spond to the recognition of parts of a document; for example, an event is generated
when the start-tag is found for an element, and another event is generated when
the end-tag is found. The pieces of a document are always encountered in order
from start to finish.

The SAX application developer creates handler functions for each event, and
registers them. When a document is read in by the SAX parser, as each event
occurs, the handler function is called with parameters describing the event (such
as element tag or text contents). The handler functions then carry out their task.
For example, to construct a tree representing the XML data, the handler functions
for an attribute or element start event could add a node (or nodes) to a partially
constructed tree. The start- and end-tag event handlers would also have to keep
track of the current node in the tree to which new nodes must be attached; the
element start event would set the new element as the node that is the point
where further child nodes must be attached. The corresponding element end
event would set the parent of the node as the current node where further child
nodes must be attached.

SAX generally requires more programming effort than DOM, but it helps avoid
the overhead of creating a DOM tree in situations where the application needs to
create its own data representation. If DOM were used for such applications, there
would be unnecessary space and time overhead for constructing the DOM tree.

23.6 Storage of XML Data

Many applications require storage of XML data. One way to store XML data is to
store it as documents in a file system, while a second is to build a special-purpose
database to store XML data. Another approach is to convert the XML data to a
relational representation and store it in a relational database. Several alternatives
for storing XML data are briefly outlined in this section.

23.6.1 Nonrelational Data Stores

There are several alternatives for storing XML data in nonrelational data-storage
systems:

• Store in flat files. Since XML is primarily a file format, a natural storage mech-
anism is simply a flat file. This approach has many of the drawbacks, outlined
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in Chapter 1, of using file systems as the basis for database applications. In
particular, it lacks data isolation, atomicity, concurrent access, and security.
However, the wide availability of XML tools that work on file data makes it
relatively easy to access and query XML data stored in files. Thus, this storage
format may be sufficient for some applications.

• Create an XML database. XML databases are databases that use XML as their
basic data model. Early XML databases implemented the Document Object
Model on a C++-based object-oriented database. This allows much of the
object-oriented database infrastructure to be reused, while providing a stan-
dard XML interface. The addition of XQuery or other XML query languages
provides declarative querying. Other implementations have built the entire
XML storage and querying infrastructure on top of a storage manager that
provides transactional support.

Although several databases designed specifically to store XML data have been
built, building a full-featured database system from ground up is a very complex
task. Such a database must support not only XML data storage and querying but
also other database features such as transactions, security, support for data access
from clients, and a variety of administration facilities. It makes sense to instead
use an existing database system to provide these facilities and implement XML
data storage and querying either on top of the relational abstraction, or as a layer
parallel to the relational abstraction. We study these approaches in Section 23.6.2.

23.6.2 Relational Databases

Since relational databases are widely used in existing applications, there is a great
benefit to be had in storing XML data in relational databases, so that the data can
be accessed from existing applications.

Converting XML data to relational form is usually straightforward if the data
were generated from a relational schema in the first place and XML is used merely
as a data exchange format for relational data. However, there are many appli-
cations where the XML data are not generated from a relational schema, and
translating the data to relational form for storage may not be straightforward. In
particular, nested elements and elements that recur (corresponding to set-valued
attributes) complicate storage of XML data in relational format. Several alternative
approaches are available, which we describe below.

23.6.2.1 Store as String

Small XML documents can be stored as string (clob) values in tuples in a relational
database. Large XML documents with the top-level element having many children
can be handled by storing each child element as a string in a separate tuple.
For instance, the XML data in Figure 23.1 could be stored as a set of tuples in
a relation elements(data), with the attribute data of each tuple storing one XML
element (department, course, instructor, or teaches) in string form.



23.6 Storage of XML Data 1011

While the above representation is easy to use, the database system does not
know the schema of the stored elements. As a result, it is not possible to query
the data directly. In fact, it is not even possible to implement simple selections
such as finding all department elements, or finding the department element with
department name “Comp. Sci.”, without scanning all tuples of the relation and
examining the string contents.

A partial solution to this problem is to store different types of elements in
different relations, and also store the values of some critical elements as attributes
of the relation to enable indexing. For instance, in our example, the relations would
be department elements, course elements, instructor elements, and teaches elements,
each with an attribute data. Each relation may have extra attributes to store the
values of some subelements, such as dept name, course id, or name. Thus, a query
that requires department elements with a specified department name can be
answered efficiently with this representation. Such an approach depends on type
information about XML data, such as the DTD of the data.

Some database systems, such as Oracle, support function indices, which can
help avoid replication of attributes between the XML string and relation attributes.
Unlike normal indices, which are on attribute values, function indices can be
built on the result of applying user-defined functions on tuples. For instance, a
function index can be built on a user-defined function that returns the value of
the dept name subelement of the XML string in a tuple. The index can then be
used in the same way as an index on a dept name attribute.

The above approaches have the drawback that a large part of the XML in-
formation is stored within strings. It is possible to store all the information in
relations in one of several ways that we examine next.

23.6.2.2 Tree Representation

Arbitrary XML data can be modeled as a tree and stored using a relation:

nodes(id, parent id, type, label, value)

Each element and attribute in the XML data is given a unique identifier. A tuple
inserted in the nodes relation for each element and attribute with its identifier
(id), the identifier of its parent node (parent id), the type of the node (attribute or
element), the name of the element or attribute (label), and the text value of the
element or attribute (value).

If order information of elements and attributes must be preserved, an extra
attribute position can be added to the nodes relation to indicate the relative position
of the child among the children of the parent. As an exercise, you can represent
the XML data of Figure 23.1 by using this technique.

This representation has the advantage that all XML information can be repre-
sented directly in relational form, and many XML queries can be translated into
relational queries and executed inside the database system. However, it has the
drawback that each element gets broken up into many pieces, and a large number
of joins are required to reassemble subelements into an element.
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23.6.2.3 Map to Relations

In this approach, XML elements whose schema is known are mapped to relations
and attributes. Elements whose schema is unknown are stored as strings or as a
tree.

A relation is created for each element type (including subelements) whose
schema is known and whose type is a complex type (that is, contains attributes or
subelements). The root element of the document can be ignored in this step if it
does not have any attributes. The attributes of the relation are defined as follows:

• All attributes of these elements are stored as string-valued attributes of the
relation.

• If a subelement of the element is a simple type (that is, cannot have attributes
or subelements), an attribute is added to the relation to represent the subele-
ment. The type of the relation attribute defaults to a string value, but if the
subelement had an XML Schema type, a corresponding SQL type may be used.

For example, when applied to the element department in the schema
(DTD or XML Schema) of the data in Figure 23.1, the subelements dept name,
building and budget of the element department all become attributes of a relation
department. Applying this procedure to the remaining elements, we get back
the original relational schema that we have used in earlier chapters.

• Otherwise, a relation is created corresponding to the subelement (using the
same rules recursively on its subelements). Further:

◦ An identifier attribute is added to the relations representing the element.
(The identifier attribute is added only once even if an element has several
subelements.)

◦ An attribute parent id is added to the relation representing the subelement,
storing the identifier of its parent element.

◦ If ordering is to be preserved, an attribute position is added to the relation
representing the subelement.

For example, if we apply the above procedure to the schema corresponding
to the data in Figure 23.5, we get the following relations:

department(id, dept name, building, budget)
course(parent id, course id, dept name, title, credits)

Variants of this approach are possible. For example, the relations correspond-
ing to subelements that can occur at most once can be “flattened” into the parent
relation by moving all their attributes into the parent relation. The bibliograph-
ical notes provide references to different approaches to represent XML data as
relations.
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23.6.2.4 Publishing and Shredding XML Data

When XML is used to exchange data between business applications, the data
most often originates in relational databases. Data in relational databases must
be published, that is, converted to XML form, for export to other applications.
Incoming data must be shredded, that is, converted back from XML to normalized
relation form and stored in a relational database. While application code can
perform the publishing and shredding operations, the operations are so common
that the conversions should be done automatically, without writing application
code, where possible. Database vendors have spent a lot of effort to XML-enable
their database products.

An XML-enabled database supports an automatic mechanism for publishing
relational data as XML. The mapping used for publishing data may be simple or
complex. A simple relation to XML mapping might create an XML element for
every row of a table, and make each column in that row a subelement of the
XML element. The XML schema in Figure 23.1 can be created from a relational
representation of university information, using such a mapping. Such a mapping
is straightforward to generate automatically. Such an XML view of relational data
can be treated as a virtual XML document, and XML queries can be executed against
the virtual XML document.

A more complicated mapping would allow nested structures to be created.
Extensions of SQL with nested queries in the select clause have been developed
to allow easy creation of nested XML output. We outline these extensions in
Section 23.6.3.

Mappings also have to be defined to shred XML data into a relational rep-
resentation. For XML data created from a relational representation, the mapping
required to shred the data is a straightforward inverse of the mapping used to
publish the data. For the general case, a mapping can be generated as outlined in
Section 23.6.2.3.

23.6.2.5 Native Storage within a Relational Database

Some relational databases support native storage of XML. Such systems store XML
data as strings or in more efficient binary representations, without converting the
data to relational form. A new data type xml is introduced to represent XML data,
although the CLOB and BLOB data types may provide the underlying storage
mechanism. XML query languages such as XPath and XQuery are supported to
query XML data.

A relation with an attribute of type xml can be used to store a collection of
XML documents; each document is stored as a value of type xml in a separate
tuple. Special-purpose indices are created to index the XML data.

Several database systems provide native support for XML data. They provide
an xml data type and allow XQuery queries to be embedded within SQL queries.
An XQuery query can be executed on a single XML document and can be embedded
within an SQL query to allow it to execute on each of a collection of documents,
with each document stored in a separate tuple. For example, see Section 30.11 for
more details on native XML support in Microsoft SQL Server 2005.
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<university>

<department>
<row>

<dept name> Comp. Sci. </dept name>

<building> Taylor </building>

<budget> 100000 </budget>
</row>

<row>

<dept name> Biology </dept name>

<building> Watson </building>

<budget> 90000 </budget>
</row>

</department>
<course>

<row>

<course id> CS-101 </course id>

<title> Intro. to Computer Science </title>

<dept name> Comp. Sci </dept name>

<credits> 4 </credits>

</row>

<row>

<course id> BIO-301 </course id>

<title> Genetics </title>

<dept name> Biology </dept name>

<credits> 4 </credits>

</row>

<course>

</university>

Figure 23.15 SQL/XML representation of (part of) university information.

23.6.3 SQL/XML

While XML is used widely for data interchange, structured data is still widely
stored in relational databases. There is often a need to convert relational data to
XML representation. The SQL/XML standard, developed to meet this need, defines
a standard extension of SQL, allowing the creation of nested XML output. The
standard has several parts, including a standard way of mapping SQL types to
XML Schema types, and a standard way to map relational schemas to XML schemas,
as well as SQL query language extensions.

For example, the SQL/XML representation of the department relation would
have an XML schema with outermost element department, with each tuple mapped
to an XML element row, and each relation attribute mapped to an XML element of
the same name (with some conventions to resolve incompatibilities with special
characters in names). An entire SQL schema, with multiple relations, can also be
mapped to XML in a similar fashion. Figure 23.15 shows the SQL/XML representa-
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tion of (part of) the university data from 23.1, containing the relations department
and course.

SQL/XML adds several operators and aggregate operations to SQL to allow
the construction of XML output directly from the extended SQL. The xmlelement
function can be used to create XML elements, while xmlattributes can be used to
create attributes, as illustrated by the following query.

select xmlelement (name “course”,
xmlattributes (course id as course id, dept name as dept name),
xmlelement (name “title”, title),
xmlelement (name “credits”, credits))

from course

The above query creates an XML element for each course, with the course
identifier and department name represented as attributes, and title and credits
as subelements. The result would look like the course elements shown in Fig-
ure 23.11, but without the instructor attribute. The xmlattributes operator creates
the XML attribute name using the SQL attribute name, which can be changed using
an as clause as shown.

The xmlforest operator simplifies the construction of XML structures. Its syn-
tax and behavior are similar to those of xmlattributes, except that it creates a
forest (collection) of subelements, instead of a list of attributes. It takes multi-
ple arguments, creating an element for each argument, with the attribute’s SQL
name used as the XML element name. The xmlconcat operator can be used to
concatenate elements created by subexpressions into a forest.

When the SQL value used to construct an attribute is null, the attribute is
omitted. Null values are omitted when the body of an element is constructed.

SQL/XML also provides an aggregate function xmlagg that creates a forest
(collection) of XML elements from the collection of values on which it is applied.
The following query creates an element for each department with a course, con-
taining as subelements all the courses in that department. Since the query has
a clause group by dept name, the aggregate function is applied on all courses in
each department, creating a sequence of course id elements.

select xmlelement (name “department”,
dept name,
xmlagg (xmlforest(course id)

order by course id))
from course
group by dept name

SQL/XML allows the sequence created by xmlagg to be ordered, as illustrated
in the preceding query. See the bibliographical notes for references to more infor-
mation on SQL/XML.
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23.7 XML Applications

We now outline several applications of XML for storing and communicating (ex-
changing) data and for accessing Web services (information resources).

23.7.1 Storing Data with Complex Structure

Many applications need to store data that are structured, but are not easily mod-
eled as relations. Consider, for example, user preferences that must be stored by
an application such as a browser. There are usually a large number of fields, such
as home page, security settings, language settings, and display settings, that must
be recorded. Some of the fields are multivalued, for example, a list of trusted sites,
or maybe ordered lists, for example, a list of bookmarks. Applications tradition-
ally used some type of textual representation to store such data. Today, a majority
of such applications prefer to store such configuration information in XML format.
The ad hoc textual representations used earlier require effort to design and effort
to create parsers that can read the file and convert the data into a form that a
program can use. The XML representation avoids both these steps.

XML-based representations are now widely used for storing documents, spre-
adsheet data and other data that are part of office application packages. The Open
Document Format (ODF), supported by the Open Office software suite as well
as other office suites, and the Office Open XML (OOXML) format, supported by
the Microsoft Office suite, are document representation standards based on XML.
They are the two most widely used formats for editable document representation.

XML is also used to represent data with complex structure that must be ex-
changed between different parts of an application. For example, a database system
may represent a query execution plan (a relational-algebra expression with extra
information on how to execute operations) by using XML. This allows one part of
the system to generate the query execution plan and another part to display it,
without using a shared data structure. For example, the data may be generated
at a server system and sent to a client system where the data are displayed.

23.7.2 Standardized Data Exchange Formats

XML-based standards for representation of data have been developed for a variety
of specialized applications, ranging from business applications such as banking
and shipping to scientific applications such as chemistry and molecular biology.
Some examples:

• The chemical industry needs information about chemicals, such as their
molecular structure, and a variety of important properties, such as boiling and
melting points, calorific values, and solubility in various solvents. ChemML
is a standard for representing such information.

• In shipping, carriers of goods and customs and tax officials need shipment
records containing detailed information about the goods being shipped, from
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whom and to where they were sent, to whom and to where they are being
shipped, the monetary value of the goods, and so on.

• An online marketplace in which business can buy and sell goods [a so-called
business-to-business (B2B) market] requires information such as product cata-
logs, including detailed product descriptions and price information, product
inventories, quotes for a proposed sale, and purchase orders. For example,
the RosettaNet standards for e-business applications define XML schemas and
semantics for representing data as well as standards for message exchange.

Using normalized relational schemas to model such complex data require-
ments would result in a large number of relations that do not correspond directly
to the objects that are being modeled. The relations would often have large num-
bers of attributes; explicit representation of attribute/element names along with
values in XML helps avoid confusion between attributes. Nested element repre-
sentations help reduce the number of relations that must be represented, as well
as the number of joins required to get required information, at the possible cost
of redundancy. For instance, in our university example, listing departments with
course elements nested within department elements, as in Figure 23.5, results in
a format that is more natural for some applications—in particular, for humans to
read—than is the normalized representation in Figure 23.1.

23.7.3 Web Services

Applications often require data from outside of the organization, or from another
department in the same organization that uses a different database. In many
such situations, the outside organization or department is not willing to allow
direct access to its database using SQL, but is willing to provide limited forms of
information through predefined interfaces.

When the information is to be used directly by a human, organizations pro-
vide Web-based forms, where users can input values and get back desired in-
formation in HTML form. However, there are many applications where such in-
formation needs to be accessed by software programs, rather than by end users.
Providing the results of a query in XML form is a clear requirement. In addition,
it makes sense to specify the input values to the query also in XML format.

In effect, the provider of the information defines procedures whose input and
output are both in XML format. The HTTP protocol is used to communicate the
input and output information, since it is widely used and can go through firewalls
that institutions use to keep out unwanted traffic from the Internet.

The Simple Object Access Protocol (SOAP) defines a standard for invoking
procedures, using XML for representing the procedure input and output. SOAP
defines a standard XML schema for representing the name of the procedure, and
result status indicators such as failure/error indicators. The procedure parameters
and results are application-dependent XML data embedded within the SOAP XML
headers.

Typically, HTTP is used as the transport protocol for SOAP, but a message-
based protocol (such as email over the SMTP protocol) may also be used. The
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SOAP standard is widely used today. For example, Amazon and Google provide
SOAP-based procedures to carry out search and other activities. These procedures
can be invoked by other applications that provide higher-level services to users.
The SOAP standard is independent of the underlying programming language,
and it is possible for a site running one language, such as C#, to invoke a service
that runs on a different language, such as Java.

A site providing such a collection of SOAP procedures is called a Web ser-
vice. Several standards have been defined to support Web services. The Web
Services Description Language (WSDL) is a language used to describe a Web
service’s capabilities. WSDL provides facilities that interface definitions (or func-
tion definitions) provide in a traditional programming language, specifying what
functions are available and their input and output types. In addition WSDL allows
specification of the URL and network port number to be used to invoke the Web
service. There is also a standard called Universal Description, Discovery, and
Integration (UDDI) that defines how a directory of available Web services may
be created and how a program may search in the directory to find a Web service
satisfying its requirements.

The following example illustrates the value of Web services. An airline may
define a Web service providing a set of procedures that can be invoked by a travel
Web site; these may include procedures to find flight schedules and pricing infor-
mation, as well as to make flight bookings. The travel Web site may interact with
multiple Web services, provided by different airlines, hotels, and other compa-
nies, to provide travel information to a customer and to make travel bookings. By
supporting Web services, the individual companies allow a useful service to be
constructed on top, integrating the individual services. Users can interact with a
single Web site to make their travel bookings, without having to contact multiple
separate Web sites.

To invoke a Web service, a client must prepare an appropriate SOAP XML
message and send it to the service; when it gets the result encoded in XML, the
client must then extract information from the XML result. There are standard APIs
in languages such as Java and C# to create and extract information from SOAP
messages.

See the bibliographical notes for references to more information on Web ser-
vices.

23.7.4 Data Mediation

Comparison shopping is an example of a mediation application, in which data
about items, inventory, pricing, and shipping costs are extracted from a variety of
Web sites offering a particular item for sale. The resulting aggregated information
is significantly more valuable than the individual information offered by a single
site.

A personal financial manager is a similar application in the context of bank-
ing. Consider a consumer with a variety of accounts to manage, such as bank
accounts, credit-card accounts, and retirement accounts. Suppose that these ac-
counts may be held at different institutions. Providing centralized management



23.8 Summary 1019

for all accounts of a customer is a major challenge. XML-based mediation ad-
dresses the problem by extracting an XML representation of account information
from the respective Web sites of the financial institutions where the individual
holds accounts. This information may be extracted easily if the institution exports
it in a standard XML format, for example, as a Web service. For those that do not,
wrapper software is used to generate XML data from HTML Web pages returned
by the Web site. Wrapper applications need constant maintenance, since they
depend on formatting details of Web pages, which change often. Nevertheless,
the value provided by mediation often justifies the effort required to develop and
maintain wrappers.

Once the basic tools are available to extract information from each source, a
mediator application is used to combine the extracted information under a single
schema. This may require further transformation of the XML data from each site,
since different sites may structure the same information differently. They may
also use different names for the same information (for instance, acct number
and account id), or may even use the same name for different information. The
mediator must decide on a single schema that represents all required information,
and must provide code to transform data between different representations. Such
issues are discussed in more detail in Section 19.8, in the context of distributed
databases. XML query languages such as XSLT and XQuery play an important role
in the task of transformation between different XML representations.

23.8 Summary

• Like the Hyper-Text Markup Language (HTML) on which the Web is based,
the Extensible Markup Language (XML) is derived from the Standard Gener-
alized Markup Language (SGML). XML was originally intended for providing
functional markup for Web documents, but has now become the de facto
standard data format for data exchange between applications.

• XML documents contain elements with matching starting and ending tags
indicating the beginning and end of an element. Elements may have subele-
ments nested within them, to any level of nesting. Elements may also have
attributes. The choice between representing information as attributes and
subelements is often arbitrary in the context of data representation.

• Elements may have an attribute of type ID that stores a unique identifier for
the element. Elements may also store references to other elements by using
attributes of type IDREF. Attributes of type IDREFS can store a list of references.

• Documents optionally may have their schema specified by a Document Type
Declaration (DTD). The DTD of a document specifies what elements may
occur, how they may be nested, and what attributes each element may have.
Although DTDs are widely used, they have several limitations. For instance,
they do not provide a type system.

• XML Schema is now the standard mechanism for specifying the schema of an
XML document. It provides a large set of basic types, as well as constructs for



1020 Chapter 23 XML

creating complex types and specifying integrity constraints, including key
constraints and foreign-key (keyref) constraints.

• XML data can be represented as tree structures, with nodes corresponding to
elements and attributes. Nesting of elements is reflected by the parent-child
structure of the tree representation.

• Path expressions can be used to traverse the XML tree structure and locate
data. XPath is a standard language for path expressions, and allows required
elements to be specified by a file-system-like path, and additionally allows
selections and other features. XPath also forms part of other XML query lan-
guages.

• The XQuery language is the standard language for querying XML data. It has
a structure not unlike SQL, with for, let, where, order by, and return clauses.
However, it supports many extensions to deal with the tree nature of XML
and to allow for the transformation of XML documents into other documents
with a significantly different structure. XPath path expressions form a part of
XQuery. XQuery supports nested queries and user-defined functions.

• The DOM and SAX APIs are widely used for programmatic access to XML data.
These APIs are available from a variety of programming languages.

• XML data can be stored in any of several different ways. XML data may also
be stored in file systems, or in XML databases, which use XML as their internal
representation.

• XML data can be stored as strings in a relational database. Alternatively,
relations can represent XML data as trees. As another alternative, XML data
can be mapped to relations in the same way that E-R schemas are mapped to
relational schemas. Native storage of XML in relational databases is facilitated
by adding an xml data type to SQL.

• XML is used in a variety of applications, such as storing complex data, ex-
change of data between organizations in a standardized form, data mediation,
and Web services. Web services provide a remote-procedure call interface,
with XML as the mechanism for encoding parameters as well as results.

Review Terms

• Extensible Markup Language
(XML)

• Hyper-Text Markup Language
(HTML)

• Standard Generalized Markup
Language

• Markup language

• Tags
• Self-documenting
• Element
• Root element
• Nested elements
• Attribute
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• Namespace
• Default namespace
• Schema definition
• Document Type Definition

(DTD)

◦ ID

◦ IDREF and IDREFS

• XML Schema

◦ Simple and complex types

◦ Sequence type

◦ Key and keyref

◦ Occurrence constraints

• Tree model of XML data
• Nodes
• Querying and transformation
• Path expressions
• XPath
• XQuery

◦ FLWOR expressions
� for
� let
� where
� order by

� return

◦ Joins

◦ Nested FLWOR expression

◦ Sorting

• XML API

• Document Object Model (DOM)
• Simple API for XML (SAX)
• Storage of XML data

◦ In nonrelational data stores

◦ In relational databases
� Store as string
� Tree representation
� Map to relations
� Publish and shred
� XML-enabled database
� Native storage
� SQL/XML

• XML applications

◦ Storing complex data

◦ Exchange of data

◦ Data mediation

◦ SOAP

◦ Web services

Practice Exercises

23.1 Give an alternative representation of university information containing
the same data as in Figure 23.1, but using attributes instead of subelements.
Also give the DTD or XML Schema for this representation.

23.2 Give the DTD or XML Schema for an XML representation of the following
nested-relational schema:

Emp = (ename, ChildrenSet setof(Children), SkillsSet setof(Skills))
Children = (name, Birthday)
Birthday = (day, month, year)
Skills = (type, ExamsSet setof(Exams))
Exams = (year, city)
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<!DOCTYPE bibliography [
<!ELEMENT book (title, author+, year, publisher, place?)>
<!ELEMENT article (title, author+, journal, year, number, volume, pages?)>
<!ELEMENT author ( last name, first name) >

<!ELEMENT title ( #PCDATA )>
· · · similar PCDATA declarations for year, publisher, place, journal, year,

number, volume, pages, last name and first name
] >

Figure 23.16 DTD for bibliographical data.

23.3 Write a query in XPath on the schema of Practice Exercise 23.2 to list all
skill types in Emp.

23.4 Write a query in XQuery on the XML representation in Figure 23.11 to find
the total salary of all instructors in each department.

23.5 Write a query in XQuery on the XML representation in Figure 23.1 to
compute the left outer join of department elements with course elements.
(Hint: Use universal quantification.)

23.6 Write queries in XQuery to output department elements with associated
course elements nested within the department elements, given the uni-
versity information representation using ID and IDREFS in Figure 23.11.

23.7 Give a relational schema to represent bibliographical information speci-
fied according to the DTD fragment in Figure 23.16. The relational schema
must keep track of the order of author elements. You can assume that only
books and articles appear as top-level elements in XML documents.

23.8 Show the tree representation of the XML data in Figure 23.1, and the
representation of the tree using nodes and child relations described in
Section 23.6.2.

23.9 Consider the following recursive DTD:

<!DOCTYPE parts [
<!ELEMENT part (name, subpartinfo*)>
<!ELEMENT subpartinfo (part, quantity)>
<!ELEMENT name ( #PCDATA )>
<!ELEMENT quantity ( #PCDATA )>

] >

a. Give a small example of data corresponding to this DTD.

b. Show how to map this DTD to a relational schema. You can assume
that part names are unique; that is, wherever a part appears, its
subpart structure will be the same.

c. Create a schema in XML Schema corresponding to this DTD.
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Exercises

23.10 Show, by giving a DTD, how to represent the non-1NF books relation from
Section 22.2, using XML.

23.11 Write the following queries in XQuery, assuming the schema from Practice
Exercise 23.2.

a. Find the names of all employees who have a child who has a birthday
in March.

b. Find those employees who took an examination for the skill type
“typing” in the city “Dayton”.

c. List all skill types in Emp.

23.12 Consider the XML data shown in Figure 23.3. Suppose we wish to find
purchase orders that ordered two or more copies of the part with identifier
123. Consider the following attempt to solve this problem:

for $p in purchaseorder
where $p/part/id = 123 and $p/part/quantity >= 2
return $p

Explain why the query may return some purchase orders that order less
than two copies of part 123. Give a correct version of the above query.

23.13 Give a query in XQuery to flip the nesting of data from Exercise 23.10.
That is, at the outermost level of nesting the output must have elements
corresponding to authors, and each such element must have nested within
it items corresponding to all the books written by the author.

23.14 Give the DTD for an XML representation of the information in Figure 7.29.
Create a separate element type to represent each relationship, but use ID
and IDREF to implement primary and foreign keys.

23.15 Give an XML Schema representation of the DTD from Exercise 23.14.

23.16 Write queries in XQuery on the bibliography DTD fragment in Figure 23.16,
to do the following:

a. Find all authors who have authored a book and an article in the
same year.

b. Display books and articles sorted by year.

c. Display books with more than one author.

d. Find all books that contain the word “database” in their title and the
word “Hank” in an author’s name (whether first or last).
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23.17 Give a relational mapping of the XML purchase order schema illustrated
in Figure 23.3, using the approach described in Section 23.6.2.3. Suggest
how to remove redundancy in the relational schema, if item identifiers
functionally determine the description and purchase and supplier names
functionally determine the purchase and supplier address, respectively.

23.18 Write queries in SQL/XML to convert university data from the relational
schema we have used in earlier chapters to the university-1 and university-2
XML schemas.

23.19 As in Exercise 23.18, write queries to convert university data to the
university-1 and university-2 XML schemas, but this time by writing XQuery
queries on the default SQL/XML database to XML mapping.

23.20 One way to shred an XML document is to use XQuery to convert the
schema to an SQL/XML mapping of the corresponding relational schema,
and then use the SQL/XML mapping in the backward direction to populate
the relation.

As an illustration, give an XQuery query to convert data from the
university-1 XML schema to the SQL/XML schema shown in Figure 23.15.

23.21 Consider the example XML schema from Section 23.3.2, and write XQuery
queries to carry out the following tasks:

a. Check if the key constraint shown in Section 23.3.2 holds.

b. Check if the keyref constraint shown in Section 23.3.2 holds.

23.22 Consider Practice Exercise 23.7, and suppose that authors could also ap-
pear as top-level elements. What change would have to be done to the
relational schema?

Tools

A number of tools to deal with XML are available in the public domain. The W3C
Web site www.w3.org has pages describing the various XML-related standards, as
well as pointers to software tools such as language implementations. An extensive
list of XQuery implementations is available at www.w3.org/XML/Query. Saxon D
(saxon.sourceforge.net) and Galax (http://www.galaxquery.org/) are useful as learning
tools, although not designed to handle large databases. Exist (exist-db.org) is an
open source XML database, supporting a variety of features. Several commercial
databases, including IBM DB2, Oracle, and Microsoft SQL Server support XML
storage, publishing using various SQL extensions, and querying using XPath and
XQuery.

Bibliographical Notes

The World Wide Web Consortium (W3C) acts as the standards body for Web-
related standards, including basic XML and all the XML-related languages such as
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XPath, XSLT, and XQuery. A large number of technical reports defining the XML-
related standards are available at www.w3.org. This site also contains tutorials and
pointers to software implementing the various standards.

The XQuery language derives from an XML query language called Quilt;
Quilt itself included features from earlier languages such as XPath, discussed
in Section 23.4.2, and two other XML query languages, XQL and XML-QL. Quilt is
described in Chamberlin et al. [2000]. Deutsch et al. [1999] describes the XML-QL
language. The W3C issued a candidate recommendation for an extension of XQuery
in mid-2009 that includes updates.

Katz et al. [2004] provides detailed textbook coverage of XQuery. The XQuery
specification may be found at www.w3.org/TR/xquery. Specifications of XQuery ex-
tensions, including the XQuery Update facility and the XQuery Scripting Extension
are also available at this site. Integration of keyword querying into XML is outlined
by Florescu et al. [2000] and Amer-Yahia et al. [2004].

Funderburk et al. [2002a], Florescu and Kossmann [1999], Kanne and Mo-
erkotte [2000], and Shanmugasundaram et al. [1999] describe storage of XML
data. Eisenberg and Melton [2004a] provides an overview of SQL/XML, while
Funderburk et al. [2002b] provides overviews of SQL/XML and XQuery. See Chap-
ters 28 through 30 for more information on XML support in commercial databases.
Eisenberg and Melton [2004b] provides an overview of the XQJ API for XQuery,
while the standard definition may be found online at http://www.w3.org/TR/xquery.

XML Indexing, Query Processing and Optimization: Indexing of XML data, and
query processing and optimization of XML queries, has been an area of great
interest in the past few years. A large number of papers have been published in
this area. One of the challenges in indexing is that queries may specify a selection
on a path, such as /a/b//c[d=“CSE”]; the index must support efficient retrieval of
nodes that satisfy the path specification and the value selection. Work on indexing
of XML data includes Pal et al. [2004] and Kaushik et al. [2004]. If data is shredded
and stored in relations, evaluating a path expression maps to computation of a
join. Several techniques have been proposed for efficiently computing such joins,
in particular when the path expression specifies any descendant (//). Several
techniques for numbering of nodes in XML data have been proposed that can be
used to efficiently check if a node is a descendant of another; see, for example,
O’Neil et al. [2004]. Work on optimization of XML queries includes McHugh and
Widom [1999], Wu et al. [2003] and Krishnaprasad et al. [2004].
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PART 8

ADVANCED TOPICS
Chapter 24 covers a number of advanced topics in application development,
starting with performance tuning to improve application speed. It then discusses
standard benchmarks that are used as measures of commercial database-system
performance. Issues in application development, such as application testing and
application migration are discussed next. The chapter concludes with an overview
of the standardization process and existing database-language standards.

Chapter 25 describes spatial and temporal data types, and multimedia data,
and the issues in storing such data in databases. Database issues related to mobile
computing systems are also described in this chapter.

Finally, Chapter 26 describes several advanced transaction-processing tech-
niques, including transaction-processing monitors, transactional workflows, and
transaction processing issues in electronic commerce. The chapter then discusses
main-memory database systems and real-time transaction systems, and concludes
with a discussion of long-duration transactions.
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C H A P T E R24
Advanced Application
Development

There are a number of tasks in application development. We saw earlier in Chap-
ters 7 to 9 how to design and build an application. One of the aspects of application
design is the performance one expects out of the application. In fact, it is common
to find that once an application has been built, it runs slower than the designers
wanted, or handles fewer transactions per second than they required. An appli-
cation that takes an excessive amount of time to perform requested actions can
cause user dissatisfaction at best and be completely unusable at worst.

Applications can be made to run significantly faster by performance tuning,
which consists of finding and eliminating bottlenecks and adding appropriate
hardware such as memory or disks. There are many things an application devel-
oper can do to tune the application, and there are things that a database-system
administrator can do to speed up processing for an application.

Benchmarks are standardized sets of tasks that help to characterize the per-
formance of database systems. They are useful to get a rough idea of the hardware
and software requirements of an application, even before the application is built.

Applications must be tested as they are being developed. Testing requires
generation of database states and test inputs, and verifying that the outputs match
the expected outputs. We discuss issues in application testing. Legacy systems
are application systems that are outdated and usually based on older-generation
technology. However, they are often at the core of organizations, and run mission-
critical applications. We outline issues in interfacing with and issues in migrating
away from legacy systems, replacing them with more modern systems.

Standards are very important for application development, especially in the
age of the Internet, since applications need to communicate with each other
to perform useful tasks. A variety of standards have been proposed that affect
database-application development.

24.1 Performance Tuning

Tuning the performance of a system involves adjusting various parameters and
design choices to improve its performance for a specific application. Various

1029
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aspects of a database-system design—ranging from high-level aspects such as
the schema and transaction design to database parameters such as buffer sizes,
down to hardware issues such as number of disks—affect the performance of
an application. Each of these aspects can be adjusted so that performance is
improved.

24.1.1 Improving Set Orientation

When SQL queries are executed from an application program, it is often the case
that a query is executed frequently, but with different values for a parameter. Each
call has an overhead of communication with the server, in addition to processing
overheads at the server.

For example, consider a program that steps through each department, in-
voking an embedded SQL query to find the total salary of all instructors in the
department:

select sum(salary)
from instructor
where dept name= ?

If the instructor relation does not have a clustered index on dept name, each such
query will result in a scan of the relation. Even if there is such an index, a random
I/O operation will be required for each dept name value.

Instead, we can use a single SQL query to find total salary expenses of each
department:

select dept name, sum(salary)
from instructor
group by dept name;

This query can be evaluated with a single scan of the instructor relation, avoiding
random I/O for each department. The results can be fetched to the client side using
a single round of communication, and the client program can then step through
the results to find the aggregate for each department. Combining multiple SQL
queries into a single SQL query as above can reduce execution costs greatly in
many cases–for example, if the instructor relation is very large and has a large
number of departments.

The JDBC API also provides a feature called batch update that allows a number
of inserts to be performed using a single communication with the database.
Figure 24.1 illustrates the use of this feature. The code shown in the figure requires
only one round of communication with the database, when the executeBatch()
method is executed, in contrast to similar code without the batch update feature
that we saw earlier in Figure 5.2. In the absence of batch update, as many rounds
of communication with the database are required as there are instructors to be
inserted. The batch update feature also enables the database to process a batch of
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PreparedStatement pStmt = conn.prepareStatement(
"insert into instructor values(?,?,?,?)");

pStmt.setString(1, "88877");
pStmt.setString(2, "Perry");
pStmt.setInt(3, "Finance");
pStmt.setInt(4, 125000);
pStmt.addBatch( );
pStmt.setString(1, "88878");
pStmt.setString(2, "Thierry");
pStmt.setInt(3, "Physics");
pStmt.setInt(4, 100000);
pStmt.addBatch( ); pStmt.executeBatch( );

Figure 24.1 Batch update in JDBC.

inserts at once, which can potentially be done much more efficiently than a series
of single record inserts.

Another technique used widely in client–server systems to reduce the cost of
communication and SQL compilation is to use stored procedures, where queries
are stored at the server in the form of procedures, which may be precompiled.
Clients can invoke these stored procedures, rather than communicate a series of
queries.

Another aspect of improving set orientation lies in rewriting queries with
nested subqueries. In the past, optimizers on many database systems were not
particularly good, so how a query was written would have a big influence on how
it was executed, and therefore on the performance. Today’s advanced optimizers
can transform even badly written queries and execute them efficiently, so the
need for tuning individual queries is less important than it used to be. However,
complex queries containing nested subqueries are not optimized very well by
many optimizers.

We saw techniques for nested subquery decorrelation in Section 13.4.4. If a
subquery is not decorrelated, it gets executed repeatedly, potentially resulting in
a great deal of random I/O. In contrast, decorrelation allows efficient set-oriented
operations such as joins to be used, minimizing random I/O. Most database query
optimizers incorporate some forms of decorrelation, but some can handle only
very simple nested subqueries. The execution plan chosen by the optimizer can
be found as described earlier in Chapter 13. If the optimizer has not succeeded
in decorrelating a nested subquery, the query can be decorrelated by rewriting it
manually.

24.1.2 Tuning of Bulk Loads and Updates

When loading a large volume of data into a database (called a bulk load oper-
ation), performance is usually very poor if the inserts are carried out a separate
SQL insert statements. One reason is the overhead of parsing each SQL query; a
more important reason is that performing integrity constraint checks and index
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updates separately for each inserted tuple results in a large number of random I/O
operations. If the inserts were done as a large batch, integrity-constraint check-
ing and index update can be done in a much more set-oriented fashion, reducing
overheads greatly; performance improvements of an order-of-magnitude or more
are not uncommon.

To support bulk load operations, most database systems provide a bulk im-
port utility, and a corresponding bulk export utility. The bulk-import utility
reads data from a file, and performs integrity constraint checking as well as index
maintenance in a very efficient manner. Common input and output file format
supported by such bulk import/export utilities include text files with characters
such as commas or tabs separating attribute values, with each record in a line of
its own (such file formats are referred to as comma-separated values or tab-separated
values formats). Database specific binary formats, as well as XML formats are also
supported by bulk import/export utilities. The names of the bulk import/export
utilities differ by database. In PostgreSQL, the utilities are called pg dump and pg
restore (PostgreSQL also provides an SQL command copy which provides similar

functionality). The bulk import/export utility in Oracle is called SQL*Loader, the
utility in DB2 is called load, and the utility in SQL Server is called bcp (SQL Server
also provides an SQL command called bulk insert).

We now consider the case of tuning of bulk updates. Suppose we have a rela-
tion funds received(dept name, amount) that stores funds received (say, by electronic
funds transfer) for each of a set of departments. Suppose now that we want to
add the amounts to the balances of the corresponding department budgets. In
order to use the SQL update statement to carry out this task, we have to perform
a look up on the funds received relation for each tuple in the department relation.
We can use subqueries in the update clause to carry out this task, as follows: We
assume for simplicity that the relation funds received contains at most one tuple
for each department.

update department set budget = budget +
(select amount

from funds received
where funds received.dept name = department.dept name)

where exists(
select *
from funds received
where funds received.dept name = department.dept name);

Note that the condition in the where clause of the update ensures that only
accounts with corresponding tuples in funds received are updated, while the sub-
query within the set clause computes the amount to be added to each such
department.

There are many applications that require updates such as that illustrated
above. Typically, there is a table, which we shall call the master table, and updates
to the master table are received as a batch. Now the master table has to be
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correspondingly updated. SQL:2003 provides a special construct, called the merge
construct, to simplify the task of performing such merging of information. For
example, the above update can be expressed using merge as follows:

merge into department as A
using (select *

from funds received) as F
on (A.dept name = F.dept name)

when matched then
update set budget = budget + F.amount;

When a record from the subquery in the using clause matches a record in the
department relation, the when matched clause is executed, which can execute an
update on the relation; in this case, the matching record in the department relation
is updated as shown.

The merge statement can also have a when not matched then clause, which
permits insertion of new records into the relation. In the above example, when
there is no matching department for a funds received tuple, the insertion action
could create a new department record (with a null building) using the following
clause:

when not matched then
insert values (F.dept name, null, F.budget)

Although not very meaningful in this example,1 the when not matched then
clause can be quite useful in other cases. For example, suppose the local rela-
tion is a copy of a master relation, and we receive updated as well as newly in-
serted records from the master relation. The merge statement can update matched
records (these would be updated old records) and insert records that are not
matched (these would be new records).

Not all SQL implementations support the merge statement currently; see the
respective system manuals for further details.

24.1.3 Location of Bottlenecks

The performance of most systems (at least before they are tuned) is usually limited
primarily by the performance of one or a few components, called bottlenecks.
For instance, a program may spend 80 percent of its time in a small loop deep
in the code, and the remaining 20 percent of the time on the rest of the code; the
small loop then is a bottleneck. Improving the performance of a component that
is not a bottleneck does little to improve the overall speed of the system; in the
example, improving the speed of the rest of the code cannot lead to more than a

1A better action here would have been to insert these records into an error relation, but that cannot be done with the
merge statement.
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Figure 24.2 Queues in a database system.

20 percent improvement overall, whereas improving the speed of the bottleneck
loop could result in an improvement of nearly 80 percent overall, in the best case.

Hence, when tuning a system, we must first try to discover what the bot-
tlenecks are and then eliminate them by improving the performance of system
components causing the bottlenecks. When one bottleneck is removed, it may turn
out that another component becomes the bottleneck. In a well-balanced system,
no single component is the bottleneck. If the system contains bottlenecks, com-
ponents that are not part of the bottleneck are underutilized, and could perhaps
have been replaced by cheaper components with lower performance.

For simple programs, the time spent in each region of the code determines
the overall execution time. However, database systems are much more complex,
and can be modeled as queueing systems. A transaction requests various ser-
vices from the database system, starting from entry into a server process, disk
reads during execution, CPU cycles, and locks for concurrency control. Each of
these services has a queue associated with it, and small transactions may spend
most of their time waiting in queues—especially in disk I/O queues—instead of
executing code. Figure 24.2 illustrates some of the queues in a database system.

As a result of the numerous queues in the database, bottlenecks in a database
system typically show up in the form of long queues for a particular service, or,
equivalently, in high utilizations for a particular service. If requests are spaced
exactly uniformly, and the time to service a request is less than or equal to the
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time before the next request arrives, then each request will find the resource idle
and can therefore start execution immediately without waiting. Unfortunately,
the arrival of requests in a database system is never so uniform and is instead
random.

If a resource, such as a disk, has a low utilization, then, when a request is made,
the resource is likely to be idle, in which case the waiting time for the request will
be 0. Assuming uniformly randomly distributed arrivals, the length of the queue
(and correspondingly the waiting time) go up exponentially with utilization; as
utilization approaches 100 percent, the queue length increases sharply, resulting
in excessively long waiting times. The utilization of a resource should be kept
low enough that queue length is short. As a rule of the thumb, utilizations of
around 70 percent are considered to be good, and utilizations above 90 percent
are considered excessive, since they will result in significant delays. To learn more
about the theory of queueing systems, generally referred to as queueing theory,
you can consult the references cited in the bibliographical notes.

24.1.4 Tunable Parameters

Database administrators can tune a database system at three levels. The lowest
level is at the hardware level. Options for tuning systems at this level include
adding disks or using a RAID system if disk I/O is a bottleneck, adding more
memory if the disk buffer size is a bottleneck, or moving to a faster processor if
CPU use is a bottleneck.

The second level consists of the database-system parameters, such as buffer
size and checkpointing intervals. The exact set of database-system parameters that
can be tuned depends on the specific database system. Most database-system
manuals provide information on what database-system parameters can be ad-
justed, and how you should choose values for the parameters. Well-designed
database systems perform as much tuning as possible automatically, freeing the
user or database administrator from the burden. For instance, in many database
systems the buffer size is fixed but tunable. If the system automatically adjusts
the buffer size by observing indicators such as page-fault rates, then the database
administrator will not have to worry about tuning the buffer size.

The third level is the highest level. It includes the schema and transactions.
The administrator can tune the design of the schema, the indices that are created,
and the transactions that are executed, to improve performance. Tuning at this
level is comparatively system independent.

The three levels of tuning interact with one another; we must consider them
together when tuning a system. For example, tuning at a higher level may result
in the hardware bottleneck changing from the disk system to the CPU, or vice
versa.

24.1.5 Tuning of Hardware

Even in a well-designed transaction processing system, each transaction usually
has to do at least a few I/O operations, if the data required by the transaction
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are on disk. An important factor in tuning a transaction processing system is to
make sure that the disk subsystem can handle the rate at which I/O operations are
required. For instance, consider a disk that supports an access time of about 10
milliseconds, and average transfer rate of 25 to 100 megabytes per second (a fairly
typical disk today). Such a disk would support a little under 100 random-access
I/O operations of 4 kilobytes each per second. If each transaction requires just 2
I/O operations, a single disk would support at most 50 transactions per second.
The only way to support more transactions per second is to increase the number of
disks. If the system needs to support n transactions per second, each performing
2 I/O operations, data must be striped (or otherwise partitioned) across at least
n/50 disks (ignoring skew).

Notice here that the limiting factor is not the capacity of the disk, but the
speed at which random data can be accessed (limited in turn by the speed at
which the disk arm can move). The number of I/O operations per transaction
can be reduced by storing more data in memory. If all data are in memory, there
will be no disk I/O except for writes. Keeping frequently used data in memory
reduces the number of disk I/Os, and is worth the extra cost of memory. Keeping
very infrequently used data in memory would be a waste, since memory is much
more expensive than disk.

The question is, for a given amount of money available for spending on disks
or memory, what is the best way to spend the money to achieve the maximum
number of transactions per second. A reduction of 1 I/O per second saves:

(price per disk drive)/(access per second per disk)

Thus, if a particular page is accessed n times per second, the saving due to
keeping it in memory is n times the above value. Storing a page in memory costs:

(price per megabyte of memory)/(pages per megabyte of memory)

Thus, the break-even point is:

n ∗ price per disk drive
access per second per disk

= price per megabyte of memory
pages per megabyte of memory

We can rearrange the equation and substitute current values for each of the above
parameters to get a value for n; if a page is accessed more frequently than this, it is
worth buying enough memory to store it. Current disk technology and memory
and disk prices (which we assume to be about $50 per disk, and $0.020 per
megabyte) give a value of n around 1/6400 times per second (or equivalently,
once in nearly 2 hours) for pages that are randomly accessed; with disk and
memory cost and speeds as of some years ago, the corresponding value was in 5
minutes.

This reasoning is captured by the rule of thumb that was originally called the
5-minute rule: if a page is used more frequently than once in 5 minutes, it should
be cached in memory. In other words, some years ago, the rule suggested buying
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enough memory to cache all pages that are accessed at least once in 5 minutes
on average. Today, it is worth buying enough memory to cache all pages that
are accessed at least once in 2 hours on average. For data that are accessed less
frequently, buy enough disks to support the rate of I/O required for the data.

For data that are sequentially accessed, significantly more pages can be read
per second. Assuming 1 megabyte of data is read at a time, some years ago we had
the 1-minute rule, which said that sequentially accessed data should be cached in
memory if they are used at least once in 1 minute. The corresponding number, with
current memory and disk costs from our earlier example, is around 30 seconds.
Surprisingly, this figure has not changed all that much over the years, since disk
transfer rates have increased greatly, even though the price of a megabyte of
memory has reduced greatly compared to the price of a disk.

Clearly the amount of data read per I/O operation greatly affects the time
above; in fact the 5-minute rule still holds if about 100 kilobytes of data are read
or written per I/O operation.

The 5-minute rule of thumb and its variants take only the number of I/O
operations into account, and do not consider factors such as response time. Some
applications need to keep even infrequently used data in memory, to support
response times that are less than or comparable to disk-access time.

With the wide availability of flash memory, and “solid-state disks” based on
flash memory, system designers can now choose to store frequently used data in
flash storage, instead of storing it on disk. Alternatively, in the flash-as-buffer
approach, flash storage is used as a persistent buffer, with each block having a
permanent location on disk, but stored in flash instead of being written to disk
as long as it is frequently used. When flash storage is full, a block that is not
frequently used is evicted, and flushed back to disk if it was updated after being
read from disk.

The flash-as-buffer approach requires changes in the database system itself.
Even if a database system does not support flash as a buffer, a database admin-
istrator can control the mapping of relations or indices to disks, and allocate
frequently used relations/indices to flash storage. The tablespace feature, sup-
ported by most database systems, can be used to control the mapping, by creating
a tablespace on flash storage and assigning desired relations and indices to that
tablespace. Controlling the mapping at a finer level of granularity than a relation,
however, requires changes to the database-system code.

The “5-minute” rule has been extended to the case where data can be stored
on flash, in addition to main memory and disk. See the bibliographical notes for
references to more information.

Another aspect of tuning is whether to use RAID 1 or RAID 5. The answer
depends on how frequently the data are updated, since RAID 5 is much slower
than RAID 1 on random writes: RAID 5 requires 2 reads and 2 writes to execute
a single random write request. If an application performs r random reads and
w random writes per second to support a particular throughput rate, a RAID 5
implementation would require r + 4w I/O operations per second whereas a RAID
1 implementation would require r + 2w I/O operations per second. We can then
calculate the number of disks required to support the required I/O operations per
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second by dividing the result of the calculation by 100 I/O operations per second
(for current-generation disks). For many applications, r and w are large enough
that the (r + w)/100 disks can easily hold two copies of all the data. For such
applications, if RAID 1 is used, the required number of disks is actually less than
the required number of disks if RAID 5 is used! Thus RAID 5 is useful only when the
data storage requirements are very large, but the update rates, and particularly
random update rates, are small, that is, for very large and very “cold” data.

24.1.6 Tuning of the Schema

Within the constraints of the chosen normal form, it is possible to partition rela-
tions vertically. For example, consider the course relation, with the schema:

course (course id, title, dept name, credits)

for which course id is a key. Within the constraints of the normal forms (BCNF and
third normal forms), we can partition the course relation into two relations:

course credit (course id, credits)
course title dept (course id, title, dept name)

The two representations are logically equivalent, since course id is a key, but they
have different performance characteristics.

If most accesses to course information look at only the course id and credits,
then they can be run against the course credit relation, and access is likely to be
somewhat faster, since the title and dept name attributes are not fetched. For the
same reason, more tuples of course credit will fit in the buffer than corresponding
tuples of course, again leading to faster performance. This effect would be par-
ticularly marked if the title and dept name attributes were large. Hence, a schema
consisting of course credit and course title dept would be preferable to a schema
consisting of the course relation in this case.

On the other hand, if most accesses to course information require both dept
name and credits, using the course relation would be preferable, since the cost of

the join of course credit and course title dept would be avoided. Also, the storage
overhead would be lower, since there would be only one relation, and the attribute
course id would not be replicated.

The column store approach to storing data is based on vertical partitioning,
but takes it to the limit by storing each attribute (column) of the relation in a
separate file. Column stores have been shown to perform well for several data-
warehouse applications.

Another trick to improve performance is to store a denormalized relation, such as
a join of instructor and department, where the information about dept name, building,
and budget is repeated for every instructor. More effort has to be expended to
make sure the relation is consistent whenever an update is carried out. However,
a query that fetches the names of the instructors and the associated buildings
will be speeded up, since the join of instructor and department will have been
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precomputed. If such a query is executed frequently, and has to be performed as
efficiently as possible, the denormalized relation could be beneficial.

Materialized views can provide the benefits that denormalized relations pro-
vide, at the cost of some extra storage; we describe performance tuning of ma-
terialized views in Section 24.1.8. A major advantage to materialized views over
denormalized relations is that maintaining consistency of redundant data be-
comes the job of the database system, not the programmer. Thus, materialized
views are preferable, whenever they are supported by the database system.

Another approach to speed up the computation of the join without material-
izing it, is to cluster records that would match in the join on the same disk page.
We saw such clustered file organizations in Section 10.6.2.

24.1.7 Tuning of Indices

We can tune the indices in a database system to improve performance. If queries
are the bottleneck, we can often speed them up by creating appropriate indices
on relations. If updates are the bottleneck, there may be too many indices, which
have to be updated when the relations are updated. Removing indices may speed
up certain updates.

The choice of the type of index also is important. Some database systems
support different kinds of indices, such as hash indices and B-tree indices. If
range queries are common, B-tree indices are preferable to hash indices. Whether
to make an index a clustered index is another tunable parameter. Only one index
on a relation can be made clustered, by storing the relation sorted on the index
attributes. Generally, the index that benefits the greatest number of queries and
updates should be made clustered.

To help identify what indices to create, and which index (if any) on each
relation should be clustered, most commercial database systems provide tuning
wizards; these are described in more detail in Section 24.1.9. These tools use the
past history of queries and updates (called the workload) to estimate the effects of
various indices on the execution time of the queries and updates in the workload.
Recommendations on what indices to create are based on these estimates.

24.1.8 Using Materialized Views

Maintaining materialized views can greatly speed up certain types of queries, in
particular aggregate queries. Recall the example from Section 13.5 where the total
salary for each department (obtained by summing the salary of each instructor
in the department) is required frequently. As we saw in that section, creating a
materialized view storing the total salary for each department can greatly speed
up such queries.

Materialized views should be used with care, however, since there is not only
space overhead for storing them but, more important, there is also time overhead
for maintaining materialized views. In the case of immediate view maintenance,
if the updates of a transaction affect the materialized view, the materialized view
must be updated as part of the same transaction. The transaction may therefore
run slower. In the case of deferred view maintenance, the materialized view is
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updated later; until it is updated, the materialized view may be inconsistent with
the database relations. For instance, the materialized view may be brought up-
to-date when a query uses the view, or periodically. Using deferred maintenance
reduces the burden on update transactions.

The database administrator is responsible for the selection of materialized
views and for view-maintenance policies. The database administrator can make
the selection manually by examining the types of queries in the workload, and
finding out which queries need to run faster and which updates/queries may
be executed more slowly. From the examination, the database administrator may
choose an appropriate set of materialized views. For instance, the administrator
may find that a certain aggregate is used frequently, and choose to materialize it, or
may find that a particular join is computed frequently, and choose to materialize
it.

However, manual choice is tedious for even moderately large sets of query
types, and making a good choice may be difficult, since it requires understanding
the costs of different alternatives; only the query optimizer can estimate the costs
with reasonable accuracy, without actually executing the query. Thus a good set
of views may be found only by trial and error—that is, by materializing one
or more views, running the workload, and measuring the time taken to run the
queries in the workload. The administrator repeats the process until a set of views
is found that gives acceptable performance.

A better alternative is to provide support for selecting materialized views
within the database system itself, integrated with the query optimizer. This ap-
proach is described in more detail in Section 24.1.9.

24.1.9 Automated Tuning of Physical Design

Most commercial database systems today provide tools to help the database
administrator with index and materialized view selection, and other tasks related
to physical database design such as how to partition data in a parallel database
system.

These tools examine the workload (the history of queries and updates) and
suggest indices and views to be materialized. The database administrator may
specify the importance of speeding up different queries, which the tool takes into
account when selecting views to materialize. Often tuning must be done before
the application is fully developed, and the actual database contents may be small
on the development database, but expected to be much larger on a production
database. Thus, some tuning tools also allow the database administrator to specify
information about the expected size of the database and related statistics.

Microsoft’s Database Tuning Assistant, for example, allows the user to ask
“what if” questions, whereby the user can pick a view, and the optimizer then
estimates the effect of materializing the view on the total cost of the workload and
on the individual costs of different types of queries and updates in the workload.

The automatic selection of indices and materialized views is usually imple-
mented by enumerating different alternatives and using the query optimizer to
estimate the costs and benefits of selecting each alternative by using the work-
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load. Since the number of design alternatives may be extremely large, as also the
workload, the selection techniques must be designed carefully.

The first step is to generate a workload. This is usually done by recording
all the queries and updates that are executed during some time period. Next, the
selection tools perform workload compression, that is, create a representation
of the workload using a small number of updates and queries. For example,
updates of the same form can be represented by a single update with a weight
corresponding to how many times the update occurred. Queries of the same form
can be similarly replaced by a representative with appropriate weight. After this,
queries that are very infrequent and do not have a high cost may be discarded
from consideration. The most expensive queries may be chosen to be addressed
first. Such workload compression is essential for large workloads.

With the help of the optimizer, the tool would come up with a set of indices
and materialized views that could help the queries and updates in the compressed
workload. Different combinations of these indices and materialized views can be
tried out to find the best combination. However, an exhaustive approach would be
totally impractical, since the number of potential indices and materialized views
is already large, and each subset of these is a potential design alternative, leading
to an exponential number of alternatives. Heuristics are used to reduce the space
of alternatives, that is, to reduce the number of combinations considered.

Greedy heuristics for index and materialized view selection operate as fol-
lows: They estimate the benefits of materializing different indices or views (using
the optimizer’s cost estimation functionality as a subroutine). They then choose
the index or view that gives either the maximum benefit or the maximum benefit
per unit space (that is, benefit divided by the space required to store the index
or view). The cost of maintaining the index or view must be taken into account
when computing the benefit. Once the heuristic has selected an index or view, the
benefits of other indices or views may have changed, so the heuristic recomputes
these, and chooses the next best index or view for materialization. The process
continues until either the available disk space for storing indices or materialized
views is exhausted, or the cost of maintaining the remaining candidates is more
than the benefit to queries that could use the indices or views.

Real-world index and materialized-view selection tools usually incorporate
some elements of greedy selection, but use other techniques to get better results.
They also support other aspects of physical database design, such as deciding how
to partition a relation in a parallel database, or what physical storage mechanism
to use for a relation.

24.1.10 Tuning of Concurrent Transactions

Concurrent execution of different types of transactions can sometimes lead to
poor performance because of contention on locks. We first consider the case of
read-write contention, which is more common, and then consider the case of
write-write contention.

As an example of read-write contention, consider the following situation
on a banking database. During the day, numerous small update transactions are



1042 Chapter 24 Advanced Application Development

executed almost continuously. Suppose that a large query that computes statistics
on branches is run at the same time. If the query performs a scan on a relation,
it may block out all updates on the relation while it runs, and that can have a
disastrous effect on the performance of the system.

Several database systems—Oracle, PostgreSQL, and Microsoft SQL Server, for
example— support snapshot isolation, whereby queries are executed on a snap-
shot of the data, and updates can go on concurrently. (Snapshot isolation is de-
scribed in detail in Section 15.7.) Snapshot isolation should be used, if available,
for large queries, to avoid lock contention in the above situation. In SQL Server,
executing the statement

set transaction isolation level snapshot

at the beginning of a transaction results in snapshot isolation being used for that
transaction. In Oracle and PostgreSQL, using the keyword serializable in place
of the keyword snapshot in the above command has the same effect, since both
these systems actually use snapshot isolation when the isolation level is set to
serializable.

If snapshot isolation is not available, an alternative option is to execute large
queries at times when updates are few or nonexistent. However, for databases
supporting Web sites, there may be no such quiet period for updates.

Another alternative is to use weaker levels of consistency, such as the read
committed isolation level, whereby evaluation of the query has a minimal impact
on concurrent updates, but the query results are not guaranteed to be consis-
tent. The application semantics determine whether approximate (inconsistent)
answers are acceptable.

We now consider the case of write-write contention. Data items that are
updated very frequently can result in poor performance with locking, with many
transactions waiting for locks on those data items. Such data items are called
update hot spots. Update hot spots can cause problems even with snapshot
isolation, causing frequent transaction aborts due to write validation failures. A
commonly occurring situation that results in an update hot spot is as follows:
transactions need to assign unique identifiers to data items being inserted into
the database, and to do so they read and increment a sequence counter stored in
a tuple in the database. If inserts are frequent, and the sequence counter is locked
in a two-phase manner, the tuple containing the sequence counter becomes a hot
spot.

One way to improve concurrency is to release the lock on the sequence counter
immediately after it is read and incremented; however, after doing so, even if the
transaction aborts, the update to the sequence counter should not be rolled back.
To understand why, suppose T1 increments the sequence counter, and then T2
increments the sequence counter before T1 commits; if T1 then aborts, rolling back
its update, either by restoring the counter to the original value, or by decrementing
the counter, will result in the sequence value used by T2 getting reused by a
subsequent transaction.
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Most databases provide a special construct for creating sequence counters
that implement early, non-two-phase, lock release, coupled with special case
treatment of undo logging so that updates to the counter are not rolled back if
the transaction aborts. The SQL standard allows a sequence counter to be created
using the command:

create sequence counter1;

In the above command, counter1 is the name of the sequence; multiple sequences
can be created with different names. The syntax to get a value from the sequence
is not standardized; in Oracle, counter1.nextval would return the next value of the
sequence, after incrementing it, while the function call nextval(’counter1’) would
have the same effect in PostgreSQL, and DB2 uses the syntax nextval for counter1.

The SQL standard provides an alternative to using an explicit sequence counter,
which is useful when the goal is to give unique identifiers to tuples inserted into
a relation. To do so, the keyword identity can be added to the declaration of an
integer attribute of a relation (usually this attribute would also be declared as
the primary key). If the value for that attribute is left unspecified in an insert
statement for that relation, a unique new value is created automatically for each
newly inserted tuple. A non-two-phase locked sequence counter is used inter-
nally to implement the identity declaration, with the counter incremented each
time a tuple is inserted. Several databases including DB2 and SQL Server support
the identity declaration, although the syntax varies. PostgreSQL supports a data
type called serial, which provides the same effect; the PostgreSQL type serial is
implemented by transparently creating a non-two-phase locked sequence.

It is worth noting that since the acquisition of a sequence number by a transac-
tion cannot be rolled back if the transaction aborts (for reasons discussed earlier),
transaction aborts may result in gaps in the sequence numbers in tuple inserted in
the database. For example, there may be tuples with identifier value 1001 and
1003, but no tuple with value 1002, if the transaction that acquired the sequence
number 1002 did not commit. Such gaps are not acceptable in some applications;
for example, some financial applications require that there be no gaps in bill or
receipt numbers. Database provided sequences and automatically incremented
attributes should not be used for such applications, since they can result in gaps. A
sequence counter stored in normal tuple, which is locked in a two-phase manner,
would not be susceptible to such gaps since a transaction abort would restore the
sequence counter value, and the next transaction would get the same sequence
number, avoiding a gap.

Long update transactions can cause performance problems with system logs,
and can increase the time taken to recover from system crashes. If a transaction
performs many updates, the system log may become full even before the trans-
action completes, in which case the transaction will have to be rolled back. If an
update transaction runs for a long time (even with few updates), it may block
deletion of old parts of the log, if the logging system is not well designed. Again,
this blocking could lead to the log getting filled up.
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To avoid such problems, many database systems impose strict limits on the
number of updates that a single transaction can carry out. Even if the system does
not impose such limits, it is often helpful to break up a large update transaction
into a set of smaller update transactions where possible. For example, a transaction
that gives a raise to every employee in a large corporation could be split up into
a series of small transactions, each of which updates a small range of employee-
ids. Such transactions are called minibatch transactions. However, minibatch
transactions must be used with care. First, if there are concurrent updates on the
set of employees, the result of the set of smaller transactions may not be equivalent
to that of the single large transaction. Second, if there is a failure, the salaries of
some of the employees would have been increased by committed transactions,
but salaries of other employees would not. To avoid this problem, as soon as the
system recovers from failure, we must execute the transactions remaining in the
batch.

Long transactions, whether read-only or update, can also result in the lock
table becoming full. If a single query scans a large relation, the query optimizer
would ensure that a relation lock is obtained instead of acquiring a large number
of tuple locks. However, if a transaction executes a large number of small queries
or updates, it may acquire a large number of locks, resulting in the lock table
becoming full.

To avoid this problem, some databases provide for automatic lock escalation;
with this technique, if a transaction has acquired a large number of tuple locks,
tuple locks are upgraded to page locks, or even full relation locks. Recall that with
multiple-granularity locking (Section 15.3), once a coarser level lock is obtained,
there is no need to record finer-level locks, so tuple lock entries can be removed
from the lock table, freeing up space. On databases that do not support lock
escalation, it is possible for the transaction to explicitly acquire a relation lock,
thereby avoiding the acquisition of tuple locks.

24.1.11 Performance Simulation

To test the performance of a database system even before it is installed, we
can create a performance-simulation model of the database system. Each service
shown in Figure 24.2, such as the CPU, each disk, the buffer, and the concurrency
control, is modeled in the simulation. Instead of modeling details of a service,
the simulation model may capture only some aspects of each service, such as the
service time—that is, the time taken to finish processing a request once processing
has begun. Thus, the simulation can model a disk access from just the average
disk-access time.

Since requests for a service generally have to wait their turn, each service has
an associated queue in the simulation model. A transaction consists of a series of
requests. The requests are queued up as they arrive, and are serviced according to
the policy for that service, such as first come, first served. The models for services
such as CPU and the disks conceptually operate in parallel, to account for the fact
that these subsystems operate in parallel in a real system.
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Once the simulation model for transaction processing is built, the system
administrator can run a number of experiments on it. The administrator can use
experiments with simulated transactions arriving at different rates to find how
the system would behave under various load conditions. The administrator could
run other experiments that vary the service times for each service to find out how
sensitive the performance is to each of them. System parameters, too, can be
varied, so that performance tuning can be done on the simulation model.

24.2 Performance Benchmarks

As database servers become more standardized, the differentiating factor among
the products of different vendors is those products’ performance. Performance
benchmarks are suites of tasks that are used to quantify the performance of
software systems.

24.2.1 Suites of Tasks

Since most software systems, such as databases, are complex, there is a good
deal of variation in their implementation by different vendors. As a result, there
is a significant amount of variation in their performance on different tasks. One
system may be the most efficient on a particular task; another may be the most
efficient on a different task. Hence, a single task is usually insufficient to quantify
the performance of the system. Instead, the performance of a system is measured
by suites of standardized tasks, called performance benchmarks.

Combining the performance numbers from multiple tasks must be done with
care. Suppose that we have two tasks, T1 and T2, and that we measure the through-
put of a system as the number of transactions of each type that run in a given
amount of time—say, 1 second. Suppose that system A runs T1 at 99 transactions
per second and T2 at 1 transaction per second. Similarly, let system B run both T1
and T2 at 50 transactions per second. Suppose also that a workload has an equal
mixture of the two types of transactions.

If we took the average of the two pairs of numbers (that is, 99 and 1, versus 50
and 50), it might appear that the two systems have equal performance. However,
it is wrong to take the averages in this fashion—if we ran 50 transactions of each
type, system A would take about 50.5 seconds to finish, whereas system B would
finish in just 2 seconds!

The example shows that a simple measure of performance is misleading if
there is more than one type of transaction. The right way to average out the
numbers is to take the time to completion for the workload, rather than the
average throughput for each transaction type. We can then compute system per-
formance accurately in transactions per second for a specified workload. Thus,
system A takes 50.5/100, which is 0.505 seconds per transaction, whereas system
B takes 0.02 seconds per transaction, on average. In terms of throughput, system
A runs at an average of 1.98 transactions per second, whereas system B runs at 50
transactions per second. Assuming that transactions of all the types are equally
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likely, the correct way to average out the throughputs on different transaction
types is to take the harmonic mean of the throughputs. The harmonic mean of n
throughputs t1, . . . , tn is defined as:

n
1
t1

+ 1
t2

+ · · · + 1
tn

For our example, the harmonic mean for the throughputs in system A is 1.98.
For system B, it is 50. Thus, system B is approximately 25 times faster than system
A on a workload consisting of an equal mixture of the two example types of
transactions.

24.2.2 Database-Application Classes

Online transaction processing (OLTP) and decision support, including online
analytical processing (OLAP), are two broad classes of applications handled by
database systems. These two classes of tasks have different requirements. High
concurrency and clever techniques to speed up commit processing are required
for supporting a high rate of update transactions. On the other hand, good query-
evaluation algorithms and query optimization are required for decision support.
The architecture of some database systems has been tuned to transaction process-
ing; that of others, such as the Teradata series of parallel database systems, has
been tuned to decision support. Other vendors try to strike a balance between the
two tasks.

Applications usually have a mixture of transaction-processing and decision-
support requirements. Hence, which database system is best for an application
depends on what mix of the two requirements the application has.

Suppose that we have throughput numbers for the two classes of applications
separately, and the application at hand has a mix of transactions in the two classes.
We must be careful even about taking the harmonic mean of the throughput
numbers, because of interference between the transactions. For example, a long-
running decision-support transaction may acquire a number of locks, which may
prevent all progress of update transactions. The harmonic mean of throughputs
should be used only if the transactions do not interfere with one another.

24.2.3 The TPC Benchmarks

The Transaction Processing Performance Council (TPC) has defined a series of
benchmark standards for database systems.

The TPC benchmarks are defined in great detail. They define the set of rela-
tions and the sizes of the tuples. They define the number of tuples in the relations
not as a fixed number, but rather as a multiple of the number of claimed trans-
actions per second, to reflect that a larger rate of transaction execution is likely
to be correlated with a larger number of accounts. The performance metric is
throughput, expressed as transactions per second (TPS). When its performance
is measured, the system must provide a response time within certain bounds, so
that a high throughput cannot be obtained at the cost of very long response times.
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Further, for business applications, cost is of great importance. Hence, the TPC
benchmark also measures performance in terms of price per TPS. A large system
may have a high number of transactions per second, but may be expensive (that
is, have a high price per TPS). Moreover, a company cannot claim TPC benchmark
numbers for its systems without an external audit that ensures that the system
faithfully follows the definition of the benchmark, including full support for the
ACID properties of transactions.

The first in the series was the TPC-A benchmark, which was defined in 1989.
This benchmark simulates a typical bank application by a single type of trans-
action that models cash withdrawal and deposit at a bank teller. The transaction
updates several relations—such as the bank balance, the teller’s balance, and the
customer’s balance—and adds a record to an audit trail relation. The benchmark
also incorporates communication with terminals, to model the end-to-end per-
formance of the system realistically. The TPC-B benchmark was designed to test
the core performance of the database system, along with the operating system
on which the system runs. It removes the parts of the TPC-A benchmark that deal
with users, communication, and terminals, to focus on the back-end database
server. Neither TPC-A nor TPC-B is in use today.

The TPC-C benchmark was designed to model a more complex system than
the TPC-A benchmark. The TPC-C benchmark concentrates on the main activities
in an order-entry environment, such as entering and delivering orders, recording
payments, checking status of orders, and monitoring levels of stock. The TPC-C
benchmark is still widely used for benchmarking online transaction processing
(OLTP) systems. The more recent TPC-E benchmark is also aimed at OLTP systems,
but is based on a model of a brokerage firm, with customers who interact with the
firm and generate transactions. The firm in turn interacts with financial markets
to execute transactions.

The TPC-D benchmark was designed to test the performance of database
systems on decision-support queries. Decision-support systems are becoming in-
creasingly important today. The TPC-A, TPC-B, and TPC-C benchmarks measure
performance on transaction-processing workloads, and should not be used as a
measure of performance on decision-support queries. The D in TPC-D stands for
decision support. The TPC-D benchmark schema models a sales/distribution ap-
plication, with parts, suppliers, customers, and orders, along with some auxiliary
information. The sizes of the relations are defined as a ratio, and database size is
the total size of all the relations, expressed in gigabytes. TPC-D at scale factor 1
represents the TPC-D benchmark on a 1-gigabyte database, while scale factor 10
represents a 10-gigabyte database. The benchmark workload consists of a set of
17 SQL queries modeling common tasks executed on decision-support systems.
Some of the queries make use of complex SQL features, such as aggregation and
nested queries.

The benchmark’s users soon realized that the various TPC-D queries could
be significantly speeded up by using materialized views and other redundant
information. There are applications, such as periodic reporting tasks, where the
queries are known in advance and materialized view can be carefully selected
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to speed up the queries. It is necessary, however, to account for the overhead of
maintaining materialized views.

The TPC-H benchmark (where H represents ad hoc) is a refinement of the
TPC-D benchmark. The schema is the same, but there are 22 queries, of which
16 are from TPC-D. In addition, there are two updates, a set of inserts, and a set
of deletes. TPC-H prohibits materialized views and other redundant information,
and permits indices only on primary and foreign keys. This benchmark models
ad hoc querying where the queries are not known beforehand, so it is not possible
to create appropriate materialized views ahead of time. A variant, TPC-R (where R
stands for “reporting”), which is no longer in use, allowed the use of materialized
views and other redundant information.

TPC-H measures performance in this way: The power test runs the queries and
updates one at a time sequentially, and 3600 seconds divided by the geometric
mean of the execution times of the queries (in seconds) gives a measure of queries
per hour. The throughput test runs multiple streams in parallel, with each stream
executing all 22 queries. There is also a parallel update stream. Here the total time
for the entire run is used to compute the number of queries per hour.

The composite query per hour metric, which is the overall metric, is then
obtained as the square root of the product of the power and throughput metrics.
A composite price/performance metric is defined by dividing the system price
by the composite metric.

The TPC-W Web commerce benchmark is an end-to-end benchmark that
models Web sites having static content (primarily images) and dynamic content
generated from a database. Caching of dynamic content is specifically permitted,
since it is very useful for speeding up Web sites. The benchmark models an
electronic bookstore, and like other TPC benchmarks, provides for different scale
factors. The primary performance metrics are Web interactions per second (WIPS)
and price per WIPS. However, the TPC-W benchmark is no longer in use.

24.3 Other Issues in Application Development

In this section, we discuss two issues in application development: testing of
applications, and migration of applications.

24.3.1 Testing Applications

Testing of programs involves designing a test suite, that is, a collection of test
cases. Testing is not a one-time process, since programs evolve continuously, and
bugs may appear as an unintended consequence of a change in the program;
such a bug is referred to as program regression. Thus, after every change to
a program, the program must be tested again. It is usually infeasible to have
a human perform tests after every change to a program. Instead, expected test
outputs are stored with each test case in a test suite. Regression testing involves
running the program on each test case in a test suite, and checking that the
program generates the expected test output.
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In the context of database applications, a test case consists of two parts: a
database state, and an input to a specific interface of the application.

