
CE13 

 

"C Programming Guide Book" 

 

Spring 2009 

 



 2 

 Introductory C Programming  

by 

Steve Summit 

 

 

C Programming Guide……………………………………...……… P. 3 

Chapter 1: Introduction…………………………………………..... P. 18 

Chapter 2: Basic Data Types and Operators……..………………… P. 28 

Chapter 3: Statements and Control Flow………………………….. P. 36 

Chapter 4: More about Declarations (and Initialization)…..……… P. 49 

Chapter 5: Functions and Program Structure………….……..……. P. 59 

Chapter 6: Basic I/O……………………………..………………… P. 67 

Chapter 7: More Operators………………………………………... P. 77 

 

 

 

These notes are part of the UW Experimental College course on Introductory C 

Programming. They are based on notes prepared (beginning in Spring, 1995) to 

supplement the book The C Programming Language, by Brian Kernighan and Dennis 

Ritchie, or K&R as the book and its authors are affectionately known. (The second 

edition was published in 1988 by Prentice-Hall, ISBN 0-13-110362-8.) These notes are 

now (as of Winter, 1995-6) intended to be stand-alone, although the sections are still 

cross-referenced to those of K&R, for the reader who wants to pursue a more in-depth 

exposition.  

 

 

 
Copyright 1995-1997 by Steve Summit. 

../My%20Documents/COSMOS/Cosmos%202003%20Student%20CD/CCLASS/C%20Tutorial/www.eskimo.com/_scs/cclass/notes/sx1.html
../My%20Documents/COSMOS/Cosmos%202003%20Student%20CD/CCLASS/C%20Tutorial/www.eskimo.com/_scs/cclass/notes/sx2.html
../My%20Documents/COSMOS/Cosmos%202003%20Student%20CD/CCLASS/C%20Tutorial/www.eskimo.com/_scs/cclass/notes/sx3.html
../My%20Documents/COSMOS/Cosmos%202003%20Student%20CD/CCLASS/C%20Tutorial/www.eskimo.com/_scs/cclass/notes/sx4.html
../My%20Documents/COSMOS/Cosmos%202003%20Student%20CD/CCLASS/C%20Tutorial/www.eskimo.com/_scs/cclass/notes/sx5.html
../My%20Documents/COSMOS/Cosmos%202003%20Student%20CD/CCLASS/C%20Tutorial/www.eskimo.com/_scs/cclass/notes/sx6.html
../My%20Documents/COSMOS/Cosmos%202003%20Student%20CD/CCLASS/C%20Tutorial/www.eskimo.com/_scs/cclass/notes/sx7.html
http://www.eskimo.com/~scs/expcoll/


 3 

C Programming Guide 

A Short Introduction to Programming  

 

At its most basic level, programming a computer simply means telling it what to do, and 

this vapid-sounding definition is not even a joke. There are no other truly fundamental 

aspects of computer programming; everything else we talk about will simply be the 

details of a particular, usually artificial, mechanism for telling a computer what to do. 

Sometimes these mechanisms are chosen because they have been found to be convenient 

for programmers (people) to use; other times they have been chosen because they're easy 

for the computer to understand. The first hard thing about programming is to learn, 

become comfortable with, and accept these artificial mechanisms, whether they make 

``sense'' to you or not.  

In fact, you shouldn't worry if some (or even many) of the mechanisms used for 

programming a computer don't make sense. It doesn't make sense that the cold water 

faucet has to be on the right side and the hot one has to be on the left; that's just the 

convention we've settled on. Similarly, many computer programming mechanisms are 

quite arbitrary, and were chosen not because of any theoretical motivation but simply 

because we needed an unambiguous way to say something to a computer.  

In this introduction to programming, we'll talk about several things: skills needed in 

programming, a simplified programming model, elements of real programming 

languages, computer representation of numbers, characters and strings, and compiler 

terminology. 

Skills Needed in Programming 

I'm not going to claim that programming is easy, but I am going to say that it is not hard 

for the reasons people usually assume it is. Programming is not a deeply theoretical 

subject like Chemistry or Physics; you don't need an advanced degree to do well at it. 

(There are important principles of Computer Science, but it's possible to get a degree 

after studying them and to have only vague ideas of how to apply them to practical 

programming. Contrariwise, we'll experience many important Computer Science lessons 

by the seat of our pants, without bewildering ourselves with abstract notation; there are 

plenty of successful programmers who don't have Computer Science degrees.)  

Comparing programming to some physical tasks, programming does not require some 

innate talent or skill, like gymnastics or painting or singing. You don't have to be strong 

or coordinated or graceful or have perfect pitch. Programming does, however, require 

care and craftsmanship, like carpentry or metalworking. If you've ever taken a shop class, 

you may remember that some students seemed to be able to turn out beautiful projects 

effortlessly, while other students were all thumbs and made the exact mistakes that the 

teacher told them not to make. What distinguished the successful students was not that 

they were better or smarter, but just that they paid more attention to what was going on 



 4 

and were more careful and deliberate about what they were doing. (Perhaps care and 

attention are innate skills too, like gymnastic ability; I don't know.)  

Some things you do need are (1) attention to detail, (2) stupidity, (3) good memory, and 

(4) an ability to think abstractly, and on several levels. Let's look at these qualities in a bit 

more detail:  

1. Attention to detail  
 

In programming, the details matter. Computers are incredibly stupid (more on this 

in a minute). You can't be vague; you can't describe your program 3/4 of the way 

and then say ``Ya know what I mean?'' and have the compiler figure out the rest. 

You have to dot your i's and cross your t's. If the language says you have to 

declare variables before using them, you have to. If the language says you have to 

use parentheses here and square brackets there and squiggly braces some third 

place, you have to.  

 

2. Stupidity  
 

Computers are incredibly stupid. They do exactly what you tell them to do: no 

more, no less. If you gave a computer a bottle of shampoo and told it to read the 

directions and wash its hair, you'd better be sure it was a big bottle of shampoo, 

because the computer is going to wet hair, lather, rinse, repeat, wet hair, lather, 

rinse, repeat, wet hair, lather, rinse, repeat, wet hair, lather, rinse, repeat, ...  

 

I saw an ad by a microprocessor manufacturer suggesting the ``smart'' kinds of 

appliances we'd have in the future and comparing them to ``dumb'' appliances like 

toasters. I believe they had it backwards. A toaster (an old-fashioned one, 

anyway) has two controls, and one of them is optional: if you don't set the 

darkness control, it'll do the best it can. You don't have to tell it how many slices 

of bread you're toasting, or what kind. (``Modern'' toasters have begun to reverse 

this trend...) Compare this user interface to most microwave ovens: they won't 

even let you enter the cooking time until you've entered the power level.  

 

When you're programming, it helps to be able to ``think'' as stupidly as the 

computer does, so that you're in the right frame of mind for specifying everything 

in minute detail, and not assuming that the right thing will happen unless you tell 

it to.  

(This is not to say that you have to specify everything; the whole point of a high-

level programming language like C is to take some of the busiwork burden off the 

programmer. A C compiler is willing to intuit a few things--for example, if you 

assign an integer variable to a floating-point variable, it will supply a conversion 

automatically. But you have to know the rules for what the compiler will assume 

and what things you must specify explicitly.)  



 5 

3. Good memory  
 

There are a lot of things to remember while programming: the syntax of the 

language, the set of prewritten functions that are available for you to call and what 

parameters they take, what variables and functions you've defined in your 

program and how you're using them, techniques you've used or seen in the past 

which you can apply to new problems, bugs you've had in the past which you can 

either try to avoid or at least recognize by their symptoms. The more of these 

details you can keep in your head at one time (as opposed to looking them up all 

the time), the more successful you'll be at programming.  

 

4. Ability to abstract, think on several levels  
 

This is probably the most important skill in programming. Computers are some of 

the most complex systems we've ever built, and if while programming you had to 

keep in mind every aspect of the functioning of the computer at all levels, it 

would be a Herculean task to write even a simple program.  

 

One of the most powerful techniques for managing the complexity of a software 

system (or any complex system) is to compartmentalize it into little ``black box'' 

processes which perform useful tasks but which hide some details so you don't 

have to think about them all the time.  

 

We compartmentalize tasks all the time, without even thinking about it. If I tell 

you to go to the store and pick up some milk, I don't tell you to walk to the door, 

open the door, go outside, open the car door, get in the car, drive to the store, get 

out of the car, walk into the store, etc. I especially don't tell you, and you don't 

even think about, lifting each leg as you walk, grasping door handles as you open 

them, etc. You never (unless perhaps if you're gravely ill) have to worry about 

breathing and pumping your blood to enable you to perform all of these tasks and 

subtasks.  

 

We can carry this little example in the other direction, as well. If I ask you to 

make some ice cream, you might realize that we're out of milk and go and get 

some without my asking you to. If I ask you to help put on a party for our friends, 

you might decide to make ice cream as part of that larger task. And so on.  

 

Compartmentalization, or abstraction, is a vital skill in programming, or in 

managing any complex system. Despite what I said in point 3 above, we can only 

keep a small number of things in our head at one time. A large program might 

have 100,000 or 1,000,000 or 10,000,000 lines of code. If it were necessary to 

understand all of the lines together and at once to understand the program, the 

program would be impossible to write or understand. Only if it is possible to think 

about small pieces in isolation will it ever be possible to work with a large 

program.  

 



 6 

Compartmentalization, powerful though it is, is not automatic, and not necessarily 

an instant cure for all of our organizational problems. We carry a lot of 

assumptions around about how various things work, and things work well only as 

long as these assumptions hold. To return to the previous example, if I ask you to 

go the store and get some milk, I'm assuming that you know which kind to get, 

where the store is, how to get there, how to drive if you need to, etc. If some of 

these assumptions weren't valid, or if there were several options for any of them, 

we might have to modify the way I gave you instructions. I might have to tell you 

to drive to the store, or to go to Safeway, or to get some two percent milk.  

 

Therefore, we can't simply compartmentalize all of our processes and 

subprocesses and forget about complexity problems forever. We have to 

remember at least some of the assumptions surrounding the compartmentalization 

scheme. We have to remember what we can and can't expect from the processes 

(people, computer programs, etc.) which we call on to do tasks for us. We have to 

make sure that we keep our end of the bargain and don't fall down on any of the 

commitments and promises we've made on the tasks we've been asked to do and 

which others are assuming we'll keep.  

 

Thinking about the mechanics of a design hierarchy, while also using that 

hierarchy to avoid having to think about every detail of it at every level all of the 

time, is one of the things I mean by ``thinking on several levels.'' It's tricky to do 

(obviously, it's tricky even to describe), but it's the only way to cut through large, 

complex problems.  

What's hard about programming (besides maybe having trouble with the four traits 

above) is mostly picky little detail and organizational problems, and people problems. A 

large program is a terribly complex system; a large programming project worked on by 

many people has to work very hard at peripheral, picayune tasks like documentation and 

communication if the project is to avoid drowning in a flood of little details and bugs.  

Simplified Programming Model 

Imagine an ordinary pocket calculator which can add, subtract, multiply, and divide, and 

which has a few memory registers which you can store numbers in. At a grossly 

oversimplified level (so simple that we'll abandon it in just a minute), we can think of a 

computer as a calculator which is able to push its own buttons. A computer program is 

simply the list of instructions that tells the computer which buttons to push. (Actually, 

there are ``keystroke programmable'' calculators which you program in just about this 

way.)  

Imagine using such a calculator to perform the following task:  

Given a list of numbers, compute the average of all the numbers, and also find the largest 

number in the list.  



 7 

You can imagine giving the calculator a list of instructions for performing this task, or 

you can imagine giving a list of instructions to a very stupid but very patient person who 

is able to follow instructions blindly but accurately, as long as the instructions consist of 

pushing buttons on the calculator and making simple yes/no decisions. (For our purposes 

just now, either imaginary model will work.)  

Your instructions might look something like this:  

``We're going to use memory register 1 to store the running total of all the numbers, 

memory register 2 to store how many numbers we've seen, and register 3 to store the 

largest number we've seen. For each number in the input list, add it to register 1. Add 1 to 

register 2. If the number you just read is larger than the number in register 3, store it in 

register 3. When you've read all the numbers, divide register 1 by register 2 to compute 

the average, and also retrieve the largest number from register 3.''  

There are several things to notice about the above list of instructions:  

1. The first sentence, which explains what the registers are used for, is more for our 

benefit than the entity who will be pushing the buttons on the calculator. The entity 

pushing the buttons doesn't care what the numbers mean, it just manipulates them as 

directed. Similarly, the words ``to compute the average'' and ``largest'' in the last sentence 

are extraneous; they don't tell the entity pushing the button anything it needs to know (or 

that it can even understand).  

2. The instructions use the word ``it'' several times. Even in English, where we're used to 

a certain amount of ambiguity which we can usually work out from the context, pronouns 

like ``it'' can cause problems in sentences, because sometimes it isn't obvious what they 

mean. (For example, in the preceding sentence, does ``they'' refer to ``pronouns,'' 

``problems,'' or ``sentences?'') In programming, you can never get away with ambiguity; 

you have to be quite precise about which ``it'' you're referring to.  

3. The instructions are pretty vague about the details of reading the next number in the 

input list and detecting the end of the list.  

4. The ``program'' contains several bugs! It uses registers 1, 2, and 3, but we never say 

what to store in them in the first place. Unless they all happen to start out containing zero, 

the average or maximum value computed by the ``program'' will be incorrect. (Actually, 

if all of the numbers in the list are negative, having register 3 start out as 0 won't work, 

either.)  

Here is a somewhat more detailed version of the ``program,'' which removes some of the 

extraneous information and ambiguity, makes the input list handling a bit more precise, 

and fixes at least some of the bugs. (To make the concept of ``the number just read from 

the list'' unambiguous, this ``program'' stores it in register 4, rather than referring to it by 

``it.'' Also, for now, we're going to assume that the numbers in the input list are non-

negative.)  



 8 

``Store 0 in registers 1, 2, and 3. Read the next number from the list. If you're at the end 

of the list, you're done. Otherwise, store the number in register 4. Add register 4 to 

register 1. Add 1 to register 2. If register 4 is greater than register 3, store register 4 in 

register 3. When you're done, divide register 1 by register 2 and print the result, and print 

the contents of register 3.''  

When we add the initialization step (storing 0 in the registers), we realize that it's not 

quite obvious which steps happen once only and which steps happen once for each 

number in the input list (that is, each time through the processing loop). Also, we've 

assumed that the calculator can do arithmetic operations directly into memory registers. 

To make the loop boundaries explicit, and the calculations even simpler (assuming that 

all the calculator can do is store or recall memory registers from or to the display, and do 

calculations in the display), the instructions would get more elaborate still:  

``Store 0 in register 1. Store 0 in register 2. Store 0 in register 3. Here is the start of the 

loop: read the next number from the list. If you're at the end of the list, you're done. 

Otherwise, store the number in register 4. Recall from register 1, recall from register 4, 

add them, store in register 1. Recall from register 2, add 1, store in register 2. Recall from 

register 3, recall from register 4, if greater store in register 3. Go back to the beginning of 

the loop. When you're done: recall from register 1, recall from register 2, divide them, 

print; recall from register 3, print.''  

We could continue to ``dumb down'' this list of instructions even further, but hopefully 

you're getting the point: the instructions we use when programming computers have to be 

very precise, and at a level of pickiness and detail which we don't usually use with each 

other. (Actually, things aren't quite as bad as these examples might suggest. The 

``dumbing down'' we've been doing has been somewhat in the direction of assembly 

language, which wise programmers don't use much any more. In a higher-level language 

such as C, you don't have to worry so much about register assignment and individual 

arithmetic operators.)  

Real computers can do quite a bit more than 4-function pocket calculators can; for one 

thing, they can manipulate strings of text and other kinds of data besides numbers. Let's 

leave pocket calculators behind, and start looking at what real computers (at least under 

the control of programming languages like C) can do.  

Real Programming Model 

A computer program consists of two parts: code and data. The code is the set of 

instructions for performing a task, and the data is the set of ``registers'' or ``memory 

locations'' which contain the intermediate results which are used as the program performs 

its calculations.  

Note that the code is relatively static while the data is dynamic. Once you've gotten a 

program working, its code won't change, but every time you run it, it will typically be 

working with different data, so the memory locations will take on different values.  

Once you've written a program, you've defined a new thing that your computer can do. 

The applications (text and graphic editors, spreadsheets, games, etc.) which your 



 9 

computer may already have are ``just'' programs, written by programmers using 

programming languages such as the one you're about to learn.  

Elements of Real Programming Languages 

There are several elements which programming languages, and programs written in them, 

typically contain. These elements are found in all languages, not just C. If you understand 

these elements and what they're for, not only will you understand C better, but you'll also 

find learning other programming languages, and moving between different programming 

languages, much easier.  

1. There are variables or objects, in which you can store the pieces of data that a program 

is working on. Variables are the way we talk about memory locations (data), and are 

analogous to the ``registers'' in our pocket calculator example. Variables may be global 

(that is, accessible anywhere in a program) or local (that is, private to certain parts of a 

program).  

2. There are expressions, which compute new values from old ones.  

3. There are assignments which store values (of expressions, or other variables) into 

variables. In many languages, assignment is indicated by an equals sign; thus, we might 

have  

 b = 3 

or  
 c = d + e + 1 

 

The first sets the variable b to 3; the second sets the variable c to the sum of the variables 

d plus e plus 1.  

The use of an equals sign can be mildly confusing at first. In mathematics, an equals sign 

indicates equality: two things are stated to be inherently equal, for all time. In 

programming, there's a time element, and a notion of cause-and-effect: after the 

assignment, the thing on the left-hand side of the assignment statement is equal to what 

the stuff on the right-hand side was before. To remind yourself of this meaning, you 

might want to read the equals sign in an assignment as ``gets'' or ``receives'': a = 3 

means ``a gets 3'' or ``a receives 3.''  

(A few programming languages use a left arrow for assignment  

 a <-- 3 

to make the ``receives'' relation obvious, but this notation is not too popular, if for no 

other reason than that few character sets have left arrows in them, and the left arrow key 

on the keyboard usually moves the cursor rather than typing a left arrow.)  

If assignment seems natural and unconfusing so far, consider the line  



 10 

 i = i + 1 

What can this mean? In algebra, we'd subtract i from both sides and end up with  
 0 = 1 

which doesn't make much sense. In programming, however, lines like  
 i = i + 1 

are extremely common, and as long as we remember how assignment works, they're not 

too hard to understand: the variable i receives (its new value is), as always, what we get 

when we evaluate the expression on the right-hand side. The expression says to fetch i's 

(old) value, and add 1 to it, and this new value is what will get stored into i. So i = i + 

1 adds 1 to i; we say that it increments i.  

(We'll eventually see that, in C, assignments are just another kind of expression.)  

4. There are conditionals which can be used to determine whether some condition is true, 

such as whether one number is greater than another. (In some languages, including C, 

conditionals are actually expressions which compare two values and compute a ``true'' or 

``false'' value.)  

5. Variables and expressions may have types, indicating the nature of the expected values. 

For instance, you might declare that one variable is expected to hold a number, and that 

another is expected to hold a piece of text. In many languages (including C), your 

declarations of the names of the variables you plan to use and what types you expect 

them to hold must be explicit.  

There are all sorts of data types handled by various computer languages. There are single 

characters, integers, and ``real'' (floating point) numbers. There are text strings (i.e. 

strings of several characters), and there are arrays of integers, reals, or other types. There 

are types which reference (point at) values of other types. Finally, there may be user-

defined data types, such as structures or records, which allow the programmer to build a 

more complicated data structure, describing a more complicated object, by accreting 

together several simpler types (or even other user-defined types).  

6. There are statements which contain instructions describing what a program actually 

does. Statements may compute expressions, perform assignments, or call functions (see 

below).  

7. There are control flow constructs which determine what order statements are 

performed in. A certain statement might be performed only if a condition is true. A 

sequence of several statements might be repeated over and over, until some condition is 

met; this is called a loop.  

8. An entire set of statements, declarations, and control flow constructs can be lumped 

together into a function (also called routine, subroutine, or procedure) which another 

piece of code can then call as a unit.  

When you call a function, you transfer control to it and wait for it to do its job, after 

which it returns to you; it may also return a value as a result of what it has done. You 



 11 

may also pass values to the function on which it will operate or which otherwise direct its 

work.  

