
Licensed to:

Data Structures: A Pseudocode Approach with C, Second Edition
Richard F. Gilberg

Behrouz A. Forouzan

Senior Product Manager:
Alyssa Pratt

Senior Acquisitions Editor:
Amy Yarnevich

Production Editor:
BobbiJo Frasca

Senior Marketing Manager:
Karen Seitz

Associate Product Manager:
Mirella Misiaszek

Editorial Assistant:
Amanda Piantedosi

Senior Manufacturing Coordinator:
Trevor Kallop

Cover Designer:
Abby Scholz

COPYRIGHT © 2005 Course Technology, a division
of Thomson Learning, Inc. Thomson Learning™ is a
trademark used herein under license.

Printed in the United States of America

1 2 3 4 5 6 7 8 9 QWT 09 08 07 06 05

For more information, contact Course Technology,
25 Thomson Place, Boston, Massachusetts, 02210.

Or find us on the World Wide Web at:
www.course.com

ALL RIGHTS RESERVED. No part of this work covered
by the copyright hereon may be reproduced or used in
any form or by any means—graphic, electronic, or
mechanical, including photocopying, recording,

taping, Web distribution, or information storage and
retrieval systems—without the written permission of the
publisher.

For permission to use material from this text
or product, submit a request online at
http://www.thomsonrights.com

Any additional questions about permissions can be
submitted by email to thomsonrights@thomson.com

Disclaimer
Course Technology reserves the right to revise this
publication and make changes from time to time in
its content without notice.

ISBN-13: 978-0-534-39080-8
ISBN-10: 0-534-39080-3

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

1

Part I

Introduction
There are several concepts that are essential to an understanding of this
text. We discuss these concepts in the first two chapters. Chapter 1 “Basic
Concepts,” covers general materials that we use throughout the book.
Chapter 2 “Recursion,” discusses the concept of recursion. Figure I-1
shows the organization of Part I.

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

2 Part I Introduction

FIGURE I-1 Part I Contents

Chapters Covered
This part includes two chapters.

Chapter 1: Basic Concepts
The first chapter covers concepts that we use throughout the text. You may
find that some of them are a review of material from your programming course.
The major concepts are outlined below.

Pseudocode
In all of our texts, we use the basic tenet, “Design comes before code.”
Throughout the text, therefore, we separate algorithm design from the code
that implements it in a specific language. Although the underlying language
in this book is C, pseudocode allows us to separate the algorithm from the
implementation.

Abstract Data Type
An abstract data type (ADT) implements a set of algorithms generically so
that they can be applied to any data type or construct. The beauty of an ADT
implementation is that the algorithms can handle any data type whether it is
a simple integer or a complex record.

ADT Implementations
In general, there are two basic data structures that can be used to implement
an abstract data type: arrays and linked lists. We discuss basic linked list con-
cepts in Chapter 1 and expand on them as necessary in subsequent chapters.

Generic Code

Implementations

Abstract Data Type

Pseudocode

Algorithm Efficiency

Recursive Algorithms

Recursion versus Repetition

Part I

Recursion
Chapter 2

Basic Concepts
Chapter 1

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

Part I Introduction 3

Generic Code for ADTs
To implement the ADT concept, we need to use generic code. Each language
provides a different set of tools to implement generic code. The C language
uses two tools: pointer to void and pointer to function.

Algorithm Efficiency
While many authors argue that today’s computers and compilers make algo-
rithm efficiency an academic discussion, we believe that an understanding of
algorithm efficiency provides the framework for writing better algorithms.
Although we discuss the efficiency of specific algorithms when we develop
them, in this chapter we discuss the basic concepts and tools for discussing
algorithm efficiency.

Chapter 2: Recursion
In Chapter 2 we discuss recursion, a concept that is often skipped in an
introductory programming course. We need to understand recursion to dis-
cuss data structures because many of the abstract data types are recursive by
nature and algorithms that handle them can be better understood using
recursion. We use recursive algorithms extensively, especially in Part III,
“Non-Linear Lists.”

Recursion versus Repetition
The first part of the chapter compares and contrasts recursion and repetition
and when each should be used.

Recursive Algorithms
Although recursive algorithms are generally elegant, they can be difficult to
understand. In the second part of the chapter, we introduce several algo-
rithms to make the recursive concept clear and to provide a sense of design
for creating recursive algorithms.

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

5

Chapter 1
Basic Concepts

This text assumes that the student has a solid foundation in structured pro-
gramming principles and has written programs of moderate complexity.
Although the text uses C for all of its implementation examples, the design
and logic of the data structure algorithms are based on pseudocode. This
approach creates a language-independent environment for the algorithms.

In this chapter we establish a background for the tools used in the rest of
the text, most specifically pseudocode, the abstract data type, algorithm effi-
ciency analysis, and the concepts necessary to create generic code.

1.1 Pseudocode
Although several tools are used to define algorithms, one of the most common
is pseudocode. Pseudocode is an English-like representation of the algorithm
logic. It is part English, part structured code. The English part provides a
relaxed syntax that describes what must be done without showing unnecessary
details such as error messages. The code part consists of an extended version of
the basic algorithmic constructs—sequence, selection, and iteration.

In this text we use pseudocode to represent both data structures and
code. Data items do not need to be declared. The first time we use a data
name in an algorithm, it is automatically declared. Its type is determined by
context. The following statement declares a numeric data item named count
and sets its value to zero.

One of the most common tools for defining algorithms is pseudocode, which is part English, part
structured code.

set count to 0

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

6 Section 1.1 Pseudocode

The structure of the data, on the other hand, must be declared. We use a
simple syntactical statement that begins with a structure name and concludes
with the keyword end and the name of the structure. Within the structure we
list the structural elements by indenting the data items as shown below.

This data definition describes a node in a self-referential list that consists
of a nested structure (data) and a pointer to the next node (link). An ele-
ment’s type is implied by its name and usage in the algorithm.

As mentioned, pseudocode is used to describe an algorithm. To facilitate
a discussion of the algorithm statements, we number them using the hierar-
chical system shown in Algorithm 1-1. The following sections describe the
components of an algorithm. Colored comments provide documentation or
clarification when required.

ALGORITHM 1-1 Example of Pseudocode

Algorithm Header
Each algorithm begins with a header that names it, lists its parameters, and
describes any preconditions and postconditions. This information is impor-
tant because it serves to document the algorithm. Therefore, the header
information must be complete enough to communicate to the programmer
everything he or she must know to write the algorithm. In Algorithm 1-1
there is only one parameter, the page number.

node
data
link

end node

Algorithm sample (pageNumber)
This algorithm reads a file and prints a report.

Pre pageNumber passed by reference
Post Report Printed
 pageNumber contains number of pages in report
Return Number of lines printed

1 loop (not end of file)
1 read file
2 if (full page)

1 increment page number
2 write page heading

3 end if
4 write report line
5 increment line count

2 end loop
3 return line count
end sample

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

Chapter 1 Basic Concepts 7

Purpose, Conditions, and Return
The purpose is a short statement about what the algorithm does. It needs to
describe only the general algorithm processing. It should not attempt to
describe all of the processing. For example, in Algorithm 1-1 the purpose
does not need to state that the file will be opened or how the report will be
printed. Similarly, in the search example the purpose does not need to state
which of the possible array searches will be used.

The precondition lists any precursor requirements for the parameters.
For example, in Algorithm 1-1 the algorithm that calls sample must pass the
page number by reference. Sometimes there are no preconditions, in which
case we still list the precondition with a statement that nothing is required, as
shown below.