SQL queries can have subtle bugs that can be difficult to catch. For example,
a query may execute r � s, when it should have actually performed r � s. The
difference between these two queries would be found only if the test database
had an r tuple with no matching s tuple. Thus, it is important to create test
databases that can catch commonly occurring errors. Such errors are referred to
as mutations, since they are usually small changes to a query (or program). A
test case that produces different outputs on an intended query and a mutant of
the query is said to kill the mutant. A test suite should have test cases that kill
(most) commonly occurring mutants.

If a test case performs an update on the database, to check that it executed
properly one must verify that the contents of the database match the expected
contents. Thus, the expected output consists not only of data displayed on the
user’s screen, but also (updates to) the database state.

Since the database state can be rather large, multiple test cases would share
a common database state. Testing is complicated by the fact that if a test case
performs an update on the database, the results of other test cases run subse-
quently on the same database may not match the expected results. The other test
cases would then be erroneously reported as having failed. To avoid this problem,
whenever a test case performs an update, the database state must be restored to
its original state after running the test.

Testing can also be used to ensure that an application meets performance
requirements. To carry out such performance testing, the test database must be
of the same size as the real database would be. In some cases, there is already
existing data on which performance testing can be carried out. In other cases,
a test database of the required size must be generated; there are several tools
available for generating such test databases. These tools ensure that the generated
data satisfies constraints such as primary and foreign key constraints. They may
additionally generate data that looks meaningful, for example, by populating a
name attribute using meaningful names instead of random strings. Some tools
also allow data distributions to be specified; for example, a university database
may require a distribution with most students in the range of 18 to 25 years, and
most faculty in the range of 25 to 65 years.

Even if there is an existing database, organizations usually do not want to
reveal sensitive data to an external organization that may be carrying out the
performance tests. In such a situation, a copy of the real database may be made,
and the values in the copy may be modified in such a way that any sensitive
data, such as credit-card numbers, social-security numbers, or dates of birth, are
obfuscated. Obfuscation is done in most cases by replacing a real value with a
randomly generated value (taking care to also update all references to that value,
in case the value is a primary key). On the other hand, if the application execution
depends on the value, such as the date of birth in an application that performs
different actions based on the date of birth, obfuscation may make small random
changes in the value instead of replacing it completely.
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24.3.2 Application Migration

Legacy systems are older-generation application systems that are in use by an
organization, but that the organization wishes to replace with a different applica-
tion. For example, many organizations developed applications in house, but may
decide to replace them with a commercial product. In some cases, a legacy system
may use old technology that is incompatible with current-generation standards
and systems. Some legacy systems in operation today are several decades old and
are based on technologies such as databases that use the network or hierarchical
data models, or use Cobol and file systems without a database. Such systems may
still contain valuable data, and may support critical applications.

Replacing legacy applications with new applications is often costly in terms
of both time and money, since they are often very large, consisting of millions of
lines of code developed by teams of programmers, often over several decades.
They contain large amounts of data that must be ported to the new application,
which may use a completely different schema. Switchover from an old to a new
application involves retraining large numbers of staff. Switchover must usually
be done without any disruption, with data entered in the old system available
through the new system as well.

Many organizations attempt to avoid replacing legacy systems, and instead
try to interoperate them with newer systems. One approach used to interoperate
between relational databases and legacy databases is to build a layer, called a
wrapper, on top of the legacy systems that can make the legacy system appear
to be a relational database. The wrapper may provide support for ODBC or other
interconnection standards such as OLE-DB, which can be used to query and update
the legacy system. The wrapper is responsible for converting relational queries
and updates into queries and updates on the legacy system.

When an organization decides to replace a legacy system with a new system,
it may follow a process called reverse engineering, which consists of going over
the code of the legacy system to come up with schema designs in the required
data model (such as an E-R model or an object-oriented data model). Reverse
engineering also examines the code to find out what procedures and processes
were implemented, in order to get a high-level model of the system. Reverse
engineering is needed because legacy systems usually do not have high-level
documentation of their schema and overall system design. When coming up
with the design of a new system, developers review the design, so that it can be
improved rather than just reimplemented as is. Extensive coding is required to
support all the functionality (such as user interface and reporting systems) that
was provided by the legacy system. The overall process is called re-engineering.

When a new system has been built and tested, the system must be populated
with data from the legacy system, and all further activities must be carried out on
the new system. However, abruptly transitioning to a new system, which is called
the big-bang approach, carries several risks. First, users may not be familiar with
the interfaces of the new system. Second, there may be bugs or performance
problems in the new system that were not discovered when it was tested. Such
problems may lead to great losses for companies, since their ability to carry out
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critical transactions such as sales and purchases may be severely affected. In some
extreme cases the new system has even been abandoned, and the legacy system
reused, after an attempted switchover failed.

An alternative approach, called the chicken-little approach, incrementally
replaces the functionality of the legacy system. For example, the new user inter-
faces may be used with the old system in the back end, or vice versa. Another
option is to use the new system only for some functionality that can be decou-
pled from the legacy system. In either case, the legacy and new systems coexist
for some time. There is therefore a need for developing and using wrappers
on the legacy system to provide required functionality to interoperate with the
new system. This approach therefore has a higher development cost associated
with it.

24.4 Standardization

Standards define the interface of a software system; for example, standards define
the syntax and semantics of a programming language, or the functions in an
application-program interface, or even a data model (such as the object-oriented
database standards). Today, database systems are complex, and are often made up
of multiple independently created parts that need to interact. For example, client
programs may be created independently of back-end systems, but the two must
be able to interact with each other. A company that has multiple heterogeneous
database systems may need to exchange data between the databases. Given such
a scenario, standards play an important role.

Formal standards are those developed by a standards organization or by in-
dustry groups, through a public process. Dominant products sometimes become
de facto standards, in that they become generally accepted as standards with-
out any formal process of recognition. Some formal standards, like many aspects
of the SQL-92 and SQL:1999 standards, are anticipatory standards that lead the
marketplace; they define features that vendors then implement in products. In
other cases, the standards, or parts of the standards, are reactionary standards, in
that they attempt to standardize features that some vendors have already imple-
mented, and that may even have become de facto standards. SQL-89 was in many
ways reactionary, since it standardized features, such as integrity checking, that
were already present in the IBM SAA SQL standard and in other databases.

Formal standards committees are typically composed of representatives of the
vendors and of members from user groups and standards organizations such as
the International Organization for Standardization (ISO) or the American National
Standards Institute (ANSI), or professional bodies, such as the Institute of Electrical
and Electronics Engineers (IEEE). Formal standards committees meet periodically,
and members present proposals for features to be added to or modified in the
standard. After a (usually extended) period of discussion, modifications to the
proposal, and public review, members vote on whether to accept or reject a feature.
Some time after a standard has been defined and implemented, its shortcomings
become clear and new requirements become apparent. The process of updating



1052 Chapter 24 Advanced Application Development

the standard then begins, and a new version of the standard is usually released
after a few years. This cycle usually repeats every few years, until eventually
(perhaps many years later) the standard becomes technologically irrelevant, or
loses its user base.

The DBTG CODASYL standard for network databases, formulated by the Data-
base Task Group, was one of the early formal standards for databases. IBM
database products formerly established de facto standards, since IBM commanded
much of the database market. With the growth of relational databases came a num-
ber of new entrants in the database business; hence, the need for formal standards
arose. In recent years, Microsoft has created a number of specifications that also
have become de facto standards. A notable example is ODBC, which is now used
in non-Microsoft environments. JDBC, whose specification was created by Sun
Microsystems, is another widely used de facto standard.

This section gives a very high-level overview of different standards, concen-
trating on the goals of the standard. The bibliographical notes at the end of the
chapter provide references to detailed descriptions of the standards mentioned
in this section.

24.4.1 SQL Standards

Since SQL is the most widely used query language, much work has been done on
standardizing it. ANSI and ISO, with the various database vendors, have played
a leading role in this work. The SQL-86 standard was the initial version. The IBM
Systems Application Architecture (SAA) standard for SQL was released in 1987.
As people identified the need for more features, updated versions of the formal
SQL standard were developed, called SQL-89 and SQL-92.

The SQL:1999 version of the SQL standard added a variety of features to SQL.
We have seen many of these features in earlier chapters. The SQL:2003 version
of the SQL standard is a minor extension of the SQL:1999 standard. Some features
such as the SQL:1999 OLAP features (Section 5.6.3) were specified as an amendment
to the earlier version of the SQL:1999 standard, instead of waiting for the release
of SQL:2003.

The SQL:2003 standard was broken into several parts:

• Part 1: SQL/Framework provides an overview of the standard.

• Part 2: SQL/Foundation defines the basics of the standard: types, schemas,
tables, views, query and update statements, expressions, security model,
predicates, assignment rules, transaction management, and so on.

• Part 3: SQL/CLI (Call Level Interface) defines application program interfaces
to SQL.

• Part 4: SQL/PSM (Persistent Stored Modules) defines extensions to SQL to
make it procedural.

• Part 9: SQL/MED (Management of External Data) defines standards or in-
terfacing an SQL system to external sources. By writing wrappers, system
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designers can treat external data sources, such as files or data in nonrela-
tional databases, as if they were “foreign” tables.

• Part 10: SQL/OLB (Object Language Bindings) defines standards for embed-
ding SQL in Java.

• Part 11: SQL/Schemata (Information and Definition Schema) defines a stan-
dard catalog interface.

• Part 13: SQL/JRT (Java Routines and Types) defines standards for accessing
routines and types in Java.

• Part 14: SQL/XML defines XML-Related Specifications.

The missing numbers cover features such as temporal data, distributed trans-
action processing, and multimedia data, for which there is as yet no agreement
on the standards.

The latest versions of the SQL standard are SQL:2006, which added several
features related to XML, and SQL:2008, which introduces a number of extensions
to the SQL language.

24.4.2 Database Connectivity Standards

The ODBC standard is a widely used standard for communication between client
applications and database systems. ODBC is based on the SQL Call Level Interface
(CLI) standards developed by the X/Open industry consortium and the SQL Access
Group, but it has several extensions. The ODBC API defines a CLI, an SQL syntax
definition, and rules about permissible sequences of CLI calls. The standard also
defines conformance levels for the CLI and the SQL syntax. For example, the core
level of the CLI has commands to connect to a database, to prepare and execute
SQL statements, to get back results or status values, and to manage transactions.
The next level of conformance (level 1) requires support for catalog information
retrieval and some other features over and above the core-level CLI; level 2 requires
further features, such as ability to send and retrieve arrays of parameter values
and to retrieve more detailed catalog information.

ODBC allows a client to connect simultaneously to multiple data sources and
to switch among them, but transactions on each are independent; ODBC does not
support two-phase commit.

A distributed system provides a more general environment than a client–
server system. The X/Open consortium has also developed the X/Open XA
standards for interoperation of databases. These standards define transaction-
management primitives (such as transaction begin, commit, abort, and prepare-
to-commit) that compliant databases should provide; a transaction manager can
invoke these primitives to implement distributed transactions by two-phase com-
mit. The XA standards are independent of the data model and of the specific in-
terfaces between clients and databases to exchange data. Thus, we can use the XA
protocols to implement a distributed transaction system in which a single transac-
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tion can access relational as well as object-oriented databases, yet the transaction
manager ensures global consistency via two-phase commit.

There are many data sources that are not relational databases, and in fact may
not be databases at all. Examples are flat files and email stores. Microsoft’s OLE-DB
is a C++ API with goals similar to ODBC, but for nondatabase data sources that
may provide only limited querying and update facilities. Just like ODBC, OLE-DB
provides constructs for connecting to a data source, starting a session, executing
commands, and getting back results in the form of a rowset, which is a set of
result rows.

However, OLE-DB differs from ODBC in several ways. To support data sources
with limited feature support, features in OLE-DB are divided into a number of
interfaces, and a data source may implement only a subset of the interfaces. An
OLE-DB program can negotiate with a data source to find what interfaces are
supported. In ODBC commands are always in SQL. In OLE-DB, commands may be
in any language supported by the data source; while some sources may support
SQL, or a limited subset of SQL, other sources may provide only simple capabilities
such as accessing data in a flat file, without any query capability. Another major
difference of OLE-DB from ODBC is that a rowset is an object that can be shared by
multiple applications through shared memory. A rowset object can be updated
by one application, and other applications sharing that object will get notified
about the change.

The Active Data Objects (ADO) API, also created by Microsoft, provides
an easy-to-use interface to the OLE-DB functionality, which can be called from
scripting languages, such as VBScript and JScript. The newer ADO.NET API is
designed for applications written in the .NET languages such as C# and Visual
Basic.NET. In addition to providing simplified interfaces, it provides an abstraction
called the DataSet that permits disconnected data access.

24.4.3 Object Database Standards

Standards in the area of object-oriented databases have so far been driven pri-
marily by OODB vendors. The Object Database Management Group (ODMG) was
a group formed by OODB vendors to standardize the data model and language
interfaces to OODBs. The C++ language interface specified by ODMG was briefly
outlined in Chapter 22. ODMG is no longer active. JDO is a standard for adding
persistence to Java.

The Object Management Group (OMG) is a consortium of companies, formed
with the objective of developing a standard architecture for distributed software
applications based on the object-oriented model. OMG brought out the Object Man-
agement Architecture (OMA) reference model. The Object Request Broker (ORB) is a
component of the OMA architecture that provides message dispatch to distributed
objects transparently, so the physical location of the object is not important. The
Common Object Request Broker Architecture (CORBA) provides a detailed spec-
ification of the ORB, and includes an Interface Description Language (IDL), which
is used to define the data types used for data interchange. The IDL helps to sup-
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port data conversion when data are shipped between systems with different data
representations.

Microsoft introduced the Entity data model, which incorporates ideas from
the entity-relationship and object-oriented data models, and an approach to inte-
grating querying with the programming language, called Language Integrated
Querying or LINQ. These are likely to become de facto standards.

24.4.4 XML-Based Standards

A wide variety of standards based on XML (see Chapter 23) have been de-
fined for a wide variety of applications. Many of these standards are related
to e-commerce. They include standards promulgated by nonprofit consortia and
corporate-backed efforts to create de facto standards.

RosettaNet, which falls into the former category, is an industry consortium
that uses XML-based standards to facilitate supply-chain management in the com-
puter and information technology industries. Supply-chain management refers
to the purchases of material and services that an organization needs to function.
In contrast, customer-relationship management refers to the front end of a com-
pany’s interaction, dealing with customers. Supply-chain management requires
standardization of a variety of things such as:

• Global company identifier: RosettaNet specifies a system for uniquely iden-
tifying companies, using a 9-digit identifier called Data Universal Numbering
System (DUNS).

• Global product identifier: RosettaNet specifies a 14-digit Global Trade Item
Number (GTIN) for identifying products and services.

• Global class identifier: This is a 10-digit hierarchical code for classifying
products and services called the United Nations/Standard Product and Services
Code (UN/SPSC).

• Interfaces between trading partners: RosettaNet Partner Interface Processes
(PIPs) define business processes between partners. PIPs are system-to-system
XML-based dialogs: They define the formats and semantics of business doc-
uments involved in a process and the steps involved in completing a trans-
action. Examples of steps could include getting product and service infor-
mation, purchase orders, order invoicing, payment, order status requests,
inventory management, post-sales support including service warranty, and
so on. Exchange of design, configuration, process, and quality information is
also possible to coordinate manufacturing activities across organizations.

Participants in electronic marketplaces may store data in a variety of database
systems. These systems may use different data models, data formats, and data
types. Furthermore, there may be semantic differences (metric versus English
measure, distinct monetary currencies, and so forth) in the data. Standards for
electronic marketplaces include methods for wrapping each of these heteroge-



1056 Chapter 24 Advanced Application Development

neous systems with an XML schema. These XML wrappers form the basis of a
unified view of data across all of the participants in the marketplace.

Simple Object Access Protocol (SOAP) is a remote procedure call standard
that uses XML to encode data (both parameters and results), and uses HTTP as
the transport protocol; that is, a procedure call becomes an HTTP request. SOAP
is backed by the World Wide Web Consortium (W3C) and has gained wide ac-
ceptance in industry. SOAP can be used in a variety of applications. For instance,
in business-to-business e-commerce, applications running at one site can access
data from and execute actions at other sites through SOAP.

SOAP and Web services were described in more detail in Section 23.7.3.

24.5 Summary

• Tuning of the database-system parameters, as well as the higher-level database
design—such as the schema, indices, and transactions—is important for
good performance. Queries can be tuned to improve set-orientation, while
bulk-loading utilities can greatly speed up data import into a database.

Tuning is best done by identifying bottlenecks and eliminating them.
Database systems usually have a variety of tunable parameters, such as buffer
sizes, memory size, and number of disks. The set of indices and materialized
views can be appropriately chosen to minimize overall cost. Transactions
can be tuned to minimize lock contention; snapshot isolation, and sequence
numbering facilities supporting early lock release are useful tools for reducing
read-write and write-write contention.

• Performance benchmarks play an important role in comparisons of database
systems, especially as systems become more standards compliant. The TPC
benchmark suites are widely used, and the different TPC benchmarks are use-
ful for comparing the performance of databases under different workloads.

• Applications need to be tested extensively as they are developed, and before
they are deployed. Testing is used to catch errors, as well as to ensure that
performance goals are met.

• Legacy systems are systems based on older-generation technologies such as
nonrelational databases or even directly on file systems. Interfacing legacy
systems with new-generation systems is often important when they run
mission-critical systems. Migrating from legacy systems to new-generation
systems must be done carefully to avoid disruptions, which can be very
expensive.

• Standards are important because of the complexity of database systems and
their need for interoperation. Formal standards exist for SQL. De facto stan-
dards, such as ODBC and JDBC, and standards adopted by industry groups,
such as CORBA, have played an important role in the growth of client–server
database systems.
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Review Terms

• Performance tuning
• Set-orientation
• Batch update (JDBC)
• Bulk load
• Bulk update
• Merge statement
• Bottlenecks
• Queueing systems
• Tunable parameters
• Tuning of hardware
• Five-minute rule
• One-minute rule
• Tuning of the schema
• Tuning of indices
• Materialized views
• Immediate view maintenance
• Deferred view maintenance
• Tuning of transactions
• Lock contention
• Sequences
• Minibatch transactions
• Performance simulation
• Performance benchmarks
• Service time
• Time to completion
• Database-application classes
• The TPC benchmarks

◦ TPC-A

◦ TPC-B

◦ TPC-C

◦ TPC-D

◦ TPC-E

◦ TPC-H

• Web interactions per second
• Regression testing
• Killing mutants
• Legacy systems
• Reverse engineering
• Re-engineering
• Standardization

◦ Formal standards

◦ De facto standards

◦ Anticipatory standards

◦ Reactionary standards

• Database connectivity standards

◦ ODBC

◦ OLE-DB

◦ X/Open XA standards

• Object database standards

◦ ODMG

◦ CORBA

• XML-based standards

Practice Exercises

24.1 Many applications need to generate sequence numbers for each transac-
tion.

a. If a sequence counter is locked in two-phase manner, it can become
a concurrency bottleneck. Explain why this may be the case.
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b. Many database systems support built-in sequence counters that are
not locked in two-phase manner; when a transaction requests a se-
quence number, the counter is locked, incremented and unlocked.
i. Explain how such counters can improve concurrency.

ii. Explain why there may be gaps in the sequence numbers belong-
ing to the final set of committed transactions.

24.2 Suppose you are given a relation r (a , b, c).

a. Give an example of a situation under which the performance of
equality selection queries on attribute a can be greatly affected by
how r is clustered.

b. Suppose you also had range selection queries on attribute b. Can you
cluster r in such a way that the equality selection queries on r.a and
the range selection queries on r.b can both be answered efficiently?
Explain your answer.

c. If clustering as above is not possible, suggest how both types of
queries can be executed efficiently by choosing appropriate indices,
assuming your database supports index-only plans (that is, if all in-
formation required for a query is available in an index, the database
can generate a plan that uses the index but does not access the rela-
tion).

24.3 Suppose that a database application does not appear to have a single
bottleneck; that is, CPU and disk utilization are both high, and all database
queues are roughly balanced. Does that mean the application cannot be
tuned further? Explain your answer.

24.4 Suppose a system runs three types of transactions. Transactions of type
A run at the rate of 50 per second, transactions of type B run at 100 per
second, and transactions of type C run at 200 per second. Suppose the
mix of transactions has 25 percent of type A, 25 percent of type B, and 50
percent of type C.

a. What is the average transaction throughput of the system, assuming
there is no interference between the transactions?

b. What factors may result in interference between the transactions of
different types, leading to the calculated throughput being incorrect?

24.5 List some benefits and drawbacks of an anticipatory standard compared
to a reactionary standard.

Exercises

24.6 Find out all performance information your favorite database system pro-
vides. Look for at least the following: what queries are currently executing
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or executed recently, what resources each of them consumed (CPU and
I/O), what fraction of page requests resulted in buffer misses (for each
query, if available), and what locks have a high degree of contention. You
may also be able to get information about CPU and I/O utilization from
the operating system.

24.7 a. What are the three broad levels at which a database system can be
tuned to improve performance?

b. Give two examples of how tuning can be done for each of the levels.

24.8 When carrying out performance tuning, should you try to tune your
hardware (by adding disks or memory) first, or should you try to tune
your transactions (by adding indices or materialized views) first? Explain
your answer.

24.9 Suppose that your application has transactions that each access and up-
date a single tuple in a very large relation stored in a B+-tree file organiza-
tion. Assume that all internal nodes of the B+-tree are in memory, but only
a very small fraction of the leaf pages can fit in memory. Explain how to
calculate the minimum number of disks required to support a workload
of 1000 transactions per second. Also calculate the required number of
disks, using values for disk parameters given in Section 10.2.

24.10 What is the motivation for splitting a long transaction into a series of small
ones? What problems could arise as a result, and how can these problems
be averted?

24.11 Suppose the price of memory falls by half, and the speed of disk access
(number of accesses per second) doubles, while all other factors remain
the same. What would be the effect of this change on the 5-minute and
1-minute rules?

24.12 List at least four features of the TPC benchmarks that help make them
realistic and dependable measures.

24.13 Why was the TPC-D benchmark replaced by the TPC-H and TPC-R bench-
marks?

24.14 Explain what application characteristics would help you decide which of
TPC-C, TPC-H, or TPC-R best models the application.
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C H A P T E R25
Spatial and Temporal Data and
Mobility

For most of the history of databases, the types of data stored in databases were
relatively simple, and this was reflected in the rather limited support for data
types in earlier versions of SQL. Over time, however, there developed increasing
need for handling more complex data types in databases, such as temporal data,
spatial data, and multimedia data.

Another major trend has created its own set of issues: the growth of mobile
computers, starting with laptop computers and pocket organizers and extending
in more recent years to mobile phones with built-in computers and a variety of
wearable computers that are increasingly used in commercial applications.

In this chapter, we study several data types and other database issues dealing
with these applications.

25.1 Motivation

Before we address each of the topics in detail, we summarize the motivation for,
and some important issues in dealing with, each of these types of data.

• Temporal data. Most database systems model the current state of the world,
for instance, current customers, current students, and courses currently be-
ing offered. In many applications, it is very important to store and retrieve
information about past states. Historical information can be incorporated
manually into a schema design. However, the task is greatly simplified by
database support for temporal data, which we study in Section 25.2.

• Spatial data. Spatial data include geographic data, such as maps and asso-
ciated information, and computer-aided-design data, such as integrated-
circuit designs or building designs. Applications of spatial data initially
stored data as files in a file system, as did early-generation business ap-
plications. But as the complexity and volume of the data, and the number of
users, have grown, ad hoc approaches to storing and retrieving data in a file
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system have proved insufficient for the needs of many applications that use
spatial data.

Spatial-data applications require facilities offered by a database system—
in particular, the ability to store and query large amounts of data efficiently.
Some applications may also require other database features, such as atomic
updates to parts of the stored data, durability, and concurrency control. In
Section 25.3, we study the extensions needed in traditional database systems
to support spatial data.

• Multimedia data. In Section 25.4, we study the features required in database
systems that store multimedia data such as image, video, and audio data. The
main distinguishing feature of video and audio data is that the display of the
data requires retrieval at a steady, predetermined rate; hence, such data are
called continuous-media data.

• Mobile databases. In Section 25.5, we study the database requirements of mo-
bile computing systems, such as laptop and netbook computers and high-end
cell phones that are connected to base stations via wireless digital commu-
nication networks. Such computers may need to be able to operate while
disconnected from the network, unlike the distributed database systems dis-
cussed in Chapter 19. They also have limited storage capacity, and thus
require special techniques for memory management.

25.2 Time in Databases

A database models the state of some aspect of the real world outside itself. Typi-
cally, databases model only one state—the current state—of the real world, and
do not store information about past states, except perhaps as audit trails. When
the state of the real world changes, the database gets updated, and information
about the old state gets lost. However, in many applications, it is important to
store and retrieve information about past states. For example, a patient database
must store information about the medical history of a patient. A factory monitor-
ing system may store information about current and past readings of sensors in
the factory, for analysis. Databases that store information about states of the real
world across time are called temporal databases.

When considering the issue of time in database systems, we must distinguish
between time as measured by the system and time as observed in the real world.
The valid time for a fact is the set of time intervals during which the fact is
true in the real world. The transaction time for a fact is the time interval during
which the fact is current within the database system. This latter time is based on
the transaction serialization order and is generated automatically by the system.
Note that valid-time intervals, being a real-world concept, cannot be generated
automatically and must be provided to the system.

A temporal relation is one where each tuple has an associated time when
it is true; the time may be either valid time or transaction time. Of course, both
valid time and transaction time can be stored, in which case the relation is said
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ID name dept name salary from to

10101 Srinivasan Comp. Sci. 61000 2007/1/1 2007/12/31
10101 Srinivasan Comp. Sci. 65000 2008/1/1 2008/12/31
12121 Wu Finance 82000 2005/1/1 2006/12/31
12121 Wu Finance 87000 2007/1/1 2007/12/31
12121 Wu Finance 90000 2008/1/1 2008/12/31
98345 Kim Elec. Eng. 80000 2005/1/1 2008/12/31

Figure 25.1 A temporal instructor relation.

to be a bitemporal relation. Figure 25.1 shows an example of a temporal relation.
To simplify the representation, each tuple has only one time interval associated
with it; thus, a tuple is represented once for every disjoint time interval in which
it is true. Intervals are shown here as a pair of attributes from and to; an actual
implementation would have a structured type, perhaps called Interval, that con-
tains both fields. Note that some of the tuples have a “*” in the to time column;
these asterisks indicate that the tuple is true until the value in the to time column
is changed; thus, the tuple is true at the current time. Although times are shown
in textual form, they are stored internally in a more compact form, such as the
number of seconds since some fixed time on a fixed date (such as 12:00 A.M.,
January 1, 1900) that can be translated back to the normal textual form.

25.2.1 Time Specification in SQL

The SQL standard defines the types date, time, and timestamp as we saw in
Chapter 4. The type date contains four digits for the year (1–9999), two digits for
the month (1–12), and two digits for the date (1–31). The type time contains two
digits for the hour, two digits for the minute, and two digits for the second, plus
optional fractional digits. The seconds field can go beyond 60, to allow for leap
seconds that are added during some years to correct for small variations in the
speed of rotation of Earth. The type timestamp contains the fields of date and
time, with six fractional digits for the seconds field.

Since different places in the world have different local times, there is often a
need for specifying the time zone along with the time. The Universal Coordinated
Time (UTC) is a standard reference point for specifying time, with local times
defined as offsets from UTC. (The standard abbreviation is UTC, rather than UCT,
since it is an abbreviation of “Universal Coordinated Time” written in French as
universel temps coordonné.) SQL also supports two types, time with time zone, and
timestamp with time zone, which specify the time as a local time plus the offset
of the local time from UTC. For instance, the time could be expressed in terms of
U.S. Eastern Standard Time, with an offset of −6:00, since U.S. Eastern Standard
time is 6 hours behind UTC.

SQL supports a type called interval, which allows us to refer to a period of
time such as “1 day” or “2 days and 5 hours,” without specifying a particular time
when this period starts. This notion differs from the notion of interval we used
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previously, which refers to an interval of time with specific starting and ending
times.1

25.2.2 Temporal Query Languages

A database relation without temporal information is sometimes called a snapshot
relation, since it reflects the state in a snapshot of the real world. Thus, a snapshot
of a temporal relation at a point in time t is the set of tuples in the relation that
are true at time t, with the time-interval attributes projected out. The snapshot
operation on a temporal relation gives the snapshot of the relation at a specified
time (or the current time, if the time is not specified).

A temporal selection is a selection that involves the time attributes; a tempo-
ral projection is a projection where the tuples in the projection inherit their times
from the tuples in the original relation. A temporal join is a join, with the time of
a tuple in the result being the intersection of the times of the tuples from which it
is derived. If the times do not intersect, the tuple is removed from the result.

The predicates precedes, overlaps, and contains can be applied on intervals; their
meanings should be clear. The intersect operation can be applied on two intervals,
to give a single (possibly empty) interval. However, the union of two intervals
may or may not be a single interval.

Functional dependencies must be used with care in a temporal relation, as
we saw in Section 8.9. Although the instructor ID may functionally determine the
salary at any given point in time, obviously the salary can change over time. A
temporal functional dependency X

�→ Y holds on a relation schema R if, for all
legal instances r of R, all snapshots of r satisfy the functional dependency X → Y.

Several proposals have been made for extending SQL to improve its support
of temporal data, but at least until SQL:2008, SQL has not provided any special
support for temporal data beyond the time-related data types and operations.

25.3 Spatial and Geographic Data

Spatial data support in databases is important for efficiently storing, indexing,
and querying of data on the basis of spatial locations. For example, suppose that
we want to store a set of polygons in a database and to query the database to
find all polygons that intersect a given polygon. We cannot use standard index
structures, such as B-trees or hash indices, to answer such a query efficiently.
Efficient processing of the above query would require special-purpose index
structures, such as R-trees (which we study later) for the task.

Two types of spatial data are particularly important:

• Computer-aided-design (CAD) data, which includes spatial information about
how objects—such as buildings, cars, or aircraft—are constructed. Other im-

1Many temporal database researchers feel this type should have been called span since it does not specify an exact start
or end time, only the time span between the two.
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portant examples of computer-aided-design databases are integrated-circuit
and electronic-device layouts.

• Geographic data such as road maps, land-usage maps, topographic elevation
maps, political maps showing boundaries, land-ownership maps, and so on.
Geographic information systems are special-purpose databases tailored for
storing geographic data.

Support for geographic data has been added to many database systems, such as
the IBM DB2 Spatial Extender, the Informix Spatial Datablade, and Oracle Spatial.

25.3.1 Representation of Geometric Information

Figure 25.2 illustrates how various geometric constructs can be represented in a
database, in a normalized fashion. We stress here that geometric information can
be represented in several different ways, only some of which we describe.

A line segment can be represented by the coordinates of its endpoints. For ex-
ample, in a map database, the two coordinates of a point would be its latitude and
longitude. A polyline (also called a linestring) consists of a connected sequence
of line segments and can be represented by a list containing the coordinates of the
endpoints of the segments, in sequence. We can approximately represent an arbi-
trary curve by polylines, by partitioning the curve into a sequence of segments.
This representation is useful for two-dimensional features such as roads; here, the
width of the road is small enough relative to the size of the full map that it can
be considered to be a line. Some systems also support circular arcs as primitives,
allowing curves to be represented as sequences of arcs.

We can represent a polygon by listing its vertices in order, as in Figure 25.2.2
The list of vertices specifies the boundary of a polygonal region. In an alterna-
tive representation, a polygon can be divided into a set of triangles, as shown in
Figure 25.2. This process is called triangulation, and any polygon can be triangu-
lated. The complex polygon can be given an identifier, and each of the triangles
into which it is divided carries the identifier of the polygon. Circles and ellipses
can be represented by corresponding types, or can be approximated by polygons.

List-based representations of polylines or polygons are often convenient for
query processing. Such non-first-normal-form representations are used when
supported by the underlying database. So that we can use fixed-size tuples (in
first normal form) for representing polylines, we can give the polyline or curve an
identifier, and can represent each segment as a separate tuple that also carries with
it the identifier of the polyline or curve. Similarly, the triangulated representation
of polygons allows a first normal form relational representation of polygons.

The representation of points and line segments in three-dimensional space
is similar to their representation in two-dimensional space, the only difference
being that points have an extra z component. Similarly, the representation of pla-
nar figures—such as triangles, rectangles, and other polygons—does not change

2Some references use the term closed polygon to refer to what we call polygons, and refer to polylines as open polygons.
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Figure 25.2 Representation of geometric constructs.

much when we move to three dimensions. Tetrahedrons and cuboids can be rep-
resented in the same way as triangles and rectangles. We can represent arbitrary
polyhedra by dividing them into tetrahedrons, just as we triangulate polygons.
We can also represent them by listing their faces, each of which is itself a polygon,
along with an indication of which side of the face is inside the polyhedron.

25.3.2 Design Databases

Computer-aided-design (CAD) systems traditionally stored data in memory dur-
ing editing or other processing, and wrote the data back to a file at the end of a
session of editing. The drawbacks of such a scheme include the cost (program-
ming complexity, as well as time cost) of transforming data from one form to
another, and the need to read in an entire file even if only parts of it are required.
For large designs, such as the design of a large-scale integrated circuit or the
design of an entire airplane, it may be impossible to hold the complete design in
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memory. Designers of object-oriented databases were motivated in large part by
the database requirements of CAD systems. Object-oriented databases represent
components of the design as objects, and the connections between the objects
indicate how the design is structured.

The objects stored in a design database are generally geometric objects. Sim-
ple two-dimensional geometric objects include points, lines, triangles, rectangles,
and, in general, polygons. Complex two-dimensional objects can be formed from
simple objects by means of union, intersection, and difference operations. Simi-
larly, complex three-dimensional objects may be formed from simpler objects such
as spheres, cylinders, and cuboids, by union, intersection, and difference opera-
tions, as in Figure 25.3. Three-dimensional surfaces may also be represented by
wireframe models, which essentially model the surface as a set of simpler objects,
such as line segments, triangles, and rectangles.

Design databases also store nonspatial information about objects, such as
the material from which the objects are constructed. We can usually model such
information by standard data-modeling techniques. We concern ourselves here
with only the spatial aspects.

Various spatial operations must be performed on a design. For instance, the
designer may want to retrieve that part of the design that corresponds to a par-
ticular region of interest. Spatial-index structures, discussed in Section 25.3.5,
are useful for such tasks. Spatial-index structures are multidimensional, dealing
with two- and three-dimensional data, rather than dealing with just the simple
one-dimensional ordering provided by the B+-trees.

Spatial-integrity constraints, such as “two pipes should not be in the same
location,” are important in design databases to prevent interference errors. Such
errors often occur if the design is performed manually, and are detected only when
a prototype is being constructed. As a result, these errors can be expensive to fix.
Database support for spatial-integrity constraints helps people to avoid design

(a) Difference of cylinders (b) Union of cylinders

Figure 25.3 Complex three-dimensional objects.
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errors, thereby keeping the design consistent. Implementing such integrity checks
again depends on the availability of efficient multidimensional index structures.

25.3.3 Geographic Data

Geographic data are spatial in nature, but differ from design data in certain ways.
Maps and satellite images are typical examples of geographic data. Maps may
provide not only location information—about boundaries, rivers, and roads, for
example—but also much more detailed information associated with locations,
such as elevation, soil type, land usage, and annual rainfall.

25.3.3.1 Applications of Geographic Data

Geographic databases have a variety of uses, including online map services;
vehicle-navigation systems; distribution-network information for public-service
utilities such as telephone, electric-power, and water-supply systems; and land-
usage information for ecologists and planners.

Web-based road map services form a very widely used application of map
data. At the simplest level, these systems can be used to generate online road
maps of a desired region. An important benefit of online maps is that it is easy to
scale the maps to the desired size—that is, to zoom in and out to locate relevant
features. Road map services also store information about roads and services, such
as the layout of roads, speed limits on roads, road conditions, connections between
roads, and one-way restrictions. With this additional information about roads, the
maps can be used for getting directions to go from one place to another and for
automatic trip planning. Users can query online information about services to
locate, for example, hotels, gas stations, or restaurants with desired offerings
and price ranges. In recent years, several Web-based map services have defined
APIs that allow programmers to create customized maps that include data from
the map service along with data from other sources. Such customized maps can
be used to display, for example, houses available for sale or rent, or shops and
restaurants, in a particular area.

Vehicle-navigation systems are systems that are mounted in automobiles and
provide road maps and trip-planning services. They include a Global Positioning
System (GPS) unit, which uses information broadcast from GPS satellites to find
the current location with an accuracy of tens of meters. With such a system, a
driver can never3 get lost—the GPS unit finds the location in terms of latitude,
longitude, and elevation and the navigation system can query the geographic
database to find where and on which road the vehicle is currently located.

Geographic databases for public-utility information have become very im-
portant as the network of buried cables and pipes has grown. Without detailed
maps, work carried out by one utility may damage the cables of another utility,
resulting in large-scale disruption of service. Geographic databases, coupled with
accurate location-finding systems, help avoid such problems.

3Well, hardly ever!
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25.3.3.2 Representation of Geographic Data

Geographic data can be categorized into two types:

• Raster data. Such data consist of bit maps or pixel maps, in two or more
dimensions. A typical example of a two-dimensional raster image is a satellite
image of an area. In addition to the actual image, the data includes the location
of the image, specified for example by the latitude and longitude of its corners,
and the resolution, specified either by the total number of pixels, or, more
commonly in the context of geographic data, by the area covered by each
pixel.

Raster data is often represented as tiles, each covering a fixed sized area.
A larger area can be displayed by displaying all the tiles that overlap with
the area. To allow the display of data at different zoom levels, a separate set
of tiles is created for each zoom level. Once the zoom level is set by the user
interface (for example a Web browser), tiles at that zoom level, which overlap
the area being displayed, are retrieved and displayed.

Raster data can be three-dimensional—for example, the temperature
at different altitudes at different regions, again measured with the help of
a satellite. Time could form another dimension—for example, the surface
temperature measurements at different points in time.

• Vector data. Vector data are constructed from basic geometric objects, such
as points, line segments, polylines, triangles, and other polygons in two
dimensions, and cylinders, spheres, cuboids, and other polyhedrons in three
dimensions. In the context of geographic data, points are usually represented
by latitude and longitude, and where the height is relevant, additionally by
elevation.

Map data are often represented in vector format. Roads are often repre-
sented as polylines. Geographic features, such as large lakes, or even political
features such as states and countries, are represented as complex polygons.
Some features, such as rivers, may be represented either as complex curves
or as complex polygons, depending on whether their width is relevant.

Geographic information related to regions, such as annual rainfall, can be
represented as an array—that is, in raster form. For space efficiency, the array
can be stored in a compressed form. In Section 25.3.5.2, we study an alternative
representation of such arrays by a data structure called a quadtree.

As another alternative, we can represent region information in vector form,
using polygons, where each polygon is a region within which the array value is the
same. The vector representation is more compact than the raster representation
in some applications. It is also more accurate for some tasks, such as depicting
roads, where dividing the region into pixels (which may be fairly large) leads to
a loss of precision in location information. However, the vector representation is
unsuitable for applications where the data are intrinsically raster based, such as
satellite images.
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Topographical information, that is information about the elevation (height)
of each point on a surface, can be represented in raster form. Alternatively it can
be represented in vector form by dividing the surface into polygons covering re-
gions of (approximately) equal elevation, with a single elevation value associated
with each polygon. As another alternative, the surface can be triangulated (that
is, divided into triangles), with each triangle represented by the latitude, longi-
tude, and elevation of each of its corners. The latter representation, called the
triangulated irregular network (TIN) representation, is a compact representation
which is particularly useful for generating three-dimensional views of an area.

Geographic information systems usually contain both raster and vector data,
and can merge the two kinds of data when displaying results to users. For ex-
ample, maps applications usually contain both satellite images and vector data
about roads, building and other landmarks. A map display usually overlays dif-
ferent kinds of information; for example, road information can be overlaid on
a background satellite image, to create a hybrid display. In fact, a map typically
consists of multiple layers, which are displayed in bottom-to-top order; data from
higher layers appears on top of data from lower layers.

It is also interesting to note that even information that is actually stored in
vector form may be converted to raster form before it is sent to a user interface
such as a Web browser. One reason is that even Web browsers that do not sup-
port scripting languages (required to interpret and display vector data) can then
display map data; a second reason may be to prevent end users from extracting
and using the vector data.

Map services such as Google Maps and Yahoo! Maps provide APIs that allow
users to create specialized map displays, containing application specific data
overlaid on top of standard map data. For example, a Web site may show a map of
an area with information about restaurants overlaid on the map. The overlays can
be constructed dynamically, displaying only restaurants with a specific cuisine,
for example, or allowing users to change the zoom level, or pan the display. The
maps APIs for a specific language (typically JavaScript or Flash) are built on top
of a Web service that provides the underlying map data.

25.3.4 Spatial Queries

There are a number of types of queries that involve spatial locations.

• Nearness queries request objects that lie near a specified location. A query
to find all restaurants that lie within a given distance of a given point is an
example of a nearness query. The nearest-neighbor query requests the object
that is nearest to a specified point. For example, we may want to find the
nearest gasoline station. Note that this query does not have to specify a limit
on the distance, and hence we can ask it even if we have no idea how far the
nearest gasoline station lies.

• Region queries deal with spatial regions. Such a query can ask for objects
that lie partially or fully inside a specified region. A query to find all retail
shops within the geographic boundaries of a given town is an example.
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• Queries may also request intersections and unions of regions. For example,
given region information, such as annual rainfall and population density, a
query may request all regions with a low annual rainfall as well as a high
population density.

Queries that compute intersections of regions can be thought of as computing
the spatial join of two spatial relations—for example, one representing rainfall
and the other representing population density—with the location playing the role
of join attribute. In general, given two relations, each containing spatial objects,
the spatial join of the two relations generates either pairs of objects that intersect,
or the intersection regions of such pairs.

Several join algorithms efficiently compute spatial joins on vector data. Al-
though nested-loop join and indexed nested-loop join (with spatial indices) can
be used, hash joins and sort–merge joins cannot be used on spatial data. Re-
searchers have proposed join techniques based on coordinated traversal of spa-
tial index structures on the two relations. See the bibliographical notes for more
information.

In general, queries on spatial data may have a combination of spatial and
nonspatial requirements. For instance, we may want to find the nearest restaurant
that has vegetarian selections and that charges less than $10 for a meal.

Since spatial data are inherently graphical, we usually query them by using a
graphical query language. Results of such queries are also displayed graphically,
rather than in tables. The user can invoke various operations on the interface,
such as choosing an area to be viewed (for example, by pointing and clicking
on suburbs west of Manhattan), zooming in and out, choosing what to display
on the basis of selection conditions (for example, houses with more than three
bedrooms), overlay of multiple maps (for example, houses with more than three
bedrooms overlaid on a map showing areas with low crime rates), and so on.
The graphical interface constitutes the front end. Extensions of SQL have been
proposed to permit relational databases to store and retrieve spatial information
efficiently, and also to allow queries to mix spatial and nonspatial conditions.
Extensions include allowing abstract data types, such as lines, polygons, and bit
maps, and allowing spatial conditions, such as contains or overlaps.

25.3.5 Indexing of Spatial Data

Indices are required for efficient access to spatial data. Traditional index struc-
tures, such as hash indices and B-trees, are not suitable, since they deal only
with one-dimensional data, whereas spatial data are typically of two or more
dimensions.

25.3.5.1 k-d Trees

To understand how to index spatial data consisting of two or more dimensions,
we consider first the indexing of points in one-dimensional data. Tree structures,
such as binary trees and B-trees, operate by successively dividing space into
smaller parts. For instance, each internal node of a binary tree partitions a one-
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Figure 25.4 Division of space by a k-d tree.

dimensional interval in two. Points that lie in the left partition go into the left
subtree; points that lie in the right partition go into the right subtree. In a balanced
binary tree, the partition is chosen so that approximately one-half of the points
stored in the subtree fall in each partition. Similarly, each level of a B-tree splits a
one-dimensional interval into multiple parts.

We can use that intuition to create tree structures for two-dimensional space,
as well as in higher-dimensional spaces. A tree structure called a k-d tree was one
of the early structures used for indexing in multiple dimensions. Each level of a k-d
tree partitions the space into two. The partitioning is done along one dimension
at the node at the top level of the tree, along another dimension in nodes at the
next level, and so on, cycling through the dimensions. The partitioning proceeds
in such a way that, at each node, approximately one-half of the points stored in
the subtree fall on one side and one-half fall on the other. Partitioning stops when
a node has less than a given maximum number of points. Figure 25.4 shows a
set of points in two-dimensional space, and a k-d tree representation of the set
of points. Each line corresponds to a node in the tree, and the maximum number
of points in a leaf node has been set at 1. Each line in the figure (other than the
outside box) corresponds to a node in the k-d tree. The numbering of the lines in
the figure indicates the level of the tree at which the corresponding node appears.

The k-d-B tree extends the k-d tree to allow multiple child nodes for each
internal node, just as a B-tree extends a binary tree, to reduce the height of the
tree. k-d-B trees are better suited for secondary storage than k-d trees.

25.3.5.2 Quadtrees

An alternative representation for two-dimensional data is a quadtree. An example
of the division of space by a quadtree appears in Figure 25.5. The set of points
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Figure 25.5 Division of space by a quadtree.

is the same as that in Figure 25.4. Each node of a quadtree is associated with a
rectangular region of space. The top node is associated with the entire target space.
Each nonleaf node in a quadtree divides its region into four equal-sized quadrants,
and correspondingly each such node has four child nodes corresponding to the
four quadrants. Leaf nodes have between zero and some fixed maximum number
of points. Correspondingly, if the region corresponding to a node has more than
the maximum number of points, child nodes are created for that node. In the
example in Figure 25.5, the maximum number of points in a leaf node is set to 1.

This type of quadtree is called a PR quadtree, to indicate it stores points, and
that the division of space is divided based on regions, rather than on the actual set
of points stored. We can use region quadtrees to store array (raster) information.
A node in a region quadtree is a leaf node if all the array values in the region that
it covers are the same. Otherwise, it is subdivided further into four children of
equal area, and is therefore an internal node. Each node in the region quadtree
corresponds to a subarray of values. The subarrays corresponding to leaves either
contain just a single array element or have multiple array elements, all of which
have the same value.

Indexing of line segments and polygons presents new problems. There are
extensions of k-d trees and quadtrees for this task. However, a line segment or
polygon may cross a partitioning line. If it does, it has to be split and represented
in each of the subtrees in which its pieces occur. Multiple occurrences of a line
segment or polygon can result in inefficiencies in storage, as well as inefficiencies
in querying.

25.3.5.3 R-Trees

A storage structure called an R-tree is useful for indexing of objects such as
points, line segments, rectangles, and other polygons. An R-tree is a balanced
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tree structure with the indexed objects stored in leaf nodes, much like a B+-tree.
However, instead of a range of values, a rectangular bounding box is associated
with each tree node. The bounding box of a leaf node is the smallest rectangle
parallel to the axes that contains all objects stored in the leaf node. The bounding
box of internal nodes is, similarly, the smallest rectangle parallel to the axes that
contains the bounding boxes of its child nodes. The bounding box of an object
(such as a polygon) is defined, similarly, as the smallest rectangle parallel to the
axes that contains the object.

Each internal node stores the bounding boxes of the child nodes along with
the pointers to the child nodes. Each leaf node stores the indexed objects, and
may optionally store the bounding boxes of the objects; the bounding boxes help
speed up checks for overlaps of the rectangle with the indexed objects—if a query
rectangle does not overlap with the bounding box of an object, it cannot overlap
with the object, either. (If the indexed objects are rectangles, there is of course no
need to store bounding boxes, since they are identical to the rectangles.)

Figure 25.6 shows an example of a set of rectangles (drawn with a solid line)
and the bounding boxes (drawn with a dashed line) of the nodes of an R-tree for
the set of rectangles. Note that the bounding boxes are shown with extra space
inside them, to make them stand out pictorially. In reality, the boxes would be
smaller and fit tightly on the objects that they contain; that is, each side of a
bounding box B would touch at least one of the objects or bounding boxes that
are contained in B.

The R-tree itself is at the right side of Figure 25.6. The figure refers to the
coordinates of bounding box i as B Bi in the figure.

We shall now see how to implement search, insert, and delete operations on
an R-tree.
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Figure 25.6 An R-tree.



25.3 Spatial and Geographic Data 1075

• Search. As the figure shows, the bounding boxes associated with sibling
nodes may overlap; in B+-trees, k-d trees, and quadtrees, in contrast, the
ranges do not overlap. A search for objects containing a point therefore has
to follow all child nodes whose associated bounding boxes contain the point;
as a result, multiple paths may have to be searched. Similarly, a query to find
all objects that intersect a given object has to go down every node where the
associated rectangle intersects the given object.

• Insert. When we insert an object into an R-tree, we select a leaf node to hold
the object. Ideally we should pick a leaf node that has space to hold a new
entry, and whose bounding box contains the bounding box of the object.
However, such a node may not exist; even if it did, finding the node may be
very expensive, since it is not possible to find it by a single traversal down
from the root. At each internal node we may find multiple children whose
bounding boxes contain the bounding box of the object, and each of these
children needs to be explored. Therefore, as a heuristic, in a traversal from the
root, if any of the child nodes has a bounding box containing the bounding
box of the object, the R-tree algorithm chooses one of them arbitrarily. If none
of the children satisfy this condition, the algorithm chooses a child node
whose bounding box has the maximum overlap with the bounding box of
the object for continuing the traversal.

Once the leaf node has been reached, if the node is already full, the algorithm
performs node splitting (and propagates splitting upward if required) in a
manner very similar to B+-tree insertion. Just as with B+-tree insertion, the R-
tree insertion algorithm ensures that the tree remains balanced. Additionally,
it ensures that the bounding boxes of leaf nodes, as well as internal nodes,
remain consistent; that is, bounding boxes of leaves contain all the bounding
boxes of the objects stored at the leaf, while the bounding boxes for internal
nodes contain all the bounding boxes of the children nodes.

The main difference of the insertion procedure from the B+-tree insertion
procedure lies in how the node is split. In a B+-tree, it is possible to find a
value such that half the entries are less than the midpoint and half are greater
than the value. This property does not generalize beyond one dimension;
that is, for more than one dimension, it is not always possible to split the
entries into two sets so that their bounding boxes do not overlap. Instead, as
a heuristic, the set of entries S can be split into two disjoint sets S1 and S2 so
that the bounding boxes of S1 and S2 have the minimum total area; another
heuristic would be to split the entries into two sets S1 and S2 in such a way
that S1 and S2 have minimum overlap. The two nodes resulting from the split
would contain the entries in S1 and S2, respectively. The cost of finding splits
with minimum total area or overlap can itself be large, so cheaper heuristics,
such as the quadratic split heuristic, are used. (The heuristic gets is name from
the fact that it takes time quadratic in the number of entries.)

The quadratic split heuristic works this way: First, it picks a pair of
entries a and b from S such that putting them in the same node would result
in a bounding box with the maximum wasted space; that is, the area of the
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minimum bounding box of a and b minus the sum of the areas of a and b is the
largest. The heuristic places the entries a and b in sets S1 and S2, respectively.

It then iteratively adds the remaining entries, one entry per iteration, to
one of the two sets S1 or S2. At each iteration, for each remaining entry e, let
ie,1 denote the increase in the size of the bounding box of S1 if e is added to
S1 and let ie,2 denote the corresponding increase for S2. In each iteration, the
heuristic chooses one of the entries with the maximum difference of ie,1 and
ie,2 and adds it to S1 if ie,1 is less than ie,2, and to S2 otherwise. That is, an entry
with “maximum preference” for one of S1 or S2 is chosen at each iteration.
The iteration stops when all entries have been assigned, or when one of the
sets S1 or S2 has enough entries that all remaining entries have to be added to
the other set so the nodes constructed from S1 and S2 both have the required
minimum occupancy. The heuristic then adds all unassigned entries to the
set with fewer entries.

• Deletion. Deletion can be performed like a B+-tree deletion, borrowing en-
tries from sibling nodes, or merging sibling nodes if a node becomes under-
full. An alternative approach redistributes all the entries of underfull nodes
to sibling nodes, with the aim of improving the clustering of entries in the
R-tree.

See the bibliographical references for more details on insertion and deletion op-
erations on R-trees, as well as on variants of R-trees, called R∗-trees or R+-trees.

The storage efficiency of R-trees is better than that of k-d trees or quadtrees,
since an object is stored only once, and we can ensure easily that each node is
at least half full. However, querying may be slower, since multiple paths have
to be searched. Spatial joins are simpler with quadtrees than with R-trees, since
all quadtrees on a region are partitioned in the same manner. However, because
of their better storage efficiency, and their similarity to B-trees, R-trees and their
variants have proved popular in database systems that support spatial data.

25.4 Multimedia Databases

Multimedia data, such as images, audio, and video—an increasingly popular
form of data—are today almost always stored outside the database, in file sys-
tems. This kind of storage is not a problem when the number of multimedia
objects is relatively small, since features provided by databases are usually not
important.

However, database features become important when the number of multime-
dia objects stored is large. Issues such as transactional updates, querying facilities,
and indexing then become important. Multimedia objects often have descriptive
attributes, such as those indicating when they were created, who created them,
and to what category they belong. One approach to building a database for such
multimedia objects is to use databases for storing the descriptive attributes and
for keeping track of the files in which the multimedia objects are stored.
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However, storing multimedia outside the database makes it harder to provide
database functionality, such as indexing on the basis of actual multimedia data
content. It can also lead to inconsistencies, such as a file that is noted in the
database, but whose contents are missing, or vice versa. It is therefore desirable
to store the data themselves in the database.

Several issues must be addressed if multimedia data are to be stored in a
database.

• The database must support large objects, since multimedia data such as
videos can occupy up to a few gigabytes of storage. Many database sys-
tems do not support objects larger than a few gigabytes. Larger objects could
be split into smaller pieces and stored in the database. Alternatively, the
multimedia object may be stored in a file system, but the database may con-
tain a pointer to the object; the pointer would typically be a file name. The
SQL/MED standard (MED stands for Management of External Data) allows
external data, such as files, to be treated as if they are part of the database.
With SQL/MED, the object would appear to be part of the database, but can
be stored externally. We discuss multimedia data formats in Section 25.4.1.

• The retrieval of some types of data, such as audio and video, has the require-
ment that data delivery must proceed at a guaranteed steady rate. Such data
are sometimes called isochronous data, or continuous-media data. For ex-
ample, if audio data are not supplied in time, there will be gaps in the sound.
If the data are supplied too fast, system buffers may overflow, resulting in
loss of data. We discuss continuous-media data in Section 25.4.2.

• Similarity-based retrieval is needed in many multimedia database applica-
tions. For example, in a database that stores fingerprint images, a query
fingerprint image is provided, and fingerprints in the database that are sim-
ilar to the query fingerprint must be retrieved. Index structures such as B+-
trees and R-trees cannot be used for this purpose; special index structures
need to be created. We discuss similarity-based retrieval in Section 25.4.3.

25.4.1 Multimedia Data Formats

Because of the large number of bytes required to represent multimedia data, it
is essential that multimedia data be stored and transmitted in compressed form.
For image data, the most widely used format is JPEG, named after the standards
body that created it, the Joint Picture Experts Group. We can store video data by
encoding each frame of video in JPEG format, but such an encoding is wasteful,
since successive frames of a video are often nearly the same. The Moving Picture
Experts Group has developed the MPEG series of standards for encoding video and
audio data; these encodings exploit commonalities among a sequence of frames
to achieve a greater degree of compression. The MPEG-1 standard stores a minute
of 30-frame-per-second video and audio in approximately 12.5 megabytes (com-
pared to approximately 75 megabytes for video in only JPEG). However, MPEG-1
encoding introduces some loss of video quality, to a level roughly comparable
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to that of VHS videotape. The MPEG-2 standard is designed for digital broadcast
systems and digital video disks (DVDs); it introduces only a negligible loss of
video quality. MPEG-2 compresses 1 minute of video and audio to approximately
17 megabytes. MPEG-4 provides techniques for further compression of video, with
variable bandwidth to support delivery of video data over networks with a wide
range of bandwidths. Several competing standards are used for audio encoding,
including MP3, which stands for MPEG-1 Layer 3, RealAudio, Windows Media
Audio, and other formats. High-definition video with audio is encoded in several
variants of MPEG-4 that include MPEG-4 AVC and AVCHD.

25.4.2 Continuous-Media Data

The most important types of continuous-media data are video and audio data (for
example, a database of movies). Continuous-media systems are characterized by
their real-time information-delivery requirements:

• Data must be delivered sufficiently fast that no gaps in the audio or video
result.

• Data must be delivered at a rate that does not cause overflow of system
buffers.

• Synchronization among distinct data streams must be maintained. This need
arises, for example, when the video of a person speaking must show lips
moving synchronously with the audio of the person speaking.

To supply data predictably at the right time to a large number of consumers
of the data, the fetching of data from disk must be coordinated carefully. Usually,
data are fetched in periodic cycles. In each cycle, say of n seconds, n seconds’ worth
of data is fetched for each consumer and stored in memory buffers, while the data
fetched in the previous cycle is being sent to the consumers from the memory
buffers. The cycle period is a compromise: A short period uses less memory but
requires more disk-arm movement, which is a waste of resources, while a long
period reduces disk-arm movement but increases memory requirements and may
delay initial delivery of data. When a new request arrives, admission control
comes into play: That is, the system checks if the request can be satisfied with
available resources (in each period); if so, it is admitted; otherwise it is rejected.

Extensive research on delivery of continuous-media data has dealt with such
issues as handling arrays of disks and dealing with disk failure. See the biblio-
graphical references for details.

Several vendors offer video-on-demand servers. Current systems are based
on file systems, because existing database systems do not provide the real-time re-
sponse that these applications need. The basic architecture of a video-on-demand
system comprises:

• Video server. Multimedia data are stored on several disks (usually in a RAID
configuration). Systems containing a large volume of data may use tertiary
storage for less frequently accessed data.
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• Terminals. People view multimedia data through various devices, collec-
tively referred to as terminals. Examples are personal computers and televi-
sions attached to a small, inexpensive computer called a set-top box.

• Network. Transmission of multimedia data from a server to multiple termi-
nals requires a high-capacity network.

Video-on-demand service over cable networks is widely available.

25.4.3 Similarity-Based Retrieval

In many multimedia applications, data are described only approximately in the
database. An example is the fingerprint data in Section 25.4. Other examples are:

• Pictorial data. Two pictures or images that are slightly different as represented
in the database may be considered the same by a user. For instance, a database
may store trademark designs. When a new trademark is to be registered, the
system may need first to identify all similar trademarks that were registered
previously.

• Audio data. Speech-based user interfaces are being developed that allow the
user to give a command or identify a data item by speaking. The input from
the user must then be tested for similarity to those commands or data items
stored in the system.

• Handwritten data. Handwritten input can be used to identify a handwritten
data item or command stored in the database. Here again, similarity testing
is required.

The notion of similarity is often subjective and user specific. However, sim-
ilarity testing is often more successful than speech or handwriting recognition,
because the input can be compared to data already in the system and, thus, the
set of choices available to the system is limited.

Several algorithms exist for finding the best matches to a given input by sim-
ilarity testing. Many voice-activated systems have been deployed commercially,
particularly for phone applications and in-vehicle controls. See the bibliographi-
cal notes for references.

25.5 Mobility and Personal Databases

Large-scale, commercial databases have traditionally been stored in central com-
puting facilities. In distributed database applications, there has usually been
strong central database and network administration. Several technology trends
have combined to create applications in which this assumption of central control
and administration is not entirely correct:

• The widespread use of laptop, notebook, or netbook computers.

• The widespread use of cell phones with the capabilities of a computer.
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• The development of a relatively low-cost wireless digital communication
infrastructure, based on wireless local-area networks, cellular digital packet
networks, and other technologies.

Mobile computing has proved useful in many applications. Many business
travelers use laptop computers so that they can work and access data en route.
Delivery services use mobile computers to assist in package tracking. Emergency-
response services use mobile computers at the scene of disasters, medical emer-
gencies, and the like to access information and to enter data pertaining to the
situation. Cell phones are increasingly becoming devices that provide not only
phone services, but are also mobile computers allowing email and Web access.
New applications of mobile computers continue to emerge.

Wireless computing creates a situation where machines no longer have fixed
locations and network addresses. Location-dependent queries are an interesting
class of queries that are motivated by mobile computers; in such queries, the
location of the user (computer) is a parameter of the query. The value of the
location parameter is provided by a global positioning system (GPS). An example
is a traveler’s information system that provides data on hotels, roadside services,
and the like to motorists. Processing of queries about services that are ahead on
the current route must be based on knowledge of the user’s location, direction of
motion, and speed. Increasingly, navigational aids are being offered as a built-in
feature in automobiles.

Energy (battery power) is a scarce resource for most mobile computers. This
limitation influences many aspects of system design. Among the more interesting
consequences of the need for energy efficiency is that small mobile devices spend
most of their time sleeping, waking up for a fraction of a second every second
or so to check for incoming data and to send outgoing data. This behavior has a
significant impact on protocols used to communicate with mobile devices. The use
of scheduled data broadcasts to reduce the need for mobile systems to transmit
queries is another way to reduce energy requirements.

Increasing amounts of data may reside on machines administered by users,
rather than by database administrators. Furthermore, these machines may, at
times, be disconnected from the network. In many cases, there is a conflict between
the user’s need to continue to work while disconnected and the need for global
data consistency.

A user is likely to use more than one mobile device. Such users need to be
able to view their data in its most up-to-date version regardless of which device
is being used at a given time. Often, this capability is supported by some variant
of cloud computing, which we discussed in Section 19.9.

In Sections 25.5.1 through 25.5.4, we discuss techniques in use and under
development to deal with the problems of mobility and personal computing.

25.5.1 A Model of Mobile Computing

The mobile-computing environment consists of mobile computers, referred to as
mobile hosts, and a wired network of computers. Mobile hosts communicate
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with the wired network via computers referred to as mobile support stations.
Each mobile support station manages those mobile hosts within its cell—that is,
the geographical area that it covers. Mobile hosts may move between cells, thus
necessitating a handoff of control from one mobile support station to another.
Since mobile hosts may, at times, be powered down, a host may leave one cell and
rematerialize later at some distant cell. Therefore, moves between cells are not
necessarily between adjacent cells. Within a small area, such as a building, mobile
hosts may be connected by a wireless local-area network (LAN) that provides
lower-cost connectivity than would a wide-area cellular network, and that reduces
the overhead of handoffs.

It is possible for mobile hosts to communicate directly without the interven-
tion of a mobile support station. However, such communication can occur only
between nearby hosts. Such direct forms of communication often use Bluetooth,
a short-range digital radio standard that allows wireless connectivity within a 10-
meter range at high speed (up to 721 kilobits per second). Initially conceived as a
replacement for cables, Bluetooth’s greatest benefit is in easy ad hoc connection
of mobile computers, PDAs, mobile phones, and so-called intelligent appliances.

Wireless local-area network systems based on the 801.11 (a/b/g/n) standards
are very widely used today, and systems based on the 802.16 (Wi-Max) standard
are being deployed.

The network infrastructure for mobile computing consists in large part of two
technologies: wireless local-area networks and packet-based cellular telephony
networks. Early cellular systems used analog technology and were designed for
voice communication. Second-generation digital systems retained the focus on
voice applications. Third-generation (3G) and so-called 2.5G systems use packet-
based networking and are more suited to data applications. In these networks,
voice is just one of many applications (albeit an economically important one).
Fourth-generation (4G) technologies include Wi-Max as well as several competi-
tors.

Bluetooth, wireless LANs, and 2.5G and 3G cellular networks make it possible
for a wide variety of devices to communicate at low cost. While such communica-
tion itself does not fit the domain of a usual database application, the accounting,
monitoring, and management data pertaining to this communication generate
huge databases. The immediacy of wireless communication generates a need for
real-time access to many of these databases. This need for timeliness adds another
dimension to the constraints on the system—a matter we shall discuss further in
Section 26.4.

The size and power limitations of many mobile computers have led to al-
ternative memory hierarchies. Instead of, or in addition to, disk storage, flash
memory, which we discussed in Section 10.1, may be included. If the mobile host
includes a hard disk, the disk may be allowed to spin down when it is not in use,
to save energy. The same considerations of size and energy limit the type and size
of the display used in a mobile device. Designers of mobile devices often create
special-purpose user interfaces to work within these constraints. However, the
need to present Web-based data has necessitated the creation of presentation stan-
dards. Wireless application protocol (WAP) is a standard for wireless Internet
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access. WAP-based browsers access special Web pages that use wireless markup
language (WML), an XML-based language designed for the constraints of mobile
and wireless Web browsing.

25.5.2 Routing and Query Processing

The route between a pair of hosts may change over time if one of the two hosts is
mobile. This simple fact has a dramatic effect at the network level, since location-
based network addresses are no longer constants within the system.

Mobility also directly affects database query processing. As we saw in Chap-
ter 19, we must consider the communication costs when we choose a distributed
query-processing strategy. Mobility results in dynamically changing communi-
cation costs, thus complicating the optimization process. Furthermore, there are
competing notions of cost to consider:

• User time is a highly valuable commodity in many business applications.

• Connection time is the unit by which monetary charges are assigned in some
cellular systems.

• Number of bytes, or packets, transferred is the unit by which charges are
computed in some digital cellular systems.

• Time-of-day-based charges vary, depending on whether communication oc-
curs during peak or off-peak periods.

• Energy is limited. Often, battery power is a scarce resource whose use must
be optimized. A basic principle of radio communication is that it requires
less energy to receive than to transmit radio signals. Thus, transmission and
reception of data impose different power demands on the mobile host.

25.5.3 Broadcast Data

It is often desirable for frequently requested data to be broadcast in a contin-
uous cycle by mobile support stations, rather than transmitted to mobile hosts
on demand. A typical application of such broadcast data is stock-market price
information. There are two reasons for using broadcast data. First, the mobile
host avoids the energy cost for transmitting data requests. Second, the broadcast
data can be received by a large number of mobile hosts at once, at no extra cost.
Thus, the available transmission bandwidth is utilized more effectively.

A mobile host can then receive data as they are transmitted, rather than
consuming energy by transmitting a request. The mobile host may have local
nonvolatile storage available to cache the broadcast data for possible later use.
Given a query, the mobile host may optimize energy costs by determining whether
it can process that query with only cached data. If the cached data are insufficient,
there are two options: wait for the data to be broadcast, or transmit a request for
data. To make this decision, the mobile host must know when the relevant data
will be broadcast.
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Broadcast data may be transmitted according to a fixed schedule or a change-
able schedule. In the former case, the mobile host uses the known fixed schedule
to determine when the relevant data will be transmitted. In the latter case, the
broadcast schedule must itself be broadcast at a well-known radio frequency and
at well-known time intervals.

In effect, the broadcast medium can be modeled as a disk with a high latency.
Requests for data can be thought of as being serviced when the requested data
are broadcast. The transmission schedules behave like indices on the disk. The
bibliographical notes list recent research papers in the area of broadcast data
management.

25.5.4 Disconnectivity and Consistency

Since wireless communication may be paid for on the basis of connection time,
there is an incentive for certain mobile hosts to be disconnected for substantial
periods. Mobile computers without wireless connectivity are disconnected most
of the time when they are being used, except periodically when they are connected
to their host computers, either physically or through a computer network.

During these periods of disconnection, the mobile host may remain in oper-
ation. The user of the mobile host may issue queries and updates on data that
reside or are cached locally. This situation creates several problems, in particular:

• Recoverability: Updates entered on a disconnected machine may be lost
if the mobile host experiences a catastrophic failure. Since the mobile host
represents a single point of failure, stable storage cannot be simulated well.

• Consistency: Locally cached data may become out-of-date, but the mobile
host cannot discover this situation until it is reconnected. Likewise, updates
occurring in the mobile host cannot be propagated until reconnection occurs.

We explored the consistency problem in Chapter 19, where we discussed
network partitioning, and we elaborate on it here. In wired distributed systems,
partitioning is considered to be a failure mode; in mobile computing, partitioning
via disconnection is part of the normal mode of operation. It is therefore necessary
to allow data access to proceed despite partitioning, even at the risk of some loss
of consistency.

For data updated by only the mobile host, it is a simple matter to propagate
the updates when the mobile host reconnects. However, if the mobile host caches
read-only copies of data that may be updated by other computers, the cached
data may become inconsistent. When the mobile host is connected, it can be sent
invalidation reports that inform it of out-of-date cache entries. However, when
the mobile host is disconnected, it may miss an invalidation report. A simple
solution to this problem is to invalidate the entire cache on reconnection, but
such an extreme solution is highly costly. Several caching schemes are cited in the
bibliographical notes.

If updates can occur at both the mobile host and elsewhere, detecting conflict-
ing updates is more difficult. Version-numbering-based schemes allow updates
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of shared files from disconnected hosts. These schemes do not guarantee that
the updates will be consistent. Rather, they guarantee that, if two hosts inde-
pendently update the same version of a document, the clash will be detected
eventually, when the hosts exchange information either directly or through a
common host.

The version-vector scheme detects inconsistencies when copies of a docu-
ment are independently updated. This scheme allows copies of a document to be
stored at multiple hosts. Although we use the term document, the scheme can be
applied to any other data items, such as tuples of a relation.

The basic idea is for each host i to store, with its copy of each document d,
a version vector—that is, a set of version numbers {Vd,i [ j]}, with one entry for
each other host j on which the document could potentially be updated. When a
host i updates a document d, it increments the version number Vd,i [i] by one.

Whenever two hosts i and j connect with each other, they exchange updated
documents, so that both obtain new versions of the documents. However, be-
fore exchanging documents, the hosts have to discover whether the copies are
consistent:

1. If the version vectors are the same on both hosts—that is, for each k, Vd,i [k] =
Vd, j [k]—then the copies of document d are identical.

2. If, for each k, Vd,i [k] ≤ Vd, j [k] and the version vectors are not identical, then
the copy of document d at host i is older than the one at host j . That is, the
copy of document d at host j was obtained by one or more modifications of
the copy of the document at host i . Host i replaces its copy of d, as well as
its copy of the version vector for d, with the copies from host j .

3. If there are a pair of hosts k and m such that Vd,i [k] < Vd, j [k] and Vd,i [m] >

Vd, j [m], then the copies are inconsistent; that is, the copy of d at i contains
updates performed by host k that have not been propagated to host j , and,
similarly, the copy of d at j contains updates performed by host m that have
not been propagated to host i . Then, the copies of d are inconsistent, since
two or more updates have been performed on d independently. Manual
intervention may be required to merge the updates.

The version-vector scheme was initially designed to deal with failures in
distributed file systems. The scheme gained importance because mobile comput-
ers often store copies of files that are also present on server systems, in effect con-
stituting a distributed file system that is often disconnected. Another application
of the scheme is in groupware systems, where hosts are connected periodically,
rather than continuously, and must exchange updated documents.

The version-vector scheme also has applications in replicated databases,
where it can be applied to individual tuples. For example, if a calendar or address
book is maintained on a mobile device as well as on a host, inserts, deletes and
updates can happen either on the mobile device or on the host. By applying the
version-vector scheme to individual calendar entries or contacts, it is easy to han-
dle situations where a particular entry has been updated on the mobile device
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while a different one has been updated on the host; such a situation would not
be considered a conflict. However, if the same entry is updated independently at
both places, a conflict would be detected by the version-vector scheme.

The version-vector scheme, however, fails to address the most difficult and
most important issue arising from updates to shared data—the reconciliation of
inconsistent copies of data. Many applications can perform reconciliation auto-
matically by executing in each computer those operations that had performed
updates on remote computers during the period of disconnection. This solution
works if update operations commute—that is, they generate the same result,
regardless of the order in which they are executed. Alternative techniques may
be available in certain applications; in the worst case, however, it must be left
to the users to resolve the inconsistencies. Dealing with such inconsistency auto-
matically, and assisting users in resolving inconsistencies that cannot be handled
automatically, remains an area of research.

Another weakness is that the version-vector scheme requires substantial com-
munication between a reconnecting mobile host and that host’s mobile support
station. Consistency checks can be delayed until the data are needed, although
this delay may increase the overall inconsistency of the database.

The potential for disconnection and the cost of wireless communication limit
the practicality of transaction-processing techniques discussed in Chapter 19 for
distributed systems. Often, it is preferable to let users prepare transactions on
mobile hosts, but to require that, instead of executing the transactions locally,
they submit transactions to a server for execution. Transactions that span more
than one computer and that include a mobile host face long-term blocking during
transaction commit, unless disconnectivity is rare or predictable.

25.6 Summary

• Time plays an important role in database systems. Databases are models of
the real world. Whereas most databases model the state of the real world at
a point in time (at the current time), temporal databases model the states of
the real world across time.

• Facts in temporal relations have associated times when they are valid, which
can be represented as a union of intervals. Temporal query languages simplify
modeling of time, as well as time-related queries.

• Spatial databases are finding increasing use today to store computer-aided-
design data as well as geographic data.

• Design data are stored primarily as vector data; geographic data consist
of a combination of vector and raster data. Spatial-integrity constraints are
important for design data.

• Vector data can be encoded as first-normal-form data, or they can be stored
using non-first-normal-form structures, such as lists. Special-purpose index
structures are particularly important for accessing spatial data, and for pro-
cessing spatial queries.
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• R-trees are a multidimensional extension of B-trees; with variants such as
R+-trees and R∗-trees, they have proved popular in spatial databases. Index
structures that partition space in a regular fashion, such as quadtrees, help in
processing spatial join queries.

• Multimedia databases are growing in importance. Issues such as similarity-
based retrieval and delivery of data at guaranteed rates are topics of current
research.

• Mobile computing systems have become common, leading to interest in data-
base systems that can run on such systems. Query processing in such systems
may involve lookups on server databases. The query cost model must include
the cost of communication, including monetary cost and battery-power cost,
which is relatively high for mobile systems.