Placing code into functions not only avoids repetition if the same sequence of actions 

must be performed at several places within a program, but it also makes programs easy to 

understand, because you can see that some function is being called, and performing some 

(presumably) well-defined subtask, without always concerning yourself with the details 

of how that function does its job. (If you've ever done any knitting, you know that 

knitting instructions are often written with little sub-instructions or patterns which 

describe a sequence of stitches which is to be performed multiple times during the course 

of the main piece. These sub-instructions are very much like function calls in 

programming.)  

9. A set of functions, global variables, and other elements makes up a program. An 

additional wrinkle is that the source code for a program may be distributed among one or 

more source files. (In the other direction, it is also common for a suite of related 

programs to work closely together to perform some larger task, but we'll not worry about 

that ``large scale integration'' for now.)  

10. In the process of specifying a program in a form suitable for a compiler, there are 

usually a few logistical details to keep track of. These details may involve the 

specification of compiler parameters or interdependencies between different functions 

and other parts of the program. Specifying these details often involves miscellaneous 

syntax which doesn't fall into any of the other categories listed here, and which we might 

lump together as ``boilerplate.''  

Many of these elements exist in a hierarchy. A program typically consists of functions 

and global variables; a function is made up of statements; statements usually contain 

expressions; expressions operate on objects. (It is also possible to extend the hierarchy in 

the other direction; for instance, sometimes several interrelated but distinct programs are 

assembled into a suite, and used in concert to perform complex tasks. The various 

``office'' packages--integrated word processor, spreadsheet, etc.--are an example.)  

As we mentioned, many of the concepts in programming are somewhat arbitrary. This is 

particularly so for the terms expression, statement, and function. All of these could be 

defined as ``an element of a program that actually does something.'' The differences are 

mainly in the level at which the ``something'' is done, and it's not necessary at this point 

to define those ``levels.'' We'll come to understand them as we begin to write programs.  

An analogy may help: Just as a book is composed of chapters which are composed of 

sections which are composed of paragraphs which are composed of sentences which are 

composed of words (which are composed of letters), so is a program composed of 

functions which are composed of statements which are composed of expressions (which 

are in fact composed of smaller elements which we won't bother to define). Analogies are 

never perfect, though, and this one is weaker than most; it still doesn't tell us anything 

about what expressions, statements, and functions really are. If ``expression'' and 



 12 

``statement'' and ``function'' seem like totally arbitrary words to you, use the analogy to 

understand that what they are is arbitrary words describing arbitrary levels in the 

hierarchical composition of a program, just as ``sentence,'' ``paragraph,'' and ``chapter'' 

are different levels of structure within a book.  

The preceding discussion has been in very general terms, describing features common to 

most ``conventional'' computer languages. If you understand these elements at a 

relatively abstract level, then learning a new computer language becomes a relatively 

simple matter of finding out how that language implements each of the elements. (Of 

course, you can't understand these abstract elements in isolation; it helps to have concrete 

examples to map them to. If you've never programmed before, most of this section has 

probably seemed like words without meaning. Don't spend too much time trying to glean 

all the meaning, but do come back anbd reread this handout after you've started to learn 

the details of a particular programming language such as C.)  

Finally, there's no need to overdo the abstraction. For the simple programs we'll be 

writing, in a language like C, the series of calculations and other operations that actually 

takes place as our program runs is a simpleminded translation (into terms the computer 

can understand) of the expressions, statements, functions, and other elements of the 

program. Expressions are evaluated and their results assigned to variables. Statements are 

executed one after the other, except when the control flow is modified by if/then 

conditionals and loops. Functions are called to perform subtasks, and return values to 

their callers, which have been waiting for them.  

Computer Representation of Numbers 

Most computers represent integers as binary numbers (see the ``math refresher'' handout) 

with a certain number of bits. A computer with 16-bit integers can represent integers 

from 0 to 65,535 (that is, from 0 to 2
16

-1), or if it chooses to make half of them negative, 

from -32,767 to 32,767. (We won't get into the details of how computers handle negative 

numbers right now.) A 32-bit integer can represent values from 0 to 4,294,967,295, or +-

2,147,483,647.  

Most of today's computers represent real (i.e. fractional) numbers using exponential 

notation. (Again, see ``math refresher'' handout. Actually, deep down inside, computers 

usually use powers of 2 instead of powers of 10, but the difference isn't important to us 

right now.) The advantage of using exponential notation for real numbers is that it lets 

you trade off the range and precision of values in a useful way. Since there's an infinitely 

large number of real numbers (and in three directions: very large, very small, and very 

negative), it will never be possible to represent all of them (without using potentially 

infinite amounts of space).  

Suppose you decide to give yourself six decimal digits' worth of storage (that is, you 

decide to devote an amount of memory capable of holding six digits) for each value. If 

you put three digits to the left and three to the right of the decimal point, you could 

represent numbers from 999.999 to -999.999, and as small as 0.001. (Furthermore, you'd 



 13 

have a resolution of 0.001 everywhere: you could represent 0.001 and 0.002, as well as 

999.998 and 999.999.) This would be a workable scheme, although 0.001 isn't a very 

small number and 999.999 isn't a very big one.  

If, on the other hand, you used exponential notation, with four digits for the base number 

and two digits for the exponent, you could represent numbers from 9.999 x 10
99

 to -9.999 

x 10
99

, and as small as 1 x 10
-99

 (or, if you cheat, 0.001 x  10
-99

). You can now represent 

both much larger numbers and much smaller; the tradeoff is that the absolute resolution is 

no longer constant, and gets smaller as the absolute value of the numbers gets larger. The 

number 123.456 can only be represented as 123.4, and the number 123,456 can only be 

represented as 123,400. You can't represent 999.999 any more; you have to settle for 

999.9 (9.999 x 10
2 
or 1000 (1.000 x 10

3
). You can't distinguish between 999.998 and 

999.999 any more.  

Since superscripts are difficult to type, computer programming languages usually use a 

slightly different notation. For example, the number 1.234 x 10
5
 might be indicated by 

1.234e5, where the letter e replaces the ``times ten to the'' part.  

You will often hear real, exponential numbers numbers referred to on computers as 

``floating point numbers'' or simply ``floats,'' and you will also hear the term ``double'' 

which is short for ``double-precision floating point number.'' Some computers also use 

``fixed point'' real numbers, (which work along the lines of our ``three to the left, three to 

the right'' example of a few paragraphs back), but those are comparatively rare and we 

won't need to discuss them.  

It's important to remember that the precision of floating-point numbers is usually limited, 

and this can lead to surprising results. The result of a division like 1/3 cannot be 

represented exactly (it's an infinitely repeating fraction, 0.333333...), so the computation 

(1 / 3) x 3 tends to yield a result like 0.999999... instead of 1.0. Furthermore, in base 2, 

the fraction 1/10, or 0.1 in decimal, is also an infinitely repeating fraction, and cannot be 

represented exactly, either, so (1 / 10) x 10 may also yield 0.999999.... For these reasons 

and others, floating-point calculations are rarely exact. When working with computer 

floating point, you have to be careful not to compare two numbers for exact equality, and 

you have to ensure that ``round off error'' doesn't accumulate until it seriously degrades 

the results of your calculations.  

Characters, Strings, and Numbers 

The earliest computers were number crunchers only, but almost all more recent 

computers have the ability to manipulate alphanumeric data as well. The computer, and 

our programming languages, tend to maintain a strict distinction between numbers on the 

one hand and alphanumeric data on the other, so we have to maintain that distinction in 

our own minds as well.  

One fundamental component of a computer's handling of alphanumeric data is its 

character set. A character set is, not surprisingly, the set of all the characters that the 



 14 

computer can process and display. (Each character generally has a key on the keyboard to 

enter it and a bitmap on the screen which displays it.) A character set consists of letters, 

numbers, punctuation, etc., but the point of this discussion is not so much what the 

characters are but that we have to be careful to distinguish between characters, strings, 

and numbers.  

A character is, well, a single character. If we have a variable which contains a character 

value, it might contain the letter `A', or the digit `2', or the symbol `&'.  

A string is a set of zero or more characters. For example, the string ``and'' consists of the 

characters `a', `n', and `d'. The string ``K2!'' consists of the characters `K', `2', and `!'. The 

string ``.'' consists of the single character `.', and the empty string ``'' consists of no 

characters at all. Not to belabor the point, but the string ``123'' consists of the characters 

`1', `2', and `3', and the string ``4'' consists of the single character `4'.  

The last two examples illustrate some important and perhaps surprising or annoying 

distinctions. The character `4' and the string ``4'' are conceptually different, and neither of 

them is quite the same as the number 4. The string ``123'' consists of three characters, and 

it looks like the number 123 to us, but as far as the computer is concerned it is just a 

string. The number 123 is, when used for ordinary numeric purposes, not represented 

internally as a string of three characters (instead, it is typically represented as a 16- or 32-

bit integer). When we have a string which contains a numeric value which we wish to 

manipulate as a number, we must typically ask for the string to be explicitly converted to 

that number somehow. Similarly, we may have reason to convert a number to a string of 

digits making up its decimal representation.  

We may also find ourselves needing to convert back and forth between characters and the 

numeric codes which are assigned to each character in a character set. (For example, in 

the ASCII character set,the character `A' is code 65, the character `.' is code 46, and the 

character `4' is, perhaps surprisingly, code 52.)  

Compiler Terminology 

C is a compiled language. This means that the programs you write are translated, by a 

program called a compiler, into executable machine-language programs which you can 

actually run. Executable machine-language programs are self-contained and run very 

quickly. Since they are self-contained, you don't need copies of the source code (the 

original programming-language text you composed) or the compiler in order to run them; 

you can distribute copies of just the executable and that's all someone else needs to run it. 

Since they run relatively quickly, they are appropriate for programs which will be written 

once and run many times.  

A compiler is a special kind of progam: it is a program that builds other programs. What 

happens is that you invoke the compiler (as a program), and it reads the programming 

language statements that you have written and turns them into a new, executable 



 15 

program. When the compiler has finished its work, you then invoke your program (the 

one the compiler just built) to see if it works.  

The main alternative to a compiled computer language or program is an interpreted one, 

such as BASIC. An interpreted language is interpreted (by, not surprisingly, a program 

called an interpreter) and its actions performed immediately. If you gave a copy of an 

interpreted program to someone else, they would also need a copy of the interpreter to 

run it. No standalone executable machine-language binary program is produced.  

In other words, for each statement that you write, a compiler translates into a sequence of 

machine language instructions which does the same thing, while an interpreter simply 

does it (where ``it'' is whatever the statement that you wrote is supposed to do).  

The big advantage of an interpreted language is that your program runs right away; you 

don't have to perform--and wait for--the separate tasks of compiling and then running 

your program. (Actually, on a modern computer, neither compiling nor interpreting takes 

much time, so some of these distinctions become less important.)  

Actually, whether a language is compiled or interpreted is not always an inherent part of 

the language. There are interpreters for C, and there are compilers for BASIC. However, 

most languages were designed with one or the other mechanism in mind, and there are 

usually a few difficulties when trying to compile a language which is traditionally 

interpreted, or vice versa.  

The distinction between compilation and interpretation, while it is very significant and 

can make a big difference, is not one to get worked up over. Most of the time, once you 

get used to the details of how you get your programs to run, you don't need to worry 

about the distinction too much. But it is a useful distinction to have a basic understanding 

of, and to keep in the back of your mind, because it will help you understand why certain 

aspects of computer programming (and particular languages) work the way they do.  

When you're working with a compiled language, there are several mechanical details 

which you'll want to be aware of. You create one or more source files which are simple 

text files containing your program, written in whatever language you're using. You 

typically use a text editor to work with source files (typically you don't want to use a full-

fledged text editor, since the compiler won't understand its formatting codes). You supply 

each source file (you may have one, or more than one) to the compiler, which creates an 

object file containing machine-language instructions corresponding to your program. 

Your program is not ready to run yet, however: if you called any functions which you 

didn't write (such as the standard library functions provided as part of a programming 

language environment), you must arrange for them to be inserted into your program, too. 

The task of combining object files together, while also locating and inserting any library 

functions, is the job of the linker. The linker puts together the object files you give it, 

noticing if you call any functions which you haven't supplied and which must therefore 

be library functions. It then searches one or more library files (a library file is simply a 

collection of object files) looking for definitions of the still-unresolved functions, and 



 16 

pulls in any that it finds. When it's done, it either builds the final, executable file, or, if 

there were any errors (such as a function called but not defined anywhere) complains.  

If you're using some kind of an integrated programming environment, many of these 

steps may be taken care of for you so automatically and seamlessly that you're hardly 

aware of them.  

A Brief Refresher on Some Math Often Used in Computing  
 

There are a few mathematical concepts which figure prominently in programming. None 

of these involve higher math (or even algebra, and as we'll see, knowing algebra too well 

can make one particular programming idiom rather confusing). You don't have to 

understand these with deep mathematical sophistication, but keeping them in mind will 

help some things make more sense.  

Integers vs. real numbers 

An integer is a number without a fractional part, a number you could use to count things 

(although integers may also be negative). Mathematicians may distinguish between 

natural numbers and cardinal numbers, and linguists may distinguish between cardinal 

numbers and ordinal numbers, but these distinctions do not concern us here.  

A real number is, for our purposes, simply a number with a fractional part. Since 

computers do not typically implement real numbers exactly, it is not necessary or even 

meaningful to distinguish between rational, irrational, and transcendental numbers.  

Exponential Notation 

Exponential or Scientific Notation is simply a method of writing a number as a base 

number times some power of ten. For example, we could write the number 2,000,000 as 2 

x 10
6
, the number 0.00023 as 2.3 x 10

-4
, and the number 123.456 as 1.23456 x 10

2
. 

Binary Numbers 

Our familiar decimal number system is based on powers of 10. The number 123 is 

actually 100 + 20 + 3 or 1 x 10<sup>2</sup> + 2 x 10<sup>1</sup> + 3 x 

10<sup>0</sup>.  

The binary number system is based on powers of 2. The number 100101<sub>2</sub> 

(that is, ``100101 base two'') is 1 x 2<sup>5</sup> + 0 x 2<sup>4</sup> + 0 x 

2<sup>3</sup> + 1 x 2<sup>2</sup> + 0 x 2<sup>1</sup> + 1 x 2<sup>0</sup> or 

32 + 4 + 1 or 37.  

We usually speak of the individual numerals in a decimal number as digits, while the 

``digits'' of a binary number are usually called ``bits.''  



 17 

Besides decimal and binary, we also occasionally speak of octal (base 8) and 

hexadecimal (base 16) numbers. These work similarly: The number 458 is 4 x 8
1
 + 5 x 8

0
 

or 32 + 5 or 37. The number 2516 is 2 x 16
1
 + 5 x 16

0
 or 32 + 5 or 37. (So 3710, 1001012, 

458, and 2516 are all the same number.)  

Boolean Algebra 

Boolean algebra is a system of algebra (named after the mathematician who studied it, 

George Boole) based on only two numbers, 0 and 1, commonly thought of as ``false'' and 

``true.'' Binary numbers and Boolean algebra are natural to use with modern digital 

computers, which deal with switches and electrical currents which are either on or off. (In 

fact, binary numbers and Boolean algebra aren't just natural to use with modern digital 

computers, they are the fundamental basis of modern digital computers.)  

There are four arithmetic operators in Boolean algebra: NOT, AND, OR, and 

EXCLUSIVE OR.  

NOT takes one operand (that is, applies to a single value) and negates it: NOT 0 is 1, and 

NOT 1 is 0.  

AND takes two operands, and yields a truth value if both of its operands are true: 1 AND 

1 is 1, but 0 AND 1 is 0, and 0 AND 0 is 0.  

OR takes two operands, and yields a truth value if either of its operands (or both) are true: 

0 OR 0 is 0, but 0 OR 1 is 1, and 1 OR 1 is 1.  

EXCLUSIVE OR, or XOR, takes two operands, and yields a truth value if one of its 

operands, but not both, is true: 0 XOR 0 is 0, 0 XOR 1 is 1, and 1 XOR 1 is 0.  

It is also possible to take strings of 0/1 values and apply Boolean operators to all of them 

in parallel; these are sometimes called ``bitwise'' operations. For example, the bitwise OR 

of 0011 and 0101 is 0111. (If it isn't obvious, what happens here is that each bit in the 

answer is the result of applying the corresponding operation to the two corresponding bits 

in the input numbers.)  

 

 

 

 



 18 

Chapter 1: Introduction 

C is (as K&R admit) a relatively small language, but one which (to its admirers, anyway) 

wears well. C's small, unambitious feature set is a real advantage: there's less to learn; 

there isn't excess baggage in the way when you don't need it. It can also be a 

disadvantage: since it doesn't do everything for you, there's a lot you have to do yourself. 

(Actually, this is viewed by many as an additional advantage: anything the language 

doesn't do for you, it doesn't dictate to you, either, so you're free to do that something 

however you want.)  

C is sometimes referred to as a ``high-level assembly language.'' Some people think that's 

an insult, but it's actually a deliberate and significant aspect of the language. If you have 

programmed in assembly language, you'll probably find C very natural and comfortable 

(although if you continue to focus too heavily on machine-level details, you'll probably 

end up with unnecessarily nonportable programs). If you haven't programmed in 

assembly language, you may be frustrated by C's lack of certain higher-level features. In 

either case, you should understand why C was designed this way: so that seemingly-

simple constructions expressed in C would not expand to arbitrarily expensive (in time or 

space) machine language constructions when compiled. If you write a C program simply 

and succinctly, it is likely to result in a succinct, efficient machine language executable. 

If you find that the executable program resulting from a C program is not efficient, it's 

probably because of something silly you did, not because of something the compiler did 

behind your back which you have no control over. In any case, there's no point in 

complaining about C's low-level flavor: C is what it is.  

A programming language is a tool, and no tool can perform every task unaided. If you're 

building a house, and I'm teaching you how to use a hammer, and you ask how to 

assemble rafters and trusses into gables, that's a legitimate question, but the answer has 

fallen out of the realm of ``How do I use a hammer?'' and into ``How do I build a 

house?''. In the same way, we'll see that C does not have built-in features to perform 

every function that we might ever need to do while programming.  

As mentioned above, C imposes relatively few built-in ways of doing things on the 

programmer. Some common tasks, such as manipulating strings, allocating memory, and 

doing input/output (I/O), are performed by calling on library functions. Other tasks which 

you might want to do, such as creating or listing directories, or interacting with a mouse, 

or displaying windows or other user-interface elements, or doing color graphics, are not 

defined by the C language at all. You can do these things from a C program, of course, 

but you will be calling on services which are peculiar to your programming environment 

(compiler, processor, and operating system) and which are not defined by the C standard. 

Since this course is about portable C programming, it will also be steering clear of 

facilities not provided in all C environments.  

Another aspect of C that's worth mentioning here is that it is, to put it bluntly, a bit 

dangerous. C does not, in general, try hard to protect a programmer from mistakes. If you 



 19 

write a piece of code which will (through some oversight of yours) do something wildly 

different from what you intended it to do, up to and including deleting your data or 

trashing your disk, and if it is possible for the compiler to compile it, it generally will. 

You won't get warnings of the form ``Do you really mean to...?'' or ``Are you sure you 

really want to...?''. C is often compared to a sharp knife: it can do a surgically precise job 

on some exacting task you have in mind, but it can also do a surgically precise job of 

cutting off your finger. It's up to you to use it carefully.  

This aspect of C is very widely criticized; it is also used (justifiably) to argue that C is not 

a good teaching language. C aficionados love this aspect of C because it means that C 

does not try to protect them from themselves: when they know what they're doing, even if 

it's risky or obscure, they can do it. Students of C hate this aspect of C because it often 

seems as if the language is some kind of a conspiracy specifically designed to lead them 

into booby traps and ``gotcha!''s.  

This is another aspect of the language which it's fairly pointless to complain about. If you 

take care and pay attention, you can avoid many of the pitfalls. These notes will point out 

many of the obvious (and not so obvious) trouble spots.  

1.1 A First Example 

[This section corresponds to K&R Sec. 1.1]  

The best way to learn programming is to dive right in and start writing real programs. 

This way, concepts which would otherwise seem abstract make sense, and the positive 

feedback you get from getting even a small program to work gives you a great incentive 

to improve it or write the next one.  

Diving in with ``real'' programs right away has another advantage, if only pragmatic: if 

you're using a conventional compiler, you can't run a fragment of a program and see what 

it does; nothing will run until you have a complete (if tiny or trivial) program. You can't 

learn everything you'd need to write a complete program all at once, so you'll have to take 

some things ``on faith'' and parrot them in your first programs before you begin to 

understand them. (You can't learn to program just one expression or statement at a time 

any more than you can learn to speak a foreign language one word at a time. If all you 

know is a handful of words, you can't actually say anything: you also need to know 

something about the language's word order and grammar and sentence structure and 

declension of articles and verbs.)  