If there are several input parameters, the precondition should be shown for
each. For example, a simple array search algorithm has the following header:

In search the precondition specifies that the two input parameters, list
and argument, must be initialized. If a binary search were being used, the
precondition would also state that the array data must be sorted.

The postcondition identifies any action taken and the status of any out-
put parameters. In Algorithm 1-1 the postcondition contains two parts. First,
it states that the report has been printed. Second, the reference parameter,
pageNumber, contains the updated number of pages in the report. In the
search algorithm shown above, there is only one postcondition, which may be
one of two different values.

If a value is returned, it is identified by a return condition. Often there is
none, and no return condition is needed. In Algorithm 1-1 we return the
number of lines printed. The search algorithm returns true if the argument
was found, false if it was not found.

Statement Numbers
Statements are numbered using an abbreviated decimal notation in which
only the last of the number sequence is shown on each statement. The
expanded number of the statement in Algorithm 1-1 that reads the file is 1.1.

Pre nothing

Algorithm search (list, argument, location)
Search array for specific item and return index location.

Pre list contains data array to be searched
 argument contains data to be located in list
Post location contains matching index
 -or- undetermined if not found
Return true if found, false if not found

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

8 Section 1.1 Pseudocode

The statement that writes the page heading is 1.2.2. This technique allows
us to identify an individual statement while providing statements that are
easily read.

Variables
To ensure that the meaning is understood, we use intelligent data names—that is,
names that describe the meaning of the data. However, it is not necessary to
define the variables used in an algorithm, especially when the name indicates
the context of the data.

The selection of the name for an algorithm or variable goes a long way
toward making the algorithm and its coded implementation more readable. In
general, you should follow these rules:

1. Do not use single-character names.

2. Do not use generic names in application programs. Examples of generic
names are count, sum, total, row, column, and file. In a program of any
size there are several counts, sums, and totals. Rather, add an intelligent
qualifier to the generic name so that the reader knows exactly to which
piece of data the name refers. For example, studentCount and
numberOfStudents are both better than count.

3. Abbreviations are not excluded as intelligent data names. For example,
stuCnt is a good abbreviation for student count, and numOfStu is a good
abbreviation for number of students. Note, however, that noStu would
not be a good abbreviation for number of students because it is too
easily read as no students.

Statement Constructs
When he first proposed the structured programming model, Edsger Dijkstra
stated that any algorithm could be written using only three programming
constructs: sequence, selection, and loop. Our pseudocode contains only these
three basic constructs. The implementation of these constructs relies on the
richness of the implementation language. For example, the loop can be
implemented as a while, do…while, or for statement in the C language.

Sequence
A sequence is one or more statements that do not alter the execution path within
an algorithm. Although it is obvious that statements such as assign and add
are sequence statements, it is not so obvious that a call to other algorithms is
also considered a sequence statement. The reason calls are considered
sequential statements lies in the structured programming concept that each
algorithm has only one entry and one exit. Furthermore, when an algorithm
completes, it returns to the statement immediately after the call that invoked
it. Therefore, we can consider an algorithm call a sequence statement. In
Algorithm 1-1 statements 1.2.1 and 1.2.2 are sequence statements.

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

Chapter 1 Basic Concepts 9

Selection
A selection statement evaluates a condition and executes zero or more alternatives.
The results of the evaluation determine which alternates are taken.

The typical selection statement is the two-way selection as implemented
in an if statement. Whereas most languages provide for multiway selections,
such as the switch in C, we provide none in the pseudocode. The parts of the
selection are identified by indentation, as shown in the short pseudocode
statement below.

Statement 1.2 in Algorithm 1-1 is an example of a selection statement.
The end of the selection is indicated by the end if in statement 1.3.

Loop
A loop statement iterates a block of code. The loop that we use in our
pseudocode closely resembles the while loop. It is a pretest loop; that is, the
condition is evaluated before the body of the loop is executed. If the
condition is true, the body is executed. If the condition is false, the loop
terminates.

In Algorithm 1-1 statement 1 is an example of a loop. The end of the loop
is indicated by end loop in statement 2.

Algorithm Analysis
For selected algorithms, we follow the algorithm with an analysis section that
explains some of its salient points. Not every line of code is explained. Rather,
the analysis examines only those points that either need to be emphasized or
that may require some clarification. The algorithm analysis also often intro-
duces style or efficiency considerations.

Pseudocode Example
As another example of pseudocode, consider the logic required to calculate
the deviation from a mean. In this problem we must first read a series of
numbers and calculate their average. Then we subtract the mean from each
number and print the number and its deviation. At the end of the calculation,
we also print the totals and the average.

The obvious solution is to place the data in an array as they are read.
Algorithm 1-2 contains the code for this simple problem as it would be imple-
mented in a callable algorithm.

1 if (condition)
1 action1

2 else
1 action2

3 end if

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

10 Section 1.2 The Abstract Data Type

ALGORITHM 1-2 Print Deviation from Mean for Series

Algorithm 1-2 Analysis There are two points worth mentioning in Algorithm 1-2. First, there are no parameters.
Second, as previously explained, we do not declare variables. A variable’s type and
purpose should be easily determined by its name and usage.

1.2 The Abstract Data Type
In the history of programming concepts, we started with nonstructured, linear
programs, known as spaghetti code, in which the logic flow wound through the
program like spaghetti on a plate. Next came the concept of modular programming,
in which programs were organized in functions, each of which still used a lin-
ear coding technique. In the 1970s, the basic principles of structured programming
were formulated by computer scientists such as Edsger Dijkstra and Niklaus
Wirth. They are still valid today.

Atomic and Composite Data
Atomic data are data that consist of a single piece of information; that is, they
cannot be divided into other meaningful pieces of data. For example, the inte-
ger 4562 may be considered a single integer value. Of course, we can decom-
pose it into digits, but the decomposed digits do not have the same
characteristics of the original integer; they are four single-digit integers rang-
ing from 0 to 9. In some languages atomic data are known as scalar data
because of their numeric properties.

The opposite of atomic data is composite data. Composite data can be bro-
ken out into subfields that have meaning. As an example of a composite
data item, consider your telephone number. A telephone number actually
has three different parts. First, there is the area code. Then, what you con-
sider to be your phone number is actually two different data items, a prefix
consisting of a three-digit exchange and the number within the exchange,

Algorithm deviation
Pre nothing
Post average and numbers with their deviation printed

1 loop (not end of file)
1 read number into array
2 add number to total
3 increment count

2 end loop
3 set average to total / count
4 print average
5 loop (not end of array)

1 set devFromAve to array element - average
2 print array element and devFromAve

6 end loop
end deviation

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

Chapter 1 Basic Concepts 11

consisting of four digits. In the past, these prefixes were names such as
DAvenport and CYpress.

Data Type
A data type consists of two parts: a set of data and the operations that can be
performed on the data. Thus we see that the integer type consists of values
(whole numbers in some defined range) and operations (add, subtract, multi-
ply, divide, and any other operations appropriate for the data).

Table 1-1 shows three data types found in all systems.

TABLE 1-1 Three Data Types

Data Structure
A data structure is an aggregation of atomic and composite data into a set with
defined relationships. In this definition structure means a set of rules that
holds the data together. In other words, if we take a combination of data and fit
them into a structure such that we can define its relating rules, we have made
a data structure. Data structures can be nested. We can have a data structure
that consists of other data structures. For example, we can define the two
structures array and record as shown in Table 1-2.

