

JSP: The Complete Reference

About the Author...
Phil Hanna has more than 20 years experience
as a programmer, systems architect, analyst, and
project manager. He has developed network-based
software at IBM, and served as a consultant to
Chase Manhattan Bank. He is the author of
Instant Java Servlets, and works as a software
developer for SAS Institute.

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

JSP: The Complete
Reference

Phil Hanna

Osborne/McGraw-Hill
New York Chicago San Francisco

Lisbon London Madrid Mexico City
Milan New Delhi San Juan

Seoul Singapore Sydney Toronto

Copyright © 2001 by The McGraw-Hill Companies. All rights reserved. Manufactured in the United States of America. Except as per-
mitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by
any means, or stored in a database or retrieval system, without the prior written permission of the publisher.

0-07-219431-6

The material in this eBook also appears in the print version of this title: 0-07-212768-6.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trade-
marked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringe-
ment of the trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate
training programs. For more information, please contact George Hoare, Special Sales, at george_hoare@mcgraw-hill.com or (212)
904-4069.

TERMS OF USE
This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the
work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and
retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works
based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior con-
sent. You may use the work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your
right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS”. McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES
AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE
WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR
OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its
licensors do not warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will
be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy, error
or omission, regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the con-
tent of any information accessed through the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any
indirect, incidental, special, punitive, consequential or similar damages that result from the use of or inability to use the work, even
if any of them has been advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause what-
soever whether such claim or cause arises in contract, tort or otherwise.

DOI: 10.1036/0072194316

To Mary

This page intentionally left blank.

Contents at a Glance

Part I The Web Programming Environment

1 The Web Marketplace . 3
2 Evolution of the Web Application 5
3 Overview of the Hypertext Transfer Protocol (HTTP) 11
4 Introduction to Servlets . 23
5 JSP Overview . 53

Part II Elements of JSP

6 JSP Syntax and Semantics . 63
7 Expressions and Scriptlets . 89
8 Declarations . 111
9 Request Dispatching . 133

10 The Page Directive . 161
11 JSP Tag Extensions . 183

vii
Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Part III JSP in Action

12 HTML Forms . 261
13 Database Access . 291
14 Session and Thread Management 353
15 JSP and JavaBeans . 415
16 JSP and XML . 451
17 JSP Testing and Debugging . 493
18 Deploying Web Applications . 529
19 Case Study: A Product Support Center 551

Part IV JSP and Other Web Components

20 Communicating with Other Clients 679
21 Communicating with Other Servers 703

Part V Appendixes

A Servlet API Version 2.3 . 723
B JSP API Version 1.2 . 793
C HTTP Reference . 833

Index . 845

viii J S P : T h e C o m p l e t e R e f e r e n c e

Contents

Preface . xix
Acknowledgments . xxv

Part I

The Web Programming Environment

1 The Web Marketplace . 3

2 Evolution of the Web Application 5
Birth of the Web . 6
Growth of the Web Programming Model . 6
The Shift from Client-Side to Server-Side Solutions 9

3 Overview of the Hypertext Transfer Protocol (HTTP) . . . 11
What Is HTTP? . 12

A Language for Requesting Documents over
the Internet . 12

The HTTP Specification . 12

ix
Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

x J S P : T h e C o m p l e t e R e f e r e n c e

HTTP Request Model . 13
Connecting to the Web Server . 14
Sending the HTTP Request . 15
Server Acceptance of the Request . 16
The HTTP Response from the Server 16

Examples . 17
Summary . 21

4 Introduction to Servlets . 23
Servlet Lifecycle . 24

init . 25
service . 26
destroy . 27

Example: Kilometers per Liter to Miles per Gallon Servlet 27
Servlet Classes . 31

Servlet . 32
Servlet Request . 36
Servlet Response . 41
Servlet Context . 44

Threading Models . 47
SingleThreadModel . 49

HTTP Sessions . 49
The HttpSession Interface . 50

Summary . 52

5 JSP Overview . 53
How JSP Works . 54
A Basic Example . 56

Part II

Elements of JSP

6 JSP Syntax and Semantics . 63
The JSP Development Model . 64
Components of a JSP Page . 65

Directives . 65
Comments . 68
Expressions . 69
Scriptlets . 70
Declarations . 71

C o n t e n t s xi

Implicit Objects . 74
Standard Actions . 75
Tag Extensions . 78

A Complete Example . 78
A Page Directive . 83
A <jsp:include> Action . 83
Scriptlet . 84
JSP Expressions . 85
A Declaration . 86
Summary . 87

7 Expressions and Scriptlets . 89
Expressions . 90
Scriptlets . 91
Expression and Scriptlet Handling by the JSP Container 93

HTML Template Data and Expressions 94
Scriptlet Contents . 94
Container-Generated Initialization and Exit Code 96

Implicit Objects and the JSP Environment . 97
Request . 98
Response . 99
PageContext . 100
Session . 102
Application . 103
Out . 104
Config . 106
Page . 106
Exception . 106

Initialization Parameters . 107
Summary . 109

8 Declarations . 111
What Is a Declaration? . 112

Where Declaration Code Is Generated 112
Primary Uses for Declarations . 117
Variable Declarations . 117

Thread Safety and Instance Variables 118
Method Definitions . 122

Overriding jspInit and jspDestroy . 126
Access to Implicit Objects . 128

Inner Classes . 128

9 Request Dispatching . 133
Anatomy of Request Processing . 134
Including Other Resources . 136
The include Directive . 136

How It Works . 137
Effect of Changes in an Included File 138
Using the include Directive to Copy Source Code 139

The <jsp:include> Action . 140
How It Works . 141

Which Method to Use . 153
Forwarding Requests . 154
The RequestDispatcher Object . 158

Request Dispatching vs. Redirection 159
Model 1 vs. Model 2 . 159
Summary . 160

10 The Page Directive . 161
language . 162
extends . 164

Required Interfaces for a JSP Superclass 164
A JSP Superclass Example . 166

import . 170
session . 172
buffer and autoFlush . 172
isThreadSafe . 173
info . 174
contentType . 174
errorPage and isErrorPage . 176
Summary . 181

11 JSP Tag Extensions . 183
Why Custom Tags? . 184
Developing Your First Custom Tag . 186

Step 1—Define the Tag . 186
Step 2—Create the TLD Entry . 187
Step 3—Write the Tag Handler . 188
Step 4—Incorporate the Tag into a JSP Page 192

How Tag Handlers Work . 194
What the JSP Container Does . 194
What a Tag Handler Does . 196

Tag Libraries . 197
The Tag Library Descriptor (TLD) . 197
The taglib Directive . 199

xii J S P : T h e C o m p l e t e R e f e r e n c e

The Tag Handler API . 200
The Tag Interface . 200
The TagSupport Class . 202

The Tag Handler Life Cycle . 202
The Flowchart . 204
An Example of Generated Code . 206

Defining Tag Attributes . 212
The Body Tag Handler API . 219

BodyContent . 219
The BodyTag Interface . 221
The BodyTagSupport Class . 222

The Body Tag Handler Life Cycle . 223
The Flowchart . 223

Defining Scripting Variables . 226
The TagExtraInfo Class . 227
Validating Tag Attributes . 236

Cooperating Tags . 236
Using Syntactic Scoping . 236

Implementation of the DatabaseQuery Example 247
The Necessary Tags . 247
The Tag Library Descriptor . 248
The Tag Handlers . 249

Summary . 258

Part III

JSP in Action

12 HTML Forms . 261
The FORM Element . 263

Attributes of the FORM Element . 264
Form Input Elements . 268

Elements Created with the INPUT Tag 270
Elements Created with select and option 283
The textarea Element . 284

Form Validation . 285
The Contact Us Form with Validation 285

The Server Side of Forms Handling . 287
Summary . 289

13 Database Access . 291
Overview of JDBC . 292

Basic JDBC Operations . 293

C o n t e n t s xiii

xiv J S P : T h e C o m p l e t e R e f e r e n c e

Essential JDBC Classes . 293
A Simple JDBC Example . 296

JDBC Drivers . 301
Driver Types . 303
The JDBC-ODBC Bridge . 303
Registering a Driver . 305

Connecting to a Database . 307
The JDBC Database URL . 308

The Statement Interfaces . 309
Statement . 309
PreparedStatement . 317
CallableStatement . 322

Result Sets . 328
Scrollable Result Sets . 332
Updatable Result Sets . 336
RowSets . 338

Using Metadata . 338
Database Metadata . 339
ResultSetMetadata . 349

New Features in JDBC 2.0 and Beyond . 351
Summary . 351

14 Session and Thread Management 353
Session Tracking . 354

Hidden Fields . 355
URL Rewriting . 360
Cookies . 363

The Session API . 369
Creating Sessions . 370
Storing and Retrieving Objects from Sessions 372
Destroying Sessions . 373
Examples Revisited . 374
Session Binding Listeners . 383

Thread Management . 390
Threading Concepts . 391

Servlet Threading Models . 403
Default Threading Model . 403
Single Threaded Model . 405

Multithreaded Applications . 406
Application Considerations . 411
Summary . 413

C o n t e n t s xv

15 JSP and JavaBeans . 415
What Is a JavaBean? . 416

Bean Properties . 416
Persistence . 419

JSP Actions . 424
<jsp:useBean> . 425
<jsp:setProperty> . 430
<jsp:getProperty> . 434

A Complete Example—Personalization with Beans 434
Getting Weather Data from the Web 435
The LyricNote Portal . 444

Summary . 448

16 JSP and XML . 451
XML Overview . 452

The Problem XML Solves . 453
XML Syntax . 453
The Document Type Definition . 454

XML Parsers . 457
Document Object Model (DOM) . 458
Simple API for XML (SAX) . 472

XSL Transformations with XSLT . 486
XSLT in Action . 487

Summary . 491

17 JSP Testing and Debugging . 493
Building a Mental Model . 494

Translation and Compilation . 494
Testing in Isolation . 499
Debugging Tools . 500

Capturing Form Parameters . 501
A Debugging Web Client . 504
Tracing HTTP Requests . 510

Summary . 528

18 Deploying Web Applications . 529
The Web Application Environment . 530

Directory Structure . 530
Resource Mapping . 532
The Servlet Context . 535

The Web Archive (war) File . 535

xvi J S P : T h e C o m p l e t e R e f e r e n c e

The Deployment Descriptor—web.xml . 538
Sample Deployment Descriptor . 547
Summary . 549

19 Case Study: A Product Support Center 551
Process Flow . 552
Data Model . 554
Developing the System . 555
Model-View-Controller Architecture . 556

Model Classes . 557
View Classes . 631
Controller Classes . 658

Summary . 676

Part IV

JSP and Other Web Components

20 Communicating with Other Clients 679
URL Connections . 680

The URL Class . 680
The URLConnection Class . 682
The HttpURLConnection Class . 683

Java Applications as Clients . 684
The JSP Price Quote Server . 684
The Price Quote Client Application 687

A Java Applet Client . 689
The Java Plug-In . 690
The PriceQuoteApplet . 691

A Perl Client . 696
The Generic Database Select Server 696
The Perl Script . 699

Summary . 702

21 Communicating with Other Servers 703
Server-Side Scripting Environments . 704

Interoperating with HTTP . 704
Sending Mail from a JSP Page . 710

Approaches to Sending Mail . 710
E-Mail Notification in the Product Support System 715

Summary . 719

C o n t e n t s xvii

Part V

Appendixes

A Servlet API Version 2.3 . 723
Package javax.servlet . 724

Filter . 724
FilterChain . 725
FilterConfig . 725
GenericServlet . 726
RequestDispatcher . 729
Servlet . 730
ServletConfig . 731
ServletContext . 732
ServletContextAttributeEvent . 736
ServletContextAttributesListener . 737
ServletContextEvent . 738
ServletContextListener . 738
ServletException . 739
ServletInputStream . 740
ServletOutputStream . 740
ServletRequest . 743
ServletRequestWrapper . 747
ServletResponse . 752
ServletResponseWrapper . 755
SingleThreadModel . 758
UnavailableException . 758

Package javax.servlet.http . 760
Cookie . 760
HttpServlet . 763
HttpServletRequest . 767
HttpServletRequestWrapper . 772
HttpServletResponse . 777
HttpServletResponseWrapper . 780
HttpSession . 783
HttpSessionActivationListener . 786
HttpSessionAttributesListener . 787
HttpSessionBindingEvent . 788
HttpSessionBindingListener . 789
HttpSessionContext . 790
HttpSessionEvent . 790
HttpSessionListener . 791
HttpUtils . 791

B JSP API Version 1.2 . 793
Package javax.servlet.jsp . 794

HttpJspPage . 794
JspEngineInfo . 795
JspException . 795
JspFactory . 796
JspPage . 798
JspTagException . 799
JspWriter . 800
PageContext . 804

Package javax.servlet.jsp.tagext . 810
BodyContent . 810
BodyTag . 811
BodyTagSupport . 812
IterationTag . 814
PageData . 814
Tag . 815
TagAttributeInfo . 816
TagData . 818
TagExtraInfo . 820
TagInfo . 821
TagLibraryInfo . 824
TagLibraryValidator . 826
TagSupport . 827
TagVariableInfo . 829
TryCatchFinally . 831
VariableInfo . 831

C HTTP Reference . 833
HTTP Response Codes . 834
HTTP Headers . 836

Index . 845

xviii J S P : T h e C o m p l e t e R e f e r e n c e

Preface

The first wave of a new technology is often outpaced by the expectations it generates.
Those riding the second wave benefit from the experience of their predecessors
and the real value emerges. This has been the case with Java. Client-side browser

applications (applets) have encountered limitations in three areas:

� Browser incompatibilities

� Security overkill

� Performance problems due to long download times

The emergence of server-side Java has changed all this. Java Servlets and JavaServer
Pages (JSP) provide a secure, robust, and platform independent technology for bringing
the power of Java to e-commerce and enterprise Web computing. This being the case,
interest in JSP is flourishing and the demand for JSP skills is running high. Nearly all
the Fortune 500 companies now have or will soon deploy server-side Java applications.

The purpose of this book is to provide a complete reference to JSP technology,
starting with the Web programming environment and elements of JSP, then a deeper
examination of advanced topics.

xix
Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

xx J S P : T h e C o m p l e t e R e f e r e n c e

How this Book Is Organized
This book consists of five parts, starting with high-level overviews and proceeding to
deeper examination of topics.

Part I, “The Web Programming Environment”
The opening section of the book provides an introduction to the Web as a programming
environment and introduces servlets, JSP, and the Web network protocol.

� Chapter 1, “The Web Marketplace”
The first chapter explores the Web as a marketplace for ideas, products,
services, and applications—how we got where we are today, and what will
drive future directions. It introduces Java and explains its significance in the
network computing model.

� Chapter 2, “Evolution of the Web Application”
Chapter 2 is a description of how the application programming model has
evolved as the Web has matured, and how experience with each phase has
driven requirements for the next.

� Chapter 3, “Overview of the Hypertext Transfer Protocol (HTTP)”
This chapter introduces the underlying language of the Web client/server
model, Hypertext Transfer Protocol (HTTP). It develops the basic concepts
critical to understanding the Web programming environment.

� Chapter 4, “Introduction to Servlets”
The intimate connection between JSP and servlets is explained in this overview
chapter. The essential features that they share are outlined and demonstrated.

� Chapter 5, “JSP Overview”
Chapter 5 provides an overview of JavaServer Pages (JSP) as a server-side
scripting environment, a description of the servlet engine, and several tutorial
examples. Only the basics are covered here—Part II considers the topic in depth.

Part II, “Elements of JSP”
This part deals with the syntax and semantics of JSP, equipping the reader with the
skills necessary to create working code. Topics include basic syntax, scriptlets, expressions,
declarations, including files, forwarding requests, and specifying page behavior.
Developing custom tags is examined at length.

� Chapter 6, “JSP Syntax and Semantics”
This chapter covers the basic syntax of JavaServer Pages, describing how
they merge HTML templates and Java code.

P r e f a c e xxi

� Chapter 7, “Expressions and Scriptlets”
This chapter describes the basic model of incorporating Java code fragments
into a JavaServer Page. It covers legal and illegal uses and describes how the
code fragments are composed by the translator into a working servlet.

� Chapter 8, “Declarations”
This chapter considers declarations and advanced usage of Java code within a
JSP. It covers the three most common uses for declarations, providing examples
for all three.

� Chapter 9, “Request Dispatching”
This chapter discusses how HTTP requests can be handled by more than one
server-side component. It describes two methods for including other files, and
explains why one method may be preferable to the other. It covers how to use
the <jsp:forward> action to pass a request on to another JSP for processing.

� Chapter 10, “The Page Directive”
Chapter 10 describes in detail how the page directive is used to specify the
attributes and behavior of a JavaServer Page. Complete examples are given
for each attribute.

� Chapter 11, “JSP Tag Extensions”
Extensions to the JSP architecture are considered in this chapter, in particular
the ability to define custom tags.

Part III, “JSP in Action”
This part looks at how JSP works with JDBC, JavaBeans, and other major components
of the Java environment. Includes detailed coverage of debugging and deployment.

� Chapter 12, “HTML Forms”
Chapter 12 describes HTML Forms, the most common client for servlets
and JavaServer Pages.

� Chapter 13, “Database Access”
Most JSP pages of any consequence need to access a database. This chapter
includes a comprehensive look at Java database connectivity and how it can
be used in Web-based applications.

� Chapter 14, “Session and Thread Management”
HTTP is a stateless protocol, but JavaServer Pages can use HTTP sessions
to overcome this limitation. This chapter explores the issues involved and
describes techniques available to the developer.

� Chapter 15, “JSP and JavaBeans”
This chapter describes JavaBeans and shows how they can be used in conjunction
with JavaServer Pages to isolate business logic into reusable components.

xxii J S P : T h e C o m p l e t e R e f e r e n c e

� Chapter 16, “JSP and XML”
XML is emerging as the universal language for structured data storage
and interchange. This chapter examines how JSP can use XML both for
input and output.

� Chapter 17, “JSP Testing and Debugging”
Debugging techniques are frequently ignored in programming tutorials but
are indispensable knowledge. JavaServer Pages present their own challenges.
This chapter outlines a basic methodology that can be applied and the tools
that are available.

� Chapter 18, “Deploying Web Applications”
Chapter 18 describes how to move JSP pages out of the development
environment into the production Web environment.

� Chapter 19, “Case Study: A Product Support Center”
This chapter brings together elements discussed throughout the book in a
Web-based system for managing a technical support center.

Part IV, “JSP and Other Web Components”
Part IV deals with the larger context in which JavaServer Pages are used—how
they can communicate with servlets, applets, Perl scripts, FTP, CGI, ASP, and
other server-side agents.

� Chapter 20, “Communicating with Other Clients”
Although HTML forms in Web browsers are the most common client
environment, JSP pages can be used to support any client that can understand
the HTTP protocol. Chapter 20 shows how this can be done.

� Chapter 21, “Communicating with Other Servers”
Further developing the ideas of the previous chapter, this chapter describes
how JSP components can access other protocols. The JavaMail API is discussed.

Part V, “Appendixes”
The book concludes with three appendixes, covering the Servlet API, JSP API, and
HTTP reference.

The Lyric Note
Most of the examples in this book are set in the context of a hypothetical company—
The Lyric Note. This is an Internet-based music company that sells books, gifts, sheet
music, music software, and musical instruments. I have populated it with fifty
employees working in eleven departments, and a large product catalog.

Servlet and JSP API Levels
As this book is written, the predominant levels of the Servlet and JSP APIs are 2.2
and 1.1, respectively. There are public drafts of the 2.3 and 1.2 levels, but these are
not officially the standards, and are subject to change. This presents a problem for an
author trying to present timely material. Which is more important, discussing what is
actually implemented in the servlet engines people use today, or examining new levels
that no one can actually run yet? I have attempted to do a little of both. The main body
of the book is devoted to Servlet 2.2 and JSP 1.1, while the appendixes list the API from
the latest public drafts of the 2.3 and 1.2 specifications.

Updates
Errata, examples, and updates can be found on my Web site: http:// www.philhanna.com.

P r e f a c e xxiii

This page intentionally left blank.

Acknowledgments

It would not have been possible to write this book without the collaboration and
support of a number of people.
I would first like to thank my acquisitions editor at Osborne/McGraw-Hill,

Rebekah Young, who conceived this project and worked with me to shape the scope
and coverage. Thanks also to Mark Karmendy, who applied his considerable skills
to ensure that everything came together, and to Marcia Baker for her careful copy
editing. Thanks also to Osborne’s Production staff for the great job laying out pages.
Karl Moss, my technical editor, provided invaluable assistance and useful suggestions.

I am indebted to Brian Flagg for his advice and technical assistance with the Product
Support Center case study, and to Tina Armstrong for feedback on its Model-View-
Controller approach. My appreciation to Pierre R. Schwob, CEO of Classical Archives,
LLC, for permission to include composer reference material in the Lyric Note product
catalog. Angela Allen and David Biesack provided helpful comments on the custom
tags material. Many thanks to Jack Keller for his skill in reinforcing structural integrity,
and to Chris Bailey, a singularly creative thinker and a great source of ideas.

I am very grateful for the support of Alan Eaton and Keith Collins of SAS Institute,
who made it possible for me to undertake this project.

Most of all, I would like to thank my wife, Mary, my children, Eleanor and John, and
my mother-in-law, Ann Jordan, for their support, encouragement, kindness, and patience.

xxv
Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This page intentionally left blank.

Part I
The Web Programming Environment

Part I provides an introduction to the Web as a programming

environment, focusing on both business and technical aspects. After

examining the evolution of the Web application, it touches on the

underlying client/server architecture and the protocol used to support

it. Part I concludes with an introduction to JavaServer Pages (JSP).

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This page intentionally left blank.

Chapter 1
The Web Marketplace

3

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

In the heart of Rome near the river Tiber lies the Roman Forum. Two thousand years
ago, the Forum Romanum was the center of power in the Roman world. It was the
place where triumphal marches took place, where ordinary goods and services were

exchanged, and where news and opinions were freely shared (from which we get the
common meaning of the word “forum”). Though partly built of stone, bricks, and mortar,
its expansion was made possible by a new technology: concrete.

Today, the Internet is the global electronic marketplace. The Internet is becoming the
dominant center for the exchange of goods, services, and information, both for business
enterprises and individual consumers. Like the Roman Forum, the growth of the Internet
is made possible by advances in technology—new computer languages, wide acceptance
of networking standards, and inexpensive hardware.

This book is about JavaServer Pages, an enabling technology that brings together
Web browsers, Web servers, and database systems to make applications that are easy to
develop, access, and deploy. Java technology has proven to be unsurpassed in connectivity,
reliability, scalability, and security. This technology, more than any other, promises to drive
the network computing model, and with it, the global electronic marketplace.

No one can predict future trends with certainty. Even the Forum Romanum was
eventually covered with grass and became il Campo Vaccino —the field of cows. But it
is safe to say that the degree to which an enterprise can successfully exchange products,
services, information, and ideas will continue to depend on the degree to which it has
access to the marketplace.

4 J S P : T h e C o m p l e t e R e f e r e n c e

Chapter 2
Evolution of the
Web Application

5

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

One of the most remarkable things about the World Wide Web is it wasn’t
originally conceived as an application environment. Yet today, Web
applications are the mainstay of most Internet use—in particular, of

e-commerce use. This chapter briefly traces the origins of the World Wide Web,
Web applications, and associated technologies, setting the context for more detailed
technical exploration in the remainder of the book.

Birth of the Web
The World Wide Web and its associated Hypertext Transfer Protocol (HTTP) grew out
of work done at the European Laboratory for Particle Physics (CERN) in 1990. Tim
Berners-Lee developed HTTP as a networking protocol for distributing documents
and wrote the first Web browser. The system was used at CERN and other high-energy
physics laboratories and universities in 1991 and 1992, and grew steadily in popularity.
In 1993, the advent of the Mosaic browser led to the explosion of commercial Web use.
In five years, more than 650,000 Web servers were in use worldwide, with uncounted
millions of users.

Growth of the Web Programming Model
The idea of using the Web as an application environment developed over time, with
each stage of technology serving as a springboard for new ideas. The first operational
model had the Web server simply serving up documents on request. In this environment,
the content doesn’t change unless a human author supplies a new version of a document.
The client/server interaction is illustrated in Figure 2-1.

6 J S P : T h e C o m p l e t e R e f e r e n c e

Figure 2-1. Static document server model

HTTP is a simple request/response protocol in which a Web browser asks for a
document (typically using a GET command), and the Web server returns the document
in the form of an HTML data stream preceded by a few descriptive headers. Chapter 3
examines HTTP in greater detail.

What quickly became apparent is if humans could revise the documents handled
by the Web server, so could a text-processing program like a Perl script. The Web
browser is unaware of the difference because the result of an HTTP request is still an
HTML data stream. What’s more, the browser can send more than just a request—it
can send parameters, either by embedding them in the URL or by sending a data stream
with the request. This suggests an HTTP request can be interpreted as a database query
and the query results can be used to build an HTML document dynamically. With the
development of the NCSA HTTPd Web Server came a new specification designated the
Common Gateway Interface (CGI).

A CGI program is invoked by the Web server in response to certain types of requests,
usually requests for documents in a particular directory or filenames having a particular
extension, such as .cgi. The request parameters are passed as key/value pairs, and
the request headers as environment variables. The program reads these parameters and
headers, performs the application task at hand (typically accessing a database to do so),
and then generates an HTTP response. The response is sent back to the requesting Web
browser as if it were an ordinary static document. Figure 2-2 illustrates the process flow.

TH
E

W
EB

P
R

O
G

R
A

M
M

IN
G

EN
V
IR

O
N

M
EN

T
C h a p t e r 2 : E v o l u t i o n o f t h e W e b A p p l i c a t i o n 7

Figure 2-2. Dynamic content generated by a CGI script

CGI is convenient, but it has one big drawback. Ordinarily, CGI spawns a new
process for each HTTP request1. This isn’t a problem when traffic is low, but it creates
a great deal of overhead when the traffic level increases. This being the case, CGI in
general doesn’t scale well.

A significant improvement came with the release in 1997 of the Java Servlet API,
followed quickly by the JavaServer Pages (JSP) API. These related technologies bring
the full power of Java to the Web server, with database connectivity, network access,
and multithreaded operations, and, notably, a different process model. Servlets and

8 J S P : T h e C o m p l e t e R e f e r e n c e

Figure 2-3. Dynamic applications using servlets, JSP, and J2EE

1 Improvements on this exist, such as FastCGI, which handles all requests from a single persistent process.

JSP pages operate from a single instance that remains in memory and uses multiple
threads to service requests simultaneously. As Figure 2-3 shows, servlets and JSP pages
can make use of the full Java 2 Enterprise Edition (J2EE) environment for sophisticated,
robust applications.

The Shift from Client-Side to
Server-Side Solutions
The Web application model has evolved as the Web has matured, and experience with
each phase has driven requirements for the next. The initial wave of client-side Java
in the form of applets was phenomenally popular, but led to some disappointment as
reality intruded. Considerable incompatibilities occurred between browsers, lengthy
downloads over slow modems, and security restrictions that limited applet usefulness.
Because of this, applet development slowed2, and server-side Java has been the biggest
growth area.

Server-side Java has none of the restrictions of the applet environment. No browser
inconsistencies occur because the browser isn’t required to host a Java virtual machine.
The browser only has to render HTML, which even the oldest browsers do reasonably
well. Also, no client-side setup is involved and no download of large class files. Likewise,
security considerations are limited to those already handled by the Web server, which
is typically in a closed environment with controls in place.

JSP has proved to be a successful server-side technology and an excellent base
for developing Web applications. The remainder of this book explores JSP in-depth
to demonstrate why this is so.

TH
E

W
EB

P
R

O
G

R
A

M
M

IN
G

EN
V
IR

O
N

M
EN

T
C h a p t e r 2 : E v o l u t i o n o f t h e W e b A p p l i c a t i o n 9

2 Many observers believe client-side Java is poised for a comeback. The Java plug-in eliminates browser
inconsistencies and allows Swing components to be used. Moreover, high-speed Internet connections
are making download considerations increasingly unimportant.

This page intentionally left blank.

Chapter 3
Overview of the
Hypertext Transfer
Protocol (HTTP)

11

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

12 J S P : T h e C o m p l e t e R e f e r e n c e

This chapter introduces the underlying language used by the Web client/server
model. In doing so, it develops the basic concepts critical to understanding the
Web programming environment. The chapter presents several examples of Web

browsers and servers using this language to communicate. Additional details about
the protocol can be found in Appendix C.

What Is HTTP?
Whereas Hypertext Markup Language (HTML) is the language used to describe the insides
of Web documents, Hypertext Transfer Protocol (HTTP) is the language used to describe
how these documents are sent over the Internet. The key to understanding Web
programming is understanding this protocol and the environment in which it operates.

A Language for Requesting Documents over the Internet
HTTP prescribes the rules by which browsers make requests and servers supply
responses. This set of rules, or protocol, includes ways to

� Ask for a document by name

� Agree on the data format

� Determine who the user is

� Decide how to handle outdated resources

� Indicate the results of a request

and other useful functions.
HTTP consists of a set of commands written as lines of ordinary ASCII text. When

you use a Web browser, you don’t enter the HTTP commands directly. Instead, when
you type a URL or click a hyperlink, the browser translates your action into HTTP
commands that request the document from the server specified in the URL. The Web
server finds the document and sends it back to the browser, where it’s displayed, along
with its associated graphics and other hyperlinks.

The HTTP Specification
Internet standards are usually specified in a Request for Comments (RFC) published by the
Internet Engineering Task Force (IETF). These RFCs are widely accepted by the Internet
research and development community. Because they’re standards documents, they
tend to be written in formal language, like that of a legal document. This makes them
unsuitable as tutorials, but invaluable for reference.

RFCs are numbered and never change when issued. If a standard is updated,
a new RFC is issued. Being standards, RFCs are widely available on the Internet.
A good, readable online source is Brent Baccala's Connected: An Internet Encyclopedia
(http://www.freesoft.org/CIE), which maintains HTML versions of most RFCs and
provides a full-text search engine.

Several RFCs deal with HTTP:

RFC 1945 A description of HTTP version 1.0

RFC 2068 The initial description of version 1.1

RFC 2616 An updated version of the 1.1 specification

Unless otherwise specified, this book uses the HTTP 1.1 standard as documented in
RFC 2616.

HTTP Request Model
The specification describes HTTP as a stateless request/response protocol whose basic
operation is as follows:

1. A client application, such as a Web browser, opens a socket to the Web server’s
HTTP port (80, by default).

2. Through the connection, the client writes an ASCII text request line, followed
by zero or more HTTP headers, an empty line, and any data that accompanies
the request.

3. The Web server parses the request and locates the specified resource.

4. The server writes a copy of the resource to the socket, where it’s read by the client.

5. The server closes the connection.

Figure 3-1 illustrates this basic operation.
A key consideration is this model is stateless. This means in handling a request, the

Web server doesn’t remember anything about previous requests from the same client.
The protocol is simply a request (“please give me this document”) and a response (“OK,
here it is”). Obviously, this imposes limitations on application programming, which

TH
E

W
EB

P
R

O
G

R
A

M
M

IN
G

EN
V
IR

O
N

M
EN

T
C h a p t e r 3 : O v e r v i e w o f t h e H y p e r t e x t T r a n s f e r P r o t o c o l (H T T P) 13

Figure 3-1. HTTP basic operation

typically requires a great deal of back-and-forth conversation, as well as complex objects
that must be initialized and have their state maintained.

The way around this is to have the server assign an identifier to the session
represented by a set of client requests, and to have the client remember the identifier
and supply it to the server with each request. This technique is explored in depth in
Chapter 14.

Let’s examine each of these steps in greater detail.

Connecting to the Web Server
A Web server operates by listening for requests on a particular well-known port number,
usually port 80, although any available port can be used. If a Web server listens on a
different port, URLs that refer to this server must include a colon and the port number
immediately after the server name. For example,

http://www.mycompany.com/mypath.html

refers to an HTML document known to a Web server running on the
www.mycompany.com host on the default port 80. If the server is running
on port 4311 instead, the URL looks like this:

http://www.mycompany.com:4311/mypath.html

Why bother with alternate port numbers, especially because they introduce that
ugly URL syntax? Because this allows more than one server to be running on a single
host. An experimental Web server with different capabilities may need to coexist with
the main server. The Tomcat and JRun servlet engines, for example, can run a mini
HTTP server for testing servlets and JSP pages. Most Web servers provide some
means of hiding this alternate syntax by mapping the URLs to a different namespace.

A client, such as a Web browser, initiates an HTTP request by opening a TCP/IP
socket to the Web server port, and then opening input and output stream over the
socket. In Java terms, this would amount to a few lines of code:

Socket socket = new Socket(“www.mycompany.com”, 80);

InputStream istream = socket.getInputStream();

OutputStream ostream = socket.getOutputStream();

The parameters required to open the socket are the Web server host name and the
port number. The server host name is extracted from the URL, while the port number
is either implied or also extracted from the URL. The output stream is used to send
HTTP commands to the Web server; the input stream is used to read the response.

14 J S P : T h e C o m p l e t e R e f e r e n c e

Sending the HTTP Request
Once the socket connection is made, the Web browser writes an HTTP command to
request the document. A request has up to four parts.

The first part is the request line. This consists of three tokens, separated by spaces:
the request method, the request URI, and the HTTP version. The following shows a
typical request line:

GET /mypath.html HTTP/1.0

In this example, the request method is GET, the URI is /mypath.html, and the HTTP
version is HTTP/1.0.

The HTTP specification defines eight possible methods, shown in Table 3-1. Of all
these methods, the vast majority of requests use either GET or POST. These two methods
are the only ones considered in this book.

The second token on the request line is the request Uniform Resource Identifier (URI).
This is the URI of the document or other resource being requested. For all practical
purposes, this corresponds to the URL without the leading http:// and host name.
In the example of http://www.mycompany.com/mypath.html, the request URI is
/mypath.html.

C h a p t e r 3 : O v e r v i e w o f t h e H y p e r t e x t T r a n s f e r P r o t o c o l (H T T P) 15
TH

E
W

EB
P

R
O

G
R

A
M

M
IN

G
EN

V
IR

O
N

M
EN

T

Method Description

GET A simple request to retrieve the resource identified in the URI.

HEAD The same as GET, except the server doesn’t return the requested
document. The server only returns the status line and headers.

POST A request for the server to accept data that will be written to the
client’s output stream.

PUT A request for the server to store the data in the request as the new
contents of the specified URI.

DELETE A request for the server to delete the resource named in the URI.

OPTIONS A request for information about what request methods the server
supports.

TRACE A request for the Web server to echo the HTTP request and its headers.

CONNECT A documented but currently unimplemented method reserved for
use with a tunneling proxy.

Table 3-1. HTTP Request Methods

The last token on the line is the HTTP version. This indicates the highest level of
the HTTP specification the client application understands. The allowable values are
HTTP/1.0 and HTTP/1.1.

After the request line come any request headers. These are key/value pairs, one pair
per line, with the key and value separated by a colon (:). After the last request header
is written, an empty line consisting of only a carriage return and line feed is sent. This
informs the server that no more headers follow. Even if no headers exist, this empty
line must be sent, so the server doesn’t look for any more headers.

Request headers inform the server further about the identity and capabilities of the
client. Typical request headers might be

User-Agent The vendor and version of the client

Accept A list of content types the client recognizes

Content-Length The number of bytes of data appended to the request

A complete list of request and response headers is found in Appendix C.
For HTTP POST requests, the request may include data. You see later in Chapter 12

how POST data is used to transmit the values of HTML form fields. If data is present,
seeing both the Content-Type and Content-Length request headers used is common.

Server Acceptance of the Request
When a client connects to the Web server’s listening port, the server accepts the connection
and handles the request. In most cases, it does so by starting a thread to process the
request, so it can continue to service new requests. Handling the request means different
things depending on the URI. If the URI represents a static document, the server opens
the document file and prepares to copy its contents back to the client. If the URI is a
program name, such as a CGI script, servlet, or JSP page, and the server is configured
to handle such a request, the server prepares to invoke the program or process.

The HTTP Response from the Server
However the server processes the request, the result is the same—an HTTP response.
Similar to a request, a response consists of up to four parts: a status line, zero or more
response headers, an empty line signaling the end of the headers, and the data that
makes up the request.

The status line consists of up to three tokens:

� The HTTP version. Just as the client indicates the highest version it can understand,
so the server indicates its capabilities.

� The response code. This is a three-digit numeric code that indicates whether the
request succeeded or failed and, if it failed, the reason why. A list of HTTP status
codes is found in Appendix C.

16 J S P : T h e C o m p l e t e R e f e r e n c e

� An optional response description, which is a human-readable explanation of the
response code.

A typical HTTP response status line looks like this

HTTP/1.0 200 OK

which indicates a successful retrieval of the requested document according to the 1.0
level of the HTTP specification.

After the status line comes the response headers, with an empty line as the delimiter.
Like request headers, these indicate the capabilities of the server and identify details
about the response data. Appendix C lists valid HTTP response headers.

The last part of the response is the requested data itself, typically an HTML document
or image stream. After the data is sent, the server closes its end of the connection.

Examples
A look at several examples can make this clearer. A simple case of a GET request
would be what happens when a URL is typed in a browser address line or a hyperlink
is clicked. If you open the URL http://www.lyricnote.com/simple.html, the
Web browser opens a socket connection to the www.lyricnote.com host on port 80,
and then writes the following line

GET /simple.html HTTP/1.0

followed by an empty line. The Web server returns the following:

HTTP/1.1 200 OK

Date: Wed, 31 Jan 2001 03:55:43 GMT

Server: Apache/1.3.12 (Win32)

Content-Length: 241

Content-Type: text/html

<HTML>

<BODY>

<H3>Welcome</H3> to The Lyric Note,

the best Internet source for

sheet music

musical instruments

books on musical topics

C h a p t e r 3 : O v e r v i e w o f t h e H y p e r t e x t T r a n s f e r P r o t o c o l (H T T P) 17
TH

E
W

EB
P

R
O

G
R

A
M

M
IN

G
EN

V
IR

O
N

M
EN

T

music software, and

musical gift items

</BODY>

</HTML>

The browser first parses the status line and sees the status code indicates the request
was successful. The browser then parses each of the request headers, which inform it
241 bytes of HTML follow. The browser reads the HTML, formats it according to the
syntax and semantics of HTML, and displays it in the browser window, as shown in
Figure 3-2.

An HTML document may contain references to other resources that need to be
loaded when the document is loaded. For example, images are often embedded in the
page with the HTML tag. JavaScript files or external style sheets may also be
required. The Web browser (not the server) recognizes these cases and makes additional
requests for the other resources. This bears repeating. The Web server doesn’t read
through the HTML it serves, recognize an tag, and then start sending the bytes
of the image file. The Web server simply sends back the resource that was requested
in one operation. If, a few milliseconds later, the browser requests an image file, the
server returns this in a separate operation. The Web browser does all this under the covers,
so the user is unaware several requests are involved.

18 J S P : T h e C o m p l e t e R e f e r e n c e

Figure 3-2. Results of a simple HTTP request

C h a p t e r 3 : O v e r v i e w o f t h e H y p e r t e x t T r a n s f e r P r o t o c o l (H T T P) 19
TH

E
W

EB
P

R
O

G
R

A
M

M
IN

G
EN

V
IR

O
N

M
EN

T

To augment the previous example slightly, suppose you open http://www.
lyricnote.com/compound.html. The browser again opens a socket connection
to www.lyricnote.com port 80 and requests the HTML document,

GET /compound.html HTTP/1.0

which results in the following response:

HTTP/1.1 200 OK

Date: Tue, 30 Jan 2001 23:42:16 GMT

Server: Apache/1.3.12 (Win32)

Content-Length: 380

Content-Type: text/html

<HTML>

<HEAD>

<LINK REL="stylesheet" HREF="lyricnote.css">

</HEAD>

<BODY>

<HR COLOR="#005A9C" ALIGN="LEFT" WIDTH="500">

<H3>Welcome</H3> to The Lyric Note,

the best Internet source for

sheet music

musical instruments

books on musical topics

music software, and

musical gift items

</BODY>

</HTML>

As the browser is parsing the HTML, it notices the style sheet request:

<LINK REL="stylesheet" HREF="lyricnote.css">

and makes a second HTTP request:

GET /lyricnote.css HTTP/1.0

20 J S P : T h e C o m p l e t e R e f e r e n c e

The Web server retrieves the style sheet and returns it to the client:

HTTP/1.1 200 OK

Date: Tue, 30 Jan 2001 23:42:27 GMT

Server: Apache/1.3.12 (Win32)

Connection: Keep-alive, close

Content-Length: 73

Content-Type: text/plain

h3 {

font-size: 20px;

font-weight: bold;

color: #005A9C;

}

The browser interprets the style sheet and applies the font size, weight, and color styles
to the <H3> tag. Next, it encounters an image tag

and makes a request for the logo,

GET /images/logo.png HTTP/1.0

which causes the Web server to respond with the image data stream:

HTTP/1.1 200 OK

Date: Tue, 30 Jan 2001 23:42:44 GMT

Server: Apache/1.3.12 (Win32)

Connection: Keep-alive, close

Content-Length: 1280

Content-Type: text/plain

(Binary image data follows)

Finally, the browser renders the completed page, as shown in Figure 3-3.

Summary
This chapter introduces HTTP, the set of rules by which requests are made and
responses are returned. Understanding these rules is crucial to proper development
and troubleshooting. Important to understand is HTTP is stateless, meaning HTTP
doesn’t by itself retain knowledge from one request to the next. The JSP environment
provides robust ways to remedy this. Another key consideration is that both browsers
and servers can be replaced by workalike software. Applications, applets, and
programs written in other languages can act as clients and diagnostic tools can play
the role of server. Because all they need to do is provide the same HTTP request and
response streams a browser and Web server would use, these other applications are
indistinguishable from the real thing. You’ll exploit this capability in later chapters.

TH
E

W
EB

P
R

O
G

R
A

M
M

IN
G

EN
V
IR

O
N

M
EN

T
C h a p t e r 3 : O v e r v i e w o f t h e H y p e r t e x t T r a n s f e r P r o t o c o l (H T T P) 21

Figure 3-3. Results of a compound HTTP request

This page intentionally left blank.

Chapter 4
Introduction to Servlets

23

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

To understand JavaServer Pages, it’s necessary to understand their underlying
technology—Java servlets. Servlets are Java classes that extend the functionality
of a Web server by dynamically generating Web pages. A run-time environment

known as a servlet engine manages servlet loading and unloading, and works with the
Web server to direct requests to servlets and to send output back to Web clients.

Since their introduction in 1997, servlets have become the dominant environment
for server-side Java programming and a widely used portal into application servers.
They offer several key advantages:

� Performance Older technologies such as the Common Gateway Interface (CGI)
typically start a new process to handle each incoming request. In the days when
the Web was primarily a repository for academic and scientific research, there
wasn’t very much traffic and this approach worked well. Servlets, by contrast,
are loaded when first requested, and stay in memory indefinitely. The servlet
engine loads a single instance of the servlet class and dispatches requests to it
using a pool of available threads. The resulting performance improvement is
considerable.

� Simplicity Client-side Java applets run in a virtual machine provided by
the Web browser. This introduces compatibility issues that increase complexity
and limit the functionality that applets can provide. Servlets simplify this
situation considerably because they run in a virtual machine in a controlled
server environment and require only basic HTTP to communicate with their
clients. No special client software is required, even with older browsers.

� HTTP Sessions Although HTTP servers have no built-in capability to remember
details of a previous request from the same client, the Servlet API provides an
HttpSession class that overcomes this limitation.

� Access to Java Technology Servlets, being Java applications, have direct
access to the full range of Java features, such as threading, network access,
and database connectivity.

JSP pages, which are automatically translated into servlets, inherit all these advantages.
This chapter provides an overview of how servlets work. It examines the primary

servlet objects and their API. It discusses the servlet engine, the servlet lifecycle, servlet
threading models, and how servlets can maintain persistent state between requests.
This chapter also includes an annotated example of a servlet.

Servlet Lifecycle
Like their client-side applet counterparts, servlets provide methods that are called
when specific events occur in a larger context. Programming in this environment

24 J S P : T h e C o m p l e t e R e f e r e n c e

TH
E

W
EB

P
R

O
G

R
A

M
M

IN
G

EN
V
IR

O
N

M
EN

T

involves writing predefined methods (sometimes known as callback methods), which
are called as required by a managing program.

An applet, for example, provides methods such as init(), start(), paint(),
stop(), and destroy(), which are called by the applet run-time environment in
response to actions the user takes. The java.applet.Applet base class provides
default implementations for all these methods; you only override those that occur
during events with which you are concerned. You would write an init() method,
for instance, if you have GUI components that need to be created.

Similarly, servlets operate in the context of a request and response model managed
by a servlet engine. The engine does the following:

� Loads a servlet when it’s first requested

� Calls the servlet’s init() method

� Handles any number of requests by calling the servlet’s service() method

� When shutting down, calls each servlet’s destroy() method.

As with applets, there are standard base classes javax.servlet.GenericServlet
and javax.servlet.http.HttpServlet that implement the servlet callback methods.
Servlet programming, then, consists of subclassing one of these classes and overriding
the necessary method to accomplish the specific task at hand. The following sections
examine each of these lifecycle methods.

init
When a request for a servlet is received by the servlet engine, it checks to see if the
servlet is already loaded. If not, the servlet engine uses a class loader to get the particular
servlet class required, and then invokes its constructor to get an instance of the servlet.
After the servlet is loaded, but before it services any requests, the servlet engine calls
an initialization method with the following signature:

public void init(ServletConfig config)

throws ServletException

This method is called only once, just before the servlet is placed into service. The
ServletConfig object provides access to the servlet context (discussed later in this
chapter) and to any initialization parameters coded for the servlet. To maintain a
reference to the servlet context, the config object must be stored as an instance variable,
a task that’s done by the init(ServletConfig) method in GenericServlet. For
this reason, it’s important to call super.init(config) within the init() method
of any subclass.

C h a p t e r 4 : I n t r o d u c t i o n t o S e r v l e t s 25

Inside the init() method, the servlet can perform any necessary startup tasks,
such as establishing database connections. If any errors occur that make the servlet
unable to handle requests, it should throw an UnavailableException1. This
prevents requests from being directed to the servlet.

service
After the init() method completes successfully, the servlet is able to accept requests.
By default, only a single instance of the servlet is created, and the servlet engine dispatches
each request to the instance in a separate thread. The servlet method that’s called has
the following signature:

public void service(

ServletRequest request,

ServletResponse response)

throws ServletException, IOException;

The ServletRequest object is constructed by the servlet engine and acts as a
wrapper for information about the client and the request. This includes the identity
of the remote system, the request parameters, and any input stream associated with
the request. Similarly, the ServletResponse object provides the means for a servlet
to communicate its results back to the original requester. It includes methods for opening
an output stream and for specifying the content type and length.

As important as the service() method is, it’s rarely used. The reason for
this is most servlets are designed to operate in the HTTP environment, for which
there’s a specialized javax.servlet.http package. Rather than extending
javax.servlet.GenericServlet directly, most servlets extend its subclass
javax.servlet.http.HttpServlet. This subclass provides specialized methods
corresponding to each HTTP request method: GET requests are handled by doGet(),
POST requests by doPost(), and so on. The signatures for these methods use
HTTP-specific versions of the request and response objects:

public void doGet(

HttpServletRequest request,

26 J S P : T h e C o m p l e t e R e f e r e n c e

1 UnavailableException is a subclass of ServletException that can optionally include a number of
seconds the servlet is expected to be unavailable. If not specified, the servlet is assumed to be
permanently unavailable.

HttpServletResponse response)

throws ServletException, IOException;

The service(Request, Response) method in HttpServlet casts the
request and response objects into their HTTP-specific counterparts, and then calls
service(HttpServletRequest, HttpServletResponse), which examines
the request and calls the appropriate doGet(), doPost(), or other method. A typical
HTTP servlet, then, includes an override to one or more of these subsidiary methods,
rather than an override to service().

destroy
The servlet specification allows a servlet engine to unload a servlet at any time. This
may be done to conserve system resources or in preparation for servlet engine
shutdown. The servlet engine notifies each loaded servlet this is about to happen
by calling its destroy() method. By overriding destroy(), you can release any
resources allocated during init().

Calling destroy() yourself won’t actually unload the servlet. Only the servlet engine
can do this.

Example: Kilometers per Liter to Miles per
Gallon Servlet
Let’s look at a simple servlet. K2MServlet, shown in the following, is a servlet that
creates a fuel efficiency conversion table that expresses kilometers per liter in terms of
miles per gallon.

package jspcr.servlets;

import java.io.*;

import java.text.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

/**

* Prints a conversion table of miles per gallon

* to kilometers per liter

*/

TH
E

W
EB

P
R

O
G

R
A

M
M

IN
G

EN
V
IR

O
N

M
EN

T
C h a p t e r 4 : I n t r o d u c t i o n t o S e r v l e t s 27

public class K2MServlet extends HttpServlet

{

private static final DecimalFormat FMT

= new DecimalFormat("#0.00");

private static final String PAGE_TOP = ""

+ "<HTML>"

+ "<HEAD>"

+ "<TITLE>Fuel Efficiency Conversion Chart</TITLE>"

+ "</HEAD>"

+ "<BODY>"

+ "<H3>Fuel Efficiency Conversion Chart</H3>"

+ "<TABLE BORDER=1 CELLPADDING=3 CELLSPACING=0>"

+ "<TR>"

+ "<TH>Kilometers per Liter</TH>"

+ "<TH>Miles per Gallon</TH>"

+ "</TR>"

;

private static final String PAGE_BOTTOM = ""

+ "</TABLE>"

+ "</BODY>"

+ "</HTML>" ;

public void doGet(

HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException

{

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println(PAGE_TOP);

for (double kpl = 5; kpl <= 20; kpl += 1.0) {

double mpg = kpl * 2.352146;

out.println("<TR>");

out.println("<TD>" + FMT.format(kpl) + "</TD>");

out.println("<TD>" + FMT.format(mpg) + "</TD>");

out.println("</TR>");

}

out.println(PAGE_BOTTOM);

}

}

28 J S P : T h e C o m p l e t e R e f e r e n c e

To start, note the two import statements at the beginning of the program:

import javax.servlet.*;

import javax.servlet.http.*;

These statements identify to the compiler that we’ll use classes from the general and
HTTP-specific servlet packages. import statements are not strictly required, but they
make referring to classes possible without specifying their fully qualified names.

Next, the class declaration:

public class K2MServlet extends HttpServlet

A servlet is required at a minimum to implement the javax.servlet.Servlet
interface. To simplify servlet writing, the servlet API provides a basic implementation
of this interface called GenericServlet. It also supplies an HTTP-specific subclass
HttpServlet, which is the base class most commonly used for servlets.

public void doGet(

HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException

Our servlet has no special requirement for startup or termination actions, so it
only overrides one method—doGet(). This will be invoked from the HttpServlet
superclass service() method if the request method is GET.

response.setContentType("text/html");

Before writing any results back to the client, we need to specify any HTTP headers
we want to send. In our case, the only one is Content-Type, which we set to text/html.

PrintWriter out = response.getWriter();

Creating an HTML page consists of writing HTML statements to an output
stream associated with the HTTP request. This output stream can be obtained from
the response object using either its getOutputStream() or getWriter() methods,
depending on whether a binary stream or character output is to be written, respectively.
Important to note is a servlet must chose one or the other of these methods; it cannot
call both. Because we’re writing ordinary HTML, we’ll use getWriter() to obtain
a character writer.

TH
E

W
EB

P
R

O
G

R
A

M
M

IN
G

EN
V
IR

O
N

M
EN

T
C h a p t e r 4 : I n t r o d u c t i o n t o S e r v l e t s 29

All that remains is to print the text of our HTML table. For convenience, we’ve coded
the page header and footer in the static string variables PAGE_TOP and PAGE_BOTTOM.
We print the table itself in a loop over the desired range of kilometers per liter.

out.println(PAGE_TOP);

for (double kpl = 5; kpl <= 20; kpl += 1.0) {

double mpg = kpl * 2.352146;

out.println("<TR>");

out.println("<TD>" + FMT.format(kpl) + "</TD>");

out.println("<TD>" + FMT.format(mpg) + "</TD>");

out.println("</TR>");

}

out.println(PAGE_BOTTOM);

To run the servlet, we first need to compile it. For this to be successful, the classes
in the servlet API must be in the classpath. These classes are typically found in a JAR
file distributed with the servlet engine. The official JAR file can also be found at the
Apache Jakarta Web site http://jakarta.apache.org.

Next, depending on the servlet engine, it might be necessary to describe the servlet
in the Web application deployment descriptor /WEB-INF/web.xml. For a simple
servlet, this might consist only of a <servlet> tag with its child <servlet-name>
and <servlet-class> elements. In this case, the entry looks like this:

<?xml version="1.0" ?>

<web-app>

...

<servlet>

<servlet-name>K2M</servlet-name>

<servlet-class>jspcr.servlets.K2MServlet</servlet-class>

</servlet>

...

</web-app>

<servlet> entries in web.xml must be coded in a specific position with respect to other
elements. See Chapter 18 for details or examine the web-app_2.2.DTD.

In most cases, modifying the web.xml file requires the servlet engine be restarted
before any changes take effect.

Finally, the servlet can be invoked using a URL of this form:

http://<servername>/<webappname>/servlet/<servletname>

The results for this servlet can be seen in Figure 4-1.

30 J S P : T h e C o m p l e t e R e f e r e n c e

Servlet Classes
This section outlines several important classes from the javax.servlet and
javax.servlet.http packages. Full details of the servlet API can be found in
Appendix A.

TH
E

W
EB

P
R

O
G

R
A

M
M

IN
G

EN
V
IR

O
N

M
EN

T
C h a p t e r 4 : I n t r o d u c t i o n t o S e r v l e t s 31

Figure 4-1. Kilometers per liter to miles per gallon output

Servlet
The basic servlet abstraction is the javax.servlet.Servlet interface, shown in
Table 4-1. It prescribes the set of methods that must be implemented by a servlet class
for it to be recognized and managed by a servlet engine. Its primary purpose is to supply
the lifecycle methods init(), service(), and destroy().

The servlet API provides a concrete implementation of the Servlet interface named
GenericServlet, described in Table 4-2. This class supplies default implementations of
all the interface methods except service(). This means you can write a basic servlet
simply by extending GenericServlet and writing a custom service() method.

32 J S P : T h e C o m p l e t e R e f e r e n c e

Method Description

void init(
ServletConfig config)
throws ServletException

Called once by the servlet engine after a
servlet is loaded, just before it’s placed
into service. If init() throws an
UnavailableException, the servlet
is then taken out of service. A servlet
should provide some way to store
the config object to implement the
getServletConfig() method (see
GenericServlet).

ServletConfig
getServletConfig()

Returns the ServletConfig object
passed to the servlet’s init() method.

void service(
ServletRequest request,
ServletResponse response)
throws ServletException,

IOException

Handles the request described in the
request object, using the response
object to return its results to the requester.

String getServletInfo() Returns a string that can describe
the servlet. Intended for use by
administrative tools that need to
provide a human-readable description.

void destroy() Called by the servlet engine when the
servlet is about to be unloaded.

Table 4-1. Methods in the servlet Interface

TH
E

W
EB

P
R

O
G

R
A

M
M

IN
G

EN
V
IR

O
N

M
EN

T
C h a p t e r 4 : I n t r o d u c t i o n t o S e r v l e t s 33

Method Description

void destroy() Writes a log entry consisting of the word
“destroy”.

String getInitParameter
(String name)

Returns the value of the initialization
parameter with the specified name.
Does so by calling
config.getInitParameter(name).

Enumeration
getInitParameterNames()

Returns an Enumeration of all
the initialization parameters coded
for this servlet, calling
config.getInitParameterNames()
to obtain the list. If no initialization
parameters were supplied, returns an
empty Enumeration (not null).

ServletConfig
getServletConfig()

Returns the ServletConfig object that
was passed to the init() method.

ServletContext
getServletContext()

Returns the ServletContext referred
to in the config object.