Besides the occasional necessity to take things on faith, there is a more serious potential 

drawback of this ``dive in and program'' approach: it's a small step from learning-by-

doing to learning-by-trial-and-error, and when you learn programming by trial-and-error, 

you can very easily learn many errors. When you're not sure whether something will 

work, or you're not even sure what you could use that might work, and you try 

something, and it does work, you do not have any guarantee that what you tried worked 

for the right reason. You might just have ``learned'' something that works only by 



 20 

accident or only on your compiler, and it may be very hard to un-learn it later, when it 

stops working.  

Therefore, whenever you're not sure of something, be very careful before you go off and 

try it ``just to see if it will work.'' Of course, you can never be absolutely sure that 

something is going to work before you try it, otherwise we'd never have to try things. But 

you should have an expectation that something is going to work before you try it, and if 

you can't predict how to do something or whether something would work and find 

yourself having to determine it experimentally, make a note in your mind that whatever 

you've just learned (based on the outcome of the experiment) is suspect.  

The first example program in K&R is the first example program in any language: print or 

display a simple string, and exit. Here is my version of K&R's ``hello, world'' program:  

#include <stdio.h> 

 

main() 

{ 

printf("Hello, world!\n"); 

return 0; 

} 

If you have a C compiler, the first thing to do is figure out how to type this program in 

and compile it and run it and see where its output went. (If you don't have a C compiler 

yet, the first thing to do is to find one.)  

The first line is practically boilerplate; it will appear in almost all programs we write. It 

asks that some definitions having to do with the ``Standard I/O Library'' be included in 

our program; these definitions are needed if we are to call the library function printf 

correctly.  

The second line says that we are defining a function named main. Most of the time, we 

can name our functions anything we want, but the function name main is special: it is the 

function that will be ``called'' first when our program starts running. The empty pair of 

parentheses indicates that our main function accepts no arguments, that is, there isn't any 

information which needs to be passed in when the function is called.  

The braces { and } surround a list of statements in C. Here, they surround the list of 

statements making up the function main.  

The line  

 printf("Hello, world!\n"); 

is the first statement in the program. It asks that the function printf be called; printf is 

a library function which prints formatted output. The parentheses surround printf's 

argument list: the information which is handed to it which it should act on. The 

semicolon at the end of the line terminates the statement.  



 21 

(printf's name reflects the fact that C was first developed when Teletypes and other 

printing terminals were still in widespread use. Today, of course, video displays are far 

more common. printf's ``prints'' to the standard output, that is, to the default location 

for program output to go. Nowadays, that's almost always a video screen or a window on 

that screen. If you do have a printer, you'll typically have to do something extra to get a 

program to print to it.)  

printf's first (and, in this case, only) argument is the string which it should print. The 

string, enclosed in double quotes "", consists of the words ``Hello, world!'' followed by a 

special sequence: \n. In strings, any two-character sequence beginning with the backslash 

\ represents a single special character. The sequence \n represents the ``new line'' 

character, which prints a carriage return or line feed or whatever it takes to end one line 

of output and move down to the next. (This program only prints one line of output, but 

it's still important to terminate it.)  

The second line in the main function is  

 return 0; 

In general, a function may return a value to its caller, and main is no exception. When 

main returns (that is, reaches its end and stops functioning), the program is at its end, and 

the return value from main tells the operating system (or whatever invoked the program 

that main is the main function of) whether it succeeded or not. By convention, a return 

value of 0 indicates success.  

This program may look so absolutely trivial that it seems as if it's not even worth typing it 

in and trying to run it, but doing so may be a big (and is certainly a vital) first hurdle. On 

an unfamiliar computer, it can be arbitrarily difficult to figure out how to enter a text file 

containing program source, or how to compile and link it, or how to invoke it, or what 

happened after (if?) it ran. The most experienced C programmers immediately go back to 

this one, simple program whenever they're trying out a new system or a new way of 

entering or building programs or a new way of printing output from within programs. As 

Kernighan and Ritchie say, everything else is comparatively easy.  

How you compile and run this (or any) program is a function of the compiler and 

operating system you're using. The first step is to type it in, exactly as shown; this may 

involve using a text editor to create a file containing the program text. You'll have to give 

the file a name, and all C compilers (that I've ever heard of) require that files containing 

C source end with the extension .c. So you might place the program text in a file called 

hello.c.  

The second step is to compile the program. (Strictly speaking, compilation consists of 

two steps, compilation proper followed by linking, but we can overlook this distinction at 

first, especially because the compiler often takes care of initiating the linking step 

automatically.) On many Unix systems, the command to compile a C program from a 

source file hello.c is  



 22 

 cc -o hello hello.c 

You would type this command at the Unix shell prompt, and it requests that the cc (C 

compiler) program be run, placing its output (i.e. the new executable program it creates) 

in the file hello, and taking its input (i.e. the source code to be compiled) from the file 

hello.c.  

The third step is to run (execute, invoke) the newly-built hello program. Again on a 

Unix system, this is done simply by typing the program's name:  

 hello 

Depending on how your system is set up (in particular, on whether the current directory is 

searched for executables, based on the PATH variable), you may have to type  
 ./hello 

to indicate that the hello program is in the current directory (as opposed to some ``bin'' 

directory full of executable programs, elsewhere).  

You may also have your choice of C compilers. On many Unix machines, the cc 

command is an older compiler which does not recognize modern, ANSI Standard C 

syntax. An old compiler will accept the simple programs we'll be starting with, but it will 

not accept most of our later programs. If you find yourself getting baffling compilation 

errors on programs which you've typed in exactly as they're shown, it probably indicates 

that you're using an older compiler. On many machines, another compiler called acc or 

gcc is available, and you'll want to use it, instead. (Both acc and gcc are typically 

invoked the same as cc; that is, the above cc command would instead be typed, say, gcc 

-o hello hello.c .)  

(One final caveat about Unix systems: don't name your test programs test, because 

there's already a standard command called test, and you and the command interpreter 

will get badly confused if you try to replace the system's test command with your own, 

not least because your own almost certainly does something completely different.)  

Under MS-DOS, the compilation procedure is quite similar. The name of the command 

you type will depend on your compiler (e.g. cl for the Microsoft C compiler, tc or bcc 

for Borland's Turbo C, etc.). You may have to manually perform the second, linking step, 

perhaps with a command named link or tlink. The executable file which the 

compiler/linker creates will have a name ending in .exe (or perhaps .com), but you can 

still invoke it by typing the base name (e.g. hello). See your compiler documentation for 

complete details; one of the manuals should contain a demonstration of how to enter, 

compile, and run a small program that prints some simple output, just as we're trying to 

describe here.  

In an integrated or ``visual'' progamming environment, such as those on the Macintosh or 

under various versions of Microsoft Windows, the steps you take to enter, compile, and 

run a program are somewhat different (and, theoretically, simpler). Typically, there is a 

way to open a new source window, type source code into it, give it a file name, and add it 

to the program (or ``project'') you're building. If necessary, there will be a way to specify 



 23 

what other source files (or ``modules'') make up the program. Then, there's a button or 

menu selection which compiles and runs the program, all from within the programming 

environment. (There will also be a way to create a standalone executable file which you 

can run from outside the environment.) In a PC-compatible environment, you may have 

to choose between creating DOS programs or Windows programs. (If you have troubles 

pertaining to the printf function, try specifying a target environment of MS-DOS. 

Supposedly, some compilers which are targeted at Windows environments won't let you 

call printf, because until you call some fancier functions to request that a window be 

created, there's no window for printf to print to.) Again, check the introductory or 

tutorial manual that came with the programming package; it should walk you through the 

steps necessary to get your first program running.  

1.2 Second Example 

Our second example is of little more practical use than the first, but it introduces a few 

more programming language elements:  

#include <stdio.h> 

 

/* print a few numbers, to illustrate a simple loop */ 

 

main() 

{ 

int i; 

 

for(i = 0; i < 10; i = i + 1) 

 printf("i is %d\n", i); 

 

return 0; 

} 

As before, the line #include <stdio.h> is boilerplate which is necessary since we're 

calling the printf function, and main() and the pair of braces {} indicate and delineate 

the function named main we're (again) writing.  

The first new line is the line  

 /* print a few numbers, to illustrate a simple loop */ 

which is a comment. Anything between the characters /* and */ is ignored by the 

compiler, but may be useful to a person trying to read and understand the program. You 

can add comments anywhere you want to in the program, to document what the program 

is, what it does, who wrote it, how it works, what the various functions are for and how 

they work, what the various variables are for, etc.  

The second new line, down within the function main, is  

 int i; 

which declares that our function will use a variable named i. The variable's type is int, 

which is a plain integer.  



 24 

Next, we set up a loop:  

 for(i = 0; i < 10; i = i + 1) 

The keyword for indicates that we are setting up a ``for loop.'' A for loop is controlled 

by three expressions, enclosed in parentheses and separated by semicolons. These 

expressions say that, in this case, the loop starts by setting i to 0, that it continues as long 

as i is less than 10, and that after each iteration of the loop, i should be incremented by 1 

(that is, have 1 added to its value).  

Finally, we have a call to the printf function, as before, but with several differences. 

First, the call to printf is within the body of the for loop. This means that control flow 

does not pass once through the printf call, but instead that the call is performed as many 

times as are dictated by the for loop. In this case, printf will be called several times: 

once when i is 0, once when i is 1, once when i is 2, and so on until i is 9, for a total of 

10 times.  

A second difference in the printf call is that the string to be printed, "i is %d", 

contains a percent sign. Whenever printf sees a percent sign, it indicates that printf is 

not supposed to print the exact text of the string, but is instead supposed to read another 

one of its arguments to decide what to print. The letter after the percent sign tells it what 

type of argument to expect and how to print it. In this case, the letter d indicates that 

printf is to expect an int, and to print it in decimal. Finally, we see that printf is in 

fact being called with another argument, for a total of two, separated by commas. The 

second argument is the variable i, which is in fact an int, as required by %d. The effect 

of all of this is that each time it is called, printf will print a line containing the current 

value of the variable i:  

 i is 0 

 i is 1 

 i is 2 

 ... 

After several trips through the loop, i will eventually equal 9. After that trip through the 

loop, the third control expression i = i + 1 will increment its value to 10. The 

condition i < 10 is no longer true, so no more trips through the loop are taken. Instead, 

control flow jumps down to the statement following the for loop, which is the return 

statement. The main function returns, and the program is finished.  

1.3 Program Structure 

We'll have more to say later about program structure, but for now let's observe a few 

basics. A program consists of one or more functions; it may also contain global variables. 

(Our two example programs so far have contained one function apiece, and no global 

variables.) At the top of a source file are typically a few boilerplate lines such as 

#include <stdio.h>, followed by the definitions (i.e. code) for the functions. (It's also 



 25 

possible to split up the several functions making up a larger program into several source 

files, as we'll see in a later chapter.)  

Each function is further composed of declarations and statements, in that order. When a 

sequence of statements should act as one (for example, when they should all serve 

together as the body of a loop) they can be enclosed in braces (just as for the outer body 

of the entire function). The simplest kind of statement is an expression statement, which 

is an expression (presumably performing some useful operation) followed by a 

semicolon. Expressions are further composed of operators, objects (variables), and 

constants.  

C source code consists of several lexical elements. Some are words, such as for, return, 

main, and i, which are either keywords of the language (for, return) or identifiers 

(names) we've chosen for our own functions and variables (main, i). There are constants 

such as 1 and 10 which introduce new values into the program. There are operators such 

as =, +, and >, which manipulate variables and values. There are other punctuation 

characters (often called delimiters), such as parentheses and squiggly braces {}, which 

indicate how the other elements of the program are grouped. Finally, all of the preceding 

elements can be separated by whitespace: spaces, tabs, and the ``carriage returns'' 

between lines.  

The source code for a C program is, for the most part, ``free form.'' This means that the 

compiler does not care how the code is arranged: how it is broken into lines, how the 

lines are indented, or whether whitespace is used between things like variable names and 

other punctuation. (Lines like #include <stdio.h> are an exception; they must appear 

alone on their own lines, generally unbroken. Only lines beginning with # are affected by 

this rule; we'll see other examples later.) You can use whitespace, indentation, and 

appropriate line breaks to make your programs more readable for yourself and other 

people (even though the compiler doesn't care). You can place explanatory comments 

anywhere in your program--any text between the characters /* and */ is ignored by the 

compiler. (In fact, the compiler pretends that all it saw was whitespace.) Though 

comments are ignored by the compiler, well-chosen comments can make a program much 

easier to read (for its author, as well as for others).  

The usage of whitespace is our first style issue. It's typical to leave a blank line between 

different parts of the program, to leave a space on either side of operators such as + and =, 

and to indent the bodies of loops and other control flow constructs. Typically, we arrange 

the indentation so that the subsidiary statements controlled by a loop statement (the 

``loop body,'' such as the printf call in our second example program) are all aligned 

with each other and placed one tab stop (or some consistent number of spaces) to the 

right of the controlling statement. This indentation (like all whitespace) is not required by 

the compiler, but it makes programs much easier to read. (However, it can also be 

misleading, if used incorrectly or in the face of inadvertent mistakes. The compiler will 

decide what ``the body of the loop'' is based on its own rules, not the indentation, so if the 

indentation does not match the compiler's interpretation, confusion is inevitable.)  



 26 

To drive home the point that the compiler doesn't care about indentation, line breaks, or 

other whitespace, here are a few (extreme) examples: The fragments  

for(i = 0; i < 10; i = i + 1) 

 printf("%d\n", i); 

and  
for(i = 0; i < 10; i = i + 1) printf("%d\n", i); 

and  
for(i=0;i<10;i=i+1)printf("%d\n",i); 

and  
 for(i = 0; i < 10; i = i + 1) 

printf("%d\n", i); 

and  
for ( i 

= 0 ; 

i < 10 

; i = 

i + 1 

) printf ( 

"%d\n" , i 

) ; 

and  
    for 

   (i=0; 

  i<10;i= 

 i+1)printf 

("%d\n", i); 

are all treated exactly the same way by the compiler.  

Some programmers argue forever over the best set of ``rules'' for indentation and other 

aspects of programming style, calling to mind the old philosopher's debates about the 

number of angels that could dance on the head of a pin. Style issues (such as how a 

program is laid out) are important, but they're not something to be too dogmatic about, 

and there are also other, deeper style issues besides mere layout and typography. 

Kernighan and Ritchie take a fairly moderate stance:  

Although C compilers do not care about how a program looks, proper indentation and 

spacing are critical in making programs easy for people to read. We recommend writing 

only one statement per line, and using blanks around operators to clarify grouping. The 

position of braces is less important, although people hold passionate beliefs. We have 

chosen one of several popular styles. Pick a style that suits you, then use it consistently.  

There is some value in having a reasonably standard style (or a few standard styles) for 

code layout. Please don't take the above advice to ``pick a style that suits you'' as an 

invitation to invent your own brand-new style. If (perhaps after you've been programming 

in C for a while) you have specific objections to specific facets of existing styles, you're 

welcome to modify them, but if you don't have any particular leanings, you're probably 

best off copying an existing style at first. (If you want to place your own stamp of 

originality on the programs that you write, there are better avenues for your creativity 



 27 

than inventing a bizarre layout; you might instead try to make the logic easier to follow, 

or the user interface easier to use, or the code freer of bugs.)  



 28 

Chapter 2: Basic Data Types & Operators 

The type of a variable determines what kinds of values it may take on. An operator 

computes new values out of old ones. An expression consists of variables, constants, and 

operators combined to perform some useful computation. In this chapter, we'll learn 

about C's basic types, how to write constants and declare variables of these types, and 

what the basic operators are.  

As Kernighan and Ritchie say, ``The type of an object determines the set of values it can 

have and what operations can be performed on it.'' This is a fairly formal, mathematical 

definition of what a type is, but it is traditional (and meaningful). There are several 

implications to remember:  

1. The ``set of values'' is finite. C's int type can not represent all of the integers; its 

float type can not represent all floating-point numbers.  

2. When you're using an object (that is, a variable) of some type, you may have to 

remember what values it can take on and what operations you can perform on it. 

For example, there are several operators which play with the binary (bit-level) 

representation of integers, but these operators are not meaningful for and may not 

be applied to floating-point operands.  

3. When declaring a new variable and picking a type for it, you have to keep in mind 

the values and operations you'll be needing.  

In other words, picking a type for a variable is not some abstract academic exercise; it's 

closely connected to the way(s) you'll be using that variable. 

2.1 Types 

[This section corresponds to K&R Sec. 2.2]  

There are only a few basic data types in C. The first ones we'll be encountering and using 

are:  

 char a character  

 int an integer, in the range -32,767 to 32,767  

 long int a larger integer (up to +-2,147,483,647)  

 float a floating-point number  

 double a floating-point number, with more precision and perhaps greater range 

than float  

If you can look at this list of basic types and say to yourself, ``Oh, how simple, there are 

only a few types, I won't have to worry much about choosing among them,'' you'll have 

an easy time with declarations. (Some masochists wish that the type system were more 

complicated so that they could specify more things about each variable, but those of us 



 29 

who would rather not have to specify these extra things each time are glad that we don't 

have to.)  

The ranges listed above for types int and long int are the guaranteed minimum ranges. 

On some systems, either of these types (or, indeed, any C type) may be able to hold larger 

values, but a program that depends on extended ranges will not be as portable. Some 

programmers become obsessed with knowing exactly what the sizes of data objects will 

be in various situations, and go on to write programs which depend on these exact sizes. 

Determining or controlling the size of an object is occasionally important, but most of the 

time we can sidestep size issues and let the compiler do most of the worrying.  

(From the ranges listed above, we can determine that type int must be at least 16 bits, 

and that type long int must be at least 32 bits. But neither of these sizes is exact; many 

systens have 32-bit ints, and some systems have 64-bit long ints.)  

You might wonder how the computer stores characters. The answer involves a character 

set, which is simply a mapping between some set of characters and some set of small 

numeric codes. Most machines today use the ASCII character set, in which the letter A is 

represented by the code 65, the ampersand & is represented by the code 38, the digit 1 is 

represented by the code 49, the space character is represented by the code 32, etc. (Most 

of the time, of course, you have no need to know or even worry about these particular 

code values; they're automatically translated into the right shapes on the screen or printer 

when characters are printed out, and they're automatically generated when you type 

characters on the keyboard. Eventually, though, we'll appreciate, and even take some 

control over, exactly when these translations--from characters to their numeric codes--are 

performed.) Character codes are usually small--the largest code value in ASCII is 126, 

which is the ~ (tilde or circumflex) character. Characters usually fit in a byte, which is 

usually 8 bits. In C, type char is defined as occupying one byte, so it is usually 8 bits.  

Most of the simple variables in most programs are of types int, long int, or double. 

Typically, we'll use int and double for most purposes, and long int any time we need 

to hold integer values greater than 32,767. As we'll see, even when we're manipulating 

individual characters, we'll usually use an int variable, for reasons to be discussed later. 

Therefore, we'll rarely use individual variables of type char; although we'll use plenty of 

arrays of char.  

2.2 Constants 

[This section corresponds to K&R Sec. 2.3]  

A constant is just an immediate, absolute value found in an expression. The simplest 

constants are decimal integers, e.g. 0, 1, 2, 123 . Occasionally it is useful to specify 

constants in base 8 or base 16 (octal or hexadecimal); this is done by prefixing an extra 0 

(zero) for octal, or 0x for hexadecimal: the constants 100, 0144, and 0x64 all represent 

the same number. (If you're not using these non-decimal constants, just remember not to 



 30 

use any leading zeroes. If you accidentally write 0123 intending to get one hundred and 

twenty three, you'll get 83 instead, which is 123 base 8.)  

We write constants in decimal, octal, or hexadecimal for our convenience, not the 

compiler's. The compiler doesn't care; it always converts everything into binary 

internally, anyway. (There is, however, no good way to specify constants in source code 

in binary.)  

A constant can be forced to be of type long int by suffixing it with the letter L (in upper 

or lower case, although upper case is strongly recommended, because a lower case l 

looks too much like the digit 1).  

A constant that contains a decimal point or the letter e (or both) is a floating-point 

constant: 3.14, 10., .01, 123e4, 123.456e7 . The e indicates multiplication by a power 

of 10; 123.456e7 is 123.456 times 10 to the 7th, or 1,234,560,000. (Floating-point 

constants are of type double by default.)  