• Broadcast is much cheaper per recipient than is point-to-point communica-
tion, and broadcast of data such as stock-market data helps mobile systems
to pick up data inexpensively.

• Disconnected operation, use of broadcast data, and caching of data are three
important issues being addressed in mobile computing.

Review Terms

• Temporal data
• Valid time
• Transaction time
• Temporal relation
• Bitemporal relation
• Universal coordinated time (UTC)
• Snapshot relation
• Temporal query languages
• Temporal selection
• Temporal projection
• Temporal join
• Spatial and geographic data
• Computer-aided-design (CAD)

data
• Geographic data
• Geographic information systems
• Triangulation
• Design databases

• Geographic data
• Raster data
• Vector data
• Global positioning system (GPS)
• Spatial queries
• Nearness queries
• Nearest-neighbor queries
• Region queries
• Spatial join
• Indexing of spatial data
• k-d trees
• k-d-B trees
• Quadtrees

◦ PR quadtree

◦ Region quadtree

• R-trees

◦ Bounding box
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◦ Quadratic split

• Multimedia databases
• Isochronous data
• Continuous-media data
• Similarity-based retrieval
• Multimedia data formats
• Video servers
• Mobile computing

◦ Mobile hosts

◦ Mobile support stations

◦ Cell

◦ Handoff

• Location-dependent queries
• Broadcast data
• Consistency

◦ Invalidation reports

◦ Version-vector scheme

Practice Exercises

25.1 What are the two types of time, and how are they different? Why does it
make sense to have both types of time associated with a tuple?

25.2 Suppose you have a relation containing the x, y coordinates and names
of restaurants. Suppose also that the only queries that will be asked are
of the following form: The query specifies a point, and asks if there is a
restaurant exactly at that point. Which type of index would be preferable,
R-tree or B-tree? Why?

25.3 Suppose you have a spatial database that supports region queries (with
circular regions) but not nearest-neighbor queries. Describe an algorithm
to find the nearest neighbor by making use of multiple region queries.

25.4 Suppose you want to store line segments in an R-tree. If a line segment is
not parallel to the axes, the bounding box for it can be large, containing a
large empty area.

• Describe the effect on performance of having large bounding boxes
on queries that ask for line segments intersecting a given region.

• Briefly describe a technique to improve performance for such queries
and give an example of its benefit. Hint: You can divide segments into
smaller pieces.

25.5 Give a recursive procedure to efficiently compute the spatial join of two
relations with R-tree indices. (Hint: Use bounding boxes to check if leaf
entries under a pair of internal nodes may intersect.)

25.6 Describe how the ideas behind the RAID organization (Section 10.3) can
be used in a broadcast-data environment, where there may occasionally
be noise that prevents reception of part of the data being transmitted.

25.7 Define a model of repeatedly broadcast data in which the broadcast
medium is modeled as a virtual disk. Describe how access time and data-
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transfer rate for this virtual disk differ from the corresponding values for
a typical hard disk.

25.8 Consider a database of documents in which all documents are kept in a
central database. Copies of some documents are kept on mobile comput-
ers. Suppose that mobile computer A updates a copy of document 1 while
it is disconnected, and, at the same time, mobile computer B updates a
copy of document 2 while it is disconnected. Show how the version-vector
scheme can ensure proper updating of the central database and mobile
computers when a mobile computer reconnects.

Exercises

25.9 Will functional dependencies be preserved if a relation is converted to a
temporal relation by adding a time attribute? How is the problem handled
in a temporal database?

25.10 Consider two-dimensional vector data where the data items do not over-
lap. Is it possible to convert such vector data to raster data? If so, what are
the drawbacks of storing raster data obtained by such conversion, instead
of the original vector data?

25.11 Study the support for spatial data offered by the database system that you
use, and implement the following:

a. A schema to represent the geographic location of restaurants along
with features such as the cuisine served at the restaurant and the
level of expensiveness.

b. A query to find moderately priced restaurants that serve Indian food
and are within 5 miles of your house (assume any location for your
house).

c. A query to find for each restaurant the distance from the nearest
restaurant serving the same cuisine and with the same level of ex-
pensiveness.

25.12 What problems can occur in a continuous-media system if data are deliv-
ered either too slowly or too fast?

25.13 List three main features of mobile computing over wireless networks that
are distinct from traditional distributed systems.

25.14 List three factors that need to be considered in query optimization for
mobile computing that are not considered in traditional query optimizers.

25.15 Give an example to show that the version-vector scheme does not ensure
serializability. (Hint: Use the example from Practice Exercise 25.8, with
the assumption that documents 1 and 2 are available on both mobile
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computers A and B, and take into account the possibility that a document
may be read without being updated.)
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C H A P T E R26
Advanced Transaction
Processing

In Chapters 14, 15, and 16, we introduced the concept of a transaction, a program
unit that accesses—and possibly updates—various data items, and whose ex-
ecution ensures the preservation of the ACID properties. We discussed in those
chapters a variety of techniques for ensuring the ACID properties in an environ-
ment where failure can occur, and where the transactions may run concurrently.

In this chapter, we go beyond the basic schemes discussed previously, and
cover advanced transaction-processing concepts, including transaction-processing
monitors, transactional workflows, and transaction processing in the context of
electronic commerce. We also cover main-memory databases, real-time databases,
long-duration transactions, and nested transactions.

26.1 Transaction-Processing Monitors

Transaction-processing monitors (TP monitors) are systems that were developed
in the 1970s and 1980s, initially in response to a need to support a large number of
remote terminals (such as airline-reservation terminals) from a single computer.
The term TP monitor initially stood for teleprocessing monitor.

TP monitors have since evolved to provide the core support for distributed
transaction processing, and the term TP monitor has acquired its current meaning.
The CICS TP monitor from IBM was one of the earliest TP monitors, and has
been very widely used. Other TP monitors include Oracle Tuxedo and Microsoft
Transaction Server.

Web application server architectures, including servlets, which we studied
earlier in Section 9.3, support many of the features of TP monitors and are some-
times referred to as “TP lite.” Web application servers are in widespread use,
and have supplanted traditional TP monitors for many applications. However,
the concepts underlying them, which we study in this section, are essentially the
same.

1091



1092 Chapter 26 Advanced Transaction Processing

26.1.1 TP-Monitor Architectures

Large-scale transaction-processing systems are built around a client–server archi-
tecture. One way of building such systems is to have a server process for each
client; the server performs authentication, and then executes actions requested by
the client. This process-per-client model is illustrated in Figure 26.1a. This model
presents several problems with respect to memory utilization and processing
speed:

• Per-process memory requirements are high. Even if memory for program
code is shared by all processes, each process consumes memory for local data
and open file descriptors, as well as for operating-system overhead, such as
page tables to support virtual memory.

• The operating system divides up available CPU time among processes by
switching among them; this technique is called multitasking. Each context
switch between one process and the next has considerable CPU overhead;
even on today’s fast systems, a context switch can take hundreds of mi-
croseconds.

The above problems can be avoided by having a single-server process to
which all remote clients connect; this model is called the single-server model,

remote
clients

server files remote
clients

(b) Single-server model(a) Process-per-client model

server files

remote
clients

router servers files remote
clients

(d) Many-server, many-router model(c) Many-server, single-router model

routers

monitor

servers files

Figure 26.1 TP-monitor architectures.
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illustrated in Figure 26.1b. Remote clients send requests to the server process,
which then executes those requests. This model is also used in client–server en-
vironments, where clients send requests to a single-server process. The server
process handles tasks, such as user authentication, that would normally be han-
dled by the operating system. To avoid blocking other clients when processing
a long request for one client, the server process is multithreaded: The server
process has a thread of control for each client, and, in effect, implements its own
low-overhead multitasking. It executes code on behalf of one client for a while,
then saves the internal context and switches to the code for another client. Unlike
the overhead of full multitasking, the cost of switching between threads is low
(typically only a few microseconds).

Systems based on the single-server model, such as the original version of the
IBM CICS TP monitor and file servers such as Novel’s NetWare, successfully pro-
vided high transaction rates with limited resources. However, they had problems,
especially when multiple applications accessed the same database:

• Since all the applications run as a single process, there is no protection among
them. A bug in one application can affect all the other applications as well. It
would be best to run each application as a separate process.

• Such systems are not suited for parallel or distributed databases, since a server
process cannot execute on multiple computers at once. (However, concurrent
threads within a process can be supported in a shared-memory multiproces-
sor system.) This is a serious drawback in large organizations, where parallel
processing is critical for handling large workloads, and distributed data are
becoming increasingly common.

One way to solve these problems is to run multiple application-server pro-
cesses that access a common database, and to let the clients communicate with
the application through a single communication process that routes requests. This
model is called the many-server, single-router model, illustrated in Figure 26.1c.
This model supports independent server processes for multiple applications; fur-
ther, each application can have a pool of server processes, any one of which can
handle a client session. The request can, for example, be routed to the most lightly
loaded server in a pool. As before, each server process can itself be multithreaded,
so that it can handle multiple clients concurrently. As a further generalization, the
application servers can run on different sites of a parallel or distributed database,
and the communication process can handle the coordination among the processes.

The above architecture is also widely used in Web servers. A Web server has
a main process that receives HTTP requests, and then assigns the task of handling
each request to a separate process (chosen from among a pool of processes). Each
of the processes is itself multithreaded, so that it can handle multiple requests. The
use of safe programming languages, such as Java, C#, or Visual Basic, allows Web
application servers to protect threads from errors in other threads. In contrast,
with a language like C or C++, errors such as memory allocation errors in one
thread can cause other threads to fail.
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lock manager
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log manager
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servers

database and
resource managers 

Figure 26.2 TP-monitor components.

A more general architecture has multiple processes, rather than just one, to
communicate with clients. The client communication processes interact with one
or more router processes, which route their requests to the appropriate server.
Later-generation TP monitors therefore have a different architecture, called the
many-server, many-router model, illustrated in Figure 26.1d. A controller process
starts up the other processes and supervises their functioning. Very high perfor-
mance Web-server systems also adopt such an architecture. The router processes
are often network routers that direct traffic addressed to the same Internet ad-
dress to different server computers, depending on where the traffic comes from.
What looks like a single server with a single address to the outside world may be
a collection of servers.

The detailed structure of a TP monitor appears in Figure 26.2. A TP monitor
does more than simply pass messages to application servers. When messages
arrive, they may have to be queued; thus, there is a queue manager for incoming
messages. The queue may be a durable queue, whose entries survive system
failures. Using a durable queue helps ensure that once received and stored in the
queue, the messages will be processed eventually, regardless of system failures.
Authorization and application-server management (for example, server start-up
and routing of messages to servers) are further functions of a TP monitor. TP
monitors often provide logging, recovery, and concurrency-control facilities, al-
lowing application servers to implement the ACID transaction properties directly
if required.

Finally, TP monitors also provide support for persistent messaging. Recall that
persistent messaging (Section 19.4.3) provides a guarantee that the message will
be delivered if (and only if) the transaction commits.

In addition to these facilities, many TP monitors also provided presentation
facilities to create menus/forms interfaces for dumb clients such as terminals;
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these facilities are no longer important since dumb clients are no longer widely
used.

26.1.2 Application Coordination Using TP monitors

Applications today often have to interact with multiple databases. They may
also have to interact with legacy systems, such as special-purpose data-storage
systems built directly on file systems. Finally, they may have to communicate
with users or other applications at remote sites. Hence, they also have to interact
with communication subsystems. It is important to be able to coordinate data
accesses, and to implement ACID properties for transactions across such systems.

Modern TP monitors provide support for the construction and administration
of such large applications, built up from multiple subsystems such as databases,
legacy systems, and communication systems. A TP monitor treats each subsys-
tem as a resource manager that provides transactional access to some set of re-
sources. The interface between the TP monitor and the resource manager is defined
by a set of transaction primitives, such as begin transaction, commit transaction,
abort transaction, and prepare to commit transaction (for two-phase commit). Of
course, the resource manager must also provide other services, such as supplying
data, to the application.

The resource-manager interface is defined by the X/Open Distributed Trans-
action Processing standard. Many database systems support the X/Open stan-
dards, and can act as resource managers. TP monitors—as well as other products,
such as SQL systems, that support the X/Open standards—can connect to the
resource managers.

In addition, services provided by a TP monitor, such as persistent messaging
and durable queues, act as resource managers supporting transactions. The TP
monitor can act as coordinator of two-phase commit for transactions that access
these services as well as database systems. For example, when a queued update
transaction is executed, an output message is delivered, and the request transac-
tion is removed from the request queue. Two-phase commit between the database
and the resource managers for the durable queue and persistent messaging helps
ensure that, regardless of failures, either all these actions occur or none occurs.

We can also use TP monitors to administer complex client–server systems
consisting of multiple servers and a large number of clients. The TP monitor
coordinates activities such as system checkpoints and shutdowns. It provides se-
curity and authentication of clients. It administers server pools by adding servers
or removing servers without interruption of the the database system. Finally, it
controls the scope of failures. If a server fails, the TP monitor can detect this failure,
abort the transactions in progress, and restart the transactions. If a node fails, the
TP monitor can migrate transactions to servers at other nodes, again backing out
incomplete transactions. When failed nodes restart, the TP monitor can govern
the recovery of the node’s resource managers.

TP monitors can be used to hide database failures in replicated systems; remote
backup systems (Section 16.9) are an example of replicated systems. Transaction
requests are sent to the TP monitor, which relays the messages to one of the
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database replicas (the primary site, in case of remote backup systems). If one site
fails, the TP monitor can transparently route messages to a backup site, masking
the failure of the first site.

In client–server systems, clients often interact with servers via a remote-
procedure-call (RPC) mechanism, where a client invokes a procedure call, which
is actually executed at the server, with the results sent back to the client. As
far as the client code that invokes the RPC is concerned, the call looks like a
local procedure-call invocation. TP monitor systems provide a transactional RPC
interface to their services. In such an interface, the RPC mechanism provides calls
that can be used to enclose a series of RPC calls within a transaction. Thus, updates
performed by an RPC are carried out within the scope of the transaction, and can
be rolled back if there is any failure.

26.2 Transactional Workflows

A workflow is an activity in which multiple tasks are executed in a coordinated
way by different processing entities. A task defines some work to be done and
can be specified in a number of ways, including a textual description in a file
or electronic-mail message, a form, a message, or a computer program. The pro-
cessing entity that performs the tasks may be a person or a software system (for
example, a mailer, an application program, or a database-management system).

Figure 26.3 shows a few examples of workflows. A simple example is that of an
electronic-mail system. The delivery of a single mail message may involve several
mail systems that receive and forward the mail message, until the message reaches
its destination, where it is stored. Other terms used in the database and related
literature to refer to workflows include task flow and multisystem applications.
Workflow tasks are also sometimes called steps.

In general, workflows may involve one or more humans. For instance, con-
sider the processing of a loan. The relevant workflow appears in Figure 26.4. The
person who wants a loan fills out a form, which is then checked by a loan officer.
An employee who processes loan applications verifies the data in the form, using
sources such as credit-reference bureaus. When all the required information has
been collected, the loan officer may decide to approve the loan; that decision may

Workflow Typical Typical processing
application task entity
electronic-mail routing electronic-mail message mailers

loan processing form processing

form processing

humans,
application so�ware

purchase-order processing
humans, application
so�ware, DBMSs

Figure 26.3 Examples of workflows.
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Figure 26.4 Workflow in loan processing.

then have to be approved by one or more superior officers, after which the loan
can be made. Each human here performs a task; in a bank that has not automated
the task of loan processing, the coordination of the tasks is typically carried out
by passing of the loan application, with attached notes and other information,
from one employee to the next. Other examples of workflows include processing
of expense vouchers, of purchase orders, and of credit-card transactions.

Today, all the information related to a workflow is more than likely to be stored
in a digital form on one or more computers, and, with the growth of networking,
information can be easily transferred from one computer to another. Hence, it is
feasible for organizations to automate their workflows. For example, to automate
the tasks involved in loan processing, we can store the loan application and
associated information in a database. The workflow itself then involves handing
of responsibility from one human to the next, and possibly even to programs that
can automatically fetch the required information. Humans can coordinate their
activities by means such as electronic mail.

Workflows are becoming increasingly important for multiple reasons within
as well as between organizations. Many organizations today have multiple soft-
ware systems that need to work together. For example, when an employee joins
an organization, information about the employee may have to be provided to
the payroll system, to the library system, to authentication systems that allow the
user to log on to computers, to a system that manages cafeteria accounts, an so on.
Updates, such as when the employee changes status or leaves the organization,
also have to be propagated to all the systems.

Organizations are increasingly automating their services; for example, a sup-
plier may provide an automated system for customers to place orders. Several
tasks may need to be carried out when an order is placed, including reserving
production time to create the ordered product and delivery services to deliver the
product.

We have to address two activities, in general, to automate a workflow. The
first is workflow specification: detailing the tasks that must be carried out and
defining the execution requirements. The second problem is workflow execu-
tion, which we must do while providing the safeguards of traditional database
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systems related to computation correctness and data integrity and durability. For
example, it is not acceptable for a loan application or a voucher to be lost, or to be
processed more than once, because of a system crash. The idea behind transac-
tional workflows is to use and extend the concepts of transactions to the context
of workflows.

Both activities are complicated by the fact that many organizations use several
independently managed information-processing systems that, in most cases, were
developed separately to automate different functions. Workflow activities may
require interactions among several such systems, each performing a task, as well
as interactions with humans.

A number of workflow systems have been developed in recent years. Here,
we study properties of workflow systems at a relatively abstract level, without
going into the details of any particular system.

26.2.1 Workflow Specification

Internal aspects of a task do not need to be modeled for the purpose of specification
and management of a workflow. In an abstract view of a task, a task may use
parameters stored in its input variables, may retrieve and update data in the local
system, may store its results in its output variables, and may be queried about its
execution state. At any time during the execution, the workflow state consists of
the collection of states of the workflow’s constituent tasks, and the states (values)
of all variables in the workflow specification.

The coordination of tasks can be specified either statically or dynamically. A
static specification defines the tasks—and dependencies among them—before
the execution of the workflow begins. For instance, the tasks in an expense-
voucher workflow may consist of the approvals of the voucher by a secretary, a
manager, and an accountant, in that order, and finally the delivery of a check. The
dependencies among the tasks may be simple—each task has to be completed
before the next begins.

A generalization of this strategy is to have a precondition for execution of
each task in the workflow, so that all possible tasks in a workflow and their
dependencies are known in advance, but only those tasks whose preconditions
are satisfied are executed. The preconditions can be defined through dependencies
such as the following:

• Execution states of other tasks—for example, “task ti cannot start until task
tj has ended,” or “task ti must abort if task tj has committed.”

• Output values of other tasks—for example, “task ti can start if task tj re-
turns a value greater than 25,” or “the manager-approval task can start if the
secretary-approval task returns a value of OK.”

• External variables modified by external events—for example, “task ti cannot
be started before 9 A.M.,” or “task ti must be started within 24 hours of the
completion of task tj .”



26.2 Transactional Workflows 1099

We can combine the dependencies by the regular logical connectors (or, and, not)
to form complex scheduling preconditions.

An example of dynamic scheduling of tasks is an electronic-mail routing
system. The next task to be scheduled for a given mail message depends on what
the destination address of the message is, and on which intermediate routers are
functioning.

26.2.2 Failure-Atomicity Requirements of a Workflow

The workflow designer may specify the failure-atomicity requirements of a work-
flow according to the semantics of the workflow. The traditional notion of failure
atomicity would require that a failure of any task result in the failure of the work-
flow. However, a workflow can, in many cases, survive the failure of one of its
tasks—for example, by executing a functionally equivalent task at another site.
Therefore, we should allow the designer to define failure-atomicity requirements
of a workflow. The system must guarantee that every execution of a workflow
will terminate in a state that satisfies the failure-atomicity requirements defined
by the designer. We call those states acceptable termination states of a work-
flow. All other execution states of a workflow constitute a set of nonacceptable
termination states, in which the failure-atomicity requirements may be violated.

An acceptable termination state can be designated as committed or aborted.
A committed acceptable termination state is an execution state in which the
objectives of a workflow have been achieved. In contrast, an aborted acceptable
termination state is a valid termination state in which a workflow has failed to
achieve its objectives. If an aborted acceptable termination state has been reached,
all undesirable effects of the partial execution of the workflow must be undone
in accordance with that workflow’s failure-atomicity requirements.

A workflow must reach an acceptable termination state even in the presence
of system failures. Thus, if a workflow is in a nonacceptable termination state at
the time of failure, during system recovery it must be brought to an acceptable
termination state (whether aborted or committed).

For example, in the loan-processing workflow, in the final state, either the
loan applicant is told that a loan cannot be made or the loan is disbursed. In case
of failures such as a long failure of the verification system, the loan application
could be returned to the loan applicant with a suitable explanation; this outcome
would constitute an aborted acceptable termination. A committed acceptable
termination would be either the acceptance or the rejection of the loan.

In general, a task can commit and release its resources before the workflow
reaches a termination state. However, if the multitask transaction later aborts,
its failure atomicity may require that we undo the effects of already completed
tasks (for example, committed subtransactions) by executing compensating tasks
(as subtransactions). The semantics of compensation requires that a compensat-
ing transaction eventually complete its execution successfully, possibly after a
number of resubmissions.

In an expense-voucher-processing workflow, for example, a department-
budget balance may be reduced on the basis of an initial approval of a voucher
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by the manager. If the voucher is later rejected, whether because of failure or for
other reasons, the budget may have to be restored by a compensating transaction.

26.2.3 Execution of Workflows

The execution of the tasks may be controlled by a human coordinator or by a soft-
ware system called a workflow-management system. A workflow-management
system consists of a scheduler, task agents, and a mechanism to query the state of
the workflow system. A task agent controls the execution of a task by a processing
entity. A scheduler is a program that processes workflows by submitting various
tasks for execution, monitoring various events, and evaluating conditions related
to intertask dependencies. A scheduler may submit a task for execution (to a task
agent), or may request that a previously submitted task be aborted. In the case
of multidatabase transactions, the tasks are subtransactions, and the processing
entities are local database-management systems. In accordance with the work-
flow specifications, the scheduler enforces the scheduling dependencies and is
responsible for ensuring that tasks reach acceptable termination states.

There are three architectural approaches to the development of a workflow-
management system. A centralized architecture has a single scheduler that sched-
ules the tasks for all concurrently executing workflows. The partially distributed
architecture has one scheduler instantiated for each workflow. When the issues
of concurrent execution can be separated from the scheduling function, the latter
option is a natural choice. A fully distributed architecture has no scheduler, but
the task agents coordinate their execution by communicating with one another to
satisfy task dependencies and other workflow execution requirements.

The simplest workflow-execution systems follow the fully distributed ap-
proach just described and are based on messaging. Messaging may be imple-
mented by persistent messaging mechanisms, to provide guaranteed delivery.
Some implementations use email for messaging; such implementations provide
many of the features of persistent messaging, but generally do not guarantee
atomicity of message delivery and transaction commit. Each site has a task agent
that executes tasks received through messages. Execution may also involve pre-
senting messages to humans, who have then to carry out some action. When a
task is completed at a site, and needs to be processed at another site, the task
agent dispatches a message to the next site. The message contains all relevant
information about the task to be performed. Such message-based workflow sys-
tems are particularly useful in networks that may be disconnected for part of the
time.

The centralized approach is used in workflow systems where the data are
stored in a central database. The scheduler notifies various agents, such as humans
or computer programs, that a task has to be carried out, and keeps track of task
completion. It is easier to keep track of the state of a workflow with a centralized
approach than it is with a fully distributed approach.

The scheduler must guarantee that a workflow will terminate in one of the
specified acceptable termination states. Ideally, before attempting to execute a
workflow, the scheduler should examine that workflow to check whether the
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workflow may terminate in a nonacceptable state. If the scheduler cannot guar-
antee that a workflow will terminate in an acceptable state, it should reject such
specifications without attempting to execute the workflow. As an example, let
us consider a workflow consisting of two tasks represented by subtransactions
S1 and S2, with the failure-atomicity requirements indicating that either both or
neither of the subtransactions should be committed. If S1 and S2 do not provide
prepared-to-commit states (for a two-phase commit), and further do not have
compensating transactions, then it is possible to reach a state where one subtrans-
action is committed and the other aborted, and there is no way to bring both to
the same state. Therefore, such a workflow specification is unsafe, and should be
rejected.

Safety checks such as the one just described may be impossible or impractical
to implement in the scheduler; it then becomes the responsibility of the person
designing the workflow specification to ensure that the workflows are safe.

26.2.4 Recovery of a Workflow

The objective of workflow recovery is to enforce the failure atomicity of the work-
flows. The recovery procedures must make sure that, if a failure occurs in any
of the workflow-processing components (including the scheduler), the workflow
will eventually reach an acceptable termination state (whether aborted or com-
mitted). For example, the scheduler could continue processing after failure and
recovery, as though nothing happened, thus providing forward recoverability.
Otherwise, the scheduler could abort the whole workflow (that is, reach one
of the global abort states). In either case, some subtransactions may need to be
committed or even submitted for execution (for example, compensating subtrans-
actions).

We assume that the processing entities involved in the workflow have their
own recovery systems and handle their local failures. To recover the execution-
environment context, the failure-recovery routines need to restore the state infor-
mation of the scheduler at the time of failure, including the information about the
execution states of each task. Therefore, the appropriate status information must
be logged on stable storage.

We also need to consider the contents of the message queues. When one
agent hands off a task to another, the handoff should be carried out exactly once:
If the handoff happens twice a task may get executed twice; if the handoff does
not occur, the task may get lost. Persistent messaging (Section 19.4.3) provides
exactly the features to ensure positive, single handoff.

26.2.5 Workflow-Management Systems

Workflows are often hand coded as part of application systems. For instance, en-
terprise resource planning (ERP) systems, which help coordinate activities across
an entire enterprise, have numerous workflows built into them.

The goal of workflow-management systems is to simplify the construction of
workflows and make them more reliable, by permitting them to be specified in a
high-level manner and executed in accordance with the specification. There are a
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large number of commercial workflow-management systems; some are general-
purpose workflow-management systems, while others are specific to particular
workflows, such as order processing or bug/failure reporting systems.

In today’s world of interconnected organizations, it is not sufficient to man-
age workflows only within an organization. Workflows that cross organizational
boundaries are becoming increasingly common. For instance, consider an order
placed by an organization and communicated to another organization that ful-
fills the order. In each organization there may be a workflow associated with the
order, and it is important that the workflows be able to interoperate, in order to
minimize human intervention.

The term business process management is used to refer to the management
of workflows related to business processes. Today, applications are increasingly
making their functionality available as services that can be invoked by other
applications, often using a Web service architecture. A system architecture based
on invoking services provided by multiple applications is referred to as a service
oriented architecture SOA. Such services are the base layer on top of which
workflow management is implemented today. The process logic that controls the
workflow by invoking the services is referred to as orchestration.

Business process management systems based on the SOA architecture include
Microsoft’s BizTalk Server, IBMs WebSphere Business Integration Server Founda-
tion, and BEAs WebLogic Process Edition, among others.

The Web Services Business Process Execution Language (WS-BPEL) is an XML
based standard for specifying Web services and business processes (workflows)
based on the Web services, which can be executed by a business process manage-
ment system. The Business Process Modeling Notation (BPMN), is a standard
for graphical modeling of business processes in a workflow, and XML Process
Definition Language (XPDL) is an XML based representation of business process
definitions, based on BPMN diagrams.

26.3 E-Commerce

E-commerce refers to the process of carrying out various activities related to
commerce, through electronic means, primarily through the Internet. The types
of activities include:

• Presale activities, needed to inform the potential buyer about the product or
service being sold.

• The sale process, which includes negotiations on price and quality of service,
and other contractual matters.

• The marketplace: When there are multiple sellers and buyers for a product,
a marketplace, such as a stock exchange, helps in negotiating the price to
be paid for the product. Auctions are used when there is a single seller and
multiple buyers, and reverse auctions are used when there is a single buyer
and multiple sellers.
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• Payment for the sale.

• Activities related to delivery of the product or service. Some products and
services can be delivered over the Internet; for others the Internet is used only
for providing shipping information and for tracking shipments of products.

• Customer support and postsale service.

Databases are used extensively to support these activities. For some of the
activities, the use of databases is straightforward, but there are interesting appli-
cation development issues for the other activities.

26.3.1 E-Catalogs

Any e-commerce site provides users with a catalog of the products and services
that the site supplies. The services provided by an e-catalog may vary consider-
ably.

At the minimum, an e-catalog must provide browsing and search facilities to
help customers find the product for which they are looking. To help with brows-
ing, products should be organized into an intuitive hierarchy, so a few clicks on
hyperlinks can lead customers to the products in which they are interested. Key-
words provided by the customer (for example, “digital camera” or “computer”)
should speed up the process of finding required products. E-catalogs should also
provide a means for customers to easily compare alternatives from which to
choose among competing products.

E-catalogs can be customized for the customer. For instance, a retailer may
have an agreement with a large company to supply some products at a discount.
An employee of the company, viewing the catalog to purchase products for the
company, should see prices with the negotiated discount, instead of the regular
prices. Because of legal restrictions on sales of some types of items, customers who
are underage, or from certain states or countries, should not be shown items that
cannot legally be sold to them. Catalogs can also be personalized to individual
users, on the basis of past buying history. For instance, frequent customers may
be offered special discounts on some items.

Supporting such customization requires customer information as well as spe-
cial pricing/discount information and sales restriction information to be stored
in a database. There are also challenges in supporting very high transaction rates,
which are often tackled by caching of query results or generated Web pages.

26.3.2 Marketplaces

When there are multiple sellers or multiple buyers (or both) for a product, a
marketplace helps in negotiating the price to be paid for the product. There are
several different types of marketplaces:

• In a reverse auction system a buyer states requirements, and sellers bid for
supplying the item. The supplier quoting the lowest price wins. In a closed
bidding system, the bids are not made public, whereas in an open bidding
system the bids are made public.
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• In an auction there are multiple buyers and a single seller. For simplicity,
assume that there is only one instance of each item being sold. Buyers bid for
the items being sold, and the highest bidder for an item gets to buy the item
at the bid price.
When there are multiple copies of an item, things become more complicated:
Suppose there are four items, and one bidder may want three copies for $10
each, while another wants two copies for $13 each. It is not possible to satisfy
both bids. If the items will be of no value if they are not sold (for instance,
airline seats, which must be sold before the plane leaves), the seller simply
picks a set of bids that maximizes the income. Otherwise the decision is more
complicated.

• In an exchange, such as a stock exchange, there are multiple sellers and
multiple buyers. Buyers can specify the maximum price they are willing to
pay, while sellers specify the minimum price they want. There is usually a
market maker who matches buy and sell bids, deciding on the price for each
trade (for instance, at the price of the sell bid).

There are other more complex types of marketplaces.
Among the database issues in handling marketplaces are these:

• Bidders need to be authenticated before they are allowed to bid.

• Bids (buy or sell) need to be recorded securely in a database. Bids need to be
communicated quickly to other people involved in the marketplace (such as
all the buyers or all the sellers), who may be numerous.

• Delays in broadcasting bids can lead to financial losses to some participants.

• The volumes of trades may be extremely large at times of stock market volatil-
ity, or toward the end of auctions. Thus, very high performance databases
with large degrees of parallelism are used for such systems.

26.3.3 Order Settlement

After items have been selected (perhaps through an electronic catalog) and the
price determined (perhaps by an electronic marketplace), the order has to be
settled. Settlement involves payment for goods and the delivery of the goods.

A simple but unsecure way of paying electronically is to send a credit-card
number. There are two major problems. First, credit-card fraud is possible. When a
buyer pays for physical goods, companies can ensure that the address for delivery
matches the cardholder’s address, so no one else can receive the goods, but for
goods delivered electronically no such check is possible. Second, the seller has to
be trusted to bill only for the agreed-on item and to not pass on the card number
to unauthorized people who may misuse it.

Several protocols are available for secure payments that avoid both the prob-
lems listed above. In addition, they provide for better privacy, whereby the seller
may not be given any unnecessary details about the buyer, and the credit-card
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company is not provided any unnecessary information about the items pur-
chased. All information transmitted must be encrypted so that anyone intercept-
ing the data on the network cannot find out the contents. Public-/private-key
encryption is widely used for this task.

The protocols must also prevent person-in-the-middle attacks, where some-
one can impersonate the bank or credit-card company, or even the seller, or buyer,
and steal secret information. Impersonation can be perpetrated by passing off a
fake key as someone else’s public key (the bank’s or credit-card company’s, or the
merchant’s or the buyer’s). Impersonation is prevented by a system of digital cer-
tificates, whereby public keys are signed by a certification agency, whose public
key is well known (or which in turn has its public key certified by another certi-
fication agency and so on up to a key that is well known). From the well-known
public key, the system can authenticate the other keys by checking the certificates
in reverse sequence. Digital certificates were described earlier, in Section 9.8.3.2.

Several novel payment systems were developed in the early days of the Web.
One of these was a secure payment protocol called the Secure Electronic Transaction
(SET) protocol. The protocol requires several rounds of communication between
the buyer, seller, and the bank, in order to guarantee safety of the transaction.
There were also systems that provide for greater anonymity, similar to that pro-
vided by physical cash. The DigiCash payment system was one such system. When
a payment is made in such a system, it is not possible to identify the purchaser.
In contrast, identifying purchasers is very easy with credit cards, and even in the
case of SET, it is possible to identify the purchaser with the cooperation of the
credit-card company or bank. However, none of these systems was successful
commercially, for both technical and non-technical reasons.

Today, many banks provide secure payment gateways which allow a pur-
chaser to pay online at the banks Web site, without exposing credit card or bank
account information to the online merchant. When making a purchase at an online
merchant, the purchaser’s Web browser is redirected to the gateway to complete
the payment by providing credit card or bank account information, after which
the purchaser is again redirected back to the merchant’s site to complete the pur-
chase. Unlike the SET or DigiCash protocols, there is no software running on the
purchasers machine, except a Web browser; as a result this approach has found
wide success where the earlier approaches failed.

An alternative approach which is used by the PayPal system is for both the
purchaser and the merchant to have an account on a common platform, and the
money transfer happens entirely within the common platform. The purchaser
first loads her account with money using a credit card, and can then transfer
money to the merchants account. This approach has been very successful with
small merchants, since it does not require either the purchaser or the merchant to
run any software.

26.4 Main-Memory Databases

To allow a high rate of transaction processing (hundreds or thousands of trans-
actions per second), we must use high-performance hardware, and must exploit
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parallelism. These techniques alone, however, are insufficient to obtain very low
response times, since disk I/O remains a bottleneck—about 10 milliseconds are
required for each I/O, and this number has not decreased at a rate comparable
to the increase in processor speeds. Disk I/O is often the bottleneck for reads, as
well as for transaction commits. The long disk latency increases not only the time
to access a data item, but also limits the number of accesses per second.1

We can make a database system less disk bound by increasing the size of the
database buffer. Advances in main-memory technology let us construct large main
memories at relatively low cost. Today, commercial 64-bit systems can support
main memories of tens of gigabytes. Oracle TimesTen is a currently available
main-memory database. Additional information on main-memory databases is
given in the references in the bibliographical notes.

For some applications, such as real-time control, it is necessary to store data
in main memory to meet performance requirements. The memory size required
for most such systems is not exceptionally large, although there are at least a few
applications that require multiple gigabytes of data to be memory resident. Since
memory sizes have been growing at a very fast rate, an increasing number of
applications can be expected to have data that fit into main memory.

Large main memories allow faster processing of transactions, since data are
memory resident. However, there are still disk-related limitations:

• Log records must be written to stable storage before a transaction is commit-
ted. The improved performance made possible by a large main memory may
result in the logging process becoming a bottleneck. We can reduce commit
time by creating a stable log buffer in main memory, using nonvolatile RAM
(implemented, for example, by battery-backed-up memory). The overhead
imposed by logging can also be reduced by the group-commit technique dis-
cussed later in this section. Throughput (number of transactions per second)
is still limited by the data-transfer rate of the log disk.

• Buffer blocks marked as modified by committed transactions still have to be
written so that the amount of log that has to be replayed at recovery time is
reduced. If the update rate is extremely high, the disk data-transfer rate may
become a bottleneck.

• If the system crashes, all of main memory is lost. On recovery, the system
has an empty database buffer, and data items must be input from disk when
they are accessed. Therefore, even after recovery is complete, it takes some
time before the database is fully loaded in main memory and high-speed
processing of transactions can resume.

On the other hand, a main-memory database provides opportunities for op-
timizations:

1Write latency for flash depends on whether an erase operation must be done first.
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• Since memory is costlier than disk space, internal data structures in main-
memory databases have to be designed to reduce space requirements. How-
ever, data structures can have pointers crossing multiple pages, unlike those
in disk databases, where the cost of the I/Os to traverse multiple pages would
be excessively high. For example, tree structures in main-memory databases
can be relatively deep, unlike B+-trees, but should minimize space require-
ments.
However, the speed difference between cache memory and main-memory,
and the fact that data is transferred between main-memory and cache in
units of a cache-line (typically about 64 bytes), results in a situation where
the relationship between cache and main-memory is not dissimilar to the
relationship between main-memory and disk (although with smaller speed
differences). As a result, B+-trees with small nodes that fit in a cache line have
been found quite useful even in main-memory databases.

• There is no need to pin buffer pages in memory before data are accessed,
since buffer pages will never be replaced.

• Query-processing techniques should be designed to minimize space over-
head, so that main-memory limits are not exceeded while a query is being
evaluated; that situation would result in paging to swap area, and would
slow down query processing.

• Once the disk I/O bottleneck is removed, operations such as locking and
latching may become bottlenecks. Such bottlenecks must be eliminated by
improvements in the implementation of these operations.

• Recovery algorithms can be optimized, since pages rarely need to be written
out to make space for other pages.

The process of committing a transaction T requires these records to be written
to stable storage:

• All log records associated with T that have not been output to stable storage.

• The <T commit> log record.

These output operations frequently require the output of blocks that are only
partially filled. To ensure that nearly full blocks are output, we use the group-
commit technique. Instead of attempting to commit T when T completes, the
system waits until several transactions have completed, or a certain period of
time has passed since a transaction completed execution. It then commits the
group of transactions that are waiting, together. Blocks written to the log on
stable storage would contain records of several transactions. By careful choice of
group size and maximum waiting time, the system can ensure that blocks are
full when they are written to stable storage without making transactions wait
excessively. This technique results, on average, in fewer output operations per
committed transaction.
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Although group commit reduces the overhead imposed by logging, it results
in a slight delay in commit of transactions that perform updates. The delay can be
made quite small (say, 10 milliseconds), which is acceptable for many applications.
These delays can be eliminated if disks or disk controllers support nonvolatile
RAM buffers for write operations. Transactions can commit as soon as the write is
performed on the nonvolatile RAM buffer. In this case, there is no need for group
commit.

Note that group commit is useful even in databases with disk-resident data,
not just for main-memory databases. If flash storage is used instead of magnetic
disk for storing log records, the commit delay is significantly reduced. However,
group commit can still be useful since it minimizes the number of pages written;
this translates to performance benefits in flash storage, since pages cannot be
overwritten, and the erase operation is expensive. (Flash storage systems remap
logical pages to a pre-erased physical page, avoiding delay at the time a page is
written, but the erase operation must be performed eventually as part of garbage
collection of old versions of pages.)

26.5 Real-Time Transaction Systems

The integrity constraints that we have considered thus far pertain to the values
stored in the database. In certain applications, the constraints include deadlines
by which a task must be completed. Examples of such applications include plant
management, traffic control, and scheduling. When deadlines are included, cor-
rectness of an execution is no longer solely an issue of database consistency.
Rather, we are concerned with how many deadlines are missed, and by how
much time they are missed. Deadlines are characterized as follows:

• Hard deadline. Serious problems, such as system crash, may occur if a task
is not completed by its deadline.

• Firm deadline. The task has zero value if it is completed after the deadline.

• Soft deadlines. The task has diminishing value if it is completed after the
deadline, with the value approaching zero as the degree of lateness increases.

Systems with deadlines are called real-time systems.
Transaction management in real-time systems must take deadlines into ac-

count. If the concurrency-control protocol determines that a transaction Ti must
wait, it may cause Ti to miss the deadline. In such cases, it may be preferable to
pre-empt the transaction holding the lock, and to allow Ti to proceed. Pre-emption
must be used with care, however, because the time lost by the pre-empted trans-
action (due to rollback and restart) may cause the pre-empted transaction to miss
its deadline. Unfortunately, it is difficult to determine whether rollback or waiting
is preferable in a given situation.

A major difficulty in supporting real-time constraints arises from the variance
in transaction execution time. In the best case, all data accesses reference data in
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the database buffer. In the worst case, each access causes a buffer page to be
written to disk (preceded by the requisite log records), followed by the reading
from disk of the page containing the data to be accessed. Because the two or more
disk accesses required in the worst case take several orders of magnitude more
time than the main-memory references required in the best case, transaction
execution time can be estimated only very poorly if data are resident on disk.
Hence, main-memory databases are often used if real-time constraints have to be
met.

However, even if data are resident in main memory, variances in execution
time arise from lock waits, transaction aborts, and so on. Researchers have devoted
considerable effort to concurrency control for real-time databases. They have
extended locking protocols to provide higher priority for transactions with early
deadlines. They have found that optimistic concurrency protocols perform well in
real-time databases; that is, these protocols result in fewer missed deadlines than
even the extended locking protocols. The bibliographical notes provide references
to research in the area of real-time databases.

In real-time systems, deadlines, rather than absolute speed, are the most
important issue. Designing a real-time system involves ensuring that there is
enough processing power to meet deadlines without requiring excessive hard-
ware resources. Achieving this objective, despite the variance in execution time
resulting from transaction management, remains a challenging problem.

26.6 Long-Duration Transactions

The transaction concept developed initially in the context of data-processing
applications, in which most transactions are noninteractive and of short duration.
Although the techniques presented here and earlier in Chapters 14, 15, and 16
work well in those applications, serious problems arise when this concept is
applied to database systems that involve human interaction. Such transactions
have these key properties:

• Long duration. Once a human interacts with an active transaction, that trans-
action becomes a long-duration transaction from the perspective of the com-
puter, since human response time is slow relative to computer speed. Further-
more, in design applications, the human activity may involve hours, days, or
an even longer period. Thus, transactions may be of long duration in human
terms, as well as in machine terms.

• Exposure of uncommitted data. Data generated and displayed to a user
by a long-duration transaction are uncommitted, since the transaction may
abort. Thus, users—and, as a result, other transactions—may be forced to
read uncommitted data. If several users are cooperating on a project, user
transactions may need to exchange data prior to transaction commit.

• Subtasks. An interactive transaction may consist of a set of subtasks initiated
by the user. The user may wish to abort a subtask without necessarily causing
the entire transaction to abort.
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• Recoverability. It is unacceptable to abort a long-duration interactive trans-
action because of a system crash. The active transaction must be recovered
to a state that existed shortly before the crash so that relatively little human
work is lost.

• Performance. Good performance in an interactive transaction system is de-
fined as fast response time. This definition is in contrast to that in a non-
interactive system, in which high throughput (number of transactions per
second) is the goal. Systems with high throughput make efficient use of
system resources. However, in the case of interactive transactions, the most
costly resource is the user. If the efficiency and satisfaction of the user is to be
optimized, response time should be fast (from a human perspective). In those
cases where a task takes a long time, response time should be predictable (that
is, the variance in response times should be low), so that users can manage
their time well.

In Sections 26.6.1 through 26.6.5, we shall see why these five properties are in-
compatible with the techniques presented thus far and shall discuss how those
techniques can be modified to accommodate long-duration interactive transac-
tions.

26.6.1 Nonserializable Executions

The properties that we discussed make it impractical to enforce the requirement
used in earlier chapters that only serializable schedules be permitted. Each of the
concurrency-control protocols of Chapter 15 has adverse effects on long-duration
transactions:

• Two-phase locking. When a lock cannot be granted, the transaction request-
ing the lock is forced to wait for the data item in question to be unlocked.
The duration of this wait is proportional to the duration of the transaction
holding the lock. If the data item is locked by a short-duration transaction,
we expect that the waiting time will be short (except in case of deadlock or
extraordinary system load). However, if the data item is locked by a long-
duration transaction, the wait will be of long duration. Long waiting times
lead to both longer response time and an increased chance of deadlock.

• Graph-based protocols. Graph-based protocols allow for locks to be released
earlier than under the two-phase locking protocols, and they prevent dead-
lock. However, they impose an ordering on the data items. Transactions must
lock data items in a manner consistent with this ordering. As a result, a trans-
action may have to lock more data than it needs. Furthermore, a transaction
must hold a lock until there is no chance that the lock will be needed again.
Thus, long-duration lock waits are likely to occur.

• Timestamp-based protocols. Timestamp protocols never require a transac-
tion to wait. However, they do require transactions to abort under certain cir-
cumstances. If a long-duration transaction is aborted, a substantial amount of
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work is lost. For noninteractive transactions, this lost work is a performance
issue. For interactive transactions, the issue is also one of user satisfaction.
It is highly undesirable for a user to find that several hours’ worth of work
have been undone.

• Validation protocols. Like timestamp-based protocols, validation protocols
enforce serializability by means of transaction abort.

Thus, it appears that the enforcement of serializability results in long-duration
waits, in abort of long-duration transactions, or in both. There are theoretical
results, cited in the bibliographical notes, that substantiate this conclusion.

Further difficulties with the enforcement of serializability arise when we con-
sider recovery issues. We previously discussed the problem of cascading rollback,
in which the abort of a transaction may lead to the abort of other transactions.
This phenomenon is undesirable, particularly for long-duration transactions. If
locking is used, exclusive locks must be held until the end of the transaction, if
cascading rollback is to be avoided. This holding of exclusive locks, however,
increases the length of transaction waiting time.

Thus, it appears that the enforcement of transaction atomicity must either
lead to an increased probability of long-duration waits or create a possibility of
cascading rollback.

Snapshot isolation, described in Section 15.7, can provide a partial solution to
these issues, as can the optimistic concurrency control without read validation protocol
described in Section 15.9.3. The latter protocol was in fact designed specifically
to deal with long duration transactions that involve user interaction. Although
it does not guarantee serializability, optimistic concurrency control without read
validation is quite widely used.

However, when transactions are of long duration, conflicting updates are
more likely, resulting in additional waits or aborts. These considerations are the
basis for the alternative concepts of correctness of concurrent executions and
transaction recovery that we consider in the remainder of this section.

26.6.2 Concurrency Control

The fundamental goal of database concurrency control is to ensure that concur-
rent execution of transactions does not result in a loss of database consistency.
The concept of serializability can be used to achieve this goal, since all serializable
schedules preserve consistency of the database. However, not all schedules that
preserve consistency of the database are serializable. For an example, consider
again a bank database consisting of two accounts A and B, with the consistency
requirement that the sum A + B be preserved. Although the schedule of Fig-
ure 26.5 is not conflict serializable, it nevertheless preserves the sum of A + B.
It also illustrates two important points about the concept of correctness without
serializability.

• Correctness depends on the specific consistency constraints for the database.

• Correctness depends on the properties of operations performed by each trans-
action.
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T1 T2

read(A)
A := A − 50
write(A)

read(B)
B := B − 10
write(B)

read(B)
B := B + 50
write(B)

read(A)
A := A + 10
write(A)

Figure 26.5 A non-conflict-serializable schedule.

In general it is not possible to perform an automatic analysis of low-level opera-
tions by transactions and check their effect on database consistency constraints.
However, there are simpler techniques. One is to use the database consistency
constraints as the basis for a split of the database into subdatabases on which con-
currency can be managed separately. Another is to treat some operations besides
read and write as fundamental low-level operations and to extend concurrency
control to deal with them.

The bibliographical notes reference other techniques for ensuring consistency
without requiring serializability. Many of these techniques exploit variants of
multiversion concurrency control (see Section 15.6). For older data-processing
applications that need only one version, multiversion protocols impose a high
space overhead to store the extra versions. Since many of the new database
applications require the maintenance of versions of data, concurrency-control
techniques that exploit multiple versions are practical.

26.6.3 Nested and Multilevel Transactions

A long-duration transaction can be viewed as a collection of related subtasks or
subtransactions. By structuring a transaction as a set of subtransactions, we are
able to enhance parallelism, since it may be possible to run several subtransactions
in parallel. Furthermore, it is possible to deal with failure of a subtransaction
(due to abort, system crash, and so on) without having to roll back the entire
long-duration transaction.

A nested or multilevel transaction T consists of a set T = {t1, t2, . . . , tn} of
subtransactions and a partial order P on T. A subtransaction ti in T may abort
without forcing T to abort. Instead, T may either restart ti or simply choose not to
run ti . If ti commits, this action does not make ti permanent (unlike the situation in
Chapter 16). Instead, ti commits to T, and may still abort (or require compensation
—see Section 26.6.4) if T aborts. An execution of T must not violate the partial
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order P. That is, if an edge ti → tj appears in the precedence graph, then tj → ti
must not be in the transitive closure of P.

Nesting may be several levels deep, representing a subdivision of a transac-
tion into subtasks, subsubtasks, and so on. At the lowest level of nesting, we have
the standard database operations read and write that we have used previously.

If a subtransaction of T is permitted to release locks on completion, T is
called a multilevel transaction. When a multilevel transaction represents a long-
duration activity, the transaction is sometimes referred to as a saga. Alternatively,
if locks held by a subtransaction ti of T are automatically assigned to T on
completion of ti , T is called a nested transaction.

Although the main practical value of multilevel transactions arises in com-
plex, long-duration transactions, we shall use the simple example of Figure 26.5
to show how nesting can create higher-level operations that may enhance con-
currency. We rewrite transaction T1, using subtransactions T1,1 and T1,2, which
perform increment or decrement operations:

• T1 consists of:

◦ T1,1, which subtracts 50 from A.

◦ T1,2, which adds 50 to B.

Similarly, we rewrite transaction T2, using subtransactions T2,1 and T2,2, which
also perform increment or decrement operations:

• T2 consists of:

◦ T2,1, which subtracts 10 from B.

◦ T2,2, which adds 10 to A.

No ordering is specified on T1,1, T1,2, T2,1, and T2,2. Any execution of these sub-
transactions will generate a correct result. The schedule of Figure 26.5 corresponds
to the schedule < T1,1, T2,1, T1,2, T2,2 >.

26.6.4 Compensating Transactions

To reduce the frequency of long-duration waiting, we arrange for uncommit-
ted updates to be exposed to other concurrently executing transactions. Indeed,
multilevel transactions may allow this exposure. However, the exposure of un-
committed data creates the potential for cascading rollbacks. The concept of com-
pensating transactions helps us to deal with this problem.

Let transaction T be divided into several subtransactions t1, t2, . . . , tn. After a
subtransaction ti commits, it releases its locks. Now, if the outer-level transaction
T has to be aborted, the effect of its subtransactions must be undone. Suppose
that subtransactions t1, . . . , tk have committed, and that tk+1 was executing when
the decision to abort is made. We can undo the effects of tk+1 by aborting that
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subtransaction. However, it is not possible to abort subtransactions t1, . . . , tk ,
since they have committed already.

Instead, we execute a new subtransaction cti , called a compensating transaction,
to undo the effect of a subtransaction ti . Each subtransaction ti is required to have
a compensating transaction cti . The compensating transactions must be executed
in the inverse order ctk, . . . , ct1. Here are several examples of compensation:

• Consider the schedule of Figure 26.5, which we have shown to be correct,
although not conflict serializable. Each subtransaction releases its locks once
it completes. Suppose that T2 fails just prior to termination, after T2,2 has re-
leased its locks. We then run a compensating transaction for T2,2 that subtracts
10 from A and a compensating transaction for T2,1 that adds 10 to B.

• Consider a database insert by transaction Ti that, as a side effect, causes a
B+-tree index to be updated. The insert operation may have modified several
nodes of the B+-tree index. Other transactions may have read these nodes
in accessing data other than the record inserted by Ti . As mentioned in Sec-
tion 16.7, we can undo the insertion by deleting the record inserted by Ti . The
result is a correct, consistent B+-tree, but is not necessarily one with exactly
the same structure as the one we had before Ti started. Thus, deletion is a
compensating action for insertion.

• Consider a long-duration transaction Ti representing a travel reservation.
Transaction T has three subtransactions: Ti,1, which makes airline reserva-
tions; Ti,2, which reserves rental cars; and Ti,3, which reserves a hotel room.
Suppose that the hotel cancels the reservation. Instead of undoing all of Ti ,
we compensate for the failure of Ti,3 by deleting the old hotel reservation and
making a new one.

If the system crashes in the middle of executing an outer-level transaction, its
subtransactions must be rolled back when it recovers. The techniques described
in Section 16.7 can be used for this purpose.

Compensation for the failure of a transaction requires that the semantics of
the failed transaction be used. For certain operations, such as incrementation or
insertion into a B+-tree, the corresponding compensation is easily defined. For
more complex transactions, the application programmers may have to define
the correct form of compensation at the time that the transaction is coded. For
complex interactive transactions, it may be necessary for the system to interact
with the user to determine the proper form of compensation.

26.6.5 Implementation Issues

The transaction concepts discussed in this section create serious difficulties for
implementation. We present a few of them here, and discuss how we can address
these problems.

Long-duration transactions must survive system crashes. We can ensure that
they will by performing a redo on committed subtransactions, and by perform-
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ing either an undo or compensation for any short-duration subtransactions that
were active at the time of the crash. However, these actions solve only part of
the problem. In typical database systems, such internal system data as lock ta-
bles and transaction timestamps are kept in volatile storage. For a long-duration
transaction to be resumed after a crash, these data must be restored. Therefore, it
is necessary to log not only changes to the database, but also changes to internal
system data pertaining to long-duration transactions.

Logging of updates is made more complex when certain types of data items
exist in the database. A data item may be a CAD design, text of a document,
or another form of composite design. Such data items are physically large. Thus,
storing both the old and new values of the data item in a log record is undesirable.

There are two approaches to reducing the overhead of ensuring the recover-
ability of large data items:

• Operation logging. Only the operation performed on the data item and
the data-item name are stored in the log. Operation logging is also called
logical logging. For each operation, an inverse operation must exist. We
perform undo using the inverse operation and redo using the operation
itself. Recovery through operation logging is more difficult, since redo and
undo are not idempotent. Further, using logical logging for an operation that
updates multiple pages is greatly complicated by the fact that some, but not
all, of the updated pages may have been written to the disk, so it is hard to
apply either the redo or the undo of the operation on the disk image during
recovery. Using physical redo logging and logical undo logging, as described
in Section 16.7, provides the concurrency benefits of logical logging while
avoiding the above pitfalls.

• Logging and shadow paging. Logging is used for modifications to small data
items, but large data items are often made recoverable via a shadowing, or
copy-on-write, technique. When we use shadowing, it is possible to reduce
the overhead by keeping copies of only those pages that are actually modified.

Regardless of the technique used, the complexities introduced by long-duration
transactions and large data items complicate the recovery process. Thus, it is
desirable to allow certain noncritical data to be exempt from logging, and to rely
instead on offline backups and human intervention.

26.7 Summary

• Workflows are activities that involve the coordinated execution of multiple
tasks performed by different processing entities. They exist not just in com-
puter applications, but also in almost all organizational activities. With the
growth of networks, and the existence of multiple autonomous database sys-
tems, workflows provide a convenient way of carrying out tasks that involve
multiple systems.

• Although the usual ACID transactional requirements are too strong or are
unimplementable for such workflow applications, workflows must satisfy a
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limited set of transactional properties that guarantee that a process is not left
in an inconsistent state.

• Transaction-processing monitors were initially developed as multithreaded
servers that could service large numbers of terminals from a single process.
They have since evolved, and today they provide the infrastructure for build-
ing and administering complex transaction-processing systems that have a
large number of clients and multiple servers. They provide services such as
durable queueing of client requests and server responses, routing of client
messages to servers, persistent messaging, load balancing, and coordination
of two-phase commit when transactions access multiple servers.

• E-commerce systems have become a core part of commerce. There are sev-
eral database issues in e-commerce systems. Catalog management, especially
personalization of the catalog, is done with databases. Electronic market-
places help in pricing of products through auctions, reverse auctions, or
exchanges. High-performance database systems are needed to handle such
trading. Orders are settled by electronic payment systems, which also need
high-performance database systems to handle very high transaction rates.

• Large main memories are exploited in certain systems to achieve high sys-
tem throughput. In such systems, logging is a bottleneck. Under the group-
commit concept, the number of outputs to stable storage can be reduced, thus
releasing this bottleneck.

• The efficient management of long-duration interactive transactions is more
complex, because of the long-duration waits and because of the possibil-
ity of aborts. Since the concurrency-control techniques used in Chapter 15
use waits, aborts, or both, alternative techniques must be considered. These
techniques must ensure correctness without requiring serializability.

• A long-duration transaction is represented as a nested transaction with atomic
database operations at the lowest level. If a transaction fails, only active short-
duration transactions abort. Active long-duration transactions resume once
any short-duration transactions have recovered. A compensating transaction
is needed to undo updates of nested transactions that have committed, if the
outer-level transaction fails.

• In systems with real-time constraints, correctness of execution involves not
only database consistency but also deadline satisfaction. The wide variance
of execution times for read and write operations complicates the transaction-
management problem for time-constrained systems.

Review Terms

• TP monitor
• TP-monitor architectures

◦ Process per client

◦ Single server
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◦ Many server, single router

◦ Many server, many router

• Multitasking
• Context switch
• Multithreaded server
• Queue manager
• Application coordination

◦ Resource manager

◦ Remote procedure call (RPC)

• Transactional workflows

◦ Task

◦ Processing entity

◦ Workflow specification

◦ Workflow execution

• Workflow state

◦ Execution states

◦ Output values

◦ External variables

• Workflow failure atomicity
• Workflow termination states

◦ Acceptable

◦ Nonacceptable

◦ Committed

◦ Aborted

• Workflow recovery
• Workflow-management system
• Workflow-management system

architectures

◦ Centralized

◦ Partially distributed

◦ Fully distributed

• Business process management
• Orchestration
• E-commerce
• E-catalogs
• Marketplaces

◦ Auctions

◦ Reverse auctions

◦ Exchange

• Order settlement
• Digital certificates
• Main-memory databases
• Group commit
• Real-time systems
• Deadlines

◦ Hard deadline

◦ Firm deadline

◦ Soft deadline

• Real-time databases
• Long-duration transactions
• Exposure of uncommitted data
• Nonserializable executions
• Nested transactions
• Multilevel transactions
• Saga
• Compensating transactions
• Logical logging

Practice Exercises

26.1 Like database systems, workflow systems also require concurrency and
recovery management. List three reasons why we cannot simply apply a
relational database system using 2PL, physical undo logging, and 2PC.
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26.2 Consider a main-memory database system recovering from a system
crash. Explain the relative merits of:

• Loading the entire database back into main memory before resuming
transaction processing.

• Loading data as it is requested by transactions.

26.3 Is a high-performance transaction system necessarily a real-time system?
Why or why not?

26.4 Explain why it may be impractical to require serializability for long-
duration transactions.

26.5 Consider a multithreaded process that delivers messages from a durable
queue of persistent messages. Different threads may run concurrently,
attempting to deliver different messages. In case of a delivery failure, the
message must be restored in the queue. Model the actions that each thread
carries out as a multilevel transaction, so that locks on the queue need not
be held until a message is delivered.

26.6 Discuss the modifications that need to be made in each of the recovery
schemes covered in Chapter 16 if we allow nested transactions. Also,
explain any differences that result if we allow multilevel transactions.

Exercises

26.7 Explain how a TP monitor manages memory and processor resources more
effectively than a typical operating system.

26.8 Compare TP-monitor features with those provided by Web servers sup-
porting servlets (such servers have been nicknamed TP-lite).

26.9 Consider the process of admitting new students at your university (or
new employees at your organization).

a. Give a high-level picture of the workflow starting from the student
application procedure.

b. Indicate acceptable termination states and which steps involve hu-
man intervention.

c. Indicate possible errors (including deadline expiry) and how they
are dealt with.

d. Study how much of the workflow has been automated at your uni-
versity.

26.10 Answer the following questions regarding electronic payment systems:
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a. Explain why electronic transactions carried out using credit-card
numbers may be insecure.

b. An alternative is to have an electronic payment gateway maintained
by the credit-card company, and the site receiving payment redirects
customers to the gateway site to make the payment.
i. Explain what benefits such a system offers if the gateway does

not authenticate the user.
ii. Explain what further benefits are offered if the gateway has a

mechanism to authenticate the user.

c. Some credit-card companies offer a one-time-use credit-card number
as a more secure method of electronic payment. Customers connect
to the credit-card company’s Web site to get the one-time-use num-
ber. Explain what benefit such a system offers, as compared to using
regular credit-card numbers. Also explain its benefits and drawbacks
as compared to electronic payment gateways with authentication.

d. Does either of the above systems guarantee the same privacy that is
available when payments are made in cash? Explain your answer.

26.11 If the entire database fits in main memory, do we still need a database
system to manage the data? Explain your answer.

26.12 In the group-commit technique, how many transactions should be part of
a group? Explain your answer.

26.13 In a database system using write-ahead logging, what is the worst-case
number of disk accesses required to read a data item from a specified
disk page. Explain why this presents a problem to designers of real-time
database systems. Hint: consider the case when the disk buffer is full.

26.14 What is the purpose of compensating transactions? Present two examples
of their use.

26.15 Explain the connections between a workflow and a long-duration trans-
action.
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PART 9

CASE STUDIES
This part describes how different database systems integrate the various con-
cepts described earlier in the book. We begin by covering a widely used open-
source database system, PostgreSQL, in Chapter 27. Three widely used commercial
database systems—IBM DB2, Oracle, and Microsoft SQL Server—are covered in
Chapters 28, 29, and 30. These three represent three of the most widely used
commercial database systems.

Each of these chapters highlights unique features of each database system:
tools, SQL variations and extensions, and system architecture, including storage
organization, query processing, concurrency control and recovery, and replica-
tion.

The chapters cover only key aspects of the database products they describe,
and therefore should not be regarded as a comprehensive coverage of the product.
Furthermore, since products are enhanced regularly, details of the product may
change. When using a particular product version, be sure to consult the user
manuals for specific details.

Keep in mind that the chapters in this part often use industrial rather than
academic terminology. For instance, they use table instead of relation, row instead
of tuple, and column instead of attribute.
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C H A P T E R27
PostgreSQL

Anastasia Ailamaki, Sailesh Krishnamurthy, Spiros
Papadimitriou, Bianca Schroeder,
Karl Schnaitter, and Gavin Sherry

PostgreSQL is an open-source object-relational database management system. It is
a descendant of one of the earliest such systems, the POSTGRES system developed
under Professor Michael Stonebraker at the University of California, Berkeley. The
name “postgres” is derived from the name of a pioneering relational database sys-
tem, Ingres, also developed under Stonebraker at Berkeley. Currently, PostgreSQL
supports many aspects of SQL:2003 and offers features such as complex queries,
foreign keys, triggers, views, transactional integrity, full-text searching, and lim-
ited data replication. In addition, users can extend PostgreSQL with new data
types, functions, operators, or index methods. PostgreSQL supports a variety of
programming languages (including C, C++, Java, Perl, Tcl, and Python) as well
as the database interfaces JDBC and ODBC. Another notable point of PostgreSQL
is that it, along with MySQL, is one of the two most widely used open-source
relational database systems. PostgreSQL is released under the BSD license, which
grants permission to anyone for the use, modification, and distribution of the
PostgreSQL code and documentation for any purpose without fee.

27.1 Introduction

In the course of two decades, PostgreSQL has undergone several major releases.
The first prototype system, under the name POSTGRES, was demonstrated at the
1988 ACM SIGMOD conference. The first version, distributed to users in 1989, pro-
vided features such as extensible data types, a preliminary rule system, and a
query language named POSTQUEL. After the subsequent versions added a new
rule system, support for multiple storage managers, and an improved query ex-
ecutor, the system developers focused on portability and performance until 1994,
when an SQL language interpreter was added. Under a new name, Postgres95,
the system was released to the Web and later commercialized by Illustra Informa-
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tion Technologies (later merged into Informix, which is now owned by IBM). By
1996, the name Postgres95 was replaced by PostgreSQL, to reflect the relationship
between the original POSTGRES and the more recent versions with SQL capability.

PostgreSQL runs under virtually all Unix-like operating systems, including
Linux and Apple Macintosh OS X. Early versions of the PostgreSQL server can be
run under Microsoft Windows in the Cygwin environment, which provides Linux
emulation under Windows. Version 8.0, released in January 2005, introduced
native support for Microsoft Windows.

Today, PostgreSQL is used to implement several different research and produc-
tion applications (such as the PostGIS system for geographic information) and an
educational tool at several universities. The system continues to evolve through
the contributions of a community of about 1000 developers. In this chapter, we
explain how PostgreSQL works, starting from user interfaces and languages and
continuing into the heart of the system (the data structures and the concurrency-
control mechanism).

27.2 User Interfaces

The standard distribution of PostgreSQL comes with command-line tools for
administering the database. However, there is a wide range of commercial and
open-source graphical administration and design tools that support PostgreSQL.
Software developers may also access PostgreSQL through a comprehensive set of
programming interfaces.

27.2.1 Interactive Terminal Interfaces

Like most database systems, PostgreSQL offers command-line tools for database
administration. The main interactive terminal client is psql, which is modeled
after the Unix shell and allows execution of SQL commands on the server, as well
as several other operations (such as client-side copying). Some of its features are:

• Variables. psql provides variable substitution features, similar to common
Unix command shells.

• SQL interpolation. The user can substitute (“interpolate”) psql variables into
regular SQL statements by placing a colon in front of the variable name.

• Command-line editing. psql uses the GNU readline library for convenient
line editing, with tab-completion support.

PostgreSQL may also be accessed from a Tcl/Tk shell, which provides a flexible
scripting language commonly used for rapid prototyping. This functionality is
enabled in Tcl/Tk by loading the pgtcl library, which is distributed as an optional
extension to PostgreSQL.

27.2.2 Graphical Interfaces

The standard distribution of PostgreSQL does not contain any graphical tools.
However, several graphical user interface tools exist, and users can choose among
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Figure 27.1 pgAdmin III: An open-source database administration GUI.

commercial and open-source alternatives. Many of these go through rapid release
cycles; the following list reflects the state of affairs at the time of this writing.

There are graphical tools for administration, including pgAccess and pgAd-
min, the latter of which is shown in Figure 27.1. Tools for database design include
TORA and Data Architect, the latter of which is shown in Figure 27.2. PostgreSQL
works with several commercial forms-design and report-generation tools. Open-
source alternatives include Rekall (shown in Figures 27.3 and 27.4), GNU Report
Generator, and a more comprehensive tool suite, GNU Enterprise.

27.2.3 Programming Language Interfaces

PostgreSQL provides native interfaces for ODBC and JDBC, as well as bindings
for most programming languages, including C, C++, PHP, Perl, Tcl/Tk, ECPG,
Python, and Ruby.

The libpq library provides the C API for PostgreSQL; libpq is also the un-
derlying engine for most programming-language bindings. The libpq library
supports both synchronous and asynchronous execution of SQL commands and
prepared statements, through a reentrant and thread-safe interface. The connec-
tion parameters of libpq may be configured in several flexible ways, such as
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Figure 27.2 Data Architect: A multiplatform database design GUI.

setting environment variables, placing settings in a local file, or creating entries
on an LDAP server.

27.3 SQL Variations and Extensions

The current version of PostgreSQL supports almost all entry-level SQL-92 features,
as well as many of the intermediate- and full-level features. It also supports
many SQL:1999 and SQL:2003 features, including most object-relational features
described in Chapter 22 and the SQL/XML features for parsed XML data described
in Chapter 23. In fact, some features of the current SQL standard (such as arrays,
functions, and inheritance) were pioneered by PostgreSQL or its ancestors. It lacks
OLAP features (most notably, cube and rollup), but data from PostgreSQL can be
easily loaded into open-source external OLAP servers (such as Mondrian) as well
as commercial products.

27.3.1 PostgreSQL Types

PostgreSQL has support for several nonstandard types, useful for specific appli-
cation domains. Furthermore, users can define new types with the create type
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Figure 27.3 Rekall: Form-design GUI.

command. This includes new low-level base types, typically written in C (see
Section 27.3.3.1).

27.3.1.1 The PostgreSQL Type System

PostgreSQL types fall into the following categories:

• Base types. Base types are also known as abstract data types; that is, modules
that encapsulate both state and a set of operations. These are implemented
below the SQL level, typically in a language such as C (see Section 27.3.3.1).
Examples are int4 (already included in PostgreSQL) or complex (included as
an optional extension type). A base type may represent either an individual
scalar value or a variable-length array of values. For each scalar type that
exists in a database, PostgreSQL automatically creates an array type that holds
values of the same scalar type.

• Composite types. These correspond to table rows; that is, they are a list of
field names and their respective types. A composite type is created implicitly
whenever a table is created, but users may also construct them explicitly.
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Figure 27.4 Rekall: Report-design GUI.

• Domains. A domain type is defined by coupling a base type with a constraint
that values of the type must satisfy. Values of the domain type and the asso-
ciated base type may be used interchangeably, provided that the constraint is
satisfied. A domain may also have an optional default value, whose meaning
is similar to the default value of a table column.

• Enumerated types. These are similar to enum types used in programming
languages such as C and Java. An enumerated type is essentially a fixed list
of named values. In PostgreSQL, enumerated types may be converted to the
textual representation of their name, but this conversion must be specified
explicitly in some cases to ensure type safety. For instance, values of differ-
ent enumerated types may not be compared without explicit conversion to
compatible types.

• Pseudotypes. Currently, PostgreSQL supports the following pseudotypes:
any, anyarray, anyelement, anyenum, anynonarray cstring, internal, opaque, lan-
guage handler, record, trigger, and void. These cannot be used in composite
types (and thus cannot be used for table columns), but can be used as argu-
ment and return types of user-defined functions.

• Polymorphic types. Four of the pseudotypes anyelement, anyarray, anynonar-
ray, and anyenum are collectively known as polymorphic. Functions with ar-
guments of these types (correspondingly called polymorphic functions) may
operate on any actual type. PostgreSQL has a simple type-resolution scheme
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that requires that: (1) in any particular invocation of a polymorphic function,
all occurrences of a polymorphic type must be bound to the same actual type
(that is, a function defined as f (anyelement, anyelement) may operate only on
pairs of the same actual type), and (2) if the return type is polymorphic, then
at least one of the arguments must be of the same polymorphic type.

27.3.1.2 Nonstandard Types

The types described in this section are included in the standard distribution. Fur-
thermore, thanks to the open nature of PostgreSQL, there are several contributed
extension types, such as complex numbers, and ISBN/ISSNs (see Section 27.3.3).

Geometric data types (point, line, lseg, box, polygon, path, circle) are used in ge-
ographic information systems to represent two-dimensional spatial objects such
as points, line segments, polygons, paths, and circles. Numerous functions and
operators are available in PostgreSQL to perform various geometric operations
such as scaling, translation, rotation, and determining intersections. Further-
more, PostgreSQL supports indexing of these types using R-trees (Sections 25.3.5.3
and 27.5.2.1).

Full-text searching is performed in PostgreSQL using the tsvector type that
represents a document and the tsquery type that represents a full-text query. A
tsvector stores the distinct words in a document, after converting variants of each
word to a common normal form (for example, removing word stems). PostgreSQL
provides functions to convert raw text to a tsvector and concatenate documents. A
tsquery specifies words to search for in candidate documents, with multiple words
connected by Boolean operators. For example, the query ’index & !(tree | hash)’
finds documents that contain “index” without using the words “tree” or “hash.”
PostgreSQL natively supports operations on full-text types, including language
features and indexed search.

PostgreSQL offers data types to store network addresses. These data types
allow network-management applications to use a PostgreSQL database as their
data store. For those familiar with computer networking, we provide a brief
summary of this feature here. Separate types exist for IPv4, IPv6, and Media
Access Control (MAC) addresses (cidr, inet and macaddr, respectively). Both inet
and cidr types can store IPv4 and IPv6 addresses, with optional subnet masks.
Their main difference is in input/output formatting, as well as the restriction
that classless Internet domain routing (CIDR) addresses do not accept values with
nonzero bits to the right of the netmask. The macaddr type is used to store MAC
addresses (typically, Ethernet card hardware addresses). PostgreSQL supports
indexing and sorting on these types, as well as a set of operations (including
subnet testing, and mapping MAC addresses to hardware manufacturer names).
Furthermore, these types offer input-error checking. Thus, they are preferable
over plain text fields.

The PostgreSQL bit type can store both fixed- and variable-length strings
of 1s and 0s. PostgreSQL supports bit-logical operators and string-manipulation
functions for these values.
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27.3.2 Rules and Other Active-Database Features

PostgreSQL supports SQL constraints and triggers (and stored procedures; see
Section 27.3.3). Furthermore, it features query-rewriting rules that can be declared
on the server.

PostgreSQL allows check constraints, not null constraints, and primary-key
and foreign-key constraints (with restricting and cascading deletes).

Like many other relational database systems, PostgreSQL supports triggers,
which are useful for nontrivial constraints and consistency checking or enforce-
ment. Trigger functions can be written in a procedural language such as PL/pgSQL
(see Section 27.3.3.4) or in C, but not in plain SQL. Triggers can execute before or
after insert, update, or delete operations and either once per modified row, or
once per SQL statement.

The PostgreSQL rules system allows users to define query-rewrite rules on the
database server. Unlike stored procedures and triggers, the rule system intervenes
between the query parser and the planner and modifies queries on the basis of the
set of rules. After the original query tree has been transformed into one or more
trees, they are passed to the query planner. Thus, the planner has all the necessary
information (tables to be scanned, relationships between them, qualifications, join
information, and so forth) and can come up with an efficient execution plan, even
when complex rules are involved.

The general syntax for declaring rules is:

create rule rule name as
on { select | insert | update | delete }
to table [ where rule qualification ]
do [ instead ] { nothing | command | ( command ; command ... ) }

The rest of this section provides examples that illustrate the rule system’s capa-
bilities. More details on how rules are matched to query trees and how the latter
are subsequently transformed can be found in the PostgreSQL documentation (see
the bibliographical notes). The rule system is implemented in the rewrite phase
of query processing and explained in Section 27.6.1.