TABLE 1-2 Data Structure Examples

Data Type
1. A set of values
2. A set of operations on values

Type Values Operations

integer -∞, … , -2, -1, 0, 1, 2,… , ∞ *, +, -, %, /, ++, - - , …

floating point -∞, … , 0.0, … , ∞ *, +, -, /, …

character \0, …, 'A', 'B', … , 'a', 'b', … , ~ <, >, …

Array Record

Homogeneous sequence of data or
data types known as elements

Heterogeneous combination of data
into a single structure with an identi-
fied key

Position association among
the elements

No association

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

12 Section 1.2 The Abstract Data Type

Most of the programming languages support several data structures. In addi-
tion, modern programming languages allow programmers to create new data
structures for an application.

Abstract Data Type
Generally speaking, programmers’ capabilities are determined by the tools in
their tool kits. These tools are acquired by education and experience. A
knowledge of data structures is one of those tools.

When we first started programming, there were no abstract data types.
If we wanted to read a file, we wrote the code to read the physical file
device. It did not take long to realize that we were writing the same code
over and over again. So we created what is known today as an abstract data type
(ADT). We wrote the code to read a file and placed it in a library for all pro-
grammers to use.

This concept is found in modern languages today. The code to read the
keyboard is an ADT. It has a data structure, a character, and a set of opera-
tions that can be used to read that data structure. Using the ADT we can not
only read characters but we can also convert them into different data struc-
tures such as integers and strings.

With an ADT users are not concerned with how the task is done but
rather with what it can do. In other words, the ADT consists of a set of defini-
tions that allow programmers to use the functions while hiding the implemen-
tation. This generalization of operations with unspecified implementations is
known as abstraction. We abstract the essence of the process and leave the
implementation details hidden.

Consider the concept of a list. At least four data structures can support a
list. We can use a matrix, a linear list, a tree, or a graph. If we place our list in
an ADT, users should not be aware of the structure we use. As long as they can
insert and retrieve data, it should make no difference how we store the data.
Figure 1-1 shows four logical structures that might be used to hold a list.

Data Structure
1. A combination of elements in which each is either a data type or

another data structure
2. A set of associations or relationships (structure) involving the combined

elements

The concept of abstraction means:
1. We know what a data type can do.
2. How it is done is hidden.

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

Chapter 1 Basic Concepts 13

FIGURE 1-1 Some Data Structures

As another example, consider the system analyst who needs to simulate
the waiting line of a bank to determine how many tellers are needed to serve
customers efficiently. This analysis requires the simulation of a queue. How-
ever, queues are not generally available in programming languages. Even if a
queue type were available, our analyst would still need some basic queue
operations, such as enqueuing (insertion) and dequeuing (deleting), for the
simulation.

There are two potential solutions to this problem: (1) we can write a pro-
gram that simulates the queue our analyst needs (in this case, our solution is
good only for the one application at hand) or (2) we can write a queue ADT
that can be used to solve any queue problem. If we choose the latter course,
our analyst still needs to write a program to simulate the banking application,
but doing so is much easier and faster because he or she can concentrate on
the application rather than the queue.

We are now ready to define ADT. An abstract data type is a data declara-
tion packaged together with the operations that are meaningful for the data
type. In other words, we encapsulate the data and the operations on the data,
and then we hide them from the user.

We cannot overemphasize the importance of hiding the implementation.
The user should not have to know the data structure to use the ADT.
Referring to our queue example, the application program should have no
knowledge of the data structure. All references to and manipulation of the
data in the queue must be handled through defined interfaces to the

Abstract Data Type
1. Declaration of data
2. Declaration of operations
3. Encapsulation of data and operations

(a) Matrix

(b) Linear list

(d) Graph(c) Tree

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

14 Section 1.3 Model for an Abstract Data Type

structure. Allowing the application program to directly reference the data
structure is a common fault in many implementations. This keeps the ADT
from being fully portable to other applications.

1.3 Model for an Abstract Data Type
The ADT model is shown in Figure 1-2. The colored area with an irregular out-
line represents the ADT. Inside the ADT are two different aspects of the model:
data structures and functions (public and private). Both are entirely contained
in the model and are not within the application program scope. However, the
data structures are available to all of the ADT’s functions as needed, and a
function may call on other functions to accomplish its task. In other words, the
data structures and the functions are within scope of each other.

FIGURE 1-2 Abstract Data Type Model

ADT Operations
Data are entered, accessed, modified, and deleted through the external inter-
face drawn as a passageway partially in and partially out of the ADT. Only the
public functions are accessible through this interface. For each ADT opera-
tion there is an algorithm that performs its specific task. Only the operation
name and its parameters are available to the application, and they provide the
only interface to the ADT.

Public
functions

Private
functions

Data structures

Dynamic memory

Array

Record

Linked list

Application

program

Interface

ADT

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

Chapter 1 Basic Concepts 15

ADT Data Structure
When a list is controlled entirely by the program, it is often implemented
using simple structures similar to those used in your programming class.
Because the abstract data type must hide the implementation from the user,
however, all data about the structure must be maintained inside the ADT.
Just encapsulating the structure in an ADT is not sufficient. It is also neces-
sary for multiple versions of the structure to be able to coexist. Consequently,
we must hide the implementation from the user while being able to store dif-
ferent data.

In this text, we develop ADTs for stacks, queues, lists, binary search
trees, AVL trees, B-trees, heaps, and graphs. If you would like a preview, look
at the stack ADT in Chapter 3.

1.4 ADT Implementations
There are two basic structures we can use to implement an ADT list: arrays
and linked lists.

Array Implementations
In an array, the sequentiality of a list is maintained by the order structure of
elements in the array (indexes). Although searching an array for an individual
element can be very efficient, addition and deletion of elements are complex
and inefficient processes. For this reason arrays are seldom used, especially
when the list changes frequently. In addition, array implementations of non-
linear lists can become excessively large, especially when there are several
successors for each element. Appendix F provides array implementations for
two ADTs.

Linked List Implementations
A linked list is an ordered collection of data in which each element contains the
location of the next element or elements. In a linked list, each element con-
tains two parts: data and one or more links. The data part holds the application
data—the data to be processed. Links are used to chain the data together.
They contain pointers that identify the next element or elements in the list.

We can use a linked list to create linear and non-linear structures. In lin-
ear linked lists, each element has only zero or one successor. In non-linear
linked lists, each element can have zero, one, or more successors.

The major advantage of the linked list over the array is that data are eas-
ily inserted and deleted. It is not necessary to shift elements of a linked list to
make room for a new element or to delete an element. On the other hand,
because the elements are no longer physically sequenced, we are limited to
sequential searches:1 we cannot use a binary search.2

1. Sequential and binary searches are discussed in Chapter 13.
2. When we examine trees, you will see several data structures that allow for easy updates and efficient

searches.
 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

16 Section 1.4 ADT Implementations

Figure 1-3(a) shows a linked list implementation of a linear list. The
link in each element, except the last, points to its unique successor; the link
in the last element contains a null pointer, indicating the end of the list.
Figure 1-3(b) shows a linked list implementation of a non-linear list. An
element in a non-linear list can have two or more links. Here each element
contains two links, each to one successor. Figure 1-3(c) contains an exam-
ple of an empty list, linear or non-linear. We define an empty list as a null list
pointer.

FIGURE 1-3 Linked Lists

In this section, we discuss only the basic concepts for linked lists. We
expand on these concepts in future chapters.

Nodes
In linked list implementation, the elements in a list are called nodes. A node is a
structure that has two parts: the data and one or more links. Figure 1-4 shows
two different nodes: one for a linear list and the other for a non-linear list.

The nodes in a linked list are called self-referential structures. In a self-
referential structure, each instance of the structure contains one or more
pointers to other instances of the same structural type. In Figure 1-4, the
colored boxes with arrows are the pointers that make the linked list a self-
referential structure.