We also have constants for specifying characters and strings. (Make sure you understand 

the difference between a character and a string: a character is exactly one character; a 

string is a set of zero or more characters; a string containing one character is distinct from 

a lone character.) A character constant is simply a single character between single quotes: 

'A', '.', '%'. The numeric value of a character constant is, naturally enough, that 

character's value in the machine's character set. (In ASCII, for example, 'A' has the value 

65.)  

A string is represented in C as a sequence or array of characters. (We'll have more to say 

about arrays in general, and strings in particular, later.) A string constant is a sequence of 

zero or more characters enclosed in double quotes: "apple", "hello, world", "this 

is a test".  

Within character and string constants, the backslash character \ is special, and is used to 

represent characters not easily typed on the keyboard or for various reasons not easily 

typed in constants. The most common of these ``character escapes'' are:  

 \n a ``newline'' character 

 \b a backspace 

 \r a carriage return (without a line feed) 

 \' a single quote (e.g. in a character constant) 

 \" a double quote (e.g. in a string constant) 

 \\ a single backslash 

For example, "he said \"hi\"" is a string constant which contains two double quotes, 

and '\'' is a character constant consisting of a (single) single quote. Notice once again 

that the character constant 'A' is very different from the string constant "A".  



 31 

2.3 Declarations 

[This section corresponds to K&R Sec. 2.4]  

Informally, a variable (also called an object) is a place you can store a value. So that you 

can refer to it unambiguously, a variable needs a name. You can think of the variables in 

your program as a set of boxes or cubbyholes, each with a label giving its name; you 

might imagine that storing a value ``in'' a variable consists of writing the value on a slip 

of paper and placing it in the cubbyhole.  

A declaration tells the compiler the name and type of a variable you'll be using in your 

program. In its simplest form, a declaration consists of the type, the name of the variable, 

and a terminating semicolon:  

 char c; 

 int i; 

 float f; 

You can also declare several variables of the same type in one declaration, separating 

them with commas:  

 int i1, i2; 

Later we'll see that declarations may also contain initializers, qualifiers and storage 

classes, and that we can declare arrays, functions, pointers, and other kinds of data 

structures.  

The placement of declarations is significant. You can't place them just anywhere (i.e. 

they cannot be interspersed with the other statements in your program). They must either 

be placed at the beginning of a function, or at the beginning of a brace-enclosed block of 

statements (which we'll learn about in the next chapter), or outside of any function. 

Furthermore, the placement of a declaration, as well as its storage class, controls several 

things about its visibility and lifetime, as we'll see later.  

You may wonder why variables must be declared before use. There are two reasons:  

1. It makes things somewhat easier on the compiler; it knows right away what kind 

of storage to allocate and what code to emit to store and manipulate each variable; 

it doesn't have to try to intuit the programmer's intentions.  

2. It forces a bit of useful discipline on the programmer: you cannot introduce 

variables willy-nilly; you must think about them enough to pick appropriate types 

for them. (The compiler's error messages to you, telling you that you apparently 

forgot to declare a variable, are as often helpful as they are a nuisance: they're 

helpful when they tell you that you misspelled a variable, or forgot to think about 

exactly how you were going to use it.)  



 32 

Although there are a few places where declarations can be omitted (in which case the 

compiler will assume an implicit declaration), making use of these removes the 

advantages of reason 2 above, so I recommend always declaring everything explicitly.  

Most of the time, I recommend writing one declaration per line. For the most part, the 

compiler doesn't care what order declarations are in. You can order the declarations 

alphabetically, or in the order that they're used, or to put related declarations next to each 

other. Collecting all variables of the same type together on one line essentially orders 

declarations by type, which isn't a very useful order (it's only slightly more useful than 

random order).  

A declaration for a variable can also contain an initial value. This initializer consists of an 

equals sign and an expression, which is usually a single constant:  

 int i = 1; 

 int i1 = 10, i2 = 20; 

2.4 Variable Names 

[This section corresponds to K&R Sec. 2.1]  

Within limits, you can give your variables and functions any names you want. These 

names (the formal term is ``identifiers'') consist of letters, numbers, and underscores. For 

our purposes, names must begin with a letter. Theoretically, names can be as long as you 

want, but extremely long ones get tedious to type after a while, and the compiler is not 

required to keep track of extremely long ones perfectly. (What this means is that if you 

were to name a variable, say, supercalafragalisticespialidocious, the compiler 

might get lazy and pretend that you'd named it supercalafragalisticespialidocio, 

such that if you later misspelled it supercalafragalisticespialidociouz, the 

compiler wouldn't catch your mistake. Nor would the compiler necessarily be able to tell 

the difference if for some perverse reason you deliberately declared a second variable 

named supercalafragalisticespialidociouz.)  

The capitalization of names in C is significant: the variable names variable, Variable, 

and VARIABLE (as well as silly combinations like variAble) are all distinct.  

A final restriction on names is that you may not use keywords (the words such as int and 

for which are part of the syntax of the language) as the names of variables or functions 

(or as identifiers of any kind).  

2.5 Arithmetic Operators 

[This section corresponds to K&R Sec. 2.5]  

The basic operators for performing arithmetic are the same in many computer languages:  

 + addition 



 33 

 - subtraction 

 * multiplication 

 / division 

 % modulus (remainder) 

The - operator can be used in two ways: to subtract two numbers (as in a - b), or to 

negate one number (as in -a + b or a + -b).  

When applied to integers, the division operator / discards any remainder, so 1 / 2 is 0 

and 7 / 4 is 1. But when either operand is a floating-point quantity (type float or 

double), the division operator yields a floating-point result, with a potentially nonzero 

fractional part. So 1 / 2.0 is 0.5, and 7.0 / 4.0 is 1.75.  

The modulus operator % gives you the remainder when two integers are divided: 1 % 2 is 

1; 7 % 4 is 3. (The modulus operator can only be applied to integers.)  

An additional arithmetic operation you might be wondering about is exponentiation. 

Some languages have an exponentiation operator (typically ^ or **), but C doesn't. (To 

square or cube a number, just multiply it by itself.)  

Multiplication, division, and modulus all have higher precedence than addition and 

subtraction. The term ``precedence'' refers to how ``tightly'' operators bind to their 

operands (that is, to the things they operate on). In mathematics, multiplication has higher 

precedence than addition, so 1 + 2 * 3 is 7, not 9. In other words, 1 + 2 * 3 is 

equivalent to 1 + (2 * 3). C is the same way.  

All of these operators ``group'' from left to right, which means that when two or more of 

them have the same precedence and participate next to each other in an expression, the 

evaluation conceptually proceeds from left to right. For example, 1 - 2 - 3 is 

equivalent to (1 - 2) - 3 and gives -4, not +2. (``Grouping'' is sometimes called 

associativity, although the term is used somewhat differently in programming than it is in 

mathematics. Not all C operators group from left to right; a few group from right to left.)  

Whenever the default precedence or associativity doesn't give you the grouping you want, 

you can always use explicit parentheses. For example, if you wanted to add 1 to 2 and 

then multiply the result by 3, you could write (1 + 2) * 3.  

By the way, the word ``arithmetic'' as used in the title of this section is an adjective, not a 

noun, and it's pronounced differently than the noun: the accent is on the third syllable.  

2.6 Assignment Operators 

[This section corresponds to K&R Sec. 2.10]  

The assignment operator = assigns a value to a variable. For example,  

 x = 1 



 34 

sets x to 1, and  
 a = b 

sets a to whatever b's value is. The expression  
 i = i + 1 

is, as we've mentioned elsewhere, the standard programming idiom for increasing a 

variable's value by 1: this expression takes i's old value, adds 1 to it, and stores it back 

into i. (C provides several ``shortcut'' operators for modifying variables in this and 

similar ways, which we'll meet later.)  

We've called the = sign the ``assignment operator'' and referred to ``assignment 

expressions'' because, in fact, = is an operator just like + or -. C does not have 

``assignment statements''; instead, an assignment like a = b is an expression and can be 

used wherever any expression can appear. Since it's an expression, the assignment a = b 

has a value, namely, the same value that's assigned to a. This value can then be used in a 

larger expression; for example, we might write  

 c = a = b 

which is equivalent to  
 c = (a = b) 

and assigns b's value to both a and c. (The assignment operator, therefore, groups from 

right to left.) Later we'll see other circumstances in which it can be useful to use the value 

of an assignment expression.  

It's usually a matter of style whether you initialize a variable with an initializer in its 

declaration or with an assignment expression near where you first use it. That is, there's 

no particular difference between  

 int a = 10; 

and  
 int a; 

 

 /* later... */ 

 

 a = 10; 

2.7 Function Calls 

We'll have much more to say about functions in a later chapter, but for now let's just look 

at how they're called. (To review: what a function is is a piece of code, written by you or 

by someone else, which performs some useful, compartmentalizable task.) You call a 

function by mentioning its name followed by a pair of parentheses. If the function takes 

any arguments, you place the arguments between the parentheses, separated by commas. 

These are all function calls:  

 printf("Hello, world!\n") 

 printf("%d\n", i) 

 sqrt(144.) 

 getchar() 



 35 

The arguments to a function can be arbitrary expressions. Therefore, you don't have to 

say things like  
 int sum = a + b + c; 

 printf("sum = %d\n", sum); 

if you don't want to; you can instead collapse it to  
 printf("sum = %d\n", a + b + c); 

Many functions return values, and when they do, you can embed calls to these functions 

within larger expressions:  
 c = sqrt(a * a + b * b) 

 x = r * cos(theta) 

 i = f1(f2(j)) 

The first expression squares a and b, computes the square root of the sum of the squares, 

and assigns the result to c. (In other words, it computes a * a + b * b, passes that 

number to the sqrt function, and assigns sqrt's return value to c.) The second 

expression passes the value of the variable theta to the cos (cosine) function, multiplies 

the result by r, and assigns the result to x. The third expression passes the value of the 

variable j to the function f2, passes the return value of f2 immediately to the function 

f1, and finally assigns f1's return value to the variable i. 



 36 

Chapter 3: Statements and Control Flow 

Statements are the ``steps'' of a program. Most statements compute and assign values or 

call functions, but we will eventually meet several other kinds of statements as well. By 

default, statements are executed in sequence, one after another. We can, however, modify 

that sequence by using control flow constructs which arrange that a statement or group of 

statements is executed only if some condition is true or false, or executed over and over 

again to form a loop. (A somewhat different kind of control flow happens when we call a 

function: execution of the caller is suspended while the called function proceeds. We'll 

discuss functions in chapter 5.)  

My definitions of the terms statement and control flow are somewhat circular. A 

statement is an element within a program which you can apply control flow to; control 

flow is how you specify the order in which the statements in your program are executed. 

(A weaker definition of a statement might be ``a part of your program that does 

something,'' but this definition could as easily be applied to expressions or functions.)  

3.1 Expression Statements 

[This section corresponds to K&R Sec. 3.1]  

Most of the statements in a C program are expression statements. An expression 

statement is simply an expression followed by a semicolon. The lines  

 i = 0; 

 i = i + 1; 

and 

 printf("Hello, world!\n"); 

are all expression statements. (In some languages, such as Pascal, the semicolon separates 

statements, such that the last statement is not followed by a semicolon. In C, however, the 

semicolon is a statement terminator; all simple statements are followed by semicolons. 

The semicolon is also used for a few other things in C; we've already seen that it 

terminates declarations, too.)  

Expression statements do all of the real work in a C program. Whenever you need to 

compute new values for variables, you'll typically use expression statements (and they'll 

typically contain assignment operators). Whenever you want your program to do 

something visible, in the real world, you'll typically call a function (as part of an 

expression statement). We've already seen the most basic example: calling the function 

printf to print text to the screen. But anything else you might do--read or write a disk 

file, talk to a modem or printer, draw pictures on the screen--will also involve function 

calls. (Furthermore, the functions you call to do these things are usually different 

depending on which operating system you're using. The C language does not define them, 

so we won't be talking about or using them much.)  



 37 

Expressions and expression statements can be arbitrarily complicated. They don't have to 

consist of exactly one simple function call, or of one simple assignment to a variable. For 

one thing, many functions return values, and the values they return can then be used by 

other parts of the expression. For example, C provides a sqrt (square root) function, 

which we might use to compute the hypotenuse of a right triangle like this:  

 c = sqrt(a*a + b*b); 

To be useful, an expression statement must do something; it must have some lasting 

effect on the state of the program. (Formally, a useful statement must have at least one 

side effect.) The first two sample expression statements in this section (above) assign new 

values to the variable i, and the third one calls printf to print something out, and these 

are good examples of statements that do something useful.  

(To make the distinction clear, we may note that degenerate constructions such as  

 0; 

 i; 

or 

 i + 1; 

are syntactically valid statements--they consist of an expression followed by a semicolon-

-but in each case, they compute a value without doing anything with it, so the computed 

value is discarded, and the statement is useless. But if the ``degenerate'' statements in this 

paragraph don't make much sense to you, don't worry; it's because they, frankly, don't 

make much sense.)  

It's also possible for a single expression to have multiple side effects, but it's easy for 

such an expression to be (a) confusing or (b) undefined. For now, we'll only be looking at 

expressions (and, therefore, statements) which do one well-defined thing at a time.  

3.2 if Statements 

[This section corresponds to K&R Sec. 3.2]  

The simplest way to modify the control flow of a program is with an if statement, which 

in its simplest form looks like this:  

 if(x > max) 

  max = x; 

Even if you didn't know any C, it would probably be pretty obvious that what happens 

here is that if x is greater than max, x gets assigned to max. (We'd use code like this to 

keep track of the maximum value of x we'd seen--for each new x, we'd compare it to the 

old maximum value max, and if the new value was greater, we'd update max.)  

More generally, we can say that the syntax of an if statement is:  

 if( expression ) 

  statement 



 38 

where expression is any expression and statement is any statement.  

What if you have a series of statements, all of which should be executed together or not at 

all depending on whether some condition is true? The answer is that you enclose them in 

braces:  

 if( expression ) 

  { 

  statement<sub>1</sub> 

  statement<sub>2</sub> 

  statement<sub>3</sub> 

  } 

As a general rule, anywhere the syntax of C calls for a statement, you may write a series 

of statements enclosed by braces. (You do not need to, and should not, put a semicolon 

after the closing brace, because the series of statements enclosed by braces is not itself a 

simple expression statement.)  

An if statement may also optionally contain a second statement, the ``else clause,'' 

which is to be executed if the condition is not met. Here is an example:  

 if(n > 0) 

  average = sum / n; 

 else { 

  printf("can't compute average\n"); 

  average = 0; 

  } 

The first statement or block of statements is executed if the condition is true, and the 

second statement or block of statements (following the keyword else) is executed if the 

condition is not true. In this example, we can compute a meaningful average only if n is 

greater than 0; otherwise, we print a message saying that we cannot compute the average. 

The general syntax of an if statement is therefore  
 if( expression ) 

  statement<sub>1</sub> 

 else 

  statement<sub>2</sub> 

(where both statement<sub>1</sub> and statement<sub>2</sub> may be lists of 

statements enclosed in braces).  

It's also possible to nest one if statement inside another. (For that matter, it's in general 

possible to nest any kind of statement or control flow construct within another.) For 

example, here is a little piece of code which decides roughly which quadrant of the 

compass you're walking into, based on an x value which is positive if you're walking east, 

and a y value which is positive if you're walking north:  

 if(x > 0) 

  { 

  if(y > 0) 

   printf("Northeast.\n"); 

  else printf("Southeast.\n"); 

  } 



 39 

 else { 

  if(y > 0) 

   printf("Northwest.\n"); 

  else printf("Southwest.\n"); 

  } 

When you have one if statement (or loop) nested inside another, it's a very good idea to 

use explicit braces {}, as shown, to make it clear (both to you and to the compiler) how 

they're nested and which else goes with which if. It's also a good idea to indent the 

various levels, also as shown, to make the code more readable to humans. Why do both? 

You use indentation to make the code visually more readable to yourself and other 

humans, but the compiler doesn't pay attention to the indentation (since all whitespace is 

essentially equivalent and is essentially ignored). Therefore, you also have to make sure 

that the punctuation is right.  

Here is an example of another common arrangement of if and else. Suppose we have a 

variable grade containing a student's numeric grade, and we want to print out the 

corresponding letter grade. Here is code that would do the job:  

 if(grade >= 90) 

  printf("A"); 

 else if(grade >= 80) 

  printf("B"); 

 else if(grade >= 70) 

  printf("C"); 

 else if(grade >= 60) 

  printf("D"); 

 else printf("F"); 

What happens here is that exactly one of the five printf calls is executed, depending on 

which of the conditions is true. Each condition is tested in turn, and if one is true, the 

corresponding statement is executed, and the rest are skipped. If none of the conditions is 

true, we fall through to the last one, printing ``F''.  

In the cascaded if/else/if/else/... chain, each else clause is another if statement. This 

may be more obvious at first if we reformat the example, including every set of braces 

and indenting each if statement relative to the previous one:  

 if(grade >= 90) 

  { 

  printf("A"); 

  } 

 else { 

  if(grade >= 80) 

   { 

   printf("B"); 

   } 

  else { 

   if(grade >= 70) 

    { 

    printf("C"); 

    } 

   else { 

    if(grade >= 60) 



 40 

     { 

     printf("D"); 

     } 

    else { 

     printf("F"); 

     } 

    } 

   } 

  } 

By examining the code this way, it should be obvious that exactly one of the printf calls 

is executed, and that whenever one of the conditions is found true, the remaining 

conditions do not need to be checked and none of the later statements within the chain 

will be executed. But once you've convinced yourself of this and learned to recognize the 

idiom, it's generally preferable to arrange the statements as in the first example, without 

trying to indent each successive if statement one tabstop further out. (Obviously, you'd 

run into the right margin very quickly if the chain had just a few more cases!) 

3.3 Boolean Expressions 

An if statement like  

 if(x > max) 

  max = x; 

is perhaps deceptively simple. Conceptually, we say that it checks whether the condition 

x > max is ``true'' or ``false''. The mechanics underlying C's conception of ``true'' and 

``false,'' however, deserve some explanation. We need to understand how true and false 

values are represented, and how they are interpreted by statements like if.  

As far as C is concerned, a true/false condition can be represented as an integer. (An 

integer can represent many values; here we care about only two values: ``true'' and 

``false.'' The study of mathematics involving only two values is called Boolean algebra, 

after George Boole, a mathematician who refined this study.) In C, ``false'' is represented 

by a value of 0 (zero), and ``true'' is represented by any value that is nonzero. Since there 

are many nonzero values (at least 65,534, for values of type int), when we have to pick a 

specific value for ``true,'' we'll pick 1.  

The relational operators such as <, <=, >, and >= are in fact operators, just like +, -, *, 

and /. The relational operators take two values, look at them, and ``return'' a value of 1 or 

0 depending on whether the tested relation was true or false. The complete set of 

relational operators in C is:  

 < less than 

 <= less than or equal 

 > greater than 

 >= greater than or equal 

 == equal 

 != not equal 



 41 

 

 

For example, 1 < 2 is 1, 3 > 4 is 0, 5 == 5 is 1, and 6 != 6 is 0.  

We've now encountered perhaps the most easy-to-stumble-on ``gotcha!'' in C: the 

equality-testing operator is ==, not a single =, which is assignment. If you accidentally 

write  

 if(a = 0) 

(and you probably will at some point; everybody makes this mistake), it will not test 

whether a is zero, as you probably intended. Instead, it will assign 0 to a, and then 

perform the ``true'' branch of the if statement if a is nonzero. But a will have just been 

assigned the value 0, so the ``true'' branch will never be taken! (This could drive you 

crazy while debugging--you wanted to do something if a was 0, and after the test, a is 0, 

whether it was supposed to be or not, but the ``true'' branch is nevertheless not taken.)  

The relational operators work with arbitrary numbers and generate true/false values. You 

can also combine true/false values by using the Boolean operators, which take true/false 

values as operands and compute new true/false values. The three Boolean operators are:  

 && and 

 || or 

 ! not (takes one operand; ``unary'') 

 

 

The && (``and'') operator takes two true/false values and produces a true (1) result if both 

operands are true (that is, if the left-hand side is true and the right-hand side is true). The 

|| (``or'') operator takes two true/false values and produces a true (1) result if either 

operand is true. The ! (``not'') operator takes a single true/false value and negates it, 

turning false to true and true to false (0 to 1 and nonzero to 0).  

For example, to test whether the variable i lies between 1 and 10, you might use  

 if(1 < i && i < 10) 

  ... 