String getServletInfo() Returns an empty string ("").

void init(ServletConfig
config) throws
ServletException

Stores the config object in an instance
variable, writes a log entry consisting
of the word “init”, and then calls the
convenience method init().

void init() throws
ServletException

Can be overridden to handle servlet
initialization. Automatically called
at the end of init(ServletConfig
config), after the config object has
been stored. A concession to servlet
authors who, like me, always forget
to call super.init(config).

void log(String msg) Writes an entry to the servlet log, invoking
the servlet context’s log() method to
do so. The servlet’s name is added to the
beginning of the message text.

Table 4-2. Methods in the GenericServlet Class

In addition to the Servlet interface, GenericServlet also implements
ServletConfig, which handles initialization parameters and the servlet context,
providing convenience methods that delegate to the ServletConfig object that was
passed to init().

Although the servlet API allows for expansion to other protocols, the current version
supports only protocol-independent servlets2 and HTTP servlets. Because virtually all
servlets operate in the Web server environment, few servlets extend GenericServlet
directly. It’s more common for servlets to extend its HTTP-specific subclass HttpServlet,
described in Table 4-3. See Chapter 3 for an introduction to HTTP.

HttpServlet implements service() by calling methods specific to the HTTP
request method. That is, for DELETE, HEAD, GET, OPTIONS, POST, PUT, and TRACE, it
calls doDelete(), doHead(), doGet(), doOptions(), doPost(), doPut(), and
doTrace(), respectively. It also casts the request and response objects used by these
methods into their HTTP-specific subclasses, described later in this section.

34 J S P : T h e C o m p l e t e R e f e r e n c e

Method Description

void log(String msg,
Throwable t)

Writes an entry and a stack trace to
the servlet log. This method is also
a pass-through to the corresponding
method in ServletContext.

abstract void service(Request
request, Response response)
throws ServletException,
IOException

Called by the servlet engine to service
the request described by the request
object. This is the only abstract method
in GenericServlet, hence, it’s the only
one that must be overridden by subclasses.

String getServletName() Returns the servlet name as specified
in the Web application deployment
descriptor (web.xml).

Table 4-2. Methods in the GenericServlet Class (continued)

2 What might a protocol-independent servlet be? Perhaps one that doesn't service requests at all,
but simply launches background threads from its init() method and kills them in destroy().
This could be used to emulate Windows NT services or Unix daemon processes.

The methods that handle GET, POST, PUT, and DELETE by default return an error
indicating the requested method is not supported, so a servlet needs to override the
methods it supports explicitly.

TH
E

W
EB

P
R

O
G

R
A

M
M

IN
G

EN
V
IR

O
N

M
EN

T
C h a p t e r 4 : I n t r o d u c t i o n t o S e r v l e t s 35

Method Description

void doGet(HttpServletRequest
request, HttpServletResponse
response) throws
ServletException, IOException

Called by the servlet engine to process
an HTTP GET request. Input parameters,
HTTP headers, and the input stream (if
any) can be obtained from the request
object, and response headers and the
output stream from the response object.

void doPost(HttpServletRequest
request, HttpServletResponse
response) throws
ServletException, IOException

Called by the servlet engine to process
an HTTP POST request. No different
from doGet() from the standpoint of
obtaining parameters and input data or
returning the response.

void doPut(HttpServletRequest
request, HttpServletResponse
response) throws
ServletException, IOException

Called by the servlet engine to process
an HTTP PUT request. The request URI
in this case indicates the destination of
the file being uploaded.

void
doDelete(HttpServletRequest
request, HttpServletResponse
response) throws
ServletException, IOException

Called by the servlet engine to process
an HTTP DELETE request. The request
URI indicates the resource to be deleted.

void
doOptions(HttpServletRequest
request, HttpServletResponse
response) throws
ServletException, IOException

Called by the servlet engine to process
an HTTP OPTIONS request. Returns
an Allow response header indicating
the HTTP methods supported by this
servlet. It’s unlikely that a servlet will
need to override this method because
the HttpServlet method already imple-
ments the functionality required by the
HTTP specification.

Table 4-3. Methods in the HttpServlet Class

36 J S P : T h e C o m p l e t e R e f e r e n c e

Servlet Request
The ServletRequest interface encapsulates the details of the client request.
A generic version exists that is protocol-independent and a subinterface exists that
is HTTP-specific.

The protocol-independent version shown in Table 4-4 has methods for

� Finding the host name and IP address of the client

� Retrieving request parameters

� Getting and setting attributes

� Getting the input and output streams

Method Description

void
doTrace(HttpServletRequest
request, HttpServletResponse
response) throws
ServletException, IOException

Called by the servlet engine to process
an HTTP TRACE request. Causes
the request headers to be echoed as
response headers. It’s unlikely that
a servlet will need to override this
method because the HttpServlet
method already implements the
functionality required by the HTTP
specification.

void
service(HttpServletRequest
request, HttpServletResponse
response) throws
ServletException, IOException

An intermediate method called
by service(Request request,
Response response) with
HTTP-specific request and response
objects. This is the method that actually
directs the request to doGet(),
doPost(), and so forth. It shouldn’t
be necessary to override this method.

void service(Request request,
Response response) throws
ServletException, IOException

Casts the request and response objects
to their HTTP-specific subclasses and
invokes the HTTP-specific service()
method.

Table 4-3. Methods in the HttpServlet Class (continued)

TH
E

W
EB

P
R

O
G

R
A

M
M

IN
G

EN
V
IR

O
N

M
EN

T
C h a p t e r 4 : I n t r o d u c t i o n t o S e r v l e t s 37

Method Description

Object getAttribute
(String name)

Returns the request attribute with the
specified name, or null if it doesn’t
exist. Attributes can be those set by the
servlet engine or those explicitly added
with setAttribute(). The latter
method is useful in connection with
a RequesetDispatcher object.

Enumeration
getAttributeNames()

Returns an Enumeration of the
names of all attributes in this request.
Returns an empty Enumeration if no
attributes exist.

String getCharacterEncoding() Returns the character encoding used by
this request.

int getContentLength() Specifies the length of the input stream,
if any. If not known, returns -1.

ServletInputStream
getInputStream() throws
IOException

Returns the (binary) input stream
associated with this request, if any.
Either getInputStream() or
getReader() may be called, but
not both.

String getParameter
(String name)

Returns the specified input parameter,
or null, if it doesn’t exist.

Enumeration
getParameterNames()

Returns a possibly empty
Enumeration of the names
of all parameters in this request.

String[] getParameterValues
(String name)

Returns an array of values for the
specified input parameter name,
or null, if no values exist. Useful
in the case of parameters that can have
multiple values (the HTTP checkbox
element, for example).

String getProtocol() Returns the name and version of the
protocol used by this request.

Table 4-4. Methods in the ServletRequest Class

38 J S P : T h e C o m p l e t e R e f e r e n c e

Method Description

String getScheme() Returns the substring of the request
URL up to, but not including, the first
colon (http, for example).

String getServerName() Returns the host name of the server
processing the request.

int getServerPort() Returns the port number on which the
receiving host is listening.

BufferedReader getReader()
throws IOException

Returns a character reader for input
data associated with this request. Either
this method or getInputStream()
may be called, but not both.

String getRemoteAddr() Returns the numeric IP address of the
client host.

String getRemoteHost() Returns the name of the client host,
if known.

void setAttribute
(String name, Object obj)

Stores a reference to the specified object
in the request under the specified name.

void remoteAttribute
(String name)

Removes the specified attribute from
the request.

Locale getLocale() Returns the client’s preferred locale,
if known, else null.

Enumeration getLocales() Returns an Enumeration of the
client’s preferred locales, if known;
otherwise, returns the server’s
preferred locale.

boolean isSecure() Returns true if the request was made
using a secure channel, such as HTTPS.

RequestDispatcher
getRequestDispatcher
(String name)

Returns a RequestDispatcher object
for the specified resource name. See
Chapter 8 for details about request
dispatching.

Table 4-4. Methods in the ServletRequest Class (continued)

The HttpServletRequest subinterface in Table 4-5 adds methods to handle

� Reading and writing HTTP headers

� Getting and setting cookies

� Getting path information

� Identifying the HTTP session, if any

C h a p t e r 4 : I n t r o d u c t i o n t o S e r v l e t s 39
TH

E
W

EB
P

R
O

G
R

A
M

M
IN

G
EN

V
IR

O
N

M
EN

T

Method Description

String getAuthType() If the servlet is protected by an
authentication scheme, such as HTTP
Basic Authentication, returns the
name of the scheme.

String getContextPath() Returns the prefix of the URI that
designates the servlet context (Web
application).

Cookie[] getCookies() Returns an array of the cookies
associated with this request.

long getDateHeader
(String name)

A convenience version of
getHeader() that converts
its output to a long value suitable
for constructing a Date object.

String getHeader
(String name)

Returns the value of the specified
HTTP header, if it was supplied
with this request. The name is
case-insensitive.

Enumeration getHeaderNames() Returns an Enumeration of the names
of all HTTP headers supplied with
this request.

Enumeration getHeaders
(String name)

Returns an Enumeration of the values
of all HTTP headers of the specified
type supplied with this request.
Useful for headers that can have
multiple values.

Table 4-5. Methods in the HttpServletRequest Interface

40 J S P : T h e C o m p l e t e R e f e r e n c e

Method Description

int getIntHeader(String name) A convenience version of
getHeader() that converts
its output to an int value.

String getMethod() Returns the HTTP request method
(for example, GET, POST, and so forth).

String getPathInfo() Returns any additional path
information specified in the URL.

String getPathTranslated() Returns any additional path
information specified in the URL,
translated into a real path.

String getQueryString() Returns the query string—that portion
of the URL following the “?”, if any.

String getRemoteUser() Returns the name of the remote user,
if the user has been authenticated,
else null.

String getRequestedSessionId() Returns the session ID returned by
the client.

String getRequestURI() Returns the portion of the URL
beginning with “/” and the context,
up to, but not including, any query
string.

String getServletPath() Returns the substring of the request
URI that follows the context.

HttpSession getSession() Convenience method that calls
getSession(true).

HttpSession getSession
(boolean create)

Returns the current HTTP session,
creating a new one if one doesn’t exist
and the create parameter is true.

Principal getPrincipal() Returns a
java.security.Principal
object representing the current
user if the user has been
authenticated, else null.

Table 4-5. Methods in the HttpServletRequest Interface (continued)

Servlet Response
The function of the servlet response object is to convey results generated by a servlet
back to the client that made the request. A ServletResponse operates mainly as a
wrapper for an output stream, as well as information about its content type and length.
It’s created by the servlet engine and passed to the servlet as the second parameter of
the service() method.

Like the servlet request, the servlet response has both generic protocol-independent
class and an HTTP-specific one. Table 4-6 describes the methods available in the
generic version.

C h a p t e r 4 : I n t r o d u c t i o n t o S e r v l e t s 41
TH

E
W

EB
P

R
O

G
R

A
M

M
IN

G
EN

V
IR

O
N

M
EN

T

Method Description

boolean
isRequestedSessionIdFromCookie()

Returns true if the requested session
ID was supplied by a Cookie object,
false otherwise.

boolean
isRequestedSessionIdFromURL()

Returns true if the requested session
ID was encoded in the request URL,
false otherwise.

boolean
isRequestedSessionIdValid()

Returns true if the session ID
returned by the client is still valid.

boolean isUserInRole
(String role)

Returns true if the currently
authenticated user is associated with
the specified role. Returns false if
not, or if the user isn’t authenticated.

Table 4-5. Methods in the HttpServletRequest Interface (continued)

Method Description

void flushBuffer() throws
IOException

Sends the contents of the output buffer
to the client. Because HTTP requires
headers to be sent before content,
calling this method sends the status
line and response headers, committing
the request.

Table 4-6. Methods in the ServletResponse Interface

42 J S P : T h e C o m p l e t e R e f e r e n c e

Method Description

int getBufferSize() Returns the buffer size used by the
response, or 0 if buffering isn’t in effect.

String getCharacterEncoding() Returns the name of the character
encoding used for the response.
Unless explicitly set otherwise,
this corresponds to ISO-8859-1.

Locale getLocale() Returns the locale used for the response.
Unless modified with setLocale(),
this defaults to the server’s locale.

OutputStream getOutputStream()
throws IOException

Returns a stream that can be used to
write binary output to be returned
to the client. Either this method or
getWriter() can be called, but
not both.

Writer getWriter() throws
IOException

Returns a character writer that can be
used to write text output to be returned
to the client. Either this method or
getOutputStream() can be called,
but not both.

boolean isCommitted() Returns true if the status and response
headers have already been sent back
to the client. Setting headers in the
response after it’s committed has
no effect.

void reset() Clears the output buffer as well as
any response headers. Causes an
IllegalStateException if the
response has already been committed.

void setBufferSize
(int nBytes)

Sets the minimum buffer size for the
response. The actual buffer size may
be larger and can be obtained by a call
to getBufferSize(). If any output
has already been written, this method
throws an IllegalStateException.

Table 4-6. Methods in the ServletResponse Interface (continued)

The HTTP-specific subinterface HttpServletResponse adds methods for
manipulating the status code, status message, and response headers. (Appendix C
describes HTTP response headers in detail.) This allows it, for example, to be used to
send cookies or to redirect the user to another URL. It also provides for encoding the
HTTP session ID in URLs written to a Web page. Table 4-7 describes the methods in
HttpServletResponse.

TH
E

W
EB

P
R

O
G

R
A

M
M

IN
G

EN
V
IR

O
N

M
EN

T
C h a p t e r 4 : I n t r o d u c t i o n t o S e r v l e t s 43

Method Description

void addCookie(Cookie cookie) Causes a Set-Cookie header to be
added to the response.

void addDateHeader
(String name, long date)
void setDateHeader
(String name, long date)

Convenience methods that add a
response header with the specified
name (or replace all headers of
that name) using the specified date
value. The long integer date value
should be one suitable for the
java.util.Date(long time)
constructor.

void setHeader(String name,
String value)

Sets a response header with the
specified name and value.

Table 4-7. Methods in the HttpServletResponse Interface

Method Description

void setContentLength
(int length)

Sets the length of the content body.

void setContentType
(String type)

Sets the content type. In HTTP servlets,
this sets the Content-Type header.

void setLocale
(Locale locale)

Sets the locale to be used in the response.
In HTTP servlets, this may affect the
Content-Type header value.

Table 4-6. Methods in the ServletResponse Interface (continued)

44 J S P : T h e C o m p l e t e R e f e r e n c e

Besides additional methods, HttpServletResponse also defines integer
constants for each possible HTTP response code.

Servlet Context
A servlet context is an interface supplied by the servlet engine to provide services to a
Web application. The servlets in the Web application can use the servlet context to get

Method Description

void addIntHeader(String name,
int value)
void setIntHeader(String name,
int value)

Adds a response header with the
specified name (or replaces all headers
of that name) using the specified
integer value.

boolean containsHeader(String
name)

Returns true if the response already
contains a header by this name.

String
encodeRedirectURL(String url)
String encodeURL(String url)

Adds the session ID to the URL unless
the client is known to accept cookies.
The first form should be called only
for URLs intended to be used in
sendRedirect(). Other URLs
to be encoded should be passed to
encodeURL() instead.

void sendError(int status)
void sendError(int status,
String msg)

Sets the response status code
to the specified value (and,
optionally, the status message).
HttpServletResponse defines a
complete set of integer constants for
the valid status values.

void setStatus(int status) Sets the response status code to the
specified value. Should only be used
for responses that don’t indicate an
error. Error responses should use
sendError() instead.

Table 4-7. Methods in the HttpServletResponse Interface (continued)

� The capability to store and retrieve attributes between invocations, and to share
these attributes with other servlets.

� The capability to read the contents of files and other static resources in the
Web application.

� A means to dispatch requests to each other.

� A facility for logging errors and informational messages.

The servlet context has a name (the name of the Web application it belongs to), which is
uniquely mapped to a directory in the file system.

A servlet can get a reference to the servlet context by invoking the
getServletContext() method on the ServletConfig object that
was passed to init(). If the servlet subclasses GenericServlet directly or
indirectly, it can use the inherited convenience method getServetContext().3

Table 4-8 outlines the methods provided by ServletContext.

C h a p t e r 4 : I n t r o d u c t i o n t o S e r v l e t s 45
TH

E
W

EB
P

R
O

G
R

A
M

M
IN

G
EN

V
IR

O
N

M
EN

T

Method Description

Object getAttribute
(String name)
void setAttribute
(String name, Object obj)

Returns the object bound to the specified
name in the servlet context or binds an
object using the specified name. Such
objects are global, from the standpoint
of the Web application, because they
can be accessed by the same servlet at
another time or by any other servlet in
the context.

Enumeration
getAttributeNames()

Returns an Enumeration of the names
of all attributes stored in the servlet
context.

Table 4-8. Methods in the ServletContext Interface

3 JSP pages have it even easier—a reference to the servlet context is automatically stored in the implicit
variable application.

46 J S P : T h e C o m p l e t e R e f e r e n c e

Method Description

ServletContext
getContext(String uripath)

Returns the servlet context that is
mapped to another URI. on the same
server. The URI must be an absolute
path beginning with “/”.

String getInitParameter
(String name)

Returns the value of the specified
context-wide initialization parameter.
This isn’t the same as the method of the
same name in ServletConfig, which
applies only to specific servlet for which
it is coded. Instead, it’s a parameter that
applies to all servlets in the context.

Enumeration
getInitParameterNames()

Returns a (possibly empty) Enumeration
of the names of all the context-wide
initialization parameters.

int getMajorVersion()
int getMinorVersion()

Returns the major and minor version
numbers of the level of the servlet API
supported by this context.

String getMimeType
(String fileName)

Returns the MIME type of the specified
filename. Typically based on the file
extension, rather than the contents of
the file itself (which needn’t necessarily
exist). May return null if the MIME
type is unknown.

RequestDispatcher
getNamedDispatcher
(String name)
RequestDispatcher
getRequestDispatcher
(String path)

Returns a RequestDispatcher for
the servlet or JSP page having the
specified name or path, or null if
the RequestDispatcher cannot be
created. The path, if specified, must
begin with “/” and be relative to the
top of the servlet context.

String getRealPath
(String path)

Given a URI, returns the absolute path
in the file system the URI corresponds to,
or null if the mapping cannot be made.

Table 4-8. Methods in the ServletContext Interface (continued)

TH
E

W
EB

P
R

O
G

R
A

M
M

IN
G

EN
V
IR

O
N

M
EN

T

Threading Models
By default, the servlet engine loads only a single instance of a servlet. Requests
serviced by the servlet are run in separate threads, but share the same instance and,
therefore, the same instance variables. This fact has several implications, most notably
that instance variables are not thread safe. For example, look at the following servlet:

package jspcr.servlets;

import java.io.*;

import java.sql.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

/**

* Bad example! Don't try this at home.

*/

public class ColliderServlet extends HttpServlet

C h a p t e r 4 : I n t r o d u c t i o n t o S e r v l e t s 47

Method Description

URL getResource(String path)

InputStream
getResourceAsStream
(String path)

Returns a URL corresponding to the
specified absolute path relative to the
servlet context, or an input stream for
reading that URL. Returns null if no
such resource exists.

String getServerInfo() Returns the name and version number
of the servlet engine.

void log(String message)
void log(String message,
Throwable t)

Writes a message to the servlet log,
including a stack trace, if a Throwable
parameter is supplied.

void removeAttribute
(String name)

Removes the specified attribute from the
servlet context.

Table 4-8. Methods in the ServletContext Interface (continued)

48 J S P : T h e C o m p l e t e R e f e r e n c e

{

private Connection con;

public void doGet(

HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException

{

try {

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

con = DriverManager.getConnection("jdbc:odbc:usda");

// ... run some lengthy database operation here

}

catch (Exception e) {

throw new ServletException(e.getMessage());

}

}

}

Consider what happens when two requests arrive in separate threads a few hundred
milliseconds apart. The first one opens the database connection and stores a reference
to it in the con instance variable. It then uses the connection to perform a table update
or some other database operation. Meanwhile, the second request arrives and opens
another connection and stores a reference to it in the same con instance variable. If the
first operation finishes and tries to do another database operation, it no longer has its
original connection object—it only knows about the second one. Bad things then happen
when it tries to use the second connection.

The same type of problem with instance variables can occur in servlets that call
other methods from within their service method. If these other methods try to access
the servlet request, response, or any object created in the service method that has been
saved in an instance variable, there’s no way to guarantee a request in another thread
won’t corrupt the variables by storing references to its own objects in them4.

The safest approach is simply not to use instance variables, only local variables
defined inside the service method.

4 This particular problem can be solved by using a private class (essentially a data structure) to hold all
objects of interest, and then passing this class as a parameter to the subsidiary methods.

TH
E

W
EB

P
R

O
G

R
A

M
M

IN
G

EN
V
IR

O
N

M
EN

T

SingleThreadModel
Although the single instance multiple thread model is the default, a servlet can change
this behavior by implementing SingleThreadModel. This interface, which has no
methods, informs the servlet engine that it should create a pool of instances and allocate
each incoming request to its own instance and thread. This guarantees no two requests
handled by the same instance will overlap in their execution of the service method. Thus,
instance variables can only be affected by one request at a time, making them thread
safe. Note, because multiple instances may exist, however, there’s nothing to prevent
them from executing concurrently in different threads. If they access external resources
like files or database connections, therefore, they can still come into conflict. There are
few situations in which SingleThreadModel solves a problem that couldn’t be handled
better by other means.

HTTP Sessions
Although navigating through a Web page may seem like a conversation between client
and server, in most cases, it isn’t. Typically, a Web client requests an HTML document,
which is located by the server and transmitted back to the client. If image links are in
the HTML, the client (if it’s a Web browser) will make additional requests to the server
for each image. If the user clicks a hyperlink in the page, the client issues a new HTTP
request for it, but all this happens one request at a time. Between each request, the
server moves on to handle other requests, forgetting all about the first client. No
back-and-forth exchange of commands and data occurs, only a request followed
by a response and a disconnect.5

For basic downloading of static documents, this is adequate. However, applications
like shopping carts or iterative search engines need to maintain active objects on the
server that are associated with particular clients. It may take several requests to build
these objects. In this case, a need exists to keep track of to which client the objects
are bound.

Several approaches can be used to solve this problem. Most of them involve
maintaining the object itself on the server, assigning it a unique key the client is
asked to remember. In each subsequent related request, the client passes back the
key, which enables the server to reestablish the context.

This is similar to booking an airline ticket over the telephone. The ticket agent
asks the customer for her name, address, and flight information, entering all this into
a data entry application that assigns a confirmation number, which is reported back

C h a p t e r 4 : I n t r o d u c t i o n t o S e r v l e t s 49

5 HTTP 1.1 does provide a means for connections to persist for a few seconds, so that, for example,
HTML and associated images can be downloaded efficiently. This requires both the client and server
to know about the capability and request it explicitly. The request/response protocol itself, however,
is the same.

to the customer. Later on, if the customer needs to call back and change anything, she
supplies the confirmation number, which allows the ticket agent to access and update
the original record.

How can the client be induced to remember and supply the key when required?
Several means exist:

� Cookies The server can send a Set-Cookie header in its initial response,
with the session ID as the value of the cookie6. On subsequent requests, the
client can return the value with a Cookie header. However, individual users
might choose to turn off their browser’s cookie capability, so this technique isn’t
guaranteed to work.

� Appending the session ID to the URL For hyperlinks in Web pages created
by a dynamic process, the session ID can be encoded as a request parameter in
the URL. This doesn’t require cookies to be enabled, but it does require every
clickable URL to be so encoded. If one is overlooked (an easy thing to do), the
session link is lost.

� Hidden fields If the application consists of a series of HTML forms using
submit buttons for navigation, the session ID can be stored as a hidden field
that is retrieved with request.getParameter(). Obviously, this only works
if the forms are all dynamically generated.

The HttpSession Interface
The servlet API provides a convenient wrapper around these various techniques called an
HTTP Session. A hashtable-like interface named javax.servlet.http.HttpSession
has setAttribute() and getAttribute() methods that store and retrieve objects
by name. HttpSession provides a session ID key that a participating client stores and
returns on subsequent requests in the same session. The servlet engine looks up the
appropriates session object and makes it available to the current request. Table 4-9
lists the methods available in HttpSession.

50 J S P : T h e C o m p l e t e R e f e r e n c e

6 Cookies are name/value pairs sent by a Web server that have a specified life span. Client browsers
store cookies and return them automatically to the server each time the browser requests a page from
the same domain. More details about cookies can be found in the RFC 2109 specification.

The API also provides an HttpSessionBindingListener interface. Objects
that implement this interface must provide valueBound() and valueUnbound()
methods, which get invoked when the objects are added to or removed from an
HttpSession.

TH
E

W
EB

P
R

O
G

R
A

M
M

IN
G

EN
V
IR

O
N

M
EN

T
C h a p t e r 4 : I n t r o d u c t i o n t o S e r v l e t s 51

Method Description

Object getAttribute
(String name)
void setAttribute
(String name, Object value)
void removeAttribute
(String name)

Stores an object in the session under
the specified name, or returns or
removes an object by that name that
was previously stored.

Enumeration
getAttributeNames()

Returns an Enumeration of the names
of all attributes currently bound to the
session.

long getCreationTime()
long getLastAccessedTime()

Returns a long integer representing
the date and time at which the session
was created or last accessed. The
integer is in the form used by the
java.util.Date() constructor.

String getId() Returns the session ID, a unique key
assigned by the servlet engine.

int getMaxInactiveInterval()
void setMaxInactiveInterval
(int seconds)

Sets or returns the maximum number
of seconds the session will be kept alive
if no interaction occurs with the client.

void invalidate() Causes the session to expire and
unbinds any objects in it.

boolean isNew() Returns true if the client hasn’t yet
joined the session. This is true when
the session is first created and the
session ID is passed to the client, but
the client hasn’t made a second request
that includes the session ID.

Table 4-9. Methods in the HttpSession Interface

Summary
Java servlets are extensions to a Web server that allow Web content to be created
dynamically in response to a client request. They are managed by a servlet engine,
which loads and initializes them, passes them a number of requests for servicing,
and then unloads them. Servlets have key advantages over other server-side
programming environments:

� Better performance because they remain resident and can run in multiple
threads simultaneously

� Simplicity because they require no client software installation other than
a Web browser

� Session tracking

� Access to Java technology, including threading, networking, and database
connectivity

Servlets operate in a fixed lifecycle, providing callback methods to a servlet engine
for being initialized, handling requests, and terminating. The API provides two threading
models: the default being a single instance running multiple threads, and the alternative
single threaded model.

The principal classes and interfaces in the servlet API are

� The Servlet interface, which prescribes the callback methods that must be
implemented

� GenericServlet, a base class that implements the Servlet interface methods

� HttpServlet, an HTTP-specific subclass of GenericServlet

� ServletRequest, which encapsulates information about the client request

� ServletResponse, which provides access to an output stream for results to
be returned to the client

� The ServletContext interface, which allows a group of servlets to
interoperate with each other in a Web application

Servlets are the underlying technology for JSP pages. Understanding them is vital to
forming the mental model required to develop and debug in the JSP environment.

52 J S P : T h e C o m p l e t e R e f e r e n c e

Chapter 5
JSP Overview

53

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

A JavaServer page (JSP) is a template for a Web page that uses Java code to
generate an HTML document dynamically. JSPs are run in a server-side
component known as a JSP container, which translates them into equivalent

Java servlets.
For this reason, servlets and JSP pages are intimately related. What’s possible in one

is, in large part, also possible in another, although each technology has its individual
strengths. Because they are servlets, JSP pages have all the advantages of servlets:

� They have better performance and scalability than CGI scripts because they
are persistent in memory and multithreaded.

� No special client setup is required.

� They have built-in support for HTTP sessions, which makes application
programming possible.

� They have full access to Java technology–network awareness, threads, and
database connectivity—without the limitations of client-side applets.

But, in addition, JSP pages have advantages of their own:

� They are automatically recompiled when necessary.

� Because they exist in the ordinary Web server document space, addressing JSP
pages is simpler than addressing servlets.

� Because JSP pages are HTML-like, they have greater compatibility with Web
development tools.

This chapter provides an overview of JSP as a server-side scripting environment.
It describes the JSP container operations and walks through a complete example. Only
the basics are covered here; the six chapters of Part II consider JSP pages in-depth.

How JSP Works
A JSP page exists in three forms:

� JSP source code This is the form the developer actually writes. It exists in a
text file with an extension of .jsp, and consists of a mix of HTML template
code, Java language statements, and JSP directives and actions that describe
how to generate a Web page to service a particular request.

� Java source code The JSP container translates the JSP source code into the
source code for an equivalent Java servlet as needed. This source code is
typically saved in a work area and is often helpful for debugging.

� Compiled Java class Like any other Java class, the generated servlet code is
compiled into byte codes in a .class file, ready to be loaded and executed.

54 J S P : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 5 : J S P O v e r v i e w 55
TH

E
W

EB
P

R
O

G
R

A
M

M
IN

G
EN

V
IR

O
N

M
EN

T

The JSP container manages each of these forms of the JSP page automatically, based
on the timestamps of each file. In response to an HTTP request, the container checks to
see if the .jsp source file has been modified since the .java source was last compiled.
If so, the container retranslates the JSP source into Java source and recompiles it.

Figure 5-1 illustrates the process used by the JSP container. When a request for a JSP
page is made, the container first determines the name of the class corresponding to the
.jsp file. If the class doesn’t exist or if it’s older than the .jsp file (meaning the JSP

Figure 5-1. Logic used by a JSP container to manage JSP translation

56 J S P : T h e C o m p l e t e R e f e r e n c e

source has changed since it was last compiled), then the container creates Java source
code for an equivalent servlet and compiles it. If an instance of the servlet isn’t already
running, the container loads the servlet class and creates an instance. Finally, the
container dispatches a thread to handle the current HTTP request in the loaded instance.

A Basic Example
To illustrate how JSP works, let’s look at the same example used in the preceding
chapter—converting kilometers per liter to miles per gallon. Here’s the JSP page:

<%@ page session="false" %>

<%@ page import="java.io.*,java.text.*,java.util.*" %>

<%-- Prints a conversion table of miles per gallon

to kilometers per liter --%>

<%!

private static final DecimalFormat FMT

= new DecimalFormat("#0.00");

%>

<HTML>

<HEAD>

<TITLE>Fuel Efficiency Conversion Chart</TITLE>

</HEAD>

<BODY>

<H3>Fuel Efficiency Conversion Chart</H3>

<TABLE BORDER=1 CELLPADDING=3 CELLSPACING=0>

<TR>

<TH>Kilometers per Liter</TH>

<TH>Miles per Gallon</TH>

</TR>

<%

for (double kpl = 5; kpl <= 20; kpl += 1.0) {

double mpg = kpl * 2.352146;

%>

<TR>

<TD><%= FMT.format(kpl)%></TD>

<TD><%= FMT.format(mpg)%></TD>

</TR>

<%

}

%>

</TABLE>

</BODY>

</HTML>

Comparing this to the K2MServlet from Chapter 4, first note the JSP is shorter—33
lines versus 55 lines for the servlet. In addition, it looks more like a Web page. Much
of the HTML is recognizable as ordinary HTML. Also, to the Java programmer, it’s
apparent a loop of some kind exists in which the individual rows of the table are
produced. Finally, sets of special characters appear to mark the boundaries between
Java code and HTML template data. Don’t worry if you don’t understand what they
are—that is covered fully in Chapters 6, 7, and 8.

If you invoke this JSP page from a Web browser, you see the table shown in
Figure 5-2, which, not surprisingly, is the same as what the Chapter 4 servlet produced.

To make the JSP-to-servlet relationship clearer, look at the .java source code
generated by the JSP container. This code will differ greatly, depending on which

TH
E

W
EB

P
R

O
G

R
A

M
M

IN
G

EN
V
IR

O
N

M
EN

T
C h a p t e r 5 : J S P O v e r v i e w 57

Figure 5-2. Kilometers per liter to miles per gallon output from JSP page

container is used and the implementation approach it takes. The code listed here is
what was generated by JRun 3.0 (reformatted slightly for readability):

import javax.servlet.*;

import javax.servlet.http.*;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

import allaire.jrun.jsp.JRunJSPStaticHelpers;

import java.io.*;

import java.text.*;

import java.util.*;

public class jrun__Chap05__examples__K2M2ejsp18

extends allaire.jrun.jsp.HttpJSPServlet

implements allaire.jrun.jsp.JRunJspPage

{

private ServletConfig config;

private ServletContext application;

private Object page = this;

private JspFactory __jspFactory

= JspFactory.getDefaultFactory();

public void _jspService(

HttpServletRequest request,

HttpServletResponse response)

throws ServletException, java.io.IOException

{

if (config == null) {

config = getServletConfig();

application = config.getServletContext();

}

response.setContentType("text/html; charset=ISO-8859-1");

PageContext pageContext = __jspFactory.getPageContext

(this, request, response, null, false, 8192, true);

JspWriter out = pageContext.getOut();

try {

out.print("\r\n<HTML>\r\n"

+ "<HEAD>\r\n"

+ "<TITLE>Fuel Efficiency Conversion Chart</TITLE>\r\n"

+ "</HEAD>\r\n"

+ "<BODY>\r\n"

+ "<H3>Fuel Efficiency Conversion Chart</H3>\r\n"

58 J S P : T h e C o m p l e t e R e f e r e n c e

+ "<TABLE BORDER=1 CELLPADDING=3 CELLSPACING=0>\r\n"

+ "<TR>\r\n<TH>Kilometers per Liter</TH>\r\n"

+ "<TH>Miles per Gallon</TH>\r\n</TR>\r\n");

for (double kpl = 5; kpl <= 20; kpl += 1.0) {

double mpg = kpl * 2.352146;

out.print("\r\n<TR>\r\n <TD>");

out.print(FMT.format(kpl));

out.print("</TD>\r\n <TD>");

out.print(FMT.format(mpg));

out.print("</TD>\r\n</TR>\r\n");

}

out.print("\r\n</TABLE>\r\n</BODY>\r\n</HTML>\r\n");

}

catch (Throwable t) {

if (t instanceof ServletException)

throw (ServletException) t;

if (t instanceof java.io.IOException)

throw (java.io.IOException) t;

if (t instanceof RuntimeException)

throw (RuntimeException) t;

throw JRunJSPStaticHelpers.handleException

(t, pageContext);

} finally {

__jspFactory.releasePageContext(pageContext);

}

}

private static final DecimalFormat FMT

= new DecimalFormat("#0.00");

private static final String[] __dependencies__

= {"/Chap05/examples/K2M.jsp",null};

private static final long[] __times__ = {980969842306L,0L};

public String[] __getDependencies()

{

return __dependencies__;

}

public long[] __getLastModifiedTimes()

{

return __times__;

}

public int __getTranslationVersion()

{

C h a p t e r 5 : J S P O v e r v i e w 59
TH

E
W

EB
P

R
O

G
R

A
M

M
IN

G
EN

V
IR

O
N

M
EN

T

return 13;

}

}

A bit mechanical, as if it were generated by a computer program (which, of course, it
was), but still recognizable as a servlet, especially the middle part, which differs little
from the K2MServlet source code in Chapter 4.

As you see, building a mental model of this process is the key to successful JSP
development and debugging. With this backdrop, let’s proceed to Part II and explore
the elements of JSP more deeply.

60 J S P : T h e C o m p l e t e R e f e r e n c e

Part II
Elements of JSP

The next six chapters deal with the syntax and semantics of JSP, giving

you the skills necessary to create working code. Topics include basic

syntax, scriptlets, expressions, declarations, file inclusion, request

forwarding, and specifying page behavior. The concluding chapter

provides a detailed tutorial on JSP custom tags.

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This page intentionally left blank.

Chapter 6
JSP Syntax
and Semantics

63

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

64 J S P : T h e C o m p l e t e R e f e r e n c e

The purpose of this chapter is to give an overview of the basic components used
in JavaServer Pages, to describe how they are written, and to explain what they
do. This chapter reviews the JSP development model, and then introduces each

JSP element and considers how the element is used in this overall design. The chapter
concludes with an annotated example that illustrates the use of each element. In
covering this material, our concern is with the following:

� Syntax The coding structure used to represent the element so the JSP compiler
recognizes it

� Semantics The meaning of the element to the JSP containerwhat happens
when it is used

Each of the JSP elements described in this chapter is covered in greater detail in the
remaining chapters of Part II.

The JSP Development Model
Recall from Chapter 5 that a JSP page exists in three forms:

1. The .jsp source file containing HTML statements and JSP elements

2. The Java source code for a servlet program

3. The compiled Java class

To understand how JSP elements operate, it is important to build a mental model
of how these three objects are created and the relationship among them. First, the JSP
developer writes a .jsp source file and stores it somewhere in the document file system
of a Web server or Web application. In this respect, the .jsp source file is no different from
an ordinary HTML file. The URL by which it is known to the network is the same, except
its filename ends in .jsp instead of .html. Next, when the .jsp URL is invoked for the first
time, the JSP container reads the .jsp file, parses its contents, and generates the source
code for an equivalent Java servlet. It then compiles the servlet and creates a .class file.
Finally, the JSP container loads the servlet class and uses it to service the HTTP request.
The middle step (generating the servlet source code) is repeated for later requests only if
the .jsp file has been updated.

In this design, JSP elements can affect how the JSP container operates during two
operational phases:

� Translation time Generating the Java servlet source code from a .jsp file

� Request time Invoking the servlet to handle an HTTP request

Keeping this model in mind can help you understand the syntactical units of a JSP page
and what their capabilities might be.

C h a p t e r 6 : J S P S y n t a x a n d S e m a n t i c s 65
ELEM

EN
TS

O
F

JS
P

Components of a JSP Page
A .jsp file can contain JSP elements, fixed template data, or any combination of the two.
JSP elements are instructions to the JSP container about what code to generate and how
it should operate. These elements have specific start and end tags that identify them
to the JSP compiler. Template data is everything else that is not recognized by the JSP
container. Template data (usually HTML) is passed through unmodified, so the HTML
that is ultimately generated contains the template data exactly as it was coded in the
.jsp file.

Three types of JSP elements exist:

� Directives

� Scripting elements, including expressions, scriptlets, and declarations

� Actions

Let’s consider each of these elements in more detail.

Directives
Directives are instructions to the JSP container that describe what code should be
generated. They have the general form

<%@ directive-name [attribute="value" attribute="value" ...] %>

Zero or more spaces, tabs, and newline characters can be after the opening <%@ and
before the ending %>, and one or more whitespace characters can be after the directive
name and between attributes/value pairs. The only restriction is that the opening <%@
tag must be in the same physical file as the ending %> tag.

The JSP 1.1 specification describes three standard directives available in all compliant
JSP environments:

� page

� include

� taglib

Although the specification declares that no custom directives can be used in the JSP 1.1
environment, this leaves open the possibility that user-defined directives may be included
in a later specification.

The next three sections provide an overview of each of these directives.

The page Directive
The page directive is used to specify attributes for the JSP page as a whole. It has the
following syntax:

<%@ page [attribute="value" attribute="value" ...] %>

where the attributes are any of those listed in Table 6-1.

66 J S P : T h e C o m p l e t e R e f e r e n c e

Attribute Value

language The language used in scriptlets, expressions, and
declarations. In JSP 1.1, the only valid value for this
attribute is java.

extends The fully qualified name of the superclass of this JSP page.
This must be a class that implements the HttpJspPage
interface. The JSP specification warns against the use of this
attribute without fully understanding its implications.

import A comma-separated list of one or more package.* names
and/or fully qualified class names. This list is used to create
corresponding import statements in the generated Java
servlet. The following packages are automatically included
and need not be specified:
java.lang.*
java.servlet.*
java.servlet.jsp.*
java.servlet.http.*

session true or false, indicating whether the JSP page requires an
HTTP session. If the value is true, then the generated servlet
will contain code that causes an HTTP session to be created
(or accessed, if it already exists). The default value is true.

buffer Specifies the size of the output buffer. Valid entries are nnnkb
or none, where nnn is the number of kilobytes allocated for
the buffer. The default value is 8kb.

autoflush true if the buffer should be automatically flushed when it is
full, or false if a buffer overflow exception should be thrown.
The default value is true.

Table 6-1. Attributes of the Page Directive

More than one page directive can be in a file and the attributes specified collectively
apply to the whole file, but no attribute can be specified more than once, with the
exception of the import attribute.

Chapter 10 covers the page directive in more detail.

The include Directive
The include directive merges the contents of another file at translation time into the .jsp
source input stream, much like a #include C preprocessor directive. The syntax is

<%@ include file="filename" %>

where filename is an absolute or relative pathname interpreted according to the current
servlet context. Examples would be

<%@ include file="/header.html" %>

<%@ include file="/doc/legal/disclaimer.html" %>

<%@ include file="sortmethod" %>

ELEM
EN

TS
O

F
JS

P
C h a p t e r 6 : J S P S y n t a x a n d S e m a n t i c s 67

Attribute Value

isThreadSafe true if the page can handle simultaneous requests
from multiple threads, or false if it cannot. If false,
the generated servlet declares that it implements the
SingleThreadModel interface.

info A string that will be returned by the page’s
getServletInfo() method.

isErrorPage true if this page is intended to be used as another JSP’s error
page. In that case, this page can be specified as the value of
the errorPage attribute in the other page’s page directive.
Specifying true for this attribute makes the exception implicit
variable available to this page. The default value is false.

errorPage Specifies the URL of another JSP page that will be invoked
to handle any uncaught exceptions. The other JSP page
must specify isErrorPage="true" in its page directive.

contentType Specifies the MIME type and, optionally, the character
encoding to be used in the generated servlet.

Table 6-1. Attributes of the Page Directive (continued)

The include directive contrasts with the <jsp:include> action described later in
this chapter, which merges the output of another file at request time into the response
output stream. Either element can be used to include standard headers and footers or
other common text in JSP pages. Chapter 8 examines both approaches in detail.

The taglib Directive
The taglib directive makes custom actions available in the current page through the use
of a tag library. The syntax of the directive is

<%@ taglib uri="tagLibraryURI" prefix="tagPrefix" %>

where the attributes are those listed here:

Attribute Value

tagLibraryURI The URL of a Tag Library Descriptor.

tagPrefix A unique prefix used to identify custom tags used later in
the page.

For example, if the following directive is used,

<%@ taglib uri="/tlds/FancyTableGenerator.tld" prefix="ft" %>

and if FancyTableGenerator.tld defines a tag named table, then the page can
contain tags of the following type

<ft:table>

...

</ft:table>

JSP tag extensions are considered in detail in Chapter 11.

Comments
The JSP specification provides two means of including comments in a JSP page: one for
hidden comments only visible in the JSP page itself and one for comments included in
the HTML or XML output generated by the page. The former type has the syntax

<%-- This is a hidden JSP comment - -%>

and the latter looks like this:

<!-- This is included in the generated HTML - ->

68 J S P : T h e C o m p l e t e R e f e r e n c e

When the JSP compiler encounters the start tag <%- - of a JSP comment, it ignores
everything from that point in the file until it finds the matching end tag - -%>. This
means JSP comments can be used to disable (or "comment out") sections of the JSP page.
This is a time-honored technique for temporarily enabling and disabling parts of a
program without making major modifications to the source code. In addition, however,
it means JSP comments cannot be nested because the end tag of an inner comment
would be interpreted as marking the end of the outer comment.

The other comment type uses the normal HTML or XML comment tag. Comments
of this type are passed through unaltered to the response output stream and are included
in the generated HTML. They are invisible in the browser window, but can be seen by
invoking the View Source menu option.

If the purpose of a comment is to enlighten the person viewing it, the second comment
type seems less useful than the first for two reasons: it is found in HTML generated by
a program and it is typically never seen by a human. However, because these HTML
comments are computer-generated, they can incorporate version numbers, dates,
and other identifying numbers that may be useful to technical support personnel
in troubleshooting applications. For example, these three lines included in a JSP page

<!--

Remote address was <%= request.getRemoteAddr() %>

-->

would record the remote address of the user making a Web request without cluttering the
output. If something goes wrong with the application, technical support personnel can
instruct the user to view the generated HTML source and report the identifying data.

Expressions
JSP provides a simple means for accessing the value of a Java variable or other expression
and merging that value with the HTML in the page. The syntax is

<%= exp %>

where exp is any valid Java expression. The expression can have any data value, as long
as it can be converted to a string. This conversion is usually done simply by generating
an out.print() statement. For example, the JSP code

The current time is <%= new java.util.Date() %>

may generate the servlet code

ELEM
EN

TS
O

F
JS

P
C h a p t e r 6 : J S P S y n t a x a n d S e m a n t i c s 69

out.write("The current time is ");

out.print(new java.util.Date());

out.write("\r\n");

Understanding what code is generated can help you remember not to put a semicolon
inside an expression.

Chapter 7 discusses expressions in more detail.

Scriptlets
A scriptlet is a set of one or more Java language statements intended to be used to
process an HTTP request. The syntax of a scriptlet is

<% statement; [statement; ...] %>

The JSP compiler simply includes the contents of scriptlet verbatim in the body of the
_jspService() method. A JSP page may contain any number of scriptlets. If multiple
scriptlets exist, they are each appended to the _jspService() method in the order in
which they are coded. This being the case, a scriptlet may contain an open curly brace
that is closed in another scriptlet. Consider the following JSP page, which produces a
Fahrenheit to Celsius temperature conversion table:

<%@ page import="java.text.*" %>

<TABLE BORDER=0 CELLPADDING=3>

<TR>

<TH>Degrees
Fahrenheit</TH>

<TH>Degrees
Celsius</TH>

</TR>

<%

NumberFormat fmt = new DecimalFormat("###.000");

for (int f = 32; f <= 212; f += 20) {

double c = ((f - 32) * 5) / 9.0;

String cs = fmt.format(c);

%>

<TR>

<TD ALIGN="RIGHT"><%= f %></TD>

<TD ALIGN="RIGHT"><%= cs %></TD>

</TR>

<%

}

%>

</TABLE>

70 J S P : T h e C o m p l e t e R e f e r e n c e

The example code contains two scriptlets: one for the main body of the loop and
one for the closing curly brace. Between the two scriptlets is the HTML markup for a
single table row, using JSP expressions to access the values. The generated servlet code
converts the scriptlets and what is between them to

NumberFormat fmt = new DecimalFormat("###.000");

for (int f = 32; f <= 212; f += 20) {

double c = ((f - 32) * 5) / 9.0;

String cs = fmt.format(c);

out.write("\r\n<TR>\r\n<TD ALIGN=\"RIGHT\">");

out.print(f);

out.write("</TD>\r\n");

out.write("\r\n<TD ALIGN=\"RIGHT\">");

out.print(cs);

out.write("</TD>\r\n");

out.write("</TR>\r\n");

}

which produces the following output:

Degrees Degrees
Fahrenheit Celsius

32 .000
52 11.111
72 22.222
92 33.333
112 44.444
132 55.556
152 66.667
172 77.778
192 88.889
212 100.000

Scriptlets are explored at length in Chapter 7.

Declarations
Like scriptlets, declarations contain Java language statements, but with one big difference:
scriptlet code becomes part of the _jspService() method, whereas declaration code is
incorporated into the generated source file outside the _jspService() method. The
syntax of a declaration section is

<%! statement; [statement; ...] %>

ELEM
EN

TS
O

F
JS

P
C h a p t e r 6 : J S P S y n t a x a n d S e m a n t i c s 71

Declaration sections can be used to declare class or instance variables, methods, or
inner classes. Unlike scriptlets, they have no access to the implicit objects described in the
next section. If you use a declaration section to declare a method that needs to use the
request object, for example, you need to pass the object as a parameter to the method.

The following shows an example of a JSP page that uses a declaration section:

<%@ page

errorPage="ErrorPage.jsp"

import="java.io.*,java.util.*"

%>

<%

Enumeration enames;

Map map;

String title;

// Print the request headers

map = new TreeMap();

enames = request.getHeaderNames();

while (enames.hasMoreElements()) {

String name = (String) enames.nextElement();

String value = request.getHeader(name);

map.put(name, value);

}

printTable(out, map, "Request Headers");

// Print the session attributes

map = new TreeMap();

enames = session.getAttributeNames();

while (enames.hasMoreElements()) {

String name = (String) enames.nextElement();

String value = "" + session.getAttribute(name);

map.put(name, value);

}

printTable(out, map, "Session Attributes");

%>

<%-- Define a method to print a table --%>

72 J S P : T h e C o m p l e t e R e f e r e n c e

<%!

private static void printTable

(Writer writer, Map map, String title)

{

// Get the output stream

PrintWriter out = new PrintWriter(writer);

// Write the header lines

out.println("<TABLE BORDER=1 CELLPADDING=3>");

out.println

("<TR><TH COLSPAN=2>" + title + "</TH></TR>");

// Write the table rows

Iterator imap = map.entrySet().iterator();

while (imap.hasNext()) {

Map.Entry entry = (Map.Entry) imap.next();

String key = (String) entry.getKey();

String value = (String) entry.getValue();

out.println("<TR>");

out.println("<TD>" + key + "</TD>");

out.println("<TD>" + value + "</TD>");

out.println("</TR>");

}

// Write the footer lines

out.println("</TABLE>");

out.println("<P>");

}

%>

This JSP page collects data for two tables: the HTTP headers passed to the request
object and the session attributes. The desired output for each is a nicely formatted HTML
table. Of course, the tables could be created while iterating through the data rows, but
this would require duplicating the formatting code. Instead, a private static method
named printTable()is used, passing it a reference to the output stream, a Map object
containing the key/value pairs, and the table caption.

Chapter 8 discusses declarations in greater detail.

C h a p t e r 6 : J S P S y n t a x a n d S e m a n t i c s 73
ELEM

EN
TS

O
F

JS
P

74 J S P : T h e C o m p l e t e R e f e r e n c e

Implicit Objects
Although scriptlets, expressions, and HTML template data are all incorporated into
the _jspService() method, the JSP container writes the skeleton of the method
itself, initializing the page context and several useful variables. These variables are
implicitly available inside scriptlets and expressions (but not declarations). They can be
accessed like any other variable, but do not have to be declared first. For example, the
HttpServletRequest object passed to _jspService() is available under the name
request, as shown in the following scriptlet:

<%

String accountNumber = request.getParameter("acct");

if (accountNumber == null) {

// ... handle the missing account number problem

}

%>

Table 6-2 provides a complete list of implicit variables.

Variable Name Value

request The ServletRequest or HttpServletRequest
being serviced.

response The ServletResponse or HttpServletResponse
that will receive the generated HTML output.

pageContext The PageContext object for this page. This object is a
central repository for attribute data for the page, request,
session, and application.

session If the JSP page uses an HttpSession, it is available
here under the name session.

application The servlet context object.

Table 6-2. Implicit Variables

C h a p t e r 6 : J S P S y n t a x a n d S e m a n t i c s 75
ELEM

EN
TS

O
F

JS
P

Additional implicit variables can be created by means of a tag library. See Chapter 11
for discussion of this topic.

Standard Actions
Actions are high-level JSP elements that create, modify, or use other objects. Unlike
directives and scripting elements, actions are coded using strict XML syntax

<tagname [attr="value" attr="value" ...] > ... </tag-name>

or, if the action has no body, an abbreviated form:

<tagname [attr="value" attr="value" ...] />

XML syntax requires the following:

� Every tag must have matching end tag or use the short form /> previously shown

� Attribute values must be placed in quotes

� Tags must nest properly: <A> ... is legal, but <A> ...
 is not.

Seven standard actions are available in all JSP 1.1-compliant environments. These
actions are described at length in Chapter 15. Table 6-3 outlines the syntax.

Variable Name Value

out The character output stream used to generate the
output HTML.

config The ServletConfig object for this servlet context.

page A reference to the JSP page itself.

exception An uncaught exception that causes the error page to
be invoked. This variable is available only to pages
with isErrorPage="true".

Table 6-2. Implicit Variables (continued)

76 J S P : T h e C o m p l e t e R e f e r e n c e

Tag Name Description

<jsp:useBean> Declares a Java Bean instance and associates it with
a variable name. Syntax is
<jsp:useBean

id="name"
[type="type"]
[class="class"]
[beanName="beanName"]
[scope="page|request|session|application"]>

...</jsp:useBean>

<jsp:setProperty> Sets the values of one or more properties of a bean
previously declared with <jsp:useBean>. Syntax is
<jsp:setProperty

name="id"
prop-expression/>

where prop-expression is one of the following:
property="*"
property="propName"
property="propName" param="parameterName"
property="propName" value="value"
property="propName" value=<%= expression %>

<jsp:getProperty> Returns the value of the specified property of a bean.
Syntax is
<jsp:getProperty name="id" property="name" />

<jsp:include> Invokes another resource and merges its output
stream with the JSP page output stream. Syntax is
<jsp:include page="URL" flush="true" />
or, if parameters need to be passed:

<jsp:include page="URL" flush="true">
<jsp:param … />
<jsp:param … />
...
<jsp:param ... />
</jsp:include>

Table 6-3. Standard Actions

C h a p t e r 6 : J S P S y n t a x a n d S e m a n t i c s 77
ELEM

EN
TS

O
F

JS
P

Tag Name Description

<jsp:forward> Forwards this HTTP request to another JSP page or
servlet for processing. Syntax is
<jsp:forward page="URL" />
or, if parameters need to be passed:
<jsp:forward page="URL">
<jsp:param ... />
<jsp:param ... />
...
<jsp:param ... />
</jsp:forward>

<jsp:param> Binds a value to a name and passes the binding to
another resource invoked with <jsp:include> or
<jsp:forward>. Syntax is
<jsp:param name="name" value="value" />

<jsp:plugin> Used to generate the appropriate HTML linkage for
downloading the Java plugin:
<jsp:plugin
type="bean|applet"
code="objectCode"
codebase="objectCodebase"
{ align="alignment" }
{ archive="archiveList" }
{ height="height" }
{ hspace="hspace" }
{ jreversion="jreversion" }
{ name="componentName" }
{ vspace="vspace" }
{ width="width"}
{ nspluginurl="url" }
{ iepluginurl="url" } >
{ <jsp:params>
{ <jsp:param name="name" value="value" />
}+</jsp:params> }}</jsp:plugin>

Table 6-3. Standard Actions (continued)

Tag Extensions
In addition to the standard actions listed in Table 6-3, the JSP author can write custom
tags to extend JSP functionality of JSP. Chapter 11 is devoted to tag extensions.