First, PostgreSQL uses rules to implement views. A view definition such as:

create view myview as select * from mytab;

is converted into the following rule definition:

create table myview (same column list as mytab);
create rule return as on select to myview do instead

select * from mytab;

Queries on myview are transformed before execution to queries on the underlying
table mytab. The create view syntax is considered better programming form in
this case, since it is more concise and it also prevents creation of views that
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reference each other (which is possible if rules are carelessly declared, resulting
in potentially confusing runtime errors). However, rules can be used to define
update actions on views explicitly (create view statements do not allow this).

As another example, consider the case where the user wants to log all increases
of instructor salaries. This could be achieved by a rule such as:

create rule salary audit as on update to instructor
where new.salary <> old.salary
do insert into salary audit
values (current timestamp, current user,

new.name, old.salary, new.salary);

Finally, we give a slightly more complicated insert/update rule. Assume that
pending salary increases are stored in a table salary increases(name, increase). We
can declare a “dummy” table approved increases with the same fields and then
define the following rule:

create rule approved increases insert
as on insert to approved increases
do instead
update instructor

set salary = salary + new.increase
where name = new.name;

Then the following query:

insert into approved increases select * from salary increases;

will update all salaries in the instructor table at once. Since the instead keyword
was specified in the rule, the approved increases table is unchanged.

There is some overlap between the functionality provided by rules and per-
row triggers. The PostgreSQL rule system can be used to implement most triggers,
but some kinds of constraints (in particular, foreign keys) cannot be implemented
by rules. Also, triggers have the added ability to generate error messages to signal
constraint violations, whereas a rule may only enforce data integrity by silently
suppressing invalid values. On the other hand, triggers cannot be used for the
update or delete actions that rules enable on views. Since there is no real data in
a view relation, the trigger would never be called.

An important difference between triggers and views is that a trigger is exe-
cuted iteratively for every affected row. A rule, on the other hand, manipulates
the query tree before query planning. So if a statement affects many rows, a rule
is far more efficient than a trigger.

The implementation of triggers and constraints in PostgreSQL is outlined
briefly in Section 27.6.4.
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27.3.3 Extensibility

Like most relational database systems, PostgreSQL stores information about data-
bases, tables, columns, and so forth, in what are commonly known as system
catalogs, which appear to the user as normal tables. Other relational database
systems are typically extended by changing hard-coded procedures in the source
code or by loading special extension modules written by the vendor.

Unlike most relational database systems, PostgreSQL goes one step further and
stores much more information in its catalogs: not only information about tables
and columns, but also information about data types, functions, access methods,
and so on. Therefore, PostgreSQL is easy for users to extend and facilitates rapid
prototyping of new applications and storage structures. PostgreSQL can also in-
corporate user-written code into the server, through dynamic loading of shared
objects. This provides an alternative approach to writing extensions that can be
used when catalog-based extensions are not sufficient.

Furthermore, the contribmodule of the PostgreSQL distribution includes nu-
merous user functions (for example, array iterators, fuzzy string matching, cryp-
tographic functions), base types (for example, encrypted passwords, ISBN/ISSNs,
n-dimensional cubes) and index extensions (for example, RD-trees, indexing for
hierarchical labels). Thanks to the open nature of PostgreSQL, there is a large
community of PostgreSQL professionals and enthusiasts who also actively extend
PostgreSQL on an almost daily basis. Extension types are identical in functionality
to the built-in types (see also Section 27.3.1.2); the latter are simply already linked
into the server and preregistered in the system catalog. Similarly, this is the only
difference between built-in and extension functions.

27.3.3.1 Types

PostgreSQL allows users to define composite types, enumeration types, and even
new base types.

A composite-type definition is similar to a table definition (in fact, the latter
implicitly does the former). Stand-alone composite types are typically useful for
function arguments. For example, the definition:

create type city t as (name varchar(80), state char(2));

allows functions to accept and return city t tuples, even if there is no table that
explicitly contains rows of this type.

Enumeration types are easy to define, by simply listing the names of the
values. The following example creates an enumerated type to represent the status
of a software product.

create type status t as enum (’alpha’, ’beta’, ’release’);

The order of listed names is significant in comparing values of an enumerated
type. This can be useful for a statement such as:
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select name from products
where status > ’alpha’;

which retrieves the names of products that have moved past the alpha stage.
Adding base types to PostgreSQL is straightforward; an example can be found

in complex.sql and complex.c in the tutorials of the PostgreSQL distribution.
The base type can be declared in C, for example:

typedef struct Complex {
double x;
double y;

} Complex;

The next step is to define functions to read and write values of the new type in
text format (see Section 27.3.3.2). Subsequently, the new type can be registered
using the statement:

create type complex {
internallength = 16,
input = complex in,
output = complex out,
alignment = double

};

assuming the text I/O functions have been registered as complex in and complex
out.

The user has the option of defining binary I/O functions as well (for more
efficient data dumping). Extension types can be used like the existing base types
of PostgreSQL. In fact, their only difference is that the extension types are dynam-
ically loaded and linked into the server. Furthermore, indices may be extended
easily to handle new base types; see Section 27.3.3.3.

27.3.3.2 Functions

PostgreSQL allows users to define functions that are stored and executed on the
server. PostgreSQL also supports function overloading (that is, functions may be
declared by using the same name but with arguments of different types). Func-
tions can be written as plain SQL statements, or in several procedural languages
(covered in Section 27.3.3.4). Finally, PostgreSQL has an application programmer
interface for adding functions written in C (explained in this section).

User-defined functions can be written in C (or a language with compatible
calling conventions, such as C++). The actual coding conventions are essentially
the same for dynamically loaded, user-defined functions, as well as for internal
functions (which are statically linked into the server). Hence, the standard internal
function library is a rich source of coding examples for user-defined C functions.
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Once the shared library containing the function has been created, a declaration
such as the following registers it on the server:

create function complex out(complex)
returns cstring
as ’shared object filename’
language C immutable strict;

The entry point to the shared object file is assumed to be the same as the SQL
function name (here, complex out), unless otherwise specified.

The example here continues the one from Section 27.3.3.1. The application
program interface hides most of PostgreSQL’s internal details. Hence, the actual
C code for the above text output function of complex values is quite simple:

PG FUNCTION INFO V1(complex out);
Datum complex out(pg function args) {

Complex *complex = (Complex *) pg getarg pointer(0);
char *result;
result = (char *) palloc(100);
snprintf(result, 100, "(%g,%g)", complex−>x, complex−>y);
pg return cstring(result);

}

The first line declares the function complex out, and the following lines imple-
ment the output function. The code uses several PostgreSQL-specific constructs,
such as the palloc function, which dynamically allocates memory controlled by
PostgreSQL’s memory manager. More details may be found in the PostgreSQL
documentation (see the bibliographical notes).

Aggregate functions in PostgreSQL operate by updating a state value via
a state transition function that is called for each tuple value in the aggregation
group. For example, the state for the avg operator consists of the running sum and
the count of values. As each tuple arrives, the transition function should simply
add its value to the running sum and increment the count by one. Optionally,
a final function may be called to compute the return value based on the state
information. For example, the final function for avg would simply divide the
running sum by the count and return it.

Thus, defining a new aggregate is as simple as defining these two functions.
For the complex type example, if complex add is a user-defined function that takes
two complex arguments and returns their sum, then the sum aggregate operator
can be extended to complex numbers using the simple declaration:
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create aggregate sum (
sfunc = complex add,
basetype = complex,
stype = complex,
initcond = ’(0,0)’

);

Note the use of function overloading: PostgreSQL will call the appropriate sum
aggregate function, on the basis of the actual type of its argument during invo-
cation. The basetype is the argument type and stype is the state value type. In this
case, a final function is unnecessary, since the return value is the state value itself
(that is, the running sum in both cases).

User-defined functions can also be invoked by using operator syntax. Beyond
simple “syntactic sugar” for function invocation, operator declarations can also
provide hints to the query optimizer in order to improve performance. These hints
may include information about commutativity, restriction and join selectivity
estimation, and various other properties related to join algorithms.

27.3.3.3 Index Extensions

PostgreSQL currently supports the usual B-tree and hash indices, as well as two
index methods that are unique to PostgreSQL: the Generalized Search Tree (GiST)
and the Generalized Inverted Index (GIN), which is useful for full-text indexing
(these index structures are explained in Section 27.5.2.1). Finally, PostgreSQL pro-
vides indexing of two-dimensional spatial objects with an R-tree index, which
is implemented using a GiST index behind the scenes. All of these can be easily
extended to accommodate new base types.

Adding index extensions for a type requires definition of an operator class,
which encapsulates the following:

• Index-method strategies. These are a set of operators that can be used as
qualifiers in where clauses. The particular set depends on the index type. For
example, B-tree indices can retrieve ranges of objects, so the set consists of
five operators (<, <=, =, >=, and >), all of which can appear in a where
clause involving a B-tree index. A hash index allows only equality testing
and an R-tree index allows a number of spatial relationships (for example
contained, to-the-left, and so forth).

• Index-method support routines. The above set of operators is typically not
sufficient for the operation of the index. For example, a hash index requires
a function to compute the hash value for each object. An R-tree index needs
to be able to compute intersections and unions and to estimate the size of
indexed objects.
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For example, if the following functions and operators are defined to compare
the magnitude of complex numbers (see Section 27.3.3.1), then we can make such
objects indexable by the following declaration:

create operator class complex abs ops
default for type complex using btree as

operator 1 < (complex, complex),
operator 2 <= (complex, complex),
operator 3 = (complex, complex),
operator 4 >= (complex, complex),
operator 5 > (complex, complex),
function 1 complex abs cmp(complex, complex);

The operator statements define the strategy methods and the function statements
define the support methods.

27.3.3.4 Procedural Languages

Stored functions and procedures can be written in a number of procedural lan-
guages. Furthermore, PostgreSQL defines an application programmer interface
for hooking up any programming language for this purpose. Programming lan-
guages can be registered on demand and are either trusted or untrusted. The
latter allow unlimited access to the DBMS and the file system, and writing stored
functions in them requires superuser privileges.

• PL/pgSQL. This is a trusted language that adds procedural programming
capabilities (for example, variables and control flow) to SQL. It is very similar
to Oracle’s PL/SQL. Although code cannot be transferred verbatim from one
to the other, porting is usually simple.

• PL/Tcl, PL/Perl, and PL/Python. These leverage the power of Tcl, Perl, and
Python to write stored functions and procedures on the server. The first two
come in both trusted and untrusted versions (PL/Tcl, PL/Perl and PL/TclU,
PL/PerlU, respectively), while PL/Python is untrusted at the time of this
writing. Each of these has bindings that allow access to the database system
via a language-specific interface.

27.3.3.5 Server Programming Interface

The server programming interface (SPI) is an application programmer interface
that allows user-defined C functions (see Section 27.3.3.2) to run arbitrary SQL
commands inside their functions. This gives writers of user-defined functions the
ability to implement only essential parts in C and easily leverage the full power
of the relational database system engine to do most of the work.
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27.4 Transaction Management in PostgreSQL

Transaction management in PostgreSQL uses both both snapshot isolation and
two-phase locking. Which one of the two protocols is used depends on the type of
statement being executed. For DML statements1 the snapshot isolation technique
presented in Section 15.7 is used; the snapshot isolation scheme is referred to as
the multiversion concurrency control (MVCC) scheme in PostgreSQL. Concurrency
control for DDL statements, on the other hand, is based on standard two-phase
locking.

27.4.1 PostgreSQL Concurrency Control

Since the concurrency control protocol used by PostgreSQL depends on the isola-
tion level requested by the application, we begin with an overview of the isolation
levels offered by PostgreSQL. We then describe the key ideas behind the MVCC
scheme, followed by a discussion of their implementation in PostgreSQL and some
of the implications of MVCC. We conclude this section with an overview of locking
for DDL statements and a discussion of concurrency control for indices.

27.4.1.1 PostgreSQL Isolation Levels

The SQL standard defines three weak levels of consistency, in addition to the
serializable level of consistency, on which most of the discussion in this book is
based. The purpose of providing the weak consistency levels is to allow a higher
degree of concurrency for applications that don’t require the strong guarantees
that serializability provides. Examples of such applications include long-running
transactions that collect statistics over the database and whose results do not need
to be precise.

The SQL standard defines the different isolation levels in terms of three phe-
nomena that violate serializability. The three phenomena are called dirty read,
nonrepeatable read, and phantom read, and are defined as follows:

• Dirty read. The transaction reads values written by another transaction that
hasn’t committed yet.

• Nonrepeatable read. A transaction reads the same object twice during exe-
cution and finds a different value the second time, although the transaction
has not changed the value in the meantime.

• Phantom read. A transaction re-executes a query returning a set of rows
that satisfy a search condition and finds that the set of rows satisfying the
condition has changed as a result of another recently committed transaction.
(A more detailed explanation of the phantom phenomenon, including the

1A DML statement is any statement that updates or reads data within a table, that is, select, insert, update, fetch, and
copy. DDL statements affect entire tables; they can remove a table or change the schema of a table, for example. DDL
statements and some other PostgreSQL-specific statements will be discussed later in this section.
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Isolated level Dirty Read Non repeatable Read Phantom Read

Read Uncommitted Maybe Maybe Maybe
Read Committed No Maybe Maybe
Repeated Read No No Maybe
Serializable No No No

Figure 27.5 Definition of the four standard SQL isolation levels.

concept of a phantom conflict, can be found in Section 15.8.3; eliminating
phantom reads does not eliminate all phantom conflicts.)

It should be obvious that each of the above phenomena violates transaction
isolation, and hence violates serializability. Figure 27.5 shows the definition of
the four SQL isolation levels specified in the SQL standard—read uncommitted,
read committed, repeatable read, and serializable—in terms of these phenomena.
PostgreSQL supports two of the four different isolation levels, read committed
(which is the default isolation level in PostgreSQL) and serializable. However,
the PostgreSQL implementation of the serializable isolation level uses snapshot
isolation, which does not truly ensure serializability as we have seen earlier in
Section 15.7.

27.4.1.2 Concurrency Control for DML Commands

The MVCC scheme used in PostgreSQL is an implementation of the snapshot
isolation protocol which we saw in Section 15.7. The key idea behind MVCC is to
maintain different versions of each row that correspond to instances of the row
at different points in time. This allows a transaction to see a consistent snapshot
of the data, by selecting the most recent version of each row that was committed
before taking the snapshot. The MVCC protocol uses snapshots to ensure that every
transaction sees a consistent view of the database: before executing a command,
the transaction chooses a snapshot of the data and processes the row versions that
are either in the snapshot or created by earlier commands of the same transaction.
This view of the data is “consistent” since it only takes full transactions into
account, but the snapshot is not necessarily equal to the current state of the data.

The motivation for using MVCC is that readers never block writers and vice
versa. Readers access the most recent version of a row that is part of the transac-
tion’s snapshot. Writers create their own separate copy of the row to be updated.
Section 27.4.1.3 shows that the only conflict that causes a transaction to be blocked
arises if two writers try to update the same row. In contrast, under the standard
two-phase locking approach, both readers and writers might be blocked, since
there is only one version of each data object and both read and write operations
are required to obtain a lock before accessing any data.

The MVCC scheme in PostgreSQL implements the first-updater-wins version
of the snapshot isolation protocol, by acquiring exclusive locks on rows that
are written, but using a snapshot (without any locking) when reading rows;
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additional validation is done when exclusive locks are obtained, as outlined
earlier in Section 15.7.

27.4.1.3 PostgreSQL Implementation of MVCC

At the core of PostgreSQL MVCC is the notion of tuple visibility. A PostgreSQL
tuple refers to a version of a row. Tuple visibility defines which of the potentially
many versions of a row in a table is valid within the context of a given statement
or transaction. A transaction determines tuple visibility based on a database
snapshot that is chosen before executing a command.

A tuple is visible for a transaction T if the following two conditions hold:

1. The tuple was created by a transaction that committed before transaction T
took its snapshot.

2. Updates to the tuple (if any) were executed by a transaction that is either

• aborted, or

• started running after T took its snapshot, or

• was active when T took its snapshot.

To be precise, a tuple is also visible to T if it was created by T and not subsequently
updated by T . We omit the details of this special case for simplicity.

The goal of the above conditions is to ensure that each transaction sees a
consistent view of the data. PostgreSQL maintains the following state information
to check these conditions efficiently:

• A transaction ID, which at the same time serves as a timestamp, is assigned to
every transaction at transaction start time. PostgreSQL uses a logical counter
(as described in Section 15.4.1) for assigning transaction IDs.

• A log file called pg clog contains the current status of each transaction. The
status can be either in progress, committed, or aborted.

• Each tuple in a table has a header with three fields: xmin, which contains the
transaction ID of the transaction that created the tuple and which is therefore
also called the creation-transaction ID; xmax, which contains the transaction
ID of the replacing/deleting transaction (or null if not deleted/replaced) and
which is also referred to as the expire-transaction ID; and a forward link to new
versions of the same logical row, if there are any.

• A SnapshotData data structure is created either at transaction start time or at
query start time, depending on the isolation level (described in more detail
below). Its main purpose is to decide whether a tuple is visible to the current
command. The SnapshotData stores information about the state of transactions
at the time it is created, which includes a list of active transactions and xmax,
a value equal to 1 + the highest ID of any transaction that has started so far.
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Database table
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Figure 27.6 The PostgreSQL data structures used for MVCC.

The value xmax serves as a “cutoff” for transactions that may be considered
visible.

Figure 27.6 illustrates some of this state information through a simple example
involving a database with only one table, the department table from Figure 27.7.
The department table has three columns, the name of the department, the building
where the department is located, and the budget of the department. Figure 27.6
shows a fragment of the department table containing only the (versions of) the row
corresponding to the Physics department. The tuple headers indicate that the row
was originally created by transaction 100, and later updated by transaction 102
and transaction 106. Figure 27.6 also shows a fragment of the corresponding pg
clog file. On the basis of the pg clog file, transactions 100 and 102 are committed,

while transactions 104 and 106 are in progress.
Given the above state information, the two conditions that need to be satisfied

for a tuple to be visible can be rewritten as follows:

dept name building budget

Biology Watson 90000
Comp. Sci. Taylor 100000
Elec. Eng. Taylor 85000
Finance Painter 120000
History Painter 50000
Music Packard 80000
Physics Watson 70000

Figure 27.7 The department relation.
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1. The creation-transaction ID in the tuple header

a. is a committed transaction according to the pg clog file, and

b. is less than the cutoff transaction ID xmax recorded by SnapshotData,
and

c. is not one of the active transactions stored in SnapshotData.

2. The expire-transaction ID, if it exists,

a. is an aborted transaction according to the pg clog file, or

b. is greater than or equal to the cutoff transaction ID xmax recorded by
SnapshotData, or

c. is one of the active transactions stored in SnapshotData.

Consider the example database in Figure 27.6 and assume that the Snapshot-
Data used by transaction 104 simply uses 103 as the cutoff transaction ID xmax and
does not show any earlier transactions to be active. In this case, the only version
of the row corresponding to the Physics department that is visible to transaction
104 is the second version in the table, created by transaction 102. The first version,
created by transaction 100, is not visible, since it violates condition 2: The expire-
transaction ID of this tuple is 102, which corresponds to a transaction that is not
aborted and that has a transaction ID less than or equal to 103. The third version
of the Physics tuple is not visible, since it was created by transaction 106, which
has a transaction ID larger than transaction 103, implying that this version had
not been committed at the time SnapshotData was created. Moreover, transaction
106 is still in progress, which violates another one of the conditions. The second
version of the row meets all the conditions for tuple visibility.

The details of how PostgreSQL MVCC interacts with the execution of SQL
statements depends on whether the statement is an insert, select, update, or
delete statement. The simplest case is an insert statement, which may simply
create a new tuple based on the data in the statement, initialize the tuple header
(the creation ID), and insert the new tuple into the table. Unlike two-phase locking,
this does not require any interaction with the concurrency-control protocol unless
the insertion needs to be checked for integrity conditions, such as uniqueness or
foreign key constraints.

When the system executes a select, update, or delete statement the interaction
with the MVCC protocol depends on the isolation level specified by the application.
If the isolation level is read committed, the processing of a new statement begins
with creating a new SnapshotData data structure (independent of whether the
statement starts a new transaction or is part of an existing transaction). Next, the
system identifies target tuples, that is, the tuples that are visible with respect to the
SnapshotData and that match the search criteria of the statement. In the case of a
select statement, the set of target tuples make up the result of the query.

In the case of an update or delete statement in read committed mode, an extra
step is necessary after identifying the target tuples, before the actual update or
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delete operation can take place. The reason is that visibility of a tuple ensures
only that the tuple has been created by a transaction that committed before
the update/delete statement in question started. However, it is possible that,
since query start, this tuple has been updated or deleted by another concurrently
executing transaction. This can be detected by looking at the expire-transaction
ID of the tuple. If the expire-transaction ID corresponds to a transaction that is still
in progress, it is necessary to wait for the completion of this transaction first. If the
transaction aborts, the update or delete statement can proceed and perform the
actual modification. If the transaction commits, the search criteria of the statement
need to be evaluated again, and only if the tuple still meets these criteria can the
row be modified. If the row is to be deleted, the main step is to update the
expire-transaction ID of the old tuple. A row update also performs this step, and
additionally creates a new version of the row, sets its creation-transaction ID, and
sets the forward link of the old tuple to reference the new tuple.

Going back to the example from Figure 27.6, transaction 104, which consists of
a select statement only, identifies the second version of the Physics row as a target
tuple and returns it immediately. If transaction 104 were an update statement
instead, for example, trying to increment the budget of the Physics department
by some amount, it would have to wait for transaction 106 to complete. It would
then re-evaluate the search condition and, only if it is still met, proceed with its
update.

Using the protocol described above for update and delete statements pro-
vides only the read-committed isolation level. Serializability can be violated in
several ways. First, nonrepeatable reads are possible. Since each query within a
transaction may see a different snapshot of the database, a query in a transaction
might see the effects of an update command completed in the meantime that
weren’t visible to earlier queries within the same transaction. Following the same
line of thought, phantom reads are possible when a relation is modified between
queries.

In order to provide the PostgreSQL serializable isolation level, PostgreSQL
MVCC eliminates violations of serializability in two ways: First, when it is deter-
mining tuple visibility, all queries within a transaction use a snapshot as of the
start of the transaction, rather than the start of the individual query. This way
successive queries within a transaction always see the same data.

Second, the way updates and deletes are processed is different in serializable
mode compared to read-committed mode. As in read-committed mode, transac-
tions wait after identifying a visible target row that meets the search condition and
is currently updated or deleted by another concurrent transaction. If the concur-
rent transaction that executes the update or delete aborts, the waiting transaction
can proceed with its own update. However, if the concurrent transaction commits,
there is no way for PostgreSQL to ensure serializability for the waiting transac-
tion. Therefore, the waiting transaction is rolled back and returns with the error
message “could not serialize access due to concurrent update.”

It is up to the application to handle an error message like the above appro-
priately, by aborting the current transaction and restarting the entire transaction
from the beginning. Observe that rollbacks due to serializability issues are possi-
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ble only for update and delete statements. It is still the case that select statements
never conflict with any other transactions.

27.4.1.4 Implications of Using MVCC

Using the PostgreSQL MVCC scheme has implications in three different areas: (1)
extra burden is placed on the storage system, since it needs to maintain different
versions of tuples; (2) developing concurrent applications takes some extra care,
since PostgreSQL MVCC can lead to subtle, but important, differences in how
concurrent transactions behave, compared to systems where standard two-phase
locking is used; (3) PostgreSQL performance depends on the characteristics of the
workload running on it. The implications of PostgreSQL MVCC are described in
more detail below.

Creating and storing multiple versions of every row can lead to excessive
storage consumption. To alleviate this problem, PostgreSQL frees up space when
possible by identifying and deleting versions of tuples that cannot be visible to
any active or future transactions, and are therefore no longer needed. The task
of freeing space is nontrivial, because indices may refer to the location of an
unneeded tuple, so these references need to be deleted before reusing the space.
To lessen this issue, PostgreSQL avoids indexing multiple versions of a tuple that
have identical index attributes. This allows the space taken by nonindexed tuples
to be freed efficiently by any transaction that finds such a tuple.

For more aggressive space reuse, PostgreSQL provides the vacuum command,
which correctly updates indices for each freed tuple. PostgreSQL employs a back-
ground process to vacuum tables automatically, but the command can also be
executed by the user directly. The vacuum command offers two modes of op-
eration: Plain vacuum simply identifies tuples that are not needed, and makes
their space available for reuse. This form of the command can operate in parallel
with normal reading and writing of the table. Vacuum full does more extensive
processing, including moving of tuples across blocks to try to compact the table
to the minimum number of disk blocks. This form is much slower and requires
an exclusive lock on each table while it is being processed.

Because of the use of multiversion concurrency control in PostgreSQL, porting
applications from other environments to PostgreSQL might require some extra care
to ensure data consistency. As an example, consider a transaction TA executing
a select statement. Since readers in PostgreSQL don’t lock data, data read and
selected by TA can be overwritten by another concurrent transaction TB , while
TA is still running. As a result some of the data that TA returns might not be
current anymore at the time of completion of TA. TA might return rows that in
the meantime have been changed or deleted by other transactions. To ensure the
current validity of a row and protect it against concurrent updates, an application
must either use select for share or explicitly acquire a lock with the appropriate
lock table command.

PostgreSQL’s approach to concurrency control performs best for workloads
containing many more reads than updates, since in this case there is a very low
chance that two updates will conflict and force a transaction to roll back. Two-
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phase locking may be more efficient for some update-intensive workloads, but
this depends on many factors, such as the length of transactions and the frequency
of deadlocks.

27.4.1.5 DDL Concurrency Control

The MVCC mechanisms described in the previous section do not protect trans-
actions against operations that affect entire tables, for example, transactions that
drop a table or change the schema of a table. Toward this end, PostgreSQL pro-
vides explicit locks that DDL commands are forced to acquire before starting their
execution. These locks are always table based (rather than row based) and are
acquired and released in accordance with the strict two-phase locking protocol.

Figure 27.8 lists all types of locks offered by PostgreSQL, which locks they
conflict with, and some commands that use them (the create index concurrently

Figure 27.8 Table-level lock modes.
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command is covered in Section 27.5.2.3). The names of the lock types are often
historical and don’t necessarily reflect the use of the lock. For example, all the locks
are table-level locks, although some contain the word “row” in the name. DML
commands acquire only locks of the first three types. These three lock types are
compatible with each other, since MVCC takes care of protecting these operations
against each other. DML commands acquire these locks only for protection against
DDL commands.

While their main purpose is providing PostgreSQL internal concurrency con-
trol for DDL commands, all locks in Figure 27.8 can also be acquired explicitly by
PostgreSQL applications through the lock table command.

Locks are recorded in a lock table that is implemented as a shared-memory
hash table keyed by a signature that identifies the object being locked. If a trans-
action wants to acquire a lock on an object that is held by another transaction in
a conflicting mode, it needs to wait until the lock is released. Lock waits are im-
plemented through semaphores, each of which is associated with a unique trans-
action. When waiting for a lock, a transaction actually waits on the semaphore
associated with the transaction holding the lock. Once the lock holder releases the
lock, it will signal the waiting transaction(s) through the semaphore. By imple-
menting lock waits on a per-lock-holder basis, rather than on a per-object basis,
PostgreSQL requires at most one semaphore per concurrent transaction, rather
than one semaphore per lockable object.

Deadlock detection in PostgreSQL is based on time-outs. By default, deadlock
detection is triggered if a transaction has been waiting for a lock for more than 1
second. The deadlock-detection algorithm constructs a wait-for graph based on
the information in the lock table and searches this graph for circular dependencies.
If it finds any, meaning a deadlock was detected, the transaction that triggered the
deadlock detection aborts and returns an error to the user. If no cycle is detected,
the transaction continues waiting on the lock. Unlike some commercial systems,
PostgreSQL does not tune the lock time-out parameter dynamically, but it allows
the administrator to tune it manually. Ideally, this parameter should be chosen on
the order of a transaction lifetime, in order to optimize the trade-off between the
time it takes to detect a deadlock and the work wasted for running the deadlock
detection algorithm when there is no deadlock.

27.4.1.6 Locking and Indices

All current types of indices in PostgreSQL allow for concurrent access by multi-
ple transactions. This is typically enabled by page-level locks, so that different
transactions may access the index in parallel if they do not request conflicting
locks on a page. These locks are usually held for a short time to avoid deadlock,
with the exception of hash indices, which lock pages for longer periods and may
participate in deadlock.

27.4.2 Recovery

Historically, PostgreSQL did not use write-ahead logging (WAL) for recovery, and
therefore was not able to guarantee consistency in the case of crash. A crash could
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potentially result in inconsistent index structures or, worse, totally corrupted table
contents, because of partially written data pages. As a result, starting with version
7.1, PostgreSQL employs WAL-based recovery. The approach is similar to standard
recovery techniques such as ARIES (Section 16.8), but recovery in PostgreSQL is
simplified in some ways because of the MVCC protocol.

First, under PostgreSQL, recovery doesn’t have to undo the effects of aborted
transactions: an aborting transaction makes an entry in the pg clog file, recording
the fact that it is aborting. Consequently, all versions of rows it leaves behind
will never be visible to any other transactions. The only case where this approach
could potentially lead to problems is when a transaction aborts because of a crash
of the corresponding PostgreSQL process and the PostgreSQL process doesn’t have
a chance to create the pg clog entry before the crash. PostgreSQL handles this as
follows: Before checking the status of another transaction in the pg clog file, it
checks whether the transaction is running on any of the PostgreSQL processes.
If no PostgreSQL process is currently running the transaction and the pg clog file
shows the transaction as still running, it is safe to assume that the transaction
crashed and the transaction’s pg clog entry is updated to “aborted”.

Second, recovery is simplified by the fact that PostgreSQL MVCC already keeps
track of some of the information required by WAL logging. More precisely, there
is no need for logging the start, commit, and abort of transactions, since MVCC
logs the status of every transaction in the pg clog.

27.5 Storage and Indexing

PostgreSQL’s approach to data layout and storage is aimed at the goals of (1) a
simple and clean implementation and (2) ease of administration. As a step toward
these goals, PostgreSQL relies on “cooked” file systems, instead of handling the
physical layout of data on raw disk partitions by itself. PostgreSQL maintains a
list of directories in the file hierarchy to use for storage, which are conventionally
referred to as tablespaces. Each PostgreSQL installation is initialized with a default
tablespace, and additional tablespaces may be added at any time. When creating
a table, index, or entire database, the user may specify any existing tablespace
in which to store the related files. It is particularly useful to create multiple
tablespaces if they reside on different physical devices, so that the faster devices
may be dedicated to data that are in higher demand. Moreover, data that are
stored on separate disks may be accessed in parallel more efficiently.

The design of the PostgreSQL storage system potentially leads to some per-
formance limitations, due to clashes between PostgreSQL and the file system.
The use of cooked file systems results in double buffering, where blocks are
first fetched from disk into the file system’s cache (in kernel space) before being
copied to PostgreSQL’s buffer pool. Performance can also be limited by the fact
that PostgreSQL stores data in 8-KB blocks, which may not match the block size
used by the kernel. It is possible to change the PostgreSQL block size when the
server is installed, but this may have undesired consequences: small blocks limit
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page header data linp1 linp2 linp3 linp4

... linpn

pd_lower

pd_upper

“special space”tuple1tuple2

tuple3...tuplen

Figure 27.9 Slotted-page format for PostgreSQL tables.

the ability of PostgreSQL to store large tuples efficiently, while large blocks are
wasteful when a small region of a file is accessed.

On the other hand, modern enterprises increasingly use external storage sys-
tems, such as network-attached storage and storage-area networks, instead of
disks attached to servers. The philosophy here is that storage is a service that is
easily administered and tuned for performance separately. One approach used
by these systems is RAID, which offers both parallelism and redundant storage as
explained in Section 10.3. PostgreSQL may directly leverage these technologies be-
cause of its reliance on cooked file systems. Thus, the feeling of many PostgreSQL
developers is that, for a vast majority of applications, and indeed PostgreSQL’s
audience, the performance limitations are minimal and justified by the ease of
administration and management, as well as simplicity of implementation.

27.5.1 Tables

The primary unit of storage in PostgreSQL is a table. In PostgreSQL, tables are
stored in heap files. These files use a form of the standard slotted-page format
described in Section 10.5. The PostgreSQL format is shown in Figure 27.9. In each
page, a header is followed by an array of “line pointers.” A line pointer holds the
offset (relative to the start of the page) and length of a specific tuple in the page.
The actual tuples are stored in reverse order of line pointers from the end of the
page.

A record in a heap file is identified by its tuple ID (TID). The TID consists of a
4-byte block ID that specifies the page in the file containing the tuple and a 2-byte
slot ID. The slot ID is an index into the line pointer array that in turn is used to
access the tuple.

Although this infrastructure permits tuples in a page to be deleted or updated,
under PostgreSQL’s MVCC approach, neither operation actually deletes or replaces
old versions of rows immediately. As explained in Section 27.4.1.4, expired tuples
may be physically deleted by later commands, causing holes to be formed in a
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page. The indirection of accessing tuples through the line pointer array permits
the reuse of such holes.

The length of a tuple is normally limited by the length of a data page. This
makes it difficult to store very long tuples. When PostgreSQL encounters such a
large tuple, it tries to “toast” individual large attributes. In some cases, toasting an
attribute may be accomplished by compressing the value. If this does not shrink
the tuple enough to fit in the page (often the case), the data in the toasted attribute
is replaced with a reference to a copy that is stored outside the page.

27.5.2 Indices

A PostgreSQL index is a data structure that provides a dynamic mapping from
search predicates to sequences of tuple IDs from a particular table. The returned
tuples are intended to match the search predicate, although in some cases the
predicate must be rechecked in the heap file. PostgreSQL supports several different
index types, including those that are based on user-extensible access methods.
Although an access method may use a different page format, all the indices
available in PostgreSQL use the same slotted-page format described above in
Section 27.5.1.

27.5.2.1 Index Types

PostgreSQL supports the following types of indices:

• B-tree. The default index type is a B+-tree index based on Lehman and Yao’s B-
link trees (B-link trees, described in Section 15.10, support high concurrency
of operations). These indices are useful for equality and range queries on
sortable data and also for certain pattern-matching operations such as the
like expression.

• Hash. PostgreSQL’s hash indices are an implementation of linear hashing (for
more information on hash indices, see Section 11.6.3). Such indices are useful
only for simple equality operations. The hash indices used by PostgreSQL have
been shown to have lookup performance no better than that of B-trees, but
have considerably larger size and maintenance costs. Moreover, hash indices
are the only indices in PostgreSQL that do not support crash recovery. Thus it
is almost always preferable to use B-tree indices instead of hash indices.

• GiST. PostgreSQL supports a highly extensible index called GiST, or Gen-
eralized Search Tree. GiST is a balanced, tree-structured access method that
makes it easy for a domain expert who is well versed in a particular data
type (such as image data) to develop performance-enhancing indices with-
out having to deal with the internal details of the database system. Examples
of some indices built using GiST include B-trees and R-trees, as well as less
conventional indices for multidimensional cubes and full-text search. New
GiST access methods can be implemented by creating an operator class as
explained in Section 27.3.3.3. Operator classes for GiST are different from B-
trees, as each GiST operator class may have a different set of strategies that
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indicate the search predicates implemented by the index. GiST also relies on
seven support functions for operations such as testing set membership and
splitting sets of entries for page overflows.

It is interesting to note that the original PostgreSQL implementation of
R-trees (Section 25.3.5.3) was replaced by GiST operator classes in version 8.2.
This allowed R-trees to take advantage of the WAL logging and concurrency
capabilities that were added to GiST in version 8.1. Since the original R-
tree implementation did not have these features, this change illustrates the
benefits of an extensible indexing method. See the bibliographical notes for
references to more information on the GiST index.

• GIN. The newest type of index in PostgreSQL is the Generalized Inverted
Index (GIN). A GIN index interprets both index keys and search keys as sets,
making the index type appropriate for set-oriented operators. One of the
intended uses of GIN is to index documents for full-text search, which is
implemented by reducing documents and queries to sets of search terms.
Like GiST, a GIN index may be extended to handle any comparison operator
by creating an operator class with appropriate support functions.

To evaluate a search, GIN efficiently identifies index keys that overlap the
search key, and computes a bitmap indicating which searched-for elements
are members of the index key. This is accomplished using support functions
that extract members from a set and compare individual members. Another
support function decides if the search predicate is satisfied based on the
bitmap and the original predicate. If the search predicate cannot be resolved
without the full indexed attribute, the decision function must report a match
and recheck the predicate in the heap file.

27.5.2.2 Other Index Variations

For some of the index types described above, PostgreSQL supports more complex
variations such as:

• Multicolumn indices. These are useful for conjuncts of predicates over mul-
tiple columns of a table. Multicolumn indices are only supported for B-tree
and GiST indices.

• Unique indices. Unique and primary-key constraints can be enforced by
using unique indices in PostgreSQL. Only B-tree indices may be defined as
being unique.

• Indices on expressions. In PostgreSQL, it is possible to create indices on arbi-
trary scalar expressions of columns, and not just specific columns, of a table.
This is especially useful when the expressions in question are “expensive”
—say, involving complicated user-defined computation. An example is to
support case-insensitive comparisons by defining an index on the expression
lower(column) and using the predicate lower(column) = ’value’ in queries. One
disadvantage is that the maintenance costs of indices on expressions is high.
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• Operator classes. The specific comparison functions used to build, maintain,
and use an index on a column are tied to the data type of that column.
Each data type has associated with it a default “operator class” (described
in Section 27.3.3.3) that identifies the actual operators that would normally
be used for it. While this default operator class is normally sufficient for
most uses, some data types might possess multiple “meaningful” classes. For
instance, in dealing with complex numbers, it might be desirable to index
either the real or imaginary component. PostgreSQL provides some built-in
operator classes for pattern-matching operations (such as like) on text data
that do not use the standard locale-specific collation rules (in other words,
language specific sort orders).

• Partial indices. These are indices built over a subset of a table defined by a
predicate. The index contains only entries for tuples that satisfy the predicate.
Partial indices are suited for cases where a column might contain a large
number of occurrences of a very small number of values. In such cases, the
common values are not worth indexing, since index scans are not beneficial
for queries that require a large subset of the base table. A partial index that
excludes the common values is small and incurs less I/O. The partial indices
are less expensive to maintain, as a large fraction of inserts do not participate
in the index.

27.5.2.3 Index Construction

An index may be added to the database using the create index command. For
example, the following DDL statement creates a B-tree index on instructor salaries.

create index inst sal idx on instructor (salary);

This statement is executed by scanning the instructor relation to find row versions
that might be visible to a future transaction, then sorting their index attributes
and building the index structure. During this process, the building transaction
holds a lock on the instructor relation that prevents concurrent insert, delete, and
update statements. Once the process is finished, the index is ready to use and the
table lock is released.

The lock acquired by the create index command may present a major in-
convenience for some applications where it is difficult to suspend updates while
the index is built. For these cases, PostgreSQL provides the create index concur-
rently variant, which allows concurrent updates during index construction. This
is achieved by a more complex construction algorithm that scans the base table
twice. The first table scan builds an initial version of the index, in a way similar
to normal index construction described above. This index may be missing tuples
if the table was concurrently updated; however, the index is well formed, so it
is flagged as being ready for insertions. Finally, the algorithm scans the table a
second time and inserts all tuples it finds that still need to be indexed. This scan
may also miss concurrently updated tuples, but the algorithm synchronizes with
other transactions to guarantee that tuples that are updated during the second
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scan will be added to the index by the updating transaction. Hence, the index
is ready to use after the second table scan. Since this two-pass approach can be
expensive, the plain create index command is preferred if it is easy to suspend
table updates temporarily.

27.6 Query Processing and Optimization

When PostgreSQL receives a query, it is first parsed into an internal representation,
which goes through a series of transformations, resulting in a query plan that is
used by the executor to process the query.

27.6.1 Query Rewrite

The first stage of a query’s transformation is rewrite and it is this stage that
is responsible for the PostgreSQL rules system. As explained in Section 27.3, in
PostgreSQL, users can create rules that are fired on different events such as update,
delete, insert, and select statements. A view is implemented by the system by
converting a view definition into a select rule. When a query involving a select
statement on the view is received, the select rule for the view is fired, and the
query is rewritten using the definition of the view.

A rule is registered in the system using the create rule command, at which
point information on the rule is stored in the catalog. This catalog is then used
during query rewrite to uncover all candidate rules for a given query.

The rewrite phase first deals with all update, delete, and insert statements by
firing all appropriate rules. Such statements might be complicated and contain
select clauses. Subsequently, all the remaining rules involving only select state-
ments are fired. Since the firing of a rule may cause the query to be rewritten to
a form that may require another rule to be fired, the rules are repeatedly checked
on each form of the rewritten query until a fixed point is reached and no more
rules need to be fired.

There exist no default rules in PostgreSQL—only those defined explicitly by
users and implicitly by the definition of views.

27.6.2 Query Planning and Optimization

Once the query has been rewritten, it is subject to the planning and optimization
phase. Here, each query block is treated in isolation and a plan is generated for it.
This planning begins bottom-up from the rewritten query’s innermost subquery,
proceeding to its outermost query block.

The optimizer in PostgreSQL is, for the most part, cost based. The idea is to
generate an access plan whose estimated cost is minimal. The cost model includes
as parameters the I/O cost of sequential and random page fetches, as well as the
CPU costs of processing heap tuples, index tuples, and simple predicates.

The actual process of optimization is based on one of the following two forms:
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• Standard planner. The standard planner uses the the bottom-up dynamic
programming algorithm for join order optimization, originally used in Sys-
tem R, the pioneering relational system developed by IBM research in the
1970s. The System R dynamic programming algorithm is described in detail
in Section 13.4.1. The algorithm is used on a single query block at a time.

• Genetic query optimizer. When the number of tables in a query block is very
large, System R’s dynamic programming algorithm becomes very expensive.
Unlike other commercial systems that default to greedy or rule-based tech-
niques, PostgreSQL uses a more radical approach: a genetic algorithm that
was developed initially to solve traveling-salesman problems. There exists
anecdotal evidence of the successful use of genetic query optimization in
production systems for queries with around 45 tables.

Since the planner operates in a bottom-up fashion on query blocks, it is
able to perform certain transformations on the query plan as it is being built.
One example is the common subquery-to-join transformation that is present in
many commercial systems (usually implemented in the rewrite phase). When
PostgreSQL encounters a noncorrelated subquery (such as one caused by a query
on a view), it is generally possible to “pull up” the planned subquery and merge it
into the upper-level query block. However, transformations that push duplicate
elimination into lower-level query blocks are generally not possible in PostgreSQL.

The query-optimization phase results in a query plan that is a tree of relational
operators. Each operator represents a specific operation on one or more sets of
tuples. The operators can be unary (for example, sort, aggregation), binary (for
example, nested-loop join), or n-ary (for example, set union).

Crucial to the cost model is an accurate estimate of the total number of tuples
that will be processed at each operator in the plan. This is inferred by the optimizer
on the basis of statistics that are maintained on each relation in the system. These
indicate the total number of tuples for each relation and specific information on
each column of a relation, such as the column cardinality, a list of most common
values in the table and the number of occurrences, and a histogram that divides the
column’s values into groups of equal population (that is, an equi-depth histogram,
described in Section 13.3.1). In addition, PostgreSQL also maintains a statistical
correlation between the physical and logical row orderings of a column’s values
—this indicates the cost of an index scan to retrieve tuples that pass predicates
on the column. The DBA must ensure that these statistics are current by running
the analyze command periodically.

27.6.3 Query Executor

The executor module is responsible for processing a query plan produced by the
optimizer. The executor follows the iterator model with a set of four functions
implemented for each operator (open, next, rescan, and close). Iterators are also
discussed as part of demand-driven pipelining in Section 12.7.2.1. PostgreSQL
iterators have an extra function, rescan, which is used to reset a subplan (say for
an inner loop of a join) with parameters such as index key ranges.
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Some of the important operators of the executor can be categorized as follows:

1. Access methods. The actual access methods that are used to retrieve data
from on-disk objects in PostgreSQL are sequential scans of heap files, index
scans, and bitmap index scans.

• Sequential scans. The tuples of a relation are scanned sequentially
from the first to last blocks of the file. Each tuple is returned to the
caller only if it is “visible” according to the transaction isolation rules in
Section 27.4.1.3.

• Index scans. Given a search condition such as a range or equality pred-
icate, this access method returns a set of matching tuples from the
associated heap file. The operator processes one tuple at a time, starting
by reading an entry from the index and then fetching the corresponding
tuple from the heap file. This can result in a random page fetch for each
tuple in the worst case.

• Bitmap index scans. A bitmap index scan reduces the danger of exces-
sive random page fetches in index scans. This is achieved by processing
tuples in two phases. The first phase reads all index entries and stores
the heap tuple IDs in a bitmap, and the second phase fetches the match-
ing heap tuples in sequential order. This guarantees that each heap
page is accessed only once, and increases the chance of sequential page
fetches. Moreover, bitmaps from multiple indexes can be merged and
intersected to evaluate complex Boolean predicates before accessing the
heap.

2. Join methods. PostgreSQL supports three join methods: sorted merge joins,
nested-loop joins (including index-nested loop variants for the inner), and
a hybrid hash join (Section 12.5).

3. Sort. External sorting is implemented in PostgreSQL by algorithms explained
in Section 12.4. The input is divided into sorted runs that are then merged in
a polyphase merge. The initial runs are formed using replacement selection,
using a priority tree instead of a data structure that fixes the number of in-
memory records. This is because PostgreSQL may deal with tuples that vary
considerably in size and tries to ensure full utilization of the configured sort
memory space.

4. Aggregation. Grouped aggregation in PostgreSQL can be either sort-based
or hash-based. When the estimated number of distinct groups is very large
the former is used and otherwise the hash-based approach is preferred.

27.6.4 Triggers and Constraints

In PostgreSQL (unlike some commercial systems) active-database features such as
triggers and constraints are not implemented in the rewrite phase. Instead they
are implemented as part of the query executor. When the triggers and constraints
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are registered by the user, the details are associated with the catalog informa-
tion for each appropriate relation and index. The executor processes an update,
delete, and insert statement by repeatedly generating tuple changes for a relation.
For each row modification, the executor explicitly identifies, fires, and enforces
candidate triggers and constraints, before or after the change as required.

27.7 System Architecture

The PostgreSQL system architecture follows the process-per-transaction model. A
running PostgreSQL site is managed by a central coordinating process, called the
postmaster. The postmaster process is responsible for initializing and shutting
down the server and also for handling connection requests from new clients. The
postmaster assigns each new connecting client to a back-end server process that
is responsible for executing the queries on behalf of the client and for returning
the results to the client. This architecture is depicted in Figure 27.10.

Client applications can connect to the PostgreSQL server and submit queries
through one of the many database application programmer interfaces supported
by PostgreSQL (libpq, JDBC, ODBC, Perl DBD) that are provided as client-side
libraries. An example client application is the command-line psql program, in-
cluded in the standard PostgreSQL distribution. The postmaster is responsible
for handling the initial client connections. For this, it constantly listens for new
connections on a known port. After performing initialization steps such as user
authentication, the postmaster will spawn a new back-end server process to han-
dle the new client. After this initial connection, the client interacts only with the
back-end server process, submitting queries and receiving query results. This is
the essence of the process-per-connection model adopted by PostgreSQL.

The back-end server process is responsible for executing the queries submit-
ted by the client by performing the necessary query-execution steps, including
parsing, optimization, and execution. Each back-end server process can handle
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only a single query at a time. In order to execute more than one query in parallel,
an application must maintain multiple connections to the server.

At any given time, there may be multiple clients connected to the system
and thus multiple back-end server processes may be executing concurrently.
The back-end server processes access database data through the main-memory
buffer pool, which is placed in shared memory, so that all the processes have the
same view of the data. Shared memory is also used to implement other forms of
synchronization between the server processes, for example, the locking of data
items.

The use of shared memory as a communication medium suggests that a
PostgreSQL server should run on a single machine; a single-server site cannot be
spread across multiple machines without the assistance of third-party packages,
such as the Slony replication tool. However, it is possible to build a shared-nothing
parallel database system with an instance of PostgreSQL running on each node; in
fact, several commercial parallel database systems have been built with exactly
this architecture, as described in Section 18.8.
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C H A P T E R28
Oracle

Hakan Jakobsson

When Oracle was founded in 1977 as Software Development Laboratories by
Larry Ellison, Bob Miner, and Ed Oates, there were no commercial relational
database products. The company, which was later renamed Oracle, set out to
build a relational database management system as a commercial product, and
became a pioneer of the RDBMS market and has held a leading position in this
market ever since. Over the years, its product and service offerings have grown
beyond the relational database server to include middleware and applications.

In addition to products developed inside the company, Oracle’s offerings in-
clude software that was originally developed in companies that Oracle acquired.
Oracle’s acquisitions have ranged from small companies to large, publicly traded
ones, including Peoplesoft, Siebel, Hyperion, and BEA. As a result of these acqui-
sitions, Oracle has a very broad portfolio of enterprise software products.

This chapter is focused on Oracle’s main relational database server and closely
related products. New versions of the products are being developed continually,
so all product descriptions are subject to change. The feature set described here
is based on the first release of Oracle11g, which is Oracle’s flagship database
product.

28.1 Database Design and Querying Tools

Oracle provides a variety of tools for database design, querying, report gener-
ation and data analysis, including OLAP. These tools, along with various other
application development tools, are part of a portfolio of software products called
Oracle Fusion Middleware. Products include both traditional tools using Oracle’s
PL/SQL programming language and newer ones based on Java/J2EE technologies.
The software supports open standards such as SOAP, XML, BPEL, and UML.

28.1.1 Database and Application Design Tools

The Oracle Application Development Framework (ADF) is an end-to-end J2EE-
based development framework for a Model-View-Control design pattern. In this
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framework, an application consists of multiple layers. The Model and Business
Services layers handle the interaction with the data sources and contains the
business logic. The View layer handles the user interface, and the Controller layer
handles the flow of the application and the interaction between the other layers.

The primary development tool for Oracle ADF is Oracle JDeveloper, which
provides an integrated development environment with support for Java, XML,
PHP, HTML, Javascript, BPEL, SQL, and PL/SQL development. It has built-in support
for UML modeling.

Oracle Designer is a database design tool, which translates business logic and
data flows into schema definitions and procedural scripts for application logic.
It supports such modeling techniques as E-R diagrams, information engineering,
and object analysis and design.

Oracle also has an application development tool for data warehousing, Ora-
cle Warehouse Builder. Warehouse Builder is a tool for design and deployment
of all aspects of a data warehouse, including schema design, data mapping and
transformations, data load processing, and metadata management. Oracle Ware-
house Builder supports both 3NF and star schemas and can also import designs
from Oracle Designer. This tool, in conjunction with database features, such as
external tables and table functions, typically eliminates the need for third-party
extraction, transformation, and loading (ETL) tools.

28.1.2 Querying Tools

Oracle provides tools for ad hoc querying, report generation, and data analysis,
including OLAP.

Oracle Business Intelligence Suite (OBI) is a comprehensive suite of tools
sharing a common service-oriented architecture. Components include a Busi-
ness Intelligence server and tools for ad hoc querying, dashboard generation,
reporting, and alerting. The components share infrastructure and services for
data access and metadata management and have a common security model and
administration tool.

The component for ad hoc querying, Oracle BI Answers, is an interactive tool
that presents the user with a logical view of the data hiding the details of the
physical implementation. Objects available to the user are displayed graphically
and the user can build a query with a point-and-click interface. This logical query
is sent to the Oracle BI Server component, which then generates the physical query
or queries. Multiple physical data sources are supported, and a query could com-
bine data stored in relational databases, OLAP sources, and Excel spreadsheets.
Results can be presented as charts, reports, pivot tables, or dashboards that are
drillable and can be saved and later modified.

28.2 SQL Variations and Extensions

Oracle supports all core SQL:2003 features fully or partially, with the exception of
features-and-conformance views. In addition, Oracle supports a large number of
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other language constructs, some of which conform with Optional Features of SQL
Foundation:2003, while others are Oracle-specific in syntax or functionality.

28.2.1 Object-Relational Features

Oracle has extensive support for object-relational constructs, including:

• Object types. A single-inheritance model is supported for type hierarchies.

• Collection types. Oracle supports varrays, which are variable length arrays,
and nested tables.

• Object tables. These are used to store objects while providing a relational
view of the attributes of the objects.

• Table functions. These are functions that produce sets of rows as output, and
can be used in the from clause of a query. Table functions in Oracle can be
nested. If a table function is used to express some form of data transformation,
nesting multiple functions allows multiple transformations to be expressed
in a single statement.

• Object views. These provide a virtual object table view of data stored in a
regular relational table. They allow data to be accessed or viewed in an object-
oriented style even if the data are really stored in a traditional relational
format.

• Methods. These can be written in PL/SQL, Java, or C.

• User-defined aggregate functions. These can be used in SQL statements in
the same way as built-in functions such as sum and count.

28.2.2 Oracle XML DB

Oracle XML DB provides in-database storage for XML data and support for a
broad set of XML functionality including XML Schema and XQuery. It is built on
the XMLType abstract data type, which is treated as a native Oracle data type.
XML DB provides several options for how data of this data type are stored in the
database, including:

• Structured in object-relational format. This format is usually space efficient
and allows the use of a variety of standard relational features, such as B-tree
indices, but incurs some overhead when mapping XML documents to the
storage format and back. It is mainly suitable for XML data that are highly
structured and the mapping includes a manageable number of relational
tables and joins.

• Unstructured as a text string. This representation does not require any map-
ping and provides high throughput when inserting or retrieving an entire
XML document. However, it is usually not very space efficient and provides
for less intelligent processing when operating on parts of an XML document.
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• Binary XML storage. This representation is a post-parse, XML Schema-aware,
binary format. It is more space efficient than unstructured storage and can
handle operations against parts of an XML document. It is also better than the
structured format at handling data that are highly unstructured, but may not
always be as space efficient. This format may make the processing of XQuery
statements less efficient than when the structured format is used.

Both the binary and unstructured representation can be indexed with a special
type of index called XMLIndex. This type of index allows document fragments
to be indexed based on their corresponding XPath expression.

Storing XML data inside the database means that they get the benefit of Or-
acle’s functionality in areas such as backup, recovery, security, and query pro-
cessing. It allows for accessing relational data as part of doing XML processing as
well as accessing XML data as part of doing SQL processing. Some very high-level
features of XML DB include:

• Support for the XQuery language (W3C XQuery 1.0 Recommendation).

• An XSLT process that lets XSL transformations be performed inside the data-
base.

• An XPath rewrite optimization that can speed up queries against data stored
in object-relational representation. By translating an expression used in an
XQuery into conditions directly on the object-relational columns, regular in-
dices on these columns can be used to speed up query processing.

28.2.3 Procedural Languages

Oracle has two main procedural languages, PL/SQL and Java. PL/SQL was Ora-
cle’s original language for stored procedures and it has syntax similar to that used
in the Ada language. Java is supported through a Java virtual machine inside the
database engine. Oracle provides a package to encapsulate related procedures,
functions, and variables into single units. Oracle supports SQLJ (SQL embedded in
Java) and JDBC, and provides a tool to generate Java class definitions correspond-
ing to user-defined database types.

28.2.4 Dimensions

Dimensional modeling is a commonly used design technique for relational star
schemas as well as multidimensional databases. Oracle supports the creation of
dimensions as metadata objects in order to support query processing against
databases designed based on this technique. The metadata objects can be used
to store information about various kinds of attributes of a dimension, but per-
haps more importantly, about hierarchical relationships. See Section 28.3.10 for
examples.
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28.2.5 OLAP

Oracle provides support for analytical database processing in several different
ways. In addition to support for a rich set of analytical SQL constructs (cube,
rollup, grouping sets, window functions, etc.), Oracle provides native multidi-
mensional storage inside the relational database server. The multidimensional
data structures allow for array-based access to the data, and, in the right circum-
stances, this type of access can be vastly more efficient than traditional relational
access methods. Using these data structures as an integrated part of a relational
database provides a choice of storing data in a relational or multidimensional
format while still taking advantage of Oracle features in areas such as backup
and recovery, security, and administration tools.

Oracle provides storage containers for multidimensional data known as ana-
lytic workspaces. An analytic workspace contains both the dimensional data and
measures (or facts) of an OLAP cube and is stored inside an Oracle table. From a
traditional relational perspective, a cube stored inside a table would be an opaque
object where the data could not normally be interpreted directly in terms of the
table’s rows and columns. However, Oracle’s OLAP server inside the database has
the knowledge to interpret and access the data and makes it possible to give SQL
access to it as if it had been stored in a regular table format. Hence, it is possible
to store data in either a multidimensional format or a traditional relational for-
mat, depending on what is optimal, and still be able to join data stored in both
types of representations in a single SQLquery. A materialized view can use either
representation.

In addition to Oracle’s OLAP support inside its relational database, Ora-
cle’s product suite includes Essbase. Essbase is a widely used multidimensional
database that came to be part of Oracle with the acquisition of Hyperion.

28.2.6 Triggers

Oracle provides several types of triggers and several options for when and how
they are invoked. (See Section 5.3 for an introduction to triggers in SQL.) Triggers
can be written in PL/SQL or Java or as C callouts.

For triggers that execute on DML statements such as insert, update, and delete,
Oracle supports row triggers and statement triggers. Row triggers execute once
for every row that is affected (updated or deleted, for example) by the DML
operation. A statement trigger is executed just once per statement. In each case,
the trigger can be defined as either a before or after trigger, depending on whether
it is to be invoked before or after the DML operation is carried out.

Oracle allows the creation of instead of triggers for views that cannot be
subject to DML operations. Depending on the view definition, it may not be
possible for Oracle to translate a DML statement on a view to modifications of
the underlying base tables unambiguously. Hence, DML operations on views are
subject to numerous restrictions. A user can create an instead of trigger on a view
to specify manually what operations on the base tables are to be carried out in
response to a DML operation on the view. Oracle executes the trigger instead of the
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DML operation and therefore provides a mechanism to circumvent the restrictions
on DML operations against views.

Oracle also has triggers that execute on a variety of other events, such as
database start-up or shutdown, server error messages, user logon or logoff, and
DDL statements such as create, alter and drop statements.

28.3 Storage and Indexing

In Oracle parlance, a database consists of information stored in files and is ac-
cessed through an instance, which is a shared memory area and a set of processes
that interact with the data in the files. The control file is a small file that con-
tains some very high-level metadata required to start or operate an instance. The
storage structure of the regular data and metadata is described in the next section.

28.3.1 Table Spaces

A database consists of one or more logical storage units called table spaces. Each
table space, in turn, consists of one or more physical structures called data files.
These may be either part of a file system or raw devices.

Usually, an Oracle database has the following table spaces:

• The system and the auxiliary sysaux table spaces, which are always created.
They contain the data dictionary tables and storage for triggers and stored
procedures.

• Table spaces created to store user data. While user data can be stored in the
system table space, it is often desirable to separate the user data from the
system data. Usually, the decision about what other table spaces should be
created is based on performance, availability, maintainability, and ease of
administration. For example, having multiple table spaces can be useful for
partial backup and recovery operations.

• The undo table space, which is used solely for storing undo information for
transaction management and recovery.

• Temporary table spaces. Many database operations require sorting the data,
and the sort routine may have to store data temporarily on disk if the sort
cannot be done in memory. Temporary table spaces are allocated for sorting
and hashing to make the space management operations involved in spilling
to disk more efficient.

Table spaces can also be used as a means of moving data between databases.
For example, it is common to move data from a transactional system to a data
warehouse at regular intervals. Oracle allows moving all the data in a table space
from one system to the other by simply copying the data files and exporting and
importing a small amount of data-dictionary metadata. These operations can be
much faster than unloading the data from one database and then using a loader
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to insert it into the other. This Oracle feature is known as transportable table
spaces.

28.3.2 Segments

The space in a table space is divided into units, called segments, each of which
contains data for a specific data structure. There are four types of segments:

• Data segments. Each table in a table space has its own data segment where
the table data are stored unless the table is partitioned; if so, there is one data
segment per partition. (Partitioning in Oracle is described in Section 28.3.9.)

• Index segments. Each index in a table space has its own index segment,
except for partitioned indices, which have one index segment per partition.

• Temporary segments. These are segments used when a sort operation needs
to write data to disk or when data are inserted into a temporary table.

• Undo segments. These segments contain undo information so that an un-
committed transaction can be rolled back. These segments are automatically
allocated in a special undo table space. They also play an important role in
Oracle’s concurrency control model and for database recovery, described in
Sections 28.5.1 and 28.5.2. In older implementations of Oracle’s undo man-
agement, the term “rollback segment” was used.

Below the level of segment, space is allocated at a level of granularity called
an extent. Each extent consists of a set of contiguous database blocks. A database
block is the lowest level of granularity at which Oracle performs disk I/O. A
database block does not have to be the same as an operating system block in size,
but should be a multiple thereof.

Oracle provides storage parameters that allow for detailed control of how
space is allocated and managed, parameters such as:

• The size of a new extent that is to be allocated to provide room for rows that
are inserted into a table.

• The percentage of space utilization at which a database block is considered
full and at which no more rows will be inserted into that block. (Leaving
some free space in a block can allow the existing rows to grow in size through
updates, without running out of space in the block.)

28.3.3 Tables

A standard table in Oracle is heap organized; that is, the storage location of a row
in a table is not based on the values contained in the row, and is fixed when the
row is inserted. However, if the table is partitioned, the content of the row affects
the partition in which it is stored. There are several features and variations. Heap
tables can optionally be compressed, as described in Section 28.3.3.2.
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Oracle supports nested tables; that is, a table can have a column whose data
type is another table. The nested table is not stored in line in the parent table, but
is stored in a separate table.

Oracle supports temporary tables where the duration of the data is either the
transaction in which the data are inserted, or the user session. The data are private
to the session and are automatically removed at the end of its duration.

A cluster is another form of file organization for table data, described earlier
in Section 10.6.2 where it is called multitable clustering. The use of the term “cluster”
in this context, should not be confused with other meanings of the word cluster,
such as those relating to hardware architecture. In a cluster file organization, rows
from different tables are stored together in the same block on the basis of some
common columns. For example, a department table and an employee table could
be clustered so that each row in the department table is stored together with
all the employee rows for those employees who work in that department. The
primary key/foreign key values are used to determine the storage location.

The cluster organization implies that a row belongs in a specific place; for
example, a new employee row must be inserted with the other rows for the
same department. Therefore, an index on the clustering column is mandatory.
An alternative organization is a hash cluster. Here, Oracle computes the location
of a row by applying a hash function to the value for the cluster column. The
hash function maps the row to a specific block in the hash cluster. Since no index
traversal is needed to access a row according to its cluster column value, this
organization can save significant amounts of disk I/O.

28.3.3.1 Index-Organized Tables

In an index-organized table (IOT), records are stored in an Oracle B-tree index
instead of in a heap; this file organization is described earlier in Section 11.4.1,
where it is called B+-tree file organization. An IOT requires that a unique key be
identified for use as the index key. While an entry in a regular index contains the
key value and row-id of the indexed row, an IOT replaces the row-id with the
column values for the remaining columns of the row. Compared to storing the
data in a regular heap table and creating an index on the key columns, using an
IOT can improve both performance and space utilization. Consider looking up all
the column values of a row, given its primary key value. For a heap table, that
would require an index probe followed by a table access by row-id. For an IOT,
only the index probe is necessary.

Secondary indices on nonkey columns of an index-organized table are differ-
ent from indices on a regular heap table. In a heap table, each row has a fixed
row-id that does not change. However, a B-tree is reorganized as it grows or
shrinks when entries are inserted or deleted, and there is no guarantee that a row
will stay in a fixed place inside an IOT. Hence, a secondary index on an IOT con-
tains not normal row-ids, but logical row-ids instead. A logical row-id consists
of two parts: a physical row-id corresponding to where the row was when the
index was created or last rebuilt and a value for the unique key. The physical
row-id is referred to as a “guess” since it could be incorrect if the row has been
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moved. If so, the other part of a logical row-id, the key value for the row, is used to
access the row; however, this access is slower than if the guess had been correct,
since it involves a traversal of the B-tree for the IOT from the root all the way
to the leaf nodes, potentially incurring several disk I/Os. However, if a table is
highly volatile and a large percentage of the guesses are likely to be wrong, it
can be better to create the secondary index with only key values (as described in
Section 11.4.1), since using an incorrect guess may result in a wasted disk I/O.

28.3.3.2 Compression

Oracle’s compression feature allows data to be stored in a compressed format,
something that can drastically reduce the amount of space needed to store the
data and the number of I/O operations needed to retrieve it. Oracle’s compression
method is a lossless dictionary-based algorithm that compresses each block indi-
vidually. All the information needed to uncompress a block is contained in that
block itself. The algorithm works by replacing repeated occurrences of a value in
that block with pointers to an entry for that value in a symbol table (or dictionary)
in the block. Entries can be based on repeated values for individual columns or a
combination of columns.

Oracle’s original table compression generated the compressed block format
as the data were bulk-loaded into a table and was mainly intended for data
warehousing environments. A newer OLTP compression feature supports com-
pression in conjunction with regular DML operations as well. In the latter case,
Oracle compresses blocks only after certain thresholds have been reached for how
much data have been written into the block. As a result, only transactions that
cause a threshold to be passed will occur any overhead for compressing a block.

28.3.3.3 Data Security

In addition to regular access control features such as passwords, user privileges,
and user roles, Oracle supports several features to protect the data from unau-
thorized access, including:

• Encryption. Oracle can automatically store table data in an encrypted format
and transparently encrypt and decrypt data using the AES or 3DES algorithms.
Encryption can be enabled for an entire database or just for individual table
columns. The main motivation for this feature is to protect sensitive data
outside the normally protected environment, such as when backup media is
sent to a remote location.

• Database Vault. This feature is aimed at providing a separation of duties for
users with access to the database. A database administrator is a highly privi-
leged user that typically can do almost anything with the database. However,
it may be inappropriate or illegal to let that person access sensitive corpo-
rate financial data or personal information about other employees. Database
vault includes a variety of mechanisms that can be used to restrict or monitor
access to sensitive data by highly privileged database users.
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• Virtual Private Database. This feature, described earlier in Section 9.7.5,
allows additional predicates to be automatically added to the where clause
of a query that accesses a given table or view. Typically, the feature would
be used so that the additional predicate filters out all the rows that the user
does not have the right to see. For example, two users could submit identical
queries to find all the employee information in the entire employee table.
However, if a policy exists that limits each user to seeing only the information
for the employee number that matches the user ID, the automatically added
predicates will ensure that each query only returns the employee information
for the user who submitted the query. Hence, each user will be left with the
impression of accessing a virtual database that contains only a subset of the
data of the physical database.

28.3.4 Indices

Oracle supports several different types of indices. The most commonly used type
is a B-tree index, created on one or multiple columns. Note that in the terminology
of Oracle (as also in several other database systems) a B-tree index is what is
referred to as a B+-tree index in Chapter 11. Index entries have the following
format: for an index on columns col1, col2, and col3, each row in the table where
at least one of the columns has a nonnull value would result in the index entry:

<col1><col2><col3><row-id>

where <coli> denotes the value for column i and <row-id> is the row-id for the
row. Oracle can optionally compress the prefix of the entry to save space. For
example, if there are many repeated combinations of <col1><col2> values, the
representation of each distinct <col1><col2> prefix can be shared between the
entries that have that combination of values, rather than stored explicitly for each
such entry. Prefix compression can lead to substantial space savings.

28.3.5 Bitmap Indices

Bitmap indices (described in Section 11.9) use a bitmap representation for in-
dex entries, which can lead to substantial space saving (and therefore disk I/O
savings), when the indexed column has a moderate number of distinct values.
Bitmap indices in Oracle use the same kind of B-tree structure to store the entries
as a regular index. However, where a regular index on a column would have
entries of the form <col1><row-id>, a bitmap index entry has the form:

<col1><start row-id><end row-id><compressed bitmap>

The bitmap conceptually represents the space of all possible rows in the table
between the start and end row-id. The number of such possible rows in a block
depends on how many rows can fit into a block, which is a function of the number
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of columns in the table and their data types. Each bit in the bitmap represents
one such possible row in a block. If the column value of that row is that of the
index entry, the bit is set to 1. If the row has some other value, or the row does
not actually exist in the table, the bit is set to 0. (It is possible that the row does
not actually exist because a table block may well have a smaller number of rows
than the number that was calculated as the maximum possible.) If the difference
is large, the result may be long strings of consecutive zeros in the bitmap, but the
compression algorithm deals with such strings of zeros, so the negative effect is
limited.

The compression algorithm is a variation of a compression technique called
Byte-Aligned Bitmap Compression (BBC). Essentially, a section of the bitmap
where the distance between two consecutive 1s is small enough is stored as
verbatim bitmaps. If the distance between two 1s is sufficiently large—that is,
there is a sufficient number of adjacent 0s between them—a runlength of 0s, that
is, the number of 0s, is stored.

Bitmap indices allow multiple indices on the same table to be combined in the
same access path if there are multiple conditions on indexed columns in the where
clause of a query. Bitmaps from the different indices are retrieved and combined
using Boolean operations corresponding to the conditions in the where clause.
All Boolean operations are performed directly on the compressed representation
of the bitmaps—no decompression is necessary—and the resulting (compressed)
bitmap represents those rows that match all the logical conditions.

The ability to use the Boolean operations to combine multiple indices is not
limited to bitmap indices. Oracle can convert row-ids to the compressed bitmap
representation, so it can use a regular B-tree index anywhere in a Boolean tree of
bitmap operation simply by putting a row-id-to-bitmap operator on top of the
index access in the execution plan.

As a rule of thumb, bitmap indices tend to be more space efficient than regular
B-tree indices if the number of distinct key values is less than half the number
of rows in the table. For example, in a table with 1 million rows, an index on
a column with less than 500,000 distinct values would probably be smaller if
it were created as a bitmap index. For columns with a very small number of
distinct values—for example, columns referring to properties such as country,
state, gender, marital status, and various status flags—a bitmap index might
require only a small fraction of the space of a regular B-tree index. Any such
space advantage can also give rise to corresponding performance advantages in
the form of fewer disk I/Os when the index is scanned.

28.3.6 Function-Based Indices

In addition to creating indices on one or multiple columns of a table, Oracle allows
indices to be created on expressions that involve one or more columns, such as
col1 + col2 ∗ 5. For example, by creating an index on the expression upper(name),
where upper is a function that returns the uppercase version of a string, and name
is a column, it is possible to do case-insensitive searches on the name column. In
order to find all rows with name “van Gogh” efficiently, the condition:
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upper(name) = ’VAN GOGH’

would be used in the where clause of the query. Oracle then matches the condition
with the index definition and concludes that the index can be used to retrieve all
the rows matching “van Gogh” regardless of how the name was capitalized when
it was stored in the database. A function-based index can be created as either a
bitmap or a B-tree index.

28.3.7 Join Indices

A join index is an index where the key columns are not in the table that is refer-
enced by the row-ids in the index. Oracle supports bitmap join indices primarily
for use with star schemas (see Section 20.2.2). For example, if there is a column for
product names in a product dimension table, a bitmap join index on the fact table
with this key column could be used to retrieve the fact table rows that correspond
to a product with a specific name, although the name is not stored in the fact
table. How the rows in the fact and dimension tables correspond is based on a
join condition that is specified when the index is created, and becomes part of the
index metadata. When a query is processed, the optimizer will look for the same
join condition in the where clause of the query in order to determine if the join
index is applicable.

Oracle can combine a bitmap join index on a fact table with other indices on
the same table—whether join indices or not—by using the operators for Boolean
bitmap operations.

28.3.8 Domain Indices

Oracle allows tables to be indexed by index structures that are not native to Or-
acle. This extensibility feature of the Oracle server allows software vendors to
develop so-called cartridges with functionality for specific application domains,
such as text, spatial data, and images, with indexing functionality beyond that
provided by the standard Oracle index types. In implementing the logic for cre-
ating, maintaining, and searching the index, the index designer must ensure that
it adheres to a specific protocol in its interaction with the Oracle server.

A domain index must be registered in the data dictionary, together with the
operators it supports. Oracle’s optimizer considers domain indices as one of the
possible access paths for a table. Oracle allows cost functions to be registered with
the operators so that the optimizer can compare the cost of using the domain index
to those of other access paths.

For example, a domain index for advanced text searches may support an
operator contains. Once this operator has been registered, the domain index will
be considered as an access path for a query like:

select *
from employees
where contains(resume, ’LINUX’);
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where resume is a text column in the employee table. The domain index can be
stored in either an external data file or inside an Oracle index-organized table.

A domain index can be combined with other (bitmap or B-tree) indices in the
same access path by converting between the row-id and bitmap representation
and using Boolean bitmap operations.

28.3.9 Partitioning

Oracle supports various kinds of horizontal partitioning of tables and indices, and
this feature plays a major role in Oracle’s ability to support very large databases.
The ability to partition a table or index has advantages in many areas.

• Backup and recovery are easier and faster, since they can be done on individ-
ual partitions rather than on the table as a whole.

• Loading operations in a data warehousing environment are less intrusive:
data can be added to a newly created partition, and then the partition added
to a table, which is an instantaneous operation. Likewise, dropping a partition
with obsolete data from a table is very easy in a data warehouse that maintains
a rolling window of historical data.

• Query performance benefits substantially, since the optimizer can recognize
that only a subset of the partitions of a table need to be accessed in order to
resolve a query (partition pruning). Also, the optimizer can recognize that in
a join, it is not necessary to try to match all rows in one table with all rows in
the other, but that the joins need to be done only between matching pairs of
partitions (partitionwise join).

An index on a partitioned table can be either a global index or a local index.
Entries in a global index can refer to rows in any partition. A locally indexed
table has one physical index for each partition that only contains entries for that
partition. Unless partition pruning restricts a query to a single partition, a table
accessed through a local index will require multiple individual physical index
probes. However, a local index has advantages in data warehousing environments
where new data can be loaded into a new partition and indexed without the need
to maintain any existing index. (Loading followed by index creation is much more
efficient than maintaining an existing index while the data are being loaded.)
Similarly, dropping an old partition and the physical part of its local index can be
done without causing any index maintenance.