Here we're expressing the relation ``i is between 1 and 10'' as ``1 is less than i and i is 

less than 10.''  

It's important to understand why the more obvious expression  

 if(1 < i < 10)   /* WRONG */ 

would not work. The expression 1 < i < 10 is parsed by the compiler analogously to 1 

+ i + 10. The expression 1 + i + 10 is parsed as (1 + i) + 10 and means ``add 1 to 

i, and then add the result to 10.'' Similarly, the expression 1 < i < 10 is parsed as (1 < 

i) < 10 and means ``see if 1 is less than i, and then see if the result is less than 10.'' But 

in this case, ``the result'' is 1 or 0, depending on whether i is greater than 1. Since both 0 



 42 

and 1 are less than 10, the expression 1 < i < 10 would always be true in C, regardless 

of the value of i!  

Relational and Boolean expressions are usually used in contexts such as an if statement, 

where something is to be done or not done depending on some condition. In these cases 

what's actually checked is whether the expression representing the condition has a zero or 

nonzero value. As long as the expression is a relational or Boolean expression, the 

interpretation is just what we want. For example, when we wrote  

 if(x > max) 

the > operator produced a 1 if x was greater than max, and a 0 otherwise. The if 

statement interprets 0 as false and 1 (or any nonzero value) as true.  

But what if the expression is not a relational or Boolean expression? As far as C is 

concerned, the controlling expression (of conditional statements like if) can in fact be 

any expression: it doesn't have to ``look like'' a Boolean expression; it doesn't have to 

contain relational or logical operators. All C looks at (when it's evaluating an if 

statement, or anywhere else where it needs a true/false value) is whether the expression 

evaluates to 0 or nonzero. For example, if you have a variable x, and you want to do 

something if x is nonzero, it's possible to write  

 if(x) 

  statement 

and the statement will be executed if x is nonzero (since nonzero means ``true'').  

This possibility (that the controlling expression of an if statement doesn't have to ``look 

like'' a Boolean expression) is both useful and potentially confusing. It's useful when you 

have a variable or a function that is ``conceptually Boolean,'' that is, one that you 

consider to hold a true or false (actually nonzero or zero) value. For example, if you have 

a variable verbose which contains a nonzero value when your program should run in 

verbose mode and zero when it should be quiet, you can write things like  

 if(verbose) 

  printf("Starting first pass\n"); 

and this code is both legal and readable, besides which it does what you want. The 

standard library contains a function isupper() which tests whether a character is an 

upper-case letter, so if c is a character, you might write  
 if(isupper(c)) 

  ... 

Both of these examples (verbose and isupper()) are useful and readable.  

However, you will eventually come across code like  

 if(n) 

  average = sum / n; 

where n is just a number. Here, the programmer wants to compute the average only if n is 

nonzero (otherwise, of course, the code would divide by 0), and the code works, because, 



 43 

in the context of the if statement, the trivial expression n is (as always) interpreted as 

``true'' if it is nonzero, and ``false'' if it is zero.  

``Coding shortcuts'' like these can seem cryptic, but they're also quite common, so you'll 

need to be able to recognize them even if you don't choose to write them in your own 

code. Whenever you see code like  

 if(x) 

or  
 if(f()) 

where x or f() do not have obvious ``Boolean'' names, you can read them as ``if x is 

nonzero'' or ``if f() returns nonzero.'' 

3.4 while Loops 

[This section corresponds to half of K&R Sec. 3.5]  

Loops generally consist of two parts: one or more control expressions which (not 

surprisingly) control the execution of the loop, and the body, which is the statement or set 

of statements which is executed over and over.  

The most basic loop in C is the while loop. A while loop has one control expression, 

and executes as long as that expression is true. This example repeatedly doubles the 

number 2 (2, 4, 8, 16, ...) and prints the resulting numbers as long as they are less than 

1000:  

 int x = 2; 

 

 while(x < 1000) 

  { 

  printf("%d\n", x); 

  x = x * 2; 

  } 

(Once again, we've used braces {} to enclose the group of statements which are to be 

executed together as the body of the loop.)  

The general syntax of a while loop is  

 while( expression ) 

  statement 

A while loop starts out like an if statement: if the condition expressed by the expression 

is true, the statement is executed. However, after executing the statement, the condition is 

tested again, and if it's still true, the statement is executed again. (Presumably, the 

condition depends on some value which is changed in the body of the loop.) As long as 

the condition remains true, the body of the loop is executed over and over again. (If the 

condition is false right at the start, the body of the loop is not executed at all.)  



 44 

As another example, if you wanted to print a number of blank lines, with the variable n 

holding the number of blank lines to be printed, you might use code like this:  

 while(n > 0) 

  { 

  printf("\n"); 

  n = n - 1; 

  } 

After the loop finishes (when control ``falls out'' of it, due to the condition being false), n 

will have the value 0.  

You use a while loop when you have a statement or group of statements which may have 

to be executed a number of times to complete their task. The controlling expression 

represents the condition ``the loop is not done'' or ``there's more work to do.'' As long as 

the expression is true, the body of the loop is executed; presumably, it makes at least 

some progress at its task. When the expression becomes false, the task is done, and the 

rest of the program (beyond the loop) can proceed. When we think about a loop in this 

way, we can seen an additional important property: if the expression evaluates to ``false'' 

before the very first trip through the loop, we make zero trips through the loop. In other 

words, if the task is already done (if there's no work to do) the body of the loop is not 

executed at all. (It's always a good idea to think about the ``boundary conditions'' in a 

piece of code, and to make sure that the code will work correctly when there is no work 

to do, or when there is a trivial task to do, such as sorting an array of one number. 

Experience has shown that bugs at boundary conditions are quite common.)  

3.5 for Loops 

[This section corresponds to the other half of K&R Sec. 3.5]  

Our second loop, which we've seen at least one example of already, is the for loop. The 

first one we saw was:  

 for (i = 0; i < 10; i = i + 1) 

  printf("i is %d\n", i); 

More generally, the syntax of a for loop is  
 for( expr<sub>1</sub> ; expr<sub>2</sub> ; expr<sub>3</sub> ) 

  statement 

(Here we see that the for loop has three control expressions. As always, the statement 

can be a brace-enclosed block.)  

Many loops are set up to cause some variable to step through a range of values, or, more 

generally, to set up an initial condition and then modify some value to perform each 

succeeding loop as long as some condition is true. The three expressions in a for loop 

encapsulate these conditions: expr<sub>1</sub> sets up the initial condition, 

expr<sub>2</sub> tests whether another trip through the loop should be taken, and 

expr<sub>3</sub> increments or updates things after each trip through the loop and 

prior to the next one. In our first example, we had i = 0 as expr<sub>1</sub>, i < 10 



 45 

as expr<sub>2</sub>, i = i + 1 as expr<sub>3</sub>, and the call to printf as 

statement, the body of the loop. So the loop began by setting i to 0, proceeded as long as 

i was less than 10, printed out i's value during each trip through the loop, and added 1 to 

i between each trip through the loop.  

When the compiler sees a for loop, first, expr<sub>1</sub> is evaluated. Then, 

expr<sub>2</sub> is evaluated, and if it is true, the body of the loop (statement) is 

executed. Then, expr<sub>3</sub> is evaluated to go to the next step, and 

expr<sub>2</sub> is evaluated again, to see if there is a next step. During the execution 

of a for loop, the sequence is:  

expr<sub>1</sub> 

expr<sub>2</sub> 

statement 

expr<sub>3</sub> 

expr<sub>2</sub> 

statement 

expr<sub>3</sub> 

... 

expr<sub>2</sub> 

statement 

expr<sub>3</sub> 

expr<sub>2</sub> 

The first thing executed is expr<sub>1</sub>. expr<sub>3</sub> is evaluated after 

every trip through the loop. The last thing executed is always expr<sub>2</sub>, 

because when expr<sub>2</sub> evaluates false, the loop exits.  

All three expressions of a for loop are optional. If you leave out expr<sub>1</sub>, 

there simply is no initialization step, and the variable(s) used with the loop had better 

have been initialized already. If you leave out expr<sub>2</sub>, there is no test, and 

the default for the for loop is that another trip through the loop should be taken (such 

that unless you break out of it some other way, the loop runs forever). If you leave out 

expr<sub>3</sub>, there is no increment step.  

The semicolons separate the three controlling expressions of a for loop. (These 

semicolons, by the way, have nothing to do with statement terminators.) If you leave out 

one or more of the expressions, the semicolons remain. Therefore, one way of writing a 

deliberately infinite loop in C is  

 for(;;) 

  ... 

It's useful to compare C's for loop to the equivalent loops in other computer languages 

you might know. The C loop  

 for(i = x; i <= y; i = i + z) 

is roughly equivalent to:  
 for I = X to Y step Z (BASIC) 

 



 46 

 do 10 i=x,y,z  (FORTRAN) 

 

 for i := x to y  (Pascal) 

In C (unlike FORTRAN), if the test condition is false before the first trip through the 

loop, the loop won't be traversed at all. In C (unlike Pascal), a loop control variable (in 

this case, i) is guaranteed to retain its final value after the loop completes, and it is also 

legal to modify the control variable within the loop, if you really want to. (When the loop 

terminates due to the test condition turning false, the value of the control variable after 

the loop will be the first value for which the condition failed, not the last value for which 

it succeeded.)  

It's also worth noting that a for loop can be used in more general ways than the simple, 

iterative examples we've seen so far. The ``control variable'' of a for loop does not have 

to be an integer, and it does not have to be incremented by an additive increment. It could 

be ``incremented'' by a multiplicative factor (1, 2, 4, 8, ...) if that was what you needed, or 

it could be a floating-point variable, or it could be another type of variable which we 

haven't met yet which would step, not over numeric values, but over the elements of an 

array or other data structure. Strictly speaking, a for loop doesn't have to have a ``control 

variable'' at all; the three expressions can be anything, although the loop will make the 

most sense if they are related and together form the expected initialize, test, increment 

sequence.  

The powers-of-two example of the previous section does fit this pattern, so we could 

rewrite it like this:  

 int x; 

 

 for(x = 2; x < 1000; x = x * 2) 

  printf("%d\n", x); 

There is no earth-shaking or fundamental difference between the while and for loops. In 

fact, given the general for loop  

 for(expr<sub>1</sub>; expr<sub>2</sub>; expr<sub>3</sub>) 

  statement 

you could usually rewrite it as a while loop, moving the initialize and increment 

expressions to statements before and within the loop:  
 expr<sub>1</sub> ; 

 while(expr<sub>2</sub>) 

  { 

  statement 

  expr<sub>3</sub> ; 

  } 

Similarly, given the general while loop  
 while(expr) 

  statement 

you could rewrite it as a for loop:  
 for(; expr; ) 

  statement 



 47 

Another contrast between the for and while loops is that although the test expression 

(expr<sub>2</sub>) is optional in a for loop, it is required in a while loop. If you leave 

out the controlling expression of a while loop, the compiler will complain about a syntax 

error. (To write a deliberately infinite while loop, you have to supply an expression 

which is always nonzero. The most obvious one would simply be while(1) .)  

If it's possible to rewrite a for loop as a while loop and vice versa, why do they both 

exist? Which one should you choose? In general, when you choose a for loop, its three 

expressions should all manipulate the same variable or data structure, using the initialize, 

test, increment pattern. If they don't manipulate the same variable or don't follow that 

pattern, wedging them into a for loop buys nothing and a while loop would probably be 

clearer. (The reason that one loop or the other can be clearer is simply that, when you see 

a for loop, you expect to see an idiomatic initialize/test/increment of a single variable, 

and if the for loop you're looking at doesn't end up matching that pattern, you've been 

momentarily misled.)  

3.6 break and continue 

[This section corresponds to K&R Sec. 3.7]  

Sometimes, due to an exceptional condition, you need to jump out of a loop early, that is, 

before the main controlling expression of the loop causes it to terminate normally. Other 

times, in an elaborate loop, you may want to jump back to the top of the loop (to test the 

controlling expression again, and perhaps begin a new trip through the loop) without 

playing out all the steps of the current loop. The break and continue statements allow 

you to do these two things. (They are, in fact, essentially restricted forms of goto.)  

To put everything we've seen in this chapter together, as well as demonstrate the use of 

the break statement, here is a program for printing prime numbers between 1 and 100:  

#include <stdio.h> 

#include <math.h> 

 

main() 

{ 

int i, j; 

 

printf("%d\n", 2); 

 

for(i = 3; i <= 100; i = i + 1) 

 { 

 for(j = 2; j < i; j = j + 1) 

  { 

  if(i % j == 0) 

   break; 

  if(j > sqrt(i)) 

   { 

   printf("%d\n", i); 

   break; 



 48 

   } 

  } 

 } 

 

return 0; 

} 

The outer loop steps the variable i through the numbers from 3 to 100; the code tests to 

see if each number has any divisors other than 1 and itself. The trial divisor j loops from 

2 up to i. j is a divisor of i if the remainder of i divided by j is 0, so the code uses C's 

``remainder'' or ``modulus'' operator % to make this test. (Remember that i % j gives the 

remainder when i is divided by j.)  

If the program finds a divisor, it uses break to break out of the inner loop, without 

printing anything. But if it notices that j has risen higher than the square root of i, 

without its having found any divisors, then i must not have any divisors, so i is prime, 

and its value is printed. (Once we've determined that i is prime by noticing that j > 

sqrt(i), there's no need to try the other trial divisors, so we use a second break 

statement to break out of the loop in that case, too.)  

The simple algorithm and implementation we used here (like many simple prime number 

algorithms) does not work for 2, the only even prime number, so the program ``cheats'' 

and prints out 2 no matter what, before going on to test the numbers from 3 to 100.  

Many improvements to this simple program are of course possible; you might experiment 

with it. (Did you notice that the ``test'' expression of the inner loop for(j = 2; j < i; 

j = j + 1) is in a sense unnecessary, because the loop always terminates early due to 

one of the two break statements?)  



 49 

Chapter 4: More about Declarations 

4.1 Arrays 

So far, we've been declaring simple variables: the declaration  

 int i; 

declares a single variable, named i, of type int. It is also possible to declare an array of 

several elements. The declaration  
 int a[10]; 

declares an array, named a, consisting of ten elements, each of type int. Simply 

speaking, an array is a variable that can hold more than one value. You specify which of 

the several values you're referring to at any given time by using a numeric subscript. 

(Arrays in programming are similar to vectors or matrices in mathematics.) We can 

represent the array a above with a picture like this:  

In C, arrays are zero-based: the ten elements of a 10-element array are numbered from 0 

to 9. The subscript which specifies a single element of an array is simply an integer 

expression in square brackets. The first element of the array is a[0], the second element 

is a[1], etc. You can use these ``array subscript expressions'' anywhere you can use the 

name of a simple variable, for example:  

 a[0] = 10; 

 a[1] = 20; 

 a[2] = a[0] + a[1]; 

Notice that the subscripted array references (i.e. expressions such as a[0] and a[1]) can 

appear on either side of the assignment operator.  

The subscript does not have to be a constant like 0 or 1; it can be any integral expression. 

For example, it's common to loop over all elements of an array:  

 int i; 

 

 for(i = 0; i < 10; i = i + 1) 

  a[i] = 0; 

This loop sets all ten elements of the array a to 0.  

Arrays are a real convenience for many problems, but there is not a lot that C will do with 

them for you automatically. In particular, you can neither set all elements of an array at 

once nor assign one array to another; both of the assignments  

 a = 0;   /* WRONG */ 

and  
 int b[10]; 

 b = a;   /* WRONG */ 

are illegal.  



 50 

To set all of the elements of an array to some value, you must do so one by one, as in the 

loop example above. To copy the contents of one array to another, you must again do so 

one by one:  

 int b[10]; 

 

 for(i = 0; i < 10; i = i + 1) 

  b[i] = a[i]; 

Remember that for an array declared  
 int a[10]; 

there is no element a[10]; the topmost element is a[9]. This is one reason that zero-

based loops are also common in C. Note that the for loop  
 for(i = 0; i < 10; i = i + 1) 

  ... 

does just what you want in this case: it starts at 0, the number 10 suggests (correctly) that 

it goes through 10 iterations, but the less-than comparison means that the last trip through 

the loop has i set to 9. (The comparison i <= 9 would also work, but it would be less 

clear and therefore poorer style.)  

In the little examples so far, we've always looped over all 10 elements of the sample array 

a. It's common, however, to use an array that's bigger than necessarily needed, and to use 

a second variable to keep track of how many elements of the array are currently in use. 

For example, we might have an integer variable  

 int na;  /* number of elements of a[] in use */ 

Then, when we wanted to do something with a (such as print it out), the loop would run 

from 0 to na, not 10 (or whatever a's size was):  
 for(i = 0; i < na; i = i + 1) 

  printf("%d\n", a[i]); 

Naturally, we would have to ensure ensure that na's value was always less than or equal 

to the number of elements actually declared in a.  

Arrays are not limited to type int; you can have arrays of char or double or any other 

type.  

Here is a slightly larger example of the use of arrays. Suppose we want to investigate the 

behavior of rolling a pair of dice. The total roll can be anywhere from 2 to 12, and we 

want to count how often each roll comes up. We will use an array to keep track of the 

counts: a[2] will count how many times we've rolled 2, etc.  

We'll simulate the roll of a die by calling C's random number generation function, 

rand(). Each time you call rand(), it returns a different, pseudo-random integer. The 

values that rand() returns typically span a large range, so we'll use C's modulus (or 

``remainder'') operator % to produce random numbers in the range we want. The 

expression rand() % 6 produces random numbers in the range 0 to 5, and rand() % 6 

+ 1 produces random numbers in the range 1 to 6.  

Here is the program:  



 51 

#include <stdio.h> 

#include <stdlib.h> 

 

main() 

{ 

 int i; 

 int d1, d2; 

 int a[13]; /* uses [2..12] */ 

 

 for(i = 2; i <= 12; i = i + 1) 

  a[i] = 0; 

 

 for(i = 0; i < 100; i = i + 1) 

  { 

  d1 = rand() % 6 + 1; 

  d2 = rand() % 6 + 1; 

  a[d1 + d2] = a[d1 + d2] + 1; 

  } 

 

 for(i = 2; i <= 12; i = i + 1) 

  printf("%d: %d\n", i, a[i]); 

 

 return 0; 

} 

We include the header <stdlib.h> because it contains the necessary declarations for the 

rand() function. We declare the array of size 13 so that its highest element will be 

a[12]. (We're wasting a[0] and a[1]; this is no great loss.) The variables d1 and d2 

contain the rolls of the two individual dice; we add them together to decide which cell of 

the array to increment, in the line  
 a[d1 + d2] = a[d1 + d2] + 1; 

After 100 rolls, we print the array out. Typically (as craps players well know), we'll see 

mostly 7's, and relatively few 2's and 12's.  

(By the way, it turns out that using the % operator to reduce the range of the rand function 

is not always a good idea. We'll say more about this problem in an exercise.)  

4.1.1 Array Initialization 

Although it is not possible to assign to all elements of an array at once using an 

assignment expression, it is possible to initialize some or all elements of an array when 

the array is defined. The syntax looks like this:  

 int a[10] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}; 

The list of values, enclosed in braces {}, separated by commas, provides the initial values 

for successive elements of the array.  

(Under older, pre-ANSI C compilers, you could not always supply initializers for ``local'' 

arrays inside functions; you could only initialize ``global'' arrays, those outside of any 

function. Those compilers are now rare, so you shouldn't have to worry about this 

distinction any more. We'll talk more about local and global variables later in this 

chapter.)  



 52 

If there are fewer initializers than elements in the array, the remaining elements are 

automatically initialized to 0. For example,  

 int a[10] = {0, 1, 2, 3, 4, 5, 6}; 

would initialize a[7], a[8], and a[9] to 0. When an array definition includes an 

initializer, the array dimension may be omitted, and the compiler will infer the dimension 

from the number of initializers. For example,  
 int b[] = {10, 11, 12, 13, 14}; 

would declare, define, and initialize an array b of 5 elements (i.e. just as if you'd typed 

int b[5]). Only the dimension is omitted; the brackets [] remain to indicate that b is in 

fact an array.  

In the case of arrays of char, the initializer may be a string constant:  

 char s1[7] = "Hello,"; 

 char s2[10] = "there,"; 

 char s3[] = "world!"; 

As before, if the dimension is omitted, it is inferred from the size of the string initializer. 