A Complete Example
An example of a JSP page that incorporates all the elements introduced here concludes
this chapter. The page is named Echo.jsp. Its sole function is to pass back to the client
browser an HTML table containing the HTTP request headers the browser sent. The
listing is shown in the following:

<%@ page import="java.util.*" %>

<HTML>

<HEAD>

<TITLE>Echo</TITLE>

<STYLE>

<jsp:include page="style.css" flush="true"/>

</STYLE>

</HEAD>

<BODY>

<H3>HTTP Request Headers Received</H3>

<TABLE BORDER="1" CELLPADDING="4" CELLSPACING="0">

<%

Enumeration eNames = request.getHeaderNames();

while (eNames.hasMoreElements()) {

String name = (String) eNames.nextElement();

String value = normalize(request.getHeader(name));

%>

<TR> <TD><%= name %></TD> <TD><%= value %></TD> </TR>

<%

}

%>

</TABLE>

</BODY>

</HTML>

<%!

private String normalize(String value)

{

78 J S P : T h e C o m p l e t e R e f e r e n c e

StringBuffer sb = new StringBuffer();

for (int i = 0; i < value.length(); i++) {

char c = value.charAt(i);

sb.append(c);

if (c == ';')

sb.append("
");

}

return sb.toString();

}

%>

When Echo.jsp is first invoked, it creates the following Java source code:

package Chap_00030_00035;

import javax.servlet.*;

import javax.servlet.http.*;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

import java.io.PrintWriter;

import java.io.IOException;

import java.io.FileInputStream;

import java.io.ObjectInputStream;

import java.util.Vector;

import org.apache.jasper.runtime.*;

import java.beans.*;

import org.apache.jasper.JasperException;

import java.util.*;

public class

_0002fChap_00030_00035_0002fEcho_0002ejspEcho_jsp_5

extends HttpJspBase

{

// begin [file="Echo.jsp";from=(27,3);to=(39,0)]

private String normalize(String value)

{

StringBuffer sb = new StringBuffer();

for (int i = 0; i < value.length(); i++) {

char c = value.charAt(i);

sb.append(c);

C h a p t e r 6 : J S P S y n t a x a n d S e m a n t i c s 79
ELEM

EN
TS

O
F

JS
P

if (c == ';')

sb.append("
");

}

return sb.toString();

}

// end

static {

}

public

_0002fChap_00030_00035_0002fEcho_0002ejspEcho_jsp_5()

{

}

private static boolean _jspx_inited = false;

public final void _jspx_init() throws JasperException

{

}

public void _jspService(

HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException

{

JspFactory _jspxFactory = null;

PageContext pageContext = null;

HttpSession session = null;

ServletContext application = null;

ServletConfig config = null;

JspWriter out = null;

Object page = this;

String _value = null;

try {

if (_jspx_inited == false) {

_jspx_init();

_jspx_inited = true;

}

_jspxFactory = JspFactory.getDefaultFactory();

80 J S P : T h e C o m p l e t e R e f e r e n c e

response.setContentType("text/html");

pageContext = _jspxFactory.getPageContext

(this, request, response, "", true, 8192, true);

application = pageContext.getServletContext();

config = pageContext.getServletConfig();

session = pageContext.getSession();

out = pageContext.getOut();

// HTML

// begin [file="Echo.jsp";from=(0,32);to=(7,0)]

out.write("\r\n\r\n");

out.write("<HTML>\r\n\r\n");

out.write("<HEAD>\r\n");

out.write("<TITLE>Echo</TITLE>\r\n");

out.write("<STYLE>\r\n");

// end

// begin [file="Echo.jsp";from=(7,0);to=(7,44)]

{

String _jspx_qStr = "";

out.flush();

pageContext.include("style.css" + _jspx_qStr);

}

// end

// HTML

// begin [file="Echo.jsp";from=(7,44);to=(14,0)]

out.write("\r\n");

out.write("</STYLE>\r\n");

out.write("</HEAD>\r\n\r\n");

out.write("<BODY>\r\n");

out.write("<H3>HTTP Request Headers Received");

out.write("</H3>\r\n");

out.write("<TABLE BORDER=\"1\"");

out.write(" CELLPADDING=\"4\"");

out.write(" CELLSPACING=\"0\">\r\n");

// end

// begin [file="Echo.jsp";from=(14,2);to=(19,0)]

Enumeration eNames = request.getHeaderNames();

while (eNames.hasMoreElements()) {

C h a p t e r 6 : J S P S y n t a x a n d S e m a n t i c s 81
ELEM

EN
TS

O
F

JS
P

82 J S P : T h e C o m p l e t e R e f e r e n c e

String name = (String) eNames.nextElement();

String value = normalize(request.getHeader(name));

// end

// HTML

// begin [file="Echo.jsp";from=(19,2);to=(20,12)]

out.write("\r\n <TR> <TD>");

// end

// begin [file="Echo.jsp";from=(20,15);to=(20,21)]

out.print(name);

// end

// HTML

// begin [file="Echo.jsp";from=(20,23);to=(20,33)]

out.write("</TD> <TD>");

// end

// begin [file="Echo.jsp";from=(20,36);to=(20,43)]

out.print(value);

// end

// HTML

// begin [file="Echo.jsp";from=(20,45);to=(21,0)]

out.write("</TD> </TR>\r\n");

// end

// begin [file="Echo.jsp";from=(21,2);to=(23,0)]

}

// end

// HTML

// begin [file="Echo.jsp";from=(23,2);to=(27,0)]

out.write("\r\n</TABLE>\r\n</BODY>\r\n</HTML>\r\n");

// end

// HTML

// begin [file="Echo.jsp";from=(39,2);to=(40,0)]

out.write("\r\n");

// end

C h a p t e r 6 : J S P S y n t a x a n d S e m a n t i c s 83
ELEM

EN
TS

O
F

JS
P

}

catch (Exception ex) {

if (out.getBufferSize() != 0)

out.clear();

pageContext.handlePageException(ex);

}

finally {

out.flush();

_jspxFactory.releasePageContext(pageContext);

}

}

}

Let’s consider the JSP page and the generated code section by section.

A Page Directive
The JSP page begins with a page directive indicating the page uses the java.util
package:

<%@ page import="java.util." %>

This directive shows up in the servlet source code at the end of its list of
imported classes:

...

import org.apache.jasper.runtime.*;

import java.beans.*;

import org.apache.jasper.JasperException;

import java.util.*;

A <jsp:include> Action
The page uses a style sheet to set the look and feel of the output. The style sheet is
incorporated using a <jsp:include> action:

<STYLE>

<jsp:include page="style.css" flush="true"/>

</STYLE>

84 J S P : T h e C o m p l e t e R e f e r e n c e

The <jsp:include> action causes the following style sheet to be read at request time:

body {

color: #000000;

background-color: #FEFEF2;

font: Verdana 9pt;

};

Scriptlet
Two scriptlets are on the page, with HTML template data located before, between,
and after them. The HTML data

<HTML>

<HEAD>

<TITLE>Echo</TITLE>

...

is passed through unchanged by means of write statements:

out.write("\r\n");

out.write("<HTML>\r\n\r\n");

out.write("<HEAD>\r\n ");

out.write("<TITLE>Echo</TITLE>\r\n ");

...

Then the first scriptlet is simply copied to the servlet:

Enumeration eNames = request.getHeaderNames();

while (eNames.HasMoreElements()) {

String name = (String) eNames.nextElement();

String value = normalize(request.getHeaderName());

Notice the code fragment has an unclosed curly brace on the second line.
The matching brace is supplied by the second scriptlet.

C h a p t e r 6 : J S P S y n t a x a n d S e m a n t i c s 85
ELEM

EN
TS

O
F

JS
P

JSP Expressions
During each iteration of the loop, the scriptlet extracts a header name and header value
from the request object. Rather than printing these values using out.write(), the page
author switches back into HTML mode and uses JSP expression tags,

%>

<TR> <TD><%= name %></TD> <TD><%= value %></TD> </TR>

<%

which generates the following servlet code:

// HTML

// begin [file="Echo.jsp";from=(19,2);to=(20,12)]

out.write("\r\n <TR> <TD>");

// end

// begin [file="Echo.jsp";from=(20,15);to=(20,21)]

out.print(name);

// end

// HTML

// begin [file="Echo.jsp";from=(20,23);to=(20,33)]

out.write("</TD> <TD>");

// end

// begin [file="Echo.jsp";from=(20,36);to=(20,43)]

out.print(value);

// end

// HTML

// begin [file="Echo.jsp";from=(20,45);to=(21,0)]

out.write("</TD> </TR>\r\n");

// end

86 J S P : T h e C o m p l e t e R e f e r e n c e

A Declaration
Header values that are lists can be very long and cause the table width to be

distorted. You can get around this problem by scanning the header value for
semicolons and inserting
 tags wherever they are found. This function is
performed by a method called normalize(), which is found at the end of the JSP file:

<%!

private String normalize(String value)

{

StringBuffer sb = new StringBuffer();

for (int i = 0; i < value.length(); i++) {

char c = value.charAt(i);

sb.append(c);

if (c == ';')

sb.append("
");

}

return sb.toString();

}

%>

As was the case with the two scriptlets, the declaration code is copied verbatim
to the generated servlet, except it is not placed inside the _jspService() method.
Instead, it is written inside the class block, but outside any other method, near the
beginning of the servlet:

// begin [file="Echo.jsp";from=(27,3);to=(39,0)]

private String normalize(String value)

{

StringBuffer sb = new StringBuffer();

for (int i = 0; i < value.length(); i++) {

char c = value.charAt(i);

sb.append(c);

if (c == ';')

sb.append("
");

}

return sb.toString();

}

// end

The resulting output is shown in Figure 6-1.

Summary
The JSP development environment provides a means for generating HTML pages
dynamically with server-side Java programming. The syntax allows most of the
HTML to be coded directly, with sections marked off for Java code that controls
the page generation. There is support for including other resources, both static and
dynamic. JavaBeans are fully integrated into the framework, and custom tags allow
functionality to be encapsulated and made available to nonexpert page authors.

The key point this chapter makes is this: a mental model of the JSP development
cycle is crucial to understanding how to create and debug Web applications. Knowledge
of what happens at translation time (static resources are included via the <%@ include
%> directive, for example) versus request time (dynamic request dispatching with
<jsp:include>) provides insight into which features to use and when to use them.
The remaining chapters of Part II discuss each of these features of the application model
in more detail.

C h a p t e r 6 : J S P S y n t a x a n d S e m a n t i c s 87
ELEM

EN
TS

O
F

JS
P

Figure 6-1. Output of Echo.jsp

This page intentionally left blank.

Chapter 7
Expressions
and Scriptlets

89

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

90 J S P : T h e C o m p l e t e R e f e r e n c e

The previous chapter provided an overview of JSP syntax and semantics. While
the syntax is not difficult to learn, mastering it doesn’t teach you everything you
need to know. Understanding JSP requires building a mental model of how it

operateshow and when Java source code is generated and when classes are compiled
and loaded.

In this chapter, part of that mental model is clarified by exploring two scripting
elements: expressions and scriptlets. You see how the JSP container combines template
text and JSP scripting elements to generate a Java method that handles user requests.
How a JSP page gets access to the Web environment in which it is used, and how it
communicates its results, is also examined.

Expressions
A JSP expression is simply a Java1 language expression in a JSP page set off from its
surrounding HTML by the delimiters <%= and %>, as the following shows:

<%= expression %>

For example, an expression can be a primitive numeric value,

Simple math: 2 + 2 = <%= 2 + 2 %>

which produces the output:

Simple math: 2 + 2 = 4

or a more elaborate expression involving method calls,

The Java virtual machine vendor is

<%= System.getProperty("java.vm.vendor") %>

which produces the output:

The Java virtual machine vendor is Sun Microsystems Inc.

1 In theory, JSP pages could be written in other languages, as envisioned in the JSP specification. As of
this writing, with a few experimental exceptions, Java is the only supported language. That is why the
technology is called JavaServer Pages (JSP), not Language Independent Server Pages (LISP) or Any
Old Language Server Pages (AOLSP).

C h a p t e r 7 : E x p r e s s i o n s a n d S c r i p t l e t s 91
ELEM

EN
TS

O
F

JS
P

An expression can create new objects and manipulate them. This code creates a Date
object and passes it to the format() method of a new SimpleDateFormat object,

Today is

<%=

new java.text.SimpleDateFormat("MMMM d, yyyy")

.format(new java.util.Date())

%>

which produces (on the appropriate day, of course):

Today is June 28, 2001

The Java expression between the <% and %> delimiters can be as complex as
desired, the only requirement being it must be capable of being evaluated as a
java.util.String, either directly or through the invocation of its toString()
method or a String.valueOf() method.

Expressions must not end in a semicolon. They must consist solely of what can legally
appear on the right side of an assignment statement between the equals sign and the
ending semicolon.

Scriptlets
A scriptlet is a set of Java programming statements embedded in an HTML page. The
statements are distinguished from their surrounding HTML by being placed between
<% and %> markers, as the following shows:

<% statement; [statement; …] %>

Whitespace is permitted after the <% and before the %>, so the previous scriptlet
could also be written as:

<%
statement;
[statement; …]
%>

Here is an example of a JSP page that uses a scriptlet to generate a table of ASCII
characters:

<HTML>

<BODY>

<CENTER>

92 J S P : T h e C o m p l e t e R e f e r e n c e

<H3>ASCII Table</H3>

<TABLE BORDER="0" CELLPADDING="0" CELLSPACING="0">

<%

StringBuffer sb = new StringBuffer();

sb.append("<TR>");

sb.append("<TH WIDTH=40> </TH>");

for (int col = 0; col < 16; col++) {

sb.append("<TH>");

sb.append(Integer.toHexString(col));

sb.append("</TH>");

}

sb.append("</TR>");

for (int row = 0; row < 16; row++) {

sb.append("<TR>");

sb.append("<TH>");

sb.append(Integer.toHexString(row));

sb.append("</TH>");

for (int col = 0; col < 16; col++) {

char c = (char)(row * 16 + col);

sb.append("<TD WIDTH=32 ALIGN=CENTER>");

sb.append(c);

sb.append("</TD>");

}

sb.append("</TR>");

}

out.println(sb);

%>

</TABLE>

</CENTER>

</BODY>

</HTML>

There are five lines of HTML, followed by the scriptlet open delimiter <%, a number of
lines of Java code, the scriptlet closing delimiter %>, and then the HTML lines needed to
close the document. When invoked, the page produces the output shown in Figure 7-1.

The following section describes how these scripting elements are handled by the
JSP container.

C h a p t e r 7 : E x p r e s s i o n s a n d S c r i p t l e t s 93
ELEM

EN
TS

O
F

JS
P

Expression and Scriptlet Handling by the
JSP Container
When it encounters a new or revised JSP page, the JSP container parses it and creates
the source code for an equivalent Java servlet2. The expressions, scriptlets, and HTML
template data found in the page are used by the JSP container to create Java source code
for a method named _jspService(). This method corresponds to the service()
method of a servlet, or the more commonly used doGet() and doPost() methods.
_jspService() is automatically generated by the container. The JSP author must not
define it explicitly.

Figure 7-1. Output of the ASCII_Table JSP

2 Servlets are discussed at length in Chapter 4.

The generated _jspService() method consists of up to three types of statements,
depending on the contents of the JSP page:

� Code to handle HTML template data and expressions

� The contents of any scriptlets

� Container-generated initialization and exit code

Let’s examine each of these and see how they are handled.

HTML Template Data and Expressions
Any characters in the JSP page not inside a JSP element (a directive, expression,
scriptlet, or action) are considered part of a fixed HTML template. The JSP container
creates out.write()or out.print() statements that write these characters to the
response output stream. For example, this code

Cash and Marketable Securities

is converted to this:

out.write("Cash and Marketable Securities\r\n");

If the HTML template needs to contain any literal <% strings, they must be treated
specially to avoid confusing the JSP container. The JSP 1.1 specification indicates this
can be done by writing <\% instead of <%. The JSP container generates code to write
the intended <% in the output stream.

JSP containers typically generate one long out.write() statement for each
uninterrupted stretch of fixed HTML data. The examples in this book take the
liberty of breaking long character strings into multiple out.write() statements
for the sake of readability.

Besides fixed HTML data, the template also may contain JSP expressions that are
evaluated at run time in and printed with an out.write() statement. Expressions are
considered in the next section.

Scriptlet Contents
Anything found between <% and %> tags is copied verbatim to the _jspService()
method. Hence, the lines in a JSP page

<TABLE BORDER=0>

<TR><TH>Celsius</TH><TH>Fahrenheit</TH></TR>

<%

94 J S P : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 7 : E x p r e s s i o n s a n d S c r i p t l e t s 95
ELEM

EN
TS

O
F

JS
P

for (int c = 0; c <= 100; c += 10) {

int f = 32 + 9*c/5;

out.print("<TR><TD>" + c + "</TD>");

out.print("<TD>" + f + "</TD></TR>");

}

%>

</TABLE>

are transformed by the JSP container into the following lines in the _jspService()
method:

// HTML

// begin [file="c2f.jsp";from=(0,0);to=(2,0)]

out.write("<TABLE BORDER=0>\r\n");

out.write("<TR>");

out.write("<TH>Celsius</TH>");

out.write("<TH>Fahrenheit</TH>");

out.write("</TR>\r\n");

// end

// begin [file="c2f.jsp";from=(2,2);to=(8,0)]

for (int c = 0; c <= 100; c += 10) {

int f = 32 + 9*c/5;

out.print("<TR><TD>" + c + "</TD>");

out.print("<TD>" + f + "</TD></TR>");

}

// end

// HTML

// begin [file="c2f.jsp";from=(8,2);to=(10,0)]

out.write("\r\n</TABLE>\r\n");

// end

The HTML markup for the table is found in the out.write() statements, and the
scriptlet contents appear unaltered in the body of the method.

If multiple scriptlets are in a page, they are copied in the order they are encountered.
Thus, no functional difference exists between writing this code

<%

for (int i = 0; i < 10; i++) {

out.println(i);

}

%>

and this,

<% for (int i = 0; i < 10; i++) { %>

<% out.println(i); %>

<% } %>

except for several newline characters generated in the latter case (which occur because
they are technically considered fixed HTML data). Because multiple scriptlets are
concatenated and placed into the same method, syntactical units can be started in one
scriptlet and completed in another, as illustrated by the opening and closing curly
braces in the for statement. This also means variables defined in any scriptlet are
treated as local variables of the _jspService() method, and retain their value from
one scriptlet or expression to the next.

Container-Generated Initialization and Exit Code
In addition to code that the JSP page author writes, _jspService() begins and ends
with statements that initialize and release objects needed in the method. The exact code
generated is implementation-dependent and specific to the JSP container vendor. In
the case of the Celsius-to-Fahrenheit example previously given , Tomcat generates the
following initialization and exit code:

public void _jspService(

HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException

{

JspFactory _jspxFactory = null;

PageContext pageContext = null;

HttpSession session = null;

ServletContext application = null;

ServletConfig config = null;

JspWriter out = null;

Object page = this;

String _value = null;

try {

_jspxFactory = JspFactory.getDefaultFactory();

response.setContentType("text/html;charset=8859_1");

pageContext = _jspxFactory.getPageContext

(this, request, response, "", true, 8192, true);

application = pageContext.getServletContext();

config = pageContext.getServletConfig();

96 J S P : T h e C o m p l e t e R e f e r e n c e

session = pageContext.getSession();

out = pageContext.getOut();

// ... your code appears here ...

}

catch (Exception ex) {

if (out.getBufferSize() != 0)

out.clearBuffer();

pageContext.handlePageException(ex);

}

finally {

out.flush();

_jspxFactory.releasePageContext(pageContext);

}

}

You can see a number of objects are created before the JSP author’s code is added.
The meaning of these objects is the subject of the next section.

Implicit Objects and the JSP Environment
The scriptlets and expressions written in a JSP page do not stand alone as a complete
programthey need an environment in which to operate. The JSP container provides
this environment and makes it accessible to the page author through what are called
implicit objects. These objects are created by container-generated statements at the
beginning of the _jspService() method and are assigned predetermined names
that are the same in all JSP pages. Nine of these objects exist, as listed in Table 7-1.

C h a p t e r 7 : E x p r e s s i o n s a n d S c r i p t l e t s 97
ELEM

EN
TS

O
F

JS
P

Object Description

request The HttpServletRequest object that was passed to
_jspService().

response The HttpServletResponse object that was passed to
_jspService().

Table 7-1. Implicit Objects Available Within Scriptlets and Expressions

98 J S P : T h e C o m p l e t e R e f e r e n c e

These variables can be accessed simply by using their predetermined names like
any other variable. One of these variables has already been used in the examples in this
chapter—the JspWriter out variable,

<%

out.println("out is an <I>");

out.println(out.getClass().getName());

out.println("</I> object.");

%>

which produces the output when run under Tomcat:

out is an org.apache.jasper.runtime.JspWriterImpl object.

This, of course, is vendor-specific. JRun 3.0 produces

out is an allaire.jrun.jsp.JRunJspWriter object.

The JSP implicit objects provide the context in which an HTTP request is serviced.
The following sections consider each of these objects in detail.

Request
The request variable contains a reference to the HttpServletRequest object
passed in the first parameter of the generated _jspService() method. This object

Object Description

pageContext A means of accessing page, request, session,
or application attributes.

session The current HttpSession object, if one exists.

application The servlet context object.

out The JspWriter response output stream object.

config The servlet configuration object.

page A reference to the current instance of the JSP class itself.

exception An uncaught exception (valid in error pages only).

Table 7-1. Implicit Objects Available Within Scriptlets and Expressions (continued)

encapsulates the details of the HTTP request generated by the Web browser or other
clientits parameters, attributes, headers, and data. Some of its more useful methods3

are listed in Table 7-2.

Response
The response variable provides access to the other side of the HTTP transaction. This
object encapsulates the output returned to the HTTP client, providing the page auth
or with a means for setting response headers and the status code. It also has methods
for accessing the response output stream, but the JSP specification prohibits directly
accessing this stream. All JSP response output must be written using the out implicit
variable. Methods provided by the HttpServletResponse object include those listed
in Table 7-3.

C h a p t e r 7 : E x p r e s s i o n s a n d S c r i p t l e t s 99
ELEM

EN
TS

O
F

JS
P

Method Description

String getHeader(String name) Returns the value of the specified
HTTP header, or null if the header
is not present in the request.

Enumeration getHeaderNames() Returns an enumeration of all HTTP
headers present in the request.

String getParameter(String name) Given the name of a single-valued
form parameter, returns its value.

Enumeration getParameterNames() Returns an enumeration of the names
of all form parameters passed to this
request.

HttpSession getSession(boolean create) Returns the current HttpSession
object. If one does not exist, either
creates a new one or returns null,
depending on the create flag.

Table 7-2. Some Useful Methods of the request Object

3 A complete description of javax.servlet.http.HttpServletRequest and all other classes in the Servlet 2.2
API can be found in Appendix A.

PageContext
JSP code operates within a hierarchy of environments, as shown in Figure 7-2. A single
HTTP request, for example, may be serviced by multiple JSP pages: one that produces
heading information and another that generates detailed output. Similarly, multiple
HTTP requests may be part of a larger HTTP session that starts with a login request,
proceeds through some user selection requests, and then commits the work to a database.
Finally, the set of all HTTP sessions in a servlet context may share a connection pool or
other common objects.

Each of the layers in this hierarchy can have attributes that apply at that level only.
The JSP specification provides for a PageContext object that keeps track of attributes
at four levels:

� The JSP page

� The HTTP request

100 J S P : T h e C o m p l e t e R e f e r e n c e

Method Description

boolean isCommitted() Returns a flag indicating whether
the HTTP response has already
been returned to the client.

void setHeader(String name, String value) Sets an HTTP header with the
specified name and value.

void setStatus(int sc) Sets the HTTP status to the
specified value.

Table 7-3. Some Useful Methods of the response Object

Figure 7-2. JSP context layers

� The HTTP session

� The overall application

A PageContext object is automatically initialized and assigned to a variable named
pageContext at the beginning of the _jspService() method. This object provides
search and update capability for attributes at each of the four levels, as described in
Table 7-4. It also provides methods that forward requests to other resources and
include the output of other resources.

ELEM
EN

TS
O

F
JS

P
C h a p t e r 7 : E x p r e s s i o n s a n d S c r i p t l e t s 101

Method Description

Object findAttribute(String name) Searches for an attribute object with
the specified name in the page, request,
session, and application scopes, in that
order, returning the first one found, or
null, if none is found.

Object getAttribute(String name,
int scope)

Returns the attribute object with the
specified name in the given scope. The
scope parameter value should be selected
from among the PAGE_CONTEXT,
REQUEST_CONTEXT, SESSION_
CONTEXT, and APPLICATION_
CONTEXT constants provided in the
PageContext class.

void removeAttribute(String name,
int scope)

Removes the attribute object having the
specified name in the given scope.

void setAttribute(String name,
Object value, int scope)

Stores an object as a named attribute in
the given scope. The scope parameter
value should be selected from among
the PAGE_CONTEXT, REQUEST_
CONTEXT, SESSION_CONTEXT, and
APPLICATION_CONTEXT constants
defined in the PageContext class.

Table 7-4. Some Useful Methods of the pageContext Object

Session
HTTP is a stateless protocol, which means it doesn’t remember from one request to the
next anything about previous requests. However, Web applications frequently involve
more than one request. For example, an application may begin with some kind of user
identification and validation that must be propagated through several other Web pages.
The continuity required for this type of application must be provided by something other
than the Web server.

Several approaches can be taken to accommodate this need, depending on the
requirements of the application. Chapter 14 explores a number of these alternatives
in detail, including:

� Hidden fields

� Cookies

� URL rewriting

� HTTP sessions

The last item mentioned is of interest here. An HttpSession is a Hashtable-like
object associated with a single Web browser session. It persists between HTTP requests
and can store named objects of any kind. By default, the JSP container creates an
HttpSession object or accesses the currently active one at the beginning of the
_jspService() method. This object is assigned to a variable named session.

If you do not need to retain objects between requests, you can turn off automatic
session creation by specifying session="false" in the page directive. Doing so can
improve performance by reducing the number of objects of which the servlet engine
has to keep track. Because a session persists until it times out (typically 30 minutes
later) or it is explicitly invalidated, the impact on performance can be considerable.

Table 7-5 outlines several useful methods in the session object.

102 J S P : T h e C o m p l e t e R e f e r e n c e

Method Description

Object getAttribute(String name) Returns the object with the specified
name, if it exists in the session.

Enumeration getAttributeNames() Returns an enumeration of the names
of all the objects stored in the session.

String getId() Returns the unique session ID. This
ID must be stored by the client (Web
browser) between requests and passed
back to the JSP container to identify
which session is required.

Table 7-5. Some Useful Methods of the session Object

Remember, the pageContext object can also be used to get and set attributes
in the session in the same manner as the session.getAttribute() and
session.setAttribute() methods.

Application
The application implicit object encapsulates a view of the collection of all servlets,
JSP pages, HTML pages, and other resources in a Web application. This object
implements the javax.servlet.ServletContext interface and is automatically
constructed at the beginning of the _jspService() method. It provides information
about the server version, any application-wide initialization parameters, and the
absolute paths of resources within the application. This object also provides a means
for logging messages. Some of its more useful methods are described in Table 7-6.

ELEM
EN

TS
O

F
JS

P
C h a p t e r 7 : E x p r e s s i o n s a n d S c r i p t l e t s 103

Method Description

int getMaxInactiveInterval() Returns the maximum number of
seconds the session stays active between
user requests. The JSP container closes
the session if no activity occurs over that
length of time.

void invalidate() Closes the session and unbinds all its
objects.

void setAttribute(String name,
Object value)

Stores an object in the session under the
specified name.

Table 7-5. Some Useful Methods of the session Object (continued)

Method Description

Enumeration getAttributeNames() Returns an enumeration of the names
of all objects stored in the servlet
context.

Object getAttribute(String name) Returns an object with the specified
name that was stored with the
application’s setAttribute() method.

Table 7-6. Some Useful Methods of the application Object

As is the case with the page, request, and session implicit objects, attributes of
the application object can be manipulated with methods in the pageContext object.

Initialization parameters are discussed in a later section of this chapter.

Out
The whole purpose of a JSP page is to produce some output and send it back to the
user on the other end of the socket connection. As you saw earlier in this chapter, fixed
HTML template data and JSP expressions are written by automatically generated
out.write() and out.print() method calls. The out variable is initialized with a
reference to a javax.servlet.jsp.JspWriter object early in the _jspService()
method. You can have all output generated in this manner or you can write explicitly
to the out object in scriptlets. Thus, the JSP page

<%

String[] colors = {"red", "green", "blue"};

104 J S P : T h e C o m p l e t e R e f e r e n c e

Method Description

String getInitParameter(String name) Returns the value of the specified
application-wide initialization
parameter.

Enumeration getInitParameterNames() Returns an enumeration of the names
of all application-wide initialization
parameters.

String getRealPath(String path) Converts a path in the context of the
Web application to an absolute path
in the file system, if possible.

URL getResource(String path) Returns the URL (if any) mapped to
the specified path in the application.
The path must begin with a "/" and is
relative to the root of the application.

InputStream
getResourceAsStream(String path)

Similar in operation to getResource(),
but returns an opened input stream to
the resulting URL.

void log(String msg) Writes a message to the log file
associated with this application.

Table 7-6. Some Useful Methods of the application Object (continued)

for (int i = 0; i < colors.length; i++) {

%>

<%= colors[i] %> <P>

<%

}

%>

is functionally equivalent to this one:

<%

String[] colors = {"red", "green", "blue"};

for (int i = 0; i < colors.length; i++) {

out.println(colors[i] + " <P>");

}

%>

Besides the write()methods common to all java.io.Writer objects, the out
object provides methods for querying and manipulating the output buffer, as shown
in Table 7-7.

ELEM
EN

TS
O

F
JS

P
C h a p t e r 7 : E x p r e s s i o n s a n d S c r i p t l e t s 105

Method Description

void flush() Forces buffered data to be written to the
output stream.

int getBufferSize() Returns the size of the output buffer in
bytes, or 0 if the writer is unbuffered.

int getRemaining() Returns the number of bytes remaining
before buffer overflow occurs.

void print(type value) A variety of methods to write objects
of the specified primitive or object
type. No newline character is added
at the end.

void println(type value) Similar to print(), but adds a newline
character at the end.

Table 7-7. Some Useful Methods of the out Object

Config
Besides application-wide initialization parameters that are made available through the
application object, individual servlet mappings (and, therefore, JSP pages) can have
initialization parameters. The config implicit object provides methods for accessing
these parameters, the servlet context (application), and the servlet name, as detailed in
Table 7-8.

Page
The page implicit object is a variable containing a reference to the current servlet
instance, essentially just an alias for the this variable. This object is not typically
useful to JSP page authors.

Exception
The object referred to by the implicit exception variable is any instance of
java.lang.Throwable that has been thrown, but not caught, by a catch block in
the JSP page. The exception variable is only valid if the <%@ page %> directive has the
isErrorPage="true" attribute. This attribute is discussed in more detail in Chapter 10.

106 J S P : T h e C o m p l e t e R e f e r e n c e

Method Description

String getInitParameter(String name) Returns the value of the specified
servlet initialization parameter, or null,
if the named parameter does not exist.

Enumeration getInitParameterNames() Returns a list of the names of all
initialization parameters for this servlet.

ServletContext getServletContext() Returns a reference to the servlet
context (same as the application implicit
variable).

String name getServletName() Returns the name of the generated
servlet.

Table 7-8. Some Useful Methods of the config Object

ELEM
EN

TS
O

F
JS

P

Initialization Parameters
Initialization parameters are external name/value pairs that can be read by a JSP page.
They can be used in the same manner as string constants, but have the added advantage
that they can be modified without requiring the program that uses them to be
recompiled. This makes initialization parameters especially useful for storing installation
and configuration data, such as HTTP proxy server names, application color schemes, or
installation directory names.

These parameters can be specified at the individual JSP and servlet level or for all
the JSP pages in an application. In either case, initialization parameters are declared in
the application's web.xml file4. For JSP and servlet level access, this is accomplished by
adding one or more <init-param> elements to the appropriate <servlet> element,
as the following shows:

<servlet>

<servlet-name>Food</servlet-name>

<jsp-file>/Chap07/examples/Food.jsp</jsp-file>

<init-param>

<param-name>DRIVER_NAME</param-name>

<param-value>sun.jdbc.odbc.JdbcOdbcDriver</param-value>

</init-param>

<init-param>

<param-name>DATABASE_URL</param-name>

<param-value>jdbc:odbc:usda</param-value>

</init-param>

</servlet>

In this example, Food.jsp is a JSP page that accesses a database of nutrition
information. Rather than containing hardcoded values for the JDBC driver name
and database URL, the JSP page gets these values from initialization parameters
using the getInitParameter() method:

String driverName = getInitParameter("DRIVER_NAME");

if (driverName == null)

C h a p t e r 7 : E x p r e s s i o n s a n d S c r i p t l e t s 107

4 The web.xml file and other configuration and deployment issues are discussed in Chapter 18.

throw new ServletException

("No DRIVER_NAME parameter was specified");

String databaseURL = getInitParameter("DATABASE_URL");

if (databaseURL == null)

throw new ServletException

("No DATABASE_URL parameter was specified");

Class.forName(driverName);

Connection con = DriverManager.getConnection(databaseURL);

Database access parameters are likely needed in several places within a Web
application. Rather than having duplicate values in the web.xml file, commonly
used values can be specified at the application level. This is done with the
<context-param> element:

<context-param>

<param-name>DRIVER_NAME</param-name>

<param-value>sun.jdbc.odbc.JdbcOdbcDriver</param-value>

</context-param>

<context-param>

<param-name>DATABASE_URL</param-name>

<param-value>jdbc:odbc:usda</param-value>

</context-param>

The JSP code for accessing the values is almost the same, except the application
object’s getInitParameter() method is called:

String driverName =

application.getInitParameter("DRIVER_NAME");

if (driverName == null)

throw new ServletException

("No DRIVER_NAME parameter was specified");

String databaseURL =

application.getInitParameter("DATABASE_URL");

108 J S P : T h e C o m p l e t e R e f e r e n c e

if (databaseURL == null)

throw new ServletException

("No DATABASE_URL parameter was specified");

Class.forName(driverName);

Connection con = DriverManager.getConnection(databaseURL);

Summary
JSP pages provide two means for incorporating Java code in the handling of requests:
expressions and scriptlets. JSP expressions are simply Java-language expressions that
yield a string value (or can be converted into one). Expressions are enclosed in <%=
and %> delimiters. Whatever is between the delimiters is made the argument of an
out.print() or out.write() method. For this reason, expressions must not
end in a semicolon. Scriptlets are Java code fragments designed to operate inside
the _jspService() method and are marked by the <% and %> delimiters. The
programming statements in a scriptlet are copied directly into the Java source code
of the generated servlet.

To give it linkage to the JSP container, a JSP page has access to a number of implict
objects. These are automatically initialized objects that have predefined variable names.
These variables are

� request

� response

� pageContext

� session

� application

� out

� config

� page

� exception

The last variable (exception) is only available to pages with the isErrorPage=
"true" attribute in their page directive.

ELEM
EN

TS
O

F
JS

P
C h a p t e r 7 : E x p r e s s i o n s a n d S c r i p t l e t s 109

This page intentionally left blank.

Chapter 8
Declarations

111

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

112 J S P : T h e C o m p l e t e R e f e r e n c e

The previous chapter covered JSP expressions and scriptlets. Along with fixed HTML
template data, these two element types share a common environmentthey exist
within the _jspService() method of a generated Java servlet. While this is

adequate for most request processing, it imposes some restrictions on the servlet’s
capability. This chapter introduces JSP declarations, which allow the JSP author to write
Java code that operates outside the _jspService() method.

What Is a Declaration?
Similar to a scriptlet, a JSP declaration consists of Java source code embedded within an
HTML page. Declarations are set off from the rest of the page by special opening and
closing tags, as the following shows:

<%! java statements %>

The syntax of a declaration is identical to that of a scriptlet, with one exception: the
opening delimiter is <%!, rather than <%.

Like a scriptlet, the code inside the declaration delimiters is copied verbatim to the
generated Java servlet. The essential difference is where the code is placed: scriptlets are
copied to the inside of the _jspService() method, whereas declarations are written
outside the method as top-level members of the enclosing class. Understanding this
distinction can help develop your mental model of how JSP works and can help explain
unexpected behavior.

Where Declaration Code Is Generated
An example of how code for a declaration is generated would make this clearer. Consider
the following JSP page that uses a scriptlet to display the current time:

<%@ page import="java.text.*,java.util.*" %>

<%

DateFormat fmt = new SimpleDateFormat("hh:mm:ss aa");

String now = fmt.format(new Date());

%>

The time is <%= now %>

The page is stored in a file named ShowTimeS.jsp (S for scriptlet). When this file
is invoked, it displays the current time:

The time is 09:31:45 PM

C h a p t e r 8 : D e c l a r a t i o n s 113
ELEM

EN
TS

O
F

JS
P

If the user refreshes the page, the time is incremented, as expected:

The time is 09:31:48 PM

The time is 09:31:51 PM

The time is 09:31:53 PM

Now consider the same JSP written with a declaration rather than a scriptlet.
This page is named ShowTimeD.jsp (D for declaration):

<%@ page import="java.text.*,java.util.*" %>

<%!

DateFormat fmt = new SimpleDateFormat("hh:mm:ss aa");

String now = fmt.format(new Date());

%>

The time is <%= now %>

The only difference between ShowTimeS.jsp and ShowTimeD.jsp is line two
in ShowTimeD.jsp starts with <%! instead of <%, making it a declaration rather than
a scriptlet.

When ShowTimeD.jsp is invoked, it, likewise, displays the current time:

The time is 09:32:26 PM

But look what happens when the page is refreshed:

The time is 09:32:26 PM

The time is 09:32:26 PM

The time is 09:32:26 PM

The time is not changing. Why not? The answer can be found in the generated
servlet source code for each page. Here is the scriptlet version,

import javax.servlet.*;

import javax.servlet.http.*;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

import java.io.PrintWriter;

import java.io.IOException;

import java.io.FileInputStream;

import java.io.ObjectInputStream;

import java.util.Vector;

import org.apache.jasper.runtime.*;

import java.beans.*;

import org.apache.jasper.JasperException;

import java.text.*;

import java.util.*;

public class ShowTimeS extends HttpJspBase

{

static

{

}

public ShowTimeS()

{

}

public void _jspService(

HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException

{

JspFactory _jspxFactory = null;

PageContext pageContext = null;

HttpSession session = null;

ServletContext application = null;

ServletConfig config = null;

JspWriter out = null;

Object page = this;

String _value = null;

try {

_jspxFactory = JspFactory.getDefaultFactory();

response.setContentType("text/html;charset=8859_1");

pageContext = _jspxFactory.getPageContext

(this, request, response, "", true, 8192, true);

application = pageContext.getServletContext();

config = pageContext.getServletConfig();

session = pageContext.getSession();

out = pageContext.getOut();

114 J S P : T h e C o m p l e t e R e f e r e n c e

out.write("\r\n");

DateFormat fmt = new SimpleDateFormat("hh:mm:ss aa");

String now = fmt.format(new Date());

out.write("\r\nThe time is ");

out.print(now);

out.write("\r\n");

}

catch (Exception ex) {

if (out.getBufferSize() != 0)

out.clearBuffer();

pageContext.handlePageException(ex);

}

finally {

out.flush();

_jspxFactory.releasePageContext(pageContext);

}

}

}

and here is the declaration version:

import javax.servlet.*;

import javax.servlet.http.*;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

import java.io.PrintWriter;

import java.io.IOException;

import java.io.FileInputStream;

import java.io.ObjectInputStream;

import java.util.Vector;

import org.apache.jasper.runtime.*;

import java.beans.*;

import org.apache.jasper.JasperException;

import java.text.*;

import java.util.*;

public class ShowTimeD extends HttpJspBase

{

DateFormat fmt = new SimpleDateFormat("hh:mm:ss aa");

C h a p t e r 8 : D e c l a r a t i o n s 115
ELEM

EN
TS

O
F

JS
P

String now = fmt.format(new Date());

static

{

}

public ShowTimeD()

{

}

public void _jspService(

HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException

{

JspFactory _jspxFactory = null;

PageContext pageContext = null;

HttpSession session = null;

ServletContext application = null;

ServletConfig config = null;

JspWriter out = null;

Object page = this;

String _value = null;

try {

_jspxFactory = JspFactory.getDefaultFactory();

response.setContentType("text/html;charset=8859_1");

pageContext = _jspxFactory.getPageContext

(this, request, response, "", true, 8192, true);

application = pageContext.getServletContext();

config = pageContext.getServletConfig();

session = pageContext.getSession();

out = pageContext.getOut();

out.write("\r\n");

out.write("\r\nThe time is ");

out.print(now);

out.write("\r\n");

}

catch (Exception ex) {

if (out.getBufferSize() != 0)

out.clearBuffer();

116 J S P : T h e C o m p l e t e R e f e r e n c e

pageContext.handlePageException(ex);

}

finally {

out.flush();

_jspxFactory.releasePageContext(pageContext);

}

}

}

Other than the program names, the difference between the two servlets is the location
of the two scripting lines. In the scriptlet version, they are included in the middle of the
_jspService() method, making the fmt and now variables local to that method. In the
declaration version, however, they appear as the first entries inside the class. This makes
the two variables instance variables, which are initialized when the servlet instance is first
created and never updated: We will see shortly that this is not only undesirable, it’s also
dangerous.

Primary Uses for Declarations
Declarations can contain any valid Java code, but they are most commonly used in
three contexts:

� Variable Declarations Both class and instance variables can be declared
and initialized.

� Method Definitions Duplicate or overly complex scriptlet code can be
restructured into a main routine that calls other methods.

� Inner Classes Additional classes can be defined and made available to
scriptlets, expressions, and other declaration code.

The remainder of this chapter considers each of these uses in detail.

Variable Declarations
As illustrated in the preceding examples, declarations can be used to define and initialize
variables. The variables will be available to scriptlets, expressions, and other declarations.
These can be class variables (marked with the static keyword), as in the following
example,

<%!

static final String[] COLORS = {

ELEM
EN

TS
O

F
JS

P
C h a p t e r 8 : D e c l a r a t i o n s 117

118 J S P : T h e C o m p l e t e R e f e r e n c e

"#CA9A26",

"#3BF428",

"#F7E339",

"#FF40FF",

};

%>

<%

for (int i = 0; i < COLORS.length; i++) {

String color = COLORS[i];

%>

<DIV STYLE="background-color: <%= color%>;

font-size: 12pt;

font-weight: bold;">

This is color <%= color %></DIV>

<% } %>

or instance variables, as the following shows, in a file named vardec2.jsp:

<%! int count; %>

<%

count = 0;

for (int i = 0; i < 10; i++) {

%>

Request <%= Integer.toHexString(request.hashCode()) %>

count = <%= ++count %>

<%

Thread.sleep(250);

}

%>

In either case, the variable declaration is copied verbatim into the generated servlet
as a top-level member of the enclosing class.

Thread Safety and Instance Variables
The instance variable example vardec2.jsp contains a subtle flaw. Each time the
JSP services a request, it sets the count variable to zero, and then enters a loop of ten
iterations, incrementing the count and displaying it along with the request object hash
code. When first tested, it might look like the output shown in Figure 8-1.

C h a p t e r 8 : D e c l a r a t i o n s 119
ELEM

EN
TS

O
F

JS
P

But look what happens when two people request the JSP page at about the same
time (now you know why we added the Thread.sleep(250)to introduce enough
of a delay to allow for the collision). Figures 8-2 and 8-3 show two requests being
handled simultaneously.

Figure 8-1. First Test of vardec2.jsp

Figure 8-2. vardec2.jsp Handling Request 33F9B8

The first request starts off normally enough for the first three lines. But then the
count drops back to 2, and appears to increment by 2 for the rest of the loop. Similarly,
the second request starts at 1, but then skips all the even numbers. An examination of
the generated source code shows what the problem is:

import javax.servlet.*;

import javax.servlet.http.*;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

import java.io.PrintWriter;

import java.io.IOException;

import java.io.FileInputStream;

import java.io.ObjectInputStream;

import java.util.Vector;

import org.apache.jasper.runtime.*;

import java.beans.*;

import org.apache.jasper.JasperException;

public class vardec2 extends HttpJspBase

{

// begin [file="vardec2.jsp";from=(0,3);to=(0,15)]

int count;

// end

120 J S P : T h e C o m p l e t e R e f e r e n c e

Figure 8-3. vardec2.jsp Handling Request 39C8C1

static

{

}

public vardec2()

{

}

public void _jspService(

HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException

{

JspFactory _jspxFactory = null;

PageContext pageContext = null;

HttpSession session = null;

ServletContext application = null;

ServletConfig config = null;

JspWriter out = null;

Object page = this;

String _value = null;

try {

_jspxFactory = JspFactory.getDefaultFactory();

response.setContentType("text/html;charset=8859_1");

pageContext = _jspxFactory.getPageContext

(this, request, response, "", true, 8192, true);

application = pageContext.getServletContext();

config = pageContext.getServletConfig();

session = pageContext.getSession();

out = pageContext.getOut();

out.write("\r\n");

count = 0;

for (int i = 0; i < 10; i++) {

out.write("\r\nRequest ");

out.print(Integer.toHexString(request.hashCode()));

out.write("\r\ncount = ");

out.print(++count);

out.write("
\r\n");

Thread.sleep(250);

C h a p t e r 8 : D e c l a r a t i o n s 121
ELEM

EN
TS

O
F

JS
P

122 J S P : T h e C o m p l e t e R e f e r e n c e

}

out.write("\r\n");

}

catch (Exception ex) {

if (out.getBufferSize() != 0)

out.clearBuffer();

pageContext.handlePageException(ex);

}

finally {

out.flush();

_jspxFactory.releasePageContext(pageContext);

}

}

}

The source of the problem is that count is an instance variable, not a local variable in
the _jspService() method. Recall that JSP pages are compiled as servlets, which, by
default, run as a single instance with separate threads to handle each request. This being
the case, any instance variables are automatically shared between all request-handling
threads. In the example, the first request got as far as 3, but then the thread that handled
the second request entered _jspService() and reset the shared count variable back
to zero. As the loop progressed, the two threads alternated every 125 milliseconds or so,
each incrementing the value.

Chapter 14 discusses this problem and explores several solutions. The conclusion
presenting itself here is that variable declarations in a JSP page are best used to handle
read-only variables.

Method Definitions
A more common use for declarations is to define additional methods. The syntax is no
different than for any other method definitions, except for the <%! and %> delimiters:

<%!

public int sum(int a, int b)

{

return a + b;

}

%>

C h a p t e r 8 : D e c l a r a t i o n s 123
ELEM

EN
TS

O
F

JS
P

As with variable declarations, method definitions are copied verbatim into the
generated servlet as top-level members outside the _jspService() method:

public class methdef1 extends HttpJspBase

{

// begin [file="methdef1.jsp";from=(0,3);to=(5,0)]

public int sum(int a, int b)

{

return a + b;

}

// end

// ...

public void _jspService(

HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException

{

// ...

}

}

A typical method definition in a JSP declaration would be for a utility method that
reformats strings produced by a scriptlet. Consider the following JSP page that displays
the value of several system properties in an HTML table:

<TABLE BORDER=1 CELLPADDING=3 CELLSPACING=0>

<%

String[] propNames = {

"java.awt.printerjob",

"java.class.path",

"java.class.version",

"java.ext.dirs",

"java.library.path",

};

for (int i = 0; i < propNames.length; i++) {

String name = propNames[i];

String value = System.getProperty(name);

%>

124 J S P : T h e C o m p l e t e R e f e r e n c e

<TR>

<TD ALIGN=LEFT VALIGN=TOP><%= name %></TD>

<TD ALIGN=LEFT VALIGN=TOP><%= value %></TD>

</TR>

<%

}

%>

</TABLE>

The output of the JSP page is shown in Figure 8-4. The problem with this table is
several of the values are quite long, with no embedded spaces. This means the right-hand
table cell is too long to be displayed in the window.

A simple solution for this is to shorten the property value strings. One quality the
offending members have in common is they consist of a list of several values separated
by semicolons. These can be shortened by inserting a
 tag after each semicolon, so
the list will be displayed on multiple lines. This will make the table width requirement
no longer than the longest list entry. This could be done with inline code in the scriptlet,

Figure 8-4. Table with Very Wide Cells

C h a p t e r 8 : D e c l a r a t i o n s 125
ELEM

EN
TS

O
F

JS
P

but a more readable solution would be to use a normalize() method that applies the
necessary transformation. That way, the <%= value %> expression could simply be
written <%= normalize(value) %>. The following shows the modified JSP page:

<TABLE BORDER=1 CELLPADDING=3 CELLSPACING=0>

<%

String[] propNames = {

"java.awt.printerjob",

"java.class.path",

"java.class.version",

"java.ext.dirs",

"java.library.path",

};

for (int i = 0; i < propNames.length; i++) {

String name = propNames[i];

String value = System.getProperty(name);

%>

<TR>

<TD ALIGN=LEFT VALIGN=TOP><%= name %></TD>

<TD ALIGN=LEFT VALIGN=TOP><%= normalize(value) %></TD>

</TR>

<%

}

%>

</TABLE>

<%!

private static final String normalize(String s)

{

StringBuffer sb = new StringBuffer();

for (int i = 0; i < s.length(); i++) {

char c = s.charAt(i);

sb.append(c);

if (c == ';')

sb.append("
");

}

return sb.toString();

}

%>

This time, when the same properties are displayed, the table fits within a more reasonable
window size (see Figure 8-5).

126 J S P : T h e C o m p l e t e R e f e r e n c e

Overriding jspInit and jspDestroy
In the preceding example, the string manipulation could have been done with inline code
in the scriptlet, rather than by a method call. In some circumstances, that is not possible.
For example, if resources need to be acquired or threads started when a JSP page is
loaded, these functions should be performed in the context of the servlet init() and
destroy() methods.

The JSP 1.1 Specification expressly forbids page authors from overriding any of the
servlet lifecycle methods directly, including init() and destroy()1. However,it
provides two special methods named jspInit() and jspDestroy() that accomplish
the same purpose. These methods are automatically called from within init() and
destroy(), and have empty definitions in the parent JSP page implementation. In

Figure 8-5. Same Table with Normalized Cells

1 JSP 1.1 Specification, Section 3.1. Although some servlet engines do not enforce this restriction, it
would be unwise to ignore it.

ELEM
EN

TS
O

F
JS

P

Tomcat, for example, the base JSP class org.apache.jasper.runtime.HttpJspBase
defines init() and jspInit() as follows:

public final void init(ServletConfig config)

throws ServletException

{

this.config = config;

jspInit();

}

public void jspInit()

{

}

Similarly, it defines destroy() and jspDestroy() as follows:

public final void destroy()

{

jspDestroy();

}

public void jspDestroy()

{

}

The use of the final keyword ensures init() and destroy() themselves cannot
be overridden. This, in turn, guarantees jspInit() and jspDestroy() will always be
called. To add something to the initialization phase of a JSP, the necessary code should be
entered in a JSP declaration2

:

public void jspInit()

{

TimerThread t = new TimerThread();

t.start();

}

C h a p t e r 8 : D e c l a r a t i o n s 127

2 Curiously enough, the JSP 1.1 specification makes no provision for throwing an exception from
jspInit(), even though init() itself can do so. What can be done if the JSP detects a fatal error during
its jspInit() execution is not clear.

128 J S P : T h e C o m p l e t e R e f e r e n c e

Access to Implicit Objects
Unlike scriptlets and expressions, declarations have no access to the implicit objects
described in Chapter 7. The reason for this is apparent when you remember that
methods in declarations are defined outside the _jspService() method. Therefore,
if a declaration method needs access to one or more of these objects, the objects must
be passed somehow from _jspService(). You can do this in several ways:

� Pass the objects as individual parameters. This is easy to do, but tends to
become unwieldy if more than a few parameters are necessary.

� Pass the pageContext implicit object as a parameter. From the page context,
all the other variables can be accessed indirectly.

� Pass a structure containing all the variables of interest as a single parameter.
You see how to do this in the next section.

The second technique (passing the page context) is illustrated in the following code:

<%@ page import="java.io.*,java.util.*" %>

<%!

public void showSessionID(PageContext pc)

throws IOException

{

JspWriter out = pc.getOut();

HttpSession session = pc.getSession();

Date created = new Date(session.getCreationTime());

out.println("The session was created at " + created);

}

%>

<%

showSessionID(pageContext);

%>

The showSessionID() method is able to extract the JspWriter and HttpSession
objects from the page context and use them to write to the current output stream.

Inner Classes
Just like any other Java class, a JSP page can define inner classes. Inner classes are useful
for running background threads or encapsulating data structures. When used properly,
they can preserve the object-oriented character of a Java program, which can sometimes
be lost in an event-driven environment like JSP.

C h a p t e r 8 : D e c l a r a t i o n s 129
ELEM

EN
TS

O
F

JS
P

An inner class can be useful as a data structure that holds implict and other variables.
The page context acts as a wrapper for other objects in the servlet context, session,
request, and page. It also has getAttribute() and setAttribute() methods for
additional user-defined fields, but these must be objects (not primitives like int and
double) and must be cast to the appropriate type when retrieved. An inner class is an
alternative that solves the same problem in a type-safe manner. An example of this
technique is illustrated in the following:

<%@ page import="java.io.*,java.util.*" %>

<%!

/**

* Inner class for passing parameters between methods

*/

class Parameters {

JspWriter out;

HttpSession session;

String url;

}

public void showSessionID(Parameters parms)

throws IOException

{

JspWriter out = parms.out;

HttpSession session = parms.session;

String url = parms.url;

Date created = new Date(session.getCreationTime());

out.println("The session was created at " + created

+ "<P>");

out.println("The url parameter was " + url);

}

%>

<%

Parameters parms = new Parameters();

parms.out = out;

parms.session = session;

parms.url = request.getParameter("url");

showSessionID(parms);

%>

130 J S P : T h e C o m p l e t e R e f e r e n c e

The generated servlet includes both the inner class and the method definition inside
the top level of the class, and the scriptlet inside _jspService():

import javax.servlet.*;

import javax.servlet.http.*;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

import java.io.PrintWriter;

import java.io.IOException;

import java.io.FileInputStream;

import java.io.ObjectInputStream;

import java.util.Vector;

import org.apache.jasper.runtime.*;

import java.beans.*;

import org.apache.jasper.JasperException;

import java.io.*;

import java.util.*;

public class PassInnerClass extends HttpJspBase

{

// begin [file="PassInnerClass.jsp";from=(1,3);to=(22,0)]

/**

* Inner class for passing parameters between methods

*/

class Parameters {

JspWriter out;

HttpSession session;

String url;

}

public void showSessionID(Parameters parms)

throws IOException

{

JspWriter out = parms.out;

HttpSession session = parms.session;

String url = parms.url;

Date created = new Date(session.getCreationTime());

out.println("The session was created at " + created

+ "<P>");

C h a p t e r 8 : D e c l a r a t i o n s 131
ELEM

EN
TS

O
F

JS
P

out.println("The url parameter was " + url);

}

// end

// ...

public void _jspService(

HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException

{

// ...

// begin [file="PassInnerClass.jsp";from=(23,2);to=(29,0)]

Parameters parms = new Parameters();

parms.out = out;

parms.session = session;

parms.url = request.getParameter("url");

showSessionID(parms);

// end

}

}

Summary
Chapter 7 covered scriptlets and expressions. This chapter introduced a third type of
scripting element, a JSP declaration.

Like a scriptlet, a declaration is used to incorporate Java statements into a JSP page.
The key difference between the two is where the JSP container writes the code in the
generated servlet. With a scriptlet, the code becomes part of the _jspService() method,
whereas code in a declaration becomes top-level code in the servlet class. This distinction
is important to understand because it affects the context in which the code operates.

Declarations have three primary uses:

� Variable declarations Both class and instance variables can be defined, although
care must be taken to ensure that write access to the variables is synchronized
because servlets, by default, are multithreaded. The most practical use of variable
declarations is for static final constants.

� Method definitions Additional methods can be added to the generated
servlet by means of JSP declarations. Because the generated code is not inside
the _jspService() method, however, it does not have access to the implicit
variables (request, response, out, and so forth). These variables must be
explicitly passed to the method if they are to be used. Declarations can be used
to override the jspInit() and jspDestroy() methods.

� Inner classes Declarations provide a convenient means for writing inner classes.
This chapter describes using an inner class as a data structure for passing a set of
variables between methods in the generated servlet.

132 J S P : T h e C o m p l e t e R e f e r e n c e

Chapter 9
Request Dispatching

133

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

In large-scale Web development projects, having HTTP requests handled by more
than one server-side component is often desirable. Several reasons exist for this:

� Elimination of redundancy Many features of a Web site are common to all
pages, such as headers and footers, navigation bars, and other elements of the
look and feel. Rather than duplicate the HTML that generates these features,
being able to write them once and use them in a number of places is useful.

� Separation of content and presentation Because Java can be used freely
in any part of a JSP, you can easily end up with code that both generates
information and presents it, perhaps reading from a database, performing
calculations, and generating HTML tables. Changing both the logic and the
appearance of the page may be necessary later. Such code can quickly become
overly complex. What makes more sense is to separate the pure Java code that
accesses the database and applies business logic from the JSP code that creates
an output Web page.

This chapter examines features of the JSP environment that allow requests to be
forwarded and the contents or output of other resources to be included. The chapter
also discusses how the RequestDispatcher class works and concludes with a
comparison of two JSP development models.

Anatomy of Request Processing
The servlet engine that handles servlet and JSP requests can be part of the Web server
itself (referred to as the in-process model) or it can run in a separate process. In the
latter case, the Web server contains a component referred to as a connector. The
connector intercepts servlet requests and passes them on to the servlet engine by an
implementation-dependent protocol1. Other requests are handled by the Web server
as usual. Figure 9-1 illustrates this out-of-process model.

When the servlet engine receives a request, it assembles all the details about the
request into an HttpServletRequest object. These details include the request headers,
the URI, the query string, any parameters sent, and so on. Similarly, it initializes an
HttpServletResponse object that can hold response headers and the response output
stream. It then invokes the servlet’s service() method (the _jspService() method,
if the servlet is a JSP), passing it references to the two objects, as shown in Figure 9-2.