Each row in a partitioned table is associated with a specific partition. This
association is based on the partitioning column or columns that are part of the
definition of a partitioned table. There are several ways to map column values
to partitions, giving rise to several types of partitioning, each with different
characteristics: range, hash, list, and composite partitioning.
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28.3.9.1 Range Partitioning

In range partitioning, the partitioning criteria are ranges of values. This type of
partitioning is especially well suited to date columns, in which case all rows
in the same date range, say a day or a month, belong in the same partition.
In a data warehouse where data are loaded from the transactional systems at
regular intervals, range partitioning can be used to implement a rolling window
of historical data efficiently. Each data load gets its own new partition, making
the loading process faster and more efficient. The system actually loads the data
into a separate table with the same column definition as the partitioned table. It
can then check the data for consistency, cleanse them, and index them. After that,
the system can make the separate table a new partition of the partitioned table, by
a simple change to the metadata in the data dictionary—a nearly instantaneous
operation.

Up until the metadata change, the loading process does not affect the existing
data in the partitioned table in any way. There is no need to do any maintenance
of existing indices as part of the loading. Old data can be removed from a table by
simply dropping its partition; this operation does not affect the other partitions.

In addition, queries in a data warehousing environment often contain con-
ditions that restrict them to a certain time period, such as a quarter or month. If
date-range partitioning is used, the query optimizer can restrict the data access
to those partitions that are relevant to the query, and avoid a scan of the entire
table.

Partitions can either be created with explicitly set end points or be defined
based on a fixed range, such as a day or a month. In the latter case, called interval
partitioning, the creation of the partition happens automatically under the covers
when trying to insert a row with a value in a previously nonexistent interval.

28.3.9.2 Hash Partitioning

In hash partitioning, a hash function maps rows to partitions according to the
values in the partitioning columns. This type of partitioning is primarily useful
when it is important to distribute the rows evenly among partitions or when
partitionwise joins are important for query performance.

28.3.9.3 List Partitioning

In list partitioning, the values associated with a particular partition are stated in a
list. This type of partitioning is useful if the data in the partitioning column have
a relatively small set of discrete values. For instance, a table with a state column
can be implicitly partitioned by geographical region if each partition list has the
states that belong in the same region.

28.3.9.4 Composite Partitioning

In composite partitioning, tables that are range, interval, or list partitioned can be
subpartitioned by range, list, or hash. For example, a table may be range parti-
tioned on a date column and hash subpartitioned on a column that is frequently



28.3 Storage and Indexing 1171

used as a join column. The subpartitioning allows partition-wise joins to be used
when the table is joined.

28.3.9.5 Reference Partitioning

In reference partitioning, the partitioning key is resolved based on a foreign-
key constraint with another table. The dependency between the tables allows
maintenance operations to be automatically cascaded.

28.3.10 Materialized Views

The materialized-view feature (see Section 4.2.3) allows the result of an SQL query
to be stored in a table and used for later query processing. In addition, Oracle
maintains the materialized result, updating it when the tables that were referenced
in the query are updated. Materialized views are used in data warehousing to
speed up query processing, but the technology is also used for replication in
distributed and mobile environments.

In data warehousing, a common usage for materialized views is to summarize
data. For example, a common type of query asks for “the sum of sales for each
quarter during the last 2 years.” Precomputing the result, or some partial result, of
such a query can speed up query processing dramatically compared to computing
it from scratch by aggregating all detail-level sales records.

Oracle supports automatic query rewrites that take advantage of any useful
materialized view when resolving a query. The rewrite consists of changing the
query to use the materialized view instead of the original tables in the query. In
addition, the rewrite may add additional joins or aggregate processing as may be
required to get the correct result. For example, if a query needs sales by quarter, the
rewrite can take advantage of a view that materializes sales by month, by adding
additional aggregation to roll up the months to quarters. Oracle has a type of
metadata object called dimension that allows hierarchical relationships in tables
to be defined. For example, for a time-dimension table in a star schema, Oracle can
define a dimension metadata object to specify how days roll up to months, months
to quarters, quarters to years, and so forth. Likewise, hierarchical properties
relating to geography can be specified—for example, how sales districts roll up
to regions. The query rewrite logic looks at these relationships since they allow a
materialized view to be used for wider classes of queries.

The container object for a materialized view is a table, which means that a
materialized view can be indexed, partitioned, or subjected to other controls, to
improve query performance.

When there are changes to the data in the tables referenced in the query
that defines a materialized view, the materialized view must be refreshed to
reflect those changes. Oracle supports both complete refresh of a materialized
view and fast, incremental refresh. In a complete refresh, Oracle recomputes the
materialized view from scratch, which may be the best option if the underlying
tables have had significant changes, for example, changes due to a bulk load. In a
fast refresh, Oracle updates the view using the records that were changed in the
underlying tables. The refresh to the view can be executed on commit as part of
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the transaction that changed the underlying tables or at some later point in time
on demand. Fast refresh may be better if the number of rows that were changed is
low. There are some restrictions on the classes of queries for which a materialized
view can be incrementally refreshed (and others for when a materialized view
can be created at all).

A materialized view is similar to an index in the sense that, while it can
improve query performance, it uses up space, and creating and maintaining it
consumes resources. To help resolve this trade-off, Oracle provides an advisor
that can help a user create the most cost-effective materialized views, given a
particular query workload as input.

28.4 Query Processing and Optimization

Oracle supports a large variety of processing techniques in its query processing
engine. Some of the more important ones are described here briefly.

28.4.1 Execution Methods

Data can be accessed through a variety of access methods:

• Full table scan. The query processor scans the entire table by getting infor-
mation about the blocks that make up the table from the extent map, and
scanning those blocks.

• Index scan. The processor creates a start and/or stop key from conditions
in the query and uses it to scan to a relevant part of the index. If there are
columns that need to be retrieved, that are not part of the index, the index
scan would be followed by a table access by index row-id. If no start or stop
key is available, the scan would be a full index scan.

• Index fast full scan. The processor scans the extents the same way as the
table extent in a full table scan. If the index contains all the table columns
that are needed for that table, and there are no good start/stop keys that
would significantly reduce that portion of the index that would be scanned
in a regular index scan, this method may be the fastest way to access the
data. This is because the fast full scan can take full advantage of multiblock
disk I/O. However, unlike a regular full scan, which traverses the index leaf
blocks in order, a fast full scan does not guarantee that the output preserves
the sort order of the index.

• Index join. If a query needs only a small subset of the columns of a wide
table, but no single index contains all those columns, the processor can use an
index join to generate the relevant information without accessing the table, by
joining several indices that together contain the needed columns. It performs
the joins as hash joins on the row-ids from the different indices.



28.4 Query Processing and Optimization 1173

• Cluster and hash cluster access. The processor accesses the data by using the
cluster key.

Oracle has several ways to combine information from multiple indices in
a single access path. This ability allows multiple where-clause conditions to be
used together to compute the result set as efficiently as possible. The functionality
includes the ability to perform Boolean operations and, or, and minus on bitmaps
representing row-ids. There are also operators that map a list of row-ids into
bitmaps and vice versa, which allows regular B-tree indices and bitmap indices to
be used together in the same access path. In addition, for many queries involving
count(*) on selections on a table, the result can be computed by just counting the
bits that are set in the bitmap generated by applying the where clause conditions,
without accessing the table.

Oracle supports several types of joins in the execution engine: inner joins,
outer joins, semijoins, and antijoins. (An antijoin in Oracle returns rows from the
left-hand side input that do not match any row in the right-hand side input; this
operation is called anti-semijoin in other literature.) It evaluates each type of join
by one of three methods: hash join, sort–merge join, or nested-loop join.

28.4.2 Optimization

Chapter 13 discusses the general topic of query optimization. Here, we discuss
optimization in the context of Oracle.

28.4.2.1 Query Transformations

Oracle does query optimization in several steps. One such step is to perform var-
ious query transformations and rewrites that fundamentally change the structure
of the query. Another step is to perform access path selection to determine access
paths, join methods, and join order. Since some transformations are not always
beneficial, Oracle uses cost-based query transformations where the transforma-
tions and access path selection are interleaved. For each transformation that is
tried, access path selection is performed in order to generate a cost estimate,
and the transformation is accepted or rejected based on the cost for the resulting
execution plan.

Some of the major types of transformations and rewrites supported by Oracle
are as follows:

• View merging. A view reference in a query is replaced by the view definition.
This transformation is not applicable to all views.

• Complex view merging. Oracle offers this feature for certain classes of views
that are not subject to regular view merging because they have a group by or
select distinct in the view definition. If such a view is joined to other tables,
Oracle can commute the joins and the sort or hash operation used for the
group by or distinct.
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• Subquery flattening. Oracle has a variety of transformations that convert var-
ious classes of subqueries into joins, semijoins, or antijoins. Such conversion
is also called decorrelation, and is described briefly in Section 13.4.4.

• Materialized view rewrite. Oracle has the ability to rewrite a query automati-
cally to take advantage of materialized views. If some part of the query can be
matched up with an existing materialized view, Oracle can replace that part
of the query with a reference to the table in which the view is materialized. If
need be, Oracle adds join conditions or group by operations to preserve the
semantics of the query. If multiple materialized views are applicable, Oracle
picks the one that gives the greatest advantage in reducing the amount of
data that have to be processed. In addition, Oracle subjects both the rewritten
query and the original version to the full optimization process producing an
execution plan and an associated cost estimate for each. Oracle then decides
whether to execute the rewritten or the original version of the query on the
basis of the cost estimates.

• Star transformation. Oracle supports a technique for evaluating queries
against star schemas, known as the star transformation. When a query con-
tains a join of a fact table with dimension tables, and selections on attributes
from the dimension tables, the query is transformed by deleting the join con-
dition between the fact table and the dimension tables, and replacing the
selection condition on each dimension table by a subquery of the form:

fact table.fki in
(select pk from dimension tablei
where <conditions on dimension tablei >)

One such subquery is generated for each dimension that has some constrain-
ing predicate. If the dimension has a snowflake schema (see Section 20.2),
the subquery will contain a join of the applicable tables that make up the
dimension.

Oracle uses the values that are returned from each subquery to probe an
index on the corresponding fact table column, getting a bitmap as a result.
The bitmaps generated from different subqueries are combined by a bitmap
and operation. The resultant bitmap can be used to access matching fact table
rows. Hence, only those rows in the fact table that simultaneously match the
conditions on the constrained dimensions will be accessed. Both the decision
on whether the use of a subquery for a particular dimension is cost-effective,
and the decision on whether the rewritten query is better than the original,
are based on the optimizer’s cost estimates.

28.4.2.2 Access Path Selection

Oracle has a cost-based optimizer that determines join order, join methods, and
access paths. Each operation that the optimizer considers has an associated cost
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function, and the optimizer tries to generate the combination of operations that
has the lowest overall cost.

In estimating the cost of an operation, the optimizer relies on statistics that
have been computed for schema objects such as tables and indices. The statis-
tics contain information about the size of the object, the cardinality, the data
distribution of table columns, and so forth. Oracle supports height-balanced and
frequency histograms for data distributions. Height-balanced histograms are also
referred to as equi-depth histograms, and are described in Section 13.3.1.

To facilitate the collection of optimizer statistics, Oracle can monitor modifi-
cation activity on tables and keep track of those tables that have been subject to
enough changes that recalculating the statistics may be appropriate. Oracle also
tracks what columns are used in where clauses of queries, which makes them
potential candidates for histogram creation. With a single command, a user can
tell Oracle to refresh the statistics for those tables that were marked as sufficiently
changed. Oracle uses sampling to speed up the process of gathering the new
statistics and automatically chooses the smallest adequate sample percentage. It
also determines whether the distribution of the marked columns merits the cre-
ation of histograms; if the distribution is close to uniform, Oracle uses a simpler
representation of the column statistics.

In some cases, it may be impossible for the optimizer to accurately estimate
the selectivity of a condition in the where clause of a query just based on simple
column statistics. For example, the condition may be an expression involving a
column, such as f (col + 3) > 5. Another class of problematic queries is those that
have multiple predicates on columns that have some form of correlation. Assess-
ing the combined selectivity of those predicates may be hard. Oracle therefore
allows statistics to be created for expressions as well as for groups of columns.
In addition, Oracle can address these issues through dynamic sampling. The opti-
mizer can randomly sample a small portion of a table and apply all the relevant
predicates to the sample to see the percentage of the rows that match. This feature
can also handle temporary tables where the lifespan and visibility of the data may
prevent regular statistics collection.

Oracle uses both CPU cost and disk I/Os in the optimizer cost model. To
balance the two components, it stores measures about CPU speed and disk I/O
performance as part of the optimizer statistics. Oracle’s package for gathering
optimizer statistics computes these measures.

For queries involving a nontrivial number of joins, the search space is an issue
for a query optimizer. Oracle addresses this issue in several ways. The optimizer
generates an initial join order and then decides on the best join methods and access
paths for that join order. It then changes the order of the tables and determines
the best join methods and access paths for the new join order and so forth, while
keeping the best plan that has been found so far. Oracle cuts the optimization
short if the number of different join orders that have been considered becomes
so large that the time spent in the optimizer may be noticeable compared to the
time it would take to execute the best plan found so far. Since this cutoff depends
on the cost estimate for the best plan found so far, finding a good plan early
is important so that the optimization can be stopped after a smaller number of
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join orders, resulting in better response time. Oracle uses several initial ordering
heuristics to increase the likelihood that the first join order considered is a good
one.

For each join order that is considered, the optimizer may make additional
passes over the tables to decide join methods and access paths. Such additional
passes would target specific global side effects of the access path selection. For
instance, a specific combination of join methods and access paths may eliminate
the need to perform an order by sort. Since such a global side effect may not
be obvious when the costs of the different join methods and access paths are
considered locally, a separate pass targeting a specific side effect is used to find a
possible execution plan with a better overall cost.

28.4.2.3 Partition Pruning

For partitioned tables, the optimizer tries to match conditions in the where clause
of a query with the partitioning criteria for the table, in order to avoid accessing
partitions that are not needed for the result. For example, if a table is partitioned
by date range and the query is constrained to data between two specific dates,
the optimizer determines which partitions contain data between the specified
dates and ensures that only those partitions are accessed. This scenario is very
common, and the speedup can be dramatic if only a small subset of the partitions
are needed.

28.4.2.4 SQL Tuning Advisor

In addition to the regular optimization process, Oracle’s optimizer can be used
in tuning mode as part of the SQL Tuning Advisor in order to generate more
efficient execution plans than it normally would. This feature is especially useful
for packaged applications that generate the same set of SQL statements repeatedly
so that effort to tune these statements for performance can have future benefits.

Oracle monitors the database activity and automatically stores information
about high-load SQL statements in a workload repository; see Section 28.8.2. High-
load SQL statements are those that use up the most resources because they are
executed a very large number of times or because each execution is very expen-
sive. Such statements are logical candidates for tuning since their impact on the
system is the greatest. The SQL Tuning Advisor can be used to improve the perfor-
mance of these statements by making making various kinds of recommendations
that fall into the following different categories:

• Statistics Analysis. Oracle checks whether statistics needed by the optimizer
are missing or stale and makes recommendations for collecting them.

• SQL Profiling. A profile for an SQL statement is a set of information that is
intended to help the optimizer make better decisions the next time the state-
ment is optimized. An optimizer can sometimes generate inefficient execution
plans if it is unable to accurately estimate cardinalities and selectivities, some-
thing that can happen because of data correlation or the use of certain types
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of constructs. When running the optimizer in tuning mode to create a profile,
the optimizer tries to verify that its assumptions are correct using dynamic
sampling and partial evaluation of the SQL statement. If it finds that there
are steps in the optimization process where the optimizer’s assumptions are
wrong, it will generate a correction factor for that step that will become part
of the profile. Optimizing in tuning mode can be very time-consuming, but it
can be worthwhile if the use of the profile significantly improves the perfor-
mance of the statement. If a profile is created, it will be stored persistently and
used whenever the statement is optimized in the future. Profiles can be used
to tune SQL statements without changing the text of the statement, something
that is important since it is often impossible for the database administrator
to modify statements generated by an application.

• Access Path Analysis. Based on analysis by the optimizer, Oracle suggests
the creation of additional indices that could speed up the statement.

• SQL Structure Analysis. Oracle suggests changes in the structure of the
SQLstatement that would allow for more efficient execution.

28.4.2.5 SQL Plan Management

Packaged applications often generate a large number of SQL statements that are
executed repeatedly. If the application is performing adequately, it is common
that database administrators are averse to changes in database behavior. If the
change results in better performance, there is limited perceived upside since the
performance was already good enough. On the other hand, if the change leads
to a performance degradation, it may break an application if a critical query
deteriorates to a response time that is unacceptable.

An example of a change of behavior is a change of an execution plan for
a query. Such a change may be a perfectly legitimate reflection of changes to
properties of the data, such as a table having grown much larger. But the change
could also be an unintended consequence of a number of other actions, such as a
change in the routines for collecting optimizer statistics or an upgrade to a new
version of the RDBMS with new optimizer behavior.

Oracle’s SQL Plan Management feature addresses the risk associated with
execution plan changes by maintaining a set of trusted execution plans for a
workload and phasing in plans changed by the query optimizer only after they
have been verified not to cause any performance degradations. The feature has
three major components:

1. SQL plan baseline capture. Oracle can capture execution plans for a work-
load and store a plan history for each SQL statement. The plan baseline is
a set of plans for a workload with trusted performance characteristics and
against which future plan changes can be compared. A statement could
have more than one baseline plan.

2. SQL plan baseline selection. After the optimizer generates a plan for an SQL
statement, it checks whether there exists a baseline plan for the statement.
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If the statement exists in the baseline but the new plan is different from any
existing one, the baseline plan that the optimizer considers to be the best
will be used. The newly generated plan will be added to the plan history
for the statement and could become part of a future baseline.

3. SQL plan baseline evolution. Periodically, it may make sense to try to
make newly generated execution plans part of the trusted plans in the
baseline. Oracle supports adding new plans to the baseline with or without
verification. If verification is the chosen option, Oracle will execute a newly
generated plan and compare its performance to the baseline in order to
make sure it does not cause performance regressions.

28.4.3 Parallel Execution

Oracle allows the execution of a single SQL statement to be parallelized by dividing
the work between multiple processes on a multiprocessor computer. This feature
is especially useful for computationally intensive operations that would otherwise
take an unacceptably long time to perform. Representative examples are decision
support queries that need to process large amounts of data, data loads in a data
warehouse, and index creation or rebuild.

In order to achieve good speedup through parallelism, it is important that the
work involved in executing the statement be divided into granules that can be
processed independently by the different parallel processors. Depending on the
type of operation, Oracle has several ways to split up the work.

For operations that access base objects (tables and indices), Oracle can divide
the work by horizontal slices of the data. For some operations, such as a full table
scan, each such slice can be a range of blocks—each parallel query process scans
the table from the block at the start of the range to the block at the end. For some
operations on a partitioned table, such as an index range scan, the slice would
be a partition. Parallelism based on block ranges is more flexible since these can
be determined dynamically based on a variety of criteria and are not tied to the
table definition.

Joins can be parallelized in several different ways. One way is to divide one of
the inputs to the join between parallel processes and let each process join its slice
with the other input to the join; this is the asymmetric fragment-and-replicate
method of Section 18.5.2.2. For example, if a large table is joined to a small one by
a hash join, Oracle divides the large table among the processes and broadcasts a
copy of the small table to each process, which then joins its slice with the smaller
table. If both tables are large, it would be prohibitively expensive to broadcast one
of them to all processes. In that case, Oracle achieves parallelism by partitioning
the data among processes by hashing on the values of the join columns (the
partitioned hash-join method of Section 18.5.2.1). Each table is scanned in parallel
by a set of processes and each row in the output is passed on to one of a set of
processes that are to perform the join. Which one of these processes gets the row
is determined by a hash function on the values of the join column. Hence, each
join process gets only rows that could potentially match, and no rows that could
match could end up in different processes.
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Oracle parallelizes sort operations by value ranges of the column on which
the sort is performed (that is, using the range-partitioning sort of Section 18.5.1).
Each process participating in the sort is sent rows with values in its range, and it
sorts the rows in its range. To maximize the benefits of parallelism, the rows need
to be divided as evenly as possible among the parallel processes, and the problem
of determining range boundaries that generates a good distribution then arises.
Oracle solves the problem by dynamically sampling a subset of the rows in the
input to the sort before deciding on the range boundaries.

28.4.3.1 Process Structure

The processes involved in the parallel execution of an SQL statement consist of a
coordinator process and a number of parallel server processes. The coordinator
is responsible for assigning work to the parallel servers and for collecting and
returning data to the user process that issued the statement. The degree of par-
allelism is the number of parallel server processes that are assigned to execute a
primitive operation as part of the statement. The degree of parallelism is deter-
mined by the optimizer, but can be throttled back dynamically if the load on the
system increases.

The parallel servers operate on a producer/consumer model. When a se-
quence of operations is needed to process a statement, the producer set of servers
performs the first operation and passes the resulting data to the consumer set.
For example, if a full table scan is followed by a sort and the degree of paral-
lelism is 32, there would be 32 producer servers performing the table scan and
passing the result to 32 consumer servers that perform the sort. If a subsequent
operation is needed, such as another sort, the roles of the two sets of servers
switch. The servers that originally performed the table scan take on the role of
consumers of the output produced by the first sort and use it to perform the
second sort. Hence, a sequence of operations proceeds by passing data back and
forth between two sets of servers that alternate in their roles as producers and
consumers. The servers communicate with each other through memory buffers
on shared-memory hardware and through high-speed network connections on
MPP (shared nothing) configurations and clustered (shared disk) systems.

For shared-nothing systems, the cost of accessing data on disk is not uniform
among processes. A process running on a node that has direct access to a device
is able to process data on that device faster than a process that has to retrieve the
data over a network. Oracle uses knowledge about device-to-node and device-to-
process affinity—that is, the ability to access devices directly—when distributing
work among parallel execution servers.

28.4.4 Result Caching

Oracle’s result caching feature allows the result of a query or query block (e.g.,
a view referenced in a query) to be cached in memory and reused if the same
query is executed again. Updates of the data in the underlying tables invalidate
the cached results, so this feature works best for queries against tables that are
relatively static and where the result sets are relatively small. Consider, as a
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usage example, some part of a Web page that is stored in the database and
does not change very frequently compared to how often it accessed. For such an
application, result caching would be a much more lightweight alternative to using
materialized views, which would require explicitly creating and administering
new persistent database objects.

28.5 Concurrency Control and Recovery

Oracle supports concurrency control and recovery techniques that provide a
number of useful features.

28.5.1 Concurrency Control

Oracle’s multiversion concurrency control mechanism is based on the snapshot
isolation protocol described in Section 15.7. Read-only queries are given a read-
consistent snapshot, which is a view of the database as it existed at a specific
point in time, containing all updates that were committed by that point in time,
and not containing any updates that were not committed at that point in time.
Thus, read locks are not used and read-only queries do not interfere with other
database activity in terms of locking.

Oracle supports both statement- and transaction-level read consistency: at
the beginning of the execution of either a statement or a transaction (depend-
ing on what level of consistency is used), Oracle determines the current system
change number (SCN). The SCN essentially acts as a timestamp, where the time is
measured in terms of transaction commits instead of wall-clock time.

If in the course of a query a data block is found that has a higher SCN than
the one being associated with the query, it is evident that the data block has been
modified after the time of the original query’s SCN by some other transaction that
may or may not have committed. Hence, the data in the block cannot be included
in a consistent view of the database as it existed at the time of the query’s SCN.
Instead, an older version of the data in the block must be used; specifically, the
one that has the highest SCN that does not exceed the SCN of the query. Oracle
retrieves that version of the data from the undo segment (undo segments are
described in Section 28.5.2). Hence, provided that the undo space is sufficiently
large, Oracle can return a consistent result of the query even if the data items have
been modified several times since the query started execution. Should the block
with the desired SCN no longer exist in the undo, the query will return an error.
It would be an indication that the undo table space has not been properly sized,
given the activity on the system.

In the Oracle concurrency model, read operations do not block write opera-
tions and write operations do not block read operations, a property that allows
a high degree of concurrency. In particular, the scheme allows for long-running
queries (for example, reporting queries) to run on a system with a large amount
of transactional activity. This kind of scenario is often problematic for database
systems where queries use read locks, since the query may either fail to acquire
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them or lock large amounts of data for a long time, thereby preventing transac-
tional activity against that data and reducing concurrency. (An alternative that is
used in some systems is to use a lower degree of consistency, such as degree-two
consistency, but that could result in inconsistent query results.)

Oracle’s concurrency model is used as a basis for the flashback feature. This
feature allows a user to set a certain SCN number or wall-clock time in his session
and perform operations on the data that existed at that point in time (provided
that the data still exist in the undo). Normally in a database system, once a
change has been committed, there is no way to get back to the previous state of
the data other than performing point-in-time recovery from backups. However,
recovery of a very large database can be very costly, especially if the goal is just
to retrieve some data item that had been inadvertently deleted by a user. The
flashback feature provides a much simpler mechanism to deal with user errors.
The flashback feature includes the ability to restore a table or an entire database to
an earlier point in time without recovering from backups, the ability to perform
queries on the data as they existed at an earlier point in time, the ability to track
how one or more rows have changed over time, and the ability to examine changes
to the database at the transaction level.

It may be desirable to be able to track changes to a table beyond what would
be possible through normal undo retention. (For instance, corporate governance
regulations may require that such changes be trackable for a certain number of
years.) For this purpose, a table can be tracked by the flashback archive feature,
which creates an internal, history version of the table. A background process
converts the undo information into entries in the history table, which can be used
to provide flashback functionality for arbitrarily long periods of time.

Oracle supports two ANSI/ISO isolation levels, read committed and serializ-
able. There is no support for dirty reads since it is not needed. Statement-level read
consistency corresponds to the read committed isolation level, while transaction-
level read consistency corresponds to the serializable isolation level. The isolation
level can be set for a session or an individual transaction. Statement-level read
consistency (that is, read committed) is the default.

Oracle uses row-level locking. Updates to different rows do not conflict. If two
writers attempt to modify the same row, one waits until the other either commits
or is rolled back, and then it can either return a write-conflict error or go ahead
and modify the row; write-conflict errors are detected based on the first-updater-
wins version of snapshot isolation, described in Section 15.7. (Section 15.7 also
describes certain cases of non-serializable execution that can occur with snapshot
isolation, and outlines techniques for preventing such problems.) Locks are held
for the duration of a transaction.

In addition to row-level locks that prevent inconsistencies due to DML ac-
tivity, Oracle uses table locks that prevent inconsistencies due to DDL activity.
These locks prevent one user from, say, dropping a table while another user
has an uncommitted transaction that is accessing that table. Oracle does not use
lock escalation to convert row locks to table locks for the purpose of its regular
concurrency control.
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Oracle detects deadlocks automatically and resolves them by rolling back one
of the transactions involved in the deadlock.

Oracle supports autonomous transactions, which are independent transac-
tions generated within other transactions. When Oracle invokes an autonomous
transaction, it generates a new transaction in a separate context. The new trans-
action can be either committed or rolled back before control returns to the calling
transaction. Oracle supports multiple levels of nesting of autonomous transac-
tions.

28.5.2 Basic Structures for Recovery

Oracle’s Flashback technology, described in Section 28.5.1, can be used as a recov-
ery mechanism, but Oracle also supports media recovery where files are backed
up physically. We describe this more traditional form of backup and recovery
here.

In order to understand how Oracle recovers from a failure, such as a disk
crash, it is important to understand the basic structures that are involved. In
addition to the data files that contain tables and indices, there are control files,
redo logs, archived redo logs, and undo segments.

The control file contains various metadata that are needed to operate the
database, including information about backups.

Oracle records any transactional modification of a database buffer in the redo
log, which consists of two or more files. It logs the modification as part of the
operation that causes it and regardless of whether the transaction eventually
commits. It logs changes to indices and undo segments as well as changes to table
data. As the redo logs fill up, they are archived by one or several background
processes (if the database is running in archivelog mode).

The undo segment contains information about older versions of the data (that
is, undo information). In addition to its role in Oracle’s consistency model, the
information is used to restore the old version of data items when a transaction
that has modified the data items is rolled back.

To be able to recover from a storage failure, the data files and control files
should be backed up regularly. The frequency of the backup determines the
worst-case recovery time, since it takes longer to recover if the backup is old.
Oracle supports hot backups—backups performed on an online database that is
subject to transactional activity.

During recovery from a backup, Oracle performs two steps to reach a consis-
tent state of the database as it existed just prior to the failure. First, Oracle rolls
forward by applying the (archived) redo logs to the backup. This action takes the
database to a state that existed at the time of the failure, but not necessarily a con-
sistent state since the redo logs include uncommitted data. Second, Oracle rolls
back uncommitted transactions by using the undo segment data. The database is
now in a consistent state.

Recovery on a database that has been subject to heavy transactional activity
since the last backup can be time-consuming. Oracle supports parallel recovery
in which several processes are used to apply redo information simultaneously.
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Oracle provides a GUI tool, Recovery Manager, which automates most tasks as-
sociated with backup and recovery.

28.5.3 Oracle Data Guard

To ensure high availability, Oracle provides a standby database feature, data
guard. (This feature is the same as remote backups, described in Section 16.9.) A
standby database is a copy of the regular database that is installed on a separate
system. If a catastrophic failure occurs on the primary system, the standby sys-
tem is activated and takes over, thereby minimizing the effect of the failure on
availability. Oracle keeps the standby database up-to-date by constantly apply-
ing archived redo logs that are shipped from the primary database. The backup
database can be brought online in read-only mode and used for reporting and
decision support queries.

28.6 System Architecture

Whenever a database application executes an SQL statement, there is an operating
system process that executes code in the database server. Oracle can be configured
so that the operating system process is dedicated exclusively to the statement it
is processing or so that the process can be shared among multiple statements.
The latter configuration, known as the shared server, has somewhat different
properties with regard to the process and memory architecture. We shall discuss
the dedicated server architecture first and the multithreaded server architecture
later.

28.6.1 Dedicated Server: Memory Structures

The memory used by Oracle falls mainly into three categories: software code
areas, which are the parts of the memory where the Oracle server code resides,
the system global area (SGA), and the program global area (PGA).

A PGA is allocated for each process to hold its local data and control infor-
mation. This area contains stack space for various session data and the private
memory for the SQL statement that it is executing. It also contains memory for
sorting and hashing operations that may occur during the evaluation of the state-
ment. The performance of such operations is sensitive to the amount of memory
that is available. For example, a hash join that can be performed in memory will
be faster than if it is necessary to spill to disk. Since there can be a large num-
ber of sorting and hashing operations active simultaneously (because of multiple
queries as well as multiple operations within each query), deciding how much
memory should be allocated to each operation is nontrivial, especially as the load
on the system may fluctuate. Underallocation of memory can lead to extra disk
I/Os if an operation needlessly spills to disk and overallocation of memory can
lead to thrashing. Oracle lets the database administrator specify a target parame-
ter for the total amount of memory that should be considered available for these
operations. The size of this target would typically be based on the total amount of



1184 Chapter 28 Oracle

memory available on the system and some calculation as to how it should be di-
vided between various Oracle and non-Oracle activities. Oracle will dynamically
decide the best way to divide the memory available within the target between the
active operations in order to maximize throughput. The memory allocation algo-
rithm knows the relationship between memory and performance for the different
operations and seeks to ensure that the available memory is used as efficiently as
possible.

The SGA is a memory area for structures that are shared among users. It is
made up of several major structures, including the following.

• Buffer cache. This cache keeps frequently accessed data blocks (from tables
as well as indices) in memory to reduce the need to perform physical disk I/O.
A least recently used replacement policy is used except for blocks accessed
during a full table scan. However, Oracle allows multiple buffer pools to be
created that have different criteria for aging out data. Some Oracle operations
bypass the buffer cache and read data directly from disk.

• Redo log buffer. This buffer contains the part of the redo log that has not yet
been written to disk.

• Shared pool. Oracle seeks to maximize the number of users that can use the
database concurrently by minimizing the amount of memory that is needed
for each user. One important concept in this context is the ability to share
the internal representation of SQL statements and procedural code written in
PL/SQL. When multiple users execute the same SQL statement, they can share
most data structures that represent the execution plan for the statement. Only
data that are local to each specific invocation of the statement need to be kept
in private memory.

The sharable parts of the data structures representing the SQL statement
are stored in the shared pool, including the text of the statement. The caching
of SQL statements in the shared pool also saves compilation time, since a
new invocation of a statement that is already cached does not have to go
through the complete compilation process. The determination of whether
an SQL statement is the same as one existing in the shared pool is based
on exact text matching and the setting of certain session parameters. Oracle
can automatically replace constants in an SQL statement with bind variables;
future queries that are the same except for the values of constants will then
match the earlier query in the shared pool.

The shared pool also contains caches for dictionary information and various
control structures. Caching dictionary metadata is important for speeding up
the compilation time for SQL statements. In addition, the shared pool is used
for Oracle’s result cache feature.

28.6.2 Dedicated Server: Process Structures

There are two types of processes that execute Oracle server code: server pro-
cesses that process SQL statements and background processes that perform var-
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ious administrative and performance-related tasks. Some of these processes are
optional, and in some cases, multiple processes of the same type can be used
for performance reasons. Oracle can generate about two dozen different types of
background processes. Some of the most important ones are:

• Database writer. When a buffer is removed from the buffer cache, it must be
written back to disk if it has been modified since it entered the cache. This task
is performed by the database writer processes, which help the performance
of the system by freeing up space in the buffer cache.

• Log writer. The log-writer process writes entries in the redo log buffer to
the redo log file on disk. It also writes a commit record to disk whenever a
transaction commits.

• Checkpoint. The checkpoint process updates the headers of the data file
when a checkpoint occurs.

• System monitor. This process performs crash recovery if needed. It also
performs some space management to reclaim unused space in temporary
segments.

• Process monitor. This process performs process recovery for server processes
that fail, releasing resources and performing various cleanup operations.

• Recoverer. The recoverer process resolves failures and conducts cleanup for
distributed transactions.

• Archiver. The archiver copies the online redo log file to an archived redo log
every time the online log file fills up.

28.6.3 Shared Server

The shared-server configuration increases the number of users that a given num-
ber of server processes can support by sharing server processes among statements.
It differs from the dedicated server architecture in these major aspects:

• A background dispatch process routes user requests to the next available
server process. In doing so, it uses a request queue and a response queue in
the SGA. The dispatcher puts a new request in the request queue where it will
be picked up by a server process. As a server process completes a request, it
puts the result in the response queue to be picked up by the dispatcher and
returned to the user.

• Since a server process is shared among multiple SQL statements, Oracle does
not keep private data in the PGA. Instead, it stores the session-specific data in
the SGA.
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28.6.4 Oracle Real Application Clusters

Oracle Real Application Clusters (RAC) is a feature that allows multiple instances
of Oracle to run against the same database. (Recall that, in Oracle terminology,
an instance is the combination of background processes and memory areas.) This
feature enables Oracle to run on clustered and MPP (shared disk and shared noth-
ing) hardware architectures. The ability to cluster multiple nodes has important
benefits for scalability and availability that are useful in both OLTP and data
warehousing environments.

The scalability benefits of the feature are obvious, since more nodes mean
more processing power. On shared-nothing architectures, adding nodes to a clus-
ter typically requires redistributing the data between the nodes. Oracle uses a
shared-disk architecture where all the nodes have access to all the data and as
a result, more nodes can be added to a RAC cluster without worrying how the
data should be divided between the nodes. Oracle further optimizes the use of
the hardware through features such as affinity and partitionwise joins.

RAC can also be used to achieve high availability. If one node fails, the re-
maining ones are still available to the application accessing the database. The
remaining instances will automatically roll back uncommitted transactions that
were being processed on the failed node in order to prevent them from blocking
activity on the remaining nodes. RAC also allows rolling patching so that software
patches can be applied to one node at a time without database downtime.

Oracle’s shared-disk architecture avoids many of the issues that shared-
nothing architectures have with data on disk either being local to a node or
not. Still, having multiple instances run against the same database gives rise to
some technical issues that do not exist on a single instance. While it is sometimes
possible to partition an application among nodes so that nodes rarely access the
same data, there is always the possibility of overlaps, which affects cache man-
agement. In order to achieve efficient cache management over multiple nodes,
Oracle’s cache fusion feature allows data blocks to flow directly among caches
on different instances using the interconnect, without being written to disk.

28.6.5 Automatic Storage Manager

The Automatic Storage Manager (ASM) is a volume manager and file system
developed by Oracle. While Oracle can be used with other volume managers
and file systems as well as raw devices, ASM is specifically designed to simplify
storage management for the Oracle database while optimizing performance.

ASM manages collections of disks, known as disk groups, and exposes a file
system interface to the database. (Recall that an Oracle table space is defined in
terms of data files.) Examples of what could constitute ASM disks include disks
or partitions of disk arrays, logical volumes, and network attached files. ASM
automatically stripes the data over the disks in a disk group and provides several
options for different levels of mirroring.

If the disk configuration changes, e.g., when more disks are added to in-
crease storage capacity, a disk group may need to be rebalanced so that the data
are spread evenly over all the disks. The rebalancing operation can be done in
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the background while the database remains fully operational and with minimal
impact on database performance.

28.6.6 Oracle Exadata

Exadata is a set of Oracle libraries that can run on the storage array CPUs on
certain types of storage hardware. While Oracle is fundamentally based on a
shared-disk architecture, Exadata contains a shared-nothing flavor in that some
operations that would normally be executed on the database server are moved to
storage cells that can only access data that are local to each cell. (Each storage cell
consists of a number of disks and several multicore CPUs.)

The are major advantages to offloading certain types of processing to storage
CPUs:

• It allows a large, but relatively inexpensive, expansion of the amount of
processing power that is available.

• The amount of data that needs to be transferred from a storage cell to the
database server can be dramatically reduced, which can be very important
since the bandwidth between the storage cell and database server is usually
expensive and often a bottleneck.

When executing a query against Exadata storage, the reduction of the amount
of data that needs to be retrieved comes from several techniques that can be
pushed to the storage cells and executed there locally:

• Projection. A table may have hundreds of columns, but a given query may
only need to access a very small subset of them. The storage cells can project
out the unneeded columns and only send the relevant ones back to the
database server.

• Table filtering. The database server can send a list of predicates that are local
to a table to the storage cells and only rows matching these predicates get
sent back to the server.

• Join filtering. The filtering mechanism allows for predicates that are Bloom
filters allowing rows to be filtered out based on join conditions as well.

In combination, offloading these techniques to the storage cells can speed
up query processing by orders of magnitude. It requires that the storage cells,
in addition to sending back regular, unaltered database blocks to the server,
can send back a compacted version where certain columns and rows have been
removed. This ability in turn requires the storage software to understand Oracle’s
block format and data types, and to include Oracle’s expression and predicate
evaluation routines.

In addition to providing benefits for query processing, Exadata can also speed
up incremental backups by performing block-level change tracking and only
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returning blocks that have changed. Also, the work of formatting extents when
creating a new table space is offloaded to Exadata storage.

Exadata storage supports all regular Oracle features, and it is possible to have
a database that includes both Exadata and non-Exadata storage.

28.7 Replication, Distribution, and External Data

Oracle provides support for replication and distributed transactions with two-
phase commit.

28.7.1 Replication

Oracle supports several types of replication. (See Section 19.2.1 for an introduction
to replication.) In one form, data in a master site are replicated to other sites in
the form of materialized views. A materialized view does not have to contain all
the master data—it can, for example, exclude certain columns from a table for
security reasons. Oracle supports two types of materialized views for replication:
read-only and updatable. An updatable materialized view can be modified and the
modifications propagated to the master table. However, read-only materialized
views allow for a wider range of view definitions. For instance, a read-only
materialized view can be defined in terms of set operations on tables at the
master site. Changes to the master data are propagated to the replicas through
the materialized view refresh mechanism.

Oracle also supports multiple master sites for the same data, where all master
sites act as peers. A replicated table can be updated at any of the master sites and
the update is propagated to the other sites. The updates can be propagated either
asynchronously or synchronously.

For asynchronous replication, the update information is sent in batches to the
other master sites and applied. Since the same data could be subject to conflicting
modifications at different sites, conflict resolution based on some business rules
might be needed. Oracle provides a number of built-in conflict resolution methods
and allows users to write their own if need be.

With synchronous replication, an update to one master site is propagated
immediately to all other sites.

28.7.2 Distributed Databases

Oracle supports queries and transactions spanning multiple databases on differ-
ent systems. With the use of gateways, the remote systems can include non-Oracle
databases. Oracle has built-in capability to optimize a query that includes tables
at different sites, retrieve the relevant data, and return the result as if it had been
a normal, local query. Oracle also transparently supports transactions spanning
multiple sites by a built-in two-phase-commit protocol.
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28.7.3 External Data Sources

Oracle has several mechanisms for supporting external data sources. The most
common usage is in data warehousing when large amounts of data are regularly
loaded from a transactional system.

28.7.3.1 SQL*Loader

Oracle has a direct-load utility, SQL*Loader, that supports fast parallel loads of
large amounts of data from external files. It supports a variety of data formats
and it can perform various filtering operations on the data being loaded.

28.7.3.2 External Tables

Oracle allows external data sources, such as flat files, to be referenced in the from
clause of a query as if they were regular tables. An external table is defined by
metadata that describe the Oracle column types and the mapping of the external
data into those columns. An access driver is also needed to access the external
data. Oracle provides a default driver for flat files.

The external table feature is primarily intended for extraction, transformation,
and loading (ETL) operations in a data warehousing environment. Data can be
loaded into the data warehouse from a flat file using

create table table as
select ... from < external table >

where ...

By adding operations on the data in either the select list or where clause, trans-
formations and filtering can be done as part of the same SQL statement. Since these
operations can be expressed either in native SQL or in functions written in PL/SQL
or Java, the external table feature provides a very powerful mechanism for ex-
pressing all kinds of data transformation and filtering operations. For scalability,
the access to the external table can be parallelized by Oracle’s parallel execution
feature.

28.7.3.3 Data Pump Export and Import

Oracle provides an export utility for unloading data and metadata into dump
files. These files are regular files using a proprietary format that can be moved to
another system and loaded into another Oracle database using the corresponding
import utility.

28.8 Database Administration Tools

Oracle provides users a number of tools and features for system management
and application development. In recent releases of Oracle, a lot of emphasis
was put on the concept of manageability, that is, reducing the complexity of all
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aspects of creating and administering an Oracle database. This effort covered a
wide variety of areas, including database creation, tuning, space management,
storage management, backup and recovery, memory management, performance
diagnostics, and workload management.

28.8.1 Oracle Enterprise Manager

Oracle Enterprise Manager (OEM) is Oracle’s main tool for database systems
management. It provides an easy-to-use graphical user interface for most tasks
associated with administering an Oracle database including configuration, per-
formance monitoring, resource management, security management, and access
to the various advisors. In addition to database management, OEM provides in-
tegrated management of Oracle’s applications and middleware software stack.

28.8.2 Automatic Workload Repository

The Automatic Workload Repository (AWR) is one of the central pieces of infras-
tructure for Oracle’s manageability effort. Oracle monitors the activity on the
database system and records a variety of information relating to workloads and
resource consumption and records them in AWR at regular intervals. By tracking
the characteristics of a workload over time, Oracle can detect and help diagnose
deviations from normal behavior such as a significant performance degradation
of a query, lock contention, and CPU bottlenecks.

The information recorded in AWR provides a basis for a variety of advisors
that provide analysis of various aspects of the performance of the system and
advice for how it can be improved. Oracle has advisors for SQL tuning, creating
access structures, such as indices and materialized views, and memory sizing.
Oracle also provides advisors for segment defragmentation and undo sizing.

28.8.3 Database Resource Management

A database administrator needs to be able to control how the processing power
of the hardware is divided among users or groups of users. Some groups may
execute interactive queries where response time is critical; others may execute
long-running reports that can be run as batch jobs in the background when
the system load is low. It is also important to be able to prevent a user from
inadvertently submitting an extremely expensive ad hoc query that will unduly
delay other users.

Oracle’s Database Resource Management feature allows the database admin-
istrator to divide users into resource consumer groups with different priorities
and properties. For example, a group of high-priority, interactive users may be
guaranteed at least 60 percent of the CPU. The remainder, plus any part of the
60 percent not used up by the high-priority group, would be allocated among
resource consumer groups with lower priority. A really low-priority group could
get assigned 0 percent, which would mean that queries issued by this group
would run only when there are spare CPU cycles available. Limits for the degree
of parallelism for parallel execution can be set for each group. The database ad-
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ministrator can also set time limits for how long an SQL statement is allowed
to run for each group. When a user submits a statement, the resource manager
estimates how long it would take to execute it and returns an error if the state-
ment violates the limit. The resource manager can also limit the number of user
sessions that can be active concurrently for each resource consumer group. Other
resources that can be controlled by the resource manager include undo space.

28.9 Data Mining

Oracle Data Mining provides a variety of algorithms that embed the data mining
process inside the database both for building a model on a training set of data and
for applying the model for scoring the actual production data. The fact the data
never needs to leave the database is a significant advantage compared to using
other data mining engines. Having to extract and insert potentially very large
data sets into a separate engine is cumbersome, costly, and may prevent new data
from being scored instantaneously as they are entered into the database. Oracle
provides algorithms for both supervised and unsupervised learning including:

• Classification—Naive Bayes, generalized linear models, Support Vector Ma-
chines, and Decision Trees.

• Regression—Support vector machines and generalized linear models.

• Attribute importance—Minimum description length.

• Anomaly detection—One class support vector machines.

• Clustering—Enhanced k-means clustering and orthogonal Partitioning Clus-
tering.

• Association rules—Apriori.

• Feature extraction—Nonnegative matrix factorization.

In addition, Oracle provides a wide range of statistical functions inside the
database covering areas including linear regression, correlation, cross tabs, hy-
pothesis testing, distribution fitting, and Pareto analysis.

Oracle provides two interfaces to the data mining functionality, one based on
Java and one that is based on Oracle’s procedural language PL/SQL. Once a model
has been built on an Oracle database, it can be shipped to be deployed on other
Oracle databases.
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Oracle’s intelligent algorithms for allocating available memory for opera-
tions such as hashing and sorting are discussed in Dageville and Zaı̈t [2002].
Murthy and Banerjee [2003] discussed XML schemas. Table compression in Ora-
cle is described in Pöss and Potapov [2003]. Automatic SQL tuning is described in
Dageville et al. [2004]. The optimizer’s cost-based query transformation frame-
work is described in Ahmed et al. [2006]. The SQL Plan-Management feature is
discussed in Ziauddin et al. [2008]. Antoshenkov [1995] describes the byte-aligned
bitmap compression technique used in Oracle; see also Johnson [1999].
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IBM’s DB2 Universal Database family of products consists of flagship database
servers and suites of related products for business intelligence, information inte-
gration, and content management. The DB2 Universal Database Server is avail-
able on a variety of hardware and operating-system platforms. The list of server
platforms supported includes high-end systems such as mainframes, massively
parallel processors (MPP), and large symmetric multiprocessors (SMP) servers;
medium-scale systems such as four-way and eight-way SMPs; workstations; and
even small handheld devices. Operating systems that are supported include Unix
variants such as Linux, IBM AIX, Solaris, and HP-UX, as well as Microsoft Windows,
IBM MVS, IBM VM, IBM OS/400, and a number of others. The DB2 Everyplace edition
supports operating systems such as PalmOS and Windows CE. There is even a
no-charge (free) version of DB2 called DB2 Express-C. Applications can migrate
seamlessly from the low-end platforms to high-end servers because of the porta-
bility of the DB2 interfaces and services. Besides the core database engine, the DB2
family consists of several other products that provide tooling, administration,
replication, distributed data access, pervasive data access, OLAP, and many other
features. Figure 29.1 describes the different products in the family.

29.1 Overview

The origin of DB2 can be traced back to the System R project at IBM’s Almaden
Research Center (then called the IBM San Jose Research Laboratory). The first DB2
product was released in 1984 on the IBM mainframe platform, and this was fol-
lowed over time with versions for the other platforms. IBM research contributions
have continually enhanced the DB2 product in areas such as transaction processing
(write-ahead logging and ARIES recovery algorithms), query processing and op-
timization (Starburst), parallel processing (DB2 Parallel Edition), active-database
support (constraints, triggers), advanced query and warehousing techniques such
as materialized views, multidimensional clustering, “autonomic” features, and
object-relational support (ADTs, UDFs).
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•Database Servers
–DB2 UDB for Linux, Unix, Windows
–DB2 UDB for z/OS
–DB2 UDB for OS/400
–DB2 UDB for VM/VSE

•Business Intelligence
–DB2 Data Warehouse Edition
–DB2 OLAP Server
–DB2 Alphablox
–DB2 CubeViews
–DB2 Intelligent Miner
–DB2 Query Patroller

•Data Integration
–DB2 Information Integrator
–DB2 Replication
–DB2 Connect
–Omnifind (For Enterprise Search)

•Content Management
–DB2 Content 
–IBM Enterprise Content Manager 

•Application Development
–IBM Rational Application

Developer Studio
–DB2 Forms for z/OS
–QMF

•Database-Management Tools
–DB2 Control Center
–DB2 Admin Tool for z/OS
–DB2 Performance Expert
–DB2 Query Patroller
–DB2 Visual Explain

•Embedded and Mobile Databases
–DB2e (Everyplace)

Manager

Figure 29.1 The DB2 family of products.

Since IBM supports a number of server and operating-system platforms, the
DB2 database engine consists of four code base types: (1) Linux, Unix, and Win-
dows, (2) z/OS (3) VM, and (4) OS/400. All of these support a common subset
of data-definition language, SQL, and administration interfaces. However, the
engines have somewhat different features due to their platform origins. In this
chapter, the focus is on the DB2 Universal Database (UDB) engine that supports
Linux, Unix, and Windows. Specific features of interest in other DB2 systems are
highlighted in appropriate sections.

The latest version of DB2 UDB for Linux, Unix, and Windows as of 2009 is
version 9.7. DB2 version 9.7 includes several new feature such as extension of
native support for XML to shared-nothing environments, native compression for
tables and indexes, automatic storage management, and improved support for
procedural languages such as SQL PL and Oracle’s PL/SQL.

29.2 Database-Design Tools

Most industry database-design and CASE tools can be used to design a DB2
database. In particular, data modeling tools such as ERWin and Rational Rose
allow the designer to generate DB2-specific DDL syntax. For instance, Rational
Rose’s UML Data Modeler tool can generate DB2-specific create distinct type DDL
statements for user-defined types and use them subsequently in column defini-
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tions. Most design tools also support a reverse-engineering feature that reads the
DB2 catalog tables and builds a logical design for additional manipulation. The
tools support the generation of constraints and indices.

DB2 provides support for many logical and physical database features using
SQL. The features include constraints, triggers, and recursion using SQL constructs.
Likewise, certain physical database features such as tablespaces, bufferpools, and
partitioning are also supported by using SQL statements. The Control Center GUI
tool for DB2 allows a designer or an administrator to issue the appropriate DDL for
these features. Another tool, db2look, allows the administrator to obtain a full set of
DDL statements for a database including tablespaces, tables, indices, constraints,
triggers, and functions that can be used to create an exact replica of the database
schema for testing or replication.

The DB2 Control Center includes a variety of design- and administration-
related tools. For design, the Control Center provides a tree view of a server, its
databases, tables, views, and all other objects. It also allows users to define new
objects, create ad hoc SQL queries, and view query results. Design tools for ETL,
OLAP, replication, and federation also integrate into the Control Center. The entire
DB2 family supports the Control Center for database definition as well as related
tools. DB2 also provides plug-in modules for application development in the IBM
Rational Application Developer product as well as in the Microsoft Visual Studio
product.

29.3 SQL Variations and Extensions

DB2 provides support for a rich set of SQL features for various aspects of database
processing. Many of the DB2 features and syntax have provided the basis for
standards in SQL-92, or SQL:1999. In this section, we highlight the XML object-
relational and application-integration features in DB2 UDB version 8, along with
some new features from version 9.

29.3.1 XML Features

A rich set of XML functions have been included in DB2. The following is a list of
several important XML functions that can be used in SQL, as part of the SQL/XML
extension to SQL (described earlier in Section 23.6.3):

• xmlelement. Constructs an element tag with given name. For example the
function call, xmlelement(book) creates the book element.

• xmlattributes. Constructs the set of attributes for an element.

• xmlforest. Constructs a sequence of XML elements from arguments.

• xmlconcat. Returns the concatenation of a variable number of XML argu-
ments.

• xmlserialize. Provides a character-oriented serialized version of the argu-
ment.
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select xmlemement(name ’PO’,
xmlattributes(poid, orderdate),
(select xmlagg(xmlelement(name ’item’,

xmlattributes(itemid, qty, shipdate),
(select xmlelement(name ’itemdesc’,

xmlattributes(name, price))
from product
where product.itemid = lineitem.itemid)))

from lineitem
where lineitem.poid = orders.poid))

from orders
where orders.poid= 349;

Figure 29.2 DB2 SQL XML query.

• xmlagg. Returns a concatenation of a set of XML values.

• xml2clob. Constructs a character large object (clob) representation of the
XML. This clob can then be retrieved by SQL applications.

The XML functions can be incorporated into SQL effectively to provide ex-
tensive XML manipulation capabilities. For instance, suppose that one needs to
construct a purchase-order XML document from relational tables orders, lineitem,
and product for order number 349. In Figure 29.2, we show an SQL query with
XML extensions that can be used to create such a purchase order. The resultant
output is as shown in Figure 29.3.

Version 9 of DB2 supports native storage of XML data as an xml type. and native
support for the XQuery language. Specialized storage, indexing, query processing
and optimization techniques have been introduced for efficient processing of XML
data and queries in the XQuery language, and APIs have been extended to deal
with XML data and XQuery.

29.3.2 Support for Data Types

DB2 provides support for user-defined data types (UDTs). Users can define distinct
or structured data types. Distinct data types are based on DB2 built-in data types.

<PO poid = "349" orderdate = "2004-10-01">
<item itemid="1", qty="10", shipdate="2004-10-03">
<itemdesc name = "IBM ThinkPad T41", Price = "1000.00 USD"/>
</item>

</PO>

Figure 29.3 Purchase order in XML for id=349.
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However, the user can define additional or alternative semantics for these new
types. For example, the user can define a distinct data type called us dollar, using:

create distinct type us dollar as decimal(9,2);

Subsequently, the user can create a field (e.g., price) in a table with type us dollar.
Queries may now use the typed field in predicates such as the following:

select product from us sales
where price > us dollar(1000);

Structured data types are complex objects that usually consist of two or more
attributes. For example, one can use the following DDL to create a structured type
called department t:

create type department t as
(deptname varchar(32),

depthead varchar(32),
faculty count integer)

mode db2/sql;

create type point t as
(x coord float,

y coord float)
mode db2/sql;

Structured types can be used to define typed tables:

create table dept of department t;

One can create a type hierarchy and tables in the hierarchy that can inherit
specific methods and privileges. Structured types can also be used to define nested
attributes inside a column of a table. Although such a definition would violate
normalization rules, it may be suitable for object-oriented applications that rely
on encapsulation and well-defined methods on objects.

29.3.3 User-Defined Functions and Methods

Another important feature is the ability for users to define their own functions
and methods. These functions can subsequently be included in SQL statements
and queries. Functions can generate scalars (single attribute) or tables (multiat-
tribute row) as their result. Users can register functions (scalar or table) using
the create function statement. The functions can be written in common program-
ming languages such as C or Java or scripts such as REXX or PERL. User-defined
functions (UDFs) can operate in fenced or unfenced modes. In fenced mode, the
functions are executed by a separate thread in its own address space. In unfenced
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create function db2gse.GsegeFilterDist (
operation integer, g1XMin double, g1XMax double,
g1YMin double, g1YMax double, dist double,
g2XMin double, g2XMax double, g2YMin double,
g2YMax double )

returns integer
specific db2gse.GsegeFilterDist
external name ’db2gsefn!gsegeFilterDist’
language C
parameter style db2 sql
deterministic
not fenced
threadsafe
called on null input
no sql
no external action
no scratchpad
no final call
allow parallel
no dbinfo;

Figure 29.4 Definition of a UDF.

mode, the database-processing agent is allowed to execute the function in the
server’s address space. UDFs can define a scratch pad (work) area where they
can maintain local and static variables across different invocations. Thus, UDFs
can perform powerful manipulations of intermediate rows that are its inputs. In
Figure 29.4, we show a definition of a UDF, db2gse.GsegeFilterDist, in DB2 pointing
to a particular external method that performs the actual function.

Methods are another feature that define the behavior of objects. Unlike UDFs,
they are tightly encapsulated with a particular structured data type. Methods are
registered by using the create method statement.

DB2 also supports procedural extensions to SQL, using the DB2’s SQL PL exten-
sion, including procedures, functions, and control flow. Procedural features of the
SQL standard are described in Section 5.2). In addition, as of version 9.7, DB2 also
supports much of Oracle’s PL/SQL language, for compatibility with applications
developed on Oracle.

29.3.4 Large Objects

New database applications require the ability to manipulate text, images, video,
and other types of data that are typically quite large in size. DB2 supports these
requirements by providing three different large object (LOB) types. Each LOB can
be as large as two gigabytes in size. The large objects in DB2 are (1) binary large
objects (blobs), (2) single byte character large objects (clobs), and (3) double byte
character large objects (dbclobs). DB2 organizes these LOBs as separate objects with
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create index extension db2gse.spatial index(
gS1 double, gS2 double, gS3 double)

from source key(geometry db2gse.ST Geometry)
generate key using

db2gse.GseGridIdxKeyGen(geometry..srid,
geometry..xMin, geometry..xMax,
geometry..yMin, geometry..yMax,
gS1, gS2, gS3)

with target key(srsId integer,
lvl integer, gX integer, gY integer, xMin double,
xMax double, yMin double, yMax double)

search methods <conditions> <actions>

Figure 29.5 Spatial index extension in DB2.

each row in the table maintaining pointers to its corresponding LOBs. Users can
register UDFs that manipulate these LOBs according to application requirements.

29.3.5 Indexing Extensions and Constraints

A recent feature of DB2 enables users to create index extensions to generate keys
from structured data types by using the create index extension statement. For ex-
ample, one can create an index on an attribute based on the department t data type
defined earlier by generating keys, using the department name. DB2’s spatial ex-
tender uses the index extension method to create indices as shown in Figure 29.5.

Finally, users can take advantage of the rich set of constraint checking features
available in DB2 for enforcing object semantics such as uniqueness, validity, and
inheritance.

29.3.6 Web Services

DB2 can integrate Web services as producer or consumer. A Web service can be
defined to invoke DB2, using SQL statements. The resultant Web-service call is
processed by an embedded Web-service engine in DB2 and the appropriate SOAP
response generated. For example, if there is a Web service called GetRecentActiv-
ity(cust id) that invokes the following SQL, the result should be the last transaction
for this customer.

select trn id, amount, date
from transactions
where cust id = <input>
order by date
fetch first 1 row only;
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The following SQL shows DB2 acting as a consumer of a Web service. In this
example, the GetQuote() user-defined function is a Web service. DB2 makes the
Web-service call using an embedded Web-service engine. In this case, GetQuote
returns a numeric quote value for each ticker id in the portfolio table.

select ticker id, GetQuote(ticker id)
from portfolio;

29.3.7 Other Features

DB2 also supports IBM’s Websphere MQ product by defining appropriate UDFs.
UDFs are defined for both read and write interfaces. These UDFs can be incorpo-
rated in SQL for reading from or writing to message queues.

From version 9, DB2 supports fine-grained authorization through the label-
based access control feature, which plays a role similar to Oracle’s Virtual Private
Database (described earlier in Section 9.7.5).

29.4 Storage and Indexing

The storage and indexing architecture in DB2 consists of the file-system or disk-
management layer, the services to manage the buffer pools, data objects such as
tables, LOBs, index objects, and concurrency and recovery managers. We overview
the general storage architecture in this section. In addition, we describe a new
feature in DB2 version 8 called multidimensional clustering in the following sec-
tion.

29.4.1 Storage Architecture

DB2 provides storage abstractions for managing logical database tables usefully
in a multinode and multidisk environment. Nodegroups can be defined to support
table partitioning across a specific set of nodes in a multinode system. This allows
complete flexibility in allocating table partitions to different nodes in a system.
For example, large tables may be partitioned across all nodes in a system while
small tables may reside on a single node.

Within a node, DB2 uses tablespaces to organize tables. A tablespace consists
of one or more containers, which are references to directories, devices, or files.
A tablespace may contain zero or more database objects such as tables, indices,
or LOBs. Figure 29.6 illustrates these concepts. In this figure, two tablespaces
have been defined for a nodegroup. The humanres tablespace is assigned four
containers, while the sched tablespace has only one container. The employee and
department tables are assigned to the humanres tablespace, while the project table
is in the sched tablespace. Striping is used to allocate fragments (extents) of the
employee and department table to the containers of the humanres tablespace. DB2
permits the administrator to create either system-managed or DBMS-managed
tablespaces. System-managed spaces (SMS) are directories or file systems that are
maintained by the underlying operating system. In SMS, DB2 creates file objects
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     sched

Containers

 department  employee project

Figure 29.6 Tablespaces and containers in DB2.

in the directories and allocates data to each of the files. Data-managed spaces
(DMS) are raw devices or preallocated files that are then controlled by DB2. The
size of these containers can never grow or shrink. DB2 creates allocation maps and
manages the DMS tablespace itself. In both cases, an extent of pages is the unit of
space management. The administrator can choose the extent size for a tablespace.

DB2 supports striping across the different containers as a default behavior.
For example, when data are inserted into a newly created table, the first extent is
assigned to a container. Once the extent is full, the next data items are allocated
to the next container in round-robin fashion. Striping provides two significant
benefits: parallel I/O and load balancing.

29.4.2 Buffer Pools

One or more buffer pools may be associated with each tablespace for managing
different objects such as data and indices. The buffer pool is a common shared
data area that maintains memory copies of objects. These objects are typically
organized as pages for management in the buffer pool. DB2 allows buffer pools
to be defined by SQL statements. DB2 version 8 has the ability to grow or shrink
buffer pools online and also automatically by choosing the automatic setting for
the buffer pool configuration parameter. An administrator can add more pages
to a buffer pool or decrease its size without quiescing the database activity.

create bufferpool <buffer-pool> ....
alter bufferpool <buffer-pool> size <n>
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Figure 29.7 Logical view of tables and indices in DB2.

DB2 also supports prefetching and asynchronous writes using separate threads.
The data manager component triggers prefetch of data and index pages based on
the query access patterns. For instance, a table scan always triggers prefetch of
data pages. Index scans can trigger prefetch of index pages as well as data pages
if they are being accessed in a clustered fashion. The number of prefetchers and
the prefetch size are configurable parameters that need to be initialized according
to the number of disks or containers in the tablespace.

29.4.3 Tables, Records, and Indices

DB2 organizes the relational data as records in pages. Figure 29.7 shows the logical
view of a table and an associated index. The table consists of a set of pages. Each
page consists of a set of records that are either user data records or special system
records. Page zero of the table contains special system records about the table
and its status. DB2 uses a space-map record called free space control record (FSCR)
to find free space in the table. The FSCR record usually contains a space map for
500 pages. The FSCR entry is a bit mask that provides a rough indication of the
possibility of free space in a page. The insert or update algorithm must validate
the FSCR entries by performing a physical check of the available space in a page.

Indices are also organized as pages containing index records and pointers to
child and sibling pages. DB2 provides support for the B+-tree index mechanisms
internally. The B+-tree index contains internal pages and leaf pages. The indices
have bidirectional pointers at the leaf level to support forward and reverse scans.
Leaf pages contain index entries that point to records in the table. Each record in
the table can be uniquely identified by using its page and slot information, which
are called the record ID or RID.
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Figure 29.8 Data page and record layout in DB2.

DB2 supports “include columns” in the index definition, as:

create unique index I1 on T1 (C1) include (C2);

The included index columns enable DB2 to extend the use of “index-only”
query-processing techniques whenever possible. Additional directives such as
minpctused and pctfree can be used to control the merge and initial space allo-
cation of index pages.

Figure 29.8 shows the typical data page format in DB2. Each data page contains
a header and a slot directory. The slot directory is an array of 255 entries that points
to record offsets in the page. The figure shows that page number 473 contains
record zero at offset 3800 and record 2 at offset 3400. Page 1056 contains record
1 at offset 3700, which is a forward pointer to the record <473,2>. Hence, record
<473,2> is an overflow record that was created as a result of an update operation
of the original record <1056,1>. DB2 supports different page sizes such as 4, 8,
16, and 32 kilobytes. However, each page may contain only 255 user records in it.
Larger page sizes are useful in applications such as data warehousing, where the
table contains many columns. Smaller page sizes are useful for operational data
with frequent updates.

29.5 Multidimensional Clustering

This section provides a brief overview of the main features of MDC. With this
feature, a DB2 table may be created by specifying one or more keys as dimensions
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along which to cluster the table’s data. DB2 includes a clause called organize by
dimensions for this purpose. For example, the following DDL describes a sales
table organized by storeId, year(orderDate), and itemId attributes as dimensions.

create table sales(storeId int,
orderDate date,
shipDate date,
receiptDate date,
region int,
itemId int,
price float
yearOd int generated always as year(orderDate))

organized by dimensions (region, yearOd, itemId);

Each of these dimensions may consist of one or more columns, similar to
index keys. In fact, a “dimension block index” (described below) is automatically
created for each of the dimensions specified and is used to access data quickly
and efficiently. A composite block index, containing all dimension key columns,
is created automatically if necessary, and is used to maintain the clustering of
data over insert and update activity.

Every unique combination of dimension values forms a logical “cell,” that
is physically organized as blocks of pages, where a block is a set of consecutive
pages on disk. The set of blocks that contain pages with data having a certain
key value of one of the dimension block indices is called a “slice.” Every page
of the table is part of exactly one block, and all blocks of the table consist of the
same number of pages, namely, the block size. DB2 has associated the block size
with the extent size of the tablespace so that block boundaries line up with extent
boundaries.

Figure 29.9 illustrates these concepts. This MDC table is clustered along the
dimensions year(orderDate),1 region, and itemId. The figure shows a simple logical
cube with only two values for each dimension attribute. In reality, dimension
attributes can easily extend to large numbers of values without requiring any ad-
ministration. Logical cells are represented by the subcubes in the figure. Records
in the table are stored in blocks, which contain an extent’s worth of consecutive
pages on disk. In the diagram, a block is represented by a shaded oval, and is
numbered according to the logical order of allocated extents in the table. We
show only a few blocks of data for the cell identified by the dimension values
<1997,Canada,2>. A column or row in the grid represents a slice for a particular
dimension. For example, all records containing the value “Canada” in the region
dimension are found in the blocks contained in the slice defined by the “Canada”
column in the cube. In fact, each block in this slice only contains records having
“Canada” in the region field.

1Dimensions can be created by using a generated function.
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Figure 29.9 Logical view of physical layout of an MDC table.

29.5.1 Block Indices

In our example, a dimension block index is created on each of the year(orderDate),
region, and itemId attributes. Each dimension block index is structured in the same
manner as a traditional B-tree index except that, at the leaf level, the keys point to
a block identifier (BID) instead of a record identifier (RID). Since each block contains
potentially many pages of records, these block indices are much smaller than
RID indices and need be updated only when a new block is added to a cell or
existing blocks are emptied and removed from a cell. A slice, or the set of blocks
containing pages with all records having a particular key value in a dimension,
are represented in the associated dimension block index by a BID list for that
key value. Figure 29.10 illustrates slices of blocks for specific values of region and
itemId dimensions, respectively.

In the example above, to find the slice containing all records with “Canada”
for the region dimension, we would look up this key value in the region dimension
block index and find a key as shown in Figure 29.10a. This key points to the exact
set of BIDs for the particular value.

29.5.2 Block Map

A block map is also associated with the table. This map records the state of each
block belonging to the table. A block may be in a number of states such as in use,
free, loaded, requiring constraint enforcement. The states of the block are used



1206 Chapter 29 IBM DB2 Universal Database

Canada 21 31 45 77 127 376 501 719

Key

Key

BID List

BID List

(a) Dimension block index entry for region 'Canada'

(b) Dimension block index entry for itemId = 1

    1       2 7 20 65 101 273 274 476

Figure 29.10 Block index key entries.

by the data-management layer in order to determine various processing options.
Figure 29.11 shows an example block map for a table.

Element 0 in the block map represents block 0 in the MDC table diagram. Its
availability status is “U,” indicating that it is in use. However, it is a special block
and does not contain any user records. Blocks 2, 3, 9, 10, 13, 14, and 17 are not
being used in the table and are considered “F,” or free, in the block map. Blocks 7
and 18 have recently been loaded into the table. Block 12 was previously loaded
and requires that a constraint check be performed on it.

29.5.3 Design Considerations

A crucial aspect of MDC is to choose the right set of dimensions for clustering
a table and the right block size parameter to minimize the space utilization.
If the dimensions and block sizes are chosen appropriately, then the clustering
benefits translate into significant performance and maintenance advantages. On
the other hand, if chosen incorrectly, the performance may degrade and the space
utilization could be significantly worse. There are a number of tuning knobs
that can be exploited to organize the table. These include varying the number of
dimensions, and varying the granularity of one or more dimensions, varying the

0 1 2 3 4 5 6 7 8 9 19 11 12 13 14 15 16 17 18 19

U U F F U U U L U F F U C F F U U F L ...

Figure 29.11 Block map entries.



29.6 Query Processing and Optimization 1207

block size (extent size) and page size of the tablespace containing the table. One
or more of these techniques can be used jointly to identify the best organization
of the table.

29.5.4 Impact on Existing Techniques

It is natural to ask whether the new MDC feature has an adverse impact or disables
some existing features of DB2 for normal tables. All existing features such as
secondary RID indices, constraints, triggers, defining materialized views, and
query processing options, are available for MDC tables. Hence, MDC tables behave
just like normal tables except for their enhanced clustering and processing aspects.

29.6 Query Processing and Optimization

DB2 queries are transformed into a tree of operations by the query compiler. The
query operator tree is used at execution time for processing. DB2 supports a rich
set of query operators that enables it to consider the best processing strategies
and provides the flexibility to execute complex query tasks.

Figures 29.12 and 29.13 show a query and its associated query plan in DB2. The
query is a representative complex query (query 5) from the TPC-H benchmark and
contains several joins and aggregations. The query plan chosen for this particular
example is rather simple since many indices and other auxiliary structures such
as materialized views were not defined for these tables. DB2 provides various
“explain” facilities including a powerful visual explain feature in the Control
Center that can help users understand the details of a query-execution plan. The
query plan shown in the figure is based on the visual explain for the query. Visual

– – ’TPCD Local Supplier Volume Query (Q5)’;
select n name, sum(l extendedprice*(1-l discount)) as revenue
from tpcd.customer, tpcd.orders, tpcd.lineitem,

tpcd.supplier, tpcd.nation, tpcd.region
where c custkey = o custkey and

o orderkey = l orderkey and
l suppkey = s suppkey and
c nationkey = s nationkey and
s nationkey = n nationkey and
n regionkey = r regionkey and
r name = ’MIDDLE EAST’ and
o orderdate >= date(’1995-01-01’) and
o orderdate < date(’1995-01-01’) + 1 year

group by n name
order by revenue desc;

Figure 29.12 SQL query.
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explain allows the user to understand cost and other relevant properties of the
different operations of the query plan.

All SQL queries and statements, however complex they may be, are trans-
formed into a query tree. The base or leaf operators of the query tree manipulate
records in database tables. These operations are also called as access methods. In-
termediate operations of the tree include relational-algebra operations such as
join, set operations, and aggregation. The root of the tree produces the results of
the query or SQL statement.

29.6.1 Access Methods

DB2 supports a comprehensive set of access methods on relational tables. The list
of access methods includes:
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• Table scan. This is the most basic method and performs a page-by-page access
of all records in the table.

• Index scan. An index is used to select the specific records that satisfy the
query. The qualifying records are accessed using the RIDs in the index. DB2
detects opportunities to prefetch data pages when it observes a sequential-
access pattern.

• Block index scan. This is a new access method for MDC tables. One of the
block indices is used to scan a specific set of MDC data blocks. The qualifying
blocks are accessed and processed in block table scan operations.

• Index only. In this case, the index contains all the attributes that are required
by the query. Hence, a scan of the index entries is sufficient. The index-only
technique is usually a good performance solution.

• List prefetch. This access method is chosen for an unclustered index scan
with a significant number of RIDs. DB2 has a sort operation on the RIDs and
performs a fetch of the records in sorted order from the data pages. Sorted
access changes the I/O pattern from random to sequential and also enables
prefetching opportunities. List prefetch has been extended to deal with block
indices as well.

• Block and record index ANDing. This method is used when DB2 determines
that more than one index can be used to constrain the number of satisfying
records in a base table. The most selective index is processed to generate a
list of BIDs or RIDs. The next selective index is then processed to return the
BIDs or RIDs that it qualifies. A BID or RID qualifies for further processing only
if it is present in the intersection (AND operation) of the index scan results.
The result of an index AND operation is a small list of qualifying BIDs or RIDs
which are used to fetch the corresponding records from the base table.

• Block and record index ordering. This strategy is used if two or more block
or record indices can be used to satisfy query predicates that are combined by
using the OR operator. DB2 eliminates duplicate BIDs or RIDs by performing
a sort and then fetching the resulting set of records. Index ORing has been
extended to consider block and RID index combinations.

All the selection and projection predicates of a query are usually pushed down to
the access methods. In addition, DB2 performs certain operations such as sorting
and aggregation in “pushed down” mode in order to reduce instruction paths.

This MDC feature takes advantage of the new set of access-method improve-
ments for block index scans, block index prefetch, block index ANDing, and block
index ORing to process blocks of data.