(We haven't covered strings in detail yet--we'll do so in chapter 8--but it turns out that all 

strings in C are terminated by a special character with the value 0. Therefore, the array s3 

will be of size 7, and the explicitly-sized s1 does need to be of size at least 7. For s2, the 

last 4 characters in the array will all end up being this zero-value character.) 

4.1.2 Arrays of Arrays (``Multidimensional'' Arrays) 

[This section is optional and may be skipped.]  

When we said that ``Arrays are not limited to type int; you can have arrays of... any 

other type,'' we meant that more literally than you might have guessed. If you have an 

``array of int,'' it means that you have an array each of whose elements is of type int. 

But you can have an array each of whose elements is of type x, where x is any type you 

choose. In particular, you can have an array each of whose elements is another array! We 

can use these arrays of arrays for the same sorts of tasks as we'd use multidimensional 

arrays in other computer languages (or matrices in mathematics). Naturally, we are not 

limited to arrays of arrays, either; we could have an array of arrays of arrays, which 

would act like a 3-dimensional array, etc.  

The declaration of an array of arrays looks like this:  

 int a2[5][7]; 

You have to read complicated declarations like these ``inside out.'' What this one says is 

that a2 is an array of 5 somethings, and that each of the somethings is an array of 7 ints. 

More briefly, ``a2 is an array of 5 arrays of 7 ints,'' or, ``a2 is an array of array of int.'' 

In the declaration of a2, the brackets closest to the identifier a2 tell you what a2 first and 

foremost is. That's how you know it's an array of 5 arrays of size 7, not the other way 

around. You can think of a2 as having 5 ``rows'' and 7 ``columns,'' although this 



 53 

interpretation is not mandatory. (You could also treat the ``first'' or inner subscript as ``x'' 

and the second as ``y.'' Unless you're doing something fancy, all you have to worry about 

is that the subscripts when you access the array match those that you used when you 

declared it, as in the examples below.)  

To illustrate the use of multidimensional arrays, we might fill in the elements of the 

above array a2 using this piece of code:  

 int i, j; 

 for(i = 0; i < 5; i = i + 1) 

  { 

  for(j = 0; j < 7; j = j + 1) 

   a2[i][j] = 10 * i + j; 

  } 

This pair of nested loops sets a[1][2] to 12, a[4][1] to 41, etc. Since the first 

dimension of a2 is 5, the first subscripting index variable, i, runs from 0 to 4. Similarly, 

the second subscript varies from 0 to 6.  

We could print a2 out (in a two-dimensional way, suggesting its structure) with a similar 

pair of nested loops:  

 for(i = 0; i < 5; i = i + 1) 

  { 

  for(j = 0; j < 7; j = j + 1) 

   printf("%d\t", a2[i][j]); 

  printf("\n"); 

  } 

(The character \t in the printf string is the tab character.)  

Just to see more clearly what's going on, we could make the ``row'' and ``column'' 

subscripts explicit by printing them, too:  

 for(j = 0; j < 7; j = j + 1) 

  printf("\t%d:", j); 

 printf("\n"); 

 

 for(i = 0; i < 5; i = i + 1) 

  { 

  printf("%d:", i); 

  for(j = 0; j < 7; j = j + 1) 

   printf("\t%d", a2[i][j]); 

  printf("\n"); 

  } 

This last fragment would print  
        0:      1:      2:      3:      4:      5:      6: 

0:      0       1       2       3       4       5       6 

1:      10      11      12      13      14      15      16 

2:      20      21      22      23      24      25      26 

3:      30      31      32      33      34      35      36 

4:      40      41      42      43      44      45      46 



 54 

Finally, there's no reason we have to loop over the ``rows'' first and the ``columns'' 

second; depending on what we wanted to do, we could interchange the two loops, like 

this:  

 for(j = 0; j < 7; j = j + 1) 

  { 

  for(i = 0; i < 5; i = i + 1) 

   printf("%d\t", a2[i][j]); 

  printf("\n"); 

  } 

Notice that i is still the first subscript and it still runs from 0 to 4, and j is still the second 

subscript and it still runs from 0 to 6. 

4.2 Visibility and Lifetime (Global Variables, etc.) 

We haven't said so explicitly, but variables are channels of communication within a 

program. You set a variable to a value at one point in a program, and at another point (or 

points) you read the value out again. The two points may be in adjoining statements, or 

they may be in widely separated parts of the program.  

How long does a variable last? How widely separated can the setting and fetching parts 

of the program be, and how long after a variable is set does it persist? Depending on the 

variable and how you're using it, you might want different answers to these questions.  

The visibility of a variable determines how much of the rest of the program can access 

that variable. You can arrange that a variable is visible only within one part of one 

function, or in one function, or in one source file, or anywhere in the program. (We 

haven't really talked about source files yet; we'll be exploring them soon.)  

Why would you want to limit the visibility of a variable? For maximum flexibility, 

wouldn't it be handy if all variables were potentially visible everywhere? As it happens, 

that arrangement would be too flexible: everywhere in the program, you would have to 

keep track of the names of all the variables declared anywhere else in the program, so 

that you didn't accidentally re-use one. Whenever a variable had the wrong value by 

mistake, you'd have to search the entire program for the bug, because any statement in the 

entire program could potentially have modified that variable. You would constantly be 

stepping all over yourself by using a common variable name like i in two parts of your 

program, and having one snippet of code accidentally overwrite the values being used by 

another part of the code. The communication would be sort of like an old party line--

you'd always be accidentally interrupting other conversations, or having your 

conversations interrupted.  

To avoid this confusion, we generally give variables the narrowest or smallest visibility 

they need. A variable declared within the braces {} of a function is visible only within 

that function; variables declared within functions are called local variables. If another 



 55 

function somewhere else declares a local variable with the same name, it's a different 

variable entirely, and the two don't clash with each other.  

On the other hand, a variable declared outside of any function is a global variable, and it 

is potentially visible anywhere within the program. You use global variables when you do 

want the communications path to be able to travel to any part of the program. When you 

declare a global variable, you will usually give it a longer, more descriptive name (not 

something generic like i) so that whenever you use it you will remember that it's the 

same variable everywhere.  

Another word for the visibility of variables is scope.  

How long do variables last? By default, local variables (those declared within a function) 

have automatic duration: they spring into existence when the function is called, and they 

(and their values) disappear when the function returns. Global variables, on the other 

hand, have static duration: they last, and the values stored in them persist, for as long as 

the program does. (Of course, the values can in general still be overwritten, so they don't 

necessarily persist forever.)  

Finally, it is possible to split a function up into several source files, for easier 

maintenance. When several source files are combined into one program (we'll be seeing 

how in the next chapter) the compiler must have a way of correlating the global variables 

which might be used to communicate between the several source files. Furthermore, if a 

global variable is going to be useful for communication, there must be exactly one of it: 

you wouldn't want one function in one source file to store a value in one global variable 

named globalvar, and then have another function in another source file read from a 

different global variable named globalvar. Therefore, a global variable should have 

exactly one defining instance, in one place in one source file. If the same variable is to be 

used anywhere else (i.e. in some other source file or files), the variable is declared in 

those other file(s) with an external declaration, which is not a defining instance. The 

external declaration says, ``hey, compiler, here's the name and type of a global variable 

I'm going to use, but don't define it here, don't allocate space for it; it's one that's defined 

somewhere else, and I'm just referring to it here.'' If you accidentally have two distinct 

defining instances for a variable of the same name, the compiler (or the linker) will 

complain that it is ``multiply defined.''  

It is also possible to have a variable which is global in the sense that it is declared outside 

of any function, but private to the one source file it's defined in. Such a variable is visible 

to the functions in that source file but not to any functions in any other source files, even 

if they try to issue a matching declaration.  

You get any extra control you might need over visibility and lifetime, and you distinguish 

between defining instances and external declarations, by using storage classes. A storage 

class is an extra keyword at the beginning of a declaration which modifies the declaration 

in some way. Generally, the storage class (if any) is the first word in the declaration, 

preceding the type name. (Strictly speaking, this ordering has not traditionally been 



 56 

necessary, and you may see some code with the storage class, type name, and other parts 

of a declaration in an unusual order.)  

We said that, by default, local variables had automatic duration. To give them static 

duration (so that, instead of coming and going as the function is called, they persist for as 

long as the function does), you precede their declaration with the static keyword:  

 static int i; 

By default, a declaration of a global variable (especially if it specifies an initial value) is 

the defining instance. To make it an external declaration, of a variable which is defined 

somewhere else, you precede it with the keyword extern:  

 extern int j; 

Finally, to arrange that a global variable is visible only within its containing source file, 

you precede it with the static keyword:  

 static int k; 

Notice that the static keyword can do two different things: it adjusts the duration of a 

local variable from automatic to static, or it adjusts the visibility of a global variable from 

truly global to private-to-the-file.  

To summarize, we've talked about two different attributes of a variable: visibility and 

duration. These are orthogonal, as shown in this table:  

   duration 

 visibility automatic  static 

 

 local normal local  static local 

  variables  variables 

 

 global N/A  normal global 

    variables 

We can also distinguish between file-scope global variables and truly global variables, 

based on the presence or absence of the static keyword.  

We can also distinguish between external declarations and defining instances of global 

variables, based on the presence or absence of the extern keyword.  

4.3 Default Initialization 

The duration of a variable (whether static or automatic) also affects its default 

initialization.  



 57 

If you do not explicitly initialize them, automatic-duration variables (that is, local, non-

static ones) are not guaranteed to have any particular initial value; they will typically 

contain garbage. It is therefore a fairly serious error to attempt to use the value of an 

automatic variable which has never been initialized or assigned to: the program will 

either work incorrectly, or the garbage value may just happen to be ``correct'' such that 

the program appears to work correctly! However, the particular value that the garbage 

takes on can vary depending literally on anything: other parts of the program, which 

compiler was used, which hardware or operating system the program is running on, the 

time of day, the phase of the moon. (Okay, maybe the phase of the moon is a bit of an 

exaggeration.) So you hardly want to say that a program which uses an uninitialized 

variable ``works''; it may seem to work, but it works for the wrong reason, and it may 

stop working tomorrow.  

Static-duration variables (global and static local), on the other hand, are guaranteed to 

be initialized to 0 if you do not use an explicit initializer in the definition.  

(Once upon a time, there was another distinction between the initialization of automatic 

vs. static variables: you could initialize aggregate objects, such as arrays, only if they had 

static duration. If your compiler complains when you try to initialize a local array, it's 

probably an old, pre-ANSI compiler. Modern, ANSI-compatible compilers remove this 

limitation, so it's no longer much of a concern.)  

4.4 Examples 

Here is an example demonstrating almost everything we've seen so far:  

 int globalvar = 1; 

 extern int anotherglobalvar; 

 static int privatevar; 

 

 f() 

 { 

  int localvar; 

  int localvar2 = 2; 

  static int persistentvar; 

 } 

Here we have six variables, three declared outside and three declared inside of the 

function f().  

globalvar is a global variable. The declaration we see is its defining instance (it happens 

also to include an initial value). globalvar can be used anywhere in this source file, and 

it could be used in other source files, too (as long as corresponding external declarations 

are issued in those other source files).  

anotherglobalvar is a second global variable. It is not defined here; the defining 

instance for it (and its initialization) is somewhere else.  



 58 

privatevar is a ``private'' global variable. It can be used anywhere within this source 

file, but functions in other source files cannot access it, even if they try to issue external 

declarations for it. (If other source files try to declare a global variable called 

``privatevar'', they'll get their own; they won't be sharing this one.) Since it has static 

duration and receives no explicit initialization, privatevar will be initialized to 0.  

localvar is a local variable within the function f(). It can be accessed only within the 

function f(). (If any other part of the program declares a variable named ``localvar'', 

that variable will be distinct from the one we're looking at here.) localvar is 

conceptually ``created'' each time f() is called, and disappears when f() returns. Any 

value which was stored in localvar last time f() was running will be lost and will not 

be available next time f() is called. Furthermore, since it has no explicit initializer, the 

value of localvar will in general be garbage each time f() is called.  

localvar2 is also local, and everything that we said about localvar applies to it, except 

that since its declaration includes an explicit initializer, it will be initialized to 2 each time 

f() is called.  

Finally, persistentvar is again local to f(), but it does maintain its value between calls 

to f(). It has static duration but no explicit initializer, so its initial value will be 0.  

The defining instances and external declarations we've been looking at so far have all 

been of simple variables. There are also defining instances and external declarations of 

functions, which we'll be looking at in the next chapter.  

(Also, don't worry about static variables for now if they don't make sense to you; they're a 

relatively sophisticated concept, which you won't need to use at first.)  

The term declaration is a general one which encompasses defining instances and external 

declarations; defining instances and external declarations are two different kinds of 

declarations. Furthermore, either kind of declaration suffices to inform the compiler of 

the name and type of a particular variable (or function). If you have the defining instance 

of a global variable in a source file, the rest of that source file can use that variable 

without having to issue any external declarations. It's only in source files where the 

defining instance hasn't been seen that you need external declarations.  

You will sometimes hear a defining instance referred to simply as a ``definition,'' and you 

will sometimes hear an external declaration referred to simply as a ``declaration.'' These 

usages are mildly ambiguous, in that you can't tell out of context whether a ``declaration'' 

is a generic declaration (that might be a defining instance or an external declaration) or 

whether it's an external declaration that specifically is not a defining instance. (Similarly, 

there are other constructions that can be called ``definitions'' in C, namely the definitions 

of preprocessor macros, structures, and typedefs, none of which we've met.) In these 

notes, we'll try to make things clear by using the unambiguous terms defining instance 

and external declaration. Elsewhere, you may have to look at the context to determine 

how the terms ``definition'' and ``declaration'' are being used.  



 59 

Chapter 5: Functions & Program Structure 

[This chapter corresponds to K&R chapter 4.]  

A function is a ``black box'' that we've locked part of our program into. The idea behind a 

function is that it compartmentalizes part of the program, and in particular, that the code 

within the function has some useful properties:  

1. It performs some well-defined task, which will be useful to other parts of the 

program.  

2. It might be useful to other programs as well; that is, we might be able to reuse it 

(and without having to rewrite it).  

3. The rest of the program doesn't have to know the details of how the function is 

implemented. This can make the rest of the program easier to think about.  

4. The function performs its task well. It may be written to do a little more than is 

required by the first program that calls it, with the anticipation that the calling 

program (or some other program) may later need the extra functionality or 

improved performance. (It's important that a finished function do its job well, 

otherwise there might be a reluctance to call it, and it therefore might not achieve 

the goal of reusability.)  

5. By placing the code to perform the useful task into a function, and simply calling 

the function in the other parts of the program where the task must be performed, 

the rest of the program becomes clearer: rather than having some large, 

complicated, difficult-to-understand piece of code repeated wherever the task is 

being performed, we have a single simple function call, and the name of the 

function reminds us which task is being performed.  

6. Since the rest of the program doesn't have to know the details of how the function 

is implemented, the rest of the program doesn't care if the function is 

reimplemented later, in some different way (as long as it continues to perform its 

same task, of course!). This means that one part of the program can be rewritten, 

to improve performance or add a new feature (or simply to fix a bug), without 

having to rewrite the rest of the program.  

Functions are probably the most important weapon in our battle against software 

complexity. You'll want to learn when it's appropriate to break processing out into 

functions (and also when it's not), and how to set up function interfaces to best achieve 

the qualities mentioned above: reuseability, information hiding, clarity, and 

maintainability.  

5.1 Function Basics 

So what defines a function? It has a name that you call it by, and a list of zero or more 

arguments or parameters that you hand to it for it to act on or to direct its work; it has a 

body containing the actual instructions (statements) for carrying out the task the function 

is supposed to perform; and it may give you back a return value, of a particular type.  



 60 

Here is a very simple function, which accepts one argument, multiplies it by 2, and hands 

that value back:  

 int multbytwo(int x) 

 { 

  int retval; 

  retval = x * 2; 

  return retval; 

 } 

On the first line we see the return type of the function (int), the name of the function 

(multbytwo), and a list of the function's arguments, enclosed in parentheses. Each 

argument has both a name and a type; multbytwo accepts one argument, of type int, 

named x. The name x is arbitrary, and is used only within the definition of multbytwo. 

The caller of this function only needs to know that a single argument of type int is 

expected; the caller does not need to know what name the function will use internally to 

refer to that argument. (In particular, the caller does not have to pass the value of a 

variable named x.)  

Next we see, surrounded by the familiar braces, the body of the function itself. This 

function consists of one declaration (of a local variable retval) and two statements. The 

first statement is a conventional expression statement, which computes and assigns a 

value to retval, and the second statement is a return statement, which causes the 

function to return to its caller, and also specifies the value which the function returns to 

its caller.  

The return statement can return the value of any expression, so we don't really need the 

local retval variable; the function could be collapsed to  

 int multbytwo(int x) 

 { 

  return x * 2; 

 } 

How do we call a function? We've been doing so informally since day one, but now we 

have a chance to call one that we've written, in full detail. Here is a tiny skeletal program 

to call multby2:  

 #include <stdio.h> 

 

 extern int multbytwo(int); 

 

 int main() 

 { 

  int i, j; 

  i = 3; 

  j = multbytwo(i); 

  printf("%d\n", j); 

  return 0; 

 } 

This looks much like our other test programs, with the exception of the new line  



 61 

 extern int multbytwo(int); 

This is an external function prototype declaration. It is an external declaration, in that it 

declares something which is defined somewhere else. (We've already seen the defining 

instance of the function multbytwo, but maybe the compiler hasn't seen it yet.) The 

function prototype declaration contains the three pieces of information about the function 

that a caller needs to know: the function's name, return type, and argument type(s). Since 

we don't care what name the multbytwo function will use to refer to its first argument, 

we don't need to mention it. (On the other hand, if a function takes several arguments, 

giving them names in the prototype may make it easier to remember which is which, so 

names may optionally be used in function prototype declarations.) Finally, to remind us 

that this is an external declaration and not a defining instance, the prototype is preceded 

by the keyword extern.  

The presence of the function prototype declaration lets the compiler know that we intend 

to call this function, multbytwo. The information in the prototype lets the compiler 

generate the correct code for calling the function, and also enables the compiler to check 

up on our code (by making sure, for example, that we pass the correct number of 

arguments to each function we call).  

Down in the body of main, the action of the function call should be obvious: the line  

 j = multbytwo(i); 

calls multbytwo, passing it the value of i as its argument. When multbytwo returns, the 

return value is assigned to the variable j. (Notice that the value of main's local variable i 

will become the value of multbytwo's parameter x; this is absolutely not a problem, and 

is a normal sort of affair.)  

This example is written out in ``longhand,'' to make each step equivalent. The variable i 

isn't really needed, since we could just as well call  

 j = multbytwo(3); 

And the variable j isn't really needed, either, since we could just as well call  
 printf("%d\n", multbytwo(3)); 

Here, the call to multbytwo is a subexpression which serves as the second argument to 

printf. The value returned by multbytwo is passed immediately to printf. (Here, as in 

general, we see the flexibility and generality of expressions in C. An argument passed to 

a function may be an arbitrarily complex subexpression, and a function call is itself an 

expression which may be embedded as a subexpression within arbitrarily complicated 

surrounding expressions.)  

We should say a little more about the mechanism by which an argument is passed down 

from a caller into a function. Formally, C is call by value, which means that a function 

receives copies of the values of its arguments. We can illustrate this with an example. 

Suppose, in our implementation of multbytwo, we had gotten rid of the unnecessary 

retval variable like this:  

 int multbytwo(int x) 



 62 

 { 

  x = x * 2; 

  return x; 

 } 

We might wonder, if we wrote it this way, what would happen to the value of the variable 

i when we called  
 j = multbytwo(i); 

When our implementation of multbytwo changes the value of x, does that change the 

value of i up in the caller? The answer is no. x receives a copy of i's value, so when we 

change x we don't change i.  

However, there is an exception to this rule. When the argument you pass to a function is 

not a single variable, but is rather an array, the function does not receive a copy of the 

array, and it therefore can modify the array in the caller. The reason is that it might be too 

expensive to copy the entire array, and furthermore, it can be useful for the function to 

write into the caller's array, as a way of handing back more data than would fit in the 

function's single return value. We'll see an example of an array argument (which the 

function deliberately writes into) in the next chapter.  

5.2 Function Prototypes 

In modern C programming, it is considered good practice to use prototype declarations 

for all functions that you call. As we mentioned, these prototypes help to ensure that the 

compiler can generate correct code for calling the functions, as well as allowing the 

compiler to catch certain mistakes you might make.  