The data part in a node can be a single field, multiple fields, or a struc-
ture that contains several fields, but it always acts as a single field. Figure 1-5
shows three designs for a node of a linear list. The upper-left node contains a

list

(c) Empty list

(a) Linear list
data link data linkdata link data linklist

(b) Non-linear list

data linklink

data linklink data linklink

list

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

Chapter 1 Basic Concepts 17

FIGURE 1-4 Nodes

single field, a number, and a link. The upper-right node is more typical. It
contains three data fields: a name, an id, and grade points (grdPts)—and a
link. The third example is the one we recommend. The fields are defined in
their own structure, which is then put into the definition of a node structure.

FIGURE 1-5 Linked List Node Structures

Pointers to Linked Lists
A linked list must always have a head pointer. Depending on how we use the
list, we may have several other pointers as well. For example, if we are going
to search a linked list, we will need an additional pointer to the location
where we found the data we were looking for. Furthermore, in many struc-
tures, programming is more efficient if there is a pointer to the last node in
the list as well as a head pointer.

1.5 Generic Code for ADTs
In data structures we need to create generic code for abstract data types.
Generic code allows us to write one set of code and apply it to any data type. For

data

(a) Node in a linear list

(b) Node in a non-linear list

data

Node with
three data fields

Node with
one data field

grdPtsname idnumber

phonename address

Structure
in a node

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

18 Section 1.5 Generic Code for ADTs

example, we can write generic functions to implement a stack structure. We
can then use the generic functions to implement an integer stack, a float
stack, a double stack, and so on. Although some high-level languages such as
C++ and Java provide special tools to handle generic code, C has limited
capability through two features: pointer to void and pointer to function.

Pointer to void
The first feature is pointer to void. Because C is strongly typed, operations such as
assign and compare must use compatible types or be cast to compatible types.
The one exception is the pointer to void, which can be assigned without a
cast. In other words, a pointer to void is a generic pointer that can be used to
represent any data type during compilation or run time. Figure 1-6 shows the
idea of a pointer to void. Note that a pointer to void is not a null pointer; it is
pointing to a generic data type (void).

FIGURE 1-6 Pointer to void

Example Let us write a simple program to demonstrate the concept. It contains three
variables: an integer, a floating-point number, and a void pointer. At different
times in the program the pointer can be set to the address of the integer value
or of the floating-point value. Figure 1-7 shows the situation.

FIGURE 1-7 Pointers for Program 1-1

Program 1-1 uses a pointer to void that we can use to print either an
integer or a floating-point number.

void

void*

i

f

p

p

p

void* p;
int i;
float f;

p = &i;
...
p = &f;

p = &i

p = &f

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

Chapter 1 Basic Concepts 19

PROGRAM 1-1 Demonstrate Pointer to void

Program 1-1 Analysis The program is trivial, but it demonstrates the point. The pointer p is declared as a void
pointer, but it can accept the address of an integer or floating-point number. However,
we must remember a very import point about pointers to void: a pointer to void cannot
be dereferenced unless it is cast. In other words, we cannot use *p without casting.
That is why we need to cast the pointer in the print function before we use it for printing.

Example As another example, let us look at a system function, malloc. This function
returns a pointer to void. The designers of the malloc function needed to
dynamically allocate any type of data. However, instead of using several mal-
loc functions, each returning a pointer to a specific data type (int*, float*,
double*, and so on), they designed a generic function that returns a pointer
to void (void*). While it is not required, we recommend that the returned
pointer be cast to the appropriate type. The following shows the use of malloc
to create a pointer to an integer.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

/* Demonstrate pointer to void.
 Written by:
 Date:

*/
#include <stdio.h>

int main ()
{
// Local Definitions

void* p;
int i = 7 ;
float f = 23.5;

// Statements
p = &i;
printf ("i contains: %d\n", *((int*)p));

p = &f;
printf ("f contains: %f\n", *((float*)p));

return 0;
} // main

Results:
i contains 7
f contains 23.500000

A pointer to void cannot be dereferenced.

intPtr = (int*)malloc (sizeof (int));

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

20 Section 1.5 Generic Code for ADTs

Example Now let’s look at an example that is similar to what we use to implement our
ADTs. We need to have a generic function to create a node structure. The
structure has two fields: data and link. The link field is a pointer to the node
structure. The data field, however, can be any type: integer, floating point,
string, or even another structure. To make the function generic so that we
can store any type of data in the node, we use a void pointer to data stored in
dynamic memory. We declare the node structure as shown in Figure 1-8.

FIGURE 1-8 Pointer to Node

Now let’s write the program that calls a function that accepts a pointer to
data of any type and creates a node that stores the data pointer and a link
pointer. Because we don’t know where the link pointer will be pointing, we
make it null. The pointer design is shown in Figure 1-9.

FIGURE 1-9 Pointers for Programs 1-2 and 1-3

Typically, ADTs are stored in their own header files. We begin, therefore,
by writing the code for creating the node and placing the code in a header
file. This code is shown in Program 1-2.

PROGRAM 1-2 Create Node Header File

continued

1 /* Header file for create node structure.

typedef struct node
{
 void* dataPtr;
 struct node* link;
} NODE;

To next node

void

NODE
dataPtr link

main

createNode

Dynamic memory

newData

node

nodeData

nodePtritemPtr

7

dataPtr link

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

Chapter 1 Basic Concepts 21

PROGRAM 1-2 Create Node Header File (continued)

Now that we’ve created the data structure and the create node function,
we can write Program 1-3 to demonstrate the use of void pointers in a node.

PROGRAM 1-3 Demonstrate Node Creation Function

continued

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

 Written by:
 Date:

*/
typedef struct node
{
 void* dataPtr;
 struct node* link;
} NODE;

/* =================== createNode ====================
Creates a node in dynamic memory and stores data
pointer in it.
 Pre itemPtr is pointer to data to be stored.
 Post node created and its address returned.

*/
NODE* createNode (void* itemPtr)
{

NODE* nodePtr;
nodePtr = (NODE*) malloc (sizeof (NODE));
nodePtr->dataPtr = itemPtr;
nodePtr->link = NULL;
return nodePtr;

} // createNode

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

/* Demonstrate simple generic node creation function.
 Written by:
 Date:

*/
#include <stdio.h>
#include <stdlib.h>
#include "P1-02.h" // Header file

int main (void)
{
// Local Definitions

int* newData;
int* nodeData;
NODE* node;

// Statements
newData = (int*)malloc (sizeof (int));
*newData = 7;

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

22 Section 1.5 Generic Code for ADTs

PROGRAM 1-3 Demonstrate Node Creation Function (continued)

Program 1-3 Analysis There are several important concepts in this program. First, the data to be stored in the
node is represented by a void pointer. Because there are usually many instances of these
nodes in a program, the data are stored in dynamic memory. The allocation and storage
of the data are the responsibility of the programmer. We show these two steps in state-
ments 17 and 18.

The createNode function allocates a node structure in dynamic memory, stores
the data void pointer in the node, and then returns the node’s address. In statement 22,
we store the void pointer from the node into an integer pointer. Because C is strongly
typed, this assignment must be cast to an integer pointer. So, while we can store an
address in a void pointer without knowing its type, the reverse is not true. To use a void
pointer, even in an assignment, it must be cast.

Example ADT structures generally contain several instances of a node. To better dem-
onstrate the ADT concept, therefore, let’s modify Program 1-3 to contain two
different nodes. In this simple example, we point the first node to the second
node. The pointer structure for the program is shown in Figure 1-10.