134 J S P : T h e C o m p l e t e R e f e r e n c e

1 JRun features connectors for several widely used Web servers, and employs a proprietary protocol
to communicate requests to its servlet engine. Tomcat uses a protocol known as ajp12 (developed
originally for Apache JServ) to send requests and responses between components.

A simple JSP can extract what it needs from the request object, perform the
necessary calculations and other logic, and then create output using the response
object. The remainder of this chapter examines how larger and more complex Web
applications can operate on these request and response objects, passing them through
more than one servlet or JSP.

C h a p t e r 9 : R e q u e s t D i s p a t c h i n g 135
ELEM

EN
TS

O
F

JS
P

Figure 9-1. The out-of-process servlet engine model

Figure 9-2. The servlet engine passing request and response objects to a servlet

Including Other Resources
HTML itself does not have a direct means for including data from other files in its
output. This is unfortunate, because a great deal of HTML markup is common to a
number of pages in a typical Web sitecorporate logos, copyright notices, navigation
links, and other features. Besides these static sources of text and images, dynamic
content may need to be included. JSP provides two means incorporating such data:

� The <%@ include %> directive is used to copy static text into the JSP source
code before it is transformed into Java servlet source code and compiled.
Typically, this text is HTML code, but it can be anything that could appear in
a JSP page.

� The <jsp:include> action causes the servlet engine to invoke another URL
and merge its output with that of the original JSP page.

A key point to remember in building a mental model is the <%@ include %>
directive is performed once, at compilation time, whereas the <jsp:include> action
is performed each time a request is made. The next two sections describe each of these
JSP components and how they operate.

The include Directive
The syntax of the include directive is as follows:

<%@ include file="filename" %>

The included filename must be a relative URL specification, meaning it contains
only path information, not protocol or server information. As a consequence, only
resources in the current servlet context can be included by this means.

If the filename begins with “/”, it is considered to be absolute with respect to the
top of the servlet context. Otherwise, the filename is considered to be relative to the
current JSP page. For example, if a Web application has a products subdirectory and
the products/search.jsp page contains the directive

<%@ include file="/includes/header.inc" %>

then the file that would be included is <path>/includes/header.inc, where
<path> is the Web application mount point. If, instead, the directive is

<%@ include file="includes/header.inc" %>

then the file would be <path>/products/includes/header.inc.

136 J S P : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 9 : R e q u e s t D i s p a t c h i n g 137
ELEM

EN
TS

O
F

JS
P

How It Works
When a <%@ include %> directive is encountered, the JSP container reads the
specified file and merges its contents into the JSP source code currently being parsed.
For example, if flavors.jsp contains

<H3>Flavors</H3>

Our most popular flavors are:

<%@ include file="flavor_list.html" %>

Try them all!

and if flavor_list.html contains

Chocolate

Strawberry

Vanilla

the HTML sent to the Web browser is exactly the same as if flavors.jsp contained this:

<H3>Flavors</H3>

Our most popular flavors are:

Chocolate

Strawberry

Vanilla

Try them all!

We can see the interleaving of the two files in the servlet source code generated by
the Tomcat reference implementation2:

// begin [file="flavors.jsp";from=(0,0);to=(2,0)]

out.write("<H3>Flavors</H3>\r\n");

out.write("Our most popular flavors are:\r\n");

2 Generated source code examples have been slightly reformatted for readability.

// end

// begin [file="flavor_list.html";from=(0,0);to=(5,0)]

out.write("\r\n");

out.write("Chocolate\r\n");

out.write("Strawberry\r\n");

out.write("Vanilla\r\n");

out.write("\r\n");

// end

// begin [file="flavors.jsp";from=(2,38);to=(4,0)]

out.write("\r\nTry them all!\r\n");

// end

Other than the filename change in the comment, there is no way to tell that the ordered
list was not simply coded in the original JSP page. In this respect, the <%@ include %>
directive is similar to the C language #include preprocessor directive.

Effect of Changes in an Included File
What happens if the flavor_list.html file is modified? The JSP 1.1 specification
makes no provision for notifying the JSP container that an included file has changed,
although it does not prohibit it, and a robust JSP container should do so. JRun
incorporates dependency names and last modification times into the generated source
code so it can determine when files are out of date:

private static final String[] __dependencies__ = {

"/Chap09/examples/flavors.jsp",

"/Chap09/examples/flavor_list.html",

null

};

private static final long[] __times__ = {

958963142531L,

958961380337L,

0L

};

The key point to remember is the file included is the file that exists at compilation
time because this is when the <%@ include %> directive is processed. This is why the
filename cannot be a run-time expression. It also means the included file must exist at
compilation time.

138 J S P : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 9 : R e q u e s t D i s p a t c h i n g 139
ELEM

EN
TS

O
F

JS
P

Using the include Directive to Copy Source Code
In addition to being used to copy HTML, the include directive can be used to include
Java source code as a declaration section. For example, a commonly used utility
function can be stored in a file and incorporated into a JSP page with the include
directive. A typical example would be a function that filters out characters with special
meaning in HTML and replaces them with symbolic printable equivalents:

<%!

public static final String webify(String s)

{

StringBuffer sb = new StringBuffer();

int n = s.length();

for (int i = 0; i < n; i++) {

char c = s.charAt(i);

switch (c) {

case '<': sb.append("<"); break;

case '>': sb.append(">"); break;

case '&': sb.append("&"); break;

case '"': sb.append("""); break;

default: sb.append(c); break;

}

}

return sb.toString();

}

%>

Once defined (by being included), this function can be used in scriptlets and expressions
in the including JSP page:

<%@ include file="webify.jsp" %>

Preformatted text can be coded with the

<%= webify("<PRE> and </PRE>") %> tags.

Likewise, constants used throughout an application can be coded in a JSP
declaration handled by the include directive:

<%!

static final int BORDER = 1;

static final int CELLPADDING = 3;

static final int CELLSPACING = 0;

static final String[] COLORS = {"#C0C0C0", "#E0E0E0"};

%>

If the declaration previously shown is stored in the TableConstants.jsp file, then
a JSP page can generate a table with rows of alternating background colors as follows:

<%@ include file="TableConstants.jsp" %>

<TABLE BORDER="<%= BORDER %>"

CELLPADDING="<%= CELLPADDING %>"

CELLSPACING="<%= CELLSPACING %>"

>

<%

for (int i = 0; i < 10; i++) {

int x = i+1;

int xsq = x*x;

%>

<TR BGCOLOR="<%= COLORS[i % 2] %>">

<TD><%= x %></TD> <TD><%= xsq %></TD>

</TR>

<%

}

%>

</TABLE>

Watch for two things when using the include directive for source code declarations. First,
the JSP 1.1 specification does not guarantee pages that include code in this manner will be
notified if the code changes. Second, the included code uses the namespace of the including
page, so care must be exercised to ensure no duplicate variable definitions occur.

The <jsp:include> Action
In contrast to the include directive, the jsp:include action is interpreted each time
a request is made. The syntax of this action is

<jsp:include page="resourcename" flush="true" />

The included resource name must be a relative URL specification, containing only path
information. The resource name is mapped to the current servlet context in the same
way as the filename in an include directive. If the name begins with "/", it refers
to a path beginning at the top of the servlet context; otherwise, it is interpreted as a
path relative to the directory containing the calling JSP. The flush attribute (which
is mandatory) is used to indicate whether to flush the output JspWriter before
including the resource. The only valid value in JSP 1.1 is true.

140 J S P : T h e C o m p l e t e R e f e r e n c e

How It Works
The <jsp:include> action is parsed by the JSP compiler but, rather than being
executed at compilation time, it is converted into Java code that invokes the named
resource at request time. The resource can be a static data source, such as an HTML file
or a dynamic source, such as a JSP page or a servlet. Returning to our ice cream flavors
example, if flavors.jsp might contain

<H3>Flavors</H3>

Our most popular flavors are:

<jsp:include page="/servlet/FlavorList" flush="true" />

Try them all!

where FlavorList is a servlet that extracts the favorite flavors from a database or
some other dynamic source:

import java.io.*;

import java.net.*;

import java.sql.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

/**

* Returns the current list of favorite flavors

*/

public class FlavorListServlet extends HttpServlet

{

public static final String JDBC_DRIVER =

"sun.jdbc.odbc.JdbcOdbcDriver";

public static final String URL =

"jdbc:odbc:IceCream";

public void doGet(

HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException

{

PrintWriter out = response.getWriter();

C h a p t e r 9 : R e q u e s t D i s p a t c h i n g 141
ELEM

EN
TS

O
F

JS
P

Connection con = null;

try {

// Connect to the ice cream database

Class.forName(JDBC_DRIVER);

con = DriverManager.getConnection(URL);

// Run a query to get the top flavors

Statement stmt = con.createStatement();

String sql =

"SELECT RANK, NAME"

+ " FROM flavors"

+ " WHERE (RANK <= 3)"

+ " ORDER BY RANK"

;

ResultSet rs = stmt.executeQuery(sql);

// Print as an ordered list

out.println("");

while (rs.next()) {

int rank = rs.getInt(1);

String name = rs.getString(2);

out.println(" " + name);

}

out.println("");

}

catch (Exception e) {

e.printStackTrace();

}

// Close the database

finally {

if (con != null) {

try {

con.close();

}

catch (SQLException ignore) {}

142 J S P : T h e C o m p l e t e R e f e r e n c e

}

}

}

}

When flavors.jsp is invoked, it produces the following output:

<H3>Flavors</H3>

Our most popular flavors are:

Espresso Chip

Orange Cream

Peanut Butter

Try them all!

The resulting HTML may look similar, but the underlying mechanism is completely
different, as can be seen in the source code of the servlet Tomcat generates:

// begin [file="flavors.jsp";from=(0,0);to=(2,0)]

out.write("<H3>Flavors</H3>\r\n");

out.write("Our most popular flavors are:\r\n");

// end

// begin [file="flavors.jsp";from=(2,0);to=(2,55)]

{

out.flush();

pageContext.include("/servlet/FlavorList");

}

// end

// begin [file="flavors.jsp";from=(2,55);to=(4,0)]

out.write("\r\nTry them all!\r\n");

// end

Rather than containing the ordered list of flavors, the JSP invokes the pageContext.
include() method to run the servlet that accesses the database. The output of the
servlet is included in the JSP output and the JSP resumes control. Where the include
directive was similar to the C language #include preprocessor directive, the <jsp:
include> action is more like a C language function call.

C h a p t e r 9 : R e q u e s t D i s p a t c h i n g 143
ELEM

EN
TS

O
F

JS
P

144 J S P : T h e C o m p l e t e R e f e r e n c e

Restrictions
A JSP page invoked by a <jsp:include> action has access to all the implicit objects
available to the calling JSP, including the response object. It can write to and flush
the out object, but it cannot set response headers. For example, you can neither
specify a different content type nor can you use a <jsp:include> action to handle
authentication with the WWW-Authenticate header. Why not? Because it is too
latethe output stream was flushed before the JSP was included, so any headers
present have already been written to the client.

Run-time Features
Because a <jsp:include> is evaluated at run time, the page it refers to can be
supplied in a run-time expression, rather than being hardcoded. The following JSP
page is designed to be a comprehensive view of an HTTP servlet request. Rather than
being a long, scrolling list of attribute names and values, the page simulates a tabbed
dialog box, with attributes broken down into logical groups and radio buttons along
the top used to select which group to show.

<%@ page import="java.util.*" %>

<%!

// Table row colors

static final String[] COLORS = {"#E0E0E0", "#F0F0F0"};

// Array of tab codes, labels, and JSP's

public static final String[][] TABS = {

{"HD", "Headers", "ShowRequestHeaders.jsp"},

{"PM", "Parameters", "ShowParameters.jsp"},

{"SR", "ServletRequest Methods",

"ShowServletRequestMethodValues.jsp"},

{"HR", "HttpServletRequest Methods",

"ShowHttpServletRequestMethodValues.jsp"},

};

%>

<HTML>

<HEAD>

<TITLE>Show Request</TITLE>

</HEAD>

<BODY>

<H2>Show Request</H2>

<FORM>

<TABLE BORDER=0 CELLPADDING=3 CELLSPACING=0>

<%-- Radio buttons for selecting the page --%>

<TR>

<TD ALIGN=LEFT>

<%

String which = request.getParameter("which");

if (which == null)

which = TABS[0][0];

String jspToRun = null;

for (int i = 0; i < TABS.length; i++) {

String tabCode = TABS[i][0];

String tabLabel = TABS[i][1];

String tabJSP = TABS[i][2];

String CHECKED = "";

if (which.equals(tabCode)) {

CHECKED = "CHECKED";

jspToRun = tabJSP;

}

%>

<INPUT NAME="which"

TYPE="RADIO"

VALUE="<%= tabCode %>"

<%= CHECKED %>

onClick="this.form.submit()"

><%= tabLabel %>

<%

}

%>

<P>

</TD>

</TR>

<TR>

<TD ALIGN=CENTER VALIGN=TOP>

<%-- Page showing details of the request --%>

<jsp:include page="<%= jspToRun %>" flush="true" />

<%-- Resulting table --%>

<TABLE BORDER=1 CELLPADDING=3 CELLSPACING=0 WIDTH=600>

C h a p t e r 9 : R e q u e s t D i s p a t c h i n g 145
ELEM

EN
TS

O
F

JS
P

146 J S P : T h e C o m p l e t e R e f e r e n c e

<TR>

<TH COLSPAN=2 ALIGN=LEFT BGCOLOR="#000000">

<%= request.getAttribute("_table_title") %>

</TH>

</TR>

<TR>

<TH WIDTH=200 ALIGN=LEFT>Name</TH>

<TH WIDTH=400 ALIGN=LEFT>Value</TH>

</TR>

<%

Map entries = (Map)

request.getAttribute("_table_entries");

Iterator iNames = entries.keySet().iterator();

int row = 0;

while (iNames.hasNext()) {

String name = (String) iNames.next();

Object value = entries.get(name);

%>

<TR BGCOLOR="<%= COLORS[row % 2] %>">

<TD ALIGN=LEFT VALIGN=TOP><%= name %></TD>

<TD ALIGN=LEFT VALIGN=TOP><%= value %></TD>

</TR>

<%

row++;

}

%>

</TABLE>

<P>

</TD>

</TR>

</TABLE>

</FORM>

</BODY>

</HTML>

The categories available for display are coded in a static String array. For each
category, a two-character abbreviation exists: a label and the name of a JSP page that
will extract the desired data. There are four categories of attributes:

� Request Headers

� Parameters

� Methods in ServletRequest

� Methods in HttpServletRequest

The string array provides all the information needed to generate the page. The
radio buttons are contained in a self-referring HTML form and are generated in a loop,
with the two-character abbreviation used as the VALUE attribute and the label as the
visible text. When a radio button is clicked, the form is submitted, with the value of
the button supplying the value of the which parameter. Figure 9-3 shows the initial
display, which is the request headers category. When another radio button is clicked
(for example, the ServletRequest Method button), a different table appears in the body
of the table (see Figure 9-4).

C h a p t e r 9 : R e q u e s t D i s p a t c h i n g 147
ELEM

EN
TS

O
F

JS
P

Figure 9-3. HTTP request headers displayed by ShowRequest.jsp

The ShowRequest.jsp determines which radio button was clicked and selects the
corresponding JSP filename from the string array. This filename is then passed in a JSP
expression to the <jsp:include> action:

<jsp:include page="<%= jspToRun %>" flush="true" />

Each of the individual table generating pages creates a list of attribute names and
values, and writes them to a java.util.Map object that is stored as a request attribute.
The table heading string is also stored as a request attribute. When the included JSP

148 J S P : T h e C o m p l e t e R e f e r e n c e

Figure 9-4. Servlet request methods shown in the third tab of ShowRequest.jsp

C h a p t e r 9 : R e q u e s t D i s p a t c h i n g 149
ELEM

EN
TS

O
F

JS
P

completes, the map is retrieved from the request attribute and rendered in an HTML
table. The JSP that generates the Request Headers tab is shown in the following:

<%@ page import="java.util.*" %>

<%

Enumeration eNames = request.getHeaderNames();

if (eNames.hasMoreElements()) {

String title = "Request Headers";

Map entries = new TreeMap();

while (eNames.hasMoreElements()) {

String name = (String) eNames.nextElement();

String value = request.getHeader(name);

entries.put(name, value);

}

request.setAttribute("_table_title", title);

request.setAttribute("_table_entries", entries);

}

%>

This capability to select a page to be included based on run-time information
is a useful characteristic of JSP-based Web applications because it allows complex
processing to be built on table-driven logic.

Passing Parameters to the Included JSP
Parameters can be passed to JSP pages that are invoked through <jsp:include>
actions to provide additional customization. The syntax in this case would be

<jsp:include page="pageName" flush="true">
<jsp:param name="parm1Name" value="parm1Value" />
<jsp:param name="parm2Name" value="parm2Value" />
</jsp:include>

The parameters are passed to the included JSP the same as ordinary form parameters,
and can be retrieved with request.getParameter(name). If the parameter name is
the same as one the JSP is already using, both values are passed and can be retrieved as
an array of strings using getParameterValues(name).

The following JSP illustrates how this technique can be used. It includes the same
page twice, using different parameters each time.

<%

// Diameter of the earth in kilometers

int distance = 12756;

%>

<H4>Diameter of the Earth in SI (Metric) Units</H4>

<jsp:include page="ShowDiameter.jsp" flush="true">

<jsp:param name="dist" value="<%= distance %>" />

<jsp:param name="units" value="SI" />

</jsp:include>

<H4>Diameter of the Earth in U.S. Customary Units</H4>

<jsp:include page="ShowDiameter.jsp" flush="true">

<jsp:param name="dist" value="<%= distance %>" />

<jsp:param name="units" value="US" />

</jsp:include>

Two parameters are passed:

� dist The distance in kilometers.

� units "SI" if metric units are desired, "US" otherwise.

The ShowDiameter.jsp page retrieves the kilometer distance, converts it to an
integer, and finds the mile equivalent. Then, based on the unit of measure code
passed in the units parameter, it displays the distance in either SI or U.S. units.

<%

String dist = request.getParameter("dist");

int kilometers = Integer.parseInt(dist);

double miles = kilometers / 1.609344;

String units = request.getParameter("units");

if (units.equals("SI")) {

%> Diameter = <%= kilometers %> km <%

}

else {

%> Diameter = <%= miles %> miles <%

}

%>

Figure 9-5 shows the results.

Retrieving the Original URI
When a page is invoked in a <jsp:include> action, it uses the same request
object as its including page, which means request.getRequestURI() and

150 J S P : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 9 : R e q u e s t D i s p a t c h i n g 151
ELEM

EN
TS

O
F

JS
P

request.getServletPath() return the path to the page originally handling the
request, not the current page. The equivalent values for the included page, however,
are available as attributes of the request. This is illustrated in ShowPath1.jsp:

<PRE>

In ShowPath1.jsp:

request.getRequestURI()

= <%= request.getRequestURI() %>

request.getServletPath()

= <%= request.getServletPath() %>

</PRE>

<jsp:include page="ShowPath2.jsp" flush="true"/>

and the page it includes, ShowPath2.jsp:

<PRE>

In ShowPath2.jsp:

request.getRequestURI()

Figure 9-5. A JSP page that includes the same page twice with different parameters

152 J S P : T h e C o m p l e t e R e f e r e n c e

= <%= request.getRequestURI() %>

request.getServletPath()

= <%= request.getServletPath() %>

javax.servlet.include.request_uri

= <%= request.getAttribute

("javax.servlet.include.request_uri") %>

javax.servlet.include.servlet_path

= <%= request.getAttribute

("javax.servlet.include.servlet_path") %>

</PRE>

The output of the two pages is as follows:

In ShowPath1.jsp:

request.getRequestURI()

= /jspcr/Chap09/examples/ShowPath1.jsp

request.getServletPath()

= /Chap09/examples/ShowPath1.jsp

In ShowPath2.jsp:

request.getRequestURI()

= /jspcr/Chap09/examples/ShowPath1.jsp

request.getServletPath()

= /Chap09/examples/ShowPath1.jsp

javax.servlet.include.request_uri

= /jspcr/Chap09/examples/ShowPath2.jsp

javax.servlet.include.servlet_path

= /Chap09/examples/ShowPath2.jsp

The set of attributes that can be retrieved in this fashion is listed in Table 9-1.

C h a p t e r 9 : R e q u e s t D i s p a t c h i n g 153
ELEM

EN
TS

O
F

JS
P

Which Method to Use
The include directive and the <jsp:include> action perform similar functions, and
each has its advantages. The decision to use one or the other should take into account
whether the inclusion needs to be done at run time. The following table compares the
two options:

Criterion <%@ include %> <jsp:include>

Compilation time Slower—resource must
be parsed

Slightly faster.

Execution time Slightly faster Slower—resource must be
resolved each time.

Flexibility Less—page name is fixed More—page can be chosen
at run time.

Attribute Name Equivalent Method

javax.servlet.include.
request_uri

request.getRequestURI()

javax.servlet.include.
context_path

request.getContextPath()

javax.servlet.include.
servlet_path

request.getServletPath()

javax.servlet.include.
path_info

request.getPathInfo()

javax.servlet.include.
query_string

request.getQueryString()

Table 9-1. Request Attributes That Describe an Included JSP Page

Forwarding Requests
To facilitate splitting a Web application into content and presentation, the JSP
environment provides the <jsp:forward> action, which allows requests to be
forwarded from one page to another, or to a servlet. The syntax is

<jsp:forward page="page" />

where page is a URI relative to the current page, or an absolute URI with respect to the
top of the servlet context. Like <jsp:include>, the <jsp:forward> action can use a
run-time expression for the page name. Similarly, it can pass parameters to the new JSP
using the following syntax:

<jsp:forward page="page">
<jsp:param name="name_1" value="value_1" />
<jsp:param name="name_2" value="value_2" />
…
<jsp:param name="name_n" value="value_n" />
</jsp:forward>

When a <jsp:forward> action is executed, the named page is loaded and the
current page is terminated. The new page has access to the request and response
objects, and is expected to create all the output because the forwarding page cannot
write any output. The following table describes what happens when output buffering
is or is not enabled, and when the buffer has been filled or not.

Buffering Enabled Buffer Filled Action

no N/A If any output has been written, an
IllegalStateException is thrown.

yes no Buffer is cleared before forwarding.

yes yes IllegalStateException is thrown.

The following code shows a typical use for request forwardingto separate content
from presentation. The first JSP page is GetFoodGroups.jsp, which reads a list of
food groups from the USDA Nutrient Database:

<%@ page errorPage="/ErrorPage.jsp" %>

<%@ page import="java.io.*" %>

<%@ page import="java.sql.*" %>

<%@ page import="java.util.*" %>

<%@ page import="jspcr.forward.*" %>

<%

154 J S P : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 9 : R e q u e s t D i s p a t c h i n g 155
ELEM

EN
TS

O
F

JS
P

// Load the driver class and establish a connection

Class.forName

("sun.jdbc.odbc.JdbcOdbcDriver");

Connection con = DriverManager.getConnection

("jdbc:odbc:usda");

// Run a database query to get the list of food groups

Statement stmt = con.createStatement();

String sql =

" SELECT FdGp_Cd, FdGp_Desc"

+ " FROM fd_group"

;

ResultSet rs = stmt.executeQuery(sql);

// Store the results as a list of FoodGroup objects

List fglist = new ArrayList();

while (rs.next()) {

String code = rs.getString(1);

String desc = rs.getString(2);

FoodGroup fg = new FoodGroup(code, desc);

fglist.add(fg);

}

rs.close();

stmt.close();

con.close();

// Store the list as a request attribute

request.setAttribute("jspcr.forward.FoodGroups", fglist);

// Now forward the request

%><jsp:forward page="ShowFoodGroups.jsp" />

As the food groups records are read, they are stored in a List structure. The list is
saved as an attribute in the request. When all the records have been extracted from the

156 J S P : T h e C o m p l e t e R e f e r e n c e

database, the request is forwarded to ShowFoodGroups.jsp, which retrieves the list
and writes it as an HTML table:

<%@ page import="java.io.*,java.util.*,jspcr.forward.*" %>

<HTML>

<HEAD>

<TITLE>Show Food Groups</TITLE>

<STYLE>

body, td {

background-color: #FFFFFF;

font: 8pt Sans-Serif;

}

</STYLE>

</HEAD>

<BODY>

<CENTER>

<H3>Food Groups</H3>

<%-- Get the list of FoodGroup objects

that was created by database calls --%>

<%

List fglist = (List) request.getAttribute

("jspcr.forward.FoodGroups");

Iterator igroups = fglist.iterator();

%>

<TABLE BORDER=1 CELLPADDING=3 CELLSPACING=0>

<TR><TH>Code</TH><TH>Description</TH></TR>

<%-- Loop through the list and print each item --%>

<%

while (igroups.hasNext()) {

FoodGroup fg = (FoodGroup) igroups.next();

%>

<TR>

<TD><%= fg.getCode() %></TD>

<TD><%= fg.getDescription() %></TD>

</TR>

<%

}

%>

</CENTER>

</BODY>

</TABLE>

ShowFoodGroups.jsp has the advantage that it can be tested in isolation, without
having to be connected to a database. A stub JSP for testing purposes can be written.
As long as it populates the List attribute, ShowFoodGroups.jsp is unaware that it
is not dealing with a database. The results are shown in Figure 9-6.

ELEM
EN

TS
O

F
JS

P
C h a p t e r 9 : R e q u e s t D i s p a t c h i n g 157

Figure 9-6. A list of food groups created by a pair of JSP pages

158 J S P : T h e C o m p l e t e R e f e r e n c e

The RequestDispatcher Object
The underlying mechanism for both <jsp:include> and <jsp:forward> is the
javax.servlet.RequestDispatcher class. In the food groups example from the
previous section, the <jsp:forward> action is translated into the following by Tomcat:

if (true) {

out.clear();

String _jspx_qfStr = "";

pageContext.forward("ShowFoodGroups.jsp" + _jspx_qfStr);

return;

}

The Tomcat implementation of pageContext, in turn, invokes a RequestDispatcher
to handle the forwarding:

public void forward(String relativeUrlPath)

throws ServletException, IOException

{

String path = getAbsolutePathRelativeToContext(relativeUrlPath);

context.getRequestDispatcher(path).forward(request, response);

}

You can create a RequestDispatcher in three ways:

1. ServletContext.getRequestDispatcher(String path)

� The path must be absolute with respect to the context.

� A dispatcher for a resource in another servlet context can be
created if its context is known. The context can be obtained with
context.getContext(otherContext).

2. ServletContext.getNamedDispatcher(String name)

� The name parameter refers to a servlet alias, rather than a physical pathname.

� A servlet can get its own name with config.getServletName().

3. ServletRequest.getRequestDispatcher(String name)

� The path can be absolute with respect to the context, or relative with
respect to the page. This is the essential difference between this method
and the first method.

C h a p t e r 9 : R e q u e s t D i s p a t c h i n g 159
ELEM

EN
TS

O
F

JS
P

Request Dispatching vs. Redirection
Much of what is done by a request dispatcher can also be done by having a JSP or servlet
write a “Moved Temporarily” or “Moved Permanently” status code and the URL of the
next JSP or servlet written in the Location header. The difference is redirection involves a
cooperating client to work, whereas request dispatching is handled entirely on the server
side, with no client interaction.

Model 1 vs. Model 2
These are all handy features, but they are underused if they are only used hit-or-miss
for headers and footers. They can, instead, be part of a well-coordinated architecture.
If you read JSP newsgroups, you often encounter references to the Model 1 and Model 2
architectures, two different approaches to the structure of a Web application introduced
in the original JSP 0.92 specification.

In a Model 1 application, JSP does it all:

� The user requests a JSP page.

� JSP performs calculations, database access, and so forth.

� The JSP page renders its output with HTML.

The Java code necessary to do all this work can be written directly in the form of
scriptlets, or it can be contained in JavaBeans.

A Model 2 application follows the Model-View-Controller (MVC) paradigm. MVC is an
object-oriented programming concept prominently featured in the Smalltalk language. It
describes a logical partitioning of an application into three parts:

� Model is the logical “inner” representation. It had no visible output, no outside
representation at all. For this reason, it can be run equally well in a servlet, a
standalone GUI, or a batch test program. For example, the model for a chess
game may include an array representing the board, numbers representing each
of the pieces, and some encoding of the rules.

� View is a presentation layer for a model, with little or no programming logic.
It reads from already populated structures and displays them. In our chess
example, the view would be the screen representation of the game, possibly
with alternating colors and ornately carved pieces.

� Controller provides user input and directions to a model. In the chess example,
the controller would be the keyboard.

In the case of a Model 2 Web application, all user requests are referred to a single
URL, a servlet sometimes called a dispatcher (the controller). This servlet looks in the
request’s path information for an indication of what it needs to do. There may be a
table of actions and names of JSP pages to handle each of them. These action handlers
constitute the model of the application. They may access a database or perform other
calculations, and then populate JavaBeans or other classes with the results. Finally,
they invoke JSP pages (the view) to present their output.

Which of these models is superior? Model 1 is easier to throw together quickly,
but it doesn’t scale. Too much is packaged together and it becomes unwieldy as the
application grows. Model 2 scales much better and also allows specialists to write
different parts of the application:

� Java programmers can write the model and controller.

� User interface specialists can write JSP pages that do nothing but display output.

Summary
A number of situations exist in which splitting the processing of an HTTP request is
advantageous. JSP provides two general capabilities to support this:

� Including other resources, either with <%@ include %> or <jsp:include>.

� Forwarding a request using <jsp:forward>.

Included resources can be either static (like HTML) or dynamic (like a JSP or servlet).
The capability to forward requests provides the basis for table-driven applications.

Two general development architectures exist, commonly referred to as Model 1 and
Model 2. Model 1 uses JSP pages to accept user input, to access databases as needed,
and to format its output. Model 2 follows the MVC paradigm, allowing complex
projects to be separated as necessary between groups of people who specialize in one
layer or another.

160 J S P : T h e C o m p l e t e R e f e r e n c e

Chapter 10
The Page Directive

161

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

162 J S P : T h e C o m p l e t e R e f e r e n c e

JSP pages contain not only code that handles requests and generates responses,
but instructions to the JSP compiler as well. These instructions are called directives.
This chapter covers the one most commonly used—the page directive. This

directive provides a means for setting attributes that affect how the page is interpreted
and executed. The syntax is as follows:

<%@ page attribute="value" attribute="value" … %>

where the attributes can be any of the following:

language="scripting language"
extends="className"
import="importList"
session="true|false"
buffer="none|sizekb"
autoFlush="true|false"
isThreadSafe="true|false"
info="info_text"
contentType="ctinfo"
errorPage="error_url"
isErrorPage="true|false"

The attributes can be specified in any order, and more than one page directive
can be specified in a compilation unit (the JSP page and any files it includes with
the include directive). If multiple page directives are used, however, they cannot
specify the same attribute more than once, with the exception of the import attribute.

The remainder of this chapter discusses each of these attributes in detail.

language
The JSP architecture allows room for it to be extended as a general framework for
server-side scripting. For this reason, it supports a language attribute in the page
directive. The value specified (which is java by default) applies to all declarations,
expressions, and scriptlets in the current translation unit, including any files specified
in an include directive. All JSP 1.1-compliant containers must support the value
java for the language attribute. No other language is supported in the JSP 1.1
specification, although individual JSP engines may do so.

Although the specification allows for other languages to be used, it imposes some
restrictions. The language must support the Java Runtime Environment to the extent
that it allows access to the standard implicit object variables, to JavaBeans get and set
methods, and to public methods of Java classes.

JRun 3.0 supports both java and javascript as values for the language
attribute. When java is the language used—either explicitly or implicitly—the
scriptlets, expressions, and declarations found in the JSP page are copied to the

C h a p t e r 1 0 : T h e P a g e D i r e c t i v e 163
ELEM

EN
TS

O
F

JS
P

generated servlet as usual. When javascript is specified, there is still a generated
Java servlet, but it does not contain the javascript code. Instead, the servlet
initializes a scripting engine that reads and interprets the original JSP page. For
example, if the JSP page looks like this,

<%@ page language="java" %>

<%

int k = 10;

%>

k = <%= k %>

then the generated servlet includes the statements,

out.print("\r\n");

int k = 10;

out.print("\r\nk = ");

out.print(k);

out.print("\r\n\r\n");

which treats k as a Java variable, assigns a value to it, and prints it using the out
JspWriter variable.

By contrast, if the same JSP page uses javascript as a value of the language
attribute,

<%@ page language="javascript" %>

<%

var k = 10;

%>

k = <%= k %>

then the generated servlet initializes a JRun-specific scripting engine and invokes its
evaluate method, as shown in the following:

if (scriptEngine == null) {

try {

scriptEngine =

ScriptEngineFactory.getScriptEngine("javascript");

scriptEngine.init(pageContext);

} catch (Exception e) {

throw new ServletException

("Error initializing scripting engine.", e);

}

164 J S P : T h e C o m p l e t e R e f e r e n c e

}

if (request.getAttribute(SCRIPT_KEY) != null) {

scriptEngine.init(

pageContext,

(String) request.getAttribute(SCRIPT_KEY),

(String) request.getAttribute(DECLARATION_KEY));

}

scriptEngine.evaluate(pageContext);

Obviously, any JSP pages written in a language not explicitly required by the JSP
specification most likely won’t be portable between JSP containers of different vendors.

extends
Ordinarily, the JSP container supplies the parent class for any servlet it generates from
a JSP page. However, the specification enables you to subclass another parent class of
your liking by specifying its fully qualified name in the extends attribute of the page
directive. Doing so would let you provide additional behavior to a family of JSP pages
without explicitly coding the behavior in the page.

The JSP specification urges caution when using this capability because it may
prevent the JSP container from providing vendor-specific performance and reliability
enhancements. For example, the standard JSP parent class used by JRun provides
methods for determining dependencies and their last modification times. Similarly,
Tomcat implements a parent class that stores a reference to a specialized class loader.
If you use a different parent class, it ought to provide important functionality that
outweighs these features.

Required Interfaces for a JSP Superclass
For a class to be used as the superclass for JSP pages, it must implement one of the
following interfaces:

� javax.servlet.jsp.JspPage A generic interface, not necessarily for use
with HTTP. Few servlets implement this interface directly.

� javax.servlet.jsp.HttpJspPage Intended for JSP pages that operate
under the HTTP protocol, this interface is an extension of JspPage.

These interfaces define three methods you must implement, which are described
in Table 10-1.

C h a p t e r 1 0 : T h e P a g e D i r e c t i v e 165
ELEM

EN
TS

O
F

JS
P

The exact types of the request and response parameters in the _jspService
method are dictated by the protocol they support. For the HTTP environment,
these types are javax.servlet.http.HttpServletRequest and
javax.servlet.http.HttpServletResponse. If you are implementing
a different protocol, you need to define request and response classes to be used
in the method signature.

HttpJspPage extends JspPage to provide HTTP-specific behavior. JspPage,
in turn, extends javax.servlet.Servlet, which defines the methods listed in
Table 10-2.

Method Description

public void jspInit() Method called automatically from
the servlet init() method when
the JSP page is loaded. Although
you must implement this method,
your implementation needn’t do
anything. The method is designed
as a placeholder to be overridden
by JSP page subclasses for any
initialization work they need to do.

public void jspDestroy() The counterpart of jspInit(), this
method is automatically called from
the servlet’s destroy() method
when a JSP page class is unloaded.

public void _jspService(
request, response) throws

ServletException, IOException

This method is the heart of the JSP
request processing logic. It must
not be explicitly defined in the JSP
page because it is the work of the
JSP container to generate the
method from the JSP’s scriptlets,
expressions, and directives. This
method is typically declared to be
abstract in the JSP parent class.

Table 10-1. Methods Required to Be Declared in JSP Superclasses

166 J S P : T h e C o m p l e t e R e f e r e n c e

The JSP superclass must adhere to and implement the JSP protocol. This
requires that:

� The init() method must call jspInit().

� The destroy() method must call jspDestroy().

� The service() method must cast its request and response parameters into
their protocol-specific classes and invoke _jspService().

This implementation can be direct or the superclass can itself extends a class that
provides the implementation, such as javax.servlet.http.HttpServlet.

A JSP Superclass Example
Suitably warned and cautious, if you still want to proceed, this section provides a
complete example. Suppose you have a family of JSP pages that all access a common
database. If the JSP pages did not have to bother with loading the JDBC driver and
establishing a database connection, this might simplify matters. The following servlet can
both perform those functions and be used as the parent class of the family of JSP pages.

Method Description

public void init(
ServletConfig config) throws
ServletException

A method invoked by the
servlet container when a servlet
is first loaded.

public ServletConfig
getServletConfig()

Returns the servlet’s configuration
object, which manages the servlet’s
initialization parameters and
servlet context.

public void service(
ServletRequest request,
ServletResponse response) throws
ServletException, IOException

Called by the servlet engine to
service a request.

public String getServletInfo() Returns a description of the servlet.
By default, returns an empty string.

public void destroy() Called by the servlet engine when
a servlet is being unloaded.

Table 10-2. Methods in the javax.servlet.Servlet Interface

package jspcr.page;

import java.io.*;

import java.sql.*;

import javax.servlet.*;

import javax.servlet.http.*;

import javax.servlet.jsp.*;

/**

* An example of a JSP superclass that can

* be selected with the <CODE>extends</CODE>

* attribute of the page directive. This servlet

* automatically loads the JDBC-ODBC driver class

* when initialized and establishes a connection

* to the USDA nutrient database.

*/

public abstract class NutrientDatabaseServlet

extends HttpServlet

implements HttpJspPage

{

protected Connection con;

/**

* Initialize a servlet with the driver

* class already loaded and the database

* connection established.

*/

public void init(ServletConfig config)

throws ServletException

{

super.init(config);

try {

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

con = DriverManager.getConnection("jdbc:odbc:usda");

}

catch (Exception e) {

throw new UnavailableException(e.getMessage());

}

jspInit();

}

/**

C h a p t e r 1 0 : T h e P a g e D i r e c t i v e 167
ELEM

EN
TS

O
F

JS
P

* Closes the database connection when

* the servlet is unloaded.

*/

public void destroy()

{

try {

if (con != null) {

con.close();

con = null;

}

}

catch (Exception ignore) {}

jspDestroy();

super.destroy();

}

/**

* Called when the JSP is loaded.

* By default does nothing.

*/

public void jspInit()

{

}

/**

* Called when the JSP is unloaded.

* By default does nothing.

*/

public void jspDestroy()

{

}

/**

* Invokes the JSP's _jspService method.

*/

public final void service(

HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException

{

_jspService(request, response);

168 J S P : T h e C o m p l e t e R e f e r e n c e

}

/**

* Handles a service request

*/

public abstract void _jspService(

HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException;

}

In the example, the driver name and database URL are hard-coded. In a production
environment, these values should be configurable parameters.

To use NutrientDatabaseServlet as a JSP superclass, all that is required is
to have the class in the JSP container’s classpath and to have the JSP specify its fully
qualified name in the extends attribute of the page directive, as the following shows:

<%@ page extends="jspcr.page.NutrientDatabaseServlet" %>

<%--

This JSP page subclasses the NutrientDatabaseServlet

parent class, which automatically loads the

database driver and establishes the connection.

--%>

<%@ page import="java.io.*,java.sql.*" %>

<HTML>

<BODY>

<H3>Food Groups</H3>

<TABLE BORDER=1 CELLPADDING=3 CELLSPACING=0>

<TR><TH>Code</TH><TH>Description</TH></TR>

<%

// Execute a query

Statement stmt = con.createStatement();

String sql = "SELECT * FROM FD_GROUP ORDER BY FDGP_DESC";

ResultSet rs = stmt.executeQuery(sql);

while (rs.next()) {

String code = rs.getString(1);

String desc = rs.getString(2);

%>

C h a p t e r 1 0 : T h e P a g e D i r e c t i v e 169
ELEM

EN
TS

O
F

JS
P

170 J S P : T h e C o m p l e t e R e f e r e n c e

<TR>

<TD><%= code %></TD>

<TD><%= desc %></TD>

</TR>

<%

}

// Close the database objects

rs.close();

stmt.close();

%>

</TABLE>

</BODY>

</HTML>

Notice the JSP does not need to define the Connection object. The JSP is a
protected variable of the superclass and, therefore, accessible to its subclasses.

import
The import attribute is used to describe the fully qualified names of classes used
in the JSP page. This makes it possible for the classes to be referred to by their classes
names without the package prefix. This is an optional attribute.

The value of an import attribute is a comma-separated list of package names
(each terminated with the wildcard string ".*") and/or fully qualified class names.
These names are converted directly to import statements in the generated Java servlet.
The syntax is fairly flexible. To import all classes in the java.io, java.sql, and
java.util packages, for example, you can use any of the following,

<%@ page import="java.io.*,java.sql.*,java.util.*" %>

or on individual lines (because newlines count as whitespace inside the string),

<%@ page import="

java.io.*,

java.sql.*,

java.util.*

"%>

or using separate page directives:

<%@ page import="java.io.*" %>

<%@ page import="java.sql.*" %>

<%@ page import="java.util.*" %>

All these generate the same Java code, apart from differences in whitespace:

import java.io.*;

import java.sql.*;

import java.util.*;

Note, importing classes does not involve loading anything; it is simply a shorthand
way of letting you use class names inside your Java methods without having to specify
the package to which they belong. If you import java.util.*, you can write

Vector names = new Vector();

instead of

java.util.Vector names = new java.util.Vector();

which affects only the Java compiler, not the run-time class image. You can import
thousands of classes, but only those you actually refer to will be required at run time.

The default import list consists of four packages:

� java.lang

� javax.servlet

� javax.servlet.http

� javax.servlet.jsp

You do not need to supply an import statement for classes in these packages; you also
do not need to qualify them with their package names.

Remember, import is the only attribute of the page directive that can be specified more
than once.

C h a p t e r 1 0 : T h e P a g e D i r e c t i v e 171
ELEM

EN
TS

O
F

JS
P

172 J S P : T h e C o m p l e t e R e f e r e n c e

session
The session attribute of the page directive indicates whether the page requires an
HTTP session. Two values are possible:

� session="true" if the page needs an HTTP session. This is the default value.

� session="false" if no HTTP session is required. If this is specified, the
session implicit variable is undefined and will cause a translation error
if used.

If your JSP page does not required a session, it is valuable from a performance
standpoint to specify session="false", so unnecessary sessions will not be created,
using up memory and CPU cycles.

Chapter 14 describes HTTP sessions and session management in detail.

buffer and autoFlush
The buffer and autoFlush attributes are used to describe the output buffering
model the JSP will employ. The buffer attribute can have the value "none", indicating
all output will be written directly to the servlet response object’s output stream, or it
can have a integer value with a “kb” suffix. In the latter case, output is stored in memory
in a buffer of the specified size. Depending on whether autoFlush is “true” or “false”,
when the buffer is full, either the output will be flushed or a buffer overflow exception
will be thrown. The default buffer size is 8kb. Table 10-3 summarizes the results of each
combination of values for the two attributes:

Buffer AutoFlush Effect

none true Characters are written to the
servlet response output stream
as soon as they are generated.

none false An illegal combination.
autoFlush="false" is
meaningless if buffering
is not in effect.

Table 10-3. Effects of Each Combination of Buffer and AutoFlush

ELEM
EN

TS
O

F
JS

P

isThreadSafe
By default, servlet engines load a single instance of a servlet and use a pool of threads
to service individual requests. This means two or more threads can be executing the
same servlet methods simultaneously. If the servlet has instance variables, and if no
provision is made to synchronize access, the threads can collide and interfere with each
others’ access to the variables.

The servlet API provides a way around this—the SingleThreadModel interface.
This interface has no methods; it simply marks a servlet as requiring a dedicated thread
for each instance of the servlet1. The isThreadSafe attribute of the page directive
provides a means for causing SingleThreadModel to be associated with a JSP page.

If you specify isThreadSafe="true", you are asserting that you take care of any
possible thread conflicts, so the JSP contain can safely dispatch multiple requests to the
servlet simultaneously,

<%@ page isThreadSafe="true" %>

C h a p t e r 1 0 : T h e P a g e D i r e c t i v e 173

Buffer AutoFlush Effect

8kb true An 8,192-byte buffer is used. When
this buffer is filled, it is automatically
flushed. This is the default value.

8kb false An 8,192-byte buffer is used. When this
buffer is filled, an exception is thrown.

sizekb true A size times 1,024-byte buffer is
used. When this buffer is filled,
it is automatically flushed.

sizekb false A size times 1,024-byte buffer is used.
When this buffer is filled, an exception
is thrown.

Table 10-3. Effects of Each Combination of Buffer and AutoFlush (continued)

1 Chapter 14 discusses threading issues in more detail.

174 J S P : T h e C o m p l e t e R e f e r e n c e

which generates the following class signature:

public class jrun__Chap10__examples__isThreadSafe__ex12ejsp25

extends allaire.jrun.jsp.HttpJSPServlet

implements allaire.jrun.jsp.JRunJspPage

If the value is "false", then the JSP container generates a servlet that implements
SingleThreadModel,

<%@ page isThreadSafe="false" %>

which generates

public class jrun__Chap10__examples__isThreadSafe__ex22ejsp25

extends allaire.jrun.jsp.HttpJSPServlet

implements allaire.jrun.jsp.JRunJspPage, SingleThreadModel

If not specified, the value of isThreadSafe is "true".

SingleThreadModel is of limited value because it only prevents thread conflicts within
an instance of a servlet. Nothing can prevent the JSP container from loading multiple
instances of a servlet, each with a dedicated thread. In this case, competition for external
resources like databases and file locks is obviously still unregulated. Careful planning
is the only sure design guideline.

info
The info attribute of the page directive lets you specify descriptive information about
the JSP page, for example:

<%@ page info="Shopping Cart Checkout Page" %>

The value of this attribute is compiled into the class and is available by means of
the servlet's getServletInfo() method. This allows servlet engines to provide a
useful description for their servlets in an administrative interface.

contentType
A JSP page ordinarily generates HTML output, but other content types can also be
produced. By specifying the contentType="value" attribute in the page directive,

C h a p t e r 1 0 : T h e P a g e D i r e c t i v e 175
ELEM

EN
TS

O
F

JS
P

you can cause an HTTP Content-Type header to be returned to the requesting
application. Consider the simple JSP page shown in the following:

<%@ page contentType="text/plain" %>

Hello, world!

Under JRun, the HTTP request and response may look like this:

GET /jspcr/Chap10/examples/contentType/ex1.jsp HTTP/1.0

HTTP/1.1 200 OK

Date: Wed, 28 Jun 2000 05:36:33 GMT

Server: Apache/1.3.12 (Win32)

Set-Cookie: jsessionid=7179962170594302;path=/

Expires: Thu, 01 Dec 1994 16:00:00 GMT

Connection: Keep-alive, close

Cache-Control: no-cache="set-cookie,set-cookie2"

Content-Length: 17

Content-Type: text/plain

Hello, world!

If the contentType attribute is not specified, the request and response will look
something like this:

GET /jspcr/Chap10/examples/contentType/ex2.jsp HTTP/1.0

HTTP/1.1 200 OK

Date: Wed, 28 Jun 2000 05:40:15 GMT

Server: Apache/1.3.12 (Win32)

Set-Cookie: jsessionid=210659962170816161;path=/

Expires: Thu, 01 Dec 1994 16:00:00 GMT

Connection: Keep-alive, close

Cache-Control: no-cache="set-cookie,set-cookie2"

Content-Length: 15

Content-Type: text/html; charset=ISO-8859-1

Hello, world!

In addition to the content type, the character set can be specified, using the syntax:

<%@ page contentType="type/subtype; charset=charset" %>

176 J S P : T h e C o m p l e t e R e f e r e n c e

errorPage and isErrorPage
If an exception occurs while a JSP page is being evaluated, the servlet engine typically
dumps a stack trace to the browser. This may be helpful to the programmer during
development, but it is undesirable in a commercial Web application. JSP offers a simple
and convenient solution that requires the coordinated use of two attributes:
errorPage and isErrorPage.

A JSP page can indicate that a specific error page should be displayed when it
throws an uncaught exception,

<%@ page errorPage="error_url" %>

where error_url is the URL of another JSP page in the same servlet context. That JSP
page must use the following attribute in its page directive:

<%@ page isErrorPage="true" %>

An error page has access to the exception through the exception implicit
variable2. It can extract the error message text with exception.getMessage(),
displaying or logging it as necessary. It can also generate a stack trace with
exception.printStackTrace().

The page need not be elaborate. It may simply report the exception:

<%@ page isErrorPage="true" session="false"%>

<H3>Application Error</H3>

The error message is:

<%= exception.getMessage() %>

This might be appropriate as a placeholder to be fleshed out later in the
development process, adding a corporate logo, for example, as well as instructions
for how to proceed.

Because an error page is itself a JSP page, it has access to the servlet context, session
(if any), request, and other servlet objects. This makes it possible for the page to capture

2 This is the only circumstance in which a JSP page has access to this variable.

C h a p t e r 1 0 : T h e P a g e D i r e c t i v e 177
ELEM

EN
TS

O
F

JS
P

diagnostic information, possibly forwarding it to technical support personnel. Here is
an example of such an error page:

<%@ page isErrorPage="true" session="false"%>

<HTML>

<HEAD><TITLE>Tracking Error Page</TITLE></HEAD>

<BODY>

<CENTER>

<I><U>Monolithic
Technologies Corporation</U></I>

<P>

You found a bug we didn't know about:

<%= exception.getMessage() %>

<P>

<%-- Create a form to submit to Tech Support --%>

<FORM ACTION="/send_diags.jsp">

<INPUT TYPE="submit" VALUE="Please click here">

<P>

to send this information

to our Technical Support department:

<P>

<%-- Supply date, time, and servlet name --%>

<%

String dateTime = new java.util.Date().toString();

String remoteAddr = request.getRemoteAddr();

String servletContext = request.getContextPath();

%>

<TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0">

<TR>

<TD>Date and Time:</TD>

<TD><%= dateTime %>

<INPUT TYPE="hidden"

NAME="bug.dateTime"

VALUE="<%= dateTime %>">

178 J S P : T h e C o m p l e t e R e f e r e n c e

</TD>

</TR>

<TR>

<TD>Web Client:</TD>

<TD><%= remoteAddr %>

<INPUT TYPE="hidden"

NAME="bug.remoteAddr"

VALUE="<%= remoteAddr %>">

</TD>

</TR>

<TR>

<TD>Application:</TD>

<TD><%= servletContext %>

<INPUT TYPE="hidden"

NAME="bug.servletContext"

VALUE="<%= servletContext %>">

</TD>

</TR>

</TABLE>

<%-- Include the stack trace as a hidden field --%>

<INPUT TYPE="hidden" NAME="bug.stackTrace"

VALUE="<%

java.io.PrintWriter pw = new java.io.PrintWriter(out);

exception.printStackTrace(pw);

%>"

</FORM>

</CENTER>

</BODY>

</HTML>

This page, named TrackingErrorPage.jsp, displays the error message
associated with the exception, as well as the date, time, IP address of the client, and
the Web application name. A button is provided that enables the user to forward this
information together with a stack trace to the technical support department (using
some other JSP page, not shown here). JSP pages in this application should then
include a reference to the error page in its page directive:

C h a p t e r 1 0 : T h e P a g e D i r e c t i v e 179
ELEM

EN
TS

O
F

JS
P

<%@ page errorPage="TrackingErrorPage.jsp" %>

Figure 10-1 illustrates the results of an exception thrown by an application JSP page
that uses this error page.

It is less well known that ordinary servlets can also use this capability. All a servlet
needs to do is to emulate what a JSP-generated servlet does

1. Enclose the body of its doGet() or doPost() method in a try ... catch
block that catches all exceptions.

2. In the catch block, store the exception as an attribute in the request named
javax.servlet.jsp.jspException.

3. Forward the request to the error page URL using a RequestDispatcher.

Figure 10-1. A diagnostic error page

180 J S P : T h e C o m p l e t e R e f e r e n c e

This example shows how this is done:

package jspcr.page;

import java.io.*;

import java.net.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class BuggyServlet extends HttpServlet

{

public void doGet(

HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException

{

try {

// ... body of servlet here

}

catch (Exception e) {

// A servlet can use the JSP error page

// mechanism by storing the exception

// as a request attribute and forwarding

// the request to the error page.

request.setAttribute

("javax.servlet.jsp.jspException", e);

getServletContext().getRequestDispatcher

("/Chap10/examples/errorPage/TrackingErrorPage.jsp")

.forward(request, response);

}

}

}

Summary
The page directive enables a page author to supply instructions to the JSP container.
This chapter describes the operation of each attribute that can be specified:

� language The scripting language (java, by default)

� extends A specialized superclass for the page

� import The packages and classes that should be visible to the generated servlet

� session Whether to create an HTTP session object

� buffer The output buffering model

� autoFlush Whether to flush the buffer when full or throw an exception

� isThreadSafe Whether to implement SingleThreadModel

� info A description of the page to be displayed in a development tool

� contentType The character encoding used by the JSP response

� isErrorPage Whether to supply access to the implicit exception variable

� errorPage The URL of a page that handles uncaught exceptions

C h a p t e r 1 0 : T h e P a g e D i r e c t i v e 181
ELEM

EN
TS

O
F

JS
P

This page intentionally left blank.

Chapter 11
JSP Tag Extensions

183

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

The JavaServer Pages 1.1 specification significantly enhanced the JSP architecture
by making it possible to extend the page authoring environment with custom
tags. Custom tags are XML-like extensions to the syntax and semantics of a JSP

page that are backed by user-written tag handlers. Collections of tags are organized
into tag libraries that can be packaged as JAR files, enabling their functionality to be
easily distributed and installed over any JSP 1.1-compliant servlet engine.

This chapter introduces custom tags, giving an overview of their role and advantages.
It gives an extended, step-by-step example of how to write and deploy a custom tag,
and then proceeds to the details of tag libraries, the tag library descriptor, the tag
extension API, and tag handlers. Several examples of tag environments are explored.
The chapter concludes with the implementation of the database query tag given in the
first example.

Why Custom Tags?
Most programmers can write ordinary HTML, and most Web designers can learn to
write simple JSP pages. But really good HTML with navigation, browser detection,
image handling, and forms interaction requires a knowledgeable author—a specialist.1

Likewise, Java programming that accesses databases, handles transactions, and
communicates with sockets is beyond what could be expected from an HTML author.

Custom tags provide a means for bridging the gap between the two specialties. Java
programmers can provide application functionality in convenient packages that Web
designers can use as building blocks. While JavaBeans can also encapsulate code, they
are most useful as repositories for attributes. Notions of iteration, nesting, or cooperative
actions are difficult to express with beans. Custom tags enable a higher-level application-
specific approach to JSP development.

For example, a database query written with custom tags might look like the following,

<db:connect url="mydatabase">

<db:runQuery>

SELECT *

FROM FD_GROUP

WHERE FdGp_Desc LIKE '%F%'

ORDER BY FdGp_Cd

</db:runQuery>

<table border="1" cellpadding="3" cellspacing="0">

184 J S P : T h e C o m p l e t e R e f e r e n c e

1 Bring up http://www.cnn.com or http://www.msnbc.com and view the HTML source. How much
of it do you think you could write?

<tr><th>Food Group Code</th><th>Description</th></tr>

<db:forEachRow>

<tr>

<td><db:getField name="FdGp_Cd"/></td>

<td><db:getField name="FdGp_Desc"/></td>

</tr>

</db:forEachRow>

</table>

</db:connect>

where connect, runQuery, forEachRow, and getField are application-oriented
custom tags.

All the logic in the previous example could have been written with scriptlets embedded
in the JSP page. For example, the equivalent code for the <db:connect> tag might
include loading the driver class, opening a connection to the database (possibly getting
an existing connection from a pool), setting up Statement and ResultSet objects,
and handling any of several exceptions that might be thrown. Also possible would be
to incorporate most of the logic in a JavaBean, although scriptlet code would still be
required for looping over the result set. Neither alternative is as convenient as packaging
the logic into a set of HTML-like tags whose function is readily apparent to both Web
designers and servlet developers.

Besides the separation of content and presentation, other benefits of custom
tags include:

� Simplicity It’s significantly easier to express a complex task as a cooperating
set of subtasks with their own attributes and control flow than it is to write it as
a monolithic block of code. Not only is this easier to code, it’s easier to understand.
In the previous database query, for example, it’s easy to guess correctly what
the scope of the database connection is, that an implied result set is created by
the <db:runQuery> block, and that <db:forEachRow> iterates over this
result set.