Strictly speaking, however, prototypes are optional. If you call a function for which the 

compiler has not seen a prototype, the compiler will do the best it can, assuming that 

you're calling the function correctly.  

If prototypes are a good idea, and if we're going to get in the habit of writing function 

prototype declarations for functions we call that we've written (such as multbytwo), what 

happens for library functions such as printf? Where are their prototypes? The answer is 

in that boilerplate line  

 #include <stdio.h> 

we've been including at the top of all of our programs. stdio.h is conceptually a file full 

of external declarations and other information pertaining to the ``Standard I/O'' library 

functions, including printf. The #include directive (which we'll meet formally in a 

later chapter) arranges that all of the declarations within stdio.h are considered by the 

compiler, rather as if we'd typed them all in ourselves. Somewhere within these 

declarations is an external function prototype declaration for printf, which satisfies the 

rule that there should be a prototype for each function we call. (For other standard library 

functions we call, there will be iother ``header files'' to include.) Finally, one more thing 

about external function prototype declarations. We've said that the distinction between 

external declarations and defining instances of normal variables hinges on the presence or 

absence of the keyword extern. The situation is a little bit different for functions. The 



 63 

``defining instance'' of a function is the function, including its body (that is, the brace-

enclosed list of declarations and statements implementing the function). An external 

declaration of a function, even without the keyword extern, looks nothing like a function 

declaration. Therefore, the keyword extern is optional in function prototype 

declarations. If you wish, you can write  
 int multbytwo(int); 

and this is just as good an external function prototype declaration as  
 extern int multbytwo(int); 

(In the first form, without the extern, as soon as the compiler sees the semicolon, it 

knows it's not going to see a function body, so the declaration can't be a definition.) You 

may want to stay in the habit of using extern in all external declarations, including 

function declarations, since ``extern = external declaration'' is an easier rule to 

remember. 

5.3 Function Philosophy 

What makes a good function? The most important aspect of a good ``building block'' is 

that have a single, well-defined task to perform. When you find that a program is hard to 

manage, it's often because it has not been designed and broken up into functions cleanly. 

Two obvious reasons for moving code down into a function are because:  

1. It appeared in the main program several times, such that by making it a function, it can 

be written just once, and the several places where it used to appear can be replaced with 

calls to the new function.  

2. The main program was getting too big, so it could be made (presumably) smaller and 

more manageable by lopping part of it off and making it a function.  

These two reasons are important, and they represent significant benefits of well-chosen 

functions, but they are not sufficient to automatically identify a good function. As we've 

been suggesting, a good function has at least these two additional attributes:  

3. It does just one well-defined task, and does it well.  

4. Its interface to the rest of the program is clean and narrow.  

Attribute 3 is just a restatement of two things we said above. Attribute 4 says that you 

shouldn't have to keep track of too many things when calling a function. If you know 

what a function is supposed to do, and if its task is simple and well-defined, there should 

be just a few pieces of information you have to give it to act upon, and one or just a few 

pieces of information which it returns to you when it's done. If you find yourself having 

to pass lots and lots of information to a function, or remember details of its internal 

implementation to make sure that it will work properly this time, it's often a sign that the 

function is not sufficiently well-defined. (A poorly-defined function may be an arbitrary 



 64 

chunk of code that was ripped out of a main program that was getting too big, such that it 

essentially has to have access to all of that main function's local variables.)  

The whole point of breaking a program up into functions is so that you don't have to think 

about the entire program at once; ideally, you can think about just one function at a time. 

We say that a good function is a ``black box,'' which is supposed to suggest that the 

``container'' it's in is opaque--callers can't see inside it (and the function inside can't see 

out). When you call a function, you only have to know what it does, not how it does it. 

When you're writing a function, you only have to know what it's supposed to do, and you 

don't have to know why or under what circumstances its caller will be calling it. (When 

designing a function, we should perhaps think about the callers just enough to ensure that 

the function we're designing will be easy to call, and that we aren't accidentally setting 

things up so that callers will have to think about any internal details.)  

Some functions may be hard to write (if they have a hard job to do, or if it's hard to make 

them do it truly well), but that difficulty should be compartmentalized along with the 

function itself. Once you've written a ``hard'' function, you should be able to sit back and 

relax and watch it do that hard work on call from the rest of your program. It should be 

pleasant to notice (in the ideal case) how much easier the rest of the program is to write, 

now that the hard work can be deferred to this workhorse function.  

(In fact, if a difficult-to-write function's interface is well-defined, you may be able to get 

away with writing a quick-and-dirty version of the function first, so that you can begin 

testing the rest of the program, and then go back later and rewrite the function to do the 

hard parts. As long as the function's original interface anticipated the hard parts, you 

won't have to rewrite the rest of the program when you fix the function.)  

What I've been trying to say in the preceding few paragraphs is that functions are 

important for far more important reasons than just saving typing. Sometimes, we'll write 

a function which we only call once, just because breaking it out into a function makes 

things clearer and easier.  

If you find that difficulties pervade a program, that the hard parts can't be buried inside 

black-box functions and then forgotten about; if you find that there are hard parts which 

involve complicated interactions among multiple functions, then the program probably 

needs redesigning.  

For the purposes of explanation, we've been seeming to talk so far only about ``main 

programs'' and the functions they call and the rationale behind moving some piece of 

code down out of a ``main program'' into a function. But in reality, there's obviously no 

need to restrict ourselves to a two-tier scheme. Any function we find ourself writing will 

often be appropriately written in terms of sub-functions, sub-sub-functions, etc. 

(Furthermore, the ``main program,'' main(), is itself just a function.)  



 65 

5.4 Separate Compilation--Logistics 

When a program consists of many functions, it can be convenient to split them up into 

several source files. Among other things, this means that when a change is made, only the 

source file containing the change has to be recompiled, not the whole program.  

The job of putting the pieces of a program together and producing the final executable 

falls to a tool called the linker. (We may or may not need to invoke the linker explicitly; a 

compiler often invokes it automatically, as needed.) The linker looks through all of the 

pieces making up the program, sorting out the external declarations and defining 

instances. The compiler has noted the definitions made by each source file, as well as the 

declarations of things used by each source file but (presumably) defined elsewhere. For 

each thing (global variable or function) used but not defined by one piece of the program, 

the linker looks for another piece which does define that thing.  

The logistics of writing a program in several source files, and then compiling and linking 

all of the source files together, depend on the programming environment you're using. 

We'll cover two possibilities, depending on whether you're using a traditional command-

line compiler or a newer integrated development environment (IDE) or other graphical 

user interface (GUI) compiler.  

When using a command-line compiler, there are usually two main steps involved in 

building an executable program from one or more source files. First, each source file is 

compiled, resulting in an object file containing the machine instructions (generated by the 

compiler) corresponding to just the code in that source file. Second, the various object 

files are linked together, with each other and with libraries containing code for functions 

which you did not write (such as printf), to produce a final, executable program.  

Under Unix, the cc command can perform one or both steps. So far, we've been using 

extremely simple invocations of cc such as  

 cc -o hello hello.c 

This invocation compiles a single source file, hello.c, links it, and places the executable 

in a file named hello.  

Suppose we have a program which we're trying to build from three separate source files, 

x.c, y.c, and z.c. We could compile all three of them, and link them together, all at 

once, with the command  

 cc -o myprog x.c y.c z.c 

Alternatively, we could compile them separately: the -c option to cc tells it to compile 

only, but not to link. Instead of building an executable, it merely creates an object file, 

with a name ending in .o, for each source file compiled. So the three commands  
 cc -c x.c 

 cc -c y.c 

 cc -c y.c 



 66 

would compile x.c, y.c, and z.c and create object files x.o, y.o, and z.o. Then, the 

three object files could be linked together using  
 cc -o myprog x.o y.o z.o 

When the cc command is given an .o file, it knows that it does not have to compile it (it's 

an object file, already compiled); it just sends it through to the link process.  

Above we mentioned that the second, linking step also involves pulling in library 

functions. Normally, the functions from the Standard C library are linked in 

automatically. Occasionally, you must request a library manually; one common situation 

under Unix is that the math functions tend to be in a separate math library, which is 

requested by using -lm on the command line. Since the libraries must typically be 

searched after your program's own object files are linked (so that the linker knows which 

library functions your program uses), any -l option must appear after the names of your 

files on the command line. For example, to link the object file mymath.o (previously 

compiled with cc -c mymath.c) together with the math library, you might use  

 cc -o mymathprog mymath.o -lm 

(The l in the -l option is the lower case ell, for library; it is not the digit 1.)  

Everything we've said about cc also applies to most other Unix C compilers. (Many of 

you will be using gcc, the FSF's GNU C Compiler.)  

There are command-line compilers for MS-DOS systems which work similarly. For 

example, the Microsoft C compiler comes with a CL (``compile and link'') command, 

which works almost the same as Unix cc. You can compile and link in one step:  

 cl hello.c 

or you can compile only:  
 cl /c hello.c 

creating an object file named hello.obj which you can link later.  

The preceding has all been about command-line compilers. If you're using some kind of 

integrated development environment, such as Borland's Turbo C or the Microsoft 

Programmer's Workbench or Visual C or Think C or Codewarrior, most of the 

mechanical details are taken care of for you. (There's also less I can say here about these 

environments, because they're all different.) Typically you define a ``project,'' and there's 

a way to specify the list of files (modules) which make up your project. The modules 

might be source files which you typed in or obtained elsewhere, or they might be source 

files which you created within the environment (perhaps by requesting a ``New source 

file,'' and typing it in). Typically, the programming environment has a single ``build'' 

button which does whatever's required to build (and perhaps even execute) your program. 

There may also be configuration windows in which you can specify compiler options 

(such as whether you'd like it to accept C or C++). ``See your manual for details.''  



 67 

Chapter 6: Basic I/O 

So far, we've been using printf to do output, and we haven't had a way of doing any 

input. In this chapter, we'll learn a bit more about printf, and we'll begin learning about 

character-based input and output.  

6.1 printf 

printf's name comes from print formatted. It generates output under the control of a 

format string (its first argument) which consists of literal characters to be printed and also 

special character sequences--format specifiers--which request that other arguments be 

fetched, formatted, and inserted into the string. Our very first program was nothing more 

than a call to printf, printing a constant string:  

 printf("Hello, world!\n"); 

Our second program also featured a call to printf:  
 printf("i is %d\n", i); 

In that case, whenever printf ``printed'' the string "i is %d", it did not print it 

verbatim; it replaced the two characters %d with the value of the variable i.  

There are quite a number of format specifiers for printf. Here are the basic ones :  

 %d print an int argument in decimal 

 %ld print a long int argument in decimal 

 %c print a character 

 %s print a string 

 %f print a float or double argument 

 %e same as %f, but use exponential notation 

 %g use %e or %f, whichever is better 

 %o print an int argument in octal (base 8) 

 %x print an int argument in hexadecimal (base 16) 

 %% print a single % 

 

 

It is also possible to specify the width and precision of numbers and strings as they are 

inserted (somewhat like FORTRAN format statements); we'll present those details in a 

later chapter. (Very briefly, for those who are curious: a notation like %3d means to print 

an int in a field at least 3 spaces wide; a notation like %5.2f means to print a float or 

double in a field at least 5 spaces wide, with two places to the right of the decimal.)  

To illustrate with a few more examples: the call  

 printf("%c %d %f %e %s %d%%\n", '1', 2, 3.14, 56000000., 

"eight", 9); 

would print  
 1 2 3.140000 5.600000e+07 eight 9% 

The call  
 printf("%d %o %x\n", 100, 100, 100); 



 68 

would print  
 100 144 64 

Successive calls to printf just build up the output a piece at a time, so the calls  
 printf("Hello, "); 

 printf("world!\n"); 

would also print Hello, world! (on one line of output).  

Earlier we learned that C represents characters internally as small integers corresponding 

to the characters' values in the machine's character set (typically ASCII). This means that 

there isn't really much difference between a character and an integer in C; most of the 

difference is in whether we choose to interpret an integer as an integer or a character. 

printf is one place where we get to make that choice: %d prints an integer value as a 

string of digits representing its decimal value, while %c prints the character corresponding 

to a character set value. So the lines  

 char c = 'A'; 

 int i = 97; 

 printf("c = %c, i = %d\n", c, i); 

would print c as the character A and i as the number 97. But if, on the other hand, we 

called  
 printf("c = %d, i = %c\n", c, i); 

we'd see the decimal value (printed by %d) of the character 'A', followed by the character 

(whatever it is) which happens to have the decimal value 97.  

You have to be careful when calling printf. It has no way of knowing how many 

arguments you've passed it or what their types are other than by looking for the format 

specifiers in the format string. If there are more format specifiers (that is, more % signs) 

than there are arguments, or if the arguments have the wrong types for the format 

specifiers, printf can misbehave badly, often printing nonsense numbers or (even 

worse) numbers which mislead you into thinking that some other part of your program is 

broken.  

Because of some automatic conversion rules which we haven't covered yet, you have a 

small amount of latitude in the types of the expressions you pass as arguments to printf. 

The argument for %c may be of type char or int, and the argument for %d may be of type 

char or int. The string argument for %s may be a string constant, an array of characters, 

or a pointer to some characters (though we haven't really covered strings or pointers yet). 

Finally, the arguments corresponding to %e, %f, and %g may be of types float or double. 

But other combinations do not work reliably: %d will not print a long int or a float or 

a double; %ld will not print an int; %e, %f, and %g will not print an int.  

6.2 Character Input and Output 

[This section corresponds to K&R Sec. 1.5]  

Unless a program can read some input, it's hard to keep it from doing exactly the same 

thing every time it's run, and thus being rather boring after a while.  



 69 

The most basic way of reading input is by calling the function getchar. getchar reads 

one character from the ``standard input,'' which is usually the user's keyboard, but which 

can sometimes be redirected by the operating system. getchar returns (rather obviously) 

the character it reads, or, if there are no more characters available, the special value EOF 

(``end of file'').  

A companion function is putchar, which writes one character to the ``standard output.'' 

(The standard output is, again not surprisingly, usually the user's screen, although it, too, 

can be redirected. printf, like putchar, prints to the standard output; in fact, you can 

imagine that printf calls putchar to actually print each of the characters it formats.)  

Using these two functions, we can write a very basic program to copy the input, a 

character at a time, to the output:  

#include <stdio.h> 

 

/* copy input to output */ 

 

main() 

{ 

 int c; 

 

 c = getchar(); 

 

 while(c != EOF) 

  { 

  putchar(c); 

  c = getchar(); 

  } 

 

 return 0; 

} 

This code is straightforward, and I encourage you to type it in and try it out. It reads one 

character, and if it is not the EOF code, enters a while loop, printing one character and 

reading another, as long as the character read is not EOF. This is a straightforward loop, 

although there's one mystery surrounding the declaration of the variable c: if it holds 

characters, why is it an int?  

We said that a char variable could hold integers corresponding to character set values, 

and that an int could hold integers of more arbitrary values (up to +-32767). Since most 

character sets contain a few hundred characters (nowhere near 32767), an int variable 

can in general comfortably hold all char values, and then some. Therefore, there's 

nothing wrong with declaring c as an int. But in fact, it's important to do so, because 

getchar can return every character value, plus that special, non-character value EOF, 

indicating that there are no more characters. Type char is only guaranteed to be able to 

hold all the character values; it is not guaranteed to be able to hold this ``no more 

characters'' value without possibly mixing it up with some actual character value. (It's like 

trying to cram five pounds of books into a four-pound box, or 13 eggs into a carton that 



 70 

holds a dozen.) Therefore, you should always remember to use an int for anything you 

assign getchar's return value to.  

When you run the character copying program, and it begins copying its input (your 

typing) to its output (your screen), you may find yourself wondering how to stop it. It 

stops when it receives end-of-file (EOF), but how do you send EOF? The answer depends 

on what kind of computer you're using. On Unix and Unix-related systems, it's almost 

always control-D. On MS-DOS machines, it's control-Z followed by the RETURN key. 

Under Think C on the Macintosh, it's control-D, just like Unix. On other systems, you 

may have to do some research to learn how to send EOF.  

(Note, too, that the character you type to generate an end-of-file condition from the 

keyboard is not the same as the special EOF value returned by getchar. The EOF value 

returned by getchar is a code indicating that the input system has detected an end-of-file 

condition, whether it's reading the keyboard or a file or a magnetic tape or a network 

connection or anything else. In a disk file, at least, there is not likely to be any character 

in the file corresponding to EOF; as far as your program is concerned, EOF indicates the 

absence of any more characters to read.)  

Another excellent thing to know when doing any kind of programming is how to 

terminate a runaway program. If a program is running forever waiting for input, you can 

usually stop it by sending it an end-of-file, as above, but if it's running forever not 

waiting for something, you'll have to take more drastic measures. Under Unix, control-C 

(or, occasionally, the DELETE key) will terminate the current program, almost no matter 

what. Under MS-DOS, control-C or control-BREAK will sometimes terminate the 

current program, but by default MS-DOS only checks for control-C when it's looking for 

input, so an infinite loop can be unkillable. There's a DOS command,  

 break on 

which tells DOS to look for control-C more often, and I recommend using this command 

if you're doing any programming. (If a program is in a really tight infinite loop under 

MS-DOS, there can be no way of killing it short of rebooting.) On the Mac, try 

command-period or command-option-ESCAPE.  

Finally, don't be disappointed (as I was) the first time you run the character copying 

program. You'll type a character, and see it on the screen right away, and assume it's your 

program working, but it's only your computer echoing every key you type, as it always 

does. When you hit RETURN, a full line of characters is made available to your program. 

It then zips several times through its loop, reading and printing all the characters in the 

line in quick succession. In other words, when you run this program, it will probably 

seem to copy the input a line at a time, rather than a character at a time. You may wonder 

how a program could instead read a character right away, without waiting for the user to 

hit RETURN. That's an excellent question, but unfortunately the answer is rather 

complicated, and beyond the scope of our discussion here. (Among other things, how to 

read a character right away is one of the things that's not defined by the C language, and 



 71 

it's not defined by any of the standard library functions, either. How to do it depends on 

which operating system you're using.)  

Stylistically, the character-copying program above can be said to have one minor flaw: it 

contains two calls to getchar, one which reads the first character and one which reads 

(by virtue of the fact that it's in the body of the loop) all the other characters. This seems 

inelegant and perhaps unnecessary, and it can also be risky: if there were more things 

going on within the loop, and if we ever changed the way we read characters, it would be 

easy to change one of the getchar calls but forget to change the other one. Is there a way 

to rewrite the loop so that there is only one call to getchar, responsible for reading all 

the characters? Is there a way to read a character, test it for EOF, and assign it to the 

variable c, all at the same time?  

There is. It relies on the fact that the assignment operator, =, is just another operator in C. 

An assignment is not (necessarily) a standalone statement; it is an expression, and it has a 

value (the value that's assigned to the variable on the left-hand side), and it can therefore 

participate in a larger, surrounding expression. Therefore, most C programmers would 

write the character-copying loop like this:  

 while((c = getchar()) != EOF) 

  putchar(c); 

What does this mean? The function getchar is called, as before, and its return value is 

assigned to the variable c. Then the value is immediately compared against the value EOF. 

Finally, the true/false value of the comparison controls the while loop: as long as the 

value is not EOF, the loop continues executing, but as soon as an EOF is received, no more 

trips through the loop are taken, and it exits. The net result is that the call to getchar 

happens inside the test at the top of the while loop, and doesn't have to be repeated 

before the loop and within the loop (more on this in a bit).  

Stated another way, the syntax of a while loop is always  

 while( expression ) ... 

A comparison (using the != operator) is of course an expression; the syntax is  
 expression != expression 

And an assignment is an expression; the syntax is  
 expression = expression 

What we're seeing is just another example of the fact that expressions can be combined 

with essentially limitless generality and therefore infinite variety. The left-hand side of 

the != operator (its first expression) is the (sub)expression c = getchar(), and the 

combined expression is the expression needed by the while loop.  

The extra parentheses around  

 (c = getchar()) 

are important, and are there because because the precedence of the != operator is higher 

than that of the = operator. If we (incorrectly) wrote  
 while(c = getchar() != EOF)  /* WRONG */ 



 72 

the compiler would interpret it as  
 while(c = (getchar() != EOF)) 

That is, it would assign the result of the != operator to the variable c, which is not what 

we want.  

(``Precedence'' refers to the rules for which operators are applied to their operands in 

which order, that is, to the rules controlling the default grouping of expressions and 

subexpressions. For example, the multiplication operator * has higher precedence than 

the addition operator +, which means that the expression a + b * c is parsed as a + (b 

* c). We'll have more to say about precedence later.)  