FIGURE 1-10 Structure for Two Linked Nodes

The pointer values in Figure 1-10 represent the settings at the end of
Program 1-4.

19
20
21
22
23
24
25

node = createNode (newData);

nodeData = (int*)node->dataPtr;
printf ("Data from node: %d\n", *nodeData);
return 0;

} // main

Results:
Data from node: 7

Any reference to a void pointer must cast the pointer to the correct type.

main

createNode

Dynamic memory

node

nodePtr

757

dataPtr linkdataPtr link

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

Chapter 1 Basic Concepts 23

PROGRAM 1-4 Create List with Two Linked Nodes

Program 1-4 Analysis This program demonstrates an important point. In a generic structure such as shown in
the program, the nodes and the data must both be in dynamic memory. When study-
ing the program, follow the code through Figure 1-10.

Pointer to Function
The second tool that is required to create C generic code is pointer to func-
tion. In this section we discuss how to use it.

Functions in your program occupy memory. The name of the function is
a pointer constant to its first byte of memory. For example, imagine that you
have four functions stored in memory: main, fun, pun, and sun. This

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

/* Create a list with two linked nodes.
 Written by:
 Date:

*/
#include <stdio.h>
#include <stdlib.h>
#include "P1-02.h" // Header file

int main (void)
{
// Local Definitions

int* newData;
int* nodeData;
NODE* node;

// Statements
newData = (int*)malloc (sizeof (int));
*newData = 7;
node = createNode (newData);

newData = (int*)malloc (sizeof (int));
*newData = 75;
node->link = createNode (newData);

nodeData = (int*)node->dataPtr;
printf ("Data from node 1: %d\n", *nodeData);

nodeData = (int*)node->link->dataPtr;
printf ("Data from node 2: %d\n", *nodeData);
return 0;

} // main

Results:
Data from node 1: 7
Data from node 2: 75

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

24 Section 1.5 Generic Code for ADTs

relationship is shown graphically in Figure 1-11. The name of each function
is a pointer to its code in memory.

FIGURE 1-11 Functions in Memory

Defining Pointers to Functions
Just as with all other pointer types, we can define pointers to function vari-
ables and store the address of fun, pun, and sun in them. To declare a pointer to
function, we code it as if it were a prototype definition, with the function
pointer in parentheses. This format is shown in Figure 1-12. The parentheses
are important: without them C interprets the function return type as a
pointer.

Using Pointers to Functions
Now that you’ve seen how to create and use pointers to functions, let’s write a
generic function that returns the larger of any two pieces of data. The func-
tion uses two pointers to void as described in the previous section. While our
function needs to determine which of the two values represented by the void
pointers is larger, it cannot directly compare them because it doesn’t know
what type casts to use with the void pointers. Only the application program
knows the data types.

The solution is to write simple compare functions for each program that
uses our generic function. Then, when we call the generic compare function,
we use a pointer to function to pass it the specific compare function that it
must use.

Example As we saw in our discussion of pointers to void, we place our generic func-
tion, which we call larger, in a header file so that it can be easily used. The
program interfaces and pointers are shown in Figure 1-13.

fun

pun

sun

main
 int main (void);

 void fun (void);

 int pun (int, int);

 double sun (float);

f1

f3

f2

Pointers to
function

Memory

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

Chapter 1 Basic Concepts 25

FIGURE 1-12 Pointers to Functions

FIGURE 1-13 Design of Larger Function

The code is shown in Program 1-5.

PROGRAM 1-5 Larger Compare Function

continued

1
2
3
4
5
6
7

/* Generic function to determine the larger of two
values referenced as void pointers.
 Pre dataPtr1 and dataPtr2 are pointers to values
 of an unknown type.
 ptrToCmpFun is address of a function that
 knows the data types
 Post data compared and larger value returned

// Local Definitions

…

void (*f1) (void);

int (*f2) (int, int);

double (*f3) (float);

…

// Statements

…

f1 = fun;

f2 = pun;

f3 = sun;

…

f1: Pointer to a function
 with no parameters;
 it returns void.

main

compare

larger

dataPtr1

dataPtr2

i lrgj

ptr2ptr1
compare

7 88

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

26 Section 1.5 Generic Code for ADTs

PROGRAM 1-5 Larger Compare Function (continued)

Program 1-6 contains an example of how to use our generic compare
program and pass it a specific compare function.

PROGRAM 1-6 Compare Two Integers

continued

8
9
10
11
12
13
14
15
16

*/
void* larger (void* dataPtr1, void* dataPtr2,
 int (*ptrToCmpFun)(void*, void*))
{

if ((*ptrToCmpFun) (dataPtr1, dataPtr2) > 0)
 return dataPtr1;
else
 return dataPtr2;

} // larger

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

/* Demonstrate generic compare functions and pointer to
function.
 Written by:
 Date:

*/
#include <stdio.h>
#include <stdlib.h>
#include "P1-05.h" // Header file

int compare (void* ptr1, void* ptr2);

int main (void)
{
// Local Definitions

int i = 7 ;
int j = 8 ;
int lrg;

// Statements
lrg = (*(int*) larger (&i, &j, compare));

printf ("Larger value is: %d\n", lrg);
return 0;

} // main
/* ==================== compare ====================

Integer specific compare function.
 Pre ptr1 and ptr2 are pointers to integer values
 Post returns +1 if ptr1 >= ptr2
 returns -1 if ptr1 < ptr2

*/
int compare (void* ptr1, void* ptr2)

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

Chapter 1 Basic Concepts 27

PROGRAM 1-6 Compare Two Integers (continued)

Example Now, let’s write a program that compares two floating-point numbers. We can
use our larger function, but we need to write a new compare function. We
repeat Program 1-6, changing only the compare function and the data-specific
statements in main. The result is shown in Program 1-7.

PROGRAM 1-7 Compare Two Floating-Point Values

continued

33
34
35
36
37
38

{
 if (*(int*)ptr1 >= *(int*)ptr2)
 return 1;
 else
 return -1;
} // compare

Results:
Larger value is: 8

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

/* Demonstrate generic compare functions and pointer to
function.
 Written by:
 Date:

*/
#include <stdio.h>
#include <stdlib.h>
#include "P1-05.h" // Header file

int compare (void* ptr1, void* ptr2);

int main (void)
{
// Local Definitions

float f1 = 73.4;
float f2 = 81.7;
float lrg;

// Statements
lrg = (*(float*) larger (&f1, &f2, compare));

printf ("Larger value is: %5.1f\n", lrg);
return 0;

} // main
/* ==================== compare ====================

Float specific compare function.
 Pre ptr1 and ptr2 are pointers to integer values
 Post returns +1 if ptr1 >= ptr2

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

28 Section 1.6 Algorithm Efficiency

PROGRAM 1-7 Compare Two Floating-Point Values (continued)

1.6 Algorithm Efficiency
There is seldom a single algorithm for any problem. When comparing two
different algorithms that solve the same problem, you often find that one
algorithm is an order of magnitude more efficient than the other. In this case,
it only makes sense that you be able to recognize and choose the more effi-
cient algorithm.

Although computer scientists have studied algorithms and algorithm effi-
ciency extensively, the field has not been given an official name. Brassard and
Bratley coined the term algorithmics, which they define as “the systematic study
of the fundamental techniques used to design and analyze efficient algo-
rithms.”3 We use the term in this book.

If a function is linear—that is, if it contains no loops or recursions—its
efficiency is a function of the number of instructions it contains. In this case,
its efficiency depends on the speed of the computer and is generally not a fac-
tor in the overall efficiency of a program. On the other hand, functions that
use loops or recursion vary widely in efficiency. The study of algorithm effi-
ciency therefore focuses on loops. Our analysis concentrates on loops
because recursion can always be converted to a loop.