� Opportunity for code reuse There may be hundreds of database queries
in a Web application. Sharing scriptlet code is difficult without resorting to <%@
include %> directives that obscure the logic and may have undesirable side
effects. Tag libraries make it easier to package standard code and share it
throughout an application.

� Suitability for authoring tools Integrated development environments (IDEs)
can only see scriptlet blocks as blocks of ASCII text. Custom tags, however, by
virtue of having a Tag Library Descriptor, lend themselves to being managed
by a development tool that can display their descriptions, validate their
attributes, and so on.

ELEM
EN

TS
O

F
JS

P
C h a p t e r 1 1 : J S P T a g E x t e n s i o n s 185

To get a better idea of how to develop custom tags, let’s take a simple example and
walk through its development step by step.

Developing Your First Custom Tag
Resisting the temptation to write a “Hello, World!” tag, we will develop an example
of a marginally useful component—a custom tag that retrieves the name and version
of the Web server. The implementation of this tag, as well as all the other tags we
develop, will follow the same four basic steps:

1. Define the tag.

2. Write the entry in the Tag Library Descriptor.

3. Write the tag handler.

4. Use the tag in a JSP page.

Step 1—Define the Tag
To start, we need to define the syntax of the tag clearly. This involves answering such
questions as:

� What is the name of the tag? As we will see later on, custom tags are always
used with a namespace qualifier, so it isn’t necessary to make tag name globally
unique.

� What attributes does it have? For example, the HTML <TABLE> tag has the
optional attributes BORDER, CELLPADDING, CELLSPACING, and WIDTH (among
others). Custom tags can define any numer of required or optional attributes,
which are passed to the tag handler when the tag is evaluated.

� Will the tag define scripting variables? The standard action
<jsp:useBean id="xyz" class="jspcr.beans.XYZBean">,
for example, causes a variable named xyz of type jspcr.beans.XYZBean
to be defined. This variable is then available to the <jsp:getProperty>
and <jsp:setProperty> actions, as well as to Java code in any scriptlets
or expressions that follow. Custom tags can create scripting variables in
the same manner.

� Does the tag do anything special with the body contained between its start and
end tags? The HTML <TABLE> tag expects table rows and table cells before its
terminating </TABLE> end tag. Each of these elements rely on information
provided by related elements above them in the evaluation stack. Custom tag
applications can likewise feature nested tags that cooperatively perform some
function. The tag body can also contain non-JSP data (such as SQL statements)
that are evaluated by the tag.

186 J S P : T h e C o m p l e t e R e f e r e n c e

In the case of the first example tag, there isn’t much to do. We’ll call the tag
getWebServer. It has no attributes because it doesn’t need to be configured
differently in different JSP pages. The tag defines no scripting variables, simply
returning the string containing the Web server name in place of the getWebServer
tag. Finally, the tag has no body to be considered because its entire function is
contained in its start tag.

Step 2—Create the TLD Entry
A Tab Library Descriptor (TLD) is an XML document that defines the names and
attributes of a collection of related tags. Here is the TLD we will use with the
getWebServer example tag:

<?xml version="1.0" ?>

<taglib>

<tlibversion>1.0</tlibversion>

<jspversion>1.1</jspversion>

<shortname>diag</shortname>

<tag>

<name>getWebServer</name>

<tagclass>jspcr.taglib.diag.GetWebServerTag</tagclass>

<bodycontent>empty</bodycontent>

</tag>

</taglib>

Later on in this chapter, we will look at TLDs in detail, but the key thing to focus
on here is that a TLD maps a tag name

<name>getWebServer</name>

to a fully qualified class name:

<tagclass>jspcr.taglib.diag.GetWebServerTag</tagclass>

The JSP container uses this mapping to create the appropriate servlet code when it
evaluates the custom tag at compile time.

We will give this file the name diagnostics.tld. For the purposes of this
example, the only thing we need to worry about is copying the file to the right place.
A TLD can be placed anywhere in the Web application directory system, but putting
it under the WEB-INF directory makes sense because it won’t be made available for
direct public access. By convention, TLDs are usually installed in a directory named
/WEB-INF/tlds. If there is a Web application named test, for example, then

ELEM
EN

TS
O

F
JS

P
C h a p t e r 1 1 : J S P T a g E x t e n s i o n s 187

188 J S P : T h e C o m p l e t e R e f e r e n c e

diagnostics.tld would be found in /test/WEB-INF/tlds/. Written as a URI
relative to the servlet context, this would be /WEB-INF/tlds/diagnostics.tld.

Step 3—Write the Tag Handler
A tag’s action is implemented in a Java class known as a tag handler. Instances of tag
handlers are created and maintained by the JSP container, and predefined methods in
these classes are called directly from a JSP page’s generated servlet.

In the sample tag, we need to get the name of the Web server (for example, Apache,
Microsoft IIS, Netscape Enterprise, and so forth). The servlet API doesn’t provide an
obvious way to get this information. The request object tells a lot about the Web client
and the servlet context knows about the servlet engine, but neither of these objects
appears to know what software product happens to be listening on port 80. However,
this information is provided by the Web server itself when it sends the HTTP response
back to the Web client. The approach we’ll take is to make a dummy HTTP request
ourselves within the tag handler, and then extract the server information from the HTTP
headers that are returned.

Here is the complete source code for the tag handler:

package jspcr.taglib.diag;

import javax.servlet.http.*;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

import java.io.*;

import java.net.*;

/**

* Handler for the "getWebServer" tag

*/

public class GetWebServerTag extends TagSupport

{

public int doStartTag() throws JspException

{

try {

// Get the request object from the page context

HttpServletRequest request =

(HttpServletRequest) pageContext.getRequest();

// Request information from web server

URL url = new URL("http",

C h a p t e r 1 1 : J S P T a g E x t e n s i o n s 189
ELEM

EN
TS

O
F

JS
P

request.getServerName(),

request.getServerPort(),

"/");

URLConnection con = url.openConnection();

((HttpURLConnection) con).setRequestMethod("OPTIONS");

String webserver = con.getHeaderField("server");

// Write it to the output stream

JspWriter out = pageContext.getOut();

out.print(webserver);

}

catch (IOException e) {

throw new JspException(e.getMessage());

}

return SKIP_BODY;

}

}

Let’s look at the source code in detail to see what we expect it to do.

package jspcr.taglib.diag;

The first line identifies the package name. It isn’t strictly necessary to place the code
in a package, but it helps to organized related classes and makes for more meaningful
Javadoc documentation. Besides, some JSP engines don’t correctly generate import
statements for custom tags, so classes without a package name can cause compilation
errors in the generated servlet.

import javax.servlet.http.*;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

import java.io.*;

import java.net.*;

Simple tag handlers usually need to import only the javax.servlet.jsp and
javax.servlet.jsp.tagext packages, as well as the java.io.IOException class.
In this case, we need the HttpServletRequest class from javax.servlet.http,
as well as several classes from java.net.

public class GetWebServerTag extends TagSupport

A tag handler needs to implement either the Tag interface or the BodyTag interface,
both of which are in the javax.servlet.jsp.tagext package. BodyTag is a
subinterface of Tag. While the tag author is free to implement these interfaces directly,
it usually is more convenient to extend one of the default implementation classes
TagSupport or BodyTagSupport, overriding only those methods we need for the
task at hand. The example tag doesn’t support a tag body, so we simply extend the
TagSupport class.

public int doStartTag() throws JspException

This method is called when the start tag is encountered, after any attributes it
specifies have been set in the tag handler, but before the body of the tag is processed.
In this case, no body and no attributes exist, so all the code will be contained in the
doStartTag() method. Note, the method lets you throw a JspException if the
code runs into trouble. Because we will be accessing network classes that can throw
java.io.IOException, we enclose the entire method in a try ... catch block
that converts this to a JspException for handling by the JSP container. Note, likewise,
the method returns an integer return code (more about this shortly).

HttpServletRequest request =

(HttpServletRequest) pageContext.getRequest();

To send an HTTP request to the Web server, we need to know the host name and
port number of the request we received. This information can be found in the request
object, which can be obtained from the pageContext object. The observant reader will
notice that pageContext is nowhere defined in this class. The reason for this is it’s
defined as a protected field in the TagSupport superclass, which makes it accessible
to subclasses like ours. This variable is set just before doStartTag()is called when
the TagSupport.setPageContext() method is called2.

URL url = new URL("http",

request.getServerName(),

request.getServerPort(),

"/");

URLConnection con = url.openConnection();

((HttpURLConnection) con).setRequestMethod("OPTIONS");

String webserver = con.getHeaderField("server");

190 J S P : T h e C o m p l e t e R e f e r e n c e

2 Reading the source code for TagSupport and BodyTagSupport is helpful. These are fairly small
classes, and it’s instructive to see where the page context and body content variables come from, and
how findAncestorWithClass works. The source is usually available from the same place the
servlet.jar classes are obtained.

C h a p t e r 1 1 : J S P T a g E x t e n s i o n s 191
ELEM

EN
TS

O
F

JS
P

We use the 4-argument constructor of java.net.URL that takes a protocol name,
server name, port number, and path, and, from this, we get a URLConnection object.
Because we don’t actually care about the contents of any particular file, we specify the
OPTIONS method rather than GET or POST. We could also use HEAD, which is essentially
the same as GET, but returns only headers. Occasionally, however, Web servers report
that HEAD is not a supported method. OPTIONS should work for any HTTP/1.1-compliant
Web server (after all, its purpose is to return a list of request methods the Web server
does support). Invoking the connection object’s getHeaderField() method causes
the request to be sent and the appropriate HTTP header in the response to be read.

JspWriter out = pageContext.getOut();

out.print(webserver);

After capturing the desired information in the webserver variable, we can simply
write it to the current servlet output stream, which we can obtain from the page context.
The effect is that the getServer tag used in the JSP Page is replaced by the server
information obtained from the HTTP request.

return SKIP_BODY;

Finally, we exit from the method returning the integer constant SKIP_BODY, which
is defined in the Tag interface. Because we have defined this tag to have no body, there’s
no need to evaluate it, and the JSP page will throw a run-time exception if any other
return code is specified.

Compiling the Sample Code
This completes the tag handler. The source code file must be named
GetWebServerTag.java, and its compiled class must have the fully qualified
name jspcr.taglib.diag.GetWebServerTag. An easy way to ensure
this is to create the appropriate set of directories under the Web application’s
/WEB-INF/classes directory,

/WEB-INF/classes/jspcr/taglib/diag

and place the .java source file in the diag directory. The program can be compiled
from the /WEB-INF/classes directory with the command

javac jspcr/taglib/diag/GetWebServerTag.java

with appropriate provision being made for having the servlet.jar file somewhere
in the classpath. This should put a GetWebServerTag.class file in the same
directory as GetWebServerTag.java. If this isn’t the case, make sure the package
statement has been entered correctly.

192 J S P : T h e C o m p l e t e R e f e r e n c e

Step 4—Incorporate the Tag into a JSP Page
At this point, the tag is ready to be used. The following JSP page (ShowServer.jsp)
demonstrates how this is done:

<%@ taglib prefix="diag" uri="/WEB-INF/tlds/diagnostics.tld" %>

<HTML>

<HEAD>

<TITLE>Basic Example of a Custom Tag</TITLE>

</HEAD>

<BODY>

<H3>Basic Example of a Custom Tag</H3>

The web server is <diag:getWebServer/>

</BODY>

</HTML>

The taglib Directive
The first line contains the taglib directive:

<%@ taglib prefix="diag" uri="/WEB-INF/tlds/diagnostics.tld" %>

This directive must appear in the JSP page before any of the custom tags it refers to
are used. The top of the page is a good place.

How to Use the Tag in the JSP Page
The rest of the Web page is traditional HTML, with the exception of the line on which
the custom tag is specified:

The Web server is <diag:getWebServer/>

When ShowServer.jsp is first invoked, the JSP container uses information from
the taglib directive to locate the tag library descriptor and to identify where its tags
are used on this page. When the generated servlet receives a request, it produces the
following HTML,

<HTML>

<HEAD>

<TITLE>Basic Example of a Custom Tag</TITLE>

</HEAD>

<BODY>

<H3>Basic Example of a Custom Tag</H3>

The web server is Apache/1.3.12 (Win32)

</BODY>

</HTML>

depending, of course, on the actual Web server involved. The results are shown in
Figure 11-1.

Worth noting is custom tags used in JSP pages must conform to strict XML rules:

1. All tags must be completed, either by a matching end tag,

<diag:name>

...

</diag:name>

C h a p t e r 1 1 : J S P T a g E x t e n s i o n s 193
ELEM

EN
TS

O
F

JS
P

Figure 11-1. Output of a JSP using the custom tag to identify the Web server
software

194 J S P : T h e C o m p l e t e R e f e r e n c e

2. or by the shortcut form, if there’s no body:

<diag:name/>.

3. All attributes must be quoted, even numeric ones:

<diag:for id="I" start="1" end="10">

...

</diag:for>

4. Nested tags cannot overlap; this

<diag:A>

<diag:B>

</diag:A>

</diag:B>

is illegal.

5. Case is significant in tag and attribute names.

How Tag Handlers Work
A tag handler is a Java class that performs the action of a custom tag by implementing
a set of predefined methods that a JSP container calls. In this section, we will learn
about the structure of a tag handler, the interfaces it implements, its lifecycle, and
how it works with attributes and scripting variables. Wealso look at cooperating
and nested tags, and show how they can interact. To start, however, let’s review
how the JSP container translates and invokes a JSP page.

What the JSP Container Does
Recall that a JSP page exists in three forms:

� The .jsp file The original source file the page author writes, which may
include HTML, scriptlets, expressions, declarations, action tags, and directives.

� The .java file Java source code for a servlet that’s equivalent to the .jsp
file. This servlet is generated by the JSP container.

� The .class file The compiled form of the generated Java servlet.

When a JSP page is requested by an HTTP client, the JSP container checks the
modification dates of the .jsp and .java files. If the .java file doesn’t exist or if
it’s older than the .jsp file (as it would be if the JSP page had been modified), the JSP
container re-creates the Java servlet and compiles it. During this step, the following
transformations take place:

� The <%@ page %>, <%@ include %>, and <%@ taglib %> directives supply
translation-time information to the JSP container.

C h a p t e r 1 1 : J S P T a g E x t e n s i o n s 195
ELEM

EN
TS

O
F

JS
P

� JSP expressions and lines of HTML get translated into out.print()
statements inside the _jspService() method in the order they occur.

� Scriptlets are copied verbatim into _jspService().

� Declarations are copied verbatim into the source code outside of _jspService().

� Standard JSP actions such as <jsp:include>, <jsp:useBean>, and
<jsp:setProperty> are translated into the run-time logic that performs
their function.

� Custom tags are expanded into Java statements that call methods in their
corresponding tag handler.

Tag-Related Code Generated by the Container
The container uses the taglib directives to locate Tag Library Descriptors (TLDs)
and to match them to custom tags used in the page based on the tag prefix used. For
example, if the directive is

<%@ taglib prefix="db"

uri="/WEB-INF/tlds/database.tld" %>

then the container reads the database.tld file to get a list of tags it describes and
the name of the tag handler class associated with each one. When it encounters a tag
later in the page with a namespace prefix,

<db:connect url="mydatabase">

it looks for a tag library associated with that prefix that has a tag with the specified
name. The container uses information about the tag’s structure, which it finds in the
TLD, to generate a series of Java statements that accomplish the tag’s function. In the
case of the db:connect tag previously shown, this would include

1. Code to create an instance of the connect tag handler or obtain one from a pool.

2. Code to pass the connect tag handler a reference to the pageContext object.
This is a useful feature because it gives the tag handler access to the JSP page’s
Request, Response, HttpSession, ServletContext, and output stream
objects. It also means the tag handler can get or set attributes at any level the
page context manages.

3. Code to pass a reference to the parent tag, if db:connect is nested within
another custom tag.

4. A call to the connect tag handler’s setUrl() method, passing the
“mydatabase” value.

5. A call to a method named doStartTag(), which the connect tag handler
implements to perform any action that takes place when its start tag is
encountered (more about this shortly).

196 J S P : T h e C o m p l e t e R e f e r e n c e

What a Tag Handler Does
In the body of a JSP page, a custom tag may look like this:

<app:mail from="Accounting Manager" to="Staff" >

<app:subject>Expense Reports</app:subject>

Please be sure to submit all expense reports before

the fifteenth day of the month to allow sufficient

processing time. Thanks.

</app:mail>

The components of this tag include:

� A start tag <app:mail ...> with zero or more attributes

� An end tag </app:mail>

� The lines between the start and end tag, known as the body of the tag, which
may include ordinary text or other JSP statements.3

In transforming the tag into servlet code, the container invokes the tag handler for each
of these components, using the pageContext object to share attributes to the handler.
The invocation of these methods is sometimes referred to as the tag handler’s lifecycle.

For this to work, a tag handler must implement one of two interfaces:

� javax.servlet.jsp.tagext.Tag for tags that don’t operate on their
bodies.

� javax.servlet.jsp.tagext.BodyTag for tags that do. BodyTag is a
subinterface of Tag.

These interfaces specify the lifecycle methods the tag handler must provide.
The API also provides two support classes—TagSupport and BodyTagSupport—

that act as the default implementation of the two interfaces. Most tag handlers extend
these support classes rather than implementing the interfaces directly, although the
interfaces aren’t particularly complex. One benefit of using a support class is you can
override only the methods you need to change, allowing the support class to handle
the rest. In addition, the support class can take care of saving the page context and
body content objects in protected variables, so subclasses can simply access them.

3 A tag is not required to have a body. A tag may simply perform its function based on the attributes
specified in the start tag. In this case, using the shorthand <tag ... /> notation is common.

C h a p t e r 1 1 : J S P T a g E x t e n s i o n s 197
ELEM

EN
TS

O
F

JS
P

Tag Libraries
Custom tags are implemented and distributed in a structure known as a tag library,
sometimes referred to as a taglib. A tag library is a collection of classes and
meta-information that includes

� Tag Handlers Java classes that implement the functionality of custom tags.

� Tag Extra Information Classes that supply the JSP container with logic for
validating tag attributes and creating scripting variables.

� A Tag Library Descriptor (TLD) An XML document that describes the
properties of the individual tags and the tag library as a whole.

The components of a tag library can be installed anywhere they are accessible to
the JSP container. The tag handler and tag extra information classes need to be located
where they can be found by the JSP container class loader. The tag library descriptor
can be anywhere that can be located by a URL. For ease of deployment, however, the
JSP 1.1 specification mandates that the JSP container must accept a tag library packaged
as a JAR file having a certain fixed structure. In such a JAR file, the classes should be in
a directory tree starting at the root that matches their package structure, and the TLD
must be a file named taglib.tld in the /META-INF directory. This means a tag
library can be deployed simply by copying its JAR file to the /WEB-INF/lib directory.
Or, the classes can be unzipped into the /WEB-INF/classes directory and the TLD
can be placed in another Web-accessible location. This is typically a directory named
/WEB-INF/tlds, although this is only a convention, not a requirement.

The Tag Library Descriptor (TLD)
The tag library configuration information needed by a JSP container is stored in a Tag
Library Descriptor (TLD). A TLD is an XML document that describes the individual tags
in the library, their tag handlers and attributes, as well as version and identifying
information about the library as a whole.

TLD Elements
The document type definition (DTD) for a tag library descriptor can be found at
http://java.sun.com/j2ee/dtds/Web-jsptaglibrary_1_1.dtd. A valid
TLD consists of a single <taglib> element having certain subelements in a fixed order:

� tlibversion is a required element containing the version number of the tag
library. This is a dotted decimal number consisting of up to four groups of
digits separated by decimal points, such as “1.0”, or “1.3.045”.

198 J S P : T h e C o m p l e t e R e f e r e n c e

� jspversion is an optional element identifying the minimal level of the
JSP specification required to support the tag library. For example, for JSP
version 1.1, this would be “1.1”.

� shortname is a short descriptive name that identifies the tag library. A JSP
authoring tool might use this name as a default prefix for tags from this library.
The DTD prescribes this name should have no white space and must begin with
an alphabetic character; however, the restriction about white space seems
widely ignored in practice. shortname is a required element.

� uri is an optional element that defines a unique URI, which identifies this
library. This is typically the URL of the location from which the latest version
of the taglib can be downloaded.

� info is an optional element in which descriptive information about the tag
library is entered. This is intended for human viewing in a JSP authoring tool.

� tag One or more tag entries can be in a TLD. These describe the individual
tags that comprise the library.

A tag element itself consists of up to six types of subelements:

� name The tag name as it will be used in a JSP page. Together with a namespace
prefix that identifies the tag library, the name uniquely identifies a tag to the
JSP container.

� tagclass A required element consisting of the fully qualified name of the
tag handler that implements the tag.

� teiclass An optional element consisting of the fully qualified name of the
Tag Extra Information (TEI) class used by this tag, if any. A TEI class provides
information about scripting variables the tag handler creates, as well as any
validations that can be performed on tag attributes.

� bodycontent Optionally describes how the tag handler uses its body
content. The possible values are

empty The tag body must be empty

JSP The tag body consists of other JSP elements

tagdependent The tag body is interpreted by the tag itself,
with no JSP transformations

� info Optional human-readable descriptive information about the tag.

� attribute Optional information about attributes that can be coded when
the tag is used in a JSP page. This entry is described more fully in the “Defining
Tag Attributes” section later in this chapter.

C h a p t e r 1 1 : J S P T a g E x t e n s i o n s 199
ELEM

EN
TS

O
F

JS
P

The taglib Directive
The purpose of the taglib directive is to specify the location of the TLD and assign
it a short alias (prefix) that distinguishes its tags on this page. Its syntax is as follows:

<%@ taglib prefix="tag prefix" uri="taglibURI" %>

where the two attributes are

tag prefix A name, unique on this page, used to identify tags from this library.
If the prefix is diag, for example, then any tag from this tag library
used on this page should be written as <diag:xxx>, where xxx is
the tag name.
The prefix can be any valid XML name token, although Sun
Microsystems reserves the prefixes jsp, jspx, java, javax,
servlet, sun, and sunw.

taglibURI The URI of the tag library itself. This can be an absolute path name
beginning with / that is interpreted relative to the top of the Web
application as in the previous example. Or, it can be a URL that acts
as a symbolic name for the TLD. In this case, the name must be
mapped to the actual TLD by means of a <taglib> entry in the
Web.xml file. This approach is discussed in the next section.

Mapping Tag Libraries in the web.xml File
Suppose the JAR file containing the classes and TLD for version 3.8.2 of a taglib is
named util_v3_8_2.jar and is deployed in the /WEB-INF/lib directory of a Web
application. A taglib directive can refer to this directly as follows:

<%@ taglib

prefix="util"

uri="/WEB-INF/lib/util_v3_8_2.jar"

%>

Of course, when version 3.8.3 is installed, this means all JSPs that use this tag library
must be updated with the new version number.

An alternative to this is to map the physical location of the TLD to a symbolic name
that can be used in a taglib directive. This is done by adding a <taglib>4 element to

4 Why couldn’t they use a different name for this element? The TLD file already has a <taglib> element
with a completely different meaning. Why afford the poor JSP author such an opportunity for confusion?

200 J S P : T h e C o m p l e t e R e f e r e n c e

the /WEB-INF/web.xml deployment descriptor for this Web application. For the
previous example, this element would have the following structure:

<taglib>

<taglib-uri>uri</taglib-uri>
<taglib-location>

/WEB-INF/lib/util_v3_8_2.jar

</taglib-location>

</taglib>

where uri can be any valid URI, perhaps a file-like mnemonic such as /util-taglib
or the URL of a place where the latest version of the taglib can be found. This makes it
possible to code the taglib directive as

<%@ taglib

prefix="util"

uri="http://www.vendor.com/taglibs/util"

%>

Note that the URI needn’t refer to an actual file. Rather, it’s a unique identifier that
enables the JSP container to search for in web.xml for the actual file location. Also note,
this mapping technique only works for JAR files coded in the prescribed format (TLD in
/META-INF/taglib.tld) and some JSP container implementations are known to be
buggy in this respect. When in doubt, you can always put the JAR file in /WEB-INF/lib
and the TLD in /WEB-INF/tlds, and refer to the /WEB-INF/tlds/filename.tld
directly in your JSP page.

The Tag Handler API
The following section describes the methods associated with the Tag interface and the
TagSupport class.

The Tag Interface
Table 11-1 lists the lifecycle methods that must be supported by classes implementing
the Tag interface.

The interface also includes four constants that represent the possible return code
from the doStartTag() and doEndTag() methods:

� EVAL_BODY_INCLUDE When returned by doStartTag(), indicates the page
implementation servlet should evaluate the tag body.

� SKIP_BODY When returned by doStartTag(), indicates the servlet should
ignore the body of this tag.

ELEM
EN

TS
O

F
JS

P

� EVAL_PAGE When returned by doEndTag(), indicates the rest of the page
should be evaluated as usual.

� SKIP_PAGE When returned by doEndTag(), indicates the rest of the page
should be skipped.

C h a p t e r 1 1 : J S P T a g E x t e n s i o n s 201

Method Description

public void setPageContext
(PageContext ctx)

The generated servlet calls this method first
before requiring the handler to do anything
else. The implementing class should save the
context variable so it’s available at any point in
the tag lifecycle. From the page context, the tag
handler can access all the JSP implicit objects
and can get and set attributes in any scope.

public void setParent
(Tag parent)

Enables a tag to find the tag above it in the
evaluation stack. Called immediately after
setPageContext.

public Tag getParent() Returns the parent tag.

public int doStartTag()
throws JspException

Called after the page context, parent, and any
attributes coded on the start tag have been
set. The return code indicates whether the
JSP implementation servlet should evaluate
the tag body (EVAL_BODY_INCLUDE) or not
(SKIP_BODY). The method can throw a
JspException to indicate a fatal error.

public int doEndTag()
throws JspException

Called when the end tag has been
encountered. The return code indicates
whether the JSP implementation servlet
should continue with the rest of the page
(EVAL_PAGE) or not (SKIP_PAGE). The
method can throw a JspException to
indicate a fatal error.

public void release() Guaranteed to be called before page exit.
Allows the tag handler to release any
resources it holds and reset its state so
it can be reused, if necessary.

Table 11-1. Methods in the Tag Interface

The TagSupport Class
javax.servlet.jsp.tagext.TagSupport is a concrete class that implements
the Tag interface. In addition to the interface, the TagSupport class provides the
additional methods listed in Table 11-2.

Extending this class rather than directly implementing the interface is usually
advantageous. In addition to providing default implementations for all the required
methods and storing the pageContext variable, TagSupport offers several convenience
methods. findAncestorWithClass() is particularly useful for supporting nested
tags. An outer tag, for example, can manage a set of objects as instance variables,
providing public accessors that make these objects accessible to inner tags. The database
tag example later in this chapter illustrates the technique.

The Tag Handler Life Cycle
The flowchart in Figure 11-2 describes the events in the life of a tag handler. The
process shown in the flowchart corresponds to the Java code the JSP container generates
for a tag when the JSP page is translated into a servlet. Knowing when each of your

202 J S P : T h e C o m p l e t e R e f e r e n c e

Method Description

public static Tag
findAncestorWithClass(Tag
thisTag, Class cls)

Looks in the run-time tag stack for the
desired parent tag handler. A tag handler
can provide methods that child tags
within its scope can call.

public void setId(String id)
public String getId()

Stores or retrieves the name specified
in the id attribute.

public void setValue(String
name, Object o)
public Object getValue(String
name)

Stores or retrieves a value under the
given name in a local hashtable.

public void
removeValue(String name)

Removes the named value from the local
hashtable.

public Enumeration
getValues()

Returns a java.util.Enumeration
of the keys in the hashtable.

Table 11-2. Additional Methods in the TagSupport Class

ELEM
EN

TS
O

F
JS

P
C h a p t e r 1 1 : J S P T a g E x t e n s i o n s 203

Figure 11-2. Flowchart of the tag handler life cycle

204 J S P : T h e C o m p l e t e R e f e r e n c e

tag handler methods will be called, and what the state of the page and container will
be is important. Understanding this protocol can help you write code that works as
you expect. Also important is to remember the tag itself doesn’t exist in the generated
servlet at run time—the tag has been replaced by equivalent code that sets attributes
and calls methods in the tag handler.

Let’s consider each step in the flowchart.

The Flowchart
To start, the generated servlet needs to create an instance of the tag handler class. It
usually does so by invoking a method in a factory class that is part of the JSP container.
The factory class may maintain a pool of tag handler instances so it can reuse tag
handlers that are no longer active.

Next, the tag handler instance is initialized and made aware of the state of the servlet
in which it exists. The servlet does this by calling two methods in the tag handler:

setPageContext(Page
Context ctx)

The PageContext object contains references to all the
JSP implicit object, and provides access to attributes at
the page, request, session, and application level. When
the servlet calls this method, the tag handler should save
the context in an instance variable so it will be available
to all the handlers’ methods. Note, the TagSupport base
class does this automatically.

setParent(Tag
parent)

Tags in a JSP page may be nested, that is, contained
within the body of another tag. Immediately after
setPageContext() is called, the servlet calls
setParent(), passing a reference to the tag that
contains this one, if any. If the tag isn’t nested, the
parameter will be null. Having access to enclosing tags
makes it possible for a tag to call methods in any of its
parents, which makes cooperative action practical. The
TagSupport class also saves this variable automatically.

If a tag supports attributes, the run-time values of these attributes are passed to the
tag handler by means of setter methods, which the handler must supply. For example,
the database connection tag at the beginning of this chapter

<db:connect url="mydatabase">

has one attribute, named url. Its tag handler must have a method with the signature

public void setUrl(String value)

that stores the value of the url attribute, most likely in a private instance variable. For each
attribute xxx coded in the start tag, the generated servlet will have a setXxx(value)
method call. These calls are located immediately after the setParent() call.

At this point, the tag handler’s doStartTag() method is called. The page context
and parent tag have already been set, as have all the tag’s attributes. The method can
read these variables and perform whatever calculations and operations necessary to
implement the tag’s functionality. It can access the servlet output writer by calling
pageContext.getOut(). It can change the values of scripting variables in the JSP
page by setting attributes in the page context. This is examined in detail later in this
chapter, in the section entitled “Defining Scripting Variables.” If any fatal errors are
encountered, the method should throw a JspException.

The doStartTag()method must return an integer return code, either SKIP_BODY or
EVAL_BODY_INCLUDE. If the return code from doStartTag() is EVAL_BODY_INCLUDE,
then the body of the tag is handled as usual. If the return code is SKIP_BODY,
everything in the original JSP page up to this tag’s end tag is ignored.

SKIP_BODY is the default return code of doStartTag() in the TagSupport base
class, providing a rare instance of where TagSupport can actually perform a useful
function without being subclassed—you can use it as the handler for a custom tag that
“comments out” code. If you make the following entry in a TLD

<tag>

<name>skip</name>

<tagclass>javax.servlet.jsp.tagext.TagSupport</tagclass>

<bodycontent>JSP</bodycontent>

</tag>

then you can surround any part of a JSP page5 with

<prefix.skip>
...

</prefix.skip>

and it won’t be executed at run time.

After the tag body is either evaluated or ignored, the tag handler’s doEndTag()
method is invoked. Like doStartTag(), this method must return an integer return
code that indicates how to proceed. If the value is EVAL_PAGE, the rest of the page is
evaluated; if it’s SKIP_PAGE, the servlet code executes an immediate return from
_jspService().

ELEM
EN

TS
O

F
JS

P
C h a p t e r 1 1 : J S P T a g E x t e n s i o n s 205

5 Well, not any part. Scriptlets, expressions, standard actions, and HTML template data will be
suppressed if they are inside the skip tag body, but you cannot use tags inside a scriptlet, expression,
or declaration.

206 J S P : T h e C o m p l e t e R e f e r e n c e

An Example of Generated Code
The interaction between the generated servlet and a tag handler becomes clearer when
we look at an example. Let’s develop an enhanced version of the getWebServer
tag from earlier in the chapter, one that lets us specify any header name, rather than
hard coding the choice of the Server header. To do this, the tag will accept an
attribute called name. The following section discusses tag attributes at length but,
for the purposes of this example, all we need to know is the attribute is described
in the TLD and communicated to the tag handler using its setName() method. This
tag will be called getWebServerHeader. The TLD requires a small addition:

<tag>

<name>getWebServerHeader</name>

<tagclass>jspcr.taglib.diag.GetWebServerHeaderTag</tagclass>

<bodycontent>empty</bodycontent>

<attribute>

<name>name</name>

<required>true</required>

<rtexprvalue>true</rtexprvalue>

</attribute>

</tag>

The name attribute is defined as a required field and its value can be supplied by
a request time expression if desired, rather than being coded as a literal.

Not surprisingly, the tag handler is almost identical to the one for getWebServer.
Here’s the source code for the getWebServerHeader tag handler:

package jspcr.taglib.diag;

import javax.servlet.http.*;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

import java.io.*;

import java.net.*;

/**

* Handler for the "getWebServerHeader" tag

*/

public class GetWebServerHeaderTag extends TagSupport

{

private String name;

/**

C h a p t e r 1 1 : J S P T a g E x t e n s i o n s 207
ELEM

EN
TS

O
F

JS
P

* Sets the name property. A call to this method

* is automatically generated by the JSP container

* when a tag with the name attribute is used in

* a JSP page.

*/

public void setName(String name)

{

this.name = name;

}

public int doStartTag() throws JspException

{

try {

// Get the request object from the page context

HttpServletRequest request =

(HttpServletRequest) pageContext.getRequest();

// Request information from web server

URL url = new URL("http",

request.getServerName(),

request.getServerPort(),

"/");

URLConnection con = url.openConnection();

((HttpURLConnection) con).setRequestMethod("OPTIONS");

// Extract the requested header

String header = con.getHeaderField(name);

// Write it to the output stream

JspWriter out = pageContext.getOut();

out.print(header);

}

catch (IOException e) {

throw new JspException(e.getMessage());

}

return SKIP_BODY;

}

}

208 J S P : T h e C o m p l e t e R e f e r e n c e

The main difference is the addition of the name attribute. This required a name
variable and a setName() method be created. Then, rather than

String webserver = con.getHeaderField("server");

you have

String header = con.getHeaderField(name);

where name is the value coded in the JSP tag.
In the JSP page, we’ll use the old tag to get the Web server product name

and the new tag to get the Allow header. Because the tag handler makes an
HTTP request using the OPTIONS method, the server should return an Allow
header that lists the request methods it will accept. Here is the updated page,
named ShowServerHeader.jsp:

<%@ taglib prefix="diag" uri="/WEB-INF/tlds/diagnostics.tld" %>

<HTML>

<HEAD>

<TITLE>Custom Tag with Attributes</TITLE>

</HEAD>

<BODY>

<H3>Custom Tag with Attributes</H3>

Request methods supported by this instance of

<diag:getWebServer/>

are

<H4><diag:getWebServerHeader name="allow"/></H4>

</BODY>

</HTML>

When ShowServerHeader.jsp is run, it produces the output shown in Figure 11-3.
Let’s examine part of the _jspService() method servlet that the JSP container

(JRun 3.0, in this example) generated for ShowServerHeader.jsp. The source code

C h a p t e r 1 1 : J S P T a g E x t e n s i o n s 209
ELEM

EN
TS

O
F

JS
P

has been reformatted and modified slightly for clarity. Note, you needn’t write this;
it’s what the JSP container generates based on your JSP page and TLD definition.

PageContext pageContext = __jspFactory.getPageContext

(this, request, response, null, true, 8192, true);

JspWriter out = pageContext.getOut();

try {

out.print("\r\n\r\n"

+ "<HTML>\r\n\r\n"

+ "<HEAD>\r\n"

+ "<TITLE>Custom Tag with Attributes</TITLE>\r\n"

+ "</HEAD>\r\n\r\n"

+ "<BODY>\r\n"

+ "<H3>Custom Tag with Attributes</H3>\r\n\r\n"

+ "Request methods supported by this instance of"

+ "\r\n");

Figure 11-3. Output of the enhanced tag example

210 J S P : T h e C o m p l e t e R e f e r e n c e

GetWebServerTag tag1 = (GetWebServerTag)

JRunJSPStaticHelpers.createTagHandler

(pageContext, "GetWebServerTag");

tag1.setPageContext(pageContext);

tag1.setParent(null);

tag1.doStartTag();

if (tag1.doEndTag() == Tag.SKIP_PAGE) {

return;

}

out.print("\r\n"

+ "are\r\n"

+ "<H4>");

GetWebServerHeaderTag tag2 = (GetWebServerHeaderTag)

JRunJSPStaticHelpers.createTagHandler

(pageContext, "GetWebServerHeaderTag");

tag2.setPageContext(pageContext);

tag2.setParent(null);

tag2.setName("allow");

tag2.doStartTag();

if (tag2.doEndTag() == Tag.SKIP_PAGE) {

return;

}

out.print("</H4>\r\n\r\n</BODY>\r\n\r\n</HTML>\r\n");

}

Near the beginning of _jspService(), the servlet creates and initializes its
page context:

PageContext pageContext = __jspFactory.getPageContext

(this, request, response, null, false, 8192, true);

The JspFactory has a getPageContext() method that takes a reference to the
current servlet, the request and response objects, the URL for the error page (if any), a

flag indicating whether the page needs an HTTP session, the output buffer size,
and a flag indicating whether the buffer should be autoflushed. The method returns
an initialized page context that encapsulates all these objects.

JspWriter out = pageContext.getOut();

Having initialized a page context object, the servlet uses it to obtain a reference to
the response output writer. The tag handler can use this same method call to do its
own output to the page, if desired. The issue becomes slightly more complicated for
tag handlers that interact with their body content, as we will see in the next section.

GetWebServerTag tag1 = (GetWebServerTag)

JRunJSPStaticHelpers.createTagHandler

(pageContext, "GetWebServerTag");

After printing the page headings, the servlet creates an instance of the tag handler,
using a static method in a helper class. This helper class may use a pool of tag handler
instances or perform other optimizations—the JSP specification doesn’t dictate how
this should be done. This affords servlet engine vendors the opportunity to distinguish
their product’s performance and functionality.

tag1.setPageContext(pageContext);

tag1.setParent(null);

As the flowchart in Figure 11-2 indicates, the generated servlet then calls the tag
handler’s setPageContext() and setParent() methods. No parent tag exists in
this case, so the parameter value is null.

tag1.doStartTag();

With the page environment thus fully described to the tag handler, its doStartTag()
method is called. Note, no return code is captured, even though doStartTag()
returns one. The reason for this is the TLD indicates the getWebServer tag has no
body (<bodycontent>empty</bodycontent>), so no conditional code is generated
to handle it. The JSP container is able to optimize the code rather than checking a
meaningless return value.

if (tag1.doEndTag() == Tag.SKIP_PAGE) {

return;

}

ELEM
EN

TS
O

F
JS

P
C h a p t e r 1 1 : J S P T a g E x t e n s i o n s 211

The doEndTag() method can return either EVAL_PAGE or SKIP_PAGE. The effect
of each becomes clear when we see that SKIP_PAGE simply causes a return from the
_jspService() method.

After printing the intervening HTML, the servlet begins work on the second tag:

GetWebServerHeaderTag tag2 = (GetWebServerHeaderTag)

JRunJSPStaticHelpers.createTagHandler

(pageContext, "GetWebServerHeaderTag");

tag2.setPageContext(pageContext);

tag2.setParent(null);

tag2.setName("allow");

tag2.doStartTag();

The only difference between the handling of this tag and the previous one results
because the getWebServerHeader tag has a name attribute. This is transformed into
a call to the tag handler’s setName() method just before doStartTag() is called.
The end tag is handled the same, with its return code determining whether to exit from
the _jspService() method or continue.

Defining Tag Attributes
A custom tag can have any number of attributes, which are name/value pairs coded in
the start tag when it’s used in a JSP page. For example, the tag shown in the following

<opera:role name="Papageno" range="baritone"

description="a bird-catcher"/>

has three attributes: name, range, and description. Attributes may be required or
optional, and their values can be coded as string literals or supplied at request time
using JSP expressions (if the tag allows this).

For each attribute a tag supports, its tag handler must supply two things:

� An instance variable to store the attribute

� One or more setAttrname() methods, where Attrname is the attribute
name with the first letter capitalized.

For the previous example tag, the tag handler might look like this:

/**

* RoleTag

212 J S P : T h e C o m p l e t e R e f e r e n c e

*/

public class RoleTag extends TagSupport

{

// Three attributes:

private String name;

private String range;

private String description;

// ... and their setter methods:

public void setName(String nameFromJSPTag)

{

name = nameFromJSPTag;

}

public void setRange(String rangeFromJSPTag)

{

range = rangeFromJSPTag;

}

public void setDescription(String descriptionFromJSPTag)

{

description = descriptionFromJSPTag;

}

public int doStartTag() throws JspException

{

try {

JspWriter out = pageContext.getOut();

out.println("<TR>");

out.println("<TD>" + name + "</TD>");

out.println("<TD>" + range + "</TD>");

out.println("<TD>" + description + "</TD>");

out.println("</TR>");

}

catch (IOException e) {

throw new JspException(e.getMessage());

}

return SKIP_BODY;

}

}

C h a p t e r 1 1 : J S P T a g E x t e n s i o n s 213
ELEM

EN
TS

O
F

JS
P

214 J S P : T h e C o m p l e t e R e f e r e n c e

The JSP container generates code in the JSP servlet to take attribute values coded in a
custom tag and sends them to the tag handler. It does this by calling the setAttrname()
methods for each attribute. This is done after the page context and parent tag have
been set, but just before doStartTag() has been called. For example, if a JSP page
uses the <opera:role> tag as follows

<%@ page session="false" %>

<%@ taglib prefix="opera" uri="/WEB-INF/tlds/opera.tld" %>

<HTML>

<HEAD><TITLE>The Magic Flute</TITLE></HEAD>

<BODY>

<H2>The Magic Flute</H2>

<H3>Dramatis Personae</H3>

<TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0">

<TR><TH>Role</TH><TH>Range</TH><TH>Description</TH>

<opera:role name="Tamino" range="Tenor"

description="an Egyptian prince"/>

<opera:role name="Pamina" range="Soprano"

description="daughter of the Queen of the Night"/>

<opera:role name="Papageno" range="Baritone"

description="a bird-catcher"/>

<opera:role name="Queen of the Night" range="Soprano"

description="die Sternflammende Königin"/>

<opera:role name="Sarastro" range="Bass"

description="High Priest of Isis and Osiris"/>

</TABLE>

</BODY>

</HTML>

then the generated servlet (again using JRun as the container) would handle each
of the <opera:role> tags with code similar to the following:

RoleTag roleTag = (RoleTag)

JRunJSPStaticHelpers.createTagHandler

(pageContext, "RoleTag");

C h a p t e r 1 1 : J S P T a g E x t e n s i o n s 215
ELEM

EN
TS

O
F

JS
P

roleTag.setPageContext(pageContext);

roleTag.setParent(null);

roleTag.setRange("Baritone");

roleTag.setName("Papageno");

roleTag.setDescription("a bird-catcher");

roleTag.doStartTag();

The property setter method is all that’s required for a tag to support an attribute,
but more information can be specified in the TLD. In the <tag> element, there can be
any number of <attribute> elements in the following form:

<attribute>

<name>attributeName</name>
<required>true|false</required>

<rtexprvalue>true|false</rtexprvalue>

</attribute>

Only the attribute name is required; the other two elements are optional and default
to false.

If <required>true</required> is specified, then the attribute must be coded
everywhere the tag is used or a fatal translation error will occur. Otherwise, the attribute
is optional. The tag handler should take care to handle the case where the attribute hasn’t
been specified, in which case the instance variable will be null.

If <rtexprvalue>true</rtexprvalue> is specified, then the attribute value
may be specified with a request time expression. Attributes coded in this manner
have the form

attribute="<%= scriptlet_expression %>"

where the quotes may include nothing but the JSP expression. In addition to making it
possible to supply a value for the attribute at run time, this also causes the type of the
expression to be preserved. In other words,

date="<%= new java.util.Date() %>"

would result in the generated servlet code

tag.setDate(new java.util.Date());

which would cause the tag handler’s public void setDate(Date date) method to
be invoked, rather than public void setDate(String date).

Here is an example of a custom tag with two optional attributes, each of which can
be specified with request time expressions.

<x:formattedDate date="date" format="format"/>

The date attribute should be specified at a java.util.Date object in a request time
expression, but the format can be either a java.text.SimpleDateFormat or the
format string that SimpleDateFormat uses. The TLD would look like this:

<?xml version="1.0" ?>

<taglib>

<tlibversion>1.0</tlibversion>

<jspversion>1.1</jspversion>

<shortname>util</shortname>

<tag>

<name>formattedDate</name>

<tagclass>jspcr.taglib.util.FormattedDateTag</tagclass>

<bodycontent>empty</bodycontent>

<info>

Returns a date formatted using the specified format.

If no date is specified, uses current date.

Default date format is MM/dd/yyyy

</info>

<attribute>

<name>date</name>

<required>false</required>

<rtexprvalue>true</rtexprvalue>

</attribute>

<attribute>

<name>format</name>

<required>false</required>

<rtexprvalue>true</rtexprvalue>

</attribute>

</tag>

</taglib>

216 J S P : T h e C o m p l e t e R e f e r e n c e

Here is the tag handler:

package jspcr.taglib.util;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

import java.io.*;

import java.text.*;

import java.util.*;

/**

* FormattedDateTag

*/

public class FormattedDateTag extends TagSupport

{

// The date attribute

private Date date;

public void setDate(Date date)

{

this.date = date;

}

// The format attribute

private SimpleDateFormat format;

public void setFormat(String fmtstr)

{

format = new SimpleDateFormat(fmtstr);

}

public void setFormat(SimpleDateFormat fmt)

{

format = fmt;

}

/**

* Prints the date when the start tag is encountered

*/

public int doStartTag() throws JspException

{

// Get date attribute, defaulting to current date

C h a p t e r 1 1 : J S P T a g E x t e n s i o n s 217
ELEM

EN
TS

O
F

JS
P

218 J S P : T h e C o m p l e t e R e f e r e n c e

Date date = this.date;

if (date == null)

date = new Date();

// Get date format attribute, defaulting

// to month/day/year

SimpleDateFormat format = this.format;

if (format == null)

format = new SimpleDateFormat("MM/dd/yyyy");

// Format and print

try {

pageContext.getOut().print(format.format(date));

}

catch (IOException e) {

throw new JspException(e.getMessage());

}

return SKIP_BODY;

}

}

Note two setFormat()methods exist: one takes a java.text.SimpleDateFormat;
another takes a string and creates a SimpleDateFormat from it. The method for
which the JSP container generates servlet code depends on whether the tag is coded
with a request time expression. Here is an example of how the tag can be used:

<%@ page session="false" %>

<%@ page import="java.util.*,java.text.*" %>

<%@ taglib prefix="x" uri="/WEB-INF/tlds/util.tld" %>

<%

Calendar gc = new GregorianCalendar(1931, 6, 25);

Date then = gc.getTime();

SimpleDateFormat fmt =

new SimpleDateFormat("MMMMM d, yyyy");

%>

The date was

<x:formattedDate date="<%= then %>" format="<%= fmt %>" />.

When used in the preceding JSP page, the tag produces the output

The date was July 25, 1931.

The Body Tag Handler API
Simple tags are useful components that perform their function entirely within
their start tag. However, the real power of custom tags results from their capability
to interact with their tag body. This makes it possible for a custom tag to

� Post-process its body text, perhaps sorting it, making an HTML table from it, or
filtering out characters like “<” and “>”, replacing them with their HTML-safe
equivalents “<” and “>”.

� Define new implicit objects and create scripting variables for them.

� Cooperate with nested tags to perform complex operations.

Tags that operate on their body are an extension of the tags discussed so far in this
chapter. They implement a subinterface of javax.servlet.jsp.tagext.Tag, known
as javax.servlet.jsp.tagext.BodyTag. As was the case with the TagSupport
class, a base class implementation of BodyTag also exists, called BodyTagSupport.

BodyContent
When the JSP container generates code for a tag that has a body, it saves and restores
the object that represents the current servlet output writer. Before the body of the tag
is processed, a new output writer is created—this one an instance of the BodyContent
class. While the body is being evaluated, the out scripting variable as well as the value
returned by pageContext.getOut() both refer to the new writer object. If several
levels of nesting exist, the writers are saved on a stack, so each level has its own writer.

BodyContent is a subclass of javax.servlet.jsp.JspWriter, but differs
from its superclass, in that its contents aren’t automatically written to the servlet
output stream. Instead, they’re accumulated in what amounts to a string buffer. After
the tag body is completed, the original JspWriter is restored, but the BodyContent
object is still available in doEndTag() in the bodyContent variable. Its contents can
be retrieved with its getString() or getReader() methods, modified as necessary,
and written to the restored JspWriter output stream to be merged with the page
output. Table 11-3 lists the additional methods that BodyContent provides.

C h a p t e r 1 1 : J S P T a g E x t e n s i o n s 219
ELEM

EN
TS

O
F

JS
P

Why does the JSP container create this elaborate structure for custom tag output?
We already learned the JSP container allows output to be post-processed and filtered,
but it’s also because not all body content is intended to produce output. For example,
in the earlier database query

<db:runQuery>

SELECT *

FROM FD_GROUP

WHERE FdGp_Desc LIKE '%F%'

ORDER BY FdGp_Cd

</db:runQuery>

the body is not HTML at all, but a character string representing an SQL statement.
This would presumably be read with the BodyContent.getString() method and

220 J S P : T h e C o m p l e t e R e f e r e n c e

Method Description

public void flush()
throws IOException

Overrides the JspWriter.flush() method
so it always throws an exception. Flushing a
BodyContent writer isn’t valid because it isn’t
connected to an actual output stream to which
it could be written.

public void clearBody() Resets the BodyContent buffer to empty. This
can be useful if the body is being written to the
enclosing writer in doAfterBody().

public Reader
getReader()

Returns a reader for the body content after it
has been evaluated. This reader can be passed to
other classes that can process a java.io.Reader,
such as StreamTokenizer, FilterReader,
or an XML parser.

public String
getString()

Returns a string containing the body content
after it has been evaluated.

public void
writeOut(Writer w)

Writes the body content to the specified output
writer.

public JspWriter
getEnclosingWriter()

Returns the writer object (possibly another
BodyContent) next higher in the stack.

Table 11-3. Additional Methods in the BodyContent Class

passed to a JDBC statement object whose output would be written to the Web page.
This is automatically possible because the BodyContent object stores its output in a
buffer rather than writing it.

The BodyTag Interface
Tags that interact with their body content have a slightly more complex life cycle, so
they require a few more methods in their tag handlers. For this reason, an extension
of the Tag interface called BodyTag exists, which inherits all the methods required by
Tag, but adds three new ones having to do with body handling. Table 11-4 describes
the interface.

In addition to the three new methods, the BodyTag interface also defines one new
integer constant:

� EVAL_BODY_TAG When returned by doStartTag(), causes a new
BodyContent object to be created and associated with this tag handler.
When returned by doAfterBody(), causes the JSP servlet to evaluate
the body again after updating any scripting variables controlled by this
tag. This makes it possible for a tag handler to loop through a list of elements,
evaluating the body for each one.

C h a p t e r 1 1 : J S P T a g E x t e n s i o n s 221
ELEM

EN
TS

O
F

JS
P

Method Description

public void
setBodyContent(BodyContent
out)

Invoked by the JSP servlet after the current
JspWriter has been pushed and a new
BodyContent writer has been created. This
occurs just after doStartTag().

public void doInitBody()
throws JspException

A lifecycle method called after
setBodyContent(), but just before the body
is evaluated. If the body is evaluated multiple
times, this method is called only once.

public int doAfterBody()
throws JspException

A lifecycle method called after the body has
been evaluated, but while the BodyContent
writer is still active. This method must return
either EVAL_BODY_TAG or SKIP_BODY. If the
return code is EVAL_BODY_TAG, the body is
evaluated again and doAfterBody() is
called again.

Table 11-4. Methods in the BodyTag Interface

In addition to SKIP_BODY, doStartTag() can return either EVAL_BODY_
INCLUDE or EVAL_BODY_TAG, both of which indicate the body should be processed.
However, tag handlers that implement BodyTag cannot return EVAL_BODY_
INCLUDE, and tag handlers that don’t implement BodyTag cannot return EVAL_
BODY_TAG. Both of these actions cause run-time exceptions.

The BodyTagSupport Class
As was the case with the Tag interface, BodyTag has a default implementation class
called javax.servlet.jsp.tagext.BodyTagSupport. This class extends
TagSupport, but with a few subtle changes. Table 11-5 describes the public methods
implemented by BodyTagSupport.

Body tag handlers are free to implement the BodyTag interface directly, but
BodyTagSupport is usually a more convenient base class.

222 J S P : T h e C o m p l e t e R e f e r e n c e

Method Description

public int doStartTag()
throws JspException

Overrides doStartTag() in
TagSupport, returning
EVAL_BODY_TAG by default
instead of SKIP_BODY.

public int doEndTag()
throws JspException

Invokes doEndTag() in TagSupport,
returning its result.

public void
setBodyContent
(BodyContent out)

Stores the new body content object in a
protected variable named bodyContent.
Subclasses can access this variable directly.

public void doInitBody()
throws JspException

Does nothing by default. Intended to be
overridden by subclasses that need to
perform initialization before the body
is evaluated.

public int doAfterBody()
throws JspException

Called by the JSP servlet after each time
the body has been evaluated. The body
content object is still active. This method
must return either SKIP_BODY or
EVAL_BODY_TAG, which causes
the body to be evaluated again and
doAfterBody() to be called again.

Table 11-5. Methods in BodyTagSupport

The Body Tag Handler Life Cycle
Figure 11-4 depicts the slightly more complex life cycle of tag handlers that interact with
their body.

The following section describes each event in the life cycle flowchart.

The Flowchart
The first few steps down to doStartTag() are no different than they were in Figure 11-2.
The first difference is in the handling of the return code from this method. doStartTag()
in a body tag handler can return either SKIP_BODY, which causes an immediate
branch to doEndTag(), or EVAL_BODY_TAG, which starts the chain of events that
handle the tag body.

When EVAL_BODY_TAG is returned from doStartTag(), the JSP servlet6 invokes
the page context’s pushBody() method, which does three things:

1. Saves the current JspWriter on a stack.

C h a p t e r 1 1 : J S P T a g E x t e n s i o n s 223
ELEM

EN
TS

O
F

JS
P

Method Description

public void release() Sets the bodyContent variable to
null, and then calls super.release().
An overriding method must call
super.release() as well, otherwise
bodyContent may not be available
for garbage collecting.

public BodyContent
getBodyContent()

Returns the bodyContent variable.
Subclasses already have access to the
protected variable, but this method
allows unrelated tag handler classes
to send output to this body content.

public JspWriter
getPreviousOut()

A convenience method that calls
getEnclosingWriter() on the
bodyContent variable and returns
the result.

Table 11-5. Methods in BodyTagSupport (continued)

6 The term JSP servlet in this section refers to the servlet generated by the JSP container based on the JSP
page source code.

224 J S P : T h e C o m p l e t e R e f e r e n c e

Figure 11-4. Flowchart of the Body Tag Handler Life Cycle

C h a p t e r 1 1 : J S P T a g E x t e n s i o n s 225
ELEM

EN
TS

O
F

JS
P

2. Creates a new BodyContent object and stores it in the page context’s attributes
in page scope under the name out.

3. Assigns the new BodyContent object to the JSP page implicit variable out.

After this, the JSP servlet calls the tag handler’s setBodyContent() method with the
new writer.

Next, the tag handler’s doInitBody() method is called to handle any necessary
initialization before the body is evaluated. This initialization could also be done in
doStartTag(), but the new BodyContent object isn’t available there yet.
doInitBody() isn’t called if no body is in the tag, and can throw a JspException
if it detects any fatal errors.

At this point, the servlet handles the body of the tag as it normally would, writing
its output to the BodyContent object. The processing depends on the value of
the <bodycontent> element of the tag in the TLD. Three possible values exist for
this element:

� empty The tag body must be empty.

� JSP Scriptlets, expressions, and template HTML are evaluated as usual. If any
other custom tags are within the scope of the body, they are also evaluated, the
same as they would be if used elsewhere on the page. If any of these have tag
handlers that implement BodyTag, then the process is done recursively—the
current BodyContent is pushed, a new BodyContent is assigned to the inner
tag, and so on.