29.6.2 Join, Aggregation, and Set Operations

DB2 supports a number of techniques for these operations. For join, DB2 can
choose between nested-loop, sort-merge, and hash-join techniques. In describing
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the join and set binary operations, we use the notation of “outer” and “inner”
tables to distinguish the two input streams. The nested-loop technique is useful
if the inner table is very small or can be accessed by using an index on a join
predicate. Sort-merge-join and hash-join techniques are used for joins involving
large outer and inner tables. Set operations are implemented by using sorting and
merging techniques. The merging technique eliminates duplicates in the case of
union while duplicates are forwarded in the case of intersection. DB2 also supports
outer-join operations of all kinds.

DB2 processes aggregation operations in early or “push-down” mode when-
ever possible. For instance, a group by aggregation can be performed by incorpo-
rating the aggregation into the sort phase. The join and aggregation algorithms can
take advantage of superscalar processing in modern CPUs using block-oriented
and cache-conscious techniques.

29.6.3 Support for Complex SQL Processing

One of the most important aspects of DB2 is that it uses the query-processing
infrastructure in an extensible fashion to support complex SQL operations. The
complex SQL operations include support for deeply nested and correlated queries
as well as constraints, referential integrity, and triggers. Because most of these
actions are built into the query plan, DB2 is able to scale and provide support for a
larger number of these constraints and actions. Constraints and integrity checks
are built as query tree operations on insert, delete, or update SQL statements. DB2
also supports maintenance of materialized view by using built-in triggers.

29.6.4 Multiprocessor Query-Processing Features

DB2 extends the base set of query operations with control and data exchange
primitives to support SMP (that is, shared memory), MPP (that is, shared nothing),
and SMP cluster (that is, shared disk) modes of query processing. DB2 uses a
“tablequeue” abstraction for data exchange between threads on different nodes
or on the same node. The tablequeue is used as a buffer that redirects data to
appropriate receivers using broadcast, one-to-one, or directed multicast methods.
Control operations are used to create threads and coordinate the operation of
different processes and threads.

In all these modes, DB2 employs a coordinator process to control the query
operations and final result gathering. Coordinator processes can also perform
some global database-processing actions if required. An example is the global
aggregation operation to combine the local aggregation results. Subagents or
slave threads perform the base database operations in one or more nodes. In SMP
mode, the subagents use shared memory to synchronize between themselves
when sharing data. In an MPP, the tablequeue mechanisms provide buffering
and flow control to synchronize across different nodes during execution. DB2
employs extensive techniques to optimize and process queries efficiently in an
MPP or SMP environment. Figure 29.14 shows a simple query executing in a four-
node MPP system. In this example, the sales table is partitioned across the four
nodes P1, . . . , P4. The query is executed by spawning agents that execute at each
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Figure 29.14 DB2 MPP query processing using function shipping.

of these nodes to scan and filter the rows of the sales table at that node (called
function shipping), and the resulting rows are sent to the coordinator node.

29.6.5 Query Optimization

DB2’s query compiler uses an internal representation of the query, called the
query-graph model (QGM), in order to perform transformations and optimiza-
tions. After parsing the SQL statement, DB2 performs semantic transformations
on the QGM to enforce constraints, referential integrity, and triggers. The result of
these transformations is an enhanced QGM. Next, DB2 attempts to perform query
rewrite transformations that are considered mostly beneficial. Rewrite rules are
fired if applicable to perform the required transformations. Examples of rewrite
transformations include (1) decorrelation of correlated subqueries, (2) transform-
ing certain subqueries into joins using early-out processing, (3) pushing the group
by operation below joins if applicable, and (4) using materialized views for por-
tions of the original query.

The query optimizer component uses this enhanced and transformed QGM
as its input for optimization. The optimizer is cost based and uses an extensible,
rule-driven framework. The optimizer can be configured to operate at different
levels of complexity. At the highest level, it uses a dynamic-programming al-
gorithm to consider all query-plan options and chooses the optimal cost plan.
At an intermediate level, the optimizer does not consider certain plans, access
methods (e.g., index ORing), or rewrite rules. At the lowest level of complexity,
the optimizer uses a simple greedy heuristic to choose a good but not necessarily
optimal query plan. The optimizer uses detailed models of the query-processing
operations, including memory sizes and prefetching, to obtain accurate estimates
of the I/O and CPU costs. It relies on the statistics of the data to estimate the car-
dinality and selectivities of the operations. DB2 allows the user to obtain detailed
histograms of column-level distributions and combinations of columns using the
runstats utility. The detailed histograms contain information about the most fre-
quent value occurrences as well as quantile-based frequency distributions of the
attributes. The optimizer generates an internal query plan that is considered the
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create table emp dept(dept id integer, emp id integer,
emp name varchar(100), mgr id integer) as

select dept id, emp id, emp name, mgr id
from employee, department

data initially deferred
refresh immediate – – (or deferred)
maintained by user – – (or system)

Figure 29.15 DB2 materialized query tables.

best query plan for the particular optimization level. This query plan is converted
into threads of query operators and associated data structures for execution by
the query-processing engine.

29.7 Materialized Query Tables

Materialized views are supported in DB2 in Linux, Unix, and Windows as well as
on the z/OS platforms. A materialized view can be any general view definition
on one or more tables or views. A materialized view is useful since it maintains
a persistent copy of the view data to enable faster query processing. In DB2 a
materialized view is called a materialized query table (MQT). MQTs are specified
by using the create table statement as shown by the example in Figure 29.15.

In DB2, MQTs can reference other MQTs to create a tree or forest of dependent
views. These MQTs are highly scalable as they can be partitioned in an MPP
environment and can have MDC clustering keys. MQTs are most valuable if the
database engine can route queries to them seamlessly and also if the database
engine can maintain them efficiently whenever possible. DB2 provides both of
these features.

29.7.1 Query Routing to MQTs

The query-compiler infrastructure in DB2 is ideally suited to leverage the full
power of MQTs. The internal QGM model allows the compiler to match the input
query against the available MQT definitions and choose appropriate MQTs for
consideration. After matching, the compiler considers several options for opti-
mization. They include the base query as well as suitable MQT reroute versions.
The optimizer loops through these options before choosing the optimal version
for execution. The entire flow of the reroute and optimization is shown in Fig-
ure 29.16.

29.7.2 Maintenance of MQTs

MQTs are useful only if the database engine provides efficient techniques for
maintenance. There are two dimensions to maintenance: time and cost. In the
time dimension, the two choices are immediate or deferred. DB2 supports both these
choices. If one selects immediate, then internal triggers are created and compiled
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SQL query

Query  semantics
(validate reroute possibility)

MQT  candidate match phase
MQT definitions

Query candidates

Optimization phase

Select best plan

Figure 29.16 MQT matching and optimization in DB2.

into the insert, update, or delete statements of the source objects to process
the updates to the dependent MQTs. In the case of deferred maintenance, the
updated tables are moved into an integrity mode and an explicit refresh statement
must be issued to perform the maintenance. In the size dimension, the choices
are incremental or full. Incremental maintenance implies that only the recently
updated rows should be used for maintenance. Full maintenance implies that the
entire MQT be refreshed from its sources. The matrix in Figure 29.17 shows the
two dimensions and the options that are most useful along these dimensions. For
instance, immediate and full maintenance are not compatible unless the sources
are extremely small. DB2 also allows for the MQTs to be maintained by user. In
this case, the refresh of the MQTs is determined by users performing explicit
processing using SQL or utilities.

The following commands provide one simple example of performing deferred
maintenance for the emp dept materialized view after a load operation to one of
its sources.

Yes

Usually noYes,
A�er insert/update/delete

Yes,
A�er load

Immediate

Deferred

FullIncrementalChoices

Figure 29.17 Options for MQT maintenance in DB2.
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load from newdata.txt of type del
insert into employee;

refresh table emp dept

29.8 Autonomic Features in DB2

DB2 UDB provides features for simplifying the design and manageability of
databases. Autonomic computing encompasses a set of techniques that allow
the computing environment to manage itself and reduce the external dependen-
cies in the face of external and internal changes in security, system load, or other
factors. Configuration, optimization, protection, and monitoring are examples of
subject areas that benefit from autonomic-computing enhancements. The follow-
ing sections briefly describe the configuration and optimization areas.

29.8.1 Configuration

DB2 is providing support for automatic tuning of various memory and system
configuration parameters. For instance, parameters such as buffer pool sizes and
sort heap sizes can be specified as automatic. In this case, DB2 monitors the
system and slowly grows or shrinks these heap memory sizes, depending on the
workload characteristics.

29.8.2 Optimization

Auxiliary data structures (indices, MQTs) and data organization features (par-
titioning, clustering) are important aspects of improving the performance of
database processing in DB2. In the past, the database administrator (DBA) had
to use experience and known guidelines to choose meaningful indices, MQTs,
partition keys, and clustering keys. Given the potential number of choices, even
the best experts are not capable of finding the right mix of these features for
a given workload in a short time. DB2 includes a Design Advisor that provides
workload-based advice for all of these features. The Design Advisor tool auto-
matically analyzes a workload, using optimization techniques to present a set of
recommendations. The Design Advisor command syntax is:

db2advis -d <DB name> -i <workloadfile> -m MICP

The “-m ” parameter allows the user to specify the following options:

• M—Materialized query tables.

• I—Indices.

• C—Clustering, namely, MDC.

• P—Partitioning key selection.
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The advisor uses the full power of the DB2 query-optimization framework in
these recommendations. It uses an input workload and constraints on size and
time of advise as its parameters. Given that it leverages the DB2 optimization
framework, it has full knowledge of the schema and statistics of the underlying
data. The advisor uses several combinatorial techniques to identify indices, MQTs,
MDCs, and partitioning keys to improve the performance of the given workload.

Another aspect of optimization is balancing the processing load on the system.
In particular, utilities tend to increase the load on a system and cause significant
reduction in user workload performance. Given the trend toward online utilities,
there is a need to balance the load consumption of utilities. DB2 includes a utility
load-throttling mechanism. The throttling technique is based on feedback control
theory. It continually adjusts and throttles the performance of the backup utility,
using specific control parameters.

29.9 Tools and Utilities

DB2 provides a number of tools for ease of use and administration. This core set
of tools is augmented and enhanced by a large number of tools from vendors.

The DB2 Control Center is the primary tool for use and administration of DB2
databases. The Control Center runs on many workstation platforms. It is orga-
nized from data objects such as servers, databases, tables, and indices. It contains
task-oriented interfaces to perform commands and allows users to generate SQL
scripts. Figure 29.18 shows a screen shot of the main panel of the Control Center.
This screen shot shows a list of tables in the Sample database in the DB2 instance on
node Crankarm. The administrator can use the menu to invoke a suite of compo-
nent tools. The main components of the Control Center include command center,
script center, journal, license management, alert center, performance monitor, vi-
sual explain, remote database management, storage management, and support
for replication. The command center allows users and administrators to issue
database commands and SQL. The script center allows users to run SQL scripts
constructed interactively or from a file. The performance monitor allows users to
monitor various events in the database system and obtain snapshots of perfor-
mance. “SmartGuides” provide help on configuring parameters and setting up
the DB2 system. A stored-procedure builder helps the user to develop and install
stored procedures. Visual explain allows the user to obtain graphical views of the
query-execution plan. An index wizard helps the administrator by suggesting
indices for performance.

While the Control Center is an integrated interface for many of the tasks,
DB2 also provides direct access to most tools. For users, tools such as the explain
facility, explain tables, and graphical explain provide a detailed breakdown of the
query plans. Users are also allowed to modify statistics (if permitted) in order to
generate the best query plans.

Administrators are supported by a number of tools. DB2 provides comprehen-
sive support for load, import, export, reorg, redistribute, and other data-related
utilities. Most of these support incremental and online processing capability. For
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Figure 29.18 DB2 Control Center.

instance, one can issue a load command in online mode to allow applications
to access the original contents of a table concurrently. DB2’s utilities are all fully
enabled to run in parallel mode.

Additionally, DB2 supports a number of tools such as:

• Audit facility for maintaining the audit trace of database actions.

• Governor facility for controlling the priority and execution times of different
applications.

• Query patroller facility for managing the query jobs in the system.

• Trace and diagnostic facilities for debugging.

• Event monitoring facilities for tracking the resources and events during sys-
tem execution.

DB2 for OS/390 has a very rich set of tools. QMF is a widely used tool for
generating ad hoc queries and integrating it into applications.
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29.10 Concurrency Control and Recovery

DB2 supports a comprehensive set of concurrency-control, isolation, and recovery
techniques.

29.10.1 Concurrency and Isolation

For isolation, DB2 supports the repeatable read (RR), read stability (RS), cursor stability
(CS), and uncommitted read (UR) modes. RR, CS, and UR modes need no further ex-
planation. The RS isolation mode locks only the rows that an application retrieves
in a unit of work. On a subsequent scan, the application is guaranteed to see
all these rows (like RR) but might also see new rows that qualify. However, this
might be an acceptable trade-off for some applications with respect to strict RR
isolation. Typically, the default isolation level is CS. Applications can choose their
level of isolation at the binding stage. Most commercially available applications
are bound using most isolation levels, enabling users to choose the right version
of the application for their requirement.

The various isolation modes are implemented by using locks. DB2 supports
record-level and table-level locks. A separate lock-table data structure is main-
tained with the lock information. DB2 escalates from record-level to table-level
locks if the space in the lock table becomes tight. DB2 implements strict two-phase
locking for all update transactions. Write locks or update locks are held until
commit or rollback time. Figure 29.19 shows the different lock modes and their
descriptions. The set of lock modes supported includes intent locks at the table

Lock Mode
IN (intent none)
IS (intent share)
NS (next key share)

S (share)
IX (intent exclusive)
SIX (share with 
         intent exclusive)
U (update)

NX (next-key exclusive)

X (exclusive)

Z (superexclusive)

Objects Interpretation
Tablespaces, tables
Tablespaces, tables
Rows

Rows, tables
Tablespaces, tables
Tables

Rows, tables

Rows

Rows, tables

Tablespaces, tables

Read with no row locks
Read with row locks
Read locks for RS or CS 
isolation levels
Read lock
Intend to update rows
No read locks on rows but
X locks on updated rows
Update lock but allows others 
to read
Next key lock for inserts/deletes 
to prevent phantom reads 
during RR index scans
Only uncommi�ed readers 
allowed
Complete exclusive access

Figure 29.19 DB2 lock modes.
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level in order to maximize concurrency. Also, DB2 implements next-key locking
and variant schemes for updates affecting index scans to eliminate the Halloween
and phantom-read problems.

The transaction can set the lock granularity to table level by using the lock
table statement. This is useful for applications that know their desired level of
isolation is at the table level. Also, DB2 chooses the appropriate locking granu-
larities for utilities such as reorg and load. The offline versions of these utilities
usually lock the table in exclusive mode. The online versions of the utilities allow
other transactions to proceed concurrently by acquiring row locks.

A deadlock detection agent is activated for each database and periodically
checks for deadlocks between transactions. The interval for deadlock detection is
a configurable parameter. In case of a deadlock, the agent chooses a victim and
aborts it with a deadlock SQL error code.

29.10.2 Commit and Rollback

Applications can commit or roll back by using explicit commit or rollback state-
ments. Applications can also issue begin transaction and end transaction state-
ments to control the scope of transactions. Nested transactions are not supported.
Normally, DB2 releases all locks that it holds on behalf of a transaction at commit
or rollback. However, if a cursor statement has been declared by using the with
hold clause, then some locks are maintained across commits.

29.10.3 Logging and Recovery

DB2 implements strict ARIES logging and recovery schemes. Write-ahead logging
is employed to flush log records to the persistent log file before data pages are
written or at commit time. DB2 supports two types of log modes: circular log-
ging and archive logging. In circular logging, a predefined set of primary and
secondary log files is used. Circular logging is useful for crash recovery or appli-
cation failure recovery. In archival logging, DB2 creates new log files and the old
log files must be archived in order to free up space in the file system. Archival
logging is required to perform roll-forward recovery. In both cases, DB2 allows
the user to configure the number of log files and the sizes of the log files.

In update-intensive environments, DB2 can be configured to look for group
commits in order to bunch log writes.

DB2 supports transaction rollback and crash recovery as well as point-in-time
or roll-forward recovery. In the case of crash recovery, DB2 performs the standard
phases of undo processing and redo processing up to and from the last checkpoint
in order to recover the proper committed state of the database. For point-in-time
recovery, the database can be restored from a backup and can be rolled forward
to a specific point in time, using the archived logs. The roll-forward recovery
command supports both database and tablespace levels. It can also be issued on
specific nodes on a multinode system. A parallel recovery scheme improves the
performance in SMP systems by utilizing many CPUs. DB2 performs coordinated
recovery across MPP nodes by implementing a global checkpointing scheme.
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29.11 System Architecture

Figure 29.20 shows some of the different processes or threads in a DB2 server. Re-
mote client applications connect to the database server by using communication
agents such as db2tcpcm. Each application is assigned an agent (coordinator agent
in MPP or SMP environments) called the db2agent thread. This agent and its sub-
ordinate agents perform the application-related tasks. Each database has a set of
processes or threads that performs tasks such as prefetching, page cleaning from
buffer pool, logging, and deadlock detection. Finally, there is a set of agents at the
level of the server to perform tasks such as crash detection, license server, process
creation, and control of system resources. DB2 provides configuration parameters
to control the number of threads and processes in a server. Almost all the different
types of agents can be controlled by using the configuration parameters.

Figure 29.21 shows the different types of memory segments in DB2. Private
memory in agents or threads is mainly used for local variables and data structures
that are relevant only for the current activity. For example, a private sort could
allocate memory from the agent’s private heap. Shared memory is partitioned
into server shared memory, database shared memory, and application shared memory.

Processing Model: Single Partition

Remote
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Machine

Server
Machine

db2agntpdb2agent

db2agntp db2pclnr
db2wdog db2gds
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db2loggi db2dlock
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Figure 29.20 Process model in DB2.
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Database Shared Memory Database Shared Memory

Instance Shared Memory

Application Shared Memory

Agent Private Memory
internal structures (appl_ctl_heap_sz)

private sorts (sortheap, sheapthresh)
application heap (applheapsz)
agent stack (agent_stack_sz)
query heap (query_heap_sz)
statement heap (stmtheap)
statistics heap(stat_heap_sz)

buffer pools (buffpage or ALTERBUF..)
lock list (locklist)
package cache(pckcachesz)
shared sorts(sortheap, sheapthresh)
database heap(dbheap)
   log buffer(logbufsz)
   catalog cache(catalogcache_sz)
utility heap(util_heap_sz)

includes FCM (fast

1...maxappls

1...maxagents

1...numdb

communication manager) 

Figure 29.21 DB2 memory model.

The database-level shared memory contains useful data structures such as the
buffer pool, lock lists, application package caches, and shared sort areas. The
server and application shared memory areas are primarily used for common data
structures and communication buffers.

DB2 supports multiple buffer pools for a database. Buffer pools can be created
by using the create bufferpool statement and can be associated with tablespaces.
Multiple buffer pools are useful for a variety of reasons but they should be de-
fined after a careful analysis of the workload requirements. DB2 supports a com-
prehensive list of memory configuration and tuning parameters. This includes
parameters for all the large data structure heap areas such as the default buffer
pool, the sort heap, package cache, application-control heaps, and the lock-list
area.

29.12 Replication, Distribution, and External Data

DB2 Replication is a product in the DB2 family that provides replication capabilities
among other DB2 relational data sources such as Oracle, Microsoft SQL Server,
Sybase Adaptive Server Enterprise, and Informix, as well as nonrelational data
sources such as IBM’s IMS. It consists of capture and apply components, which
are controlled by administration interfaces. The change-capture mechanisms are
either “log-based” for DB2 tables or “trigger-based” in the case of other data
sources. The captured changes are stored in temporary staging table areas under
the control of DB2 Replication. These staged intermediate tables with changes are
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then applied to destination tables using regular SQL statements: inserts, updates,
and deletes. SQL-based transformations can be performed on the intermediate
staging tables by using filtering conditions as well as aggregations. The resulting
rows can be applied to one or more target tables. All of these actions are controlled
by the administration facility.

DB2 supports a feature called queue replication. Queue (Q) replication creates a
queue transport mechanism using IBM’s message-queue product to ship captured
log records as messages. These messages are extracted from the queues at the
receiving end and applied against targets. The apply process can be parallelized
and allows for user-specified conflict resolution rules.

Another member of the DB2 family is the DB2 information-integrator product,
which provides federation, replication (using the replication engine described
above), and search capabilities. The federated edition integrates tables in remote
DB2 or other relational databases into a single distributed database. Users and
developers can access various nonrelational data sources in tabular format, using
wrapper technology. The federation engine provides a cost-based method for
query optimization across the different data sites.

DB2 supports user-defined table functions that enable access to nonrelational
and external data sources. User-defined table functions are created by using the
create function statement with the clause returns table. Using these features, DB2
is able to participate in the OLE DB protocols.

Finally, DB2 provides full support for distributed transaction processing us-
ing the two-phase commit protocol. DB2 can act as the coordinator or agent for
distributed XA support. As a coordinator, DB2 can perform all stages of the two-
phase commit protocol. As a participant, DB2 can interact with any commercial
distributed transaction manager.

29.13 Business Intelligence Features

DB2 Data Warehouse Edition is an offering in the DB2 family that incorporates busi-
ness intelligence features. Data Warehouse Edition has at its foundation the DB2
engine, and enhances it with features for ETL, OLAP, mining, and online reporting.
The DB2 engine provides scalability using its MPP features. In the MPP mode, DB2
can support configurations that can scale to several hundreds of nodes for large
database sizes (terabytes). Additionally, features such as MDC and MQT provide
support for the complex query-processing requirements of business intelligence.

Another aspect of business intelligence is online analytical processing or
OLAP. The DB2 family includes a feature called cube views that provides a mech-
anism to construct appropriate data structures and MQTs inside DB2 that can be
used for relational OLAP processing. Cube views provide modeling support for
multidimensional cubes and provides a mapping mechanism to a relational star
schema. This model is then used to recommend appropriate MQTs, indices, and
MDC definitions to improve the performance of OLAP queries against the database.
In addition, cube views can take advantage of DB2’s native support for the cube
by and rollup operations for generating aggregated cubes. Cube views is a tool
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that can be used to integrate DB2 tightly with OLAP vendors such as Business
Objects, Microstrategy, and Cognos.

In addition, DB2 also provides multidimensional OLAP support using the DB2
OLAP server. The DB2 OLAP server can create a multidimensional data mart from
an underlying DB2 database for analysis by OLAP techniques. The OLAP engine
from the Essbase product is used in the DB2 OLAP server.

DB2 Alphablox is a new feature that provides online, interactive, reporting,
and analysis capabilities. A very attractive feature of the Alphablox feature is the
ability to construct new Web-based analysis forms rapidly, using a building block
approach called blox.

For deep analytics, DB2 Intelligent Miner provides various components for
modeling, scoring, and visualizing data. Mining enables users to perform classi-
fication, prediction, clustering, segmentation, and association against large data
sets.
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Microsoft SQL Server is a relational database-management system that scales from
laptops and desktops to enterprise servers, with a compatible version, based on
the Windows Mobile operating system, available for handheld devices such as
Pocket PCs, SmartPhones, and Portable Media Centers. SQL Server was originally
developed in the 1980s at Sybase for UNIX systems and later ported to Windows
NT systems by Microsoft. Since 1994, Microsoft has shipped SQL Server releases
developed independently of Sybase, which stopped using the SQL Server name in
the late 1990s. The latest release, SQL Server 2008, is available in express, standard,
and enterprise editions and localized for many languages around the world. In
this chapter, the term SQL Server refers to all of these editions of SQL Server 2008.

SQL Server provides replication services among multiple copies of SQL Server
and with other database systems. Its Analysis Services, an integral part of the
system, includes online analytical processing (OLAP) and data-mining facilities.
SQL Server provides a large collection of graphical tools and “wizards” that guide
database administrators through tasks such as setting up regular backups, repli-
cating data among servers, and tuning a database for performance. Many devel-
opment environments support SQL Server, including Microsoft’s Visual Studio
and related products, in particular the .NET products and services.

30.1 Management, Design, and Querying Tools

SQL Server provides a suite of tools for managing all aspects of SQL Server de-
velopment, querying, tuning, testing, and administration. Most of these tools
center around the SQL Server Management Studio. SQL ServerManagement Stu-
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dio provides a common shell for administering all services associated with SQL
Server, which includes Database Engine, Analysis Services, Reporting Services,
SQL ServerMobile, and Integration Services.

30.1.1 Database Development and Visual Database Tools

While designing a database, the database administrator creates database objects
such as tables, columns, keys, indices, relationships, constraints, and views. To
help create these objects, the SQL Server Management Studio provides access to
visual database tools. These tools provide three mechanisms to aid in database
design: the Database Designer, the Table Designer, and the View Designer.

The Database Designer is a visual tool that allows the database owner or
the owner’s delegates to create tables, columns, keys, indices, relationships, and
constraints. Within this tool, a user can interact with database objects through
database diagrams, which graphically show the structure of the database. The
View Designer provides a visual query tool that allows the user to create or modify
SQL views through the use of Windows drag-and-drop capabilities. Figure 30.1
shows a view opened from the Management Studio.

30.1.2 Database Query and Tuning Tools

SQL Server Management Studio provides several tools to aid the application de-
velopment process. Queries and stored procedures can be developed and tested
using the integrated Query Editor. The Query Editor supports creating and
editing scripts for a variety of environments, including Transact-SQL, the SQL
Server scripting language SQLCMD, the multidimensional expression language
MDX which is used for data analysis, the SQL Server data-mining language DMX,
the XML-analysis language XMLA, and SQL Server Mobile. Further analysis can
be done using the SQL ServerProfiler. Database tuning recommendations are pro-
vided by the Database Tuning Advisor.

30.1.2.1 Query Editor

The integrated Query Editor provides a simple graphical user interface for run-
ning SQL queries and viewing the results. The Query Editor also provides a
graphical representation of showplan, the steps chosen by the optimizer for
query execution. The Query Editor is integrated with Management Studio’s Ob-
ject Explorer, which lets a user drag and drop object or table names into a query
window and helps build select, insert, update, or delete statements for any table.

A database administrator or developer can use Query Editor to:

• Analyze queries: Query Editor can show a graphical or textual execution
plan for any query, as well as displaying statistics regarding the time and
resources required to execute any query.

• Format SQL queries: Including indenting and color syntax coding.
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Figure 30.1 The View Designer opened for the HumanResources.vEmployee view.

• Use templates for stored procedures, functions, and basic SQL statements:
The Management Studio comes with dozens of predefined templates for
building DDL commands, or users can define their own.

Figure 30.2 shows the Management Studio with the Query Editor display-
ing the graphical execution plan for a query involving a four-table join and an
aggregation.

30.1.2.2 SQL Profiler

SQL Profiler is a graphical utility that allows database administrators to monitor
and record database activity of the SQL Server Database Engine and Analysis Ser-
vices. SQL Profiler can display all server activity in real time, or it can create filters
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Figure 30.2 A showplan for a four-table join with group by aggregation.

that focus on the actions of particular users, applications, or types of commands.
SQL Profiler can display any SQL statement or stored procedure sent to any in-
stance of SQL Server (if the security privileges allow it) in addition to performance
data indicating how long the query took to run, how much CPU and I/O was
needed, and the execution plan that the query used.

SQL Profiler allows drilling down even deeper into SQL Server to monitor
every statement executed as part of a stored procedure, every data modification
operation, every lock acquired or released, or every occurrence of a database file
growing automatically. Dozens of different events can be captured, and dozens of
data items can be captured for each event. SQL Server actually divides the tracing
functionality into two separate but connected components. The SQL Profiler is
the client-side trace facility. Using SQL Profiler, a user can choose to save the
captured data to a file or a table, in addition to displaying it in the Profiler User
Interface (UI). The Profiler tool displays every event that meets the filter criteria
as it occurs. Once trace data are saved, SQL Profiler can read the saved data for
display or analysis purposes.
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On the server side is the SQL trace facility, which manages queues of events
generated by event producers. A consumer thread reads events from the queues
and filters them before sending them to the process that requested them. Events
are the main unit of activity as far as tracing is concerned, and an event can be
anything that happens inside SQL Server, or between SQL Server and a client. For
example, creating or dropping an object is an event, executing a stored procedure
is an event, acquiring or releasing a lock is an event, and sending a Transact-SQL
batch from a client to the SQL Server is an event. There is a set of stored system
procedures to define which events should be traced, what data for each event are
interesting, and where to save the information collected from the events. Filters
applied to the events can reduce the amount of information collected and stored.

SQL Server guarantees that certain critical information will always be gath-
ered, and it can be used as a useful auditing mechanism. SQL Server is certified for
U.S. government C2-level security, and many of the traceable events are available
solely to support C2-certification requirements.

30.1.2.3 The Database Tuning Advisor

Queries and updates can often execute much faster if an appropriate set of indices
is available. Designing the best possible indices for the tables in a large database
is a complex task; it not only requires a thorough knowledge of how SQL Server
uses indices and how the query optimizer makes its decisions, but how the data
will actually be used by applications and interactive queries. The SQL Server
Database Tuning Advisor (DTA) is a powerful tool for designing the best possible
indices and indexed (materialized) views based on observed query and update
workloads.

DTA can tune across multiple databases and it bases its recommendations on
a workload that can be a file of captured trace events, a file of SQL statements, or
an XML input file. SQL Profiler can be used to capture all SQL statements submitted
by all users over a period of time. DTA can then look at the data access patterns for
all users, for all applications, for all tables, and make balanced recommendations.

30.1.3 SQL Server Management Studio

In addition to providing access to the database design and visual database tools,
the easy-to-use SQL Server Management Studio supports centralized manage-
ment of all aspects of multiple installations of the SQL Server Database Engine,
Analysis Services, Reporting Services, Integration Services, and SQL Server Mo-
bile, including security, events, alerts, scheduling, backup, server configuration,
tuning, full-text search, and replication. SQL Server Management Studio allows a
database administrator to create, modify, and copy SQL Server database schemas
and objects such as tables, views, and triggers. Because multiple installations
of SQL Server can be organized into groups and treated as a unit, SQL Server
Management Studio can manage hundreds of servers simultaneously.

Although it can run on the same computer as the SQL Server engine, SQL Server
Management Studio offers the same management capabilities while running on
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Figure 30.3 The SQL Server Management Studio interface.

any Windows 2000 (or later) machine. In addition, the efficient client–server
architecture of SQL Server makes it practical to use the remote-access (dial-up
networking) capabilities of Windows for administration and management.

SQL Server Management Studio relieves the database administrator from hav-
ing to know the specific steps and syntax to complete a job. It provides wizards
to guide the database administrator through the process of setting up and main-
taining an installation of SQL Server. Management Studio’s interface is shown
in Figure 30.3 and illustrates how a script for database backup can be created
directly from its dialogs.

30.2 SQL Variations and Extensions

SQL Server allows application developers to write server-side business logic using
Transact-SQL or a .NET programming language such as C#, Visual Basic, COBOL,
or J++. Transact-SQL is a complete database programming language that includes
data-definition and data-manipulation statements, iterative and conditional state-
ments, variables, procedures, and functions. Transact-SQL supports most of the
mandatory DDL query and data modification statements and constructs in the
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SQL:2003 standard. See Section 30.2.1 for the list of SQL:2003 data types supported.
In addition to the mandatory features, Transact-SQL also supports many optional
features in the SQL:2003 standard such as recursive queries, common table ex-
pressions, user-defined functions, and relational operators such as intersect and
except among others.

30.2.1 Data Types

SQL Server 2008 supports all the mandatory scalar data types in the SQL:2003
standard. SQL Server also supports the ability to alias system types using user-
supplied names; the aliasing is similar in functionality to the SQL:2003 distinct
types, but not fully compliant with them.

Some primitive types unique to SQL Server include:

• Large character and binary string types of variable size up to 231 − 1 bytes,
using the varchar/nvarchar/varbinary(max) data type, which has a program-
ming model that is similar to the small-character and byte-string types. Ad-
ditionally, they support a storage attribute called FILESTREAM to specify that
data for each individual column value is stored as a separate file in the
filesystem. FILESTREAM storage allows higher performance streaming access
to applications using the native filesystem API.

• An XML type, described in Section 30.11, which is used to store XML data
inside a table column. The XML type can optionally have an associated XML
schema collection specifying a constraint that the instances of the type should
adhere to one of the XML types defined in the schema collection.

• sql variant is a scalar data type that can contain values of any SQL scalar type
(except large character and binary types and sql variant). This type is used
by applications that need to store data whose type cannot be anticipated at
data-definition time. sql variant is also the type of a column formed from the
execution of an unpivot relational operator (see Section 30.2.2). Internally, the
system keeps track of the original type of the data. It is possible to filter, join,
and sort on sql variant columns. The system function sql variant property
returns details on the actual data stored in a column of type sql variant,
including the base type and size information.

• The hierarchyId data type makes it easier to store and query hierarchical data.
Hierarchical data are defined as a set of data items related to one another by
hierarchical relationships where one item of data is the parent of another
item. Common examples include: an organizational structure, a hierarchical
file system, a set of tasks in a project, a taxonomy of language terms, a single-
inheritance type hierarchy, part-subpart relationships, and a graph of links
among Web pages.

• SQL Server supports storing and querying of geospatial data, that is, location
data referenced to the earth. Common models of these data are the planar
and geodetic coordinate systems. The main distinction between these two
systems is that the latter takes into account the curvature of the earth. SQL
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Server supports geometry and geography, which correspond to the planar
and geodetic models.

In addition, SQL Server supports a table type and a cursor type that cannot
be used as columns in a table, but can be used in the Transact-SQL language as
variables:

• A table type enables a variable to hold a set of rows. An instance of this type
is used primarily to hold temporary results in a stored procedure or as the
return value of a table-valued function. A table variable behaves like a local
variable. It has a well-defined scope, which is the function, stored procedure,
or batch in which it is declared. Within its scope, a table variable may be used
like a regular table. It may be applied anywhere a table or table expression is
used in select, insert, update, and delete statements.

• A cursor type that enables references to a cursor object. The cursor type can
be used to declare variables, or routine input/output arguments to reference
cursors across routine calls.

30.2.2 Query Language Enhancements

In addition to the SQL relational operators such as inner join and outer join, SQL
Server supports the relational operators pivot, unpivot, and apply.

• pivot is an operator that transforms the shape of its input result set from two
columns that represent name-value pairs into multiple columns, one for each
name from the input. The name column from the input is called the pivot col-
umn. The user needs to indicate which names to transpose from the input into
individual columns in the output. Consider the table MonthlySales(ProductID,
Month, SalesQty). The following query, using the pivot operator, returns the
SalesQty for each of the months Jan, Feb, and Mar as separate columns. Note
that the pivot operator also performs an implicit aggregation on all the other
columns in the table and an explicit aggregation on the pivot column.

select *
from MonthlySales pivot(sum(SalesQty) for Month in (’Jan’, ’Feb’, ’Mar’)) T;

The inverse operation of pivot is unpivot.

• The apply operator is similar to join, except its right input is an expression
that may contain references to columns in the left input, for example a table-
valued function invocation that takes as arguments one or more columns from
the left input. The set of columns produced by the operator is the union of
the columns from its two inputs. The apply operator can be used to evaluate
its right input for each row of its left input and perform a union all of the
rows across all these evaluations. There are two flavors of the apply operator
similar to join, namely, cross and outer. The two flavors differ in terms of
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how they handle the case of the right input producing an empty result-set. In
the case of cross apply, this causes the corresponding row from the left input
to not appear in the result. In the case of outer apply, the row appears from
the left input with NULL values for the columns in the right input. Consider
a table-valued function called FindReports that takes as input the ID of a given
employee and returns the set of employees reporting directly or indirectly to
that employee in an organization. The following query calls this function for
the manager of each department from the Departments table:

select *
from Departments D cross apply FindReports(D.ManagerID)

30.2.3 Routines

Users can write routines that run inside the server process as scalar or table
functions, stored procedures, and triggers using Transact-SQL or a .NET language.
All these routines are defined to the database by using the corresponding create
[function, procedure, trigger] DDL statement. Scalar functions can be used in any
scalar expression inside an SQL DML or DDL statement. Table-valued functions
can be used anywhere a table is allowed in a select statement. Transact-SQL table-
valued functions whose body contains a single SQL select statement are treated
as a view (expanded inline) in the query that references the function. Since table-
valued functions allow input arguments, inline table-valued functions can be
considered parameterized views.

30.2.3.1 Indexed Views

In addition to traditional views as defined in ANSI SQL, SQL Server supports
indexed (materialized) views. Indexed views can substantially enhance the per-
formance of complex decision support queries that retrieve large numbers of
base table rows and aggregate large amounts of information into concise sums,
counts, and averages. SQL Server supports creating a clustered index on a view
and subsequently any number of nonclustered indices. Once a view is indexed,
the optimizer can use its indices in queries that reference the view or its base
tables. There is no need for queries to refer to the view explicitly for the indexed
view to be used in the query plan, as the matching is done automatically from
the view definition. This way, existing queries can benefit from the improved
efficiency of retrieving data directly from the indexed view without having to
be rewritten. The indexed view is maintained consistent with the base tables by
automatically propagating all updates.

30.2.4 Filtered Indexes

A filtered index is an optimized nonclustered index, especially suited to cover
queries that select from a well-defined subset of data. It uses a filter predicate to
index a portion of rows in the table. A well-designed filtered index can improve
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query performance, reduce index-maintenance costs, and reduce index-storage
costs compared with full-table indices. Filtered indices can provide the following
advantages over full-table indices:

• Improved query performance and plan quality. A well-designed filtered
index improves query performance and execution plan quality because it
is smaller than a full-table nonclustered index and has filtered statistics. The
filtered statistics are more accurate than full-table statistics because they cover
only the rows in the filtered index.

• Reduced index maintenance costs. An index is maintained only when data
manipulation language (DML) statements affect the data in the index. A fil-
tered index reduces index maintenance costs compared to a full-table non-
clustered index because it is smaller and is only maintained when the data in
the index are affected. It is possible to have a large number of filtered indices,
especially when they contain data that are affected infrequently. Similarly, if
a filtered index contains only the frequently affected data, the smaller size of
the index reduces the cost of updating the statistics.

• Reduced index storage costs. Creating a filtered index can reduce disk storage
for nonclustered indices when a full-table index is not necessary. You can
replace a full-table nonclustered index with multiple filtered indices without
significantly increasing the storage requirements.

Filtered statistics can also be created explicitly, independently from filtered
indices.

30.2.4.1 Updatable Views and Triggers

Generally, views can be the target of update, delete, or insert statements if the data
modification applies to only one of the view’s base tables. Updates to partitioned
views can be propagated to multiple base tables. For example, the following
update will increase the prices for publisher “0736” by 10 percent:

update titleview
set price = price * 1.10
where pub id = ’0736’;

For data modifications that affect more than one base table, the view can be
updated if there is an instead trigger defined for the operation; instead triggers
for insert, update, or delete operations can be defined on a view, to specify the
updates that must be performed on the base tables to reflect the corresponding
modifications on the view.

Triggers are Transact-SQL or .NET procedures that are automatically executed
when either a DML (update, insert, or delete) or DDL statement is issued against a
base table or view. Triggers are mechanisms that enable enforcement of business
logic automatically when data are modified or when DDL statements are exe-
cuted. Triggers can extend the integrity checking logic of declarative constraints,
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defaults, and rules, although declarative constraints should be used preferably
whenever they suffice, as they can be used by the query optimizer to reason about
the data contents.

Triggers can be classified into DML and DDL triggers depending on the kind
of event that fires the trigger. DML triggers are defined against a table or view that
is being modified. DDL triggers are defined against an entire database for one or
more DDL statements such as create table, drop procedure, etc.

Triggers can be classified into after and instead triggers according to when
the trigger gets invoked relative to the action that fires the trigger. After triggers
execute after the triggering statement and subsequent declarative constraints
are enforced. Instead triggers execute instead of the triggering action. Instead
triggers can be thought of as similar to before triggers, but they actually replace
the triggering action. In SQL Server, DML after triggers can be defined only on base
tables, while DML instead triggers can be defined on base tables or views. Instead
triggers allow practically any view to be made updatable via user-provided logic.
DDL instead triggers can be defined on any DDL statement.

30.3 Storage and Indexing

In SQL Server, a database refers to a collection of files that contain data and
are supported by a single transaction log. The database is the primary unit of
administration in SQL Server and also provides a container for physical structures
such as tables and indices and for logical structures such as constraints and views.

30.3.1 Filegroups

In order to manage space effectively in a database, the set of data files in a
database is divided into groups called filegroups. Each filegroup contains one or
more operating-system files.

Every database has at least one filegroup known as the primary filegroup.
This filegroup contains all the metadata for the database in system tables. The
primary filegroup may also store user data.

If additional, user-defined filegroups have been created, a user can explicitly
control the placement of individual tables, indices, or the large-object columns
of a table by placing them in a particular filegroup. For example, the user may
choose to store performance critical indices on a filegroup located on solid state
disks. Likewise they may choose to place varbinary(max) columns containing
video data on an I/O subsystem optimized for streaming.

30.3.2 Space Management within Filegroups

One of the main purposes for filegroups is to allow for effective space manage-
ment. All data files are divided into fixed-size 8-kilobyte units called pages. The
allocation system is responsible for allocating these pages to tables and indices.
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The goal of the allocation system is to minimize the amount of space wasted
while, at the same time, keeping the amount of fragmentation in the database to
a minimum to ensure good scan performance. In order to achieve this goal, the
allocation manager usually allocates and deallocates all the pages in units of eight
contiguous pages called extents.

The allocation system manages these extents through various bitmaps. These
bitmaps allow the allocation system to find a page or an extent for allocation
quickly. These bitmaps are also used when a full table or index scan is executed.
The advantage of using allocation-based bitmaps for scanning is that it allows
disk-order traversals of all the extents belonging to a table or index-leaf level,
which significantly improves the scan performance.

If there is more than one file in a filegroup, the allocation system allocates
extents for any object on that filegroup by using a “proportional fill” algorithm.
Each file is filled up in the proportion of the amount of free space in that file
compared to other files. This fills all the files in a filegroup at roughly the same
rate and allows the system to utilize all the files in the filegroup evenly. Files can
also be configured to grow automatically if the filegroup is running out of space.
SQL Server allows files to shrink. In order to shrink a data file, SQL Server moves
all the data from the physical end of the file to a point closer to the beginning of
the file and then actually shrinks the file, releasing space back to the operating
system.

30.3.3 Tables

SQL Server supports heap and clustered organizations for tables. In a heap-
organized table, the location of every row of the table is determined entirely
by the system and is not specified in any way by the user. The rows of a heap
have a fixed identifier known as the row (RID), and this value never changes un-
less the file is shrunk and the row is moved. If the row becomes large enough that
it cannot fit in the page in which it was originally inserted, the record is moved
to a different place but a forwarding stub is left in the original place so that the
record can still be found by using its original RID.

In a clustered-index organization for a table, the rows of the table are stored
in a B+-tree sorted by the clustering key of the index. The clustered-index key
also serves as the unique identifier for each row. The key for a clustered index
can be defined to be nonunique, in which case SQL Server adds an additional
hidden column to make the key unique. The clustered index also serves as a
search structure to identify a row of the table with a particular key or scan a set of
rows of the table with keys within a certain range. A clustered index is the most
common type of table organization.

30.3.4 Indices

SQL Server also supports secondary (nonclustered) B+-tree indices. Queries that
refer only to columns that are available through secondary indices are processed
by retrieving pages from the leaf level of the indices without having to retrieve
data from the clustered index or heap. Nonclustered indices over a table with a
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clustered index contain the key columns of the clustered index. Thus, the clustered
index rows can move to a different page (via splits, defragmentation, or even index
rebuilds) without requiring changes to the nonclustered indices.

SQL Server supports the addition of computed columns to a table. A computed
column is a column whose value is an expression, usually based on the value of
other columns in that row. SQL Server allows the user to build secondary indices
on computed columns.

30.3.5 Partitions

SQL Server supports range partitioning on tables and nonclustered indices. A
partitioned index is made up of multiple B+-trees, one per partition. A partitioned
table without an index (a heap) is made up of multiple heaps, one per partition.
For brevity, we refer only to partitioned indices (clustered or nonclustered) and
ignore heaps for the rest of this discussion.

Partitioning a large index allows an administrator more flexibility in manag-
ing the storage for the index and can improve some query performance because
the partitions act as a coarse-grained index.

The partitioning for an index is specified by providing both a partitioning
function and a partitioning scheme. A partitioning function maps the domain of
a partitioning column (any column in the index) to partitions numbered 1 to N. A
partitioning scheme maps partition numbers produced by a partitioning function
to specific filegroups where the partitions are stored.

30.3.6 Online Index Build

Building new indices and rebuilding existing indices on a table can be performed
online, i.e., while select, insert, delete, and update operations are being per-
formed on the table. The creation of a new index happens in three phases. The
first phase is simply creating an empty B+-tree for the new index with the catalog
showing the new index is available for maintenance operations. That is, the new
index must be maintained by all subsequent insert, delete, and update opera-
tions, but it is not available for queries. The second phase consists of scanning the
table to retrieve the index columns for each row, sorting the rows and inserting
them into the new B+-tree. These inserts must be careful to interact with the other
rows in the new B+-tree placed there by index maintenance operations from up-
dates on the base table. The scan is a snapshot scan that, without locking, ensures
the scan sees the entire table with only the results of committed transactions as of
the start of the scan. This is achieved by using the snapshot isolation technique
described in Section 30.5.1. The final phase of the index build involves updating
the catalog to indicate the index build is complete and the index is available for
queries.

30.3.7 Scans and Read-ahead

Execution of queries in SQL Server can involve a variety of different scan modes on
the underlying tables and indices. These include ordered versus unordered scans,
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serial versus parallel scans, unidirectional versus bidirectional scans, forward
versus backward scans, and entire table or index scans versus range or filtered
scans.

Each of the scan modes has a read-ahead mechanism that tries to keep the
scan ahead of the needs of the query execution, in order to reduce seek and latency
overheads and utilize disk idle time. The SQL Server read-ahead algorithm uses
the knowledge from the query-execution plan in order to drive the read-ahead
and make sure that only data that are actually needed by the query are read.
Also, the amount of read-ahead is automatically scaled according to the size of
the buffer pool, the amount of I/O the disk subsystem can sustain, and the rate at
which the data are being consumed by query execution.

30.3.8 Compression

SQL Server supports both row and page compression for tables and indices. Row
compression uses a variable-length format for data types such as integers that
are traditionally considered fixed-length. Page compression removes common
prefixes on columns and builds a per-page dictionary for common values.

30.4 Query Processing and Optimization

The query processor of SQL Server is based on an extensible framework that
allows rapid incorporation of new execution and optimization techniques. Any
SQL query can be expressed as a tree of operators in an extended relational algebra.
Abstracting operators of this algebra into iterators, query execution encapsulates
data-processing algorithms as logical units that communicate with each other by
using a GetNextRow() interface. Starting out with an initial query tree, the query
optimizer generates alternatives by using tree transformations and estimates their
execution cost by taking into account iterator behavior and statistical models to
estimate the number of rows to process.

30.4.1 Overview of Compilation Process

Complex queries present significant optimization opportunities that require re-
ordering operators across query block boundaries and selecting plans solely on
the basis of estimated costs. To go after these opportunities, the query optimizer
deviates from traditional query-optimization approaches used in other commer-
cial systems in favor of a more general, purely algebraic framework that is based
on the Cascades optimizer prototype. Query optimization is part of the query-
compilation process, which consists of four steps:

• Parsing/binding. After parsing, the binder resolves table and column names
by using the catalogs. SQL Server utilizes a plan cache to avoid repeated
optimization of identical or structurally similar queries. If no cached plan is
available, an initial operator tree is generated. The operator tree is simply a
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combination of relational operators and is not constrained by concepts such
as query blocks or derived tables, which typically obstruct optimization.

• Simplification/normalization. The optimizer applies simplification rules on
the operator tree to obtain a normal, simplified form. During simplification,
the optimizer determines and loads statistics required for cardinality estima-
tion.

• Cost-based optimization. The optimizer applies exploration and implemen-
tation rules to generate alternatives, estimates execution cost, and chooses
the plan with the cheapest anticipated cost. Exploration rules implement re-
ordering for an extensive set of operators, including join and aggregation
reordering. Implementation rules introduce execution alternatives such as
merge join and hash join.

• Plan preparation. The optimizer creates query-execution structures for the
selected plan.

To achieve best results, cost-based optimization is not divided into phases that
optimize different aspects of the query independently; also, it is not restricted to a
single dimension such as join enumeration. Instead, a collection of transformation
rules defines the space of interest, and cost estimation is used uniformly to select
an efficient plan.

30.4.2 Query Simplification

During simplification, only transformations that are guaranteed to generate less
costly substitutes are applied. The optimizer pushes selects down the operator
tree as far as possible; it checks predicates for contradictions, taking into account
declared constraints. It uses contradictions to identify subexpressions that can be
removed from the tree. A common scenario is the elimination of union branches
that retrieve data from tables with different constraints.

A number of simplification rules are context dependent; that is, the substitution
is valid only in the context of utilization of the subexpression. For example,
an outer join can be simplified into an inner join if a later filter operation will
discard nonmatching rows that were padded with null. Another example is the
elimination of joins on foreign keys, when there are no later uses of columns from
the referenced table. A third example is the context of duplicate insensitivity,
which specifies that delivering one or multiple copies of a row does not affect the
query result. Subexpressions under semijoins and under distinct are duplicate
insensitive, which allows turning union into union all, for example.

For grouping and aggregation, the GbAgg operator is used, which creates
groups and optionally applies an aggregate function on each group. Duplicate
removal, expressed in SQL by the distinct keyword, is simply a GbAgg with no
aggregate functions to compute. During simplification, information about keys
and functional dependencies is used to reduce grouping columns.

Subqueries are normalized by removing correlated query specifications and
using some join variant instead. Removing correlations is not a “subquery execu-
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tion strategy,” but simply a normalization step. A variety of execution strategies
is then considered during cost-based optimization.

30.4.3 Reordering and Cost-Based Optimization

In SQL Server, transformations are fully integrated into the cost-based generation
and selection of execution plans. The query optimizer includes about 350 logi-
cal and physical transformation rules. In addition to inner-join reordering, the
query optimizer employs reordering transformations for the operators outer join,
semijoin, and antisemijoin, from the standard relational algebra (with duplicates,
for SQL). GbAgg is reordered as well, by moving it below or above joins when
possible. Partial aggregation, that is, introducing a new GbAgg with grouping on
a superset of the columns of a subsequent GbAgg, is considered below joins and
union all, and also in parallel plans. See the references given in the bibliographical
notes for details.

Correlated execution is considered during plan exploration, the simplest case
being index-lookup join. SQL Server models correlated execution as a single al-
gebraic operator, called apply, which operates on a table T and a parameterized
relational expression E(t). Apply executes E for each row of T , which provides
parameter values. Correlated execution is considered as an execution alternative,
regardless of the use of subqueries in the original SQL formulation. It is a very
efficient strategy when table T is small and indices support efficient parameter-
ized execution of E(t). Furthermore, we consider reduction on the number of
executions of E(t) when there are duplicate parameter values, by means of two
techniques: Sort T on parameter values so that a single result of E(t) is reused
while the parameter value remains the same, or else use a hash table that keeps
track of the result of E(t) for (some subset of) earlier parameter values.

Some applications select rows on the basis of some aggregate result for their
group. For example, “Find customers whose balance is more than twice the aver-
age for their market segment.” The SQL formulation requires a self-join. During
exploration, this pattern is detected and per-segment execution over a single scan
is considered as an alternative to self-join.

Materialized-view utilization is also considered during cost-based optimiza-
tion. View matching interacts with operator reordering in that utilization may
not be apparent until some other reordering has taken place. When a view is
found to match some subexpression, the table that contains the view result is
added as an alternative for the corresponding expression. Depending on data
distribution and indices available, it may or may not be better than the original
expression—selection will be based on cost estimation.

To estimate the execution cost of a plan, the model takes into account the
number of times a subexpression is executed, as well as the row goal, which is
the number of rows expected to be consumed by the parent operator. The row
goal can be less than the cardinality estimate in the case of top-n queries, and
for Apply/semijoin. For example, Apply/semijoin outputs row t from T as soon as a
single row is produced by E(t) (that is, it tests exists E(t)). Thus, the row goal of
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the output of E(t) is 1, and the row goals of subtrees of E(t) are computed for this
row goal for E(t) and used for cost estimation.

30.4.4 Update Plans

Update plans optimize maintenance of indices, verify constraints, apply cascad-
ing actions, and maintain materialized views. For index maintenance, instead of
taking each row and maintaining all indices for it, update plans may apply modi-
fications per index, sorting rows and applying the update operation in key order.
This minimizes random I/O, especially when the number of rows to update is
large. Constraints are handled by an assert operator, which executes a predicate
and raises an error if the result is false. Referential constraints are defined by ex-
ists predicates, which in turn become semijoins and are optimized by considering
all execution algorithms.

The Halloween problem (described earlier in Section 13.6) refers to the fol-
lowing anomaly: Suppose a salary index is read in ascending order, and salaries
are being raised by 10 percent. As a result of the update, rows will move forward
in the index and will be found and updated again, leading to an infinite loop. One
way to address this problem is to separate processing into two phases: First read
all rows that will be updated and make a copy of them in some temporary place,
then read from this place and apply all updates. Another alternative is to read
from a different index where rows will not move as a result of the update. Some
execution plans provide phase separation automatically, if they sort or build a
hash table on the rows to be updated. Halloween protection is modeled as a prop-
erty of plans. Multiple plans that provide the required property are considered,
and one is selected on the basis of estimated execution cost.

30.4.5 Data Analysis at Optimization Time

SQL pioneered techniques to perform gathering of statistics as part of an ongoing
optimization. The computation of result size estimates is based on statistics for
columns used in a given expression. These statistics consist of max-diff histograms
on the column values and a number of counters that capture densities and row
sizes, among others. Database administrators may create statistics explicitly by
using extended SQL syntax.

If no statistics are available for a given column, however, SQL Server’s opti-
mizer puts the ongoing optimization on hold and gathers statistics as needed. As
soon as the statistics are computed, the original optimization is resumed, lever-
aging the newly created statistics. Optimization of subsequent queries reuses
previously generated statistics. Typically, after a short period of time, statistics
for frequently used columns have been created and interruptions to gather new
statistics become infrequent. By keeping track of the number of rows modified
in a table, a measure of staleness is maintained for all affected statistics. Once
the staleness exceeds a certain threshold the statistics are recomputed and cached
plans are recompiled to take changed data distributions into account.

Statistics can be recomputed asynchronously, which avoids potentially long
compile times caused by synchronous computation. The optimization that trig-
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gers the computation of statistics uses potentially stale statistics. However, subse-
quent queries are able to leverage the recomputed statistics. This allows striking
an acceptable balance between time spent in optimization and the quality of the
resulting query plan.

30.4.6 Partial Search and Heuristics

Cost-based query optimizers face the issue of search-space explosion because ap-
plications do issue queries involving dozens of tables. To address this, SQL Server
uses multiple optimization stages, each of which uses query transformations to
explore successively larger regions of the search space.

There are simple and complete transformations geared toward exhaustive
optimization, as well as smart transformations that implement various heuristics.
Smart transformations generate plans that are very far apart in the search space,
while simple transformations explore neighborhoods. Optimization stages apply
a mix of both kinds of transformations, first emphasizing smart transformations,
and later transitioning to simple transformations. Optimum results on subtrees
are preserved, so that later stages can take advantage of results generated earlier.
Each stage needs to balance opposing plan generation techniques:

• Exhaustive generation of alternatives: To generate the complete space, the
optimizer uses complete, local, nonredundant transformations—a transfor-
mation rule that is equivalent to a sequence of more primitive transformations
would only introduce additional overhead.

• Heuristic generation of candidates: A handful of interesting candidates (se-
lected on the basis of estimated cost) are likely to be far apart in terms of
primitive transformation rules. Here, desirable transformations are incom-
plete, global, and redundant.

Optimization can be terminated at any point after a first plan has been gen-
erated. Such termination is based on the estimated cost of the best plan found
and the time spent already in optimization. For example, if a query requires
only looking up a few rows in some indices, a very cheap plan will likely be
produced quickly in the early stages, terminating optimization. This approach
enabled adding new heuristics easily over time, without compromising either
cost-based selection of plans, or exhaustive exploration of the search space, when
appropriate.

30.4.7 Query Execution

Execution algorithms support both sort-based and hash-based processing, and
their data structures are designed to optimize use of processor cache. Hash op-
erations support basic aggregation and join, with a number of optimizations,
extensions, and dynamic tuning for data skew. The flow-distinct operation is a
variant of hash-distinct, where rows are output early, as soon as a new distinct
value is found, instead of waiting to process the complete input. This operator is
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effective for queries that use distinct and request only a few rows, say using the
top n construct. Correlated plans specify executing E(t), often including some
index lookup based on the parameter, for each row t of a table T . Asynchronous
prefetching allows issuing multiple index-lookup requests to the storage engine.
It is implemented this way: A nonblocking index-lookup request is made for a
row t of T , then t is placed in a prefetch queue. Rows are taken out of the queue
and used by apply to execute E(t). Execution of E(t) does not require that data
be already in the buffer pool, but having outstanding prefetch operations maxi-
mizes hardware utilization and increases performance. The size of the queue is
determined dynamically as a function of cache hits. If no ordering is required
on the output rows of apply, rows from the queue may be taken out of order, to
minimize waiting on I/O.

Parallel execution is implemented by the exchange operator, which manages
multiple threads, partitions or broadcasts data, and feeds the data to multiple
processes. The query optimizer decides exchange placement on the basis of es-
timated cost. The degree of parallelism is determined dynamically at runtime,
according to the current system utilization.

Index plans are made up of the pieces described earlier. For example, we
consider the use of an index join to resolve predicate conjunctions (or index union,
for disjunctions), in a cost-based way. Such a join can be done in parallel, using
any of SQL Server’s join algorithms. We also consider joining indices for the sole
purpose of assembling a row with the set of columns needed on a query, which is
sometimes faster than scanning a base table. Taking record IDs from a secondary
index and locating the corresponding row in a base table is effectively equivalent
to performing index-lookup join. For this, we use our generic correlated execution
techniques such as asynchronous prefetch.

Communication with the storage engine is done through OLE-DB, which al-
lows accessing other data providers that implement this interface. OLE-DB is the
mechanism used for distributed and remote queries, which are driven directly
by the query processor. Data providers are categorized according to the range
of functionality they provide, ranging from simple rowset providers with no
indexing capabilities to providers with full SQL support.

30.5 Concurrency and Recovery

SQL Server’s transaction, logging, locking, and recovery subsystems realize the
ACID properties expected of a database system.

30.5.1 Transactions

In SQL Server all statements are atomic and applications can specify various
levels of isolation for each statement. A single transaction can include statements
that not only select, insert, delete, or update records, but also create or drop
tables, build indices, and bulk-import data. Transactions can span databases on
remote servers. When transactions are spread across servers, SQL Server uses a
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Windows operating-system service called the Microsoft Distributed Transaction
Coordinator (MS DTC) to perform two-phase commit processing. MS DTC supports
the XA transaction protocol and, along with OLE-DB, provides the foundation for
ACID transactions among heterogeneous systems.

Concurrency control based on locking is the default for SQL Server. SQL Server
also offers optimistic concurrency control for cursors. Optimistic concurrency
control is based on the assumption that resource conflicts between multiple users
are unlikely (but not impossible), and allows transactions to execute without
locking any resources. Only when attempting to change data does SQL Server
check resources to determine if any conflicts have occurred. If a conflict occurs,
the application must read the data and attempt the change again. Applications
can choose to detect changes either by comparing values or by checking a special
row version column on a row.

SQL Server supports the SQL isolation levels of read uncommitted, read com-
mitted, repeatable read, and serializable. Read committed is the default level.
In addition, SQL Server supports two snapshot-based isolation levels (snapshot
isolation is described earlier in Section 15.7).

• Snapshot: Specifies that data read by any statement in a transaction will be
the transactionally consistent version of the data that existed at the start of the
transaction. The effect is as if the statements in a transaction see a snapshot
of the committed data as it existed at the start of the transaction. Writes are
validated using the validation steps described in Section 15.7, and permitted
to complete only if the validation is successful.

• Read committed snapshot: Specifies that each statement executed within a
transaction sees a transactionally consistent snapshot of the data as it existed
at the start of the statement. This contrasts with read committed isolation
where the statement may see committed updates of transactions that commit
while the statement is executing.

30.5.2 Locking

Locking is the primary mechanism used to enforce the semantics of the isolation
levels. All updates acquire sufficient exclusive locks held for the duration of the
transaction to prevent conflicting updates from occurring. Shared locks are held
for various durations to provide the different SQL isolation levels for queries.

SQL Server provides multigranularity locking that allows different types of
resources to be locked by a transaction (see Figure 30.4, where the resources
are listed in order of increasing granularity). To minimize the cost of locking,
SQL Server locks resources automatically at a granularity appropriate to the task.
Locking at a smaller granularity, such as rows, increases concurrency, but has a
higher overhead because more locks must be held if many rows are locked.

The fundamental SQL Server lock modes are shared (S), update (U), and
exclusive (X); intent locks are also supported for multigranularity locking. Update
locks are used to prevent a common form of deadlock that occurs when multiple
sessions are reading, locking, and potentially updating resources later. Additional
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RID
Key
Page
Extent
Table
DB

Row identifier; used to lock a single row within a table
Row lock within an index; protects key ranges in serializable transactions
8-kilobyte table or index page
Contiguous group of eight data pages or index pages
Entire table, including all data and indices
Database

Resource Description

Figure 30.4 Lockable resources.

lock modes—called key-range locks—are taken only in serializable isolation level
for locking the range between two rows in an index.

30.5.2.1 Dynamic Locking

Fine-granularity locking can improve concurrency at the cost of extra CPU cycles
and memory to acquire and hold many locks. For many queries, a coarser locking
granularity provides better performance with no (or minimal) loss of concurrency.
Database systems have traditionally required query hints and table options for
applications to specify locking granularity. In addition, there are configuration
parameters (often static) for how much memory to dedicate to the lock manager.

In SQL Server, locking granularity is optimized automatically for optimal
performance and concurrency for each index used in a query. In addition, the
memory dedicated to the lock manager is adjusted dynamically on the basis
of feedback from other parts of the system, including other applications on the
machine.

Lock granularity is optimized before query execution for each table and index
used in the query. The lock optimization process takes into account isolation
level (that is, how long locks are held), scan type (range, probe, or entire table),
estimated number of rows to be scanned, selectivity (percentage of visited rows
that qualify for the query), row density (number of rows per page), operation
type (scan, update), user limits on the granularity, and available system memory.

Once a query is executing, the lock granularity is escalated automatically
to table level if the system acquires significantly more locks than the optimizer
expected or if the amount of available memory drops and cannot support the
number of locks required.

30.5.2.2 Deadlock Detection

SQL Server automatically detects deadlocks involving both locks and other re-
sources. For example, if transaction A is holding a lock on Table1 and is waiting
for memory to become available and transaction B has some memory it can’t
release until it acquires a lock on Table1, the transactions will deadlock. Threads
and communication buffers can also be involved in deadlocks. When SQL Server
detects a deadlock, it chooses as the deadlock victim the transaction that would be
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the least expensive to roll back, considering the amount of work the transaction
has already done.

Frequent deadlock detection can hurt system performance. SQL Server au-
tomatically adjusts the frequency of deadlock detection to how often deadlocks
are occurring. If deadlocks are infrequent, the detection algorithm runs every 5
seconds. If they are frequent it will begin checking every time a transaction waits
for a lock.

30.5.2.3 Row Versioning for Snapshot Isolation

The two snapshot-based isolation levels use row versioning to achieve isolation
for queries while not blocking the queries behind updates and vice versa. Under
snapshot isolation, update and delete operations generate versions of the affected
rows and store them in a temporary database. The versions are garbage-collected
when there are no active transactions that could require them. Therefore, a query
run under snapshot isolation does not need to acquire locks and instead can read
the older versions of any record that gets updated/deleted by another transaction.
Row versioning is also used to provide a snapshot of a table for online index build
operations.

30.5.3 Recovery and Availability

SQL Server is designed to recover from system and media failures, and the recovery
system can scale to machines with very large buffer pools (100 gigabytes) and
thousands of disk drives.

30.5.3.1 Crash Recovery

Logically, the log is a potentially infinite stream of log records identified by log
sequence numbers (LSNs). Physically, a portion of the stream is stored in log files.
Log records are saved in the log files until they have been backed up and are no
longer needed by the system for rollback or replication. Log files grow and shrink
in size to accommodate the records that need to be stored. Additional log files can
be added to a database (on new disks, for example) while the system is running
and without blocking any current operations, and all logs are treated as if they
were one continuous file.

SQL Server’s recovery system has many aspects in common with the ARIES
recovery algorithm (see Section 16.8), and some of the key differences are high-
lighted in this section.

SQL Server has a configuration option called recovery interval, which allows
an administrator to limit the length of time SQL Server should take to recover
after a crash. The server dynamically adjusts the checkpoint frequency to reduce
recovery time to within the recovery interval. Checkpoints flush all dirty pages
from the buffer pool and adjust to the capabilities of the I/O system and its current
workload to effectively eliminate any impact on running transactions.

Upon start-up after a crash, the system starts multiple threads (automatically
scaled to the number of CPUs) to start recovering multiple databases in parallel.
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The first phase of recovery is an analysis pass on the log, which builds a dirty page
table and active transaction list. The next phase is a redo pass starting from the
last checkpoint and redoing all operations. During the redo phase, the dirty page
table is used to drive read-ahead of data pages. The final phase is an undo phase
where incomplete transactions are rolled back. The undo phase is actually divided
into two parts as SQL Server uses a two-level recovery scheme. Transactions at the
first level (those involving internal operations such as space allocation and page
splits) are rolled back first, followed by user transactions. Once the transactions
at the first level are rolled back, the database is brought online and is available for
new user transactions to start while the final rollback operations are performed.
This is achieved by having the redo pass reacquire locks for all incomplete user
transactions that will be rolled back in the undo phase.

30.5.3.2 Media Recovery

SQL Server’s backup and restore capabilities allow recovery from many failures,
including loss or corruption of disk media, user errors, and permanent loss of
a server. Additionally, backing up and restoring databases is useful for other
purposes, such as copying a database from one server to another and maintaining
standby systems.

SQL Server has three different recovery models that users can choose from for
each database. By specifying a recovery model, an administrator declares the type
of recovery capabilities required (such as point-in-time restore and log shipping)
and the required backups to achieve them. Backups can be taken on databases,
files, file-groups, and the transaction log. All backups are fuzzy and completely
online; that is, they do not block any DML or DDL operations while they execute.
Restores can also be done online such that only the portion of the database being
restored (e.g., a corrupt disk block) is taken offline. Backup and restore operations
are highly optimized and limited only by the speed of the media onto which the
backup is targeted. SQL Server can back up to both disk and tape devices (up to 64
in parallel) and has high-performance backup APIs for use by third-party backup
products.

30.5.3.3 Database Mirroring

Database mirroring involves immediately reproducing every update to a database
(the principal database) onto a separate, complete copy of the database (the mirror
database) generally located on another machine. In the event of a disaster on the
primary server or even just maintenance, the system can automatically failover to
the mirror in a matter of seconds. The communication library used by applications
is aware of the mirroring and will automatically reconnect to the mirror machine
in the event of a failover. A tight coupling between the primary database and
the mirror is achieved by sending blocks of transaction log to the mirror as it is
generated on the primary and redoing the log records on the mirror. In full-safety
mode, a transaction cannot commit until the log records for the transaction have
made it to disk on the mirror. Besides supporting failover, a mirror can also be
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used to automatically restore a page by copying it from the mirror in the event
that the page is found to be corrupt during an attempt to read it.

30.6 System Architecture

An SQL Server instance is a single operating-system process that is also a named
endpoint for requests for SQL execution. Applications interact with SQL Server via
various client-side libraries (like ODBC, OLE-DB, and ADO.NET) in order to execute
SQL.

30.6.1 Thread Pooling on the Server

In order to minimize the context switching on the server and to control the
degree of multiprogramming, the SQL Server process maintains a pool of threads
that execute client requests. As requests arrive from the client, they are assigned
a thread on which to execute. The thread executes the SQL statements issued by
the client and sends the results back to it. Once the user request completes, the
thread is returned back to the thread pool. In addition to user requests, the thread
pool is used to assign threads for internal background tasks such as:

• Lazywriter: This thread is dedicated to making sure a certain amount of the
buffer pool is free and available at all times for allocation by the system.
The thread also interacts with the operating system to determine the optimal
amount of memory that should be consumed by the SQL Server process.

• Checkpoint: This thread periodically checkpoints all databases in order to
maintain a fast recovery interval for the databases on server restart.

• Deadlock monitor: This thread monitors the other threads, looking for a
deadlock in the system. It is responsible for the detection of deadlocks and
also picking a victim in order to allow the system to make progress.

When the query processor chooses a parallel plan to execute a particular
query, it can allocate multiple threads that work on behalf of the main thread to
execute the query. Since the Windows NT family of operating systems provides
native thread support, SQL Server uses NT threads for its execution. However,
SQL Server can be configured to run with user-mode threads in addition to kernel
threads in very high-end systems to avoid the cost of a kernel context switch on
a thread switch.

30.6.2 Memory Management

There are many different uses of memory within the SQL Server process:

• Buffer pool. The biggest consumer of memory in the system is the buffer
pool. The buffer pool maintains a cache of the most recently used database
pages. It uses a clock replacement algorithm with a steal, no-force policy;
that is, buffer pages with uncommitted updates may be replaced (“stolen”),
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and buffer pages are not forced to disk on transaction commit. The buffers
also obey the write-ahead logging protocol to ensure correctness of crash and
media recovery.

• Dynamic memory allocation. This is the memory that is allocated dynami-
cally to execute requests submitted by the user.

• Plan and execution cache. This cache stores the compiled plans for various
queries that have been previously executed by users in the system. This
allows various users to share the same plan (saving memory) and also saves
on query compilation time for similar queries.

• Large memory grants. These are for query operators that consume large
amounts of memory, such as hash join and sort.

SQL Server uses an elaborate scheme of memory management to divide its
memory among the various uses described above. A single memory manager
centrally manages all the memory used by SQL Server. The memory manager is
responsible for dynamically partitioning and redistributing the memory between
the various consumers of memory in the system. It distributes this memory in ac-
cordance with an analysis of the relative cost benefit of memory for any particular
use. A generalized LRU infrastructure mechanism is available to all components.
This caching infrastructure tracks not only the lifetime of cached data but also
the relative CPU and I/O costs incurred to create and cache it. This information is
used to determine the relative costs of various cached data. The memory manager
focuses on throwing out the cached data that have not been touched recently and
were cheap to cache. As an example, complex query plans that require seconds of
CPU time to compile are more likely to stay in memory than trivial plans, given
equivalent access frequencies.

The memory manager interacts with the operating system to decide dynam-
ically how much memory it should consume out of the total amount of memory
in the system. This allows SQL Server to be quite aggressive in using the memory
on the system but still return memory back to the system when other programs
need it without causing excessive page faults.

In addition the memory manager is aware of the CPU and memory topology of
the system. Specifically, it leverages the NUMA (nonuniform memory access) that
many machines employ and attempts to maintain locality between the processor
that a thread is executing on and the memory it accesses.

30.6.3 Security

SQL Server provides comprehensive security mechanisms and policies for au-
thentication, authorization, audit, and encryption. Authentication can be either
through a username–password pair managed by SQL Server, or through a Win-
dows OS account. Authorization is managed by permission grants to schema ob-
jects or covering permissions on container objects such as the database or server
instance. At authorization-check time, permissions are rolled up and calculated,
accounting for covering permissions and role memberships of the principal. Au-
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dits are defined in the same way as permissions — they are defined on schema
objects for a given principal or containing objects and at the time of the operation
they are dynamically calculated based on audit definitions on the object and ac-
counting for any covering audits or role memberships of the principal. Multiple
audits may be defined so that audits for different purposes, such as for Sarbanes-
Oxley and HIPAA,1 may be managed independently without risk of breaking each
other. Audits records are written either in a file or to the Windows Security Log.

SQL Server provides both manual encryption of data and Transparent Data
Encryption. Transparent Data Encryption encrypts all data pages and log pages
when written to disk and decrypts when read from the disk so that the data
are encrypted at rest on the disk but is plaintext to SQL Server users without
application modification. Transparent Data Encryption can be more CPU efficient
than manual encryption as data is only encrypted when written to disk and it is
done in larger units, pages, rather than individual cells of data.

Two things are even more critical to users’ security: (1) the quality of the
entire code base itself and (2) the ability for users to determine if they have
secured the system properly. The quality of the code base is enhanced by using
the Security Development Lifecycle. All developers and testers of the product
go through security training. All features are threat modeled to assure assets are
appropriately protected. Wherever possible, SQL Server utilizes the underlying
security features of the operating system rather than implementing its own, such
as Windows OS Authorization and the Windows Security Log for an audit record.
Furthermore, numerous internal tools are utilized to analyze the code base looking
for potential security flaws. Security is verified using fuzz testing2 and testing of
the threat model. Before release, there is a final security review of the product and
a response plan is in place for dealing with security issues found after release —
which is then executed as issues are discovered.

A number of features are provided to help users secure the system prop-
erly. One such feature is a fundamental policy called off-by-default, where many
less commonly used components or those requiring extra care for security, are
completely disabled by default. Another feature is a best-practices analyzer that
warns users about configurations of system settings that could lead to a security
vulnerability. Policy-based management further allows users to define what the
settings should be and either warns of or prevents changes that would conflict
with the approved settings.

30.7 Data Access

SQL Server supports the following application programming interfaces (APIs) for
building data-intensive applications:

1The Sarbanes-Oxley Act is a U.S. government financial regulation law. HIPAA is a U.S. government health-care law
that includes regulation of health-care-related information.
2Fuzz testing A randomization-based technique for testing for unexpected, possibly invalid, input.
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• ODBC. This is Microsoft’s implementation of the standard SQL:1999 call-
level interface (CLI). It includes object models—Remote Data Objects (RDOs)
and Data Access Objects (DAOs)—that make it easier to program multitier
database applications from programming languages like Visual Basic.