As we study specific examples, we generally discuss the algorithm’s efficiency
as a function of the number of elements to be processed. The general format is

The basic concepts are discussed in this section.

30
31
32
33
34
35
36
37
38

 returns -1 if ptr1 < ptr2
*/
int compare (void* ptr1, void* ptr2)
{
 if (*(float*)ptr1 >= *(float*)ptr2)
 return 1;
 else
 return -1;
} // compare

Results:
Larger value is: 81.7

3. Gilles Brassard and Paul Bratley, Algorithmics Theory and Practice (Englewood Cliffs, N.J.:
Prentice Hall, 1988), xiii.

f (n) = efficiency

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

Chapter 1 Basic Concepts 29

Linear Loops
Let us start with a simple loop. We want to know how many times the body of
the loop is repeated in the following code:4

Assuming i is an integer, the answer is 1000 times. The number of itera-
tions is directly proportional to the loop factor, 1000. The higher the factor,
the higher the number of loops. Because the efficiency is directly propor-
tional to the number of iterations, it is

However, the answer is not always as straightforward as it is in the above
example. For instance, consider the following loop. How many times is the
body repeated in this loop? Here the answer is 500 times. Why?

In this example the number of iterations is half the loop factor. Once
again, however, the higher the factor, the higher the number of loops. The
efficiency of this loop is proportional to half the factor, which makes it

If you were to plot either of these loop examples, you would get a straight
line. For that reason they are known as linear loops.

Logarithmic Loops
In a linear loop, the loop update either adds or subtracts. In a logarithmic loop, the
controlling variable is multiplied or divided in each iteration. How many times
is the body of the loops repeated in the following program segments?

To help you understand this problem, Table 1-3 analyzes the values of i
for each iteration. As you can see, the number of iterations is 10 in both
cases. The reason is that in each iteration the value of i doubles for the mul-
tiply loop and is cut in half for the divide loop. Thus, the number of iterations

for (i = 0; i < 1000; i++)
 application code

4. For algorithm efficiency analysis, we use C code so that we can clearly see the looping constructs.

f (n) = n

for (i = 0; i < 1000; i += 2)
 application code

f (n) = n / 2

Multiply Loops
for (i = 0; i < 1000; i *= 2)
 application code

Divide Loops
for (i = 0; i < 1000; i /= 2)
 application code

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

30 Section 1.6 Algorithm Efficiency

TABLE 1-3 Analysis of Multiply and Divide Loops

is a function of the multiplier or divisor, in this case 2. That is, the loop con-
tinues while the condition shown below is true.

Generalizing the analysis, we can say that the iterations in loops that
multiply or divide are determined by the following formula:

Nested Loops
Loops that contain loops are known as nested loops. When we analyze nested
loops, we must determine how many iterations each loop completes. The
total is then the product of the number of iterations in the inner loop and the
number of iterations in the outer loop.

We now look at three nested loops: linear logarithmic, quadratic, and
dependent quadratic.

Multiply Divide

Iteration Value of i Iteration Value of i

1

2

3

4

5

6

7

8

9

10

(exit)

1

2

4

8

16

32

64

128

256

512

1024

1

2

3

4

5

6

7

8

9

10

(exit)

1000

500

250

125

62

31

15

7

3

1

0

multiply 2Iterations < 1000
divide 1000 / 2Iterations >= 1

f (n) = logn

Iterations = outer loop iterations x inner loop iterations

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

Chapter 1 Basic Concepts 31

Linear Logarithmic
The inner loop in the following code is a loop that multiplies. To see the mul-
tiply loop, look at the update expression in the inner loop.

The number of iterations in the inner loop is therefore log10. However,
because the inner loop is controlled by an outer loop, the above formula must
be multiplied by the number of times the outer loop executes, which is 10.
This gives us

which is generalized as

Quadratic
In a quadratic loop, the number of times the inner loop executes is the same as
the outer loop. Consider the following example.

The outer loop (for i) is executed 10 times. For each of its iterations, the
inner loop (for j) is also executed 10 times. The answer, therefore, is 100,
which is 10 × 10, the square of the loops. This formula generalizes to

Dependent Quadratic
In a dependent quadratic loop, the number of iterations of the inner loop depends on
the outer loop. Consider the nested loop shown in the following example.

for (i = 0; i < 10; i++)
 for (j = 0; j < 10; j *= 2)
 application code

 10log10

 f (n) = n logn

for (i = 0; i < 10; i++)
 for (j = 0; j < 10; j++)
 application code

for (i = 0; i < 10; i++)
 for (j = 0; j < i; j++)
 application code

f n() n
2

=

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

32 Section 1.6 Algorithm Efficiency

The outer loop is the same as the previous loop. However, the inner loop
depends on the outer loop for one of its factors. It is executed only once the
first iteration, twice the second iteration, three times the third iteration, and
so forth. The number of iterations in the body of the inner loop is calculated
as shown below.

If we compute the average of this loop, it is 5.5 (55/10), which is the
same as the number of iterations (10) plus 1 divided by 2. Mathematically,
this calculation is generalized to

Multiplying the inner loop by the number of times the outer loop is exe-
cuted gives us the following formula for a dependent quadratic loop:

Big-O Notation
With the speed of computers today, we are not concerned with an exact mea-
surement of an algorithm’s efficiency as much as we are with its general
order of magnitude. If the analysis of two algorithms shows that one executes
15 iterations while the other executes 25 iterations, they are both so fast that
we can’t see the difference. On the other hand, if one iterates 15 times and
the other 1500 times, we should be concerned.

We have shown that the number of statements executed in the function for
n elements of data is a function of the number of elements, expressed as f (n).
Although the equation derived for a function may be complex, a dominant fac-
tor in the equation usually determines the order of magnitude of the result.
Therefore, we don’t need to determine the complete measure of efficiency, only
the factor that determines the magnitude. This factor is the big-O, as in “on the
order of,” and is expressed as O(n)—that is, on the order of n.

This simplification of efficiency is known as big-O analysis. For example,
if an algorithm is quadratic, we would say its efficiency is

or on the order of n squared.
The big-O notation can be derived from f (n) using the following steps:

1. In each term, set the coefficient of the term to 1.

1 + 2 + 3 + … + 9 + 10 = 55

O(n2)

n 1+()
2

f n() n n 1+
2

 =

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

Chapter 1 Basic Concepts 33

2. Keep the largest term in the function and discard the others. Terms are
ranked from lowest to highest as shown below.

For example, to calculate the big-O notation for

we first remove all coefficients. This gives us

which after removing the smaller factors gives us

which in big-O notation is stated as

To consider another example, let’s look at the polynomial expression

We first eliminate all of the coefficients as shown below.

The largest term in this expression is the first one, so we can say that the
order of a polynomial expression is

Standard Measures of Efficiency
Computer scientists have defined seven categories of algorithm efficiency. We
list them in Table 1-4 in order of decreasing efficiency and show the first five
of them graphically in Figure 1-14.

logn n nlogn n2 n3 ... nk 2n n!

n2 + n

n2

f n() =n
n 1+()

2

1
2
--- n

2 1
2
---n+=

O f n()() O n
2()=

f n() ajn
k

aj 1– n
k 1– … a2n

2
a1n a0+ + + + +=

f n() n
k

n
k 1– … n

2
n 1+ + + + +=

O f n()() O n
k()=

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

34 Section 1.6 Algorithm Efficiency

TABLE 1-4 Measures of Efficiency for n = 10,000

Any measure of efficiency presumes that a sufficiently large sample is
being considered. If you are dealing with only 10 elements and the time
required is a fraction of a second, there is no meaningful difference between
two algorithms. On the other hand, as the number of elements being pro-
cessed grows, the difference between algorithms can be staggering.