� tagdependent The contents of the body are written verbatim to the
BodyContent. Scriptlets and expressions appear in their original JSP source
form, rather than being interpreted by the JSP container.

After handling the body, the servlet invokes the tag handler’s doAfterBody()
method. If the tag handler wants to write its body content to the enclosing JspWriter
at this time, it can do so, as follows

JspWriter out = bodyContent.getEnclosingWriter();

out.println(bodyContent.getString());

bodyContent.clear();

or, as

JspWriter out = bodyContent.getEnclosingWriter();

bodyContent.writeOut(out);

bodyContent.clear();

If the body content isn’t too large, it may be easier to wait until doEndTag(), and then
write the body content in one operation.

The doAfterBody() method can return one of two possible return codes:

� SKIP_BODY proceeds with the rest of the page.

� EVAL_BODY_TAG causes the body to be evaluated again, followed by
the doAfterBody() method. This would typically be done if an array
or enumeration is being processed, with the next element in the array
or enumeration being assigned to a scripting variable at each iteration.

When the doAfterTag() finally returns SKIP_BODY, the loop (if any) is exited.
The body content is now completed, so the process of creating it is reversed:

1. A call to pageContent.popBody() retrieves the immediately previous
JspWriter.

2. The writer is assigned back to the out scripting variable.

Finally, the doEndTag() method is called, allowing the tag handler to send its
content back to the output stream. At this point, pageContext.getOut() refers to the
original writer, the same one that existed before the tag was processed. However, the
body content is still available in the protected bodyContent variable. It can be written
to the servlet output stream as follows

JspWriter out = pageContext.getOut();

out.println(bodyContent.getString());

or simply

bodyContent.writeOut(pageContext.getOut());

doEndTag() should return either SKIP_PAGE, to cause the rest of the JSP page to be
ignored, or EVAL_PAGE, to cause the page to be evaluated as usual.

Before we can give a detailed example of generated code for a body tag, we first
need to understand how a tag handler interacts with scripting variables.

Defining Scripting Variables
JSP page authors are familiar with scripting variables—these often are Java variables
defined in a scriptlet or a <jsp:useBean> action. For example, in the scriptlet at the
beginning of this code,

226 J S P : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 1 : J S P T a g E x t e n s i o n s 227
ELEM

EN
TS

O
F

JS
P

<%

String[] flavors = {"Chocolate", "Strawberry", "Vanilla"};

for (int i = 0; i < flavors.length; i++) {

%>

Flavor <%= i %> is <%= flavors[i] %>

<%

}

%>

the integer variable i and the string array variable flavors are defined, and are later available
for use by other scriptlets and expressions on the page. Similarly, in this JSP page,

<jsp:useBean id="m1" class="Meteor"/>

<jsp:setProperty name="m1"

property="bane"

value="The atmosphere"/>

Ahhhh! <%= m1.getBane() %>! Ahhhh!

the <jsp:useBean> action causes a variable named m1 of class Meteor to be defined.
This is used by the <jsp:setProperty> action that follows and is available to the
expression on the last line.

Custom tags can also define scripting variables in their tag handlers and,
as in the previous examples, the variables are then available to scriptlets, expressions,
and other tags on the same page. The mechanism for defining such variables is the
TagExtraInfo class.

The TagExtraInfo Class
A tag that needs to define variables or perform validation on its attributes needs to
define a class that extends the TagExtraInfo class. This subclass is associated with
the custom tag in the TLD:

<tag>

<name>mytag</name>

<tagclass>mypackage.MyTagHandler</tagclass>

<teiclass>mypackage.MyTagTEI</teiclass>

...

</tag>

The TEI comes into play during JSP translation time. When the JSP parser reads a
taglib directive, it loads the associated tag and TEI class names for each tag from the
TLD. Then, when a tag is parsed, methods in its TEI are invoked that get information

about scripting variables and validations. By overriding these methods in a TEI subclass,
a tag author can create variables and verify the tag attributes are valid. Table 11-6 lists
the methods available in the TagExtraInfo class.

The method of primary interest is getVariableInfo(). This method is called
by the JSP parser at page translation time and is expected to return an array of
VariableInfo objects. VariableInfo is essentially only a data structure having
four fields:

� varName The name of the variable to be created.

� className The fully qualified name of the variable’s class.

� declare A boolean variable that is true if the JSP parser should create an
actual definition for the variable (as opposed to assuming a variable of that
class will have already been defined earlier in the servlet).

� scope An integer indicating the point at which the variable should be
defined (or considered active).

228 J S P : T h e C o m p l e t e R e f e r e n c e

Method Description

public VariableInfo[]
getVariableInfo(TagData data)

Based on the list of attribute names and
values in the data parameter, constructs
an array of VariableInfo objects that
describe the name, type, existence, and
scope of each scripting variable to create.

public boolean
isValid(TagData data)

Called by the JSP parser at page
translation time. Given a list of attribute
names and values, the method can
validate them individually and in
combination with each other. Returns
true if the attributes are valid, false
otherwise. The default implementation
simply returns true.

public void
setTagInfo(TagInfo info)

Sets the TagInfo object used by this class.

public TagInfo getTagInfo() Returns the TagInfo object used by
this class.

Table 11-6. The TagExtraInfo Class

Three possible values exist for scope and each is represented by a constant defined in
VariableInfo:

� AT_BEGIN The variable is defined when the start tag is encountered and
remains visible for the rest of the page. This is the visibility of the id variable
defined by <jsp:useBean>, for example.

� AT_END The variable is defined after the end tag and remains visible for the
rest of the page.

� NESTED The variable is only defined within scope of the body of the tag.

Example: The enumerate Tag
To illustrate the use of a TEI class, develop a tag named enumerate, which loops
over a java.util.Enumeration, making each element in turn available as a scripting
variable in the tag body. Here is the TLD definition for the tag:

<tag>

<name>enumerate</name>

<tagclass>jspcr.taglib.util.EnumerateTag</tagclass>

<teiclass>jspcr.taglib.util.EnumerateTEI</teiclass>

<bodycontent>JSP</bodycontent>

<info>

Iterates tag body through an enumeration

</info>

<attribute>

<name>enumeration</name>

<required>true</required>

<rtexprvalue>true</rtexprvalue>

</attribute>

</tag>

The tag takes one required attribute named enumeration. The type of this
attribute is a java.util.Enumeration, so its value must be supplied by a
request-time expression. The tag handler takes care of the actual iteration using
the Enumeration.hasMoreElements() and nextElement() methods:

package jspcr.taglib.util;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

import java.io.*;

C h a p t e r 1 1 : J S P T a g E x t e n s i o n s 229
ELEM

EN
TS

O
F

JS
P

230 J S P : T h e C o m p l e t e R e f e r e n c e

import java.util.*;

/**

* EnumerateTag

*/

public class EnumerateTag extends BodyTagSupport

{

// Enumeration attribute

private Enumeration list;

public void setEnumeration(Enumeration list)

{

this.list = list;

}

public int doStartTag() throws JspException

{

// Do not evaluate the body if the list is empty

if (list.hasMoreElements()) {

// Create a scripting variable named "element"

// that contains the value of the current

// element of the enumeration

pageContext.setAttribute

("element", list.nextElement());

return EVAL_BODY_TAG;

}

return SKIP_BODY;

}

public int doAfterBody() throws JspException

{

// Get next element. This will be assigned

// to the scripting variable named "element"

if (list.hasMoreElements()) {

pageContext.setAttribute

("element", list.nextElement());

C h a p t e r 1 1 : J S P T a g E x t e n s i o n s 231
ELEM

EN
TS

O
F

JS
P

return EVAL_BODY_TAG;

}

// If no more elements, exit from the loop

return SKIP_BODY;

}

public int doEndTag() throws JspException

{

// getOut() now refers to the original JspWriter

try {

bodyContent.writeOut(pageContext.getOut());

}

catch (IOException e) {

throw new JspException(e.getMessage());

}

return EVAL_PAGE;

}

}

Notice as each element of the enumeration is processed, it is stored in the page context
as an attribute under the name element.

To make the current element available as a scripting variable, we employ a TEI class:

package jspcr.taglib.util;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

/**

* EnumerateTEI

*/

public class EnumerateTEI extends TagExtraInfo

{

public VariableInfo[] getVariableInfo(TagData tagData)

{

return new VariableInfo[] {

new VariableInfo(

"element", // Variable name

"java.lang.Object", // Class

true, // Create a declaration?

VariableInfo.NESTED // Scope

)

};

}

}

The getVariableInfo()method in this case returns an array of length 1 containing
a VariableInfo object for the desired scripting variable. The constructor declares that

� The variable name should be element.

� Its class should be java.lang.Object.

� The JSP parser should generate a declaration for the variable.

� The variable should be visible to the JSP page throughout the evaluation
of the body, but not afterward.

The following EnumTest.jsp page shows the tag in action:

<%@ page session="false" %>

<%@ page import="java.util.*" %>

<%@ taglib prefix="util" uri="/WEB-INF/tlds/util.tld" %>

<%--

The scriptlet below loads the properties object.

It could just as easily be loaded from a file.

--%>

<%

Properties flavors = new Properties();

flavors.setProperty("Vanilla", "The perennial favorite");

flavors.setProperty("Chocolate", "Rich and smooth");

flavors.setProperty("Strawberry", "Dazzling and fruity");

%>

<TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0">

<TR><TH>Flavor</TH><TH>Description</TH></TR>

<%--

The enumerate tag will evaluate its body

232 J S P : T h e C o m p l e t e R e f e r e n c e

for each item in the properties object.

--%>

<util:enumerate enumeration="<%= flavors.propertyNames() %>">

<%

String description = flavors.getProperty((String) element);

%>

<TR>

<TD><%= element %></TD>

<TD><%= description %></TD>

</TR>

</util:enumerate>

</TABLE>

The enumerate tag appears near the end of the file. Its value is assigned from the
java.util.Enumeration returned by flavors.propertyNames(). Notice the
element variable has no visible declaration—it’s an implicit variable with a fixed
name, similar to request, response, session, and other implicit variables defined
everywhere in the JSP environment. The page uses element twice, once in a scriptlet,
where it’s used to get a property value, and once in a JSP expression, where its string
value is printed in an HTML table.

Let’s examine the servlet code generated by JRun for the enumerate tag. Comparing
this to the flowchart shown in Figure 11-4 can be helpful.

EnumerateTag enumTag = (EnumerateTag)

JRunJSPStaticHelpers.createTagHandler

(pageContext, "EnumerateTag");

enumTag.setPageContext(pageContext);

enumTag.setParent(null);

enumTag.setEnumeration(flavors.propertyNames());

The JSP page specified the value of the enumeration attribute with

enumeration="<%= flavors.propertyNames() %>"

This is passed on to the tag handler with a call to its setEnumeration() method.
Next, the generated servlet invokes doStartTag() and checks its return code. Recall
the doStartTag() reads the first element of the enumeration and stores it in the page
context with setAttribute("element", list.nextElement()).

C h a p t e r 1 1 : J S P T a g E x t e n s i o n s 233
ELEM

EN
TS

O
F

JS
P

int rc = enumTag.doStartTag();

JRunJSPStaticHelpers.checkStartVal

("EnumerateTag", rc, BodyTag.EVAL_BODY_TAG, 24);

If the enumeration isn’t empty, the doStartTag() method returns EVAL_BODY_TAG,
which triggers the first pass through evaluating the body:

if (rc == BodyTag.EVAL_BODY_TAG) {

out = pageContext.pushBody();

enumTag.setBodyContent((BodyContent)out);

enumTag.doInitBody();

do {

java.lang.Object element =

(java.lang.Object)

pageContext.getAttribute("element");

After setting up the nested body content and calling doInitBody(), the servlet
enters a do while loop. The first statement of the loop is a getAttribute() for the
element variable, which was just set in doStartTag().

out.print("\r\n");

String description =

flavors.getProperty((String) element);

out.print("\r\n<TR>\r\n <TD>");

out.print(element);

out.print("</TD>\r\n <TD>");

out.print(description);

out.print("</TD>\r\n</TR>\r\n");

}

while (enumTag.doAfterBody() == BodyTag.EVAL_BODY_TAG);

The element variable is then used to print the table entry, and then doAfterBody()
is called. doAfterBody() repeats the logic, which gets the next element, and sets it as
the element attribute in pageContext. As long as elements are available,

234 J S P : T h e C o m p l e t e R e f e r e n c e

doAfterBody() returns EVAL_BODY_TAG, which causes the next loop iteration,
assigning a new value to element as it runs.

out = pageContext.popBody();

}

if (enumTag.doEndTag() == Tag.SKIP_PAGE) {

if (true)

return;

}

Finally, after the enumeration is exhausted, doAfterBody() returns SKIP_BODY
and the loop terminates. The previous JspWriter is popped from the stack, and
doEndTag() dumps the result shown in Figure 11-5.

Synchronizing Scripting Variables
When a scripting variable is defined in a TEI, the JSP container generates servlet
code not only to define the variable, but also to synchronize it with its value inside
the tag handler. Recall the tag handler uses pageContext.setAttribute()
to assign the desired value. The generated servlet code has a corresponding
pageContext.getAttribute() statement that assigns the value to the scripting
variable after each of the “do” methods in the tag life cycle. Which variables get

ELEM
EN

TS
O

F
JS

P
C h a p t e r 1 1 : J S P T a g E x t e n s i o n s 235

Figure 11-5. Output of the enumerate tag test

updated in this manner depends on their scope as defined in the TEI. Table 11-7
describes the assignment:

Validating Tag Attributes
In addition to defining scripting variables, the TEI provides the public boolean
isValid(TagData data) method in which tag attributes can be validated. In
this method, you can extract the list of attribute names and values from the data
parameter and check whether their values are valid. If not, you can return false
to cause a page compilation error. For example, if a tag has several attributes, each of
which is optional, but one of which must be specified, you cannot specify that semantic
using the <attribute> elements in the TLD alone. The isValid() method is your
only opportunity to do so.

To navigate through the list of attributes, you can call methods in the TagData
parameter that is passed to isValid(). Table 11-8 lists some of the methods available.

One drawback of the isValid() method, however, is no obvious way exists to
emit a meaningful error message. Either the tag as a whole is valid or it isn’t.

Cooperating Tags
Custom tags can interact with each other to perform useful operations. One approach
commonly used is described as syntactic scoping, in which a tag handler calls methods
in its parent classes. This section gives an extended example of the techniques.

Using Syntactic Scoping
Recall that tags can be nested, that is, a tag can be used in the body of another tag. The
TagSupport class provides the means for a tag handler to find the tag handlers of its

236 J S P : T h e C o m p l e t e R e f e r e n c e

Method Scope of Variables Synchronized

doStartTag() AT_BEGIN, NESTED

doInitBody() AT_BEGIN, NESTED

doAfterBody() AT_BEGIN, NESTED

doEndTag() AT_BEGIN, NESTED, AT_END

Table 11-7. How Scope of Scripting Variables Affects Synchronization

enclosing tags using its findAncestorWithClass() method. This is a static method
that takes two parameters—a reference to the current tag handler (this) and the class
of the parent tag of interest:

OuterTag ot = (OuterTag)

findAncestorWithClass(this, OuterTag.class);

if (ot == null)

throw new JspException("No outer tag found");

Once the parent tag is found, all its public methods can be called directly. The following
section illustrates how this technique can be used.

Example: The switch Tag
We can use syntactic scoping to emulate the Java language switch ... case construct.
We need three tags:

� switch The outer tag whose body defines the scope of the switch logic. This
tag has a value attribute that defines the condition to be tested and determines
which case block should be executed.

C h a p t e r 1 1 : J S P T a g E x t e n s i o n s 237
ELEM

EN
TS

O
F

JS
P

Method Description

public void String getId() Returns the name of the ID attribute, if it
was specified.

public Object
getAttribute(String name)

Given an attribute name, returns the
attribute value as an Object. If the
attribute’s value is unknown at translation
time (that is, it is specified with a request
time expression), this method returns
TagData.REQUEST_TIME_VALUE.

public String
getAttributeString(String
name)

Given an attribute name, returns the
attribute value as a java.lang.String,
if possible.

public Enumeration
getAttributes()

Returns an enumeration of the tag
attribute names. Used in conjunction
with getAttribute(), this can
allow stepping through a list of all
attribute/value pairs.

Table 11-8. Some Useful Methods in TagData

� case A tag representing one possible case block. We will give it two
attributes: one to specify an exact value to match, another to specify a substring.
A third attribute specifies whether the comparison should be case-sensitive.
We use a TEI class isValid() method to verify only one of the first two
attributes is specified.

� default The block to be executed if none of the other case blocks succeed.

Here are the TLD entries we need:

<tag>

<name>switch</name>

<tagclass>jspcr.taglib.util.SwitchTag</tagclass>

<bodycontent>JSP</bodycontent>

<info>

The enclosing tag for a switch/case block

</info>

<attribute>

<name>value</name>

<required>true</required>

<rtexprvalue>true</rtexprvalue>

</attribute>

</tag>

<tag>

<name>case</name>

<tagclass>jspcr.taglib.util.CaseTag</tagclass>

<teiclass>jspcr.taglib.util.CaseTEI</teiclass>

<bodycontent>JSP</bodycontent>

<info>

A case block to be included in the body of a switch

</info>

<attribute>

<name>match</name>

<required>false</required>

<rtexprvalue>true</rtexprvalue>

</attribute>

<attribute>

<name>contains</name>

<required>false</required>

238 J S P : T h e C o m p l e t e R e f e r e n c e

<rtexprvalue>true</rtexprvalue>

</attribute>

<attribute>

<name>caseSensitive</name>

<required>false</required>

<rtexprvalue>true</rtexprvalue>

</attribute>

</tag>

<tag>

<name>default</name>

<tagclass>jspcr.taglib.util.DefaultTag</tagclass>

<bodycontent>JSP</bodycontent>

<info>

The default case included in the body of a switch

</info>

</tag>

The logic isn’t particularly complicated. The switch tag provides public accessor
methods for its value property and for a boolean completed property, which keeps
track of whether a case block has matched the value and claimed the switch. Here is
the tag handler:

package jspcr.taglib.util;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

/**

* A tag that emulates the switch ... case construct.

* Within the body of this statement there can be

* any number of case tag, including one default tag.

* The first one that matches the text is executed,

* and the rest are bypassed.

*/

public class SwitchTag extends TagSupport

{

// The value attribute. This is the text that

// case statements will compare to.

C h a p t e r 1 1 : J S P T a g E x t e n s i o n s 239
ELEM

EN
TS

O
F

JS
P

private String value;

public void setValue(String value)

{ this.value = value; }

public String getValue()

{ return value; }

// A flag that indicates whether the switch statement

// is complete. This happens when one of the case

// statements matches the value and is executed.

private boolean complete;

public void setComplete(boolean complete)

{this.complete = complete; }

public boolean isComplete()

{ return complete; }

/**

* No real setup is required. All this method

* needs to do is return EVAL_BODY_INCLUDE

*/

public int doStartTag() throws JspException

{

return EVAL_BODY_INCLUDE;

}

}

The case tag is also fairly simple. It finds its enclosing switch tag using
findAncestorWithClass().The case tag first calls the switch tag’s isComplete()
method to see whether any other case has already claimed the switch. If so, it returns
SKIP_BODY, so its body isn’t executed. Otherwise, it calls the switch tag’s getValue()
method to retrieve the string to match. If the match succeeds, the case tag claims
the switch with setComplete(true) and returns EVAL_BODY_INCLUDE. Here is
the tag handler listing:

package jspcr.taglib.util;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

/**

* The body of this tag will be executed if it

240 J S P : T h e C o m p l e t e R e f e r e n c e

* satisfies the condition specified in its attributes

* with respect to the value of the enclosing switch tag

*/

public class CaseTag extends TagSupport

{

// Value of an exact string to be matched

private String match;

public void setMatch(String match)

{ this.match = match; }

// Value of a substring that could be contained

// in the switch tag's value

private String contains;

public void setContains(String contains)

{ this.contains = contains; }

// Value of a boolean flag that indicates whether

// the match or comparison should be case sensitive.

private boolean caseSensitive;

public void setCaseSensitive(String flag)

{

caseSensitive = new Boolean(flag).booleanValue();

}

public int doStartTag() throws JspException

{

// Find the enclosing switch tag so that we

// can call its methods

SwitchTag switchTag = (SwitchTag)

findAncestorWithClass(this, SwitchTag.class);

// If the switch has already been satisfied,

// skip the body of this statement

if (switchTag.isComplete())

return SKIP_BODY;

// Test for an exact match, if the match attribute

C h a p t e r 1 1 : J S P T a g E x t e n s i o n s 241
ELEM

EN
TS

O
F

JS
P

242 J S P : T h e C o m p l e t e R e f e r e n c e

// was specified

if (match != null) {

String parentValue = switchTag.getValue();

if (!caseSensitive)

parentValue = parentValue.toUpperCase();

String thisValue = match;

if (!caseSensitive)

thisValue = thisValue.toUpperCase();

// If exact match, claim the switch

if (parentValue.equals(thisValue)) {

switchTag.setComplete(true);

return EVAL_BODY_INCLUDE;

}

// Otherwise, ignore the body

return SKIP_BODY;

}

// Test for an substring match, if the contains attribute

// was specified

if (contains != null) {

String parentValue = switchTag.getValue();

if (!caseSensitive)

parentValue = parentValue.toUpperCase();

String thisValue = contains;

if (!caseSensitive)

thisValue = thisValue.toUpperCase();

// If parent value contains this substring,

// claim the switch

if (parentValue.indexOf(thisValue) != -1) {

switchTag.setComplete(true);

return EVAL_BODY_INCLUDE;

C h a p t e r 1 1 : J S P T a g E x t e n s i o n s 243
ELEM

EN
TS

O
F

JS
P

}

// Otherwise, ignore the body

return SKIP_BODY;

}

return SKIP_BODY;

}

}

The TEI verifies that either the match attribute or the contains attribute have
been specified, but not both:

package jspcr.taglib.util;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

/**

* Validates the attributes of a case tag

*/

public class CaseTEI extends TagExtraInfo

{

public boolean isValid(TagData tagData)

{

// The tag must contain either the match attribute

// or the contains attribute, but not both.

boolean noMatch =

(tagData.getAttribute("match") == null);

boolean noContains =

(tagData.getAttribute("contains") == null);

return (noMatch != noContains);

}

}

The default tag handler works just like case, except its match condition
is always true. default doesn’t work exactly like its Java counterpart because

244 J S P : T h e C o m p l e t e R e f e r e n c e

it’s not guaranteed to be executed last, unless it happens to be coded last. Here is
the source code:

package jspcr.taglib.util;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

/**

* The body of this tag will be executed if no other

* case tag has been encountered that satisfied

* the enclosing switch tag.

*/

public class DefaultTag extends TagSupport

{

public int doStartTag() throws JspException

{

// Find the enclosing switch tag so that we

// can call its methods

SwitchTag switchTag = (SwitchTag)

findAncestorWithClass(this, SwitchTag.class);

// If the switch has already been satisfied,

// skip the body of this statement

if (switchTag.isComplete())

return SKIP_BODY;

// Otherwise, claim the switch

switchTag.setComplete(true);

return EVAL_BODY_INCLUDE;

}

}

Used together, these tags can test a condition and execute the desired block. This
JSP page illustrates their use:

<%@ page session="false" %>

<%@ taglib prefix="util" uri="/WEB-INF/tlds/util.tld" %>

<%

String value = request.getParameter("value");

if (value == null)

value = "B";

%>

<H3>The value is <%= value %></H3>

<util:switch value="<%= value %>">

<util:case match="A">

<H3>The match="A" case block was selected</H3>

</util:case>

<util:case contains="B">

<H3>The contains="B" case block was selected</H3>

</util:case>

<util:default>

<H3>None of the case blocks were selected</H3>

</util:default>

</util:switch>

When we run the JSP page with a parameter value of A, we get the results shown in
Figure 11-6. With a value of beauty (containing B, case-insensitive), the results are as
shown in Figure 11-7. Finally, if the value is C, which matches none of the case blocks,
the resulting page is Figure 11-8.

C h a p t e r 1 1 : J S P T a g E x t e n s i o n s 245
ELEM

EN
TS

O
F

JS
P

Figure 11-6. The switch test with value=A

246 J S P : T h e C o m p l e t e R e f e r e n c e

Figure 11-7. The switch test with value=beauty

Figure 11-8. The switch test with value=C

C h a p t e r 1 1 : J S P T a g E x t e n s i o n s 247
ELEM

EN
TS

O
F

JS
P

Implementation of the DatabaseQuery Example
This chapter concludes with the implementation of the database query example that
was described at the beginning:

<db:connect url="mydatabase">

<db:runQuery>

SELECT *

FROM FD_GROUP

WHERE FdGp_Desc LIKE '%F%'

ORDER BY FdGp_Cd

</db:runQuery>

<table border="1" cellpadding="3" cellspacing="0">

<tr><th>Food Group Code</th><th>Description</th></tr>

<db:forEachRow>

<tr>

<td><db:getField name="FdGp_Cd"/></td>

<td><db:getField name="FdGp_Desc"/></td>

</tr>

</db:forEachRow>

</table>

</db:connect>

The Necessary Tags
Four cooperating tags exist:

connect Opens a database connection and manages implicit
Statement and ResultSet objects

runQuery Reads an SQL statement in its body and tells the connect
tag to execute it

forEachRow An iterator over the ResultSet

getField Retrieves the current value of the named field

248 J S P : T h e C o m p l e t e R e f e r e n c e

The Tag Library Descriptor
The TLD for these tags is shown here:

<tag>

<name>connect</name>

<tagclass>jspcr.taglib.jdbc.ConnectTag</tagclass>

<bodycontent>JSP</bodycontent>

<info>Opens a database connection and manages

a Statement and ResultSet object</info>

<attribute>

<name>url</name>

<required>true</required>

<rtexprvalue>true</rtexprvalue>

</attribute>

</tag>

The connect tag opens a connection and manages a Statement and ResultSet
object. These aren’t exposed as scripting variables; they’re only accessible through
other tags in this library. The connection is closed when the end tag is encountered.
The syntax is

<db:connect url=“mydatabase”>

The driver class name could easily be added as another attribute. I made it implicit
here to simplify the JSP.

<tag>

<name>runQuery</name>

<tagclass>jspcr.taglib.jdbc.RunQueryTag</tagclass>

<bodycontent>JSP</bodycontent>

<info>Reads and executes the SQL statement

in the tag body</info>

</tag>

The runQuery tag reads an SQL statement from its body and executes it using the
Statement object created by the enclosing connect tag. It can only be used in the body of
a connect tag. The syntax of the runQuery tag is

<db:runQuery>sql statement</db:runQuery>

The result set is also managed by the connect tag.

<tag>

<name>forEachRow</name>

<tagclass>jspcr.taglib.jdbc.ForEachRowTag</tagclass>

<bodycontent>JSP</bodycontent>

<info>Iterates over the current result set</info>

</tag>

The forEachRow tag iterates over the current result set, so the getField tag can
access its values. This can only be used the body of a connect tag after a runQuery tag.
Its syntax is

<db:forEachRow>
...
</db:forEachRow>

<tag>

<name>getField</name>

<tagclass>jspcr.taglib.jdbc.GetFieldTag</tagclass>

<bodycontent>empty</bodycontent>

<info>Retrieves a field

from the current result set row</info>

<attribute>

<name>name</name>

<required>true</required>

<rtexprvalue>true</rtexprvalue>

</attribute>

</tag>

The getField tag reads a field from the current result set row and returns its
value as a String. this can only appear in the body of a forEachRow tag. Its syntax is

<db:getField name=“fieldName”/>

The Tag Handlers
Four tag handlers need to be developed. Because no scripting variables are defined,
we don’t need any TEI classes.

C h a p t e r 1 1 : J S P T a g E x t e n s i o n s 249
ELEM

EN
TS

O
F

JS
P

250 J S P : T h e C o m p l e t e R e f e r e n c e

Connect
The connect tag takes a database URL as an attribute, so the tag handler needs an
instance variable and a setUrl() method:

package jspcr.taglib.jdbc;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

import java.io.*;

import java.sql.*;

/**

* ConnectTag

*/

public class ConnectTag extends TagSupport

{

public static final String DRIVER_CLASS

= "sun.jdbc.odbc.JdbcOdbcDriver";

// ===

// Tag attributes

// ===

private String url;

public void setUrl(String url)

{

this.url = url;

}

It defines the Connection, Statement, and ResultSet objects and provides public
accessor methods for each, as well as a public runQuery() method:

// ===

// JDBC objects managed by this tag

// ===

private Connection con;

private Statement stmt;

private ResultSet rs;

public Connection getConnection() { return con; }

C h a p t e r 1 1 : J S P T a g E x t e n s i o n s 251
ELEM

EN
TS

O
F

JS
P

public Statement getStatement() { return stmt; }

public ResultSet getResultSet() { return rs; }

/**

* Runs a query

* @param sql an SQL statement

*/

public void runQuery(String sql)

throws SQLException

{

rs = stmt.executeQuery(sql);

}

The whole database operation is contained between the start and end tags, so the two
lifecycle methods manage startup and shutdown:

// ===

// Lifecycle methods

// ===

/**

* Loads the driver class, opens a database

* connection, and creates a Statement object

*/

public int doStartTag() throws JspException

{

con = null;

try {

Class.forName(DRIVER_CLASS);

con = DriverManager.getConnection(url);

stmt = con.createStatement();

}

catch (Exception e) {

throw new JspException(e.getMessage());

}

return EVAL_BODY_INCLUDE;

}

/**

* Closes the connection and other JDBC objects

*/

public int doEndTag() throws JspException

252 J S P : T h e C o m p l e t e R e f e r e n c e

{

try {

if (rs != null) {

rs.close();

rs = null;

}

if (stmt != null) {

stmt.close();

stmt = null;

}

if (con != null) {

con.close();

con = null;

}

}

catch (SQLException e) {

throw new JspException(e.getMessage());

}

return EVAL_PAGE;

}

}

RunQuery
The runQuery tag does three things:

� Extracts an SQL statement from its body.

� Finds the enclosing connect tag.

� Executes the connect.runQuery() method.

The source code is listed here:

package jspcr.taglib.jdbc;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

import java.io.*;

import java.sql.*;

import java.util.*;

/**

* RunQueryTag

C h a p t e r 1 1 : J S P T a g E x t e n s i o n s 253
ELEM

EN
TS

O
F

JS
P

*/

public class RunQueryTag extends BodyTagSupport

{

/**

* Reads the SQL statement in the body of the tag

* and asks the connect tag to execute it.

*/

public int doEndTag() throws JspException

{

// Get the SQL to be run

String sql = bodyContent.getString();

if (sql == null)

throw new JspException

("No SQL statement found in body of runQuery tag");

sql = sql.trim();

if (sql.equals(""))

throw new JspException

("Empty SQL statement found in body of runQuery tag");

// Locate the enclosing connect tag

ConnectTag connectTag = (ConnectTag)

findAncestorWithClass(this, ConnectTag.class);

if (connectTag == null)

throw new JspException

("runQuery must be used in the body of a connect tag");

// Tell the connect tag to run the query

try {

connectTag.runQuery(sql);

}

catch (SQLException e) {

throw new JspException(e.getMessage());

}

// Normal return

return EVAL_PAGE;

}

}

ForEachRow
This is an iterator tag, similar to the enumerate tag described earlier in this
chapter. Like runQuery, it first gets a reference to the connect tag using
findAncestorWithClass(). From the connect tag handler instance, it can get
the result set using getResultSet(). Using a private convenience method called
incrementRow(), it advances the result set to the next row. Either doStartTag()
or doAfterBody() can detect the end of the result set and return SKIP_BODY
accordingly.

package jspcr.taglib.jdbc;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

import java.io.*;

import java.sql.*;

/**

* ForEachRowTag

*/

public class ForEachRowTag extends BodyTagSupport

{

private ConnectTag connectTag;

/**

* Sets up for the first iteration of the result set

*/

public int doStartTag() throws JspException

{

connectTag = (ConnectTag)

findAncestorWithClass(this, ConnectTag.class);

if (connectTag == null)

throw new JspException

("forEachRow must be in the body of a connect tag");

return incrementRow();

}

/**

* After each row has been evaluated,

* increment the result set and indicate

* when end is reached.

*/

public int doAfterBody() throws JspException

254 J S P : T h e C o m p l e t e R e f e r e n c e

{

return incrementRow();

}

/**

* When end tag is reached, dump the results

*/

public int doEndTag() throws JspException

{

try {

pageContext.getOut().print(bodyContent.getString());

}

catch (IOException e) {

throw new JspException(e.getMessage());

}

return EVAL_PAGE;

}

/**

* Convenience method for getting the next row.

* Used by both <CODE>doStartTag</CODE>

* and <CODE>doAfterBody</CODE>.

* Returns EVAL_BODY_TAG if a row exists,

* SKIP_BODY otherwise.

*/

private int incrementRow() throws JspException

{

ResultSet rs = connectTag.getResultSet();

if (rs == null)

throw new JspException

("No result set found - no query has been run");

// Get the next row or indicate that there are no rows

boolean hasNext = false;

try {

hasNext = rs.next();

}

catch (SQLException e) {

throw new JspException(e.getMessage());

C h a p t e r 1 1 : J S P T a g E x t e n s i o n s 255
ELEM

EN
TS

O
F

JS
P

256 J S P : T h e C o m p l e t e R e f e r e n c e

}

return (hasNext) ? EVAL_BODY_TAG : SKIP_BODY;

}

}

GetField
Like its counterparts runQuery and forEachRow, getField uses public methods in
the enclosing connect tag. It extracts the specified field value from the ResultSet
and sends it to the current output writer.

package jspcr.taglib.jdbc;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

import java.io.*;

import java.sql.*;

/**

* GetFieldTag

*/

public class GetFieldTag extends TagSupport

{

private String name;

public void setName(String name)

{

this.name = name;

}

/**

* Returns the value of the specified

* field in the result set as a string.

*/

public int doEndTag() throws JspException

{

C h a p t e r 1 1 : J S P T a g E x t e n s i o n s 257
ELEM

EN
TS

O
F

JS
P

// Get the enclosing Connect tag

ConnectTag connectTag = (ConnectTag)

findAncestorWithClass(this, ConnectTag.class);

if (connectTag == null)

throw new JspException

("getField must be in the body of a connect tag");

// Get its current result set

ResultSet rs = connectTag.getResultSet();

if (rs == null)

throw new JspException

("No result set exists - no query has been run");

try {

// Get the specified field and write it

// to the output stream

String value = rs.getString(name);

JspWriter out = pageContext.getOut();

out.print(value);

}

catch (SQLException e) {

throw new JspException(e.getMessage());

}

catch (IOException e) {

throw new JspException(e.getMessage());

}

// Normal completion

return SKIP_BODY;

}

}

When the database query is run, it produces the results shown in Figure 11-9.

Summary
Custom tags are an elegant, robust method of extending the JSP authoring environment,
allowing development teams to provide a toolkit of application-specific JSP tags that
can be used by page designers who aren’t proficient in Java programming. A tag’s
functionality is implemented by a Java class called a tag handler, which provides
methods that are called by the JSP container at various points in the tag’s life cycle.
Sets of related tags can cooperate to accomplish complex tasks. Collections of tag
handlers and configuration information are packaged in tag libraries, which have a
vendor-independent structure and can be deployed with a minimum of effort.

258 J S P : T h e C o m p l e t e R e f e r e n c e

Figure 11-9. Output of the database query

Part III
JSP in Action

This section looks at how JSP works with major components of the Java

environment. After gaining a background in HTML forms and JDBC

database access, you’ll examine advanced topics such as session

management, threading, JavaBeans, and XML. Chapters 17 and 18

cover debugging and deploying Web applications, respectively, and

Chapter 19 presents a complete case study incorporating techniques

from throughout the book.

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This page intentionally left blank.

Chapter 12
HTML Forms

261

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Most applications need user input at some point and, in the Web environment,
this input usually comes from HTML forms. Like their paper counterparts,
HTML forms consist of a set of labels and entry fields arranged in a logical

sequence. When a user fills out a form and clicks the Submit button, the entry field
names and values are transmitted to a program associated with the Web server for
processing. Figure 12-1 illustrates a typical form.

HTML provides a basic set of elements or input controls that can accommodate
a wide range of data entry requirements. The set includes

� Text entry elements Rectangular boxes for single line or multiple line input.

� Selection menus Lists of options displayed in a drop-down list box. These
can have an external form displayed on the screen and an internal code value
associated with the selected item or items.

262 J S P : T h e C o m p l e t e R e f e r e n c e

Figure 12-1. An HTML form used for feedback from a Web site

JS
P

IN
A

C
TIO

N

� Buttons Rectangular controls that simulate a pushbutton on a control panel.
These are most often used to initiate a command, such as to submit a form or
clear the input fields.

� Check boxes Small squares that can be either checked or unchecked, on
or off. Check boxes can be used to specify options that have yes or no values.

� Radio buttons Similar to check boxes, radio buttons indicate yes or no values.
However, they usually occur in mutually exclusive groups, so selecting one
causes all the others to be unselected.

� File selection elements Controls that enable a user to specify the name of a
file to be uploaded. Typically, this control includes a Browse button that causes
a file selection dialog box to pop up.

� Hidden elements Nonvisual elements used to create parameters with
constant values.

The set of elements that can be used in an HTML form is standardized and formally
documented in the HTML specification (available at http://www.w3.org/TR/html4/).
This specification is the work of the World Wide Web Consortium (W3C), which updates it
periodically as new features emerge. As might be expected, not all browsers implement
all features. This chapter uses HTML 4.01 as the basis for describing how forms work, but
features mainly those elements and attributes that are widely supported.

This chapter describes elements used in HTML forms, how they are used, and how
browsers render them. It discusses how forms are validated and submitted. The chapter
then briefly examines the server side of forms handling.

The FORM Element
The FORM element is the basic structure behind HTML forms and has three main purposes:

� To group input elements together syntactically

� To identify a server-side program that handles the form processing

� To specify what data values are to be sent and in what form

A FORM element is described in HTML with the <FORM> tag. The syntax of this element
is shown here:

<FORM
action=“uri”
method=“method”
enctype=“content type”
accept-charset=“charsets”

C h a p t e r 1 2 : H T M L F o r m s 263

accept=“content types”
name=“form name”>

...
</FORM>

The attributes and their values are described in the following section.

Attributes of the FORM Element
Of the six attributes listed, the only required one is action. In practice, attributes other
than action and method are rarely used. Here are the definitions of each attribute.

The action Attribute
When a form is completed and the user clicks the Submit button, the Web browser
creates an HTTP request that packages all the form data and sends it to a program
on some Web server. This program is specified in the action attribute.

The value of the action attribute must be an HTTP Uniform Resource Identifier
(URI). (See http://www.ietf.org/rfc/rfc2396.txt for the formal definition of a URI.)
This means it has the form

[http://<servername>][/]<path>

To submit the form, the Web browser opens a socket connection to the specified
server (which defaults to the server from which the HTML page was downloaded)
and makes an HTTP request using the specified path. The path typically points to
a servlet, JSP page, or CGI program. This program receives the HTTP request and
the form data, either in the URI itself or in an input stream, depending on the HTTP
method used (see the following method).

Specifying a query string on the URI is possible. In this case, the parameter(s)
encoded in the query string is merged with those specified in the body of the form.
This is usually unnecessary because a hidden field can accomplish the same purpose.

The method Attribute
The HTTP protocol provides a number of request types used for file transfer, download,
delete, and diagnostic operations. Of these, only GET and POST are valid for use in
HTML forms. The method attribute is where this is specified.

An HTTP GET or POST request is ordinarily interpreted by the Web server as a
request to retrieve the document named in the URI. When the Web server has been
configured to handle servlets, CGI programs, or other server-side scripting
environments, it interprets requests for those resources as requests to invoke them as
programs. The output produced by such a program (typically an HTML document) is
sent back to the requester, the same as if it were a static document requested by name.

The difference between the GET and POST methods when used in an HTML form
is in how they supply input data to the server process:

264 J S P : T h e C o m p l e t e R e f e r e n c e

JS
P

IN
A

C
TIO

N
C h a p t e r 1 2 : H T M L F o r m s 265

� GET Form values are appended to the URI as a query string

� POST Form values are supplied in the input stream

Although either method can be used, and the servlet API makes the choice fairly
transparent, several characteristics should be taken into account. Because GET requests
cause input values to be appended to the request URI, they are visible as name/value
pairs on the browser address line and in Web server logs. This makes GET undesirable
for sending sensitive data like passwords. Moreover, some servers and browsers may
have restrictions on the length of URL’s they can handle. In addition, GET requests
are described in the HTTP specification as idempotent, which means they can safely
be repeated without undesirable side effects. Under certain circumstances, this means
a server can tell a client to reuse its existing copy of a resource rather than sending it a
new copy. This is usually not what you want as a response from form input. For these
reasons, POST is usually a better choice for the request method.

The method attribute is optional. If not specified, GET is used by default. The value
of the attribute can be specified in either uppercase or lowercase.

The enctype Attribute
Form input values can be transmitted to the server in several different ways. The
method of encoding the values into a data stream is described as the content type,
and is specified in the enctype attribute when the POST method is used. Two
commonly used encodings exist

� application/x-www-form-urlencoded

� multipart/form-data

application/x-www-form-urlencoded If not specified (and it usually isn’t),
the value of the enctype attribute is application/x-www-form-urlencoded. (See
RFC 1738, available at http://www.freesoft.org/CIE/RFC/1738/index.htm, for a complete
discussion of URL encoding.) This encoding technique involves the following steps:

1. Replace all nonblank special characters1 in input element names or values with
%xx, where xx is the two-digit hexadecimal value of the corresponding ASCII
character code.

2. Replace any spaces with a plus (+)sign.

1 Some disagreement exists about which characters these are. RFC 1738 describes them as any
nonalphanumeric character other than “$-_.+!*'(),”. However, Internet Explorer, Netscape
Navigator, and java.net.URLEncoder limit the exclusions to only “-_.*”. At any rate, because both
the encoding and decoding are done by programs that agree, this isn’t a real problem.

266 J S P : T h e C o m p l e t e R e f e r e n c e

3. Combine each resulting pair of names and values with an equals (=) sign
between them.

4. Connect the resulting name=value strings in the order they occur in the form,
separating them with ampersands (&).

The server process unwinds the encoding by reversing each step, recovering the
original parameter names and values.

For example, if a form contains an input field named product, with a value of
“Great Music@Home”, and another field named quantity, with a value of 3, the
encoded string would be

product=Great+Music%40Home&quantity=3

The purpose of URL encoding is to make it safe to append character strings to a
URL. If spaces, quotation marks, or other delimiter characters appear in a URL, they
may confuse programs that process them.

multipart/form-data multipart/form-data is a newer approach used
primarily to support file uploading. (RFC 2388 (http://www.ietf.org/rfc/rfc2388.txt)
describes the use of multipart/form-data with HTML forms.) In this encoding, each
input field and its value are sent in their own block in the input stream. A special
delimiter string called a boundary marks the beginning and end of each block. The
boundary is a pseudorandom string chosen by the Web browser and is specified
in the Content-Type header. Within each block are one or more HTTP headers,
followed by a blank line, and then a line containing the value of the input field. The
field name is passed in the Content-Disposition header.

So, using the previous example, if a form contains the input fields product with
a value of “Great Music@Home” and quantity with a value of 3, the browser would
create an HTTP request that contains something like this:

POST /someURI HTTP/1.0

Content-Type: multipart/form-data;boundary=7d025a324c0138

Content-Length: 178

--7d025a324c0138

Content-Disposition: form-data; name="product"

Great Music@Home

--7d025a324c0138

Content-Disposition: form-data; name="quantity"

3

--7d025a324c0138--

The main disadvantage of multipart/form-data encoding is it isn’t directly
supported in the current servlet API. That is, the individual field names cannot be
retrieved with getParameterNames(), and their values cannot be read with
getParameterValues(). Reading and parsing the input stream to obtain this
information is necessary.

The accept-charset Attribute
A character set in HTTP use is a set of rules for converting a set of bytes to a set of
characters. The most widely used character set is ISO-8859-1, a superset of ASCII
that maps the additional byte values in the range 127-255. If the accept-charset
is used, it should contain a list of character set values separated by commas or blanks.

The purpose of accept-charset is to indicate which character sets the server
program can interpret and process. In practice, however, this attribute is rarely used
and, indeed, seems to be ignored by Internet Explorer and Netscape Navigator.

The accept Attribute
A FORM tag can indicate the content types its server-side handler program is designed
to accept. If specified, the accept attribute must contain a comma-separated list of
content types, such as text/html, or image/jpg. This is only a hint to the Web browser,
however, and the browser is free to ignore it (which most do).

The name Attribute
A form can have a name by which it is referred to in <SCRIPT> sections elsewhere in
the document. For example, in the following form:

<form

method="post"

action="diag/ShowParms.jsp"

name="prodform"

onsubmit="return checkform();"

<pre>

Product: <input type="text" name="product"

Quantity: <input type="text" name="quantity"

</pre>

</form>

C h a p t e r 1 2 : H T M L F o r m s 267
JS

P
IN

A
C

TIO
N

268 J S P : T h e C o m p l e t e R e f e r e n c e

where checkform() is a JavaScript function that validates form input fields,
checkform() can read the values of the two input fields as document.prodform.
product.value and document.prodform.quantity.value, respectively.

The HTML specification deprecates the name attribute in favor of the id attribute,
however, id isn’t yet recognized by the JavaScript document object model. name is still
a better choice if you need to integrate your form with JavaScript.

Form Input Elements
Within the body of a <FORM>...</FORM> tag, the individual data fields are described.
The HTML consists of descriptive labels for each field and the appropriate HTML tags
that create the required controls. Visual layout is usually accomplished with an HTML
table, so field labels and controls are horizontally and vertically aligned. The following
HTML produced the form shown in Figure 12-1:

<form method="post" action="diag/ShowParms.jsp">

<table border="0" cellpadding="3" cellspacing=”0”>

<tr valign="top">

<td>From:</td>

<td><input name="from" type="text" size=32></td>

</tr>

<tr valign="top">

<td>To:</td>

<td>

<select name="to" size=1>

<option value="CS">Customer Service

<option value="EX">Executive

<option value="FI">Finance

<option value="HR">Human Resources

<option value="IT">Information Technology

<option value="MK">Marketing

<option value="FA">Facilities

<option value="PC">Purchasing

<option value="SP">Shipping

</select>

</td>

</tr>

<tr valign="top">

C h a p t e r 1 2 : H T M L F o r m s 269
JS

P
IN

A
C

TIO
N

<td>Your e-mail:</td>

<td><input name="email" type="text" size=20></td>

</tr>

<tr valign="top">

<td>Phone number:</td>

<td>

<input name="phone" type="text" size=20>

<input name="dayphone" type="radio" value="1" checked>Day

<input name="dayphone" type="radio" value="0">Evening

</td>

</tr>

<tr valign="top">

<td>Comments:</td>

<td>

<textarea name="comments" rows=5 cols=40></textarea>

</td>

</tr>

<tr valign="top">

<td colspan=2>

Please check all that apply:

<input name="category" type="checkbox" value="1">

Comment only, no response necessary

<input name="category" type="checkbox" value="2">

Please add me to your mailing list

</td>

</tr>

<tr valign="top">

<td> </td>

<td>

<input type="submit" value="Send">

<input type="reset" value="Clear">

</td>

</tr>

<input type="hidden" name="remoteHost"

value="209.170.132.238">

<input type="hidden" name="userAgent"

value="Mozilla/4.0 (compatible; MSIE 5.0; Windows NT; DigExt)">

</table>

</form>

We use this form in the examples throughout this section.
Four sets of HTML tags are used to create form input elements:

� <INPUT> A generic tag used for several specific element types.

� <SELECT> and <OPTION> Used to create a menu or a drop-down list box.

� <TEXTAREA> Used for multiline text input.

� <BUTTON> Used to create submit, reset, and general purpose pushbuttons. This
tag isn’t yet widely supported and, for this reason, will not be covered here.

Elements Created with the INPUT Tag
The HTML INPUT tag is used for a number of element types. It has a large number of
attributes, many of which are specific to only certain field types. The following syntax
diagram describes those attributes common to most types:

<INPUT
type="text | password | checkbox | radio | submit |
reset | file | hidden | image | button"
name=“name”
value=“value”
size=“size”>

where the attributes are defined as follows:

� type=“type” indicates the specific field type to be used. If not specified,
defaults to text.

� name=“name” is used to assign an identifier to the field so it can be
manipulated by scripts or style sheets. This is also the name by which
the field can be retrieved by the server program.

� value=“value” can be used to assign an initial value to the field.

� size=“size” indicates its visual width, either in pixels or characters (for text fields).

In addition to these attributes, INPUT tags can specify event handlers that invoke
scripting actions in the browser when certain events occur. The value of the event

270 J S P : T h e C o m p l e t e R e f e r e n c e

handler attribute is a snippet of scripting code, typically JavaScript. Event handler
attributes are named after the event they handle, with a prefix of “on”:

� onfocus occurs when a user tabs to the field or clicks the mouse in the field,
so it receives the keyboard focus.

� onblur occurs when a user tabs or clicks out of the field, so it loses the
keyboard focus.

� onselect occurs when some text is selected (not supported by Netscape
Navigator).

� onchange occurs when a user changes the control’s value, and then commits
the change by tabbing or clicking out of the field.

When a form is submitted, the browser extracts the name and value of each control,
converts these according to the encoding type specified (or implied) on the <FORM> tag,
and sends the resulting data stream to the server process.

The following sections consider each <INPUT> type:

Text
This is the simplest and most common <INPUT> type, used for entering a single line of
text. Its syntax is as follows:

<INPUT
type=“text”
name=“name”
value=“value”
size=“size”
maxlength=“maxlength”>

with the attributes having the following meanings:

� type=“text” indicates this is a text control.

� name=“name” specifies a name by which scripts can refer to this control.
This is also the name by which the text can be retrieved by the server program.

� value=“value” can be used to assign an initial text value. This attribute
is useful when a form appears on the same page as the output of the form
processing program.

� size=“size” specifies the display width. If not specified, the browser chooses
a default size, which may be unsuitable. Specifying a preferred size is best.

� maxlength=“maxlength” sets a limit on the number of characters that can be
typed into the field.

C h a p t e r 1 2 : H T M L F o r m s 271
JS

P
IN

A
C

TIO
N

A TEXT input element is typically displayed as a rectangular box. For example, the
HTML shown here,

<tr valign="top">

<td>From:</td>

<td><input name="from" type="text" size=32></td>

</tr>

might be rendered like this:

Password
A variation on the text control is the password control. The only difference is the
characters a user types aren’t visible onscreen. Instead, a mask character, such as an
asterisk, is displayed for each character typed. The syntax of the password input tag
is shown here:

<INPUT
type=“password”
name=“name”
value=“value”
size=“size”
maxlength=“maxlength”>

with the attributes having the same meaning as they do for the text input tag.
A password input element is also typically displayed as a rectangular box.

For example, the HTML shown here, used in a technical support application

<tr valign="top">

<td>Support ID:</td>

<td><input name="suppid" type="password" size=10></td>

</tr>

might be rendered like this:

272 J S P : T h e C o m p l e t e R e f e r e n c e

This is a minimal form of security, designed simply to prevent prying eyes from seeing
what is typed in a password field. The characters transmitted to the server process,
however, are those the user originally typed, not the asterisks. Using a password control
doesn’t encrypt or otherwise hide the value of the field, except visually as it is typed.

Checkbox
A check box control is used to present an option that’s either true or false. Its syntax is
shown here,

<INPUT
type=“checkbox”
name=“name”
value=“value”
checked>

with the attributes defined as follows:

� type=“checkbox” indicates this is a check box control.

� name=“name” specifies a name by which scripts can refer to this check box.
This is also the name by which the check box value can be retrieved by the
server program. A group of check boxes can have the same name if they
represent multiple values of the same field, which aren’t mutually exclusive.

� value=“value” can be used to specify the value returned when this box is
checked. If not specified, the value defaults to the two character string on.
(That’s on, not true, 1, yes, or checked.)

� checked, if present, indicates the check box has an initial selected state.

A check box supports one additional event handler attribute:

� onclick occurs when the user clicks the check box;

and it does not support the onchange event.
A check box is usually rendered as a small square box, with a check mark present or

absent, reflecting the boolean value of the control. For example, the HTML shown here,

<tr valign="top">

<td colspan=2>

Please check all that apply:

<input name="category" type="checkbox" value="1">

Comment only, no response necessary

<input name="category" type="checkbox" value="2">

Please add me to your mailing list

C h a p t e r 1 2 : H T M L F o r m s 273
JS

P
IN

A
C

TIO
N

274 J S P : T h e C o m p l e t e R e f e r e n c e

</td>

</tr>

might look like this:

Radio
A radio control, like a check box, is used to present an option that is either true or false.
The difference is, a group of radio buttons are mutually exclusive in operation. When
one is clicked, any others with the same name attribute are cleared. In this respect, they
operate like the buttons on a car radio—when one is pushed in, any others are pushed
out. The syntax of the radio control is shown here

<INPUT
type=“radio”
name=”name”
value=”value”
checked>

with the attributes defined as follows:

� type=“radio” indicates this is a radio button control.

� name=“name” specifies a name by which scripts can refer to this radio button.
This is also the name by which the radio button value can be retrieved by the
server program. A group of radio buttons can have the same name, if they
represent mutually exclusive values of the same field.

� value=“value” specifies the value returned with the form when this button is in
a selected state. This is a required attribute.

� checked, if present, indicates this radio button is the initially selected one of
the group.

Like the check box, a radio button supports the onclick event, but not onchange.
A radio button is usually rendered as a small circle, with an inner dot present or

absent, reflecting the Boolean value of the control. For example, the HTML shown here,

<tr valign="top">

<td>Phone number:</td>

C h a p t e r 1 2 : H T M L F o r m s 275
JS

P
IN

A
C

TIO
N

<td>

<input name="phone" type="text" size=20>

<input name="dayphone" type="radio" value="1" checked>Day

<input name="dayphone" type="radio" value="0">Evening

</td>

</tr>

might look like this:

Submit
To submit a form to the server, there must be a way of indicating the user is done
entering data. This is the role played by the submit input type. A Submit button is
unlike other controls because it ordinarily does not contribute to the data stream sent
to the server. Here is the Submit button’s syntax,

<INPUT
type=“submit”
name=“name”
value=“value”>

with the attributes defined as follows:

� type=“submit” indicates this is a submit control.

� name=“name” specifies a name by which scripts or the server program can
refer to this Submit button. This is normally unnecessary from the standpoint
of the server because it’s clear the Submit button must have been clicked or else
the form wouldn’t have been submitted. It can be useful, however, if several
Submit buttons are in the form and each one has a different value.

� value=“value” specifies the value displayed on the button (and returned
with the form, if the name attribute is also present). If not specified, defaults
to “Submit Query” in Internet Explorer 5.x and Netscape
Communicator 4.75. Other browsers may supply a different
default.

This control supports the onclick event, but not onchange.
A Submit button is usually rendered as a rectangular pushbutton with the text

specified in the value attribute. For example, if a Submit button is coded like this,

<input type="submit" value="Send">

276 J S P : T h e C o m p l e t e R e f e r e n c e

it might appear like this:

Reset
Closely related to Submit is Reset, which is used to set all controls in the form back to
their initial values. Like the Submit button, Reset does not contribute to the data stream
sent to the server. Its syntax is,

<INPUT
type=“reset”
value=“value”>

with the attributes defined as follows:

� type=“reset” indicates this is a reset control.

� value=“value” specifies the value displayed on the button (and returned with the
form, if the name attribute is also present). If not specified, defaults to “Reset”.

This control supports the onclick event, but not onchange.
A Reset button is usually rendered as a rectangular pushbutton with the text

specified in the value attribute. For example, if a Submit button is coded like this,

<input type="reset" value="Clear">

it might appear like this:

File
Some applications call for files to be uploaded to the server. For example, technical
support applications may handle stack traces sent in by users. Bulletin board systems
may accept file submissions. Web pages that are front ends to applications like these
can use the file input control. Here is its syntax,

<INPUT
type=“file”
name=“name”
size=“size”>

JS
P

IN
A

C
TIO

N

with its attributes defined as follows:

� type=“file” indicates this is a file control.