• OLE-DB. This is a low-level, systems-oriented API designed for programmers
building database components. The interface is architected according to the
Microsoft Component Object Model (COM), and it enables the encapsulation
of low-level database services such as rowset providers, ISAM providers, and
query engines. OLE-DB is used inside SQL Server to integrate the relational
query processor and the storage engine and to enable replication and dis-
tributed access to SQL and other external data sources. Like ODBC, OLE-DB
includes a higher-level object model called ActiveX Data Objects (ADO) to
make it easier to program database applications from Visual Basic.

• ADO.NET. This is an API designed for applications written in .NET languages
such as C# and Visual Basic.NET. This interface simplifies some common data
access patterns supported by ODBC and OLE-DB. In addition, it provides a
new data set model to enable stateless, disconnected data access applications.
ADO.NET includes the ADO.NET Entity Framework, which is a platform for
programming against data that raises the level of abstraction from the logical
(relational) level to the conceptual (entity) level, and thereby significantly
reduces the impedance mismatch for applications and data services such
as reporting, analysis, and replication. The conceptual data model is imple-
mented using an extended relational model, the Entity Data Model (EDM)
that embraces entities and relationships as first-class concepts. It includes a
query language for the EDM called Entity SQL, a comprehensive mapping
engine that translates from the conceptual to the logical (relational) level, and
a set of model-driven tools that help developers define mappings between
objects and entities to tables.

• LINQ. Language-integrated query, or LINQ for short, allows declarative, set-
oriented constructs to be used directly in programming languages such as
C# and Visual Basic. The query expressions are not processed by an external
tool or language preprocessor but instead are first-class expressions of the
languages themselves. LINQ allows query expressions to benefit from the rich
metadata, compile-time syntax checking, static typing and auto-completion
that was previously available only to imperative code. LINQ defines a set of
general-purpose standard query operators that allow traversal, filter, join,
projection, sorting, and grouping operations to be expressed in a direct yet
declarative way in any .NET-based programming language. C# and Visual
Basic also support query comprehensions, i.e., language syntax extensions
that leverage the standard query operators.

• DB-Lib. The DB-Library for C API that was developed specifically to be used
with earlier versions of SQL Server that predate the SQL-92 standard.

• HTTP/SOAP. Applications can use HTTP/SOAP requests to invoke SQL Server
queries and procedures. Applications can use URLs that specify Internet In-
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formation Server (IIS) virtual roots that reference an instance of SQL Server.
The URL can contain an XPath query, a Transact-SQL statement, or an XML
template.

30.8 Distributed Heterogeneous Query Processing

SQL Server distributed heterogeneous query capability allows transactional queries
and updates against a variety of relational and nonrelational sources via OLE-
DB data providers running in one or more computers. SQL Server supports two
methods for referencing heterogeneous OLE-DB data sources in Transact-SQL state-
ments. The linked-server-names method uses system-stored procedures to asso-
ciate a server name with an OLE-DB data source. Objects in these linked servers
can be referenced in Transact-SQL statements using the four-part name convention
described below. For example, if a linked server name of DeptSQLSrvr is defined
against another copy of SQL Server, the following statement references a table on
that server:

select *
from DeptSQLSrvr.Northwind.dbo.Employees;

An OLE-DB data source is registered in SQL Server as a linked server. Once a
linked server is defined, its data can be accessed using the four-part name:

<linked- server>.<catalog>.<schema>.<object>

The following example establishes a linked server to an Oracle server via an
OLE-DB provider for Oracle:

exec sp addlinkedserver OraSvr, ’Oracle 7.3’, ’MSDAORA’, ’OracleServer’

A query against this linked server is expressed as:

select *
from OraSvr.CORP.ADMIN.SALES;

In addition, SQL Server supports built-in, parameterized table-valued func-
tions called openrowset and openquery, which allow sending uninterpreted
queries to a provider or linked server, respectively, in the dialect supported by the
provider. The following query combines information stored in an Oracle server
and a Microsoft Index Server. It lists all documents and their author containing
the words Data and Access ordered by the author’s department and name.
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select e.dept, f.DocAuthor, f.FileName
from OraSvr.Corp.Admin.Employee e,
openquery(EmpFiles,

’select DocAuthor, FileName
from scope(“c:\EmpDocs”)
where contains(’ ’ “Data” near() “Access” ’ ’)>0’) as f

where e.name = f.DocAuthor
order by e.dept, f.DocAuthor;

The relational engine uses the OLE-DB interfaces to open the rowsets on linked
servers, to fetch the rows, and to manage transactions. For each OLE-DB data source
accessed as a linked server, an OLE-DB provider must be present on the server
running SQL Server. The set of Transact-SQL operations that can be used against
a specific OLE-DB data source depends on the capabilities of the OLE-DB provider.
Whenever it is cost-effective, SQL Server pushes relational operations such as
joins, restrictions, projections, sorts, and group by operations to the OLE-DB data
source. SQL Server uses Microsoft Distributed Transaction Coordinator and the
OLE-DB transaction interfaces of the provider to ensure atomicity of transactions
spanning multiple data sources.

30.9 Replication

SQL Server replication is a set of technologies for copying and distributing data
and database objects from one database to another, tracking changes, and syn-
chronizing between databases to maintain consistency. SQL Server replication also
provides inline replication of most database schema changes without requiring
any interruptions or reconfiguration.

Data are typically replicated to increase availability of data. Replication can
roll up corporate data from geographically dispersed sites for reporting purposes
and disseminate data to remote users on a local-area network or mobile users on
dial-up connections or the Internet. Microsoft SQL Server replication also enhances
application performance by scaling out for improved total read performance
among replicas, as is common in providing midtier data-caching services for Web
sites.

30.9.1 Replication Model

SQL Server introduced the Publish–Subscribe metaphor to database replication
and extends this publishing-industry metaphor throughout its replication admin-
istration and monitoring tools.

The publisher is a server that makes data available for replication to other
servers. The publisher can have one or more publications, each representing a
logically related set of data and database objects. The discrete objects within a
publication, including tables, stored procedures, user-defined functions, views,
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materialized views, and more, are called articles. The addition of an article to a
publication allows for extensive customizing of the way the object is replicated,
e.g., restrictions on which users can subscribe to receive its data and how the
data set should be filtered on the basis of a projection or selection of a table, by a
“horizontal” or a “vertical” filter, respectively.

Subscribers are servers that receive replicated data from a publisher. Sub-
scribers can conveniently subscribe to only the publications they require from
one or more publishers regardless of the number or type of replication options
each implements. Depending on the type of replication options selected, the sub-
scriber either can be used as a read-only replica or can make data changes that
are automatically propagated back to the publisher and subsequently to all other
replicas. Subscribers can also republish the data they subscribe to, supporting as
flexible a replication topology as the enterprise requires.

The distributor is a server that plays different roles, depending on the repli-
cation options chosen. At a minimum it is used as a repository for history and
error state information. In other cases, it is used additionally as an intermediate
store-and-forward queue to scale up the delivery of the replicated payload to all
the subscribers.

30.9.2 Replication Options

Microsoft SQL Server replication offers a wide spectrum of replication options. To
decide on the appropriate replication options to use, a database designer must
determine the application’s needs with respect to autonomous operation of the
sites involved and the degree of transactional consistency required.

Snapshot replication copies and distributes data and database objects ex-
actly as they appear at a moment in time. Snapshot replication does not require
continuous change tracking because changes are not propagated incrementally
to subscribers. Subscribers are updated with a complete refresh of the data set
defined by the publication on a periodic basis. Options available with snap-
shot replication can filter published data and can enable subscribers to modify
replicated data and propagate those changes back to the publisher. This type
of replication is best suited for smaller sizes of data and when updates typically
affect enough of the data that replicating a complete refresh of the data is efficient.

With transactional replication, the publisher propagates an initial snapshot of
data to subscribers, then forwards incremental data modifications to subscribers
as discrete transactions and commands. Incremental change tracking occurs in-
side the core engine of SQL Server, which marks transactions affecting replicated
objects in the publishing database’s transaction log. A replication process called
the log reader agent reads these transactions from the database transaction log,
applies an optional filter, and stores them in the distribution database, which acts
as the reliable queue supporting the store-and-forward mechanism of transac-
tional replication. (Reliable queues are the same as durable queues, described in
Section 26.1.1.) Another replication process, called the distribution agent, then
forwards the changes to each subscriber. Like snapshot replication, transactional
replication offers subscribers the option to make updates that either use two-phase
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commit to reflect those changes consistently at the publisher and subscriber or
queue the changes at the subscriber for asynchronous retrieval by a replication
process that later propagates the change to the publisher. This type of replica-
tion is suitable when intermediate states between multiple updates need to be
preserved.

Merge replication allows each replica in the enterprise to work with total
autonomy whether online or offline. The system tracks metadata on the changes
to published objects at publishers and subscribers in each replicated database,
and the replication agent merges those data modifications together during syn-
chronization between replicated pairs and ensures data convergence through
automatic conflict detection and resolution. Numerous conflict resolution policy
options are built into the replication agent used in the synchronization process,
and custom conflict resolution can be written by using stored procedures or by
using an extensible component object model (COM) interface. This type of repli-
cation does not replicate all intermediate states but only the current state of the
data at the time of synchronization. It is suitable when replicas require the ability
to make autonomous updates while not connected to any network.

30.10 Server Programming in .NET

SQL Server supports the hosting of the .NET Common Language Runtime (CLR)
inside the SQL Server process to enable database programmers to write business
logic as functions, stored procedures, triggers, data types, and aggregates. The
ability to run application code inside the database adds flexibility to the design
of application architectures that require business logic to execute close to the data
and cannot afford the cost of shipping data to a middle-tier process to perform
computation outside the database.

The .NET Common Language Runtime (CLR) is a runtime environment with
a strongly typed intermediate language that executes multiple modern program-
ming languages such as C#, Visual Basic, C++, COBOL, and J++, among others, and
has garbage-collected memory, preemptive threading, metadata services (type re-
flection), code verifiability, and code access security. The runtime uses metadata to
locate and load classes, lay out instances in memory, resolve method invocations,
generate native code, enforce security, and set runtime context boundaries.

Application code is deployed inside the database by using assemblies, which
are the units of packaging, deployment, and versioning of application code in
.NET. Deployment of application code inside the database provides a uniform
way to administer, back up, and restore complete database applications (code and
data). Once an assembly is registered inside the database, users can expose entry
points within the assembly via SQL DDL statements, which can act as scalar or
table functions, procedures, triggers, types, and aggregates, by using well-defined
extensibility contracts enforced during the execution of these DDL statements.
Stored procedures, triggers, and functions usually need to execute SQL queries
and updates. This is achieved through a component that implements the ADO.NET
data-access API for use inside the database process.
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30.10.1 Basic .NET Concepts

In the .NET framework, a programmer writes program code in a high-level pro-
gramming language that implements a class defining its structure (e.g., the fields
or properties of the class) and methods. Some of these methods can be static
functions. The compilation of the program produces a file, called an assembly,
containing the compiled code in the Microsoft Intermediate Language (MSIL),
and a manifest containing all references to dependent assemblies. The manifest is
an integral part of every assembly that renders the assembly self-describing. The
assembly manifest contains the assembly’s metadata, which describes all struc-
tures, fields, properties, classes, inheritance relationships, functions, and methods
defined in the program. The manifest establishes the assembly identity, specifies
the files that make up the assembly implementation, specifies the types and re-
sources that make up the assembly, itemizes the compile-time dependencies on
other assemblies, and specifies the set of permissions required for the assembly
to run properly. This information is used at runtime to resolve references, enforce
version-binding policy, and validate the integrity of loaded assemblies. The .NET
framework supports an out-of-band mechanism called custom attributes for anno-
tating classes, properties, functions and methods with additional information or
facets the application may want to capture in metadata. All .NET compilers con-
sume these annotations without interpretation and store them in the assembly’s
metadata. All these annotations can be examined in the same way as any other
metadata by using a common set of reflection APIs. Managed code refers to MSIL
executed in the CLR rather than directly by the operating system. Managed-code
applications gain common-language runtime services such as automatic garbage
collection, runtime type checking, and security support. These services help pro-
vide uniform platform- and language-independent behavior of managed-code
applications. At execution time, a just-in-time (JIT) compiler translates the MSIL
into native code (e.g., Intel X86 code). During this translation, code must pass a
verification process that examines the MSIL and metadata to find out whether the
code can be determined to be type safe.

30.10.2 SQL CLR Hosting

SQL Server and the CLR are two different runtimes with different internal models
for threading, scheduling and memory management. SQL Server supports a coop-
erative non-preemptive threading model in which the DBMS threads voluntarily
yield execution periodically or when they are waiting on locks or I/O, whereas
the CLR supports a preemptive threading model. If user code running inside the
DBMS can directly call the operating-system (OS) threading primitives, then it
does not integrate well with the SQL Server task scheduler and can degrade the
scalability of the system. CLR does not distinguish between virtual and physical
memory, while SQL Server directly manages physical memory and is required to
use physical memory within a configurable limit.

The different models for threading, scheduling, and memory management
present an integration challenge for a DBMS that scales to support thousands
of concurrent user sessions. SQL Server solves this challenge by becoming the
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Figure 30.5 Integration of CLR with SQL Server operating-system services.

operating system for the CLR when it is hosted inside the SQL Server process.
The CLR calls low-level primitives implemented by SQL Server for threading,
scheduling, synchronization, and memory management (see Figure 30.5). This
approach provides the following scalability and reliability benefits:

Common threading, scheduling, and synchronization. CLR calls SQL Server
APIs for creating threads both for running user code and for its own internal use
such as the garbage collector and the class finalizer thread. In order to synchronize
between multiple threads, the CLR calls SQL Server synchronization objects. This
allows SQL Server scheduler to schedule other tasks when a thread is waiting on a
synchronization object. For instance, when the CLR initiates garbage collection, all
of its threads wait for garbage collection to finish. Since the CLR threads and the
synchronization objects they are waiting on are known to the SQL Server scheduler,
it can schedule threads that are running other database tasks not involving the
CLR. Further, this enables SQL Server to detect deadlocks that involve locks taken
by CLR synchronization objects and employ traditional techniques for deadlock
removal. The SQL Server scheduler has the ability to detect and stop threads that
have not yielded for a significant amount of time. The ability to hook CLR threads
to SQL Server threads implies that the SQL Server scheduler can identify runaway
threads running in the CLR and manage their priority, so that they do not consume
significant CPU resources, thereby affecting the throughput of the system. Such
runaway threads are suspended and put back in the queue. Repeat offenders are
not allowed timeslices that are unfair to other executing workers. If an offender
took 50 times the allowed quantum, it is punished for 50 “rounds” before being
allowed to run again because the scheduler cannot tell when a computation is
long and runaway versus long and legitimate.

Common memory management. The CLR calls SQL Server primitives for al-
locating and deallocating its memory. Since the memory used by the CLR is
accounted for in the total memory usage of the system, SQL Server can stay within
its configured memory limits and ensure the CLR and SQL Server are not compet-
ing with each other for memory. Also, SQL Server can reject CLR memory requests
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when the system is constrained and ask CLR to reduce its memory use when other
tasks need memory.

30.10.3 Extensibility Contracts

All user-managed code running within the SQL Server process interacts with DBMS
components as an extension. Current extensions include scalar functions, table
functions, procedures, triggers, scalar types, and scalar aggregates. For each ex-
tension there is a mutual contract defining the properties or services user code
must implement to act as one of these extensions as well as the services the ex-
tension can expect from the DBMS when the managed code is called. SQL CLR
leverages the class and custom attributes information stored in assembly meta-
data to enforce that user code implements these extensibility contracts. All user
assemblies are stored inside the database. All relational and assembly metadata
are processed inside the SQL engine through a uniform set of interfaces and data
structures. When data-definition language (DDL) statements registering a partic-
ular extension function, type, or aggregate are processed, the system ensures the
user code implements the appropriate contract by analyzing its assembly meta-
data. If the contract is implemented, then the DDL statement succeeds, otherwise it
fails. The next subsections describe key aspects of the specific contracts currently
enforced by SQL Server.

30.10.3.1 Routines

We classify scalar functions, procedures, and triggers generically as routines.
Routines, implemented as static class methods, can specify the following proper-
ties through custom attributes.

• IsPrecise. If this Boolean property is false, then it indicates the routine body
involves imprecise computations such as floating-point operations. Expres-
sions involving imprecise functions cannot be indexed.

• UserDataAccess. If the value of this property is read, then the routine reads
user-data tables. Otherwise, the value of the property is None indicating
the routine does not access data. Queries that do not access any user tables
(directly or indirectly through views and functions) are not considered to
have user-data access.

• SystemDataAccess. If the value of this property is read, then the routine
reads system catalogs or virtual system tables.

• IsDeterministic. If this property is true, then the routine is assumed to pro-
duce the same output value given the same input values, state of the local
database, and execution context.

• IsSystemVerified. This indicates whether the determinism and precision
properties can be ascertained or enforced by SQL Server (e.g., built-ins, Transact-
SQL functions) or it is as specified by the user (e.g., CLR functions).
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• HasExternalAccess. If the value of this property is true, then the routine
accesses resources outside SQL Server such as files, network, Web access, and
registry.

30.10.3.2 Table Functions

A class implementing a table-valued function must implement an interface IEnu-
merable to enable iteration over the rows returned by the function, a method
to describe the schema of the table returned (i.e., columns, types), a method to
describe what columns can be unique keys, and a method to insert rows into the
table.

30.10.3.3 Types

Classes implementing user-defined types are annotated with an SqlUserDefined-
Type() attribute that specifies the following properties:

• Format. SQL Server supports three storage formats: native, user-defined, and
.NET serialization.

• MaxByteSize. This is the maximum size of the serialized binary representa-
tion of type instances in bytes. UDTs can be up to 2 GB in length.

• IsFixedLength. This is a Boolean property specifying whether the instances
of the type have fixed or variable length.

• IsByteOrdered. This is a Boolean property indicating whether the serialized
binary representation of the type instances is binary ordered. When this
property is true, the system can perform comparisons directly against this
representation without the need to instantiate type instances as objects.

• Nullability. All UDTs in our system must be capable of holding the null value
by supporting the INullable interface containing the Boolean IsNull method.

• Type conversions. All UDTs must implement conversions to and from char-
acter strings via the ToString and Parse methods.

30.10.3.4 Aggregates

In addition to supporting the contract for types, user-defined aggregates must
implement four methods required by the query-execution engine to initialize the
computation of an aggregate instance, to accumulate input values into the func-
tion provided by the aggregate, to merge partial computations of the aggregate,
and to retrieve the final aggregate result. Aggregates can declare additional prop-
erties, via custom attributes, in their class definition; these properties are used by
the query optimizer to derive alternative plans for the aggregate computation.

• IsInvariantToDuplicates. If this property is true, then the computation de-
livering the data to the aggregate can be modified by either discarding or
introducing new duplication-removal operations.
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• IsInvariantToNulls. If this property is true, then null rows can be discarded
from the input. However, care must be taken in the context of group by
operations not to discard entire groups.

• IsInvariantToOrder. If this property is true, then the query processor can
ignore order by clauses and explore plans that avoid having to sort the data.

30.11 XML Support

Relational database systems have embraced XML in many different ways in recent
years. First-generation XML support in relational database systems was mainly
concerned with exporting relational data as XML (“publish XML”), and to im-
port relational data in XML markup form back into a relational representation
(“shred XML”). The main usage scenario supported by these systems is informa-
tion exchange in contexts where XML is used as the “wire format” and where the
relational and XML schemas are often predefined independently of each other. In
order to cover this scenario, Microsoft SQL Server provides extensive functionality
such as the for xml publishing rowset aggregator, the OpenXML rowset provider,
and the XML view technology based on annotated schemas.

Shredding of XML data into a relational schema can be quite difficult or
inefficient for storing semistructured data whose structure may vary over time,
and for storing documents. To support such applications SQL Server implements
native XML based on the SQL:2003 xml data type. Figure 30.6 provides a high-
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Figure 30.6 Architectural overview of the native XML support in SQL Server.
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level architectural diagram of SQL Server’s native XML support in the database. It
consists of the ability to store XML natively, to constrain and type the stored XML
data with collections of XML schemas, and to query and update the XML data. In
order to provide efficient query executions, several types of XML-specific indices
are provided. Finally, the native XML support also integrates with the “shredding”
and “publishing” to and from relational data.

30.11.1 Natively Storing and Organizing XML

The xml data type can store XML documents and content fragments (multiple text
or element nodes at the top) and is defined on the basis of the XQuery 1.0/XPath
2.0 data model. The data type can be used for parameters of stored procedures,
for variables, and as a column type.

SQL Server stores data of type xml in an internal binary format as a blob and
provides indexing mechanisms for executing queries. The internal binary format
provides efficient retrieval and reconstruction of the original XML document, in
addition to some space savings (on average, 20 percent). The indices support
an efficient query mechanism that can utilize the relational query engine and
optimizer; more details are provided later, in Section 30.11.3.

SQL Server provides a database-metadata concept called an XML schema col-
lection that associates an SQL identifier with a collection of schema components
of one or multiple target namespaces.

30.11.2 Querying and Updating the XML Data Type

SQL Server provides several XQuery-based query and modification capabilities on
the XML data type. These query and modification capabilities are supported by
using methods defined on the xml data type. Some of these methods are described
in the rest of this section.

Each method takes a string literal as the query string and potentially other
arguments. The XML data type (on which the method is applied) provides the
context item for the path expressions and populates the in-scope schema def-
initions with all the type information provided by the associated XML schema
collection (if no collection is provided, the XML data is assumed to be untyped).
The SQL Server XQuery implementation is statically typed, thereby supporting
early detection of path expression typing mistakes, type errors, and cardinality
mismatch, as well as some additional optimizations.

The query method takes an XQuery expression and returns an untyped XML
data type instance (that can then be cast to a target schema collection if the data
need to be typed). In XQuery specification terminology, we have set the construc-
tion mode to “strip.” The following example shows a simple XQuery expression
that summarizes a complex Customer element in a trip report document that con-
tains among other information a name, anIDattribute, and sales-lead information
that are contained in the marked-up actual trip report notes. The summary shows
the name and sales leads for Customer elements that have sales leads.
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select Report.query(’
declare namespace c = "urn:example/customer";

for $cust in /c:doc/c:customer
where $cust/c:notes//c:saleslead
return

<customer id="$cust/@id"> {
$cust/c:name,
$cust/c:notes//c:saleslead

}</customer>’)
from TripReports;

The above XQuery query gets executed on the XML value stored in the doc attribute
of each row of the table TripReports. Each row in the result of the SQL query contains
the result of executing the XQuery query on the data in one input row.

The value method takes an XQuery expression and an SQL type name, extracts
a single atomic value from the result of the XQuery expression, and casts its lexical
form into the specified SQL type. If the XQuery expression results in a node, the
typed value of the node will implicitly be extracted as the atomic value to be cast
into the SQL type (in XQuery terminology the node will be “atomized”; the result
is cast to SQL). Note that the value method performs a static type check that at
most one value is being returned.

The exist method takes an XQuery expression and returns 1 if the expression
produces a nonempty result and 0 otherwise.

Finally, the modify method provides a mechanism to change an XML value
at the subtree level, inserting new subtrees at specific locations inside a tree,
changing the value of an element or attribute, and deleting subtrees. The following
example deletes all customer saleslead elements of years previous to the year
given by an SQL variable or parameter with the name @year:

update TripReports
set Report.modify(

’declare namespace c = "urn:example/customer";
delete /c:doc/c:customer//c:saleslead[@year < sql:variable("@year")]’);

30.11.3 Execution of XQuery Expressions

As mentioned earlier, the XML data are stored in an internal binary representation.
However, in order to execute the XQuery expressions, the XML data type is inter-
nally transformed into a so-called node table. The internal node table basically
uses a row to represent a node. Each node receives an OrdPath identifier as its
nodeID (an OrdPath identifier is a modified Dewey decimal numbering scheme;
see the bibliographical notes for references to more information on OrdPath).
Each node also contains key information to point back to the original SQL row to
which the node belongs, information about the name and type (in a tokenized
form), values, and more. Since the OrdPath encodes both the document order and
the hierarchy information, the node table then is clustered on the basis of the key
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information and OrdPath, so that a path expression or recomposition of a subtree
can be achieved with a simple table scan.

All XQuery and update expressions are then translated into an algebraic op-
erator tree against this internal node table; the tree uses the common relational
operators and some operators specifically designed for the XQuery algebraization.
The resulting tree is then grafted into the algebra tree of the relational expression
so that in the end, the query-execution engine receives a single execution tree that
it can optimize and execute. In order to avoid costly runtime transformations, a
user can prematerialize the node table by using the primary XML index. SQL Server
in addition provides three secondary XML indices so that the query execution can
take further advantage of index structures:

• The path index provides support for simple types of path expressions.

• The properties index provides support for the common scenario of property-
value comparisons.

• The value index is well suited if the query uses wild-cards in comparisons.

See the bibliographical notes for references to more information on XML indexing
and query processing in SQL Server.

30.12 SQL Server Service Broker

Service Broker helps developers create loosely coupled distributed applications
by providing support for queued, reliable messaging in SQL Server. Many database
applications use asynchronous processing to improve scalability and response
times for interactive sessions. One common approach to asynchronous processing
is to use work tables. Instead of performing all of the work for a business process
in a single database transaction, an application makes a change indicating that
outstanding work is present and then inserts a record of the work to be performed
into a work table. As resources permit, the application processes the work table
and completes the business process. Service Broker is a part of the database server
that directly supports this approach for application development. The Transact-
SQL language includes DDL and DML statements for Service Broker. In addition,
SQL Server Management Objects (SMO) for Service Broker are provided in SQL
Server. These allow programmatic access to Service Broker objects from managed
code.

Previous message-queuing technologies concentrated on individual mes-
sages. With Service Broker, the basic unit of communication is the conversation —
a persistent, reliable, full-duplex stream of messages. SQL Server guarantees that
the messages within a conversation are delivered to an application exactly once,
in order. It is also possible to assign a priority from 1 to 10 to a conversation. Mes-
sages from conversations with higher priority are sent and received faster than
messages from conversations with a lower priority. Conversations occur between
two services. A service is a named endpoint for a conversation. Each conversation
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is part of a conversation group. Related conversations can be associated with the
same conversation group.

Messages are strongly typed, i.e., each message has a specific type. SQL Server
can optionally validate that messages are well-formed XML, that messages are
empty, or that messages conform to an XML schema. A contract defines the mes-
sage types that are allowable for a conversation, and which participant in the
conversation may send messages of that type. SQL Server provides a default con-
tract and message type for applications that only need a reliable stream.

SQL Server stores messages in internal tables. These tables are not directly
accessible; instead, SQL Server exposes queues as views of those internal tables.
Applications receive messages from a queue. A receive operation returns one or
more messages from the same conversation group. By controlling access to the un-
derlying table, SQL Server can efficiently enforce message ordering, correlation of
related messages, and locking. Because queues are internal tables, queues require
no special treatment for backup, restore, failover, or database mirroring. Both
application tables and the associated, queued messages are backed up, restored,
and failed-over with the database. Broker conversations that exist in mirrored
databases continue where they left off when the mirrored failover is complete —
even if the conversation was between two services that live in separate databases.

The locking granularity for Service Broker operations is the conversation
group rather than a specific conversation or individual messages. By enforcing
locking on the conversation group, Service Broker automatically helps applica-
tions avoid concurrency issues while processing messages. When a queue con-
tains multiple conversations, SQL Server guarantees that only one queue reader
at a time can process messages that belong to a given conversation group. This
eliminates the need for the application itself to include deadlock-avoidance logic
— a common source of errors in many messaging applications. Another nice
side effect of this locking semantic is that applications may choose to use the
conversation group as a key for storing and retrieving application state. These
programming-model benefits are just two examples of the advantages that derive
from the decision to formalize the conversation as the communication primitive
versus the atomic message primitive found in traditional message-queuing sys-
tems.

SQL Server can automatically activate stored procedures when a queue con-
tains messages to be processed. To scale the number of running stored procedures
to the incoming traffic, the activation logic monitors the queue to see if there is
useful work for another queue reader. SQL Server considers both the rate at which
existing readers receive messages and the number of conversation groups avail-
able to decide when to start another queue reader. The stored procedure to be
activated, the security context of the stored procedure, and the maximum number
of instances to be started are configured for an individual queue. SQL Server also
provides an External Activator. This feature allows an application outside of SQL
Server to be activated when new messages are inserted into a queue. The applica-
tion can then receive and process the messages. By doing this, CPU-intensive work
can be offloaded out of SQL Server to an application, possibly in a different com-
puter. Also, long-duration tasks, e.g., invoking a Web service, can be executed
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without tying up database resources. The External Activator follows the same
logic as internal activation, and can be configured to activate multiple instances
of an application when messages accumulate in a queue.

As a logical extension to asynchronous messaging within the instance, Service
Broker also provides reliable messaging between SQL Server instances to allow de-
velopers to easily build distributed applications. Conversations can occur within
a single instance of SQL Server or between two instances of SQL Server. Local and
remote conversations use the same programming model.

Security and routing are configured declaratively, without requiring changes
to the queue readers. SQL Server uses routes to map a service name to the network
address of the other participant in the conversation. SQL Server can also perform
message forwarding and simple load balancing for conversations. SQL Server
provides reliable, exactly once in-order delivery regardless of the number of
instances that a message travels through. A conversation that spans instances of
SQL Server can be secured both at the networking level (point to point) and at the
conversation level (end to end). When end-to-end security is used, the contents
of the message remain encrypted until the message reaches the final destination,
while the headers are available to each SQL Server instance that the message travels
through. Standard SQL Server permissions apply within an instance. Encryption
occurs when messages leave an instance.

SQL Server uses a binary protocol for sending messages between instances.
The protocol fragments large messages and permits interleaved fragments from
multiple messages. Fragmentation allows SQL Server to quickly transmit smaller
messages even in cases where a large message is in the process of being trans-
mitted. The binary protocol does not use distributed transactions or two-phase
commit. Instead, the protocol requires that a recipient acknowledge message
fragments. SQL Server simply retries message fragments periodically until the
fragment is acknowledged by the recipient. Acknowledgments are most often
included as part of the headers of a return message, although dedicated return
messages are used if no return message is available.

SQL Server includes a command line diagnostics tool (ssbdiagnose) to help
analyze a Service Broker deployment and investigate problems. The tool can run
in either configuration or runtime mode. In configuration mode, the tool checks
whether a pair of services can exchange messages and returns any configuration
errors. Examples of these errors are disabled queues and missing return routes.
In the second mode, the tool connects to two or more SQL Server instances and
monitors SQL Profiler events to discover Service Broker problems at runtime. The
tool output can be sent into a file for automated processing.

30.13 Business Intelligence

The business intelligence component of SQL Server contains three subcomponents:

• SQL Server Integration Services (SSIS), which provides the means to integrate
data from multiple sources, performs transformations related to cleaning the
data and bringing it to a common form, and loading the data into a database
system.
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• SQL Server Analysis Services (SSAS), which provides OLAP and data-mining
capabilities.

• SQL Server Reporting Services (SSRS).

Integration Services, Analysis Services, and Reporting Services are each im-
plemented in separate servers and can be installed independently from one an-
other on the same or different machines. They can connect to a variety of data
sources, such as flat files, spreadsheets, or a variety of relational database systems,
through native connectors, OLE-DB, or ODBC drivers.

Together they provide an end-to-end solution for extracting, transforming,
and loading data, then modeling and adding analytical capability to the data,
and finally building and distributing reports on the data. The different Business
Intelligence components of SQL Server can integrate and leverage each others’
capability. Here are a few common scenarios that will leverage a combination of
components:

• Build an SSIS package that cleanses data, using patterns generated by SSAS
data mining.

• Use SSIS to load data to an SSAS cube, process it, and execute reports against
the SSAS cube.

• Build an SSRS report to publish the findings of a mining model or the data
contained in an SSAS OLAP component.

The following sections give an overview of the capabilities and architecture
of each of these server components.

30.13.1 SQL Server Integration Services

Microsoft SQL Server Integration Services (SSIS) is an enterprise data transfor-
mation and data integration solution that you can use to extract, transform, ag-
gregate, and consolidate data from disparate sources and move it to single or
multiple destinations. You can use SSIS to perform the following tasks:

• Merge data from heterogeneous data stores.

• Refresh data in data warehouses and data marts.

• Cleanse data before loading it into destinations.

• Bulk-load data into online transaction processing (OLTP) and online analytical
processing (OLAP) databases.

• Send notifications.

• Build business intelligence into a data transformation process.

• Automate administrative functions.
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SSIS provides a complete set of services, graphical tools, programmable objects,
and APIs for the above tasks. These provide the ability to build large, robust,
and complex data transformation solutions without any custom programming.
However, an API and programmable objects are available when they are needed to
create custom elements or integrate data transformation capabilities into custom
applications.

The SSIS data-flow engine provides the in-memory buffers that move data
from source to destination and calls the source adapters that extract data from
files and relational databases. The engine also provides the transformations that
modify data and the destination adapters that load data into data stores. Duplicate
elimination based on fuzzy (approximate) match is an example of a transforma-
tion provided by SSIS. Users can program their own transformations if required.
Figure 30.7 shows an example of how various transformations can be combined
to cleanse and load book sales information; the book titles from the sales data

Figure 30.7 Loading of data by using fuzzy lookup.
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are matched against a publications database, and in case there is no match, fuzzy
lookup is performed to handle titles with minor errors (such as spelling errors).
Information about confidence and data lineage is stored with the cleansed data.

30.13.2 SQL Server Analysis Services

The Analysis Services component delivers online analytical processing (OLAP)
and data-mining functionality for business intelligence applications. Analysis
Services supports a thin client architecture. The calculation engine is on the server,
so queries are resolved on the server, avoiding the need to transfer large amounts
of data between the client and the server.

30.13.2.1 SQL Server Analysis Services: OLAP

Analysis Services utilizes a Unified Dimensional Model (UDM), which bridges
the gap between traditional relational reporting and OLAP ad hoc analysis. The
role of a Unified Dimensional Model (UDM) is to provide a bridge between the
user and the data sources. A UDM is constructed over one or more physical data
sources, and then the end user issues queries against the UDM, using one of a
variety of client tools, such as Microsoft Excel.

More than simply a dimension modeling layer of the DataSource schemas, the
UDM provides a rich environment for defining powerful yet exhaustive business
logic, rules, and semantic definition. Users can browse and generate reports on
the UDM data in their native language (for example, French or Hindi) by defining
local language translation of the metadata catalog as well as the dimensional
data. Analysis Server defines complex time dimensions (fiscal, reporting, manu-
facturing, etc.), and enables the definition of powerful multidimensional business
logic (year-to-year growth, year-to-date) using the multidimensional expression
(MDX) language. The UDM allows users to define business-oriented perspectives,
each one presenting only a specific subset of the model (measures, dimensions,
attributes, business rules, and so forth) that is relevant to a particular group of
users. Businesses often define key performance indicators (KPIs) that are impor-
tant metrics used to measure the health of the business. Examples of such KPIs
include sales, revenue per employee, and customer retention rate. The UDM al-
lows such KPIs to be defined, enabling a much more understandable grouping
and presentation of data.

30.13.2.2 SQL Server Analysis Services: Data Mining

SQL Server provides a variety of mining techniques, with a rich graphical interface
to view mining results. Mining algorithms supported include:

• Association rules (useful for cross-sales applications).

• Classification and prediction techniques such as decision trees, regression
trees, neural networks, and naive Bayes.

• Time series forecasting techniques including ARIMA and ARTXP.
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• Clustering techniques such as expectation maximization and K-means (cou-
pled with techniques for sequence clustering).

In addition, SQL Server provides an extensible architecture for plugging in
third-party data mining algorithms and visualizers.

SQL Server also supports the Data-Mining Extensions (DMX) extensions for
SQL. DMX is the language used to interact with data-mining models just as SQL
is used to interact with tables and views. With DMX, models can be created and
trained and then stored in an Analysis Services database. The model can then
be browsed to look at patterns or, by using a special prediction join syntax,
applied against new data to perform predictions. The DMX language supports
functions and constructs to easily determine a predicted class along with its
confidence, predict a list of associated items as in a recommendation engine, or
even return information and supporting facts about a prediction. Data mining
in SQL Server can be used against data stored in relational or multidimensional
data sources. Other data sources are supported as well through specialized tasks
and transforms, allowing data mining directly in the operational data pipeline of
Integration Services. Data-mining results can be exposed in graphical controls,
special data-mining dimensions for OLAP cubes, or simply in Reporting Services
reports.

30.13.3 SQL Server Reporting Services

Reporting Services is a server-based reporting platform that can be used to create
and manage tabular, matrix, graphical, and free-form reports that contain data
from relational and multidimensional data sources. The reports that you create
can be viewed and managed over a Web-based connection. Matrix reports can
summarize data for high-level reviews, while providing supporting detail in
drilldown reports. Parameterized reports can be used to filter data on the basis of
values that are provided at runtime. Users can choose from a variety of viewing
formats to render reports on the fly in preferred formats for data manipulation
or printing. An API is also available to extend or integrate report capabilities
into custom solutions. Server-based reporting provides a way to centralize report
storage and management, set policies and secure access to reports and folders,
control how reports are processed and distributed, and standardize how reports
are used in your business.

Bibliographical Notes

Detailed information about using a C2 certified system with SQL Server is available
at www.microsoft.com/Downloads/Release.asp?ReleaseID=25503.

SQL Server’s optimization framework is based on the Cascades optimizer
prototype, which Graefe [1995] proposed. Simmen et al. [1996] discusses the
scheme for reducing grouping columns. Galindo-Legaria and Joshi [2001] and
Elhemali et al. [2007] present the variety of execution strategies that SQL Server
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considers for cost-based optimization of subqueries. Additional information on
the self-tuning aspects of SQL Server are discussed by Chaudhuri et al. [1999].
Chaudhuri and Shim [1994] and Yan and Larson [1995] discuss reordering of
aggregation operations.

Chatziantoniou and Ross [1997] and Galindo-Legaria and Joshi [2001] pro-
posed the alternative used by SQL Server for SQL queries requiring a self-join.
Under this scheme, the optimizer detects the pattern and considers per-segment
execution. Pellenkoft et al. [1997] discusses the optimization scheme for generat-
ing the complete search space using a set of transformations that are complete,
local and nonredundant. Graefe et al. [1998] offers discussion concerning hash
operations that support basic aggregation and join, with a number of optimiza-
tions, extensions, and dynamic tuning for data skew. Graefe et al. [1998] presents
the idea of joining indices for the sole purpose of assembling a row with the set of
columns needed on a query. It argues that this sometimes is faster than scanning
a base table.

Blakeley [1996] and Blakeley and Pizzo [2001] offer discussions concerning
communication with the storage engine through OLE-DB. Blakeley et al. [2005] de-
tails the implementation of the distributed and heterogeneous query capabilities
of SQL Server. Acheson et al. [2004] provides details on the integration of the .NET
CLR inside the SQL Server process.

Blakeley et al. [2008] describes the contracts for UDTs, UDAggs, and UDFs
in more detail. Blakeley et al. [2006] describes the ADO.NET Entity Framework.
Melnik et al. [2007] describes the mapping technology behind the ADO.NET En-
tity Framework. Adya et al. [2007] provides an overview of the ADO.NET Entity
Framework architecture. The SQL:2003 standard is defined in SQL/XML [2004].
Rys [2001] provides more details on the SQL Server 2000 XML functionality. Rys
[2004] provides an overview of the extensions to the for xml aggregation. For
information on XML capabilities that can be used on the client side or inside
CLR, refer to the collection of white papers at http://msdn.microsoft.com/XML/Building-
XML/XMLandDatabase/default.aspx. The XQuery 1.0/XPath 2.0 data model is defined
in Walsh et al. [2007]. Rys [2003] provides an overview of implementation tech-
niques for XQuery in the context of relational databases. The OrdPath numbering
scheme is described in O’Neil et al. [2004]; Pal et al. [2004] and Baras et al. [2005]
provide more information on XML indexing and XQuery algebraization and opti-
mization in SQL Server 2005.



PART 10

APPENDICES
Appendix A presents the full details of the university database that we have used
as our running example, including an E-R diagram, SQL DDL, and sample data that
we have used throughout the book. (The DDL and sample data are also available
on the Web site of the book, db-book.com, for use in laboratory exercises.)

The remaining appendices are not part of the printed book, but are available online
on the Web site of the book, db-book.com. These include:

• Appendix B (Advanced Relational Database Design), first covers the theory
of multivalued dependencies; recall that multivalued dependencies were
introduced in Chapter 8. The project-join normal form, which is based on a
type of constraint called join dependency is presented next; join dependencies
are a generalization of multivalued dependencies. The chapter concludes
with another normal form called the domain-key normal form.

• Appendix C (Other Relational Query Languages) first presents the relational
query language Query-by-Example (QBE), which was designed to be used by
non-programmers. In QBE, queries look like a collection of tables containing
an example of data to be retrieved. The graphical query language of Microsoft
Access, which is based on QBE, is presented next, followed by the Datalog
language, which has a syntax modeled after the logic-programming language
Prolog.

• Appendix D (Network Model), and Appendix E (Hierarchical Model), cover
the network and hierarchical data models. Both these data models predate
the relational model, and provide a level of abstraction that is lower than the
relational model. They abstract away some, but not all, details of the actual
data structures used to store data on disks. These models are only used in a
few legacy applications.

For appendices B through E, we illsutrate our concepts using a bank enterprise
with the schema shown in Figure 2.15.
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A P P E N D I X A
Detailed University Schema

In this appendix, we present the full details of our running-example university
database. In Section A.1 we present the full schema as used in the text and the E-R
diagram that corresponds to that schema. In Section A.2 we present a relatively
complete SQL data definition for our running university example. Besides listing
a datatype for each attribute, we include a substantial number of constraints.
Finally, in Section A.3 we present sample data that correspond to our schema.
SQL scripts to create all the relations in the schema, and to populate them with
sample data, are available on the Web site of the book, db-book.com.

A.1 Full Schema

The full schema of the University database as used in the text is shown in Fig-
ure A.1. The E-R diagram that corresponds to that schema, and used throughout
the text, is shown in Figure A.2.

classroom(building, room number, capacity)
department(dept name, building, budget)
course(course id, title, dept name, credits)
instructor(ID, name, dept name, salary)
section(course id, sec id, semester, year, building, room number, time slot id)
teaches(ID, course id, sec id, semester, year)
student(ID, name, dept name, tot cred)
takes(ID, course id, sec id, semester, year, grade)
advisor(s ID, i ID)
time slot(time slot id, day, start time, end time)
prereq(course id, prereq id)

Figure A.1 Schema of the University database.
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time_slotcourse

student
ID
name
salary

ID
name
tot_cred

course_id
title
credits

time_slot_id
{ day

start_time
end_time

}
course_id prereq_id

advisor

teaches takes

sec_course sec_time_slot

grade

prereq

inst_dept stud_dept

instructor

department
dept_name
building
budget

section
sec_id
semester
year

course_dept

sec_class

classroom
building
room_number
capacity

Figure A.2 E-R diagram for a university enterprise.

A.2 DDL

In this section, we present a relatively complete SQL data definition for our exam-
ple. Besides listing a datatype for each attribute, we include a substantial number
of constraints.

create table classroom
(building varchar (15),
room number varchar (7),
capacity numeric (4,0),
primary key (building, room number));
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create table department
(dept name varchar (20),
building varchar (15),
budget numeric (12,2) check (budget > 0),
primary key (dept name));

create table course
(course id varchar (8),
title varchar (50),
dept name varchar (20),
credits numeric (2,0) check (credits > 0),
primary key (course id),
foreign key (dept name) references department

on delete set null);

create table instructor
(ID varchar (5),
name varchar (20) not null,
dept name varchar (20),
salary numeric (8,2) check (salary > 29000),
primary key (ID),
foreign key (dept name) references department

on delete set null);

create table section
(course id varchar (8),
sec id varchar (8),
semester varchar (6) check (semester in

(’Fall’, ’Winter’, ’Spring’, ’Summer’)),
year numeric (4,0) check (year > 1701 and year < 2100),
building varchar (15),
room number varchar (7),
time slot id varchar (4),
primary key (course id, sec id, semester, year),
foreign key (course id) references course

on delete cascade,
foreign key (building, room number) references classroom

on delete set null);

In the above DDL we add the on delete cascade specification to a foreign
key constraint if the existence of the tuple depends on the referenced tuple. For
example we add the on delete cascade specification to the foreign key constraint
from section (which was generated from weak entity section), to course (which was
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its identifying relationship). In other foreign key constraints we either specify
on delete set null, which allows deletion of a referenced tuple by setting the
referencing value to null, or do not add any specification, which prevents the
deletion of any referenced tuple. For example, if a department is deleted, we
would not wish to delete associated instructors; the foreign key constraint from
instructor to department instead sets the dept name attribute to null. On the other
hand, the foreign key constraint for the prereq relation, shown later, prevents the
deletion of a course that is required as a prerequisite for another course. For the
advisor relation, shown later, we allow i ID to be set to null if an instructor is
deleted, but delete an advisor tuple if the referenced student is deleted.

create table teaches
(ID varchar (5),
course id varchar (8),
sec id varchar (8),
semester varchar (6),
year numeric (4,0),
primary key (ID, course id, sec id, semester, year),
foreign key (course id, sec id, semester, year) references section

on delete cascade,
foreign key (ID) references instructor

on delete cascade);

create table student
(ID varchar (5),
name varchar (20) not null,
dept name varchar (20),
tot cred numeric (3,0) check (tot cred >= 0),
primary key (ID),
foreign key (dept name) references department

on delete set null);

create table takes
(ID varchar (5),
course id varchar (8),
sec id varchar (8),
semester varchar (6),
year numeric (4,0),
grade varchar (2),
primary key (ID, course id, sec id, semester, year),
foreign key (course id, sec id, semester, year) references section

on delete cascade,
foreign key (ID) references student

on delete cascade);
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create table advisor
(s ID varchar (5),
i ID varchar (5),
primary key (s ID),
foreign key (i ID) references instructor (ID)

on delete set null,
foreign key (s ID) references student (ID)

on delete cascade);

create table prereq
(course id varchar(8),
prereq id varchar(8),
primary key (course id, prereq id),
foreign key (course id) references course

on delete cascade,
foreign key (prereq id) references course);

The following create table statement for the table time slot can be run on most
database systems, but does not work on Oracle (at least as of Oracle version 11),
since Oracle does not support the SQL standard type time.

create table timeslot
(time slot id varchar (4),
day varchar (1) check (day in (’M’, ’T’, ’W’, ’R’, ’F’, ’S’, ’U’)),
start time time,
end time time,
primary key (time slot id, day, start time));

The syntax for specifying time in SQL is illustrated by these examples: ’08:30’,
’13:55’, and ’5:30 PM’. Since Oracle does not support the time type, for Oracle we
use the following schema instead:

create table timeslot
(time slot id varchar (4),
day varchar (1),
start hr numeric (2) check (start hr >= 0 and end hr < 24),
start min numeric (2) check (start min >= 0 and start min < 60),
end hr numeric (2) check (end hr >= 0 and end hr < 24),
end min numeric (2) check (end min >= 0 and end min < 60),
primary key (time slot id, day, start hr, start min));

The difference is that start time has been replaced by two attributes start hr
and start min, and similarly end time has been replaced by attributes end hr and
end min. These attributes also have constraints that ensure that only numbers
representing valid time values appear in those attributes. This version of the
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schema for time slot works on all databases, including Oracle. Note that although
Oracle supports the datetime datatype, datetime includes a specific day, month,
and year as well as a time, and is not appropriate here since we want only a
time. There are two alternatives to splitting the time attributes into an hour and
a minute component, but neither is desirable. The first alternative is to use a
varchar type, but that makes it hard to enforce validity constraints on the string
as well as to perform comparison on time. The second alternative is to encode
time as an integer representing a number of minutes (or seconds) from midnight,
but this alternative requires extra code with each query to covert values between
the standard time representation and the integer encoding. We therefore chose
the two-part solution.

A.3 Sample Data

In this section we provide sample data for each of the relations defined in the
previous section.

building room number capacity

Packard 101 500
Painter 514 10
Taylor 3128 70
Watson 100 30
Watson 120 50

Figure A.3 The classroom relation.

dept name building budget

Biology Watson 90000
Comp. Sci. Taylor 100000
Elec. Eng. Taylor 85000
Finance Painter 120000
History Painter 50000
Music Packard 80000
Physics Watson 70000

Figure A.4 The department relation.
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course id title dept name credits

BIO-101 Intro. to Biology Biology 4
BIO-301 Genetics Biology 4
BIO-399 Computational Biology Biology 3
CS-101 Intro. to Computer Science Comp. Sci. 4
CS-190 Game Design Comp. Sci. 4
CS-315 Robotics Comp. Sci. 3
CS-319 Image Processing Comp. Sci. 3
CS-347 Database System Concepts Comp. Sci. 3
EE-181 Intro. to Digital Systems Elec. Eng. 3
FIN-201 Investment Banking Finance 3
HIS-351 World History History 3
MU-199 Music Video Production Music 3
PHY-101 Physical Principles Physics 4

Figure A.5 The course relation.

ID name dept name salary

10101 Srinivasan Comp. Sci. 65000
12121 Wu Finance 90000
15151 Mozart Music 40000
22222 Einstein Physics 95000
32343 El Said History 60000
33456 Gold Physics 87000
45565 Katz Comp. Sci. 75000
58583 Califieri History 62000
76543 Singh Finance 80000
76766 Crick Biology 72000
83821 Brandt Comp. Sci. 92000
98345 Kim Elec. Eng. 80000

Figure A.6 The instructor relation.
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course id sec id semester year building room number time slot id

BIO-101 1 Summer 2009 Painter 514 B
BIO-301 1 Summer 2010 Painter 514 A
CS-101 1 Fall 2009 Packard 101 H
CS-101 1 Spring 2010 Packard 101 F
CS-190 1 Spring 2009 Taylor 3128 E
CS-190 2 Spring 2009 Taylor 3128 A
CS-315 1 Spring 2010 Watson 120 D
CS-319 1 Spring 2010 Watson 100 B
CS-319 2 Spring 2010 Taylor 3128 C
CS-347 1 Fall 2009 Taylor 3128 A
EE-181 1 Spring 2009 Taylor 3128 C
FIN-201 1 Spring 2010 Packard 101 B
HIS-351 1 Spring 2010 Painter 514 C
MU-199 1 Spring 2010 Packard 101 D
PHY-101 1 Fall 2009 Watson 100 A

Figure A.7 The section relation.

ID course id sec id semester year

10101 CS-101 1 Fall 2009
10101 CS-315 1 Spring 2010
10101 CS-347 1 Fall 2009
12121 FIN-201 1 Spring 2010
15151 MU-199 1 Spring 2010
22222 PHY-101 1 Fall 2009
32343 HIS-351 1 Spring 2010
45565 CS-101 1 Spring 2010
45565 CS-319 1 Spring 2010
76766 BIO-101 1 Summer 2009
76766 BIO-301 1 Summer 2010
83821 CS-190 1 Spring 2009
83821 CS-190 2 Spring 2009
83821 CS-319 2 Spring 2010
98345 EE-181 1 Spring 2009

Figure A.8 The teaches relation.



A.3 Sample Data 1279

ID name dept name tot cred

00128 Zhang Comp. Sci. 102
12345 Shankar Comp. Sci. 32
19991 Brandt History 80
23121 Chavez Finance 110
44553 Peltier Physics 56
45678 Levy Physics 46
54321 Williams Comp. Sci. 54
55739 Sanchez Music 38
70557 Snow Physics 0
76543 Brown Comp. Sci. 58
76653 Aoi Elec. Eng. 60
98765 Bourikas Elec. Eng. 98
98988 Tanaka Biology 120

Figure A.9 The student relation.

ID course id sec id semester year grade

00128 CS-101 1 Fall 2009 A
00128 CS-347 1 Fall 2009 A-
12345 CS-101 1 Fall 2009 C
12345 CS-190 2 Spring 2009 A
12345 CS-315 1 Spring 2010 A
12345 CS-347 1 Fall 2009 A
19991 HIS-351 1 Spring 2010 B
23121 FIN-201 1 Spring 2010 C+
44553 PHY-101 1 Fall 2009 B-
45678 CS-101 1 Fall 2009 F
45678 CS-101 1 Spring 2010 B+
45678 CS-319 1 Spring 2010 B
54321 CS-101 1 Fall 2009 A-
54321 CS-190 2 Spring 2009 B+
55739 MU-199 1 Spring 2010 A-
76543 CS-101 1 Fall 2009 A
76543 CS-319 2 Spring 2010 A
76653 EE-181 1 Spring 2009 C
98765 CS-101 1 Fall 2009 C-
98765 CS-315 1 Spring 2010 B
98988 BIO-101 1 Summer 2009 A
98988 BIO-301 1 Summer 2010 null

Figure A.10 The takes relation.
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s id i id

00128 45565
12345 10101
23121 76543
44553 22222
45678 22222
76543 45565
76653 98345
98765 98345
98988 76766

Figure A.11 The advisor relation.

time slot id day start time end time

A M 8:00 8:50
A W 8:00 8:50
A F 8:00 8:50
B M 9:00 9:50
B W 9:00 9:50
B F 9:00 9:50
C M 11:00 11:50
C W 11:00 11:50
C F 11:00 11:50
D M 13:00 13:50
D W 13:00 13:50
D F 13:00 13:50
E T 10:30 11:45
E R 10:30 11:45
F T 14:30 15:45
F R 14:30 15:45
G M 16:00 16:50
G W 16:00 16:50
G F 16:00 16:50
H W 10:00 12:30

Figure A.12 The time slot relation.
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course id prereq id

BIO-301 BIO-101
BIO-399 BIO-101
CS-190 CS-101
CS-315 CS-101
CS-319 CS-101
CS-347 CS-101
EE-181 PHY-101

Figure A.13 The prereq relation.

time slot id day start hr start min end hr end min
A M 8 0 8 50
A W 8 0 8 50
A F 8 0 8 50
B M 9 0 9 50
B W 9 0 9 50
B F 9 0 9 50
C M 11 0 11 50
C W 11 0 11 50
C F 11 0 11 50
D M 13 0 13 50
D W 13 0 13 50
D F 13 0 13 50
E T 10 30 11 45
E R 10 30 11 45
F T 14 30 15 45
F R 14 30 15 45
G M 16 0 16 50
G W 16 0 16 50
G F 16 0 16 50
H W 10 0 12 30

Figure A.14 The time slot relation with start and end time separated into hour and minute.
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concurrency control)

distributed, 825-878, 1188
dumping and, 743-744
file-processing system and,

3-6
force output and, 725-726
history of, 29-31
indexing and, 475-531 (see

also indices)
information retrieval and,

915-937
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locks and, 661-679 (see also
locks)

main-memory, 1105-1108
mobile, 1079-1085
modification and, 98-103,

728-729
multimedia, 1076-1079
normalization and, 18-20
parallel, 797-820
personal, 1079-1085
recovery systems and, 631,

633, 721-761 (see also
recovery systems)

storage and, 20-22, 427 (see
also storage)

time in, 1062-1064
databases administrator (DBA),

28-29, 149, 1152,
1214-1215, 1243

database schemas. See schemas
Database Task Group, 1052
database writer process, 773
data cleansing, 890
data cube, 200, 206-210
data-definition language

(DDL), 9-12, 14, 32
authorization and, 58
basic types and, 59-60
concurrency control and,

1144-145
dumping and, 743-744
IBM DB2 and, 1194-1197, 1204
indices and, 58
integrity and, 58
Microsoft SQL Server and,

1225, 1228-1233, 1245,
1253, 1256, 1261

Oracle and, 1162, 1181
PostgreSQL and, 1144-1145,

1150
querying and, 21-22
schema definition and, 28, 58,

60-63
security and, 58
set of relations in, 58-61
SQL basics and, 57-63, 104
storage and, 58

data dictionary, 12, 21, 462-464
Data Encryption Standard

(DES), 413
DataGrid control, 398
data guard, 1183
data inconsistency. See

consistency
data isolation, See isolation

DATAllegro, 816
Datalog, 37
data-manipulation language

(DML), 12-14
authorization and, 143
compiler and, 21-22
concurrency control and,

1138-1139, 1145
declarative, 10
defined, 10, 32
host language and, 15
Microsoft SQL Server and,

1231-1233, 1245, 1261
Oracle and, 1161-1162, 1165,

1181
PostgreSQL and, 1137-1138
precompiler and, 15
procedural/nonprocedural,

10
querying and, 21-22
snapshot isolation and, 1137

(see also snapshot
isolation)

storage manager and, 20-21
triggers and, 1161-1162

data mediation, 1018-1019
data mining, 25-26, 33, 771-772,

887-889
association rules and, 904-907
best splits and, 897-899
classification and, 894-904
clusters and, 894, 907-908
data-visualization, 909
defined, 893
descriptive patterns and, 894
entropy measure and, 897
Gini measure and, 897
information gain and, 897-898
Microsoft SQL Server and,

1266-1267
Oracle and, 1191
prediction and, 894-904
purity and, 897
rules for, 893-894
text, 908

data models. See specific model
data parallelism, 805
data server systems, 773,

775-777, 782
data storage and definition

language, 11
data striping, 444
data-transfer rate, 435-436
data types. See types

data warehouses, 888
column-oriented storage and,

892-893
components of, 889-891
deduplication and, 890-891
defined, 889
fact tables and, 891-892
householding and, 891
IBM DB2 and, 1194, 1221-1222
materialized views and,

1171-1172
merger-purge operation and,

890-891
Microsoft SQL Server and,

1264
Oracle and, 1158, 1162,

1169-1172, 1178, 1189
transformations and, 891
updates and, 891

Data Encryption Standard
(DES), 413

datetime, 201
DB-Lib, 1249
deadlines, 1108-1109
deadlocks

consistency and, 665-666
distributed databases and,

839, 841, 844-847
handling of, 674-679
IBM DB2 and, 1217-1220
long-duration transactions

and, 1110-1111
Microsoft SQL Server and,

1243-1244, 1246
PostgreSQL and, 1143-1145
prevention of, 675-676
rollback and, 678-679
starvation and, 679
victim selection and, 678
wait-for graph and, 676-677,

676-678
decision support, 1047
decision-support queries, 797
decision-support systems,

887-891
decision-tree classifiers, 895-900
declare, 175-178
decode, 208
decomposition

algorithms for, 348-355
Boyce-Codd normal form

and, 333-336, 349-355
dependency preservation

and, 334-336
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fourth normal form and,
358-360

functional dependencies and,
329-338, 355-360

higher normal forms and,
337-338

keys and, 330-333
lossless, 345-346
lossless-join, 345-346
lossy, 345-346
multivalued dependencies

and, 355-360
relational database design

and, 329-338, 348-360
third normal form and,

336-337, 352-355
decomposition rule, 339
DEC Rdb, 30
deduplication, 890-891
Deep Web crawlers, 931
default values, 133, 137, 140,

144, 425, 899, 952,
991-992, 996, 1128

deferred integrity constraints,
134

degree-two consistency, 701-702
deletion, 61, 63, 98-100, 102, 161

concurrency control and,
697-701

EXEC SQL and, 171
hashing and, 510, 513, 516, 523
integrity constraints and, 133
PostgreSQL and, 1130-1131
privileges and, 143-145
transactions and, 629, 653
triggers and, 183
views and, 125

delta relation, 186
demand-driven pipelining,

569-570
denormalization, 363-364
dependency preservation,

334-336, 346-348
desc, 77-78
descriptive attributes. See

attributes
descriptive patterns, 894
deviation, 215, 906-907
dicing, 201
dictionary attacks, 414
digital certificates, 416-417
digital signatures, 416
direct-access storage, 431
directories, 935-937

directory information tree
(DIT), 872-875

directory systems, 870-875
dirty blocks, 741
dirty page table, 750-756,

1244-1245
dirty read, 1137, 1181
dirty writes, 649
disable trigger, 185
disconnected operation,

395-396
disjoint entity sets, 300
disjoint specialization, 296-297
disjunction, 545-546, 594
disk-arm-scheduling, 437
disk controller, 434
distinct types, 84-86, 138-141
distinguished name (DN), 872
distributed databases, 876-878

availability and, 847-853
cloud-based, 861-870
commit protocols and,

832-838
concurrency control and,

835-836, 839-847
deadlock handling and,

844-847
directory systems and,

870-875
failure and, 831-835
fragmentation and, 826-829
heterogeneous, 825-826,

857-861
homogeneous, 825-826
joins and, 855-857
locks and, 839-847
partitions and, 835
persistent messaging and,

836-838
query processing and, 854-860
recovery and, 835-836
replication and, 826, 829,

843-844
storage and, 826-830
timestamps and, 842-843
transparency and, 829-830
unified view of data and,

858-859
distributed-lock manager, 840
distributed systems

autonomy and, 785
availability and, 785
example of, 786
global transactions and, 784

greater potential for bugs in,
787-788

implementation and, 786-788
increased processing

overhead of, 788
local transactions and, 784
nodes and, 784
ready state and, 787
replication and, 785
sharing data and, 785
sites and, 784
software-development cost

and, 787
two-phase commit protocol

(2PC) and, 786-788
distributor, 1252
divisive clustering, 907-908
Document Object Model

(DOM), 390
document type definition

(DTD), 990-994
domain, 42
domain constraints, 11
domain-key normal form

(DKNF), 360
domain relational calculus, 249

example queries, 246-247
expressive power of

languages, 248
formal definition, 245
safety of expressions, 247-248

double-pipelined hash-join,
571-572

drill down, 201
Driver-Manager class, 160
drop index, 529
drop table, 63, 164
drop trigger, 185
drop type, 140
dumping, 743-744
duplicate elimination, 563-564
durability, 22-23, 104, 625,

630-631
defined, 628
distributed transactions and,

830-832
one-safe, 758
remote backup systems and,

758
storage structure and, 632-633
two-safe, 758
two-very-safe, 758

dynamic SQL, 58, 158, 175

e-catalogs, 1103
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Eclipse, 386
E-commerce, 1102-1105
efficiency, 6-8
election algorithms, 851-852
embedded SQL, 58, 158, 169-173
empty relations, 93-94
encryption

Advanced Encryption
Standard (AES), 412-413

applications of, 411-417
asymmetric-key, 412
authentication and, 415-417
challenge-response system

and, 415
database support and, 414-415
dictionary attacks and, 414
digital certificates and,

416-417
digital signatures and, 416
nonrepudiation and, 416
Oracle and, 1165-1166
prime numbers and, 413
public-key, 412-414
Rijndael algorithm and,

412-413
techniques of, 412-414

end-user information, 407-408
enterprise information, 1-2
Entity Data Model, 395
entity-relationship (E-R)

diagram, 17-18
alternative notations for,

304-310
basic structure of, 274-275
complex attributes, 277-278
entity sets and, 279-281
generalization and, 298
identifying relationship and,

280
mapping cardinality, 276
nonbinary relationship sets,

278-279
relationship sets, 278-279
roles, 278
university enterprise

example, 282-283
weak entity sets, 279-281

entity-relationship (E-R)
model, 9, 17-18, 259,
313-314, 963

aggregation and, 301-302, 304
alternative modeling data

notations and, 304-310
atomic domains and, 327-329

attributes and, 263, 267-269,
290-291, 294-295, 298-299,
327-329

complex data types and,
946-947

constraints and, 269-272
design issues and, 290-295
enterprise schema and, 262
entity sets and, 262-267,

272-274, 279-286, 290-291,
296-298

extended features, 295-304
generalization and, 297-304
normalization and, 361-362
object-oriented data model

and, 27
reduction to relational

schemas and, 283-290
redundancy and, 272-274
relationship sets and, 264-267,

286-290, 291-295, 296-297
specialization and, 295-297
Unified Modeling Language

(UML) and, 308-310
entity sets

alternative notations for,
304-310

attributes and, 263, 284-285,
290-291

condition-defined, 299
defined, 262-263
design issues and, 290-292
disjoint, 299
extension of, 263
generalization and, 297-304
identifying relationship and,

280
overlapping, 299
properties of, 262-264
relationship sets and, 264-267,

291-292
removing redundancy in,

272-274
role of, 264-265
simple attributes and, 283-284
strong, 283-285
subclass, 298
superclass, 298
superclass-subclass

relationship and, 296-297
Unified Modeling Language

(UML) and, 308-310
user-defined, 299
weak, 279-281, 285-286

Entity SQL, 395

enterprise resource planning
(ERP) systems, 1101

entropy measure, 897-898
equi-joins, 549-559, 563, 566,

571, 807, 819
equivalence

cost analysis and, 601-602
join ordering and, 588-589
relational algebra and,

582-590
transformation examples for,

586-588
error-correcting code (ECC)

organization, 444-445
ERWin, 1194
escape, 77
evaluation primitive, 539
every clause, 90
except clause, 82-83, 93, 188
exchange system, 1104
exclusive-mode locks, 661
EXEC SQL, 169-173
execute, 147
existence bitmap, 526-527
exists clause, 93
extensibility contracts,

1256-1258
external language routines,

179-180
external sort-merge algorithm,

548-549

Facebook, 31, 862
factorials, 639
fact tables, 891-892
fail-stop assumption, 722
false cycles, 846-847
false drops, 929
false negatives, 903, 929-930
false positives, 903, 929-930
false value, 90, 208
fanout, 487
fetching, 21, 138, 906, 1078, 1097

advanced SQL and, 161,
166-173, 176, 180, 194

application design and,
389-397, 1030, 1038

IBM DB2 and, 1199, 1202,
1209, 1211, 1219

information retrieval and,
921, 929, 936 (see also
information retrieval)

Microsoft SQL Server and,
1241, 1251
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object-based databases and,
965, 969-972

PostgreSQL and, 1137, 1146,
1151, 1153

storage and, 437, 439, 444 (see
also storage)

Web crawlers and, 930-931
Fibre Channel interface, 434,

436
fifth normal forms, 360
file header, 454
file manager, 21
file organization, 3-4. See also

storage
B+-trees and, 500-502
blobs, 138, 166, 457, 502, 1013,

1198-1199, 1259
block-access time and, 438
clobs, 138, 166, 457, 502,

1010-1013, 1196-1199
fixed-length records and,

452-454
hashing, 457
heap file, 457
indexing and, 475 (see also

indices)
journaling systems and, 439
multitable clustering and, 458,

460-462
pointers and, 454
security and, 5-6 (see also

security)
sequential, 457-459
structured, 451-468
system structure and, 451-452
variable-length records and,

454-457
file scan, 541-544, 550, 552, 570
final/not final expressions, 949,

953
fine-granularity parallelism,

771
FireWire interface, 434
first committer wins, 692-693
first updater wins, 693
flash storage, 403

B+-trees and, 506
cost of, 439
erase speed and, 440
hybrid disk drives and,

440-441
NAND, 430, 439-440
NOR, 430, 439

flash translation layer, 440
floppy disks, 430

flow-distinct, 1240-1241
FLWOR (for, let, where, order

by, return) expressions,
1002-1003

forced output, 465, 725-726
force policy, 739-740
for each row clause, 181-184
for each statement clause, 68,

183
foreign keys, 46, 61-62, 131-133
fourth normal forms, 356,

358-360
fragmentation, 827-829
free space control record

(FSCR), 1202
from statement

aggregate functions and,
84-90

basic SQL queries and, 63-74
on multiple relations, 66-71
natural join and, 71-74
null values and, 83-84
rename operation and, 74-75
set operations and, 79-83
on single relation, 63-66
string operations and, 76-79
subqueries and, 95-96

full outer joins, 117-120,
233-234, 565-566

functional dependencies, 18,
129

attribute set closure and,
340-342

augmentation rule and, 339
BCNF algorithm and, 349-352
Boyce-Codd normal form

and, 333-336
canonical cover and, 342-345
closure of a set, 338-340
decomposition rule, 339
dependency preservation

and, 334-336, 346-348
extraneous, 342
higher normal forms and,

337-338
keys and, 330-333
lossless decomposition and,

345-346
multivalued, 355-360
pseudotransitivity rule, 339
reflexivity rule and, 339
theory of, 338-348
third normal form and,

336-337, 352-355
transitivity rule and, 339

union rule, 339
functionally determined

attributes, 340-342
function-based indices,

1167-1168
functions. See also specific

function
declaring, 174-175
external language routines

and, 179-180
IBM DB2 and, 1197-1198
language constructs for,

176-179
polymorphic, 1128-1129
PostgreSQL, 1133-1135
state transition, 1134
syntax and, 173-174, 178
writing in SQL, 173-180
XML and, 1006-1007

fuzzy checkpoints, 742-743,
750-752

generalization
aggregation and, 301-302
attribute inheritance and,

298-299
bottom-up design and, 297
condition-defined, 299
constraints on, 299-301
disjoint, 300
entity-relationship (E-R)

model and, 297-304
overlapping, 300
partial, 300
representation of, 302-304
subclass set and, 298
superclass set and, 298
top-down design and, 297
total, 300
user-defined, 299

Generalized Inverted Index
(GIN), 1149

generalized-projection, 235
Generalized Search Tree

(GiST), 1148-1149
geographic data, 1061

applications of, 1068
information systems and,

1065
raster data and, 1069
representations of, 1065-1066,

1069-1070
spatial queries and, 1070-1071
vector data and, 1069
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getColumnCount method,
164-165

getConnection method, 160
GET method, 405
getString method, 161
Gini measure, 897
Glassfish, 386
global class identifier, 1055
global company identifier, 1055
Global Positioning System

(GPS), 1068
global product identifier, 1055
global wait-for graph, 845-847
Google, 31

application design and,
378-382, 396, 407

distributed databases and,
862, 866-867

information retrieval and, 933
(see also information
retrieval)

PageRank and, 922-925
grant, 144-150
granted by current role, 150
graph-based protocols, 671-674
Greenplum, 816
group by, 86-89, 96, 194, 203,

206-209
growing phase, 667-669

hackers. See security
handoff, 1081
hard disks, 29-30
hardware RAID, 448
hardware tuning, 1035-1038
harmonic mean, 1046
hash cluster access, 1173
hash functions, 457-458, 476,

530-531
closed, 513
data structure and, 515-516
deletion and, 510, 513, 516,

523-524
dynamic, 515-523
extendable, 515
indices and, 514-515, 523-524
insertion and, 513, 516-524
insufficient buckets and, 512
joins and, 809-810
lookup and, 516-518, 522, 524
open, 513
Oracle and, 1170
overflows and, 512-513
partitioning and, 807
PostgreSQL and, 1148

queries and, 516-522
skew and, 512
static, 509-515, 522-523
updates and, 516-522

hash join, 602
basics of, 558-559
build input and, 558
cost of, 561-562
double-pipelined, 571-572
hybrid, 562
overflows and, 560
query processing and, 557-562
recursive partitioning and,

539-540
skewed partitioning and, 560

hash-table overflow, 560
having, 88-89, 96
heap file, 457, 523, 1147-1149,

1153
heuristics, 1075-1076

data analysis and, 899, 910
distributed databases and, 859
greedy, 910
IBM DB2 and, 1211
information retrieval and, 934
Microsoft SQL Server and,

1240
Oracle and, 1176
parallel databases and, 815
query optimization and,

598-605, 615-616
Hibernate system, 393-395
hierarchical architecture, 781,

784
hierarchical classification,

935-937
hierarchical clustering, 907-908
hierarchical data model, 9
high availability, 756
HIPAA, 1248
histograms, 195, 591-596, 616,

801, 901, 1152, 1175, 1211,
1239

HITS algorithm, 925
home processor, 803
homonyms, 925-927
horizontal fragmentation,

827-828
horizontal partitioning, 798
hot-spare configuration, 758
hot swapping, 449
householding, 891
HP-UX, 1193
hubs, 924
hybrid disk drives, 440-441

hybrid hash join, 562
hybrid merge join, 557
hybrid OLAP (HOLAP), 204
hypercube architecture, 781
hyperlinks

PageRank and, 922-923, 925
popularity ranking and,

920-922
search engine spamming and,

924-925
HyperText Markup Language

(HTML), 378-380
client-side scripting and,

388-391
DataGrid and, 398
embedded, 397
information retrieval and, 915

(see also Information
retrieval)

Java Server Pages (JSP) and,
387-391

rapid application
development (RAD) and,
397

security and, 402-417
server-side scripting and,

386-388
stylesheets and, 380
Web application frameworks

and, 398-400
web sessions and, 380-382
XML and, 981

HyperText Transfer Protocol
(HTTP)

application design and,
377-381, 383, 395,
404-406, 417

as connectionless, 381
digital certificates and, 417
man-in-the-middle attacks

and, 406
Representation State Transfer

(REST) and, 395
Simple Object Access Protocol

(SOAP) and, 1017-1018,
1249-1250

IBM AIX, 1193
IBM DB2, 30, 96, 141, 160n3,

172, 180, 184-185, 216,
1121

administrative tools,
1215-1216

autonomic features, 1214-1215
buffer pools and, 1201-1202
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business intelligence features,
1221-1222

concurrency control and,
1200-1203, 1217-1218

constraints and, 1199
Control Center, 1195, 1215
database-design tools and,

1194-1195
data type support and,

1196-1197
Data Warehouse Edition, 1221
development of, 1193-1193
distribution, 1220-1221
external data and, 1220-1221
indexing and, 1199-1205
isolation and, 1217-1218
joins and, 1209-1210
large objects and, 1198-1199
locks and, 1217-1220
massively parallel processors

(MPP) and, 1193
materialized views and,

1212-1214
multidimensional clustering

and, 1203-1207
query processing and, 593,

604, 612, 1207-1216
recovery and, 1200-1203
replication, 1220-1221
rollback and, 1218
set operations and, 1209-1210
SQL variations and, 1195-1200
storage and, 1200-1203
system architecture, 1219-1220
System R and, 1193
Universal Database Server,

1193-1194
user-defined functions and,

1197-1198
utilities, 1215-1216
Web services, 1199-1200
XML and, 1195-1196

IBM MVS, 1193
IBM OS/400, 1193-1194
IBM VM, 1193-1194
IBM z/OS, 1194
identifiers, 546

global, 1055
OrdPath, 1260-1261
standards and, 1055-1056
tags and, 982-985

identifying relationship, 280
identity declaration, 1043
if clause, 184

Illustra Information
Technologies, 1123-1124

immediate-modification
technique, 729

incompleteness, 262
inconsistent state, 630. See also

consistency
in construct, 91, 92n8
incremental view maintenance,

608-611
independent parallelism, 814
indexed nested-loop join,

552-553
index entry, 477
indexing strings, 502-503
index-organized tables (IOTs),