The line  

 while((c = getchar()) != EOF) 

epitomizes the cryptic brevity which C is notorious for. You may find this terseness 

infuriating (and you're not alone!), and it can certainly be carried too far, but bear with 

me for a moment while I defend it.  

The simple example we've been discussing illustrates the tradeoffs well. We have four 

things to do:  

1. call getchar,  

2. assign its return value to a variable,  

3. test the return value against EOF, and  

4. process the character (in this case, print it out again).  

We can't eliminate any of these steps. We have to assign getchar's value to a variable 

(we can't just use it directly) because we have to do two different things with it (test, and 

print). Therefore, compressing the assignment and test into the same line is the only good 

way of avoiding two distinct calls to getchar. You may not agree that the compressed 

idiom is better for being more compact or easier to read, but the fact that there is now 

only one call to getchar is a real virtue.  

Don't think that you'll have to write compressed lines like  

 while((c = getchar()) != EOF) 

right away, or in order to be an ``expert C programmer.'' But, for better or worse, most 

experienced C programmers do like to use these idioms (whether they're justified or not), 

so you'll need to be able to at least recognize and understand them when you're reading 

other peoples' code. 

6.3 Reading Lines 

It's often convenient for a program to process its input not a character at a time but rather 

a line at a time, that is, to read an entire line of input and then act on it all at once. The 



 73 

standard C library has a couple of functions for reading lines, but they have a few 

awkward features, so we're going to learn more about character input (and about writing 

functions in general) by writing our own function to read one line. Here it is:  

#include <stdio.h> 

 

/* Read one line from standard input, */ 

/* copying it to line array (but no more than max chars). */ 

/* Does not place terminating \n in line array. */ 

/* Returns line length, or 0 for empty line, or EOF for end-of-file. */ 

 

int getline(char line[], int max) 

{ 

int nch = 0; 

int c; 

max = max - 1;   /* leave room for '\0' */ 

 

while((c = getchar()) != EOF) 

 { 

 if(c == '\n') 

  break; 

 

 if(nch < max) 

  { 

  line[nch] = c; 

  nch = nch + 1; 

  } 

 } 

 

if(c == EOF && nch == 0) 

 return EOF; 

 

line[nch] = '\0'; 

return nch; 

} 

As the comment indicates, this function will read one line of input from the standard 

input, placing it into the line array. The size of the line array is given by the max 

argument; the function will never write more than max characters into line.  

The main body of the function is a getchar loop, much as we used in the character-

copying program. In the body of this loop, however, we're storing the characters in an 

array (rather than immediately printing them out). Also, we're only reading one line of 

characters, then stopping and returning.  

There are several new things to notice here.  

First of all, the getline function accepts an array as a parameter. As we've said, array 

parameters are an exception to the rule that functions receive copies of their arguments--

in the case of arrays, the function does have access to the actual array passed by the 

caller, and can modify it. Since the function is accessing the caller's array, not creating a 

new one to hold a copy, the function does not have to declare the argument array's size; 



 74 

it's set by the caller. (Thus, the brackets in ``char line[]'' are empty.) However, so that 

we won't overflow the caller's array by reading too long a line into it, we allow the caller 

to pass along the size of the array, which we promise not to exceed.  

Second, we see an example of the break statement. The top of the loop looks like our 

earlier character-copying loop--it stops when it reaches EOF--but we only want this loop 

to read one line, so we also stop (that is, break out of the loop) when we see the \n 

character signifying end-of-line. An equivalent loop, without the break statement, would 

be  

 while((c = getchar()) != EOF && c != '\n') 

  { 

  if(nch < max) 

   { 

   line[nch] = c; 

   nch = nch + 1; 

   } 

  } 

We haven't learned about the internal representation of strings yet, but it turns out that 

strings in C are simply arrays of characters, which is why we are reading the line into an 

array of characters. The end of a string is marked by the special character, '\0'. To make 

sure that there's always room for that character, on our way in we subtract 1 from max, the 

argument that tells us how many characters we may place in the line array. When we're 

done reading the line, we store the end-of-string character '\0' at the end of the string 

we've just built in the line array.  

Finally, there's one subtlety in the code which isn't too important for our purposes now 

but which you may wonder about: it's arranged to handle the possibility that a few 

characters (i.e. the apparent beginning of a line) are read, followed immediately by an 

EOF, without the usual \n end-of-line character. (That's why we return EOF only if we 

received EOF and we hadn't read any characters first.)  

In any case, the function returns the length (number of characters) of the line it read, not 

including the \n. (Therefore, it returns 0 for an empty line.) Like getchar, it returns EOF 

when there are no more lines to read. (It happens that EOF is a negative number, so it will 

never match the length of a line that getline has read.)  

Here is an example of a test program which calls getline, reading the input a line at a 

time and then printing each line back out:  

#include <stdio.h> 

 

extern int getline(char [], int); 

 

main() 

{ 

char line[256]; 

 



 75 

while(getline(line, 256) != EOF) 

 printf("you typed \"%s\"\n", line); 

 

return 0; 

} 

The notation char [] in the function prototype for getline says that getline accepts as 

its first argument an array of char. When the program calls getline, it is careful to pass 

along the actual size of the array. (You might notice a potential problem: since the 

number 256 appears in two places, if we ever decide that 256 is too small, and that we 

want to be able to read longer lines, we could easily change one of the instances of 256, 

and forget to change the other one. Later we'll learn ways of solving--that is, avoiding--

this sort of problem.) 

6.4 Reading Numbers 

The getline function of the previous section reads one line from the user, as a string. 

What if we want to read a number? One straightforward way is to read a string as before, 

and then immediately convert the string to a number. The standard C library contains a 

number of functions for doing this. The simplest to use are atoi(), which converts a 

string to an integer, and atof(), which converts a string to a floating-point number. 

(Both of these functions are declared in the header <stdlib.h>, so you should #include 

that header at the top of any file using these functions.) You could read an integer from 

the user like this:  

 #include <stdlib.h> 

 

 char line[256]; 

 int n; 

 printf("Type an integer:\n"); 

 getline(line, 256); 

 n = atoi(line); 

Now the variable n contains the number typed by the user. (This assumes that the user did 

type a valid number, and that getline did not return EOF.)  

Reading a floating-point number is similar:  

 #include <stdlib.h> 

 

 char line[256]; 

 double x; 

 printf("Type a floating-point number:\n"); 

 getline(line, 256); 

 x = atof(line); 

(atof is actually declared as returning type double, but you could also use it with a 

variable of type float, because in general, C automatically converts between float and 

double as needed.)  



 76 

Another way of reading in numbers, which you're likely to see in other books on C, 

involves the scanf function, but it has several problems, so we won't discuss it for now. 

(Superficially, scanf seems simple enough, which is why it's often used, especially in 

textbooks. The trouble is that to perform input reliably using scanf is not nearly as easy 

as it looks, especially when you're not sure what the user is going to type.)  



 77 

Chapter 7: More Operators 

In this chapter we'll meet some (though still not all) of C's more advanced arithmetic 

operators. The ones we'll meet here have to do with making common patterns of 

operations easier.  

It's extremely common in programming to have to increment a variable by 1, that is, to 

add 1 to it. (For example, if you're processing each element of an array, you'll typically 

write a loop with an index or pointer variable stepping through the elements of the array, 

and you'll increment the variable each time through the loop.) The classic way to 

increment a variable is with an assignment like  

 i = i + 1 

Such an assignment is perfectly common and acceptable, but it has a few slight problems:  

1. As we've mentioned, it looks a little odd, especially from an algebraic perspective.  

2. If the object being incremented is not a simple variable, the idiom can become 

cumbersome to type, and correspondingly more error-prone. For example, the 

expression  
3.  a[i+j+2*k] = a[i+j+2*k] + 1 

is a bit of a mess, and you may have to look closely to see that the similar-looking 

expression  

 a[i+j+2*k] = a[i+j+2+k] + 1 

probably has a mistake in it.  

4. Since incrementing things is so common, it might be nice to have an easier way of 

doing it.  

In fact, C provides not one but two other, simpler ways of incrementing variables and 

performing other similar operations. 

7.1 Assignment Operators 

[This section corresponds to K&R Sec. 2.10]  

The first and more general way is that any time you have the pattern  

 v = v op e 

where v is any variable (or anything like a[i]), op is any of the binary arithmetic 

operators we've seen so far, and e is any expression, you can replace it with the simplified  
 v op= e 

For example, you can replace the expressions  
 i = i + 1 



 78 

 j = j - 10 

 k = k * (n + 1) 

 a[i] = a[i] / b 

with  
 i += 1 

 j -= 10 

 k *= n + 1 

 a[i] /= b 

In an example in a previous chapter, we used the assignment  

 a[d1 + d2] = a[d1 + d2] + 1; 

to count the rolls of a pair of dice. Using +=, we could simplify this expression to  
 a[d1 + d2] += 1; 

As these examples show, you can use the ``op='' form with any of the arithmetic 

operators (and with several other operators that we haven't seen yet). The expression, e, 

does not have to be the constant 1; it can be any expression. You don't always need as 

many explicit parentheses when using the op= operators: the expression  

 k *= n + 1 

is interpreted as  
 k = k * (n + 1) 

7.2 Increment and Decrement Operators 

[This section corresponds to K&R Sec. 2.8]  

The assignment operators of the previous section let us replace v = v op e with v op= e, so 

that we didn't have to mention v twice. In the most common cases, namely when we're 

adding or subtracting the constant 1 (that is, when op is + or - and e is 1), C provides 

another set of shortcuts: the autoincrement and autodecrement operators. In their simplest 

forms, they look like this:  

 ++i  add 1 to i 

 --j  subtract 1 from j 

These correspond to the slightly longer i += 1 and j -= 1, respectively, and also to the 

fully ``longhand'' forms i = i + 1 and j = j - 1.  

The ++ and -- operators apply to one operand (they're unary operators). The expression 

++i adds 1 to i, and stores the incremented result back in i. This means that these 

operators don't just compute new values; they also modify the value of some variable. 

(They share this property--modifying some variable--with the assignment operators; we 

can say that these operators all have side effects. That is, they have some effect, on the 

side, other than just computing a new value.)  

The incremented (or decremented) result is also made available to the rest of the 

expression, so an expression like  



 79 

 k = 2 * ++i 

means ``add one to i, store the result back in i, multiply it by 2, and store that result in 

k.'' (This is a pretty meaningless expression; our actual uses of ++ later will make more 

sense.)  

Both the ++ and -- operators have an unusual property: they can be used in two ways, 

depending on whether they are written to the left or the right of the variable they're 

operating on. In either case, they increment or decrement the variable they're operating 

on; the difference concerns whether it's the old or the new value that's ``returned'' to the 

surrounding expression. The prefix form ++i increments i and returns the incremented 

value. The postfix form i++ increments i, but returns the prior, non-incremented value. 

Rewriting our previous example slightly, the expression  

 k = 2 * i++ 

means ``take i's old value and multiply it by 2, increment i, store the result of the 

multiplication in k.''  

The distinction between the prefix and postfix forms of ++ and -- will probably seem 

strained at first, but it will make more sense once we begin using these operators in more 

realistic situations.  

For example, our getline function of the previous chapter used the statements  

 line[nch] = c; 

 nch = nch + 1; 

as the body of its inner loop. Using the ++ operator, we could simplify this to  
 line[nch++] = c; 

We wanted to increment nch after deciding which element of the line array to store into, 

so the postfix form nch++ is appropriate.  

Notice that it only makes sense to apply the ++ and -- operators to variables (or to other 

``containers,'' such as a[i]). It would be meaningless to say something like  

 1++ 

or  
 (2+3)++ 

The ++ operator doesn't just mean ``add one''; it means ``add one to a variable'' or ``make 

a variable's value one more than it was before.'' But (1+2) is not a variable, it's an 

expression; so there's no place for ++ to store the incremented result.  

Another unfortunate example is  

 i = i++; 

which some confused programmers sometimes write, presumably because they want to 

be extra sure that i is incremented by 1. But i++ all by itself is sufficient to increment i 

by 1; the extra (explicit) assignment to i is unnecessary and in fact counterproductive, 



 80 

meaningless, and incorrect. If you want to increment i (that is, add one to it, and store the 

result back in i), either use  
 i = i + 1; 

or 

 i += 1; 

or 

 ++i; 

or 

 i++; 

Don't try to use some bizarre combination.  

Did it matter whether we used ++i or i++ in this last example? Remember, the difference 

between the two forms is what value (either the old or the new) is passed on to the 

surrounding expression. If there is no surrounding expression, if the ++i or i++ appears 

all by itself, to increment i and do nothing else, you can use either form; it makes no 

difference. (Two ways that an expression can appear ``all by itself,'' with ``no 

surrounding expression,'' are when it is an expression statement terminated by a 

semicolon, as above, or when it is one of the controlling expressions of a for loop.) For 

example, both the loops  

 for(i = 0; i < 10; ++i) 

  printf("%d\n", i); 

and  
 for(i = 0; i < 10; i++) 

  printf("%d\n", i); 

will behave exactly the same way and produce exactly the same results. (In real code, 

postfix increment is probably more common, though prefix definitely has its uses, too.)  

In the preceding section, we simplified the expression  

 a[d1 + d2] = a[d1 + d2] + 1; 

from a previous chapter down to  
 a[d1 + d2] += 1; 

Using ++, we could simplify it still further to  
 a[d1 + d2]++; 

or  
 ++a[d1 + d2]; 

(Again, in this case, both are equivalent.)  

We'll see more examples of these operators in the next section and in the next chapter.  

7.3 Order of Evaluation 

[This section corresponds to K&R Sec. 2.12]  

When you start using the ++ and -- operators in larger expressions, you end up with 

expressions which do several things at once, i.e., they modify several different variables 

at more or less the same time. When you write such an expression, you must be careful 

not to have the expression ``pull the rug out from under itself'' by assigning two different 



 81 

values to the same variable, or by assigning a new value to a variable at the same time 

that another part of the expression is trying to use the value of that variable.  

Actually, we had already started writing expressions which did several things at once 

even before we met the ++ and -- operators. The expression  

 (c = getchar()) != EOF 

assigns getchar's return value to c, and compares it to EOF. The ++ and -- operators 

make it much easier to cram a lot into a small expression: the example  
 line[nch++] = c; 

from the previous section assigned c to line[nch], and incremented nch. We'll 

eventually meet expressions which do three things at once, such as  
 a[i++] = b[j++]; 

which assigns b[j] to a[i], and increments i, and increments j.  

If you're not careful, though, it's easy for this sort of thing to get out of hand. Can you 

figure out exactly what the expression  

 a[i++] = b[i++];  /* WRONG */ 

should do? I can't, and here's the important part: neither can the compiler. We know that 

the definition of postfix ++ is that the former value, before the increment, is what goes on 

to participate in the rest of the expression, but the expression a[i++] = b[i++] contains 

two ++ operators. Which of them happens first? Does this expression assign the old ith 

element of b to the new ith element of a, or vice versa? No one knows.  

When the order of evaluation matters but is not well-defined (that is, when we can't say 

for sure which order the compiler will evaluate the various dependent parts in) we say 

that the meaning of the expression is undefined, and if we're smart we won't write the 

expression in the first place. (Why would anyone ever write an ``undefined'' expression? 

Because sometimes, the compiler happens to evaluate it in the order a programmer 

wanted, and the programmer assumes that since it works, it must be okay.)  

For example, suppose we carelessly wrote this loop:  

 int i, a[10]; 

 i = 0; 

 while(i < 10) 

  a[i] = i++;   /* WRONG */ 

It looks like we're trying to set a[0] to 0, a[1] to 1, etc. But what if the increment i++ 

happens before the compiler decides which cell of the array a to store the 

(unincremented) result in? We might end up setting a[1] to 0, a[2] to 1, etc., instead. 

Since, in this case, we can't be sure which order things would happen in, we simply 

shouldn't write code like this. In this case, what we're doing matches the pattern of a for 

loop, anyway, which would be a better choice:  
 for(i = 0; i < 10; i++) 

  a[i] = i; 

Now that the increment i++ isn't crammed into the same expression that's setting a[i], 

the code is perfectly well-defined, and is guaranteed to do what we want.  



 82 

In general, you should be wary of ever trying to second-guess the order an expression 

will be evaluated in, with two exceptions:  

1. You can obviously assume that precedence will dictate the order in which binary 

operators are applied. This typically says more than just what order things 

happens in, but also what the expression actually means. (In other words, the 

precedence of * over + says more than that the multiplication ``happens first'' in 1 

+ 2 * 3; it says that the answer is 7, not 9.)  

2. Although we haven't mentioned it yet, it is guaranteed that the logical operators 

&& and || are evaluated left-to-right, and that the right-hand side is not evaluated 

at all if the left-hand side determines the outcome.  

To look at one more example, it might seem that the code  

 int i = 7; 

 printf("%d\n", i++ * i++); 

would have to print 56, because no matter which order the increments happen in, 7*8 is 

8*7 is 56. But ++ just says that the increment happens later, not that it happens 

immediately, so this code could print 49 (if the compiler chose to perform the 

multiplication first, and both increments later). And, it turns out that ambiguous 

expressions like this are such a bad idea that the ANSI C Standard does not require 

compilers to do anything reasonable with them at all. Theoretically, the above code could 

end up printing 42, or 8923409342, or 0, or crashing your computer.  

Programmers sometimes mistakenly imagine that they can write an expression which 

tries to do too much at once and then predict exactly how it will behave based on ``order 

of evaluation.'' For example, we know that multiplication has higher precedence than 

addition, which means that in the expression  

 i + j * k 

j will be multiplied by k, and then i will be added to the result. Informally, we often say 

that the multiplication happens ``before'' the addition. That's true in this case, but it 

doesn't say as much as we might think about a more complicated expression, such as  
 i++ + j++ * k++ 

In this case, besides the addition and multiplication, i, j, and k are all being incremented. 

We can not say which of them will be incremented first; it's the compiler's choice. (In 

particular, it is not necessarily the case that j++ or k++ will happen first; the compiler 

might choose to save i's value somewhere and increment i first, even though it will have 

to keep the old value around until after it has done the multiplication.)  

In the preceding example, it probably doesn't matter which variable is incremented first. 

It's not too hard, though, to write an expression where it does matter. In fact, we've seen 

one already: the ambiguous assignment a[i++] = b[i++]. We still don't know which 

i++ happens first. (We can not assume, based on the right-to-left behavior of the = 

operator, that the right-hand i++ will happen first.) But if we had to know what a[i++] = 

b[i++] really did, we'd have to know which i++ happened first.  



 83 

Finally, note that parentheses don't dictate overall evaluation order any more than 

precedence does. Parentheses override precedence and say which operands go with which 

operators, and they therefore affect the overall meaning of an expression, but they don't 

say anything about the order of subexpressions or side effects. We could not ``fix'' the 

evaluation order of any of the expressions we've been discussing by adding parentheses. 

If we wrote  

 i++ + (j++ * k++) 

we still wouldn't know which of the increments would happen first. (The parentheses 

would force the multiplication to happen before the addition, but precedence already 

would have forced that, anyway.) If we wrote  
 (i++) * (i++) 

the parentheses wouldn't force the increments to happen before the multiplication or in 

any well-defined order; this parenthesized version would be just as undefined as i++ * 

i++ was.  

There's a line from Kernighan & Ritchie, which I am fond of quoting when discussing 

these issues [Sec. 2.12, p. 54]:  

The moral is that writing code that depends on order of evaluation is a bad programming 

practice in any language. Naturally, it is necessary to know what things to avoid, but if 

you don't know how they are done on various machines, you won't be tempted to take 

advantage of a particular implementation.  

The first edition of K&R said  

...if you don't know how they are done on various machines, that innocence may help to 

protect you.  

I actually prefer the first edition wording. Many textbooks encourage you to write small 

programs to find out how your compiler implements some of these ambiguous 

expressions, but it's just one step from writing a small program to find out, to writing a 

real program which makes use of what you've just learned. But you don't want to write 

programs that work only under one particular compiler, that take advantage of the way 

that one compiler (but perhaps no other) happens to implement the undefined 

expressions. It's fine to be curious about what goes on ``under the hood,'' and many of 

you will be curious enough about what's going on with these ``forbidden'' expressions 

that you'll want to investigate them, but please keep very firmly in mind that, for real 

programs, the very easiest way of dealing with ambiguous, undefined expressions (which 

one compiler interprets one way and another interprets another way and a third crashes 

on) is not to write them in the first place. 