� name=“name” specifies a name by which scripts can refer to this file control.
This is also the name by which the field will be known to the server program,
although in a different format, as you soon see.

� size=“size” indicates the visual width of the file name input field.

A file control is typically rendered as a text field with an associated Browse button.
The filename can be entered directly in the text field, or the user can click the button to
use a file selection dialog box:

Two changes must be made to a form for it to use the file control:

� The request method must be POST.

� The encoding type (specified in the enctype attribute in the <FORM> tag)
must be multipart/form-data.

If these conditions aren’t met, the control is still displayed, but is treated like an
ordinary text input field—all that will be sent to the server is the filename.

More significant changes also must be made to the server program. It must be
able to extract the file contents, as well as the other nonfile parameter values, using
the multipart/form-data encoding format discussed earlier in this chapter.

Limitations can also be imposed by the Web server on the size of files that can be
uploaded. The purpose of these restrictions is to prevent denial of service attacks
that use huge files to bring down the Web server.

As an example of a file upload application, suppose LyricNote.com sponsors a
contest in which users can upload MIDI files of their own musical compositions2. The
winner(s) of the contest would receive music software products that LyricNote sells.
Figure 12-2 shows the input form.

C h a p t e r 1 2 : H T M L F o r m s 277

2 MIDI (Musical Instrument Digital Interface) uses a file format in which musical notes are described
rather than actually recorded. Their content is re-created by MIDI-compatible instruments or
media players.

The following HTML generates the form:

<form method="post"

action="http://u25nv/lyricnote/servlet/midi_contest"

enctype="multipart/form-data"

>

<table border="0" cellpadding="3" cellspacing=0>

<tr valign="top">

<td colspan="2">

Are you a budding composer?

Submit a MIDI file of your own composition

for a chance to win a copy of ScoreWriter 4.5.

Click

here

for official rules.

</td>

</tr>

<tr valign="top">

<td>Your name:</td>

<td><input name="name" type="text" size=32></td>

</tr>

<tr valign="top">

<td>Your e-mail:</td>

<td><input name="email" type="text" size=20></td>

</tr>

<tr valign="top">

<td>Title of composition:</td>

<td><input name="title" type="text" size=48></td>

</tr>

<tr valign="top">

<td>MIDI file name:</td>

<td><input type="file" name="midifile" size=32></td>

</tr>

<tr valign="top">

<td> </td>

<td>

<input type="submit" value="Send">

278 J S P : T h e C o m p l e t e R e f e r e n c e

<input type="reset" value="Clear">

</td>

</tr>

</table>

</form>

When the form is submitted, the browser generates an HTTP request with a data
stream in multipart/form-data format that contains, in part, the following:

Content-Type: multipart/form-data;

boundary=---------------------------7d01012174012c

Content-Length: 1507

-----------------------------7d01012174012c

Content-Disposition: form-data; name="name"

S. Vetter

-----------------------------7d01012174012c

Content-Disposition: form-data; name="email"

vetter@lyricnote.com

-----------------------------7d01012174012c

Content-Disposition: form-data; name="title"

It-B-Gone

-----------------------------7d01012174012c

Content-Disposition: form-data; name="midifile";

filename="C:\my_midi_files\Itbgon.mid"

Content-Type: audio/mid

MThd... (binary data not shown)
-----------------------------7d01012174012c--

We can see the four input fields are present, each in their own blocks delimited by
the boundary string. Each block has a Content-Disposition header that specifies
the field name. The last block, which contains the uploaded file, also has a filename
attribute on its Content-Disposition header that gives the original file name on
the client system, as well as a Content-Type header, which indicates the file data is
in a binary format known as audio/mid. The server program can parse the data stream
and extract the field values and file content.

C h a p t e r 1 2 : H T M L F o r m s 279
JS

P
IN

A
C

TIO
N

Hidden
Not all input comes from the user, at least not directly. Some forms may use
constants that are hard coded or dynamically generated. An INPUT element
with type=”hidden” can be used for this purpose. Its syntax is shown here,

<INPUT
type=“hidden”
name=”name”
value=”value”>

and the attributes have the following meanings:

� type=“hidden” indicates this is a hidden control.

� name=“name” specifies a name by which scripts can refer to this control.
This is also the name by which the text can be retrieved by the server program.

280 J S P : T h e C o m p l e t e R e f e r e n c e

Figure 12-2. A form that includes a file upload input field

� value=“value” must be used to assign an initial text value.

As you might guess, a hidden field has no visual representation. Its only purpose
is to create a parameter with a constant value. This might be a transaction code of some
kind, which a dispatching servlet would use as a key to a table of other classes. More
often, though, a hidden field has a value that’s dynamically generated by the servlet
or a JSP page that created the HTML. For example,

<input type="hidden" name="remoteHost"

value="<%= request.getRemoteHost() %>">

<input type="hidden" name="userAgent"

value="<%= request.getHeader("user-agent") %>">

would store the IP address or host name on which the Web browser is running
and a string identifying the browser software and version number as hidden fields
in the form. These fields might be useful to technical support people working on a
problem with the form.

Image
An image can be used as an input field in which the user clicks with the mouse rather
than typing with the keyboard. The information in this case is the location within the
image of where the mouse click occurred. The image input type can be used for this
purpose. Its syntax is shown here,

<INPUT
type=“image”
name=“name”
src=“imageurl”>

and the attributes have the following meanings:

� type=“image” indicates this is an image control.

� name=“name” specifies a name by which scripts can refer to this control. This
is also the name by which a mouse click location can be retrieved by the server
program.

� src=“imageurl” is the URL of an image file.

Two parameters are created in the data stream for an image control, one each for
the x and y coordinates of the click. The coordinates are given in units of pixels and
are relative to the top-left corner of the image, which is (0, 0). The parameter names
are composed of the image control name with “.x” or “.y” appended. For example,

C h a p t e r 1 2 : H T M L F o r m s 281
JS

P
IN

A
C

TIO
N

a form might contain an image of a staff of musical notation and invite the user to click
the desired note:

If the image input control were coded like this,

<input type="image" name="staff" src="images/clef/tcstaff.png">

and if the user clicked the note C above middle C, approximately at (108, 40), the
resulting data stream would be this:

staff.x=108&staff.y=40

Clicking an image control causes the form to be submitted. It isn’t necessary for the
user to click the Submit button.

Button
Besides the Submit and Reset buttons, a generic Button input type exists. Its syntax is
shown here,

<INPUT
type=“button”
name=“name”
value=“value”>

with the attributes defined as follows:

� type=“button” indicates this is a button control.

� name=“name” specifies a name by which scripts can refer to this button.

� value=“value” specifies the value displayed on this button.

For this control to be useful, it must define the onclick event handler attribute.
A JavaScript function can then refer to the button name and value.

282 J S P : T h e C o m p l e t e R e f e r e n c e

Elements Created with select and option
The select and option tags can be used together to create a scrollable list of menu
items. Referring to the customer feedback example in Figure 12-1, the user selects the
destination of the form from a drop-down list. The HTML used to create this list is
shown here:

<select name="to" size=1>

<option value="CS">Customer Service

<option value="EX">Executive

<option value="FI">Finance

<option value="HR">Human Resources

<option value="IT">Information Technology

<option value="MK">Marketing

<option value="FA">Facilities

<option value="PC">Purchasing

<option value="SP">Shipping

</select>

The syntax of the select tag is shown here,

<select name=”name” size=”number”multiple> options </select>

where the attributes mean the following:

� name=“name” assigns a name by which the server program can refer to the list.

� size=“number” indicates the number of elements visible at one time; the height
of the list box. If the number is 1, the list is a drop-down menu.

� multiple, if specified, lets the user select more than one item.

Note, the <select> tag must be closed by a </select>.
The heart of the select list is the set of option tags with their associated values

and descriptions. Frequently, such lists are dynamically generated from a database
query. The option tag has the following syntax,

<option value=”value” selected> text </option>

where

� value=“value” specifies the value returned with the form, if this item is
selected. If this attribute isn’t specified, the body of the option tag is returned.

� selected, if present, preselects the item.

C h a p t e r 1 2 : H T M L F o r m s 283
JS

P
IN

A
C

TIO
N

The text between the start and end tags (referred to as the body) is what’s
actually displayed in the list box. The closing </option> tag isn’t required
and is frequently omitted.

When the form is submitted, the value of the selected item is the value associated
with the select element. In the previous example, if the user selected the last item in
the list, the value returned in the data stream would be this:

to=SP

If the multiple attribute is specified on the <select> tag, and the user selects
multiple items, the parameter name then appears multiple times in the data stream
associated with different values. So, if the user had selected not only shipping, but
finance and marketing as well, the data stream would look like this:

to=FI&to=MK&to=SP

The textarea Element
Whereas the text and password input fields are single-line only, the textarea
element can accept multiple lines. This makes the textarea element useful for
entering comments or other free-form text, which could be longer than one line.
Both a height and width can be specified, and scrollbars are added by the browser
as necessary. The syntax of textarea is as follows,

<textarea name=“name” rows=“number” cols=“number”>
... text ...
</textarea>

where

� name=“name” assigns the name by which this field will be known to scripts
and the server program.

� rows=“number” specifies the number of rows in the visible height of the text
area. This is not a limit on the number of rows that can actually be in the list box,
it’s only a limit on how many rows are displayed at a time as the list is scrolled.

� cols=“number” specifies the width in characters of the visible width of the text
area. This is not a limit on the number of columns that can actually be in the list
box, only its display width.

284 J S P : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 2 : H T M L F o r m s 285
JS

P
IN

A
C

TIO
N

Form Validation
User interface programming is inherently complex. The amount of code devoted to
validating input fields is often greater than what performs the actual function. Required
fields have to be checked to ensure they are nonempty, and optional fields must have
default values assigned. All fields may need to be validated against a set of acceptable
values or algorithms. The validity of some fields may depend on the values of others.

All this validation can be done by the server program, but the back-and-forth
network traffic may make it too expensive in terms of response time. For this reason,
validation is better done on the client using a scripting language such as JavaScript.
A wide variety of JavaScript books are available, so I won’t go into any detail about
how JavaScript works, other than to present a complete example.

The Contact Us Form with Validation
Let’s add some minimal validation to the “Contact Us” form example shown in
Figure 12-1. You need to do three things.

Setting the Trigger
First, you need to force some code to be executed when the form is submitted. To do
this, set the onsubmit attribute in the form tag:

<form method="post"

action="diag/ShowParms.jsp"

onsubmit="return validate(this);">

The string specified in the onsubmit attribute is evaluated before the form is
submitted. Only if it evaluates to true is the form actually submitted. In principle,
the validation code could be entered directly as the onsubmit attribute value, but
it’s simpler to call a function and return its value. This also makes adding new code
easier as validation requirements change.

Adding a Script Block
To incorporate JavaScript statements into the HTML you generate, you must enclose
them in <SCRIPT> ... </SCRIPT> tags. To ensure these tags have been loaded and
evaluated, placing them in the <HEAD> ... </HEAD> section of the HTML is best.

Writing the Validation Functions
The third step is to write the validation functions themselves:

function validate(frm) {

if (!hasData(frm.from.value)) {

alert("Please type your name in the 'From:' box");

return false;

}

return true;

}

function hasData(s) {

if (s == null)

return false;

var n = s.length;

for (var i = 0; i < n; i++) {

var c = s.charAt(i);

switch (c) {

case ' ':

case '\t':

case '\n':

continue;

default:

return true;

}

}

return false;

}

Two functions are shown here:

� validate(frm) Given a reference to the form, performs all necessary
validations and returns true if no errors are found.

� hasData(s) A utility function that returns true if the specified string
has at least one non-whitespace character.

The only field you can really validate is the user name. In this example, you simply
verify it’s nonblank. If the user doesn’t enter anything in the field, the result is as shown
in Figure 12-3.

286 J S P : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 2 : H T M L F o r m s 287
JS

P
IN

A
C

TIO
N

The Server Side of Forms Handling
A variety of models for handling forms are on the server side. The case study in
Chapter 19 examines this question in-depth. For illustrative purposes, you develop
a simple JSP page that only collects the request parameters and formats them in a

Figure 12-3. The Contact Us Form with JavaScript Validation

288 J S P : T h e C o m p l e t e R e f e r e n c e

readable HTML table. The server program is ShowParms.jsp, which is used in
the Contact Us example:

<%@ page import="java.io.*,java.util.*" %>

<%@ taglib prefix="lyric" uri="/WEB-INF/tlds/taglib.tld" %>

<html>

<head>

<title>Parameter Values</title>

<base href="<lyric:baseURL/>">

<link rel="stylesheet" href="styles/diag.css">

</head>

<body>

<center>

<table border="1" cellpadding="3" cellspacing="1" width="600">

<tr>

<td colspan="2" align="center" class="header">

Parameter Values

</td>

</tr>

<tr><th>Name</th><th>Value</th></tr>

<%

int currentRow = 0;

Enumeration eNames = request.getParameterNames();

while (eNames.hasMoreElements()) {

String name = (String) eNames.nextElement();

String[] values = request.getParameterValues(name);

for (int i = 0; i < values.length; i++) {

String value = values[i];

currentRow++;

String rowClass = "row" + (currentRow % 2);

%>

<tr valign="top">

<td align="right" class="<%= rowClass %>"><%= name %></td>

<td align="left" class="<%= rowClass %>"> <%= value %> </td>

</tr>

<%

}

}

%>

C h a p t e r 1 2 : H T M L F o r m s 289
JS

P
IN

A
C

TIO
N

</table>

</center>

</body>

</html>

The program opens with two directives:

<%@ page import="java.io.*,java.util.*" %>

<%@ taglib prefix="lyric" uri="/WEB-INF/tlds/taglib.tld" %>

A tag library is declared and assigned the prefix “lyric”. You use only one tag
from it, the one that returns the base URL of the Web application. When used in the
HTML <BASE> tag, it makes creating relative and absolute links easier to the images,
style sheets, and other resources in the application.

<base href="<lyric:baseURL/>">

The heart of the program is the call to getParameterNames(), which returns
an enumeration of the form field names, and the subsequent loop over these names,
retrieving their respective values with getParameterValues(Striing name).

Enumeration eNames = request.getParameterNames();

while (eNames.hasMoreElements()) {

String name = (String) eNames.nextElement();

String[] values = request.getParameterValues(name);

...

}

When the form in Figure 12-1 is submitted to ShowParms.jsp, the results are as
shown in Figure 12-4.

Summary
HTML forms provide a GUI environment that’s easy for users to work with and easy
to handle in a server program. Controls exist for text entry, menu selection, and Boolean
selections, such as check boxes and radio buttons. With an alternate encoding type,
forms can support the client side of file uploading. Constant values can be specified
in hidden fields. Forms can be validated with client-side functions written in JavaScript,

which saves network transmission and processing time. Server programs, whether JSP
pages or servlets, can use the servlet API to retrieve parameter names and values, and
to return the results to the browser that submitted the form.

290 J S P : T h e C o m p l e t e R e f e r e n c e

Figure 12-4. Data extracted from the Contact Us Form

Chapter 13
Database Access

291

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

292 J S P : T h e C o m p l e t e R e f e r e n c e

The corporate database is the heart of the business and most JSP pages of any
consequence need access to it. Web sites for online retailers make their catalogs
available for browsing. Theater Web pages may list show times and movie

infor mation. Search engines prompt for keywords and return sets of matching links.
In addition to read-only access, many JSP pages act as front-ends to applications

that store data as well. In a shopping cart checkout function, lists of items to be ordered
must be converted into transactions that are processed by other systems: order fulfillment,
shipping, and accounting.

Java provides a comprehensive and general-purpose means for handling database
use with a technology known as JDBC1. JDBC makes communication possible with a
wide variety of database management systems using SQL2. This chapter contains an
overview of JDBC and how it can be used in Web-based applications. It covers JDBC
drivers, how to connect to a database, how to execute SQL statements, and how to
read their results. It describes JDBC’s mechanisms for robust transaction handling
and connection pooling. The concluding section discusses new features in JDBC 2.0
and beyond.

Overview of JDBC
JDBC is an application programming interface between Java programs and database
management systems. Like Oracle’s Oracle Call Interface (OCI) or Microsoft’s Open
Database Connectivity (ODBC), JDBC is a call-level interface. This means a program
uses method or function calls to access its features, as opposed to embedded SQL
statements, which are translated by a precompiler.

A programmer uses a Java class known as a JDBC driver to connect to a database.
Hundreds of JDBC drivers exist—at least one for each widely used database, whether
commercial or shareware. A special JDBC driver, known as the JDBC-ODBC bridge,
makes using ODBC as an intermediary possible, which makes the vast number of
ODBC drivers usable from JDBC.

The great advantage of JDBC is it provides a standard interface to all database
management systems. JDBC queries that work on an Oracle database require little
or no changes to work with DB2, or SQL Server, or any other database. The few
differences that remain usually have to do with data type names and support for
certain operation types. Even these differences can usually be resolved program-
matically using metadata provided by the JDBC connection.

JDBC also eases the transition from legacy systems to Web-enabled applications.
Embedded SQL products, which have been around since the early 1980s, for the most
part use SQL statements and operations that can be duplicated by JDBC calls. The

1 According to Sun Microsystems, JDBC is not an acronym. In particular, it does not stand for Java
Database Connectivity.

2 Structured Query Language (SQL) is a topic large enough to fill several books. One of the best is SQL:
The Complete Reference, by James R. Groff & Paul N. Weinberg, published by Osborne/McGraw-Hill,
ISBN 0-07-211845-8.

C h a p t e r 1 3 : D a t a b a s e A c c e s s 293
JS

P
IN

A
C

TIO
N

syntax and semantics of SQL statements in a batch mainframe COBOL application
require few changes when the applications are converted to Java.

Basic JDBC Operations
Working with JDBC isn’t difficult. Depending on the task to be performed, usually
only four steps are required:

1. Load a JDBC driver for your DBMS. This typically involves only
a Class.forName() statement specifying the driver class name.

2. Use that driver to open a connection to a particular database. This is done with
a call to a static getConnection(url) method to the DriverManager class.
The url argument is in a specific form that indicates the driver type and the
data source to use.

3. Issue SQL statements through the connection. Once the connection is
established, it can be used to create Statement objects through which
SQL commands can be made.

4. Process result sets returned by the SQL operations. The ResultSet interface
provides methods to step through each row and get the values of each column.

Figure 13-1 illustrates these four steps.
With JDBC 2.0, a bit more flexibility occurs. Using Java Naming and Directory Interface

(JNDI), an application can look up a DataSource object by name from a naming service,
rather than hard-coding the driver class name and database URL. Additionally, JDBC 2.0
result sets have more capabilities. They can be accessed in random order rather than
sequentially from start to finish. They can be updated and have the updates propagated
back to the underlying table. They can also be dynamically linked to their base table(s)
so changes there are reflected concurrently in the result set. Figure 13-2 shows the basic
steps involved in JDBC 2.0 database access.

Essential JDBC Classes
The JDBC interface is contained in the java.sql and javax.sql packages.3 It consists
mainly of interfaces rather than concrete classes because each vendor’s implementation
is specific to their particular database protocol. The core API in java.sql consists of
16 interfaces, 8 classes, and 4 exception types. The Optional Package API adds another
12 interfaces and 2 classes. Many of these classes are of interest primarily to JDBC driver
developers. A smaller subset of these is more commonly used, as outlined in the following:

� Connection An active link to a database through which a Java program can
read and write data, as well as explore the database structure and capabilities.

3 javax.sql contains the JDBC 2.0 Optional Package API, formerly known as the JDBC 2.0 Standard
Extension API.

A Connection object is created either by a call to DriverManager.get
Connection() or DataSource.getConnection(), in JDBC 2.0.

� Statement An object that allows SQL statements to be sent through a
connection and retrieves the result sets and update counts they produce.
Three types of statements exist, each one a specialization of its predecessors:

� Statement Used to execute static SQL strings. A Statement is created with
Connection.createStatement().

294 J S P : T h e C o m p l e t e R e f e r e n c e

Figure 13-1. Four steps involved in basic JDBC operations

� PreparedStatement An extension of Statement that uses precompiled SQL,
possibly with dynamically set input parameters.. PreparedStatement objects
are often used in a loop with SQL insert operations. They are created with
Connection.prepareStatement(sqlstring).

� CallableStatement A PreparedStatement that invokes a stored procedure.
Not all database management systems support stored procedures but, for
those that do, CallableStatement provides a standard invocation syntax.

C h a p t e r 1 3 : D a t a b a s e A c c e s s 295
JS

P
IN

A
C

TIO
N

Figure 13-2. Database access with JDBC 2.0 and JNDI

296 J S P : T h e C o m p l e t e R e f e r e n c e

� ResultSet An ordered set of table rows produced by an SQL query or a
call to certain metadata functions. A ResultSet is most often encountered
as the return value of a Statement.executeQuery(sqlstring) method call.
The JDBC API provides a next() method for iterating through the rows of a
ResultSet and getXXX() methods for extracting the column values, where
XXX is the Java data type. JDBC 2.0 adds a number of methods for randomly
accessing and updating rows.

� DatabaseMetaData An interface containing numerous methods that
provide information about the structure and capabilities of a database.
The DatabaseMetaData object is returned by the getMetaData()
method of a Connection object.

� ResultSetMetaData An interface that describes the columns of a
ResultSet. This can be obtained by calling the result set’s getMetaData()
method. It contains methods that describe the number of columns, as well as
each column’s name, display size, data type, and class name.

� DriverManager An interface that registers JDBC drivers and supplies
connections that can handle specific JDBC URLs. The only method commonly
used is the static DriverManager.getConnection(), in one of its three
forms, which returns an active Connection object bound to the specified
JDBC URL.

� SQLException The base exception class used by the JDBC API.
SQLException has methods that can supply the SQLState value any
vendor-specific error code. It can also be linked to another SQLException
if more than one exception occurred.

One of the stated goals of the JDBC API was it should be simple and easy to master.
Learning these seven classes and three or four of their main methods can easily be done
in a few days, which has helped to make JDBC a popular and well-accepted technology.

A Simple JDBC Example
Let’s consider an example of JDBC used in a JSP page. Our hypothetical LyricNote
company maintains an internal employee database containing two tables: departments
and employees. These tables were created with the following SQL:

CREATE TABLE departments (

deptno char(2),

deptname char(40),

deptmgr char(4)

)

and

CREATE TABLE employees (

deptno char(2),

empno char(4),

lname char(20),

fname char(20),

hiredate date,

ismgr bit,

deptno char(2),

title char(50),

email char(32),

phone char(4)

)

Our example JSP page displays a list of departments identifying their manager’s
name, title, telephone number, and e-mail address. The SQL to assemble this list is
as follows:

SELECT D.deptname, E.fname, E.lname, E.title, E.email, E.phone

FROM departments D, employees E

WHERE D.deptmgr = E.empno

ORDER BY D.deptname

The D and E prefixes are pseudotable names used to qualify column names, so the
DBMS can distinguish which table supplies which columns.

The complete JSP source code is

<%@ page session="false" %>

<%@ page import="java.sql.*" %>

<%@ page import="java.util.*" %>

<HTML>

<HEAD>

<TITLE>Department Managers</TITLE>

</HEAD>

<BODY>

<p>

<hr color="#000000">

<H2>Department Managers</H2>

<%

C h a p t e r 1 3 : D a t a b a s e A c c e s s 297
JS

P
IN

A
C

TIO
N

String DRIVER = "org.enhydra.instantdb.jdbc.idbDriver";

String URL =

"jdbc:idb:d:/lyricnote/WEB-INF/database/internal/db.prp";

// Open a database connection

Class.forName(DRIVER);

Connection con = null;

try {

con = DriverManager.getConnection(URL);

// Get department manager information

String sql = ""

+ " SELECT D.deptname, E.fname, E.lname,"

+ " E.title, E.email, E.phone"

+ " FROM departments D, employees E"

+ " WHERE D.deptmgr = E.empno"

+ " ORDER BY D.deptname"

;

Statement stmt = con.createStatement();

ResultSet rs = stmt.executeQuery(sql);

%>

<DL>

<%

while (rs.next()) {

String dept = rs.getString(1);

String fname = rs.getString(2);

String lname = rs.getString(3);

String title = rs.getString(4);

String email = rs.getString(5);

String phone = rs.getString(6);

%>

<DT><%= dept %></DT>

<DD>

<%= fname %> <%= lname %>, <%= title %>

(919) 555-0822 x<%= phone %>, <%= email %>

</DD>

<%

}

298 J S P : T h e C o m p l e t e R e f e r e n c e

rs.close();

rs = null;

stmt.close();

stmt = null;

}

finally {

if (con != null) {

con.close();

}

}

%>

</DL>

</BODY>

</HTML>

Let’s examine each section.
To begin with, three page directives exist

<%@ page session="false" %>

<%@ page import="java.sql.*" %>

<%@ page import="java.util.*" %>

We explicitly request no HTTP session should be created. This should be done in
all JSP pages that don’t require access to a session because it saves the server resources
required to establish and maintain a session.

After the HTML that creates the page headings, a scriptlet interrogates the
LyricNote internal database and displays the results. It begins with the declaration
of two string constants that define the JDBC driver name and database URL. For
convenience, keep this information isolated in a declarations section for ease of
modification:

String DRIVER = "org.enhydra.instantdb.jdbc.idbDriver";

String URL =

"jdbc:idb:d:/lyricnote/WEB-INF/database/internal/db.prp";

This example uses the InstantDB4 database and connects to the LyricNote internal
database, whose Properties file is db.prp.

C h a p t e r 1 3 : D a t a b a s e A c c e s s 299
JS

P
IN

A
C

TIO
N

4 InstantDB is a free, all-Java relational DBMS available from http://instantdb.enhydra.org/index.html.
InstantDB has a number of advanced features and supports JDBC 2.0.

The real work begins with the next statements:

Class.forName(DRIVER);

Connection con = null;

try {

con = DriverManager.getConnection(URL);

The Class.forName() call causes the JDBC driver class to be loaded. According to
the JDBC specification, drivers should include a static initialization section that causes
an instance to be created and registered with the driver manager. Some older drivers
fail to do this and, in that case, invoking the newInstance() method on the driver class
is necessary. The DriverManager class provides the actual connection in response to
the call to its static getConnection() method.

Note, the con variable that holds a reference to the connection is declared and
assigned a null value. Then the rest of the page is enclosed in a try {...} block
followed by

finally {

if (con != null) {

con.close();

}

}

The reason for this is, once opened, the connection needs to be closed, regardless
of whether any errors occur or exceptions are thrown. This can be guaranteed by the
finally { ... } block. Including a catch block is unnecessary; in our case, the default
exception handler is good enough.

Once the connection is established, the SQL query can be run. For this, we call the
Connection object’s createStatement() method to obtain a Statement object,
on which we can invoke the executeQuery() method.

String sql = ""

+ " SELECT D.deptname, E.fname, E.lname,"

+ " E.title, E.email, E.phone"

+ " FROM departments D, employees E"

+ " WHERE D.deptmgr = E.empno"

+ " ORDER BY D.deptname"

;

Statement stmt = con.createStatement();

ResultSet rs = stmt.executeQuery(sql);

300 J S P : T h e C o m p l e t e R e f e r e n c e

executeQuery() returns a ResultSet. Our listing simply reads each row of this
set by invoking its next() method in a loop:

while (rs.next()) {

String dept = rs.getString(1);

String fname = rs.getString(2);

String lname = rs.getString(3);

String title = rs.getString(4);

String email = rs.getString(5);

String phone = rs.getString(6);

%>

<DT><%= dept %></DT>

<DD>

<%= fname %> <%= lname %>, <%= title %>

(919) 555-0822 x<%= phone %>, <%= email %>

</DD>

<%

}

Inside the loop, we extract each column value with the ResultSet.getString
(columnNumber) method, and then format and print the department name, manager
name, title, telephone number, and e-mail lines.

Finally, we close all the JDBC objects we created and set their references to null,
so they can be garbage collected.

rs.close();

rs = null;

stmt.close();

stmt = null;

The Connection object is closed in the finally { ... } block previously discussed.
The finished product is shown in Figure 13-3.

JDBC Drivers
To insulate programs from the specifics of particular database protocols, JDBC uses
a middle layer composed of a DriverManager class and one or more JDBC drivers.
A driver is Java class, usually supplied by the database vendor, which implements
the java.sql.Driver interface. The primary function of the driver is to connect
to a database and return a java.sql.Connection object.

C h a p t e r 1 3 : D a t a b a s e A c c e s s 301
JS

P
IN

A
C

TIO
N

302 J S P : T h e C o m p l e t e R e f e r e n c e

Drivers aren’t called directly by application programs. Instead, they’re registered
with the DriverManager, which determines the appropriate driver for a particular
connection request and makes the connection through it.

Hundreds of JDBC drivers exist, covering virtually all database management systems.
Most of them can be downloaded from vendor Web sites. A searchable list can be found
at http://industry.java.sun.com/products/jdbc/drivers.

The next section discusses the four JDBC driver types, the special case of the
JDBC-ODBC bridge, and the mechanics of registering a driver.

Figure 13-3. Output of the simple JDBC example

C h a p t e r 1 3 : D a t a b a s e A c c e s s 303
JS

P
IN

A
C

TIO
N

Driver Types
The JDBC specification classifies drivers as being one of four types, according to their
architecture. These types are

� Type 1—JDBC-ODBC bridge Drivers of this type connect to databases through
an intermediate ODBC driver. Several drawbacks are involved with this approach,
so Sun describes it as being experimental and appropriate for use only where no
other driver is available. Both Microsoft and Sun provide type 1 drivers.

� Type 2—Native API, partly Java Similar to a JDBC-ODBC bridge, type 2
drivers use native methods to call vendor-specific API functions. These drivers
are also subject to the same limitations as the JDBC-ODBC bridge, in that they
require native library files to be installed on client systems, which must be
configured to use them.

� Type 3—Pure Java to database middleware Type 3 drivers communicate using
a network protocol to a middleware server, which, in turn, communicates to one
or more database management systems.

� Type 4—Pure Java direct to database Drivers of this type call directly into the
native protocol used by the database management system.

The architecture of each of the four driver types is shown in Figure 13-4.
What difference does the driver type make? From the standpoint of the application

programmer, not much. The classifications mean more to the system architect. Type 1
and type 2 drivers require native code to be installed and configured on client systems.
Type 4 drivers may not be suitable if the DBMS is behind a firewall. Likewise, each
of the four driver types has its own performance characteristics, but the application
programming interface is exactly the same in all four cases.

The JDBC-ODBC Bridge
The type 1 JDBC-ODBC bridge driver requires special considerations. As we have
seen, several problems are involved in using it. First, the JDBC-ODBC bridge driver
is limited to the capabilities of the underlying ODBC driver, which is single threaded
and may, therefore, perform poorly under a heavy load. Also, it requires native code
library JdbcOdbc.dll to be installed on the client system. Finally, to be of any use,
the JDBC-ODBC bridge driver requires an ODBC data source to be configured. These
restrictions make it unsuitable for applets intended for use on the external internet.
Sun recommends the bridge should only be used for experimental purposes when
no other JDBC driver is available.

304 J S P : T h e C o m p l e t e R e f e r e n c e

Figure 13-4. The four JDBC driver-type architectures

C h a p t e r 1 3 : D a t a b a s e A c c e s s 305
JS

P
IN

A
C

TIO
N

On the other hand, the JDBC-ODBC bridge offers several significant advantages.
Because JSP pages aren’t operating in the applet environment, they have none of these
limitations. ODBC is widely supported, so using the bridge makes possible accessing
a wide variety of existing systems for which data sources are already configured.
Likewise, ODBC-enabled database products, such as Microsoft Access and FoxBase,
are widely available. These features make the JDBC-ODBC bridge a good choice for
low-volume Web applications and a useful tool for learning JDBC.

To use the JDBC-ODBC bridge in a Java application, a suitable ODBC data source
must be configured. On Windows systems, this is done through the Control Panel ODBC
Data Sources application. The data source should be configured as a System DSN, not a
User DSN, because the JSP engine is typically running under a system user profile. The
driver class name is sun.jdbc.odbc.JdbcOdbcDriver if the Sun JVM is being used or
com.ms.jdbc.odbc.JdbcOdbcDriver for the Microsoft virtual machine. The database
URL used in the getConnection() statement is jdbc:odbc:dsn, where dsn is the data
source name.

Microsoft supplies ODBC drivers for its Access database product, as well as dBase,
Excel, FoxPro, and a number of others, including a text driver that can use ordinary
text files (.txt and .csv) as a simple database system.

Registering a Driver
For a JDBC driver to be used, it must first be registered with the driver
manager. You can accomplish this in several ways, but each involves calling
DriverManager.registerDriver().

The most common approach is simply to load the driver class:

try {

Class.forName("MyJdbcDriver");

}

catch (ClassNotFoundException e) {

// Report the exception

}

A driver class loaded in this fashion should create an instance of itself and register
it with the driver manager, using logic similar to the following:

static {

PrintStream log = DriverManager.getLogStream();

if (log != null)

log.println("MyJdbcDriver class loaded");

MyJdbcDriver driver = new MyJdbcDriver();

try {

DriverManager.registerDriver(driver);

}

catch (SQLException e) {

if (log != null)

log.println("Unable to register driver");

}

}

Some older drivers have been known to omit this step, doing the registration in
their constructor instead. In that case, creating an instance of the driver is necessary,
using the following method5:

try {

Class.forName("MyJdbcDriver");

}

catch (ClassNotFoundException e) {

// Report the exception

}

catch (InstantiationException e) {

// Report the exception

}

catch (IllegalAccessException e) {

// Report the exception

}

Another approach to driver registration is to put the driver name in the
jdbc.drivers system property. This is a colon-delimited list of driver class
names, which DriverManager loads during its initialization. For example, a
standalone Java application that uses this approach might be invoked as follows:

java -Djdbc.drivers=org.enhydra.instantdb.jdbc.idbDriver MyPGM

Some JDBC driver vendors, notably Oracle, recommend explicitly creating an
instance of the driver and registering it with the driver manager:

DriverManager.registerDriver(

new oracle.jdbc.driver.OracleDriver());

JDBC 2.0 allows connections to be made through a DataSource object that is
registered with a JNDI service provider. JRun 3.0, for example, provides a means
for defining JDBC data sources at the Web server level, as well as a quick online test

306 J S P : T h e C o m p l e t e R e f e r e n c e

5 A tedious workaround, isn’t it? You could simply catch Exception itself, but that always leaves you
open to applying the wrong logic to exceptions you didn’t anticipate.

C h a p t e r 1 3 : D a t a b a s e A c c e s s 307
JS

P
IN

A
C

TIO
N

for connectivity. The advantage of this approach is driver class names and database
URL’s are stored in the naming service, rather than being hard coded in application
programs. Only the data source name is required. The sample JSP page associated
with Figure 13-3 earlier in this chapter could have its connection logic replaced with
the following:

InitialContext ctx = new InitialContext();

DataSource ds = (DataSource) ctx.lookup

("java:comp/env/jdbc/lyricnote_internal");

Connection con = null;

try {

con = ds.getConnection();

...

}

finally {

if (con != null)

con.close();

}

JSP pages using a DataSource for JDBC connections must import javax.sql.* and
javax.naming.* or else fully qualify the references to InitialContext and DataSource.

Another advantage of using a DataSource is other advanced database features like
connection pooling and distributed transactions can be implemented entirely with
changes to bindings in the naming service. No changes to the JSP source code are required.

Connecting to a Database
After a driver is loaded and registered, it can be used to create database connections.
DriverManager provides three methods for doing this:

getConnection(String url)
getConnection(String url, String userID, String password)
getConnection(String url, Properties prop)

Internally, DriverManager uses the same private worker method to handle each
of these methods.

The driver manager maintains a list of registered drivers. When its getConnection()
method is invoked, it interrogates each driver in turn to see if it will accept the specified
URL. The driver manager does this by calling the driver’s connect() method, which
returns either null if the driver cannot accept the URL or an active Connection object
if it can.

As noted previously, JDBC 2.0 allows DataSource to be used instead of
DriverManager to establish connections. In this case, the URL parameter isn’t
used, because it’s stored in the naming service.

The JDBC Database URL
The key argument to DriverManager.getConnection() is a JDBC URL, which is a string
with three components separated by semicolons:

<protocol>:<subprotocol>:<subname>

where

� protocol is always jdbc.

� subprotocol is a vendor-specific string that identifies the driver to be used. The
driver indicates whether it can handle that subprotocol when asked by the driver
manager. For example, the JDBC-ODBC bridge uses the reserved value odbc
as its subprotocol. This value is intended to be unique across all driver vendors.
Sun Microsystems acts as an informal registrar of JDBC subprotocols.

� subname identifies the specific database to connect to. This string contains
whatever the driver needs to identify the database. It may also contain
connection parameters the database needs.

Examples of JDBC URLs are

jdbc:odbc:usda

This would indicate an ODBC data source named usda that is accessed by the
JDBC-ODBC bridge driver.

jdbc:idb:c:/path/database.prp

InstantDB interprets the subname to be a properties file that describes the database
location and characteristics.

"jdbc:oracle:thin:@"

+ "(DESCRIPTION="

+ "(ADDRESS=(HOST=u25nv)"

+ "(PROTOCOL=tcp)"

+ "(PORT=4311))"

+ "(CONNECT_DATA=(SID=music)))"

This is a lengthy connection string that might be used with the Oracle thin client driver.
As was the case with driver registration, JDBC 2.0 makes possible using

a DataSource from a naming service to hide the details of the JDBC URL.

308 J S P : T h e C o m p l e t e R e f e r e n c e

The Statement Interfaces
The SQL language consists of statements that create, manipulate, and extract data from
a relational database. JDBC provides an object-oriented representation of these SQL
statements that encapsulates their text, execution status, and results. Not surprisingly,
this representation is called the java.sql.Statement interface. Statement objects
send SQL commands to a database, which can be any of the following types:

� A data definition command such as CREATE TABLE or CREATE INDEX

� A data manipulation command such as INSERT or UPDATE

� A SELECT statement for performing a query

Data manipulation commands return a count of the number of rows modified,
whereas a SELECT statement returns a set of rows known as a result set.

The Statement interface has two specialized subinterfaces that extend its capabilities:
PreparedStatement, which uses precompiles SQL, and CallableStatement, which
invokes stored procedures. The following section discusses all three types of statements
and how they are used.

Statement
The base interface is java.sql.Statement. Because this is an interface,
it doesn’t have a constructor; instead, it’s obtained from the connection object
with Connection.createStatement(). A typical example follows

Connection con = null;

try {

con = DriverManager.getConnection(URL);

Statement stmt = con.createStatement();

...

stmt.close();

}

finally {

if (con != null)

con.close();

}

JDBC 2.0 introduces an additional form of createStatement() that takes
parameters indicating where its result sets should be scrollable or not and whether
they reflect concurrent changes in the underlying table. The section on result sets later
in this chapter describes these features in more detail.

C h a p t e r 1 3 : D a t a b a s e A c c e s s 309
JS

P
IN

A
C

TIO
N

310 J S P : T h e C o m p l e t e R e f e r e n c e

Once a statement is created, it can be used to execute commands. Four methods exist
for doing this: executeUpdate, executeQuery, execute, and executeBatch. The
choice of which method to use depends on the expected results:

� executeUpdate is intended for use with the SQL INSERT, UPDATE, or DELETE
statements, or with data definition statements such as CREATE TABLE. It returns
a count of the number of rows updated.

� executeQuery is used to execute an SQL SELECT statement and to return a
result set.

� execute can be used for either purpose, but is intended for those statements
that return either an update count, multiple result sets, or some combination.
It returns a boolean flag that indicates whether its result was an update count
or a result set. Additional methods are available that navigate through results.

� executeBatch allows multiple update statements to be executed in a batch.
The update counts are returned in an array.

The following examples illustrate each of these methods.

The executeUpdate Method
In this example, an erroneous product description is corrected with an SQL UPDATE
statement invoked by the executeUpdate method.

import java.sql.*;

public class UpdateExample

{

public static void main(String[] args)

throws ClassNotFoundException, SQLException

{

String DRIVER = "org.enhydra.instantdb.jdbc.idbDriver";

String URL = "jdbc:idb:"

+ "D:/lyricnote/WEB-INF/database/products/db.prp";

Class.forName(DRIVER);

Connection con = null;

try {

con = DriverManager.getConnection(URL);

Statement stmt = con.createStatement();

int nRows = stmt.executeUpdate(

" UPDATE products"

+ " SET description ="

+ "'Telemann: Concerto No. 1 in F for Two Horns'"

C h a p t e r 1 3 : D a t a b a s e A c c e s s 311
JS

P
IN

A
C

TIO
N

+ " WHERE itemcode = '022370'"

);

System.out.println(nRows + " rows updated");

stmt.close();

}

finally {

if (con != null)

con.close();

}

}

}

When successfully executed, the program prints “1 rows updated”.

The executeQuery Method
To see that the erroneous listing was corrected, this example uses a SELECT statement
to display all sheet music titles in the product catalog that are Telemann concertos:

import java.sql.*;

public class QueryExample

{

public static void main(String[] args)

throws ClassNotFoundException, SQLException

{

String DRIVER = "org.enhydra.instantdb.jdbc.idbDriver";

String URL = "jdbc:idb:"

+ "D:/lyricnote/WEB-INF/database/products/db.prp";

Class.forName(DRIVER);

Connection con = null;

try {

con = DriverManager.getConnection(URL);

Statement stmt = con.createStatement();

ResultSet rs = stmt.executeQuery(

" SELECT itemcode, description"

+ " FROM products"

+ " WHERE prodtype = 'SM'"

+ " AND description like 'Telemann%'"

+ " AND description like '%Concerto%'"

);

while (rs.next()) {

String itemCode = rs.getString(1);

String description = rs.getString(2);

System.out.println(itemCode + " " + description);

}

rs.close();

stmt.close();

}

finally {

if (con != null)

con.close();

}

}

}

When run, it produces the corrected output:

022340 Telemann: Double Viola Concerto in G

022350 Telemann: Viola Concerto in G

022360 Telemann: Concerto for Horn Quartet

022370 Telemann: Concerto No. 1 in F for Two Horns

The process of getting values from the result set is explained later in this chapter.

The execute Method
Although the execute method can be used for either queries or updates, it’s strictly
necessary only for operations that may return multiple results. The Statement interface
provides methods for determining what has been returned and for processing the
results. The most common use for execute is for processing unknown SQL strings,
such as in this example, which reads and processes SQL statements from a file:

import java.io.*;

import java.sql.*;

public class ExecuteExample

{

public static void main(String[] args)

throws ClassNotFoundException, SQLException, IOException

{

String DRIVER = "org.enhydra.instantdb.jdbc.idbDriver";

String URL = "jdbc:idb:"

+ "D:/lyricnote/WEB-INF/database/products/db.prp";

312 J S P : T h e C o m p l e t e R e f e r e n c e

Class.forName(DRIVER);

Connection con = null;

try {

con = DriverManager.getConnection(URL);

Statement stmt = con.createStatement();

// Read SQL statements from a file

BufferedReader in =

new BufferedReader(

new FileReader("executeExample.sql"));

while (true) {

String line = in.readLine();

if (line == null)

break;

// Execute statement

boolean hasResultSet = stmt.execute(line);

while (true) {

if (hasResultSet) {

ResultSet rs = stmt.getResultSet();

System.out.println("Processing result set");

// ... process result set

rs.close();

}

else {

int count = stmt.getUpdateCount();

if (count == -1)

break;

System.out.println("Processing update count");

// ... process update count

}

// See if there are any more results

hasResultSet = stmt.getMoreResults();

}

}

stmt.close();

C h a p t e r 1 3 : D a t a b a s e A c c e s s 313
JS

P
IN

A
C

TIO
N

in.close();

}

finally {

if (con != null)

con.close();

}

}

}

The initial return code from execute is a boolean value that is true if the
statement execution produced a result set. If not, the update count can be obtained
with Statement.getUpdateCount(). If the update count is -1, then no more
results exist. Otherwise, the Statement.getMoreResults() method can be called
to cycle through the next result set or update count. It returns a boolean value with the
same interpretation as the one returned by execute.

The executeBatch Method
JDBC 2.0 introduced the capability to submit a group of update statements to be
executed as a batch. In some cases, this can represent a significant performance
improvement. The methods used in connection with batch updates are these:

� clearBatch resets a batch to the empty state.

� addBatch adds an update statement to the batch.

� executeBatch submits the batch and collects update counts.

Not all drivers support batch updates. Those that do indicate this by returning
true from their DatabaseMetaData.supportsBatchUpdates() method.

One driver that does implement this is the JDBC-ODBC bridge with Microsoft Access.
In the following example, the LyricNote composers Access database is updated with
a table of composers who lived to at least the age of 90.

import java.io.*;

import java.sql.*;

import java.util.*;

public class BatchUpdateExample

{

public static void main(String[] args)

throws ClassNotFoundException, SQLException, IOException

{

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

314 J S P : T h e C o m p l e t e R e f e r e n c e

Connection con = null;

try {

// Connect to the composers database

con = DriverManager.getConnection

("jdbc:odbc:composers");

Statement stmt = con.createStatement();

// Clear the existing table and create a new one

stmt.executeUpdate("DROP TABLE over90");

stmt.executeUpdate(

" CREATE TABLE over90"

+ " ("

+ " lastName VARCHAR(20),"

+ " firstName VARCHAR(20),"

+ " age INTEGER"

+ ")"

);

// Set up for handling all-or-nothing transaction

con.setAutoCommit(false);

// Add insert statements to a batch

stmt.clearBatch();

stmt.addBatch("INSERT INTO over90 VALUES"

+ "('Rodrigo','Joaquin',99)");

stmt.addBatch("INSERT INTO over90 VALUES"

+ "('Gossec','Francois-Joseph',96)");

stmt.addBatch("INSERT INTO over90 VALUES"

+ "('Ruggles','Carl',96)");

stmt.addBatch("INSERT INTO over90 VALUES"

+ "('Widor','Charles-Marie',94)");

stmt.addBatch("INSERT INTO over90 VALUES"

+ "('Sibelius','Jean',93)");

stmt.addBatch("INSERT INTO over90 VALUES"

+ "('Copland','Aaron',91)");

stmt.addBatch("INSERT INTO over90 VALUES"

C h a p t e r 1 3 : D a t a b a s e A c c e s s 315
JS

P
IN

A
C

TIO
N

+ "('Auber','Daniel Francois',90)");

stmt.addBatch("INSERT INTO over90 VALUES"

+ "('Stravinsky','Igor',90)");

// Execute the batch and check the update counts

int[] counts = stmt.executeBatch();

boolean allGood = true;

for (int i = 0; i < counts.length; i++)

if (counts[i] != 1)

allGood = false;

// Commit or roll back the transaction

if (allGood) {

System.out.println

("Transaction successful with "

+ counts.length + " statements committed");

con.commit();

}

else {

System.out.println("Transaction failed");

con.rollback();

}

// Done

stmt.close();

}

finally {

if (con != null)

con.close();

}

}

}

Setting off the connection’s autoCommit flag enables us either to commit or
rollback the batch update as a whole.

316 J S P : T h e C o m p l e t e R e f e r e n c e

PreparedStatement
java.sql.PreparedStatement is a subinterface of Statement that uses
precompiled SQL. This may result in performance improvements if the statement
is used repeatedly. A PreparedStatement differs from Statement in that its
execute methods don’t take a SQL string as a parameter. Instead, the SQL string
is specified when the PreparedStatement is created, as shown here:

PreparedStatement pstmt = con.prepareStatement(sqlstring);

The string to be executed may contain substitution parameters, which are indicated
by the presence of a question mark (?) in the string. These parameters act as placeholders
in the statement and must be filled in with values before they are executed. To do this,
the API provides a number of setXXX() methods, where XXX is the Java data type.

The batch update example, which created and loaded a table of composers who
lived to at least the age of 90, could also be written with a PreparedStatement that
is executed in a loop, as shown here:

import java.io.*;

import java.sql.*;

import java.util.*;

public class PreparedStatementExample

{

public static void main(String[] args)

throws ClassNotFoundException, SQLException, IOException

{

String DRIVER = "sun.jdbc.odbc.JdbcOdbcDriver";

String URL = "jdbc:odbc:composers";

Connection con = null;

try {

// Load the driver class

Class.forName(DRIVER);

// Connect to the database

con = DriverManager.getConnection(URL);

// Create the new table

C h a p t e r 1 3 : D a t a b a s e A c c e s s 317
JS

P
IN

A
C

TIO
N

318 J S P : T h e C o m p l e t e R e f e r e n c e

Statement stmt = con.createStatement();

try {

stmt.executeUpdate("DROP TABLE OVER90");

}

catch (SQLException ignore){}

stmt.executeUpdate(

" CREATE TABLE over90"

+ " ("

+ " lastName VARCHAR(20),"

+ " firstName VARCHAR(20),"

+ " age INTEGER"

+ ")"

);

stmt.close();

stmt = null;

// Prepare a statement to do inserts into the table

PreparedStatement pstmt = con.prepareStatement(

"INSERT INTO over90 VALUES(?, ?, ?)"

);

// Read composer names and ages from a file

// that uses tabs to separate the fields

BufferedReader in =

new BufferedReader(

new FileReader("over90.txt"));

while (true) {

String line = in.readLine();

if (line == null)

break;

// Split the line into the last name, first name

// and age tokens

StringTokenizer st = new StringTokenizer(line, "\t");

if (st.countTokens() != 3)

throw new IOException ("Expected 3 fields");

C h a p t e r 1 3 : D a t a b a s e A c c e s s 319
JS

P
IN

A
C

TIO
N

String lastName = st.nextToken();

String firstName = st.nextToken();

int age = Integer.parseInt(st.nextToken());

// Set the parameters in the prepared statement

pstmt.setString(1, lastName);

pstmt.setString(2, firstName);

pstmt.setInt(3, age);

// Update the record

pstmt.executeUpdate();

System.out.println(

“Added record for " + firstName + " " + lastName);

}

in.close();

pstmt.close();

pstmt = null;

}

finally {

if (con != null)

con.close();

}

}

}

Consider several key points in the code. First, the statement needs to be created
with substitution parameters:

PreparedStatement pstmt = con.prepareStatement(

"INSERT INTO over90 VALUES(?, ?, ?)"

);

Three question marks are here, one for each column in the table. Notice no difference
exists in use between numeric and string parameters. Both are coded simply as question
marks, with no embedded quotes or apostrophes needed.

320 J S P : T h e C o m p l e t e R e f e r e n c e

To use the values that were read from the file in the INSERT statement, employ the
setString() and setInt() methods:

pstmt.setString(1, lastName);

pstmt.setString(2, firstName);

pstmt.setInt(3, age);

The first parameter to the setXXX() methods is the column number, which starts
at 1 for the first column, 2 for the second, and so on. The second parameter is the value
to be inserted.

setXXX() methods exist for all data types, as well as two special ones:
setObject() and setNull(). Type conversions into any JDBC data type
can be made with setObject(), which takes a third parameter:

pstmt.setObject(int column, Object value, int typeNumber)

where typeNumber is an static integer constant defined in java.sql.Types.
Similarly, setNull() can be used to store the appropriate null type in a parameter:

pstmt.setNull(int column, int typeNumber)

Using Prepared Statements to Avoid Dynamic Syntax Errors
While the primary motivation for using prepared statements is performance, another
subtle advantage exists. Suppose you want to make a JSP page that can run queries
against the LyricNote product database. The page includes a form in which a search
argument can be entered. This argument is extracted from the request parameters and
an SQL statement is then constructed on the fly. Here is part of the JSP page showing
how the SQL is constructed:

ResultSet rs = stmt.executeQuery(

" SELECT itemcode, description"

+ " FROM products"

+ " WHERE prodtype = 'SM'"

+ " AND description like '%" + searchFor + "%'"

);

When the JSP page is used to search for works by Stravinsky, it returns the results
shown in Figure 13-5.

If, however, you search specifically for Stravinsky’s L’Histoire du Soldat, you get the
nasty error screen shown in Figure 13-6.

C h a p t e r 1 3 : D a t a b a s e A c c e s s 321
JS

P
IN

A
C

TIO
N

Figure 13-5. Normal output of QueryExample2.jsp

Figure 13-6. Syntax error caused by an unescaped apostrophe

322 J S P : T h e C o m p l e t e R e f e r e n c e

What happened? The explanation can be found in the error message:

javax.servlet.ServletException

java.sqlSQLException: SELECT itemcode, description

FROM products

WHERE prodtype = 'SM'

AND description like '%L'Histoire du Soldat%'

Don't understand SQL after: "Histoire"

The word L’Histoire has an embedded apostrophe, so when the LIKE clause is
evaluated, it terminates too soon, viewing '%L' as the operand it is trying to match.
Whatever follows is parsed as if it were SQL, which causes the error.

This problem can be avoided by scanning user input for embedded apostrophes
and replacing them with a safe alternative, but this is more complicated than it sounds.
This technique, referred to as escaping characters, varies in different databases and SQL
dialects. A JDBC-architected way exists to indicate the escape character, but this adds
complexity everywhere user input has to be handled.

A simpler and cleaner way to handle this is to use a PreparedStatement with
a substitution parameter. The code that needs to be changed is this:

PreparedStatement pstmt = con.prepareStatement(

" SELECT itemcode, description\n"

+ " FROM products\n"

+ " WHERE prodtype = 'SM'\n"

+ " AND description like ?"

);

pstmt.setString(1, "%" + searchFor + "%");

ResultSet rs = pstmt.executeQuery();

The operand of the LIKE clause is now simply a question mark and the search
argument is now added dynamically at run time. The query now works with any
type of input, regardless of its meaning in SQL, as seen in Figure 13-7.

CallableStatement
A further refinement of PreparedStatement is embodied in java.sql.
CallableStatement. This interface is used to invoke stored procedures,
if the database supports them6. Oracle, for example, allows procedures to be
written in PL/SQL. Queries written in Microsoft Access can be invoked through
the JDBC-ODBC bridge as stored procedures.

6 Few, if any, noncommercial databases support stored procedures.

Like its immediate superinterface PreparedStatement, a CallableStatement
is created with an explicit command string that gets precompiled:

CallableStatement cstmt = con.prepareCall(escapeString);

It also uses question marks to indicate substitution parameters. The syntax of a
stored procedure call used with CallableStatement is as follows:

{? = call procedureName(?, ?, ..., ?)}

If there is no return value from the procedure, the “? =” should be omitted.
Similarly, if there are no input parameters, the “(?, ?, ..., ?)” is not used.

Because CallableStatement extends PreparedStatement, it uses the same
methods for setting substitution parameter values:

String sql = "{call myproc(?, ?)}";

CallableStatement cstmt = con.prepareCall(sql);

cstmt.setString(1, "New York");

cstmt.setDouble(2, "19.73");

cstmt.executeQuery();

C h a p t e r 1 3 : D a t a b a s e A c c e s s 323
JS

P
IN

A
C

TIO
N

Figure 13-7. QueryExample2.jsp output after changing it to use a PreparedStatement

If any of the parameters are OUT or INOUT, their types must be registered with
CallableStatement.registerOutParameter() before the call is executed. Their
values can be retrieved with the same getXXX()methods used by PreparedStatement.

Stored Procedures in Microsoft Access
Microsoft Access supports queries written in SQL or developed with its own design
wizard. These queries can be invoked by name using the JDBC-ODBC bridge and
a CallableStatement. Figure 13-8 shows the design view of a query that creates
a list of composers born during a specified year interval. The beginning and ending
years are input parameters to the query.

When run using 1891–1900 as the year interval, 12 records are selected. The results
are shown in Figure 13-9.