1164-1165
index record, 477
indices, 21, 137-138, 530-531

access time and, 476, 479, 523
access types and, 476
bitmap, 507, 509, 524-528, 531,

536, 1166-1167
block, 1205
bulk loading of, 503-504
clustering, 476-477, 483-485,

542
comparisons and, 544-545
composite, 545-546
concurrency control and,

704-708
construction of, 1150-1151
covering, 509
definition in SQL and, 528-529
deletion time and, 476, 483,

491, 495-501, 523-524
dense, 477-483
domain, 1168-1169
on expressions, 1149
function-based, 1167-1168
Generalized Inverted Index

(GIN) and, 1149
hashed, 476 (see also hash

functions)
IBM DB2 and, 1199-1205
identifiers and, 546
information retrieval and,

927-929
insertion time and, 476,

482-483, 491-495, 499-501,
523-524

inverted, 927-929
join, 1168 (see also joins)
linear search and, 541-542
logical row-ids and, 1164-1165

materialized views and, 612
Microsoft SQL Server and,

1231-1236
multicolumn, 1149
multilevel, 480-482
multiple-key access and, 485,

506-509
nonclustering, 477
operator classes and, 1150
Oracle and, 1162-1173
ordered, 475-485, 523-524
partial, 1150
partitions and, 1169-1171
performance tuning and,

1039-1041
persistent programming

languages and, 964-972
pointers and, 546
PostgreSQL and, 1135-1136,

1146-1151
primary, 476-477, 542, 544
query processing and, 541-544
record relocation and, 502
search key and, 476
secondary, 477, 483-485, 502,

542, 544-545
selection operation and,

541-544
sequential, 485-486
sorting and, 547-549
space overhead and, 476, 479,

486, 522
sparse, 477-480, 482-483
spatial data and, 1071-1076
support routines and,

1135-1136
trees and, 1148-1149 (see also

trees)
unique, 1149
updates and, 482-483
XML, 1160

information-extraction
systems, 932-933

information gain, 897-898
information retrieval, 25-26,

885, 938
adjacency test and, 922-923
applications of, 915-917,

931-935
categories and, 935-937
defined, 915
development of field, 915
directories and, 935-937
false negatives and, 929-930
false positives and, 929-930
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homonyms and, 925-927
indexing of documents and,

927-929
information extraction and,

932-933
keywords and, 916-927
measuring effectiveness of,

929-930
ontologies and, 925-927
PageRank and, 922-923, 925
precision and, 929-930
query result diversity and, 932
question answering and,

933-934
recall and, 929-930
relevance ranking using

terms, 917-920
relevance using hyperlinks,

920-925
result diversity and, 932
search engine spamming and,

924-925
similarity-based, 919-920
stop words and, 918
structured data queries and,

934-935
synonyms and, 925-927
TF-IDF approach and, 917-925
Web crawlers and, 930-931

Ingres, 30
inheritance, 298-299

overriding method, 952
SQL and, 949-956
structured types and, 949-952
tables and, 954-956
types and, 952-953

initially deferred integrity
constraints, 134

inner joins, 117-120, 601
inner relation, 550
insertion, 61, 100-102

concurrency control and,
697-701

EXEC SQL and, 171
hashing and, 513, 516-523
lookup and, 705
phantom phenomenon and,

698-701
PostgreSQL and, 1130-1131
prepared statements and,

162-164
privileges and, 143-145
transactions and, 629, 653
views and, 124-125

instances, 8, 904-905

instead of triggers, 1161-1162
integrated development

environment (IDE), 111,
307, 386, 397, 426, 434, 932

integrity constraints, 4, 58
add, 129
alter table, 129
assertion, 135-136
check clause, 130, 134-136
create table, 129, 130
deferred, 134
examples of, 128
foreign key, 131-133
functional dependencies and,

129
hashing and, 809-810
not null, 129-130, 133
primary key, 130-131
referential, 11, 46-47, 131-136,

151, 181-182, 628
schema diagrams and, 46-47
on single relation, 129
unique, 130-131
user-defined types and, 140
violation during transaction,

133-134
XML and, 1003-1004

integrity manager, 21
intention-exclusive (IX) mode,

680
intention-shard (IS) mode, 680
interconnection networks,

780-781
interesting sort order, 601
Interface Description Language

(IDL), 1054-1055
interference, 780
internal nodes, 487
International Organization for

Standardization (ISO),
57, 871, 1051

Internet, 31
direct user access and, 2
wireless, 1081-1082

interoperation parallelism, 804,
813-814

interquery parallelism, 802-803
intersect, 81-82, 585
intersect all, 81-82
intersection, 50
intersection set, 960
intervals, 1063-1064
intraoperation parallelism

aggregation and, 811
degree of parallelism and, 804

duplicate elimination and, 811
operation evaluation costs

and, 812
parallel external sort-merge

and, 806
parallel join and, 806-811
parallel sort and, 805-806
projection and, 811
range-partitioning sort and,

805
selection and, 811

intraquery parallelism, 803-804
invalidation reports, 1083
inverse document frequency

(IDF), 918
I/O parallelism

hashing and, 799-800
partitioning techniques and,

798-800
range scheme and, 800
round-robin scheme and, 799
skew handling and, 800-802

is not null, 83
is not unknown, 84
is null, 83
isolation, 4, 1094

atomicity and, 646-648
cascadeless schedules and,

647-648
concurrency control and, 631,

636-637, 639, 650,
1137-1138

defined, 628
dirty read and, 1137
distributed transactions and,

830-832
factorials and, 639
improved throughput and,

635-636
inconsistent state and, 631
levels of, 648-653
locking and, 651
multiple versions and,

652-653, 1137-1138
nonrepeatable read and, 1137
Oracle and, 1181-1182
phantom read and, 1137-1138
PostgreSQL and, 1137-1138,

1142
read committed, 649, 1042
read uncommitted, 648, 649
recoverable schedules and,

647
repeated read, 649
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resource allocation and,
635-636

row versioning and, 1244
serializability and, 640,

648-653
snapshot, 652-653, 692-697,

704, 729-730, 1042, 1242,
1244

timestamps and, 651-652
transactions and, 628, 635-640,

646-653
utilization and, 636
wait time and, 636

is unknown, 84
item shipping, 776
iteration, 176, 188-190

J++, 1228, 1253
Jakarta Project, 386
.jar files, 160
Java, 14, 157, 169, 173, 387, 945

DOM API, 1008-1009
JDBC and, 158-166
metadata and, 164-166
persistent systems and,

971-972
SQLJ and, 172
Unified Modeling Language

(UML) and, 308
Java 2 Enterprise Edition

(J2EE), 386, 1157-1158
Java Database Objects (JDO),

971
JavaScript

application design and,
389-391, 398

Representation State Transfer
(REST) and, 395

security and, 402-411
JavaScript Object Notation

(JSON), 395, 863-864
JavaServer Faces (JSF)

framework, 397
Java Server Pages (JSP)

application design and, 377,
383-391

client-side scripting and,
389-391

security and, 405
server-side scripting and,

386-388
servlets and, 383-391
Web application frameworks

and, 399
JBoss, 386, 399

JDBC (Java Database
Connectivity), 380, 1052,
1154

advanced SQL and, 158-159
blob column, 166
caching and, 400-401
callable statements and, 164
clob column, 166
connecting to database,

159-161
E-R model and, 269, 275
information protocol of,

160-161
metadata features and,

164-166
prepared statements and,

162-164
query result retrieval and,

161-162
shipping SQL statements to,

161
updatable result sets and, 166

join dependencies, 360
joins

complex, 563
conditions and, 114-115
cost analysis and, 555-557,

599-601
distributed processing and,

855-857
equi-joins, 549-559, 563, 566,

571, 807, 819
filtering of, 1187
fragment-and-replicate,

808-809
full outer, 117-120, 233-234,

565-566
hash join, 539-540, 557-562,

571-572, 602
hybrid merge, 557
IBM DB2 and, 1209-1210
inner, 117-120, 601
inner relation and, 550
left outer, 116-120, 233-235,

565-566
lossless decomposition and,

345-346
merge-join, 553-555
minimization and, 613
natural, 71-74, 87, 113 (see

also natural joins)
nested-loop, 550-553 (see also

nested-loop join)
Oracle and, 1168, 1187
ordering and, 588-589

outer, 115-120, 232-235,
565-566, 597

outer relation, 550
parallel, 806-811, 857
partitioned, 539-540, 807-810
PostgreSQL and, 1153
prediction, 1267
query processing and,

549-566, 855-857
relational algebra and,

229-232, 239
right outer, 117-120, 233-235,

565-566
semijoin strategy and, 856-857
size estimation and, 595-596
sort-merge-join, 553
theta, 584-585
types and, 115-120
view maintenance and, 609

join using, 74, 113-114
journaling file systems, 439
JPEG (Joint Picture Experts

Group), 1077
jukebox systems, 431

k-d trees, 1071-1072
kernel functions, 901-902
keys, 45-46

constraints and, 271-272
decomposition and, 354-355
encryption and, 412-418
entity-relationship (E-R)

model and, 271-272
equality on, 542
functional dependencies and,

330-333
hashing and, 509-519, 524
indexing and, 476-508,

476-509, 524, 529
multiple access and, 506-509
nonunique, 497-499
smart cards and, 415-416
storage and, 457-459
USB, 430
uniquifiers and, 498-499

keywords
complex data types and,

947-949
homonyms and, 925-927
indices and, 927-929
ontologies and, 925-927
PostgreSQL and, 1130-1131
query simplification and,

1237-1238
ranking and, 915-925



Index 1329

search engine spamming and,
924-925

stop words and, 918
synonyms and, 925-927

language constructs, 176-179
Language Integrated Querying

(LINQ), 1055, 1249
large-object types, 138
latent failure, 448
lazy propagation, 844, 868
lazywriter, 1246
LDAP Data Interchange

Format (LDIF), 872
least recently used (LRU)

scheme, 465-467
left outer join, 116-120, 233-235,

565-566
legacy systems, 1050-1051
lightweight directory access

protocol (LDAP), 406,
871-875

like, 76-77
linear regression, 902
linear search, 541-542
linear speedup, 778-780
Linux, 1124, 1193-1194, 1212
local-area networks (LANs),

788-789, 1081
localtimestamp, 137
local wait-for graph, 845
location-dependent queries,

1080
locking protocols, 666

biased, 841
distributed lock manager, 840
graph-based, 671-674
majority, 840-841
primary copy, 840
quorum consensus, 841-842
single lock-manager, 839
timestamping, 842-843
two-phase, 667-669

lock manager, 670-671, 773
locks

adaptive granularity and, 776
caching and, 776
call back and, 776
compatibility function and,

662
concurrency control and,

661-674
deadlock and, 665-666,

674-679, 839, 841, 844-847,
1217-1220, 1243-1246

distributed databases and,
839-847

dynamic, 1243
exclusive, 651, 661-662,

668-669, 672-673, 679, 691,
698-702, 706-710, 729-730,
740-741, 803, 839, 841

false cycles and, 846-847
fine-grained, 756
granting of, 666-667
growing phase and, 667-669
IBM DB2 and, 1217-1220
implementation of, 670-671
intention modes and, 680
logical undo operations and,

744-750
long-duration transactions

and, 1110-1111
lower/higher level, 745
Microsoft SQL Server and,

1242-1244, 1246
multiple granularity and,

679-682
multiversion schemes and,

691-692
PostgreSQL and, 1143-1145
recovery systems and, 744-750
request operation and,

662-671, 675-680, 709
shared, 661, 841
shrinking phase and, 667-669
starvation and, 679
timestamps and, 682-686
transaction servers and,

773-775
true matrix value and, 662
wait-for graph and, 676-678,

845-847
log disk, 438-439
logical clock, 843
logical counter, 682
logical-design phase, 16,

260-261
logical error, 721
logical logging, 745-746, 1115
logical operations

consistency and, 746
early lock release and, 744-750
rollback and, 746-749
undo log records, 745-750

logical row-ids, 1164-1165
logical undo operation, 745-750
log records

ARIES and, 750-756
buffering and, 738-739

compensation log records
(CLRs) and, 751-752, 754

identifiers and, 727
old/new values and, 727-728
physical, 745
recovery systems and,

726-728, 730-734
redo and, 729-734
steal/no-steal policy and, 740
undo, 729-734, 745-746
write-ahead logging (WAL)

rule and, 739-741
log sequence number (LSN),

750-755
log writer process, 773-774
long-duration transactions

compensation transactions
and, 1113-1114

concurrency control and,
1111-1112

graph-based protocols and,
1110

implementation issues,
1114-1115

multilevel, 1111-1112
nesting and, 1111-1112
nonserializable executions

and, 1110-1111
operation logging and, 1115
performance and, 1110
recoverability and, 1110
subtasks and, 1109
timestamps and, 1110
two-phase locking and, 1110
uncommitted data and, 1109

lookup, 600, 1086
concurrency control and, 700,

704-708
distributed databases and,

865, 867, 870
fuzzy, 890, 1266
indices and, 482, 485-500,

505-513, 516-518, 522, 524
Microsoft SQL Server and,

1238, 1241, 1266
PostgreSQL and, 1148
query processing and, 544,

552-553
lossless-join decomposition,

345-346
lossy decomposition, 345-346
lost update, 692

machine learning, 25-26
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magnetic disks, 430
blocks and, 436-439
buffering and, 437-438
checksums and, 434
crashes and, 434
data-transfer rate and, 435-436
disk controller and, 434
failure classification and, 722
hybrid, 440-441
log disk and, 438-439
mean time to failure and, 436
optimization of disk-block

access and, 436-439
parallel systems and, 781-782
performance measures of,

435-436
physical characteristics of,

432-435
read-ahead and, 437
read-write heads and, 432-435
recording density and,

433-434
redundant arrays of

independent disks
(RAID) and, 441-449

scheduling and, 437
scrubbing and, 448
sectors and, 432-434
seek-time and, 435-436
sizes of, 433

main-memory database
systems, 724n1

majority protocol, 840-841,
848-849

man-in-the-middle attacks, 406
many server, many-router

model, 1094
many-server, single-router

model, 1093
many-to-many mapping, 270,

276-277
many-to-one mapping, 270, 276
mapping cardinalities, 269-270,

276-277
markup languages. See also

specific language
file processing and, 981-982
structure of, 981-990
tags and, 982-985
transactions and, 983-985

master-slave replication,
843-844

master table, 1032-1033
materialization, 567-568

materialized query tables
(MQTs), 1212-1214, 1221

materialized views, 123-124,
607

aggregation and, 610-611
IBM DB2 and, 1212-1214
index selection and, 612
join operation and, 609
maintenance and, 608-611
Oracle and, 1171-1172, 1174,

1188
performance tuning and,

1039-1040
projection and, 609-610
query optimization and,

611-612
replication and, 1251-1253
selection and, 609-610

max, 84, 86, 96, 236, 566-567
mean time to failure (MTTF),

436
Media Access Control (MAC),

1129
mediators, 859-860, 1018-1019
memory. See also storage

buffers and, 1184 (see also
buffers)

bulk loading of indices and,
503-504

cache, 429, 817-818 (see also
caching)

data access and, 724-726
flash, 403, 430, 439-441, 506
force output and, 725-726
magnetic-disk, 430, 432-439
main, 429-430
main-memory databases and,

1105-1108
Microsoft SQL Server and,

1246-1247
multitasking and, 1092-1095
.NET Common Language

Runtime (CLR) and,
1255-1256

nonvolatile random-access,
438

optical, 430
Oracle structures and,

1183-1184
overflows and, 560
persistent programming

languages and, 964-972
query costs and, 544

recovery systems and, 724-726
(see also Recovery
systems)

redo log buffer and, 1184
shared pool, 1184

merge-join, 553
merge-purge operation, 890-891
merging

complex, 1173-1174
duplicate elimination and,

563-564
Oracle and, 1173-1174
parallel external sort-merge

and, 806
performance tuning and, 1033
query processing and,

547-549, 553-555, 557
mesh system, 780-781
message delivery process, 838
metadata, 12, 164-166
Microsoft, 3, 31, 141

advanced SQL and, 160n3,
169, 173, 180, 184, 197, 205

application design and, 387,
395-401, 406-407

distributed databases and, 863
parallel databases and, 816
query optimization and, 612
storage and, 438

Microsoft Active Server Pages
(ASP), 397

Microsoft Database Tuning
Assistant, 1040

Microsoft Distributed
Transaction Coordinator
(MS DTC), 1242

Microsoft Office, 55, 399, 1016
Microsoft SQL Server, 1042,

1121
business intelligence and,

1263-1267
compilation and, 1236-1237
compression and, 1236
concurrency control and,

1241-1246
data access and, 1248-1250
database mirroring and,

1245-1246
data mining and, 1266-1267
data types and, 1229-1230
design tools and, 1223-1228
development of, 1223
filegroups and, 1233-1234
indexing and, 1231-1236
locks and, 1242-1244
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management tools and,
1223-1228

memory management and,
1246-1247

page units and, 1233-1234
partitions and, 1235
Query Editor, 1224-1225
query processing and,

1223-1231, 1236-1241,
1250-1251

read-ahead and, 1235-1236
recovery and, 1241-1246
reordering and, 1238-1239
replication and, 1251-1253
routines and, 1231
security and, 1247-1248
server programming in .NET,

1253-1258
snapshot isolation and, 1242,

1244
SQL Profiler and, 1225-1227
SQL Server Broker and,

1261-1263
SQL Server Management

Studio and, 1223-1224,
1227-1228

SQL variations and, 1228-1233
storage and, 1233-1236
system architecture, 1246-1248
tables and, 1234
thread pooling and, 1246
triggers and, 1232-1233
tuning and, 1224, 1227
types and, 1257-1258
updates and, 1232-1233, 1239
Windows Mobile and, 1223
XML support and, 1258-1261

Microsoft Transaction Server,
1091

Microsoft Windows, 195, 426,
1078

IBM DB2 and, 1193-1194, 1212
PostgreSQL and, 1124, 1155
SQL Server and, 1223-1224,

1228, 1242, 1246-1248
storage and, 438

min, 84, 86, 236, 566-567
minpctused, 1203
minus, 82n7
mirroring, 441-442, 444,

1245-1246
mobility, 1062, 1086

broadcast data and, 1082-1083
consistency and, 1083-1085

disconnectivity and,
1083-1085

handoff and, 1081
invalidation reports and, 1083
mobile computer model and,

1080-1082
queries and, 1082
recoverability and, 1083
routing and, 1082
updates and, 1083-1084
version-numbering schemes

and, 1083-1084
wireless communications

and, 1080-1082
Model-View-Control design,

1157-1158
most recently used (MRU)

scheme, 467
most-specific type, 953
MPEG (Moving Picture Experts

Group), 1077-1078
multicore processors, 817-819
multidatabase system, 857-861
multidimensional data, 199
multimaster replication, 844
multimedia data, 1062
multimedia databases,

1076-1079
multiple granularity

concurrency control and,
679-682

hierarchy definition for, 679
intention-exclusive (IX) mode

and, 680
intention-shared (IS) mode

and, 680
locking protocol and, 681-682
shared and

intention-exclusive (SIX)
mode and, 680

tree architecture and, 679-682
multiple-key access, 506-509
multiquery optimization, 614
multiset relational algebra, 238
multiset types, 956-961
multisystem applications, 1096
multitable cluster file

organization, 458,
460-462

multitasking, 771, 1092-1095
multithreading, 817-818, 1093
multivalued attributes, 267-268,

327-329
multivalued dependencies,

355-360

multiversion concurrency
control (MVCC)

DDL commands and,
1144-1145

DML commands and,
1138-1139

implementation of, 1139-1143
implications of using,

1143-1144
indices and, 1145
isolation levels and, 1137-1138
locks and, 1145
recovery and, 1145-1146
schema for, 689-692

multiway splits, 898
MySQL, 31, 76, 111, 160n3,

1123, 1155

Naı̈ve Bayesian classifiers, 901,
1191, 1266

naı̈ve users, 27-28
name servers, 829
NAND flash memory, 430,

440-441
natural joins, 49-50, 87, 113

conditions and, 114-115
full outer, 117-120, 233-234,

565-566
inner, 117-120, 601
left outer, 116-120, 233-235,

565
on condition and, 114-115
outer, 115-120
SQL queries and, 71-74
relational algebra and,

229-232
right outer, 117-120, 233-234,

565-566
types and, 115-120

nearest-neighbor query,
1070-1071

negation, 595
nested-loop join, 1071

IBM DB2 and, 1209-1210
Oracle and, 1173
parallel, 807, 810-811
PostgreSQL and, 1152-1153
query optimization and,

600n2, 602, 604
query processing and,

550-555, 558-560, 565,
571, 573

nested subqueries
application development and,

1031, 1047
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duplicate tuples and, 94-95
empty relations and, 93-94
from clause and, 95-96
optimization of, 605-607
scalar, 97-98
set operations and, 90-93
with clause and, 97

nesting
ARIES and, 755-756
concurrency control and, 679,

709
granularities and, 679
IBM DB2 and, 1197,

1209-1210, 1218
long-duration transactions

and, 1112-1113
object-based databases and,

945, 948, 958-961
Oracle and, 1159, 1164, 1182
queries and, 601-607,

1004-1007, 1013-1014,
1017

transactions and, 1091,
1112-1113, 1116, 1218

XML and, 27, 943, 984-998,
1001, 1004-1007, 1010

.NET, 169
NetBeans, 386, 397
.NET Common Language

Runtime (CLR)
aggregates and, 1257-1258
basic concepts of, 1254
extensibility contracts and,

1256-1258
Microsoft SQL Server and,

1253-1258
routines and, 1256-1257
SQL hosting and, 1254-1256
table functions and, 1256-1257
types and, 1257-1258

Netezza, 816
networks

data model and, 9, 1080-1082
local area, 788-789, 1081
mobility and, 1079-1085
wide-area types and, 788,

790-791
nextval for, 1043
nodes. See also storage

B+-trees and, 485-506
coalescing, 491, 706
distributed systems and, 784
IBM DB2 and, 1200-1201
mesh architecture and,

780-781

multiple granularity and,
679-682

nonleaf, 487
overfitting and, 899-900
splitting of, 491, 706
updates and, 491-500
XML and, 998

no-force policy, 739-740
nonacceptable termination

states, 1099
nonclustering, 477
nondeclarative actions, 158
nonleaf nodes, 487
nonprocedural languages,

47-48
nonrepeatable read, 1137
nonrepudiation, 416
nonunique search keys, 497-499
nonvolatile random-access

memory (NVRAM), 438
nonvolatile storage, 432, 632,

722, 724-726, 743-744
nonvolatile write buffers, 438
NOR flash memory, 430, 439
normal forms, 18

atomic domains and, 327-329
Boyce-Codd, 333-336, 349-352,

354-356
complex data types and, 947
domain-key, 360
fifth, 360
first, 327-329
fourth, 356, 358-360
higher, 337-338
join dependencies and, 360
project-join, 360
second, 361
third, 336-337

normalization, 16, 18-20
denormalization and, 363-364
entity-relationship (E-R)

model and, 361-362
performance and, 363-364
relational database design

and, 361-362
no-steal policy, 740
not connective, 66
not exists, 93, 192
not in, 90-91, 92n8
not null, 61, 83, 129-130, 133, 140
not unique, 95
null bitmap, 456
null values, 19, 83-84

aggregation with, 89-90
attributes and, 268-269

decode and, 208
decorrelation and, 1174
file organization and, 451-468
integrity constraints and,

128-130, 133-134
left outer join, 233
OLAP and, 202
query simplification and,

1237-1238
right outer join, 234-235
temporal data and, 364-367
user-defined types and, 140

numeric, 59, 62
nvarchar, 60
N-way merge, 547

object-based databases, 975
array types and, 956-961
collection volumes and,

957-958
complex data types and,

946-949
correspondence and, 955
feature implementation and,

963-964
inheritance and, 949-956
mapping and, 973
multiset types and, 956-961
nesting and, 945, 948, 958-961
object-identity types and,

961-963
object-oriented vs.

object-relational
approaches and, 973-974

persistent programming
languages and, 964-972,
974

reference types and, 961-963
relational data model and, 945
structured types and, 949-953
unnesting and, 958-961

Object Database Management
Group (ODMG),
1054-1055

object-oriented databases, 393
object-oriented data model, 27
object-relational data model, 27
object-relational mapping, 393,

946, 973
observable external writes,

634-635
ODBC (Open Database

Connectivity), 380, 1052
advanced SQL and, 166-169
API definition and, 166-167
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caching and, 401
conformance levels and,

168-169
Microsoft SQL Server and,

1249
PostgreSQL and, 1154
standards for, 1053-1054
type definition and, 168

OLAP (online analytical
processing), 1046

all attribute and, 201-203, 205
applications for, 197-201
cross-tabulation and, 199-203,

205, 210
data cube and, 200, 206-210
decode function and, 208
dicing and, 201
drill down and, 201
implementation of, 204
Microsoft SQL Server and,

1223, 1266
multidimensional data and,

199
null value and, 202
Oracle and, 1161
order by clause and, 205
pivot clause and, 205, 210
relational tables and, 202-203,

205
rollup and, 201, 206-210
slicing and, 201
in SQL, 205-209

OLE-DB, 1249
OLTP (online transaction

processing), 1046-1047,
1165, 1186, 1264

on condition, 114-115
on delete cascade, 133, 185
one-to-many mapping, 269, 276
one-to-one mapping, 269, 276
ontologies, 925-927
OOXML (Office Open XML),

1016
Open Document Format

(ODF), 1016
open statement, 170-171
operation logging, 1115
operator tree, 803-804
optical storage, 430-431, 449-450
optimistic concurrency control

without read validation,
704

Oracle, 3, 30, 216, 1121
access path selection and,

1174

analytic workspaces and, 1161
archiver and, 1185
caching and, 1179-1180, 1184
checkpoint and, 1185
clusters and, 1173, 1186
compression and, 1165
concurrency control and,

1180-1183
database administration tools

and, 1189-1191
database design and, 355, 386,

396, 408n5, 409, 1157-1158
database writer, 1185
data guard, 1183
data mining and, 1191
data warehousing and, 1158
dedicated servers and,

1183-1185
dimensional modeling and,

1160, 1171
distribution and, 1188-1189
encryption and, 1165-1166
Exadata and, 1187-1188
external data and, 1188-1189
hashing and, 1170
indices and, 1162-1173
isolation levels and, 1181-1182
joins and, 1168, 1187
logical row-ids and, 1164-1165
log writer and, 1185
materialized views and,

1171-1172, 1174, 1188
memory structures and,

1183-1184
optimizer of, 1174-1176
parallel execution and, 1178
partitions and, 1169-1172,

1176
process monitor and, 1185
process structures and,

1184-1185
projection and, 1187
query optimization and, 582,

593, 603-604, 612,
1173-1178

query processing and,
1157-1158, 1162-1172

Real Application Clusters
(RAC) and, 1186

recovery and, 1180-1183, 1185
replication and, 1188-1189
result caching and, 1179-1180
security and, 1165-1166
segments and, 1163
serializability and, 1181-1182

shared server and, 1185
as Software Development

Laboratories, 1157
SQL basics and, 55, 75n4,

82n7, 96, 141, 160-161,
172-174, 178, 180,
184-185, 197, 205

SQL Loader and, 1189
SQL Plan Management and,

1177-1178
SQL Tuning Advisor,

1176-1177
SQL variations and, 1158-1162
subquery flattening and, 1174
system architecture, 795, 803,

843, 1183-1188
system monitor, 1185
tables and, 1163-1166,

1172-1173, 1187, 1189
transactions and, 649, 653,

692-693, 697, 710, 718
transformations and,

1173-1174
trees and, 1191
triggers and, 1161-1162
updates and, 1179-1180
virtual private database and,

1166
XML DB and, 1159-1160

Oracle Application
Development
Framework (ADF),
1157-1158

Oracle Automatic Storage
Manager, 1186-1187

Oracle Automatic Workload
Repository (AWR), 1190

Oracle Business Intelligence
Suite (OBI), 1158

Oracle Database Resource
Management, 1190-1191

Oracle Designer, 1158
Oracle Enterprise Manager

(OEM), 1190
Oracle JDeveloper, 1158
Oracle Tuxedo, 1091
or connective, 66
order by, 77-78, 193
organize by dimensions, 1204
or operation, 83-84
outer-join, 115-120, 232-235,

565-566, 597
outer relation, 550
overfitting, 899-900
overflow avoidance, 560



1334 Index

overflow buckets, 512-514
overflow resolution, 560
overlapping entity sets, 300
overlapping specialization,

296-297
overloading, 968

P + Q redundancy schema, 446
PageLSN, 751, 753, 754
PageRank, 922-925, 928
page shipping, 776
parallel databases

cache memory and, 817-818
cost of, 797
decision-support queries and,

797
failure rates and, 816
increased use of, 797
interoperation parallelism

and, 813-814
interquery parallelism and,

802-803
intraoperation parallelism

and, 804-812
intraquery parallelism and,

803-804
I/O parallelism and, 798-802
massively parallel processors

(MPP) and, 1193
multicore processors and,

817-819
multithreading and, 817-818
operator tree and, 803-804
Oracle and, 1178-1179
partitioning techniques and,

798-799
pipelines and, 814-815
query optimization and,

814-817
raw speed and, 817
skew and, 800-801, 805-808,

812, 814, 819
success of, 797
system design and, 815-817

parallel external sort-merge,
806

parallelism, 442-444
parallel joins, 806, 857

fragment-and-replicate,
808-809

hash, 809-810
nested-loop, 810-811
partitioned, 807-810

parallel processing, 401-402

parallel systems
coarse-grain, 777
fine-grain, 777
hierarchical, 781
interconnection networks

and, 780-781
interference and, 780
massively parallel, 777-778
scaleup and, 778-780
shared disk, 781
shared memory, 781-783
shared nothing, 781
skew and, 780
speedup and, 778-780
start-up costs and, 780
throughput and, 778

parameter style general, 179
parametric query optimization,

615
parity bits, 444-446
parsing

application design and, 388
bulk loads and, 1031-1033
query processing and,

537-539, 572, 1236-1237
participation constraints, 270
partitioning vector, 798-799
partitions

attributes and, 896-897
availability and, 847-853
balanced range, 801
classifiers and, 896-897
cloud computing and, 865-866
composite, 1170-1171
condition and, 896-897
distributed databases and,

832, 835
hash, 798-799, 807, 1170
joins and, 807-810
list, 1170
Microsoft SQL Server and,

1235
Oracle and, 1169-1172, 1176
point queries and, 799
pruning and, 1176
query optimization and,

814-815
range, 798-800, 805, 1170
reference, 1171
round-robin, 798-801
scanning a relation and, 799

Partner Interface Processes
(PIPs), 1055

passwords. See also security
application design and, 376,

382, 385, 393, 405-407, 415
dictionary attacks and, 414
distributed databases and, 871
leakage of, 405
man-in-the-middle attacks

and, 406
one-time, 406
single sign-on system and,

406-407
SQL and, 142, 160, 168, 170
storage and, 463-464

PATA (parallel ATA), 434
pctfree, 1203
performance

access time and, 431-439, 447,
450-451, 476, 479, 523,
540-541, 817

application design and,
400-402

B+-trees and, 485-486
caching and, 400-401
data-transfer rate and, 435-436
denormalization and, 363-364
magnetic disk storage and,

435-436
parallel processing and,

401-402
response time and, 400 (see

also response time)
seek times and, 433, 435-439,

450-451, 540, 555
sequential indices and,

485-486
transaction time and, 365n8,

1062
web applications and, 377-382

performance benchmarks
database-application classes

and, 1046
suites of tasks, 1045-1046
Transaction Processing

Performance Council
(TPC), 1046-1048

performance tuning
bottleneck locations and,

1033-1035
bulk loads and, 1031-1033
concurrent transactions and,

1041-1044
hardware and, 1035-1038
indices and, 1039-1041
materialized views and,

1039-1041
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parameter adjustment and,
1029-1030, 1035

physical design and,
1040-1041

RAID choice and, 1037-1038
of schema, 1038-1039
set orientation and, 1030-1031
simulation and, 1044-1045
updates and, 1030-1033

Perl, 180, 387, 1154
persistent messaging, 836-837
persistent programming

languages, 974
approaches for, 966-967
byte code enhancement and,

971
C++, 968-971
class extents and, 969, 972
database mapping and, 971
defined, 965
iterator interface and, 970
Java, 971-972
object-based databases and,

964-972, 974
object identity and, 967
object persistence and,

966-968
overloading and, 968
persistent objects and, 969
pointers and, 967, 969, 972
reachability and, 971
relationships and, 969
single reference types and, 972
transactions and, 970
updates and, 970

person-in-the-middle attacks,
1105

phantom phenomenon, 698-701
phantom read, 1137-1138, 1142,

1217-1218
PHP, 387-388
physical data independence, 6
physical-design phase, 16, 261
physiological redo, 750
pinned blocks, 465
pipelining, 539, 568

demand-driven, 569-570
double-pipelined hash-join

and, 571-572
parallel databases and,

813-815
producer-driven, 569-571
pulling data and, 570-571

pivot clause, 205, 210, 1230
plan caching, 605

PL/SQL, 173, 178
pointers. See also indices

application design and, 409
child nodes and, 1074
concurrency control and,

706-707
IBM DB2 and, 1199, 1202-1203
information retrieval and, 936
main-memory databases and,

1107
multimedia databases and,

1077
Oracle and, 1165
persistent programming

languages and, 967, 969,
972

PostgreSQL and, 1134,
1147-1148

query optimization and, 612
query processing and,

544-546, 554
recovery systems and, 727,

754
SQL basics and, 166, 179-180
storage and, 439, 452-462

point queries, 799
polymorphic types, 1128-1129
popularity ranking, 920-925
PostgreSQL, 31, 1121

access methods and, 1153
aggregation and, 1153
command-line editing and,

1124
concurrency control and, 692,

697, 701, 1137-1145
constraints and, 1130-1131,

1153-1154
DML commands and,

1138-1139
extensibility, 1132
functions, 1133-1135
Generalized Inverted Index

(GIN) and, 1149
Generalized Search Tree

(GiST) and, 1148-1149
hashing and, 1148
indices and, 1135-1136,

1146-1151
isolation levels and,

1137-1138, 1142
joins and, 1153
locks and, 1143-1145
major releases of, 1123-1124

multiversion concurrency
control (MVCC) and,
1137-1146

operator classes and, 1150
operator statements and, 1136
parallel databases and,

816-817
performance tuning and, 1042
pointers and, 1134, 1147-1148
procedural languages and,

1136
query optimization and, 582,

593
query processing and,

1151-1154
recovery and, 718
rollbacks and, 1142-1144
rules and, 1130-1131
serializability and, 1142-1143
server programming

interface, 1136
sort and, 1153
SQL basics and, 140, 160, 173,

180, 184
state transition and, 1134
storage and, 1146-1151
system architecture, 1154-1155
system catalogs and, 1132
transaction management in,

649, 653, 1137-1146
trees and, 1148-1149
triggers and, 1153-1154
trusted/untrusted languages

and, 1136
tuple ID and, 1147-1148
tuple visibility and, 1139
types, 1126-1129, 1132-1133
updates and, 1130, 1141-1144,

1147-1148
user interfaces, 1124-1126
vacuum, 1143

precedence graph, 644
precision, 903
predicate reads, 697-701
prediction

classifiers and, 894-904
data mining and, 894-904
joins and, 1267

prepared statements, 162-164
presentation facilities,

1094-1095
presentation layer, 391
prestige ranking, 920-925,

930-931
primary copy, 840
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primary keys, 45-46, 60-62
decomposition and, 354-355
entity-relationship (E-R)

model and, 271-272
functional dependencies and,

330-333
integrity constraints and,

130-131
primary site, 756
privacy, 402, 410-411, 418, 828,

869-870, 1104
privileges

all, 143-144
execute and, 147
granting of, 143-145
public, 144
revoking of, 143-145, 149-150
transfer of, 148-149

procedural DMLs, 10
procedural languages, 20

advanced SQL and, 157-158,
173, 178

IBM DB2 and, 1194
Oracle and, 1160, 1191
PostgreSQL and, 1130, 1133,

1136
relational model and, 47-48

procedures
declaring, 174-175
external language routines

and, 179-180
language constructs for,

176-179
syntax and, 173-174, 178
writing in SQL, 173-180

producer-driven pipeline,
569-570

program global area (PGA),
1183

programming languages. See
also specific language

accessing SQL from, 157-173
mismatch and, 158
variable operations of, 158

projection
intraoperation parallelism

and, 811
Oracle and, 1187
queries and, 564, 597
view maintenance and,

609-610
project-join normal form

(PJNF), 360
project operation, 219
PR quadtrees, 1073

pseudotransitivity rule, 339
public-key encryption, 412-414
publishing, 1013, 1251-1253
pulling data, 570-571
purity, 897
Python, 180, 377, 387, 1123,

1125, 1136

QBE, 37, 245, 770
quadratic split, 1075-1076
quadtrees, 1069, 1072-1073
queries, 10

ADO.NET and, 169
availability and, 826-827
B+-trees and, 488-491
basic structure of SQL, 63-71
caching and, 400-401
Cartesian product and, 50-51,

68-69, 71-75, 120, 209,
217, 222-229, 232, 573,
584, 589, 595-596, 606, 616

complex data types and,
946-949

correlated subqueries and, 93
data-definition language

(DDL) and, 21-22
data-manipulation language

(DML) and, 21-22
decision-support, 797
delete and, 98-100
distributed databases and,

825-878 (see also
distributed databases)

hashing and, 475, 516-522 (see
also hash functions)

indices and, 475 (see also
indices)

information retrieval and,
915-938

insert and, 100-101
intermediate SQL and,

113-151
JDBC and, 158-166
location-dependent, 1080
metadata and, 164-166
multiple-key access and,

506-509
on multiple relations, 66-71
natural joins and, 71-74, 87,

113-120 (see also joins)
nearest-neighbor, 1070-1071
nested subqueries, 90-98
null values and, 83-84
object-based databases and,

945-975

ODBC and, 166-169
OLAP and, 197-209
Oracle and, 1171-1172
PageRank and, 922-923
parallel databases and,

797-820
persistent programming

languages and, 964-972
point, 799
programming language

access and, 157-173
range, 799
read only, 804
recursive, 187-192
result diversity and, 932
ResultSet object and, 159, 161,

164-166, 393, 397-398, 490
retrieving results, 161-162
scalar subqueries and, 97-98
security and, 402-417
servlets and, 383-391
set operations and, 79-83,

90-93
on single relation, 63-66
spatial data and, 1070-1071
string operations and, 76-79
transaction servers and, 775
universal Turing machine

and, 14
user requirements and,

311-312
views and, 120-128
XML and, 998-1008

query cost
Microsoft SQL Server and,

1237-1239
optimization and, 580-581,

590-602
processing and, 540-541, 544,

548, 555-557, 561
query evaluation engine, 22
query-evaluation plans,

537-539
choice of, 598-607
expressions and, 567-572
materialization and, 567-568
optimization and, 579-616
pipelining and, 568-572
response time and, 541
set operations and, 564
viewing, 582

query-execution engine, 539
query-execution plan, 539
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query languages, 249. See also
specific language

accessing from a
programming language,
157-173

centralized systems and,
770-771

domain relational calculus
and, 245-248

expressive power of
languages, 244, 248

formal relational, 217-248
nonprocedural, 239-244
procedural, 217-239
relational algebra and,

217-239
relational model and, 47-48,

50
temporal, 1064
tuple relational calculus and,

239-244
query optimization, 22, 537,

539, 552-553, 562, 616
access path selection and,

1174-1176
aggregation and, 597
cost analysis and, 580-581,

590-602
distributed databases and,

854-855
equivalence and, 582-588
estimating statistics of

expression results,
590-598

heuristics in, 602-605
IBM DB2 and, 1211-1212
join minimization, 613
materialized views and,

607-612
Microsoft SQL Server and,

1236-1241
multiquery, 614
nested subqueries and,

605-607
Oracle and, 1173-1178
parallel databases and,

814-817
parametric, 615
parallel execution and,

1178-1179
partial search and, 1240
partitions and, 1174-1176
plan choice for, 598-607
PostgreSQL and, 1151-1154
process structure and, 1179

relational algebra and,
579-590

result caching and, 1179-1180
set operations and, 597
shared scans and, 614
simplification and, 1237-1238
SQL Plan Management and,

1177-1178
SQL Tuning Advisor and,

1176-1177
top-K, 613
transformations and, 582-590,

1173-1174
updates and, 613-614

query processing, 21-22, 30, 32
aggregation, 566-567
basic steps of, 537
binding and, 1236-1237
comparisons and, 544-545
compilation and, 1236-1237
cost analysis of, 540-541, 544,

548, 555-557, 561
CPU speeds and, 540
distributed databases and,

854-857, 859-860
distributed heterogeneous,

1250-1251
duplicate elimination and,

563-564
evaluation of expressions,

567-572
executor module and,

1152-1153
file scan and, 541-544, 550,

552, 570
hashing and, 557-562
IBM DB2 and, 1207-1216
identifiers and, 546
information retrieval and,

915-937
join operation and, 549-566
LINQ and, 1249
materialization and, 567-568,

1212-1214
Microsoft SQL Server and,

1223-1231, 1236-1241,
1250-1251

mobile, 1082
operation evaluation and,

538-539
Oracle and, 1157-1158,

1172-1180
parsing and, 537-539, 572-573,

1236-1237
pipelining and, 568-572

PostgreSQL and, 1151-1154
projection and, 563-564
recursive partitioning and,

539-540
relational algebra and,

537-539
reordering and, 1238-1239
selection operation and,

541-546
set operations and, 564-565
sorting and, 546-549
SQL and, 537-538
standard planner and, 1152
syntax and, 537
transformation and, 854-855
triggers and, 1153-1154
XML and, 1259-1260

question answering, 933-934
queueing systems, 1034-1035
quorum consensus protocol,

841-842

random access, 437
random samples, 593
random walk model, 922
range-partitioning sort, 805
range-partitioning vector, 801
range queries, 799
ranking, 192-195
rapid application development

(RAD)
functions library and, 396
report generators and, 399-400
user interface building tools

and, 396-398
Web application frameworks

and, 398-399
raster data, 1069
Rational Rose, 1194
read-ahead, 437
read committed

application development and,
1042

Microsoft SQL Server and,
1242

Oracle and, 1181
PostgreSQL and, 1138,

1141-1142
transaction management and,

649, 658, 685, 701-702
read one, write all available

protocol, 849-850
read one, write all protocol, 849
read only queries, 804
read quorum, 841-842
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read uncommitted, 648
read-write contention,

1041-1042
read/write operations, 653-654
real, double precision, 59
real-time transaction systems,

1108-1109
recall, 903
recovery interval, 1244-1245
recovery manager, 22-23
recovery systems, 186, 631,

760-761, 1083
actions after crash, 736-738
algorithm for, 735-738
ARIES, 750-756
atomicity and, 726-735
buffer management and,

738-743
checkpoints and, 734-735,

742-743
concurrency control and,

729-730
data access and, 724-726
database mirroring and,

1245-1246
database modification and,

728-729
disk failure and, 722
distributed databases and,

835-836
early lock release and, 744-750
fail-stop assumption and, 722
failure and, 721-723, 743-744
force/no-force policy and,

739-740
IBM DB2 and, 1200-1203,

1217-1218
logical undo operations and,

744-750
log records and, 726-728,

730-734, 738-739
log sequence number (LSN)

and, 750
long-duration transactions

and, 1110
Microsoft SQL Server and,

1241-1246
Oracle and, 1180-1183
partitions and, 1169-1172
PostgreSQL and, 1145-1146
redo and, 729-738
remote backup, 723, 756-759,

850, 1095-1096
rollback and, 729-734, 736

shadow-copy scheme and,
727

snapshot isolation and,
729-730

steal/no-steal policy and, 740
storage and, 722-726, 734-735,

743-744
successful completion and,

723
undo and, 729-738
workflows and, 1101
write-ahead logging (WAL)

rule and, 739-741,
1145-1146

recovery time, 758
recursive partitioning, 539-540
recursive queries, 187

iteration and, 188-190
SQL and, 190-192
transitive closure and, 188-190

recursive relationship sets, 265
redo

actions after crash, 736-738
pass, 754
phase, 736-738
recovery systems and, 729-738

redundancy, 4, 261-262, 272-274
redundant arrays of

independent disks
(RAID), 435, 759, 1147

bit-level striping, 442-444
error-correcting-code (ECC)

organization and, 444-445
hardware issues, 448-449
hot swapping and, 449
levels, 444-448
mirroring and, 441-442, 444
parallelism and, 442-444
parity bits and, 444-446
performance reliability and,

442-444
performance tuning and,

1037-1038
recovery systems and, 723
reliability improvement and,

441-442
scrubbing and, 448
software RAID and, 448
striping data and, 442-444

references, 131-133, 148
referencing new row as, 181-182
referencing new table as, 183
referencing old row as, 182
referencing old table as, 183
referencing relation, 46

referential integrity, 11, 46-47,
131-136, 151, 181-182, 628

referrals, 875
reflexivity rule, 339
region quadtrees, 1073
regression, 902-903, 1048-1049
relational algebra, 51-52,

248-249, 427
aggregate functions, 235-239
assignment, 232
avg, 236
Cartesian-product, 222-226
composition of relational

operations and, 219-220
count-distinct, 236
equivalence and, 582-588,

601-602
expression transformation

and, 582-590
expressive power of

languages, 244
formal definitions of, 228
fundamental operations,

217-228
generalized-projection, 235
join expressions, 239
max, 236
min, 236
multiset, 238
natural-join, 229-232
outer-join, 232-235
project operation, 219
query optimization and,

579-590
query processing and, 537-539
rename, 226-228
select operation, 217-219
semijoin strategy and, 856-857
set-difference, 221-222
set-intersection, 229
SQL and, 219, 239
sum, 235-236
union operation, 220-221

relational database design, 368
atomic domains and, 327-329
attribute naming, 362-363
decomposition and, 329-338,

348-360
design process and, 361-364
features of good, 323-327
first normal form and, 327-329
fourth normal form and, 356,

358-360
functional dependencies and,

329-348
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larger schemas and, 324-325
multivalued dependencies

and, 355-360
normalization and, 361-362
relationship naming, 362-363
second normal form and,

336n5, 361
smaller schemas and, 325-327
temporal data modeling and,

364-367
third normal form and,

336-337
relational databases

access from application
programs and, 14-15

data-definition language and,
14

data-manipulation language
(DML) and, 13-14

storage and, 1010-1014
tables and, 12-13

relational model, 9
disadvantages of, 30
domain and, 42
keys and, 45-46
natural joins and, 49-50
operations and, 48-52
query languages and, 47-48,

50
referencing relation and, 46
schema for, 42-47, 302-304,

1012
structure of, 39-42
tables for, 39-44, 49-51,

202-205
tuples and, 40-42, 49-50

relation instance, 42-45, 264
relationship sets

alternative notations for,
304-310

atomic domains and, 327-329
attribute placement and,

294-295
binary vs. n-ary, 292-294
descriptive attributes, 267
design issues and, 291-295
entity-relationship diagrams

and, 278-279
entity-relationship (E-R)

model and, 264-267,
286-290, 296-297

entity sets and, 291-292
naming of, 362-363
nonbinary, 278-279
recursive, 265

redundancy and, 288
representation of, 286-290
schema combination and,

288-290
superclass-subclass, 296-297
Unified Modeling Language

(UML) and, 308-310
relative distinguished names

(RDNs), 872
relevance

adjacency test and, 922-923
hubs and, 924
PageRank and, 922-923, 925
popularity ranking and,

920-922
ranking using TF-IDF,

917-920, 925
search engine spamming and,

924-925
similarity-based retrieval and,

919-920
TF-IDF approach and,

917-925, 928-929
using hyperlinks and, 3421
Web crawlers and, 930-931

relevance feedback, 919-920
remote backup systems, 723,

756-759, 850, 1095-1096
remote-procedure-call (RPC)

mechanism, 1096
rename operation, 75-76,

226-228
repeat, 176
repeatable read, 649
repeat loop, 188, 341, 343, 490
replication

cloud computing and, 866-868
distributed databases and,

843-844
Microsoft SQL Server and,

1251-1253
system architectures and, 785,

826, 829
report generators, 399-400
Representation State Transfer

(REST), 395
request forgery, 403-405
request operation

deadlock handling and,
675-679

locks and, 662-671, 675-680,
709

lookup and, 706
multiple granularity and,

679-680

multiversion schemes and,
691

snapshot isolation and, 693
timestamps and, 682

resource managers, 1095
response time

application design and, 400,
1037, 1046

concurrency control and, 688
E-R model and, 311
Microsoft SQL Server and,

1261
Oracle and, 1176-1177, 1190
query evaluation plans and,

541
query processing and, 541
storage and, 444, 1106,

1109-1110
transactions and, 636
system architecture and, 778,

798, 800, 802
restriction, 149-150, 347
ResultSet object, 159, 161,

164-166, 393, 397-398, 490
revoke, 145, 149
right outer join, 117-120,

233-235, 565-566
Rijndael algorithm, 412-413
robustness, 847
roles, 264-265

authorization and, 145-146
entity-relationship diagrams,

278
Unified Modeling Language

(UML) and, 308-310
rollback, 173

ARIES and, 754-755
cascading, 667
concurrency control and, 667,

670, 674-679, 685, 689,
691, 709

IBM DB2 and, 1218
logical operations and,

746-749
PostgreSQL and, 1142-1144
recovery systems and,

729-734, 736
remote backup systems and,

758-759
transactions and, 736
timestamps and, 685-686
undo and, 729-734

rollback work, 127
rollup, 201, 206-210, 1221-1222
RosettaNet, 1055
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row triggers, 1161-1162
R-trees, 1073-1076
Ruby on Rails, 387, 399
runstats, 593

SAS (Serial attached SCSI), 434
Sarbanes-Oxley Act, 1248
SATA (serial ATA), 434, 436
savepoints, 756
scalar subqueries, 97-98
scaleup, 778-780
scheduling

Microsoft SQL Server and,
1254-1255

PostgreSQL and, 1127
query optimization and,

814-815
storage and, 437
transactions and, 641,

1099-1100, 1108
schema definition, 28
schema diagrams, 46-47
schemas, 8

alternative notations for
modeling data, 304-310

authorization on, 147-148
basic SQL query structures

and, 63-74
canonical cover and, 342-345
catalogs and, 142-143
combination of, 288-290
concurrency control and,

661-710 (see also
concurrency control)

data-definition language
(DDL) and, 58, 60-63

data mining, 893-910
data warehouses, 889-893
entity-relationship (E-R)

model and, 262-313
functional dependencies and,

329-348
generalization and, 297-304
larger, 324-325
locks and, 661-686
performance tuning of,

1038-1039
physical-organization

modification and, 28
recovery systems and, 721-761
reduction to relational,

283-290
redundancy of, 288
relational algebra and,

217-239

relational database design
and, 323-368

relational model and, 42-47
relationship sets and, 286-288
shadow-copy, 727
smaller, 325-327
strong entity sets and, 283-285
timestamps and, 682-686
tuple relational calculus,

239-244
version-numbering, 1083-1084
weak entity sets and, 285-286
XML documents, 990-998

scripting languages, 389
scrubbing, 448
search engine spamming,

924-925
search keys

hashing and, 509-519, 524
indexing and, 476-509, 524,

529
nonunique, 497-499
storage and, 457-459
uniquifiers and, 498-499

secondary site, 756
second normal form, 361
Secure Electronic Transaction

(SET) protocol, 1105
security, 5, 147

abstraction and, 6-8, 10
application design and,

402-417
audit trails and, 409-410
authentication and, 405-407
authorization and, 11, 21,

407-409
concurrency control and,

661-710 (see also
concurrency control)

cross site scripting and,
403-405

dictionary attacks and, 414
encryption and, 411-417,

1165-1166
end-user information and,

407-408
GET method and, 405
integrity manager and, 21
isolation and, 628, 635-640,

646-653
keys and, 45-46
locks and, 661-686 (see also

locks)
long-duration transactions

and, 1109-1115

man-in-the-middle attacks
and, 406

Microsoft SQL Server and,
1247-1248

observable external writes
and, 634-635

Oracle and, 1165-1166
passwords and, 142, 160, 168,

170, 376, 382, 385,
393, 405-407, 415, 463-464, 871
person-in-the-middle attacks

and, 1105
physical data independence

and, 6
privacy and, 402, 410-411, 418,

828, 869-870, 1104
remote backup systems and,

756-759
request forgery and, 403-405
single sign-on system and,

406-407
SQL injection and, 402-403
unique identification and,

410-411
virtual private database and,

1166
Security Assertion Markup

Language (SAML), 407
seek times, 433, 435-439,

450-451, 540, 555
select, 363

aggregate functions and,
84-90

attribute specification, 77
basic SQL queries and, 63-74
on multiple relations, 66-71
natural join and, 71-74
null values and, 83-84
privileges and, 143-145, 148
ranking and, 194
rename operation and, 74-75
set membership and, 90-91
set operations and, 79-83
on single relation, 63-65, 63-66
string operations and, 76-79

select all, 65
select distinct, 64-65, 84-85, 91,

125
select-from-where

delete and, 98-100
function/procedure writing

and, 174-180
inheritance and, 949-956
insert and, 100-101



Index 1341

join expressions and, 71-74,
87, 113-120

natural joins and, 71-74, 87,
113-120

nested subqueries and, 90-98
transactions and, 651-654
types handling and, 949-963
update and, 101-103
views and, 120-128

selection
comparisons and, 544-545
complex, 545-546
conjunctive, 545-546
disjunctive, 545-546
equivalence and, 582-588
file scans and, 541-544, 550,

552, 570
identifiers and, 546
indices and, 541-544
intraoperation parallelism

and, 811
linear search and, 541-542
relational algebra and,

217-219
SQL and,
view maintenance and,

609-610
Semantic Web, 927
semistructured data models, 9,

27
sensitivity, 903
Sequel, 57
sequence associations, 906-907
sequence counters, 1043
sequential-access storage, 431,

436
sequential files, 459
sequential scans, 1153
serializability

blind writes and, 687
concurrency control and, 662,

666-667, 671, 673, 681-690,
693-697, 701-704, 708

conflict, 641-643
distributed databases and,

860-861
isolation and, 648-653
Oracle and, 1181-1182
order of, 644-646
performance tuning and, 1042
PostgreSQL and, 1142-1143
precedence graph and, 644
predicate reads and, 701
in the real world, 650

snapshot isolation and,
693-697

topological sorting and,
644-646

transactions and, 640-646, 648,
650-653

view, 687
serializable schedules, 640
server programming interface

(SPI), 1136
server-side scripting, 386-388
server systems

categorization of, 772-773
client-server, 771-772
cloud-based, 777
data servers, 773, 775-777
transaction-server, 773-775

servlets
client-side scripting and,

389-391
example of, 383-384
life cycle and, 385-386
server-side scripting and,

386-388
sessions and, 384-385
support and, 385-386

set clause, 103
set default, 133
set difference, 50, 221-222, 585
set-intersection, 2229
set null, 133
set operations, 79, 83

IBM DB2 and, 1209-1210
intersect, 50, 81-82, 585, 960
nested subqueries and, 90-93
query optimization and, 597
query processing and, 564-565
set comparison and, 91-93
union, 80-81, 220-221, 339, 585

set role, 150
set transactions isolation level

serializable, 649
shadow-copy scheme, 727
shadowing, 441-442
shadow-paging, 727
shared and intention-exclusive

(SIX) mode, 680
shared-disk architecture, 781,

783, 789
shared-memory architecture,

781-783
shared-mode locks, 661
shared-nothing architecture,

781, 783-784
shared scans, 614

Sherpa/PNUTS, 866-867
shredding, 1013, 1258-1259
similarity-based retrieval,

919-920, 1079
Simple API for XML (SAX),

1009
Simple Object Access Protocol

(SOAP), 1017-1018, 1056,
1249-1250

single lock-manager, 839-840
single-server model, 1092-1093
single-valued attributes,

267-268
site reintegration, 850
skew, 512

attribute-value, 800-801
parallel databases and,

800-801, 805-808, 812,
814, 819

parallel systems and, 780
partitioning and, 560, 800-801

slicing, 201
small-computer-system

interconnect (SCSI), 434
snapshot isolation, 652-653,

704, 1042
Microsoft SQL Server and,

1244
recovery systems and, 729-730
serializability and, 693-697
validation and, 692-693

snapshot replication, 1252-1253
snapshots

DML commands and,
1138-1139

Microsoft SQL Server and,
1242

multiversion concurrency
control (MVCC) and,
1137-1146

PostgreSQL and, 1137-1146
read committed, 1242

software RAID, 448
Solaris, 1193
sold-state drives, 430
some, 90, 92, 92n8
sorting, 546

cost analysis of, 548-549
duplicate elimination and,

563-564
external sort-merge algorithm

and, 547-549
parallel external sort-merge

and, 806
PostgreSQL and, 1153
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range-partitioning, 805
topological, 644-646
XML and, 1106

sort-merge-join, 553
space overhead, 476, 479, 486,

522
spatial data

computer-aided-design data
and, 1061, 1064-1068

geographic data and, 1061,
1064-1066

indexing of, 1071-1076
queries and, 1070-1071
representation of geometric

information and,
1065-1066

topographical information
and, 1070

triangulation and, 1065
vector data and, 1069

specialization
entity-relationship (E-R)

model and, 295-296
partial, 300
single entity set and, 298
total, 300

specialty databases, 943
object-based databases and,

945-975
XML and, 981-1020

specification of functional
requirements, 16, 260

specificity, 903
speedup, 778-780
spider traps, 930
SQL (Structured Query

Language), 10, 13-14, 57,
151, 210, 582

accessing from a
programming language,
157-163

advanced, 157-210
aggregate functions, 84-90,

192-197
application-level

authorization and,
407-409

application programs and,
14-15

array types and, 956-961
authorization and, 58, 143-150
basic types and, 59-60
blobs and, 138, 166, 457, 502,

1013, 1198-1199, 1259
bulk loads and, 1031-1033

catalogs, 142-143
clobs and, 138, 166, 457, 502,

1010-1013, 1196-1199
CLR hosting and, 1254-1256
create table, 60-63, 141-142
database modification and,

98-103
data-definition language

(DDL) and, 57-63, 104
data-manipulation language

(DML) and, 57-58, 104
data mining and, 26
date/time types in, 136-137
decision-support systems

and, 887-889
default values and, 137
delete and, 98-100
dumping and, 743-744
dynamic, 58, 158
embedded, 58, 158, 169-173,

773
Entity, 395
environments, 43
function writing and, 173-180
IBM DB2 and, 1195-1200, 1210
index creation and, 137-138,

528-529
inheritance and, 949-956
injection and, 402-403
insert and, 100-101
integrity constraints and, 58,

128-136
intermediate, 113-151
isolation levels and, 648-653
JDBC and, 158-166
join expressions and, 71-120

(see also joins)
lack of fine-grained

authorization and,
408-409

large-type objects, 138
Management of External Data

(MED) and, 1077
Microsoft SQL Server and,

1223-1267
multiset types and, 956-961
MySQL and, 31, 76, 111,

160n3, 1123, 1155
nested subqueries and, 90-98
nonstandard syntax and, 178
null values and, 83-84
object-based databases and,

945-975
ODBC and, 166-169
OLAP and, 197-209

Oracle variations and,
1158-1162

overview of, 57-58
persistent programming

languages and, 964-972
PostgreSQL and, 31 (see also

PostgreSQL)
prepared statements and,

162-164
procedure writing and,

173-180
query processing and, 537-538

(see also query
processing)

rapid application
development (RAD) and,
397

relational algebra and, 219,
239

rename operation and, 74-80
report generators and, 399-400
ResultSet object and, 159, 161,

164-166, 393, 397-398, 490
revoking of privileges and,

149-150
roles and, 145-146
schemas and, 47, 58-63,

141-143, 147-148
security and, 402-403
select clause and, 77
set operations and, 79-83
as standard relational

database language, 57
standards for, 1052-1053
string operations and, 76-77
System R and, 30, 57
time specification in,

1063-1064
transactions and, 58, 127-128,

773 (see also transactions)
transfer of privileges and,

148-149
triggers and, 180-187
tuples and, 77-78 (see also

tuples)
under privilege and, 956
update and, 101-103
user-defined types, 138-141
views and, 58, 120-128,

146-147
where clause predicates, 78-79

SQLLoader, 1032, 1189
SQL Access Group, 1053
SQL/DS, 30
SQL environment, 143
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SQLJ, 172
SQL Plan Management,

1177-1178
SQL Profiler, 1225-1227
SQL Security Invoker, 147
SQL Server Analysis Services

(SSAS), 1264, 1266-1267
SQL Server Broker, 1261-1263
SQL Server Integration

Services (SSIS),
1263-1266

SQL Server Management
Studio, 1223-1224,
1227-1228

SQL Server Reporting Services
(SSRS), 1264, 1267

sqlstate, 179
SQL Transparent Data

Encryption, 1248
SQL Tuning Advisor, 1176-1177
SQL/XML standard, 1014-1015
Standard Generalized Markup

Language (SGML), 981
standards

ANSI, 57, 1051
anticipatory, 1051
Call Level Interface (CLI),

1053
database connectivity,

1053-1054
data pump export/import

and, 1189
DBTG CODASYL, 1052
ISO, 57, 871, 1051
ODBC, 1053-1055
reactionary, 1051
SQL, 1052-1053
Wi-Max, 1081
XML, 1055-1056
X/Open XA, 1053-1054

Starburst, 1193
start-up costs, 780
starvation, 679
Statement object, 161-164
statement triggers, 1161-1162
state transition, 1134
state value, 1134
statistics

catalog information and,
590-592

computing, 593
join size estimation and,

595-596
maintaining, 593

number of distinct values
and, 597-598

query optimization and,
590-598

random samples and, 593
selection size estimation and,

592-595
steal policy, 740
steps, 1096
stop words, 918
storage, 427

archival, 431
atomicity and, 632-633
authorization and, 21
Automatic Storage Manager

and, 1186-1187
backup, 431, 723, 756-759, 850,

1095-1096
bit-level striping, 442-444
buffer manager and, 21 (see

also buffers)
byte amount and, 20
checkpoints and, 734-735,

742-743
clob values and, 1010-1011
cloud-based, 777, 862-863
column-oriented, 892-893
content dump and, 743
cost per bit, 431
crashes and, 467-468 (see also

crashes)
data access and, 724-726
data-dictionary, 462-464
data mining and, 25-26,

893-910
data-transfer rate and, 435-436
data warehouses and, 888
decision-storage systems and,

887-889
direct-access, 431
distributed databases and,

826-830
distributed systems and,

784-788
dumping and, 743-744
durability and, 632-633
error-correcting-code (ECC)

organization and, 444-445
Exadata and, 1187-1188
file manager and, 21
file organization and, 451-462
flash, 403, 430, 439-441, 506
flat files and, 1009-1010
force output and, 725-726
fragmentation and, 826-829

hard disks and, 29-30
IBM DB2 and, 1200-1203
indices and, 21 (see also

indices)
information retrieval and,

915-937
integrity manager and, 21
jukebox, 431
magnetic disk, 430, 432-439
main memory and, 429-430
Microsoft SQL Server and,

1233-1236
mirroring and, 441-442,

1245-1246
native, 1013-1014
nonrelational data, 1009-1010
nonvolatile, 432, 632, 722,

724-726, 743-744
optical, 430-431, 449-450
Oracle and, 1162-1172,

1186-1188
parallel systems and, 777-784
persistent programming

languages and, 967-968
physical media for, 429-432
PostgreSQL and, 1146-1151
publishing/shredding data

and, 1013, 1258-1259
punched cards and, 29
query processor and, 21-22
recovery systems and, 722-726

(see also recovery
systems)

redundant arrays of
independent disks
(RAID), 435, 441-449

relational databases and,
1010-1014

remote backup systems and,
723, 756-759, 850,
1095-1096

replication and, 826, 829
scrubbing and, 448
seek times and, 433, 435-439,

450-451, 540, 555
segments and, 1163
sequential-access, 431, 436
solid-state drives and, 430
stable, 632, 722-724
striping data and, 442-444
tape, 431, 450-451
tertiary, 431, 449-451
transaction manager and, 21

(see also transactions)
transparency and, 829-830
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volatile, 431, 632, 722
wallets and, 415
XML and, 1009-1016

storage area network (SAN),
434-435, 789

storage manager, 20-21
string operations

aggregate, 84
attribute specification, 77
escape, 77
JDBC and, 158-166
like, 76-77
lower, 76
query result retrieval and,

161-162
similar to, 77
trim, 76
tuple display order, 77-78
upper function, 76
where predicates, 78-79

striping data, 442-444
structured types, 138-141,

949-952
stylesheets, 380
sublinear speedup, 778-780
submultiset, 960
suffix, 874
sum, 84, 123, 207, 235-236,

566-567, 1134
superclass-subclass

relationship, 296-297
superkeys, 45-46, 271-272,

330-333
superuser, 143
Support Vector Machine

(SVM), 900-901, 1191
swap space, 742
Swing, 399
Sybase, 1223
symmetric multiprocessors

(SMPs), 1193
synonyms, 925-927
sysaux, 1172-1173
system architecture. See

architectures
system catalogs, 462-464, 1132
system change number (SCN),

1180-1181
system error, 721
System R, 30, 57, 1193

table inheritance, 954-956
tables, 12-13

filtering and, 1187
IBM DB2 and, 1200-1203

materialized, 1212-1214
Microsoft SQL Server and,

1230, 1234
.NET Common Language

Runtime (CLR) and,
1257-1258

Oracle and, 1163-1166, 1187,
1189

partitions and, 1169-1172
relational model and, 39-44,

49-51
SQL Server Broker and, 1262

tablespaces, 1146, 1172-1173
tag library, 388
tag

application design and,
378-379, 388, 404

information retrieval and, 916
XML and, 982-986, 989, 994,

999, 1004, 1019
tape storage, 431, 450-451
Tapestry, 399
task flow. See workflows
Tcl, 180, 1123-1125, 1136
temporal data, 1061

intervals and, 1063-1064
query languages and, 1064
relational databases and,

364-367
time in databases and,

1062-1064
timestamps and, 1063-1064
transaction time and, 1062

temporal relation, 1062-1063
Teradata Purpose-Built

Platform Family, 806
term frequency (TF), 918
termination states, 1099
tertiary storage, 431, 449-451
TF-IDF approach, 928-929
theta join, 584-585
third normal form (3NF)

decomposition algorithms
and, 352-355

relational databases and,
336-337, 352-355

Thomas’ write rule, 685-686
thread pooling, 1246
three-phase commit (3PC)

protocol, 826
three-tier architecture, 25
throughput

application development and,
1037, 1045-1046

defined, 311

harmonic mean of, 1046
improved, 635-636, 655
log records and, 1106
main memories and, 1116
Microsoft SQL Server and,

1255
Oracle and, 1159, 1184
parallel systems and, 778
performance and, 1110
range partitioning and, 800
storage and, 444, 468
system architectures and, 771,

778, 800, 802, 819
transactions and, 635-636, 655

timestamps, 136-167
concurrency control and,

682-686, 703
distributed databases and,

842-843
logical counter and, 682
long-duration transactions

and, 1110
multiversion schemes and,

690-691
ordering scheme and, 682-685
rollback and, 685-686
temporal data and, 1063-1064
Thomas’ write rule and,

685-686
transactions and, 651-652
with time zone, 1063

time to completion, 1045
time with time zone, 1063
timezone, 136-137, 1063
Tomcat, 386
top-down design, 297
top-K optimization, 613
topographic information, 1070
topological sorting, 644-646
training instances, 895
transactional replication,

1252-1253
transaction control, 58
transaction coordinator,

830-831, 834-835, 850-852
transaction manager, 21, 23,

830-831
transaction-processing

monitors, 1091
application coordination

using, 1095-1096
architectures of, 1092-1095
durable queue and, 1094
many-server, many-router

model and, 1094
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many-server, single-router
model and, 1093

multitasking and, 1092-1095
presentation facilities and,

1094-1095
single-server model and,

1092-1093
switching and, 1092

Transaction Processing
Performance Council
(TPC), 1046-1048

transactions, 32, 625, 655-656,
1116

aborted, 633-634, 647
actions after crash, 736-738
active, 633
advanced processing of,

1091-1116
association rules and, 904-907
atomicity and, 22-23, 628,

633-635, 646-648 (see also
atomicity)

availability and, 847-853
begin/end operations and,

627
cascadeless schedules and,

647-648
check constraints and, 628
cloud computing and, 866-868
commit protocols and,

832-838
committed, 127, 633-635, 639,

647, 692-693, 730, 758,
832-838, 1107, 1218

compensating, 633, 1113-1114
concept of, 627-629
concurrency control and,

661-710, 1241-1246 (see
also concurrency control)

consistency and, 22, 627-631,
635-636, 640, 648-650, 655
(see also consistency)

crashes and, 628
data mining and, 893-910
decision-storage systems and,

887-889
defined, 22, 627
distributed databases and,

830-832
durability and, 22-23, 628,

633-635 (see also
durability)

E-commerce and, 1102-1105
failure of, 633, 721-722

force/no-force policy and,
739-740

global, 784, 830, 860-861
integrity constraint violation

and, 133-134
isolation and, 628, 635-640,

646-653 (see also
isolation)

killed, 634
local, 784, 830, 860-861
locks and, 661-669, 661-686

(see also locks)
log records and, 726-728,

730-734
long-duration, 1109-1115
main-memory databases and,

1105-1108
multidatabases and, 860-861
multilevel, 1112-1113
multitasking and, 1092-1095
multiversion concurrency

control (MVCC) and,
1137-1146

multiversion schemes and,
689-692

object-based databases and,
945-975

observable external writes
and, 634-635

parallel databases and,
797-820

performance tuning and,
1041-1044

persistent messaging and,
836-837

persistent programming
languages and, 970

person-in-the-middle attacks
and, 1105

PostgreSQL and, 1137-1146
read/write operations and,

653-654
real-time systems and,

1108-1109
recoverable schedules and,

647
recovery manager and, 22-23
recovery systems and, 631,

633 (see also recovery
systems)

remote backup systems and,
756-759

restart of, 634
rollback and, 127, 736,

746-749, 754-755

serializability and, 640-653
shadow-copy scheme and,

727
simple model for, 629-631
SQL Server Broker and,

1261-1263
as SQL statements, 653-654
starved, 666
states of, 633-635
steal/no-steal policy and, 740
storage structure and, 632-633
timestamps and, 682-686
two-phase commit protocol

(2PC) and, 786-788
uncommitted, 648
as unit of program, 627
validation and, 686-689
wait-for graph and, 676-678
workflows and, 836-838,

1096-1102
write-ahead logging (WAL)

rule and, 739-740, 739-741
transaction scaleup, 779
transactions-consistent

snapshot, 843-844
transaction-server systems,

773-775
transactions per second (TPS),

1046-1047
transaction time, 365n8, 1062
TransactSQL, 173
transfer of control, 757
transfer of prestige, 921-922
transformations

equivalence rules and,
583-586

examples of, 586-588
join ordering and, 588-589
query optimization and,

582-590
relational algebra and,

582-590
XML and, 998-1008

transition tables, 183-184
transition variable, 181
transitive closure, 188-190
transitivity rule, 339-340
transparency, 829-830, 854-855
trees, 1086

B, 504-506, 530, 1039, 1064,
1071-1072, 1076, 1086,
1135, 1148-1150, 1159,
1164-1169, 1173, 1205

B+, 12-34-1235 (see also
B+-trees)
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decision-tree classifiers and,
895-900

directory information (DIT),
872-875

distributed directory, 874-875
Generalized Search Tree

(GiST) and, 1148-1149
index-organized tables (IOTs)

and, 1164-1165
k-d, 1071-1072
multiple granularity and,

679-682
Oracle and, 1164-1165, 1191
overfitting and, 899-900
PostgreSQL and, 1148-1149
quadratic split and, 1075-1076
quadtrees, 1069, 1072-1073
query optimization and,

814-815 (see also query
optimization)

R, 1073-1076
scheduling and, 814-815
spatial data support and,

1064-1076
XML, 998, 1011

triggers
alter, 185
disable, 185
drop, 185
IBM DB2 and, 1210
Microsoft SQL Server and,

1232-1233
need for, 180-181
nonstandard syntax and, 184
Oracle and, 1161-1162
PostgreSQL and, 1153-1154
recovery and, 186
in SQL, 181-187
transition tables and, 183-184
when not to use, 186-187

true negatives, 903
true predicate, 67
true relation, 90, 93
tuple ID, 1147-1148
tuple relational calculus, 239,

249
example queries, 240-242
expressive power of

languages, 244
formal definition, 243
safety of expressions, 244

tuples, 40-42
aggregate functions and,

84-90
Cartesian product and, 50

delete and, 98-100
domain relational calculus

and, 245-248
duplicate, 94-95
eager generation of, 569-570
insert and, 100-101
joins and, 550-553 (see also

joins)
lazy generation of, 570-571
ordering display of, 77-78
parallel databases and,

797-820
pipelining and, 568-572
PostgreSQL and, 1137-1146
query structures and, 68
query optimization and,

579-616
query processing and, 537-573
ranking and, 192-195
relational algebra and,

217-239, 582-590
set operations and, 79-83
update and, 101-103
views and, 120-128
windowing and, 195-197

tuple visibility, 1139
two-factor authentication,

405-407
two-phase commit (2PC)

protocol, 786-788,
832-836

two-tier architecture, 24-25
types, 1017, 1159

abstract data, 1127
array, 956-961
base, 1127
blob, 138, 166, 457, 502, 1013,

1198-1199, 1259
clob, 138, 166, 457, 502,

1010-1013, 1196-1199
complex data, 946-949 (see

also complex data types)
composite, 1127
document type definition

(DTD) , 990-994
enumerated, 1128
IBM DB2 and, 1196-1197
inheritance and, 949-956
Microsoft SQL Server and,

1229-1230, 1257-1258
most-specific, 953
multiset, 956-961
.NET Common Language

Runtime (CLR) and,
1257-1258

nonstandard, 1129-1130
object-based databases and,

949-963
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