Returning for a moment to the question of why we should be concerned
about efficiency, consider the situation in which you can solve a problem in
three ways: one is linear, another is linear logarithmic, and a third is
quadratic. The magnitude of their efficiency for a problem containing 10,000

FIGURE 1-14 Plot of Effeciency Measures

Efficiency Big-O Iterations Estimated Time

Logarithmic

Linear

Linear logarithmic

Quadratic

Polynomial

Exponential

Factorial

O(logn)

O(n)

O(n(logn))

O(n2)

O(nk)

O(cn)

O(n!)

14

10,000

140,000

10,0002

10,000k

210,000

10,000!

microseconds

seconds

seconds

minutes

hours

intractable

intractable

n

n

n2n3 nlogn

logn

O(n)

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

Chapter 1 Basic Concepts 35

elements shows that the linear solution requires a fraction of a second
whereas the quadratic solution requires minutes (see Table 1-4).

Looking at the problem from the other end, if we are using a computer
that executes a million instructions per second and the loop contains 10
instructions, we spend 0.00001 second for each iteration of the loop. Table 1-4
also contains an estimate of the time needed to solve the problem given differ-
ent efficiencies.

Big-O Analysis Examples
To demonstrate the concepts we have been discussing, we examine two more
algorithms: add and multiply two matrices.

Add Square Matrices
To add two square matrices, we add their corresponding elements; that is, we
add the first element of the first matrix to the first element of the second
matrix, the second element of the first matrix to the second element of the
second matrix, and so forth. Of course, the two matrices must be the same
size. This concept is shown in Figure 1-15.

FIGURE 1-15 Add Matrices

The pseudocode to add two matrices is shown in Algorithm 1-3.

ALGORITHM 1-3 Add Two Matrices

Algorithm addMatrix (matrix1, matrix2, size, matrix3)
Add matrix1 to matrix2 and place results in matrix3

Pre matrix1 and matrix2 have data
 size is number of columns or rows in matrix
Post matrices added--result in matrix3

1 loop (not end of row)
1 loop (not end of column)

1 add matrix1 and matrix2 cells
2 store sum in matrix3

2 end loop
2 end loop
end addMatrix

4 2 1

0 –3 4

5 6 2

10 3 8

3 –1 3

9 12 4

–1

6 1 7

3 2

4 6 2

+ =

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

36 Section 1.6 Algorithm Efficiency

Algorithm 1-3 Analysis In this algorithm, we see that for each element in a row, we add all of the elements in
a column. This is the classic quadratic loop. The efficiency of the algorithm is therefore
O (size2) or O (n2).

Multiply Square Matrices
When two square matrices are multiplied, we must multiply each element
in a row of the first matrix by its corresponding element in a column of the
second matrix. The value in the resulting matrix is then the sum of the
products. For example, given the matrix in our addition example above, the
first element in the resulting matrix—that is, the element at [0, 0]—is the
sum of the products obtained by multiplying each element in the first row
(row 0) by its corresponding element in the first column (column 0). The
value of the element at index location [0, 1] is the sum of the products of
each element in the first row (again row 0) multiplied by its corresponding
element in the second column (column 1). The value of the element at
index location [1, 2] is the sum of the products of each element in the
second row multiplied by the corresponding elements in the third column.
Once again the square matrices must be the same size. Figure 1-16 graphi-
cally shows how two matrices are multiplied.

Generalizing this concept, we see that

The pseudocode used for multiplying matrices is provided in
Algorithm 1-4.

ALGORITHM 1-4 Multiply Two Matrices

continued

 matrix3 [row, col] =
matrix1[row, 0] x matrix2[0, col]

+ matrix1[row, 1] x matrix2[1, col]
+ matrix1[row, 2] x matrix2[2, col]
...
+ matrix1[row, s-1] x matrix2[s-1, col]

 where s = size of matrix

Algorithm multiMatrix (matrix1, matrix2, size, matrix3)
Multiply matrix1 by matrix2 and place product in matrix3

Pre matrix1 and matrix2 have data
 size is number of columns and rows in matrix
Post matrices multiplied--result in matrix3

1 loop (not end of row)
1 loop (not end of column)

1 loop (size of row times)
1 calculate sum of

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ(all row cells) * (all column cells)
2 store sum in matrix3

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

Chapter 1 Basic Concepts 37

ALGORITHM 1-4 Multiply Two Matrices (continued)

Algorithm 1-4 Analysis In this algorithm we see three nested loops. Because each loop starts at the first ele-
ment, we have a cubic loop. Loops with three nested loops have a big-O efficiency of
O (size3) or O (n3).

It is also possible to multiply two matrices if the number of rows in the first matrix is
the same as the number of columns in the second. We leave the solution to this prob-
lem as an exercise (Exercise 21).

FIGURE 1-16 Multiply Matrices

2 end loop
2 end loop
3 return
end multiMatrix

6 1 7

3 2 –1

4 6 2

144 12

0 –3 4

5 6 2

r0, c1

(b) 4 x 1 + 2 x 2 + 1 x 6 = 14

11

6 71

3 2 –1

4 6 2

4 12

0 –3 4

5 6 2

r1, c2

(c) 0 x 7 + (–3) x (–1) + 4 x 2 = 11

34

6 1 7

3 2 –1

4 6 2

4 12

0 –3 4

5 6 2

r0, c0

(a) 4 x 6 + 2 x 3 + 1 x 4 = 34

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

38 Section 1.8 Summary

1.7 Key Terms

1.8 Summary
❏ One of the most common tools used to define algorithms is pseudocode.

❏ Pseudocode is an English-like representation of the code required for an
algorithm. It is part English, part structured code.

❏ Atomic data are data that are single, nondecomposable entities.

❏ Atomic data types are defined by a set of values and a set of operations that
act on the values.

❏ A data structure is an aggregation of atomic and composite data with a
defined relationship.

❏ An abstract data type (ADT) is a data declaration packaged together with
the operations that are meaningful for the data type.

❏ There are two basic structures used to implement an ADT list: arrays and
linked lists.

❏ In an array, the sequentiality of a list is preserved by the ordered structure
of elements. Although searching an array is very efficient, adding and
deleting is not.

❏ Although adding and deleting in a linked list is efficient, searching is not
because we must use a sequential search.

❏ In a linked list, each element contains the location of the next element or
elements.

abstract data type (ADT)
algorithmics
atomic data
big-O notation
composite data
construct
data
data structure
data type
dependent quadratic loop
empty list
encapsulation
generic code
intelligent data names
linear loop
link

linked list
logarithmic loop
loop
modular programming
nested loop
node
pointer to void
pointer to function
pseudocode
quadratic loop
return condition
self-referential
selection statement
sequence
spaghetti code
structured programming

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

Chapter 1 Basic Concepts 39

❏ Abstract data types require generic algorithms, which allow an algorithm
to be used with multiple data types.

❏ The C language has two features that allow the creation of generic code:
pointer to void and pointer to function.

❏ A void pointer is a generic pointer that can be used to represent any
data type.

❏ A pointer to void cannot be dereferenced, which means that nonassign-
ment references to a void pointer must be cast to the correct type.

❏ The name of a function is a pointer constant to the first byte of a function.

❏ We can use pointer to function as a place holder for the name of a func-
tion in a parameter list of a generic function.