This query can be run from a JSP page using CallableStatement, as illustrated
in the following listing. The steps the JSP page performs are as follows:

1. Prompts for the beginning and ending year in an HTML form.

2. Connects to the Access database through the JDBC-ODBC bridge.

3. Creates a CallableStatement that calls the query.

4. Sets the beginning and ending year parameter from the form values.

324 J S P : T h e C o m p l e t e R e f e r e n c e

Figure 13-8. Design view of the BornBetween query

5. Executes the query.

6. Displays the results in an HTML table.

<%@ page session="false" %>

<%@ page import="java.sql.*" %>

<%

// Prompt for beginning and ending years

String sLo = request.getParameter("lo");

if (sLo == null)

sLo = "";

String sHi = request.getParameter("hi");

if (sHi == null)

sHi = "";

%>

<H3>Select Composers by Year Born</H3>

<FORM>

<TABLE>

<TR>

<TD>Year range:

C h a p t e r 1 3 : D a t a b a s e A c c e s s 325
JS

P
IN

A
C

TIO
N

Figure 13-9. Results of the BornBetween query for 1891–1900

<INPUT TYPE="TEXT" NAME="lo" SIZE=4 VALUE="<%= sLo %>">

and

<INPUT TYPE="TEXT" NAME="hi" SIZE=4 VALUE="<%= sHi %>">

<INPUT TYPE="SUBMIT" VALUE="Search">

</TD>

</TR>

</TABLE>

</FORM>

<%

if (!sLo.equals("") && (!sHi.equals(""))) {

int lo = Integer.parseInt(sLo);

int hi = Integer.parseInt(sHi);

// Load the driver

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

Connection con = null;

try {

// Connect to the composers database

con = DriverManager.getConnection

("jdbc:odbc:lyricnote_internal");

// Set up callable procedure

String sql = "{call BornBetween(?, ?)}";

CallableStatement cstmt = con.prepareCall(sql);

cstmt.setInt(1, lo);

cstmt.setInt(2, hi);

ResultSet rs = cstmt.executeQuery();

%>

<P>

<TABLE BORDER=1 CELLPADDING=3 CELLSPACING=0>

<TR>

<TH>Name</TH>

<TH>Nationality</TH>

<TH>Lived</TH>

</TR>

<%

// Print the result set

326 J S P : T h e C o m p l e t e R e f e r e n c e

while (rs.next()) {

String fname = rs.getString(1);

String lname = rs.getString(2);

String nationality = rs.getString(3);

int yearBorn = rs.getInt(4);

int yearDied = rs.getInt(5);

%>

<TR>

<TD><%= fname %> <%= lname %></TD>

<TD><%= nationality %></TD>

<TD><%= yearBorn %>-<%= yearDied %></TD>

</TR>

<%

}

%>

</TABLE>

<%

rs.close();

rs = null;

cstmt.close();

cstmt = null;

}

finally {

if (con != null) {

con.close();

con = null;

}

}

}

%>

The results are as shown in Figure 13-10.
Of course, because the query itself is SQL-based, couldn’t you just execute the

equivalent SQL inside the JSP page with an ordinary Statement? Perhaps, but
several good reasons exist why you may choose not to do this:

� The query has already been written and tested in the native Microsoft Access
environment. Hundreds of queries may already be developed, with little
justification for conversion.

� If the query is modified in its original form, the changes are automatically
reflected in the Web-based version.

� The query may use database features that work within Access, but aren’t
supported through the ODBC and JDBC-ODBC bridge layers.

C h a p t e r 1 3 : D a t a b a s e A c c e s s 327
JS

P
IN

A
C

TIO
N

328 J S P : T h e C o m p l e t e R e f e r e n c e

Result Sets
A result set is an ordered list of table rows, represented in JDBC with the
java.sql.ResultSet interface. Result sets are produced by executeQuery()
or by certain metadata method calls. Once it is created, the data in a result set
can be extracted as follows:

1. Move to the desired row, by calling the ResultSet.next() method or
by one of the richer set of methods provided by JDBC 2.0—absolute(),
relative(), next(), previous(), first(), last(), beforeFirst(),
or afterLast().

2. Retrieve desired column values with ResultSet.getXXX(columnNumber)
or ResultSet.getXXX(columnName), where XXX is the JDBC data type.

The following is a simple example, with a JSP page that searches the LyricNote
composer database for those born in Ireland:

<%@ page session="false" %>

<%@ page import="java.sql.*" %>

Figure 13-10. Web-based version of the BornBetween query for 1891–1900

C h a p t e r 1 3 : D a t a b a s e A c c e s s 329
JS

P
IN

A
C

TIO
N

<HTML>

<HEAD>

<TITLE>Irish Composers</TITLE>

</HEAD>

<BODY>

<H3>Irish Composers</H3>

<TABLE BORDER=0 CELLPADDING=3 CELLSPACING=1>

<%

// JDBC driver name and database URL can be stored

// in web.xml as context parameters so that they

// do not have to be hard-coded.

String DRIVER = application.getInitParameter("jdbc.driver");

String URL = application.getInitParameter("jdbc.url.internal");

// Load the driver

Class.forName(DRIVER);

Connection con = null;

try {

// Connect to the database

con = DriverManager.getConnection(URL);

Statement stmt = con.createStatement();

// Create a query to select Irish composers

String sql =

"SELECT lname, fname, born, died"

+ " FROM composers"

+ " WHERE nationality = 'Irish'";

// Execute the query to create a result set

ResultSet rs = stmt.executeQuery(sql);

// Loop through each row of the result set

while (rs.next()) {

// Extract the two string values and two

// integer values from the current row

330 J S P : T h e C o m p l e t e R e f e r e n c e

String lastName = rs.getString(1);

String firstName = rs.getString(2);

int born = rs.getInt(3);

int died = rs.getInt(4);

// Print a table row with the values

%>

<TR>

<TD><%= firstName %> <%= lastName %></TD>

<TD><%= born %>-<%= died %></TD>

</TR>

<%

}

// After last row is printed, close the result set

// and the statement

rs.close();

stmt.close();

}

// Always close the connection

finally {

if (con != null) {

con.close();

con = null;

}

}

%>

</TABLE>

</BODY>

</HTML>

A ResultSet object is created when the Statement executes a query. The JSP
page reads each row by using the next() method, and then extracts each column
value with getString() or getInt(). The results are shown in Figure 13-11.

A number of getXXX() methods can be called on a ResultSet object. Table 13-1
contains the complete list.

Two versions of each getXXX() method exist: one that takes an integer column
number (1, 2, ...) and one that takes a column name string. Accessing columns by number
can be slightly more efficient, although column names make maintenance easier when the
order of fields changes.

C h a p t e r 1 3 : D a t a b a s e A c c e s s 331
JS

P
IN

A
C

TIO
N

Figure 13-11. A simple example of result set processing

Method Description

getArray Returns an SQL array.

getAsciiStream Returns an opened java.io.InputStream of ASCII
characters. Translation to ASCII (if necessary) is
handled by the JDBC driver.

getBigDecimal Returns a java.math.BigDecimal.

getBinaryStream Returns an opened java.io.InputStream.
No translation is done on the stream.

getBlob Returns a java.sql.Blob (Binary Large Object).

getBoolean Returns a boolean value.

Table 13-1. getXXX() Methods Provided by ResultSet

JDBC 2.0 introduced significant new features in result sets, which are discussed in
the next three sections.

Scrollable Result Sets
Originally, result sets could only be navigated in one direction (forward) and starting
at only one point (the first row). With JDBC 2.0, the programmer has a great deal more
flexibility. The cursor (row pointer) can be manipulated as if it were an array index.
Methods exist for reading both forward and backward, for starting from any row, and
for testing the current cursor location. Table 13-2 lists the available navigation methods.

332 J S P : T h e C o m p l e t e R e f e r e n c e

Method Description

getByte Returns a single byte.

getBytes Returns an array of bytes.

getCharacterStream Returns a java.io.Reader character stream.

getClob Returns a java.sql.Clob (Character Large Object).

getDate Returns a java.sql.Date. Note, this is a subclass of
java.util.Date.

getDouble Returns a double value.

getFloat Returns a float value.

getInt Returns an integer value.

getLong Returns a long integer value.

getObject Returns a java.lang.Object.

getRef Returns a java.sql.Ref, which is a reference to a
SQL structured type value.

getShort Returns a short integer value.

getString Returns a string.

getTime Returns a java.sql.Time value.

getTimestamp Returns a java.sql.Timestamp value, which
includes time in nanoseconds.

Table 13-1. getXXX() Methods Provided by ResultSet (continued)

C h a p t e r 1 3 : D a t a b a s e A c c e s s 333
JS

P
IN

A
C

TIO
N

To use scrollable result sets, the Statement object must be created with parameters
that indicate the specific capabilities requested. For this reason, a new form of the
Connection.createStatement() method exists

public Statement createStatement
(int resultSetType, int resultSetConcurrency)
throws SQLException

where resultSetType is the type of scrolling to be used and resultSetConcurrency indicates
whether the result set can be updated. Both parameters take their values from constants
in ResultSet, as shown in Table 13-3.

Method Description

boolean next() Advances the cursor to the next row.

boolean previous() Moves the cursor back one row.

boolean first() Moves the cursor to the first row.

boolean last() Moves the cursor to the last row.

void beforeFirst() Moves the cursor before the first row, usually
in anticipation of calling next().

void afterLast() Moves the cursor after the last row, usually in
anticipation of calling previous().

boolean absolute(int row) Moves the cursor to the specified row.
Specifying a negative number moves the
cursor relative to the end of the result set;
absolute(-1) is the same as last().

boolean relative(int row) Moves the cursor forward or backward the
number of rows specified.

boolean isBeforeFirst() True if the cursor is before the first row.

boolean isAfterLast() True if the cursor is after the last row.

boolean isFirst() True if the cursor is positioned on the first row.

boolean isLast() True if the cursor is positioned on the last row.

Table 13-2. JDBC 2.0 Navigation Methods for Scrollable Result Sets

The following JSP page is an example of using a scrollable result set to display only
the last page of a potentially lengthy query.

<%@ page import="java.sql.*" %>

<%@ page import="java.text.*" %>

<%!

public static final DecimalFormat PRICE_FMT

= new DecimalFormat("$#,###.00");

%>

<HTML>

<HEAD>

<TITLE>Scrollable Example</TITLE>

</HEAD>

<BODY>

<P>

<HR COLOR="#000000">

<%

// Get driver name and database URL from configuration

// parameters stored in web.xml

String DRIVER = application.getInitParameter("jdbc.driver");

String URL = application.getInitParameter("jdbc.url");

334 J S P : T h e C o m p l e t e R e f e r e n c e

Constant Meaning

TYPE_FORWARD_ONLY JDBC 1.0-style navigation in which the cursor
starts at the first row and can only move forward.

TYPE_SCROLL_INSENSITIVE All cursor positioning methods are enabled;
the result set doesn’t reflect changes made by
others in the underlying table.

TYPE_SCROLL_SENSITIVE All cursor positioning methods are enabled;
the result set reflects changes made by others
in the underlying table.

CONCUR_READ_ONLY The result set won’t be updatable.

CONCUR_UPDATABLE Rows and be added and deleted, and columns
can be updated.

Table 13-3. Constants in ResultSet that Can Be Used to Describe Scrollable
Result Sets

// Load the driver

Class.forName(DRIVER);

Connection con = null;

Statement stmt = null;

ResultSet rs = null;

try {

// Connect to the database

con = DriverManager.getConnection(URL);

// Open a statement that supports scrollable result sets

stmt = con.createStatement(

ResultSet.TYPE_SCROLL_INSENSITIVE,

ResultSet.CONCUR_READ_ONLY);

// Execute the query

rs = stmt.executeQuery(

" SELECT itemcode, price, description"

+ " FROM products"

+ " WHERE prodtype = 'IN'"

+ " ORDER BY description"

);

// Calculate number of rows

rs.last();

int nRows = rs.getRow();

// Back up ten rows

rs.relative(-10);

// Now print last page of result set

%>

<H3>

C h a p t e r 1 3 : D a t a b a s e A c c e s s 335
JS

P
IN

A
C

TIO
N

336 J S P : T h e C o m p l e t e R e f e r e n c e

Musical Instruments

- Items <%= rs.getRow() + 1 %> through <%= nRows %>

</H3>

<TABLE BORDER=1 CELLPADDING=3 CELLSPACING=0>

<TR><TH>Item</TH><TH>Price</TH><TH>Description</TH></TR>

<%

while (rs.next()) {

String itemcode = rs.getString(1);

double price = rs.getLong(2) / 100.0;

String description = rs.getString(3);

%>

<TR>

<TD><%= itemcode %></TD>

<TD ALIGN="RIGHT"><%= PRICE_FMT.format(price) %></TD>

<TD><%= description %></TD>

</TR>

<%

}

}

finally {

if (rs != null) { rs.close(); rs = null; }

if (stmt != null) { stmt.close(); stmt = null; }

if (con != null) { con.close(); con = null; }

}

%>

</TABLE>

</BODY>

</HTML>

The Statement object is opened so the result sets it creates are scrollable, but not
updatable. Having these properties, the ResultSet can be asked how many rows it
contains, which wasn’t possible in JDBC 1.0. By positioning the cursor at the last row
and issuing a relative(-10) method call, the last ten rows in the result set can be
isolated and printed. Figure 13-12 shows the results.

Updatable Result Sets
With JDBC 2.0, updating columns in a result set is possible, both to add new rows and
to delete existing rows. In each of these cases, the corresponding rows in the underlying
table are then also updated.

C h a p t e r 1 3 : D a t a b a s e A c c e s s 337
JS

P
IN

A
C

TIO
N

For a result set to be updated, it must have been produced by a Statement object
created with a concurrency type of ResultSet.CONCUR_UPDATABLE. JDBC 2.0
provides updateXXX() methods, where XXX is the JDBC data type, similar to the
existing getXXX() methods. These methods take a column number or column name
parameter, and a value parameter, as illustrated in the following example:

double mySalary = rs.getDouble(“SALARY”);

mySalary *= 2.0;

rs.updateDouble(“SALARY”, mySalary);

rs.updateString(“HOME_PHONE”, unlisted);

rs.updateRow();

The updated values aren’t automatically replicated in the underlying table until
updateRow() is called. The updates can be canceled explicitly with ResultSet.
cancelRowUpdates() if updateRow() hasn’t yet been called or implicitly if a
cursor movement method is called before updateRow().

Figure 13-12. Showing the last page of a lengthy query using a scrollable result set

New rows can be added to the result set and the underlying table with insertRow().
This involves a special cursor position known as the insert row. The following example
illustrates how this works:

rs.moveToInsertRow();

rs.setString(“employeeid”, “M1205”);

rs.setString(“firstName”, “Maria”);

rs.setString(“lastName”, “Alicia”);

rs.insertRow();

rs.moveToCurrentRow(); // Return to where we were

In like fashion, rows in a result set and its underlying table can be deleted with
deleteRow(). To do so, the cursor must be positioned at the row to be deleted, as
shown here:

rs.last(); // Delete the last row

rs.deleteRow();

RowSets
The javax.sql package contains a RowSet interface, which extends and generalizes
java.sql.ResultSet so it can be detached from its database connection. This can
be useful for Personal Digital Assistant (PDA) applications that cannot easily maintain
a connection and have a limited amount of memory. At press time, RowSets are still in
their infancy. Sun Microsystems has three early access implementations of the interface
that can be used to explore their capabilities:

� CachedRowSet A serializable, disconnectable RowSet that can be populated
from a JDBC result set.

� JdbcRowSet A connected RowSet also populated from a JDBC result set,
which behaves according to the JavaBeans model.

� WebRowSet A subclass of CachedRowSet that can write its contents as an
XML document.

Using Metadata
JDBC provides a rich set of metadata—data about data—for database connections and
result sets. This section describes these two interfaces, how instances of them are obtained,
and highlights of what information they can provide.

338 J S P : T h e C o m p l e t e R e f e r e n c e

Database Metadata
Information about a JDBC connection can be obtained with Connection.
getMetaData(). This method returns an instance of java.sql.DatabaseMetaData,
an interface that has more methods (149 in all) than any other class or interface in the
java.sql or javax.sql packages. These methods describe the features the database
supports, what tables it contains, and what columns are in these tables. Using metadata,
differences in the SQL language and capabilities of database systems can be minimized.

Viewing all the information a DatabaseMetaData object provides can be in-
structional. Because so many methods are in the interface, coding all the individual
calls by hand is tedious. For this purpose, using reflection to list all the metadata
methods programmatically, and then invoke each one and print the results, is easier.
The following JSP page (MetadataExplorer.jsp) illustrates the technique:

<%@ page session="false" %>

<%@ page import="java.sql.*" %>

<%@ page import="java.util.*" %>

<%@ page import="java.lang.reflect.*" %>

<%

// Get required driver name parameter

String driverName = request.getParameter("driverName");

if (driverName == null)

driverName = "";

driverName = driverName.trim();

if (driverName.equals(""))

throw new ServletException("No driverName parameter");

// Get required database URL parameter

String url = request.getParameter("url");

if (url == null)

url = "";

url = url.trim();

if (url.equals(""))

throw new ServletException("No url parameter");

// Get optional userID parameter

String userID = request.getParameter("userID");

if (userID == null)

userID = "";

JS
P

IN
A

C
TIO

N
C h a p t e r 1 3 : D a t a b a s e A c c e s s 339

340 J S P : T h e C o m p l e t e R e f e r e n c e

userID = userID.trim();

// Get optional password parameter

String password = request.getParameter("password");

if (password == null)

password = "";

password = password.trim();

// Load the driver

Class.forName(driverName);

Connection con = null;

try {

// Open the database connection and get the metadata

con = DriverManager.getConnection(url, userID, password);

DatabaseMetaData md = con.getMetaData();

// Use reflection to get a list of methods that the

// metadata class supports. Select only public methods

// that take no parameters and that return either

// a string or a boolean.

Class mdclass = md.getClass();

Method[] methods = mdclass.getDeclaredMethods();

Map methodMap = new TreeMap();

for (int i = 0; i < methods.length; i++) {

Method method = methods[i];

// Public methods only

if (!Modifier.isPublic(method.getModifiers()))

continue;

// with no parameters

if (method.getParameterTypes().length > 0)

continue;

// that return String or boolean

Class returnType = method.getReturnType();

if ((returnType != java.lang.Boolean.TYPE) &&

(returnType != java.lang.String.class))

continue;

// Add selected methods to sorted map

methodMap.put(method.getName(), method);

}

%>

<HTML>

<HEAD>

<TITLE>Metadata Explorer</TITLE>

<LINK REL="stylesheet" HREF="style.css">

</HEAD>

<BODY>

<CENTER>

<H3>

Metadata Explorer for

<%= md.getDatabaseProductName() %>

<%= md.getDatabaseProductVersion() %>

[<%= driverName %>]

</H3>

<TABLE BORDER=0 CELLPADDING=3 CELLSPACING=1>

<TR CLASS="header">

<TH CLASS="header">Method</TH>

<TH CLASS="header">Value</TH>

</TR>

<%

// Generate the table

int row = 0;

Iterator im = methodMap.keySet().iterator();

while (im.hasNext()) {

String methodName = (String) im.next();

Object methodValue = null;

Method method = (Method) methodMap.get(methodName);

// Invoke the method and get the result

C h a p t e r 1 3 : D a t a b a s e A c c e s s 341
JS

P
IN

A
C

TIO
N

342 J S P : T h e C o m p l e t e R e f e r e n c e

try {

Object[] noParameters = new Object[0];

methodValue = method.invoke(md, noParameters);

}

catch (Exception ignore) {}

// Display the results

row++;

String rowClass = "row" + (row % 2);

%>

<TR CLASS="<%= rowClass %>">

<TD><%= methodName %></TD>

<TD><%= formatLine(methodValue) %></TD>

</TR>

<%

}

}

finally {

if (con != null)

con.close();

}

%>

</TABLE>

</CENTER>

</BODY>

</HTML>

<%!

/**

* Formats an object in an HTML-friendly way,

* making sure it doesn't exceed 48 characters

* in width.

*/

private static String formatLine(Object obj)

{

if (obj == null)

return "";

StringBuffer out = new StringBuffer();

StringBuffer line = new StringBuffer();

StringTokenizer st =

new StringTokenizer(obj.toString(), ",;", true);

while (st.hasMoreTokens()) {

if (line.length() > 48) {

out.append(line.toString());

out.append("
");

line = new StringBuffer();

}

line.append(st.nextToken());

}

out.append(line.toString());

return out.toString();

}

%>

This JSP page is designed to be invoked from an HTML form that supplies the
driver name, JDBC URL, user ID, and password fields, as shown in Figure 13-13.

When run against a Microsoft Access database using the JDBC-ODBC bridge, the
MetadataExplorer produces the output partially listed in Figure 13-14. The complete
listing is contained in Table 13-4.

C h a p t e r 1 3 : D a t a b a s e A c c e s s 343
JS

P
IN

A
C

TIO
N

Figure 13-13. Parameter input form for MetadataExplorer.jsp

344 J S P : T h e C o m p l e t e R e f e r e n c e

Figure 13-14. MetadataExplorer used with a Microsoft Access database

Method Value

allProceduresAreCallable True

allTablesAreSelectable True

dataDefinitionCauses
TransactionCommit

True

dataDefinitionIgnored
InTransactions

False

doesMaxRowSizeIncludeBlobs False

getCatalogSeparator .

Table 13-4. Metadata from Microsoft Access Database

C h a p t e r 1 3 : D a t a b a s e A c c e s s 345
JS

P
IN

A
C

TIO
N

Method Value

getCatalogTerm DATABASE

getDatabaseProductName ACCESS

getDatabaseProductVersion 3.5 Jet

getDriverName JDBC-ODBC Bridge (odbcjt32.dll)

getDriverVersion 2.0001 (03.51.1713.00)

getExtraNameCharacters ~@#$%^&*_-+=\}{"';:?/><,

getIdentifierQuoteString `

getNumericFunctions ABS, ATAN, CEILING, COS, EXP,
FLOOR, LOG, MOD, POWER, RAND,
SIGN, SIN, SQRT, TAN

getProcedureTerm QUERY

getSQLKeywords ALPHANUMERIC, AUTOINCREMENT,
BINARY, BYTE, COUNTER, CURRENCY,
DATABASE, DATABASENAME,
DATETIME, DISALLOW,
DISTINCTROW, DOUBLEFLOAT,
FLOAT4, FLOAT8, GENERAL,
IEEEDOUBLE, IEEESINGLE, IGNORE,
INT, INTEGER1, INTEGER2, INTEGER4,
LEVEL, LOGICAL, LOGICAL1, LONG,
LONGBINARY, LONGCHAR,
LONGTEXT, MEMO, MONEY, NOTE,
NUMBER, OLEOBJECT, OPTION,
OWNERACCESS, PARAMETERS,
PERCENT, PIVOT, SHORT, SINGLE,
SINGLEFLOAT, SMALLINT, STDEV,
STDEVP, STRING, TABLEID, TEXT,
TOP, TRANSFORM, UNSIGNEDBYTE,
VALUES, VAR, VARBINARY, VARP,
YESNO

getSchemaTerm \

getStringFunctions ASCII, CHAR, CONCAT, LCASE, LEFT,
LENGTH, LOCATE, LOCATE_2, LTRIM,
RIGHT, RTRIM, SPACE, SUBSTRING,
UCASE

Table 13-4. Metadata from Microsoft Access Database (continued)

346 J S P : T h e C o m p l e t e R e f e r e n c e

Method Value

getSystemFunctions CURDATE, CURTIME, DAYOFMONTH,
DAYOFWEEK, DAYOFYEAR, HOUR,
MINUTE, MONTH, NOW, SECOND,
WEEK, YEAR

getURL jdbc:odbc:Composers

getUserName admin

isCatalogAtStart True

isReadOnly False

nullPlusNonNullIsNull False

nullsAreSortedAtEnd False

nullsAreSortedAtStart False

nullsAreSortedHigh False

nullsAreSortedLow True

storesLowerCaseIdentifiers False

storesLowerCaseQuoted
Identifiers

False

storesMixedCaseIdentifiers False

storesMixedCaseQuoted
Identifiers

True

storesUpperCaseIdentifiers False

storesUpperCaseQuoted
Identifiers

False

supportsANSI92EntryLevelSQL True

supportsANSI92FullSQL False

supportsANSI92IntermediateSQL False

supportsAlterTableWith
AddColumn

True

supportsAlterTableWith
DropColumn

True

supportsBatchUpdates True

supportsCatalogsInData
Manipulation

True

Table 13-4. Metadata from Microsoft Access Database (continued)

C h a p t e r 1 3 : D a t a b a s e A c c e s s 347
JS

P
IN

A
C

TIO
N

Method Value

supportsCatalogsInIndex
Definitions

True

supportsCatalogsInPrivilege
Definitions

False

supportsCatalogsInProcedure
Calls

False

supportsCatalogsInTable
Definitions

True

supportsColumnAliasing True

supportsConvert True

supportsCoreSQLGrammar False

supportsCorrelatedSubqueries True

supportsDataDefinitionAndData
ManipulationTransactions

True

supportsDataManipulation
TransactionsOnly

False

supportsDifferentTable
CorrelationNames

False

supportsExpressionsInOrderBy True

supportsExtendedSQLGrammar False

supportsFullOuterJoins False

supportsGroupBy True

supportsGroupByBeyondSelect True

supportsGroupByUnrelated False

supportsIntegrity
EnhancementFacility

False

supportsLikeEscapeClause False

supportsLimitedOuterJoins False

supportsMinimumSQLGrammar True

supportsMixedCaseIdentifiers True

supportsMixedCaseQuoted
Identifiers

False

Table 13-4. Metadata from Microsoft Access Database (continued)

348 J S P : T h e C o m p l e t e R e f e r e n c e

Method Value

supportsMultipleResultSets False

supportsMultipleTransactions True

supportsNonNullableColumns False

supportsOpenCursorsAcross
Commit

False

supportsOpenCursorsAcross
Rollback

False

supportsOpenStatements
AcrossCommit

True

supportsOpenStatements
AcrossRollback

True

supportsOrderByUnrelated False

supportsOuterJoins True

supportsPositionedDelete False

supportsPositionedUpdate False

supportsSchemasInData
Manipulation

False

supportsSchemasInIndex
Definitions

False

supportsSchemasInPrivilege
Definitions

False

supportsSchemasInProcedure
Calls

False

supportsSchemasInTable
Definitions

False

supportsSelectForUpdate False

supportsStoredProcedures True

supportsSubqueriesIn
Comparisons

True

supportsSubqueriesInExists True

supportsSubqueriesInIns True

Table 13-4. Metadata from Microsoft Access Database (continued)

ResultSetMetadata
In addition to DatabaseMetaData for database connections, ResultSetMetaData
also gets information about the columns of a result set. This interface consists of one
method to get the number of columns—getColumnCount()—and 20 other methods
that describe individual columns.

To obtain a ResultSetMetaData object, a program invokes the ResultSet.
getMetaData() method., and then invokes its methods, passing it a column number
parameter. As is the case with ResultSet, the column numbers start with 1.

Table 13-5 describes the methods available in ResultSetMetaData.

C h a p t e r 1 3 : D a t a b a s e A c c e s s 349
JS

P
IN

A
C

TIO
N

Method Value

supportsSubqueriesIn
Quantifieds

True

supportsTableCorrelationNames True

supportsTransactions True

supportsUnion True

supportsUnionAll True

usesLocalFilePerTable False

usesLocalFiles True

Table 13-4. Metadata from Microsoft Access Database (continued)

Method Description

getColumnCount() Returns the number of columns in each row
of the result set.

getCatalogName(int col) Returns the catalog name of the table from
which the specified column is drawn.

getColumnClassName(int col) Returns the fully qualified Java type name
of the specified column.

Table 13-5. Methods Available in ResultSetMetaData

350 J S P : T h e C o m p l e t e R e f e r e n c e

Method Description

getColumnDisplaySize(int col) Returns the maximum display width for the
specified column.

getColumnLabel(int col) Returns the label for the specified column.

getColumnName(int col) Returns the name of the specified column.

getColumnType(int col) Returns the type of the specified column in
a form corresponding to java.sql.Types.

getColumnTypeName(int col) Returns the column data type as a string.

getPrecision(int col) Returns number of decimal positions.

getScale(int col) Returns the number of digits to the right of
the decimal point.

getSchemaName(int col) Returns the schema name of the
column's table.

getTableName(int col) Returns the name of the column's
underlying table.

isAutoIncrement(int col) True if the column is automatically
numbered.

isCaseSensitive(int col) True if the column's case matters.

isCurrency(int col) True if the column is a cash value.

isDefinitelyWritable(int col) True if a write to the specified column will
definitely succeed.

isNullable(int col) Returns a constant indicating whether the
column can have a null value.

isReadOnly(int col) True if the result set is read-only.

isSearchable(int col) True if this column can be used in a
where clause.

isSigned(int col) True if the column value is signed numeric.

isWritable(int col) True if a write to the specified column
may succeed.

Table 13-5. Methods Available in ResultSetMetaData (continued)

C h a p t e r 1 3 : D a t a b a s e A c c e s s 351
JS

P
IN

A
C

TIO
N

New Features in JDBC 2.0 and Beyond
JDBC 2.0 was originally referred to as the JDBC 2.0 Standard Extension API and has
now been renamed as the JDBC 2.0 Optional Package API. This is included in the
JDBC 2.1 core API package that ships with the Java 2 Standard Edition. A number
of its new features were discussed throughout this chapter, which include:

� DataSource JDBC driver names and URLs can be stored in a name service
and retrieved using JNDI.

� Connection pooling A data source provider can offer connection pooling,
allowing connections to be activated and recycled, usually with a significant
performance improvement. This capability is configured entirely in the naming
service and requires no changes to applications.

� Scrollable result sets JDBC 1.0 allowed only forward navigation through a
result set starting at the first record. JDBC 2.0 provides methods for forward
and backward navigation, as well as relative and absolute cursor positioning.

� RowSets Disconnected result sets can be made to conform to the
JavaBeans model.

� BatchUpdates Transactions can be grouped and sent to the database as a unit.

The first public draft of JDBC 3.0 was released for public review in September 2000.
Its new features include

� Enhanced control of commit/rollback transaction boundaries

� Configurability for connection pools

� Better interface to parameters in prepared and callable statements

Summary
Almost all nontrivial JSP applications require access to a database. Java provides a
standard API known as JDBC. JDBC allows a wide variety of database systems to be
accessed using standard SQL statements in an object-oriented framework. To use JDBC,
a driver must be available for the database. Drivers exist for virtually all commercial
databases, as well as a JDBC-ODBC bridge for using ODBC data sources.

Only a few key objects exist in JDBC, which makes it easy to learn. The Connection
object maintains an active link to a database. The three types of Statement object allow
SQL statements to be executed through the connection and capture the results in a
ResultSet object. A large volume of information about connections and result sets
can be obtained from the DatabaseMetaData and ResultSetMetaData objects.

JDBC has continued to evolve through several releases with enhanced features and
promises to continue as the dominant database access technology for Java programming.

This page intentionally left blank.

Chapter 14
Session and Thread
Management

353

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Hypertext Transfer Protocol (HTTP) was originally designed for distributing
documents and images over the World Wide Web (WWW). As such, it uses a
fairly simple communication model. A client makes a request for a document,

the server responds with the document or some error code, and the transaction is
complete. The server doesn’t retain any knowledge of the request. The next time the
client makes a request, the server has no way of distinguishing it from any other client.
For this reason, HTTP is said to be a stateless protocol.

Unfortunately, few applications fit this single request/response model. In most
cases, several requests are required for any meaningful work to be done. For example,
an application may have one Web page that prompts for a user ID and password, and
then a search page that requests key words to look up in a product database, followed
by a list of matching products, a detailed product information page, a shopping cart
checkout page, and an order summary page. Each of these pages depends on the
previous pages and also depends on the server knowing the state of the application
for that client at that time. What’s worse, the user on the client end of the application
may go forward or backward through the pages, or go to another Web page entirely,
never telling the server that the session is over or what to do with any partial work.
A related difficulty is that some server processes take a long time—longer than a Web
server can afford to wait if it’s to maintain reasonable performance.

These aren’t new problems. Common Gateway Interface (CGI) programs and online
transaction processing systems have been dealing with these same issues for years. The
techniques applied in those environments still work in the Servlet/JSP environment,
but the Java Servlet API has a built-in mechanism that provides a clean, easy-to-use
solution: HTTP sessions.

This chapter explores two key aspects of making the JSP model fit the application
model: session management and thread management. It discusses four techniques for
session tracking, focusing primarily on the HTTP session API, examining how sessions
are created, how they manage objects, and how they are terminated. The chapter then
explores Java’s built-in support for multithreaded applications and the available servlet
threading models, concluding with a section covering application considerations with
respect to object lifecycle and visibility.

Session Tracking
Because the Web server doesn’t remember clients from one request to the next, the only
way to maintain a session is for clients to keep track of it. You can accomplish this in
two basic ways:

� Have the client remember all session-related data and send it back to the server
as needed.

354 J S P : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 4 : S e s s i o n a n d T h r e a d M a n a g e m e n t 355
JS

P
IN

A
C

TIO
N

� Have the server maintain all the data, assign an identifier to it, and have the
client remember the identifier.

The first approach is simple to implement and requires no special capabilities on
the part of the server. This approach can entail transmitting large amounts of data back
and forth, however, which might degrade performance. Another problem is server-side
objects, such as database and network connections, have to be reinitialized with every
request. For these reasons, this approach is best suited for long-term persistence of
small amounts of data, such as user preferences or account numbers.

The second approach offers more functionality. Once a server initiates a session and
the client accepts it, the server can build complex, active objects and maintain large
amounts of data, requiring only a key to distinguish between sessions. Most of the
discussions in this chapter focus on this approach.

So, how can we get the client to remember data and return it to the Web server?
Four techniques are commonly used

� Hidden fields

� URL rewriting

� Cookies

� The HTTP session API

The following sections describe each technique in detail.

Hidden Fields
HTML forms support input elements with a type of HIDDEN. Hidden fields are passed
along with other form parameters in the HTTP request sent to the Web server, but they
don’t have any visual representation. They serve only to include literals or constant
values with a request. A similar technique is used with CICS and mainframe transaction
monitors to supply transaction codes. In principle, hidden fields can be used in ordinary
HTML Web pages but, for session tracking purposes, they must be used in dynamically
generated Web pages created by server processes like CGI, servlets, or JSP.

Hidden fields are well suited to back-and-forth conversational applications that
don’t require a great deal of data storage or object initialization. An example would be
the well-known number-guessing game included in the Tomcat examples folder. This
game selects a random integer between 1 and 100, and then asks the user to guess it.
After each guess, the game tells the user whether the guess was too low, too high, or
exactly right.

The JSP presented in the following is a game that does the opposite: it asks the user
to think of a number between 1 and 100, and then guesses the number, relying on the

user to indicate whether each guess is too low, too high, or exactly right.1 This JSP uses
a binary search to find the number.

<%@ page session="false" %>

<H3>Number Guess Guesser</H3>

<%

int wayLo = 1 - 1;

int wayHi = 100 + 1;

int state = 0;

String parm = request.getParameter("state");

if (parm != null)

state = Integer.parseInt(parm);

switch (state) {

case 0: { // Initial screen

%>

<FORM>

Think of a number between

<%= wayLo + 1 %> and <%= wayHi - 1 %>,

and I'll try to guess it.<P>

Click OK when ready.<P>

<INPUT TYPE="submit" VALUE="OK">

<INPUT TYPE="hidden" NAME="lo" VALUE="<%= wayLo %>">

<INPUT TYPE="hidden" NAME="hi" VALUE="<%= wayHi %>">

<INPUT TYPE="hidden" NAME="numGuesses" VALUE="0">

<INPUT TYPE="hidden" NAME="state" VALUE="1">

</FORM>

<%

break;

}

case 1: { // First guess

int numGuesses = 1 + Integer.parseInt

(request.getParameter("numGuesses"));

int lo = Integer.parseInt(request.getParameter("lo"));

int hi = Integer.parseInt(request.getParameter("hi"));

int guess = (hi + lo)/2;

356 J S P : T h e C o m p l e t e R e f e r e n c e

1 If you play these programs against each other in separate windows, you can watch them politely
comment on each other’s progress.

%>

<FORM>

My first guess is <%= guess %>. How did I do?<P>

<INPUT TYPE="radio"

NAME="result"

VALUE="-1" onClick="submit()"> Too low

<INPUT TYPE="radio"

NAME="result"

VALUE="0" onClick="submit()"> Exactly right

<INPUT TYPE="radio"

NAME="result"

VALUE="1" onClick="submit()"> Too high

<P>

<INPUT TYPE="hidden" NAME="lo" VALUE="<%= lo %>">

<INPUT TYPE="hidden" NAME="hi" VALUE="<%= hi %>">

<INPUT TYPE="hidden" NAME="numGuesses" VALUE="<%= numGuesses %>">

<INPUT TYPE="hidden" NAME="state" VALUE="2">

</FORM>

<%

break;

}

case 2: { // After first guess

int numGuesses = 1 + Integer.parseInt

(request.getParameter("numGuesses"));

int lo = Integer.parseInt(request.getParameter("lo"));

int hi = Integer.parseInt(request.getParameter("hi"));

int result =

Integer.parseInt(request.getParameter("result"));

int guess = (hi + lo)/2;

if (result < 0) {

lo = guess;

guess = (hi + lo)/2;

}

else if (result > 0) {

hi = guess;

guess = (hi + lo)/2;

}

if (result != 0) {

%>

<FORM>

JS
P

IN
A

C
TIO

N
C h a p t e r 1 4 : S e s s i o n a n d T h r e a d M a n a g e m e n t 357

358 J S P : T h e C o m p l e t e R e f e r e n c e

<%

if (lo > wayLo)

out.println(lo + " is too low.
");

if (hi < wayHi)

out.println(hi + " is too high.
");

if ((hi - lo) > 1) {

%>

My next guess is <%= guess %>. How did I do?<P>

<INPUT TYPE="radio"

NAME="result"

VALUE="-1" onClick="submit()"> Too low

<INPUT TYPE="radio"

NAME="result"

VALUE="0" onClick="submit()"> Exactly right

<INPUT TYPE="radio"

NAME="result"

VALUE="1" onClick="submit()"> Too high

<P>

<INPUT TYPE="hidden" NAME="lo" VALUE="<%= lo %>">

<INPUT TYPE="hidden" NAME="hi" VALUE="<%= hi %>">

<INPUT TYPE="hidden" NAME="numGuesses" VALUE="<%= numGuesses %>">

<INPUT TYPE="hidden" NAME="state" VALUE="2">

</FORM>

<%

}

else {

String[] text = {

"Are we cheating?",

"Did we forget our number?",

"Perhaps we clicked the wrong button?",

"What happened?",

"What gives?",

};

String message = text[(int)(Math.random() * text.length)];

%>

<FORM>

<%= message %><P>

<INPUT TYPE="SUBMIT" VALUE="Start Over">

</FORM>

<%

C h a p t e r 1 4 : S e s s i o n a n d T h r e a d M a n a g e m e n t 359
JS

P
IN

A
C

TIO
N

}

}

else {

numGuesses--;

%>

<FORM>

I win, and after only <%= numGuesses %> guesses!<P>

Do you want to try again?<P>

<INPUT TYPE="SUBMIT" VALUE="Start Over">

</FORM>

<%

}

break;

}

}

%>

The JSP page uses a hidden field named state to keep track of what’s happening
in the game. Based on the state, it displays the appropriate form:

� State 0 The initial form explains the game and sets up the variables to be used.
These include the state, the number of guesses, the highest value known to be
too low, and the lowest value known to be too high. The variables are all stored
as hidden fields in the form.

� State 1 After the user clicks the OK button, the program retrieves the
too-low and too-high parameters and uses the average of the two as its
next guess. The form presents the user with three radio buttons to indicate
whether the guess is too low, too high, or exactly right. The low and high
values, the user result selection, and the incremented number of guesses
are stored again as hidden fields.

� State 2 Based on what the user specified in the radio buttons, the program
updates either the too-low or the too-high value with the new upper or lower
bound. If the guess was exactly right, the program congratulates itself and
prompts for whether to play again. Otherwise, it displays the known upper
and lower bounds and its next guess, as shown in Figure 14-1.

The problem with hidden fields is they can only be used in HTML forms. If the user
clicks a hyperlink and leaves the page, the hidden fields are lost, unless the technique
described in the next section—URL rewriting—is also employed.

360 J S P : T h e C o m p l e t e R e f e r e n c e

URL Rewriting
A URL can have parameters appended to it that are sent along with the request to the
Web server. These parameters are name/value pairs having the following syntax:

http://server/MyPage.jsp?name1=value1&name2=value2&...

When the JSP page receives the request, it can read the values with

String value1 = request.getParameter("name1");

String value2 = request.getParameter("name2");

...

Dynamically generated Web pages can take advantage of this facility to store session
data in URLs that are written to the page as hyperlinks. This allows the client to remind
the server of all values necessary to put the server application into the required state.

A simple example would be a counter that indicates the number of times a user
has accessed a page during the current session, as shown in the following listing:

<%@ page session="false" %>

<HTML>

<HEAD>

Figure 14-1. The Number Guess Guesser

<TITLE>Page Counter Using URL Rewriting</TITLE>

</HEAD>

<BODY>

<H3>Page Counter Using URL Rewriting</H3>

<%

int count = 0;

String parm = request.getParameter("count");

if (parm != null)

count = Integer.parseInt(parm);

if (count == 0) {

%> This is the first time you have accessed this page. <%

}

else if (count == 1) {

%> You have accessed the page once before.<%

}

else {

%> You have accessed the page <%= count %> times before.<%

}

%>

<P> Click

<A HREF="Counter.jsp?count=<%=count + 1 %>"

>here to visit the page again.

</BODY>

</HTML>

When the user requests the page for the first time using nothing but the basic URL,
no count parameter exists and, therefore, the integer count variable is set to zero:

C h a p t e r 1 4 : S e s s i o n a n d T h r e a d M a n a g e m e n t 361
JS

P
IN

A
C

TIO
N

362 J S P : T h e C o m p l e t e R e f e r e n c e

At the bottom of the page is a hyperlink that invokes the same counter.jsp page again
but, this time, with a count parameter with a value one greater than the current count:

Each time the page is reinvoked, the counter is updated and the message changes:

This technique is guaranteed to work in all browser environments and security
settings, but that’s about its only advantage. The technique tends to degrade per-
formance if large amounts of data are stored. The URLs can become very large,
possibly exceeding the size accepted by the Web server. Additionally, the URLs
aren’t secure, being visible in the browser address window and in Web server logs.
The requirement that every URL on the page has to be rewritten entails a lot of tedious

C h a p t e r 1 4 : S e s s i o n a n d T h r e a d M a n a g e m e n t 363
JS

P
IN

A
C

TIO
N

code and it’s easy to overlook a URL in the process. Nevertheless, for simple
applications, URL rewriting is reliable and easy to implement.

Note, manually appending parameters to hyperlink URLs isn’t commonly done.
More common is to use the HTTP Session API to do the URL rewriting and, in this
case, only a session ID is appended.

Cookies
The most widely used technique for persistent client data storage involves HTTP
cookies. A cookie is a small, named data element the server passes to a client with a
Set-Cookie header as part of the HTTP response. The client is expected to store the
cookie and return it to the server with a Cookie header on subsequent requests to the
same server. Along with the name and value, the cookie may contain

� An expiration date, after which the client is no long expected to retain the cookie.
If no date is specified, the cookie expires as soon as the browser session ends.

� A domain name, such as servername.com, which restricts the subset of URLs
for which the cookie is valid. If unspecified, the cookie is returned with all
requests to the originating Web server.

� A path name that further restricts the URL subset.

� A secure attribute, which, if present, indicates the cookie should only be
returned if the connection uses a secure channel, such as SSL.

Details of the original cookie specification can be found at http://home.netscape.com/
newsref/std/cookie_spec.html.

Figure 14-2 illustrates how cookies are set and retrieved with HTTP requests and
responses. First, the Web browser requests a page from the Web server. No cookies
are involved at this point. When the server responds with the requested document,
it sends a Set-Cookie header assigning the value fr to a cookie named language.
The cookie is set to expire in one year. The browser reads this header, extracts the
cookie information, and stores the name/value pair in its cookie cache, along with
the Web server’s domain and default path. Later, when the user visits the page again,
the browser recognizes it previously received a cookie from this server and the cookie
hasn’t yet expired, and, therefore, sends the cookie back to the server.

One advantage of cookies over other persistence schemes is they can retain their
values after the browser session is over, even after the client computer is rebooted.
This makes cookies well suited for maintaining users’ preferences, such as language.
The application shown in the following enables the user to select the desired language
by clicking a hyperlink. The selection causes two cookies to be sent to the client: one
for language and one for country. The next time the user visits the site, the browser

automatically sends the cookies back to the server and the user’s preferred language is
used in the page.

<%@ page session="false" %>

<%@ page import="java.util.*" %>

<jsp:include page="getLocale.jsp" flush="true"/>

<%

ResourceBundle RB =

(ResourceBundle) request.getAttribute("RB");

%>

<HTML>

<HEAD>

<TITLE>Using Cookies to Store Preferences</TITLE>

</HEAD>

<BODY>

<P>

364 J S P : T h e C o m p l e t e R e f e r e n c e

Figure 14-2. HTTP headers for setting and retrieving cookies

C h a p t e r 1 4 : S e s s i o n a n d T h r e a d M a n a g e m e n t 365
JS

P
IN

A
C

TIO
N

<HR>

<jsp:include page="languageBar.jsp" flush="true"/>

<H3><%= RB.getString("greeting") %></H3>

</BODY>

</HTML>

The main application page index.jsp uses <jsp:include> to invoke a utility
JSP page that scans the request headers for existing cookies and returns a resource
bundle2 for the appropriate language. Here is the utility page, getLocale.jsp:

<%@ page session="false" %>

<%@ page import="java.util.*" %>

<%

// Look through cookies for language and country

String language = null;

String country = null;

Cookie[] cookies = request.getCookies();

if (cookies != null) {

for (int i = 0; i < cookies.length; i++) {

Cookie cookie = cookies[i];

String name = cookie.getName();

if (name.equals("language"))

language = cookie.getValue();

if (name.equals("country"))

country = cookie.getValue();

}

}

// Get locale-specific resources

Locale locale = null;

2 A java.util.ResourceBundle object is a means for a program to retrieve messages and other
strings in different languages so the program can be used in multiple locales without requiring any
changes. Several implementations of ResourceBundle exist, the most common of which uses an
ordinary .properties file to store the message text.

366 J S P : T h e C o m p l e t e R e f e r e n c e

if (language != null && country != null)

locale = new Locale(language, country);

if (locale == null)

locale = Locale.getDefault();

ResourceBundle RB = ResourceBundle.getBundle

("jspcr.sessions.welcome", locale);

// Store the resource bundle as an attribute of the request

request.setAttribute("RB", RB);

%>

getLocale.jsp uses request.getCookies() to get an array of all the cookies
in the request. It looks through the list for the language and country cookies. If
getLocale.jsp finds them, it creates a java.util.Locale for that language and
country. If the cookies aren’t found (which is the case the first time the user visits the
page), it uses the default locale. Either way, it loads the resource bundle associated
with this application and locale, and then stores the bundle as a request attribute. After
it returns from the <jsp:include>, index.jsp retrieves the resource bundle and
uses ResourceBundle.getString() to get the translated text.

index.jsp calls another utility page—named languageBar.jsp—to create the
language selection hyperlinks. Stored in each hyperlink is the URL for the main page
(including any parameters), as well as the language and country codes. Here is
languageBar.jsp:

<%@ page session="false" %>

<%@ page import="java.util.*" %>

<%

String thisURL = HttpUtils.getRequestURL(request).toString();

thisURL = java.net.URLEncoder.encode(thisURL);

Object[][] locales = {

{new Locale("en", "US"), "English"},

{new Locale("de", "DE"), "Deutsch"},

{new Locale("es", "ES"), "Español"},

{new Locale("fr", "FR"), "Français"},

{new Locale("it", "IT"), "Italiano"},

};

for (int i = 0; i < locales.length; i++) {

JS
P

IN
A

C
TIO

N
C h a p t e r 1 4 : S e s s i o n a n d T h r e a d M a n a g e m e n t 367

Locale locale = (Locale) locales[i][0];

String name = (String) locales[i][1];

StringBuffer sb = new StringBuffer();

if (i > 0)

sb.append(" | ");

sb.append("<A HREF=\"setPreferences.jsp?cameFrom=");

sb.append(thisURL);

sb.append("&language=");

sb.append(locale.getLanguage());

sb.append("&country=");

sb.append(locale.getCountry());

sb.append("\"");

sb.append(">");

sb.append(name);

sb.append("");

out.println(sb);

}

%>

The hyperlinks invoke setPreferences.jsp, which generates the appropriate
language and country cookies, and then adds them to the outgoing response header.
Next, the JSP redirects the browser back to the calling page, as shown in the following:

<%@ page session="false" %>

<%

// Set cookies for language and country

final int ONE_YEAR = 60 * 60 * 24 * 365;

String[] parms = { "language", "country" };

for (int i = 0; i < parms.length; i++) {

String name = parms[i];

String value = request.getParameter(name);

if (value != null) {

Cookie cookie = new Cookie(name, value);

cookie.setMaxAge(ONE_YEAR);

response.addCookie(cookie);

}

}

// Redirect back to the calling JSP

String cameFrom = request.getParameter("cameFrom");

if (cameFrom == null)

cameFrom = request.getContextPath();

response.sendRedirect(cameFrom);

%>

The index.jsp page originally comes up in the default locale, as shown in
Figure 14-3. If the user clicks the French hyperlink, the setPreferences.jsp
page is invoked, which redirects the browser back to index.jsp, this time with
cookies attached. The result is the French version of the page, seen in Figure 14-4.
If the user visits the site the next day, the language preference is remembered
and applied.

The main problem with cookies is users can and do turn off their browser’s cookie
support, usually for privacy reasons. This means the application must be prepared to
do its work some other way if it cannot use cookies.

368 J S P : T h e C o m p l e t e R e f e r e n c e

Figure 14-3. Detail of the LyricNote home page showing language selection bar

C h a p t e r 1 4 : S e s s i o n a n d T h r e a d M a n a g e m e n t 369
JS

P
IN

A
C

TIO
N

The Session API
So far, we’ve examined two general approaches to session tracking, both of which
involve the client remembering the state:

� Have the client store all session data and return it to the server with each request.

� Have the client store a session identifier and have the server handle the rest.

While the first method may be easier to implement, the second, in general, offers more
flexibility and scalability. We have seen that hidden fields, URL rewriting, and cookies
can all be used to support either method, to some extent. But most servlets and JSP
pages that need to use sessions can take advantage of a higher-level approach: the
HttpSession API.

Three classes are in the javax.servlet.http package that comprise the
session API:

� HttpSession An interface that acts like a Map or Hashtable, able
to store and retrieve objects by name. A session is created by a call to
HttpServletRequest.getSession() and persists until it times out
or is shut down by a servlet participating in the session. Incoming HTTP
requests that carry the session identifier are automatically associated with
the session

Figure 14-4. French version of the LyricNote home page

� HttpSessionBindingListener An interface that allows an object to know
when it has been stored in a session or removed from one. The interface has two
callback methods, valueBound() and valueUnbound(), which the object
must implement to receive the binding notifications.

� HttpSessionBindingEvent An event object passed to the valueBound()
and valueUnbound() methods of an HttpSessionBindingListener. The
event has methods for returning the session and the name under which the
listener was bound to the session.

Creating Sessions
A servlet indicates it wants to use a session by calling the getSession() or
getSession(boolean create) methods in HttpServletRequest, as shown here:

HttpSession session = request.getSession(true);

The getSession() method with no parameters is a convenience method that simply
calls getSession(true). The create parameter indicates whether the servlet engine
should create a new session if one doesn’t already exist. If the parameter is false, the
servlet can only operate on an existing session. In either case, the request is examined to
see if it contains a valid session ID. If so, the servlet container returns a reference to the
session object, which can then be used to store and retrieve session attributes.

In a JSP page, session creation is automatic, unless is it suppressed in the page
directive. At the beginning of the _jspService() method in the generated servlet,
the PageContext object is created and initialized. As part of the initialization, the
JspFactory.getPageContext() method calls request.getSession(true).
The newly created or accessed session is returned to the generated servlet when it
calls pageContext.getSession(). The session is then accessible to the rest of the
JSP page as the implicit variable session, as the following shows:

public void _jspService(

HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException

{

PageContext pageContext = _jspFactory.getPageContext

(this, request, response, null, true, 8192, true);

JspWriter out = pageContext.getOut();

HttpSession session = pageContext.getSession();

...

}

370 J S P : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 4 : S e s s i o n a n d T h r e a d M a n a g e m e n t 371
JS

P
IN

A
C

TIO
N

If a JSP page doesn’t need to use a session, it should suppress the automatic
creation in the page directive:

<%@ page session=”false” %>

This relieves the servlet engine from having to create and maintain a session when it
isn’t needed. The memory requirements for unnecessary sessions can be significant.

When the session is first created, the client (Web browser) doesn’t yet know about
it. When the session ID has been sent to the client and the client sends it back in the
next request, the client is said to join the session. A servlet or JSP page can detect
whether this has happened with the isNew() method:

HttpSession session = request.getSession();

if (session.isNew()) {

// Create an empty shopping cart

}

session.isNew() is true if the session is newly created and the client hasn’t yet
been informed or if the client has been informed, but chooses not to participate.

Session Tracking Mechanisms
The servlet engine tries to use cookies to keep track of the session ID. In the HTTP
response written by a servlet that created a session, a Set-Cookie header containing
the session ID is in a cookie named JSESSIONID3.

Set-Cookie: JSESSIONID=rkbg6z27j1;Path=/jspcr

If the client accepts the cookie, the client returns it in subsequent requests:

Cookie: JSESSIONID=rkbg6z27j1

If this happens, the client request can be associated with the session with no special
considerations on the part of the servlet. If the client doesn’t accept cookies, however,
the session is lost. To prevent this, the servlet API has a fallback mechanism. It uses
URL rewriting if cookies fail. This is slightly more complicated for the programmer
because it means all URLs written by the servlet must have the session ID appended.

3 This is prescribed by the Servlet 2.2 API specification. Some servlet engines use a different value.

372 J S P : T h e C o m p l e t e R e f e r e n c e

But, because this is unnecessary and expensive if the client accepts cookies, the
URL rewriting should only be done if you definitely know the cookie method fails.
Fortunately, the servlet API has methods that encapsulate all this logic. The
HttpServletResponse class has encodeURL() and encodeRedirectURL()
methods that add the session ID to a URL only if necessary:

String myURL = response.encodeURL(“/servlet/nextServlet”);

out.println("Click <A HREF='"

+ myURL + "'>here"

+ " to continue");

encodeRedirectURL() should be used with URLs passed to the
response.sendRedirect() method and encodeURL() with all others.

When the encodeURL() method is used, the session ID is always embedded in
the URL when session.isNew() is true. After the first response from the client, the
servlet engine determines whether the session ID was returned in a cookie. If not, the
servlet engine continues to append the ID to URLs passed through encodeURL().
Otherwise, it switches to using cookies only and encodeURL() returns unmodified
URL strings. This makes testing all the possibilities unnecessary for the programmer.

Storing and Retrieving Objects from Sessions
Objects are bound to a session with the setAttribute() method:

session.setAttribute("jspcr.sessions.myapp.user", userID);

The name under which an object is bound can be any unique string. Because
sessions are shared between all servlets and JSP pages in the current HTTP session,
however, it makes sense to use a name that won’t conflict with other applications. Most
common is to choose names with a prefix that’s the package name or fully qualified
class name of the servlet or JSP page.

Any kind of object can be stored in a session, but because sessions may be serialized,
a good idea is to have session objects implement java.io.Serializable. Note, too,
only objects can be stored, not primitives like int, char or double. To store these
primitives, you must use their object wrappers Integer, Character, or Double.

Objects can be retrieved from a session with the getAttribute() method:

String userID = (String) session.getAttribute(

"jspcr.sessions.myapp.user");

Like a Map or Hashtable, a session stores only objects, so when they’re retrieved,
they must be cast into the appropriate type. Primitives contained in wrapper classes
must be extracted by the methods provided in the wrapper class:

C h a p t e r 1 4 : S e s s i o n a n d T h r e a d M a n a g e m e n t 373
JS

P
IN

A
C

TIO
N

Integer countObject = (Integer) getAttribute("count");

int count = countObject.intValue();

Usually, if you stored an attribute in a session, you know its name and type, and
you can request it directly in this manner. You can also get a list of attribute names,
however, from the getAttributeName() method:

out.println("Objects in this session:");

out.println("<PRE>");

Enumeration enames = session.getAttributeNames();

while (enames.hasMoreElements()) {

String name = (String) enames.nextElement();

Object value = session.getAttribute(name);

out.println(name + " = " + value);

}

out.println("</PRE>");

When an object is no longer needed, it can be removed from the session with
removeAttribute():

session.removeAttribute("jspcr.sessions.myapp.user");

This happens automatically when the session is closed, but situations may occur when
an attribute needs to be removed