❏ Algorithm efficiency is generally defined as a function of the number of
elements being processed and the type of loop being used.

❏ The efficiency of a logarithmic loop is f (n) = logn.

❏ The efficiency of a linear loop is f (n) = n.

❏ The efficiency of a linear logarithmic loop is f (n) = n (logn).

❏ The efficiency of a quadratic loop is f (n) = n2.

❏ The efficiency of a dependent quadratic loop is f (n) = n(n + 1)/2.

❏ The efficiency of a cubic loop is f (n) = n3.

❏ The simplification of efficiency is known as big-O notation.

❏ The seven standard measures of efficiencies are O (logn), O (n), O (n(logn)),
O (n2), O (nk), O (cn), and O (n!).

1.9 Practice Sets

Exercises
1. Structure charts and pseudocode are two different design tools. How do

they differ and how are they similar?

2. Using different syntactical constructs, write at least two pseudocode state-
ments to add 1 to a number. For example, any of the following statements
could be used to get data from a file:

3. Explain how an algorithm in an application program differs from an
algorithm in an abstract data type.

4. Identify the atomic data types for your primary programming language.

read student file
read student file into student
read (studentFile into student)

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

40 Section 1.9 Practice Sets

5. Identify the composite data types for your primary programming language.

6. Reorder the following efficiencies from smallest to largest:

a. 2n

b. n!
c. n5

d. 10,000
e. nlog(n)

7. Reorder the following efficiencies from smallest to largest:

a. nlog(n)
b. n + n2 + n3

c. 24
d. n0.5

8. Determine the big-O notation for the following:

a. 5n5/2 + n2/5

b. 6log(n) + 9n
c. 3n4 + nlog(n)
d. 5n2+ n3/2

9. Calculate the run-time efficiency of the following program segment:

 for (i = 1; i <= n; i++)
 printf("%d ", i);

10. Calculate the run-time efficiency of the following program segment:

 for (i = 1; i <= n; i++)
 for (j = 1; j <= n; j++)
 for (k = 1; k <= n; k++)
 print ("%d %d %d\n", i, j, k);

11. If the algorithm doIt has an efficiency factor of 5n, calculate the run-time
efficiency of the following program segment:

 for (i = 1, i <= n; i++)
 doIt (...)

12. If the efficiency of the algorithm doIt can be expressed as O(n) = n2, cal-
culate the efficiency of the following program segment:

 for (i = 1; i <= n;; i++)
 for (j = 1; j < n, j++)
 doIt (...)

13. If the efficiency of the algorithm doIt can be expressed as O(n) = n2, cal-
culate the efficiency of the following program segment:

 for (i = 1; i < n; i *= 2)
 doIt (...)

14. Given that the efficiency of an algorithm is 5n2, if a step in this algorithm
takes 1 nanosecond (10–9 seconds), how long does it take the algorithm to
process an input of size 1000?

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

Chapter 1 Basic Concepts 41

15. Given that the efficiency of an algorithm is n3, if a step in this algorithm
takes 1 nanosecond (10–9 seconds), how long does it take the algorithm to
process an input of size 1000?

16. Given that the efficiency of an algorithm is 5nlog(n), if a step in this algo-
rithm takes 1 nanosecond (10– 9 seconds), how long does it take the algo-
rithm to process an input of size 1000?

17. An algorithm processes a given input of size n. If n is 4096, the run time
is 512 milliseconds. If n is 16,384, the run time is 2048 milliseconds.
What is the efficiency? What is the big-O notation?

18. An algorithm processes a given input of size n. If n is 4096, the run time
is 512 milliseconds. If n is 16,384, the run time is 8192 milliseconds.
What is the efficiency? What is the big-O notation?

19. An algorithm processes a given input of size n. If n is 4096, the run time
is 512 milliseconds. If n is 16,384, the run time is 1024 milliseconds.
What is the efficiency? What is the big-O notation?

20. Three students wrote algorithms for the same problem. They tested the
three algorithms with two sets of data as shown below:

a. Case 1: n = 10

•Run time for student 1: 1

•Run time for student 2: 1/100

•Run time for student 3: 1/1000

b. Case 2: n = 100

•Run time for student 1: 10

•Run time for student 2: 1

•Run time for student 3: 1

What is the efficiency for each algorithm? Which is the best? Which is
the worst? What is the minimum number of test cases (n) in which the
best algorithm has the best run time?

21. We can multiply two matrices if the number of columns in the first matrix
is the same as the number of rows in the second. Write an algorithm that
multiplies an m × n matrix by a n × k matrix.

22. Write a compare function (see Program 1-6) to compare two strings.

Problems
23. Write a pseudocode algorithm for dialing a phone number.

24. Write a pseudocode algorithm for giving all employees in a company a
cost-of-living wage increase of 3.2%. Assume that the payroll file includes
all current employees.

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

42 Section 1.9 Practice Sets

25. Write a language-specific implementation for the pseudocode algorithm in
Problem 24.

26. Write a pseudocode definition for a textbook data structure.

27. Write a pseudocode definition for a student data structure.

Projects
28. Your college bookstore has hired you as a summer intern to design a new

textbook inventory system. It is to include the following major processes:

a. Ordering textbooks
b. Receiving textbooks
c. Determining retail price
d. Pricing used textbooks
e. Determining quantity on hand
f. Recording textbook sales
g. Recording textbook returns

Write the abstract data type algorithm headers for the inventory system.
Each header should include name, parameters, purpose, preconditions,
postconditions, and return value types. You may add additional algorithms
as required by your analysis.

29. Write the pseudocode for an algorithm that converts a numeric score to a
letter grade. The grading scale is the typical absolute scale in which 90%
or more is an A, 80% to 89% is a B, 70% to 79% is a C, and 60% to 69% is
a D. Anything below 60% is an F.

30. Write the pseudocode for an algorithm that receives an integer and then
prints the number of digits in the integer and the sum of the digits. For
example, given 12,345 it would print that there are 5 digits with a sum of 15.

31. Write the pseudocode for a program that builds a frequency array for data
values in the range 1 to 20 and then prints their histogram. The data are to
be read from a file. The design for the program is shown in Figure 1-17.

FIGURE 1-17 Design for Frequency Histogram Program

Frequency
histogram

makemakegetData printData make
Histogram

make
Frequency

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

Chapter 1 Basic Concepts 43

Each of the subalgorithms is described below.

a. The getData algorithm reads the file and stores the data in an array.
b. The printData algorithm prints the data in the array.
c. The makeFrequency algorithm examines the data in the array, one ele-

ment at a time, and adds 1 to the corresponding element in a frequency
array based on the data value.

d. The makeHistogram algorithm prints out a vertical histogram using
asterisks for each occurrence of an element. For example, if there were
five value 1s and eight value 2s in the data, it would print

 1: *****
 2: ********

32. Rewrite Program 1-4 to create a list of nodes. Each node consists of two
fields. The first field is a pointer to a structure that contains a student id
(integer) and a grade-point average (float). The second field is a link. The
data are to be read from a text file.

Then write a program to read a file of at least 10 students and test the
function you wrote. You will also need to use the generic compare code in
Program 1-6 in your program.

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

	Pt 1: Introduction
	Ch 1: Basic Concepts
	1.1: Pseudocode
	1.2: The Abstract Data Type
	1.3: Model for an Abstract Data Type
	1.4:ADT Implementations
	1.5: Generic Code for ADTs
	1.6: Algorithm Efficiency
	1.7: Key Terms
	1.8: Summary
	1.9: Practice Sets

	SealedMedia_User: CengageBrain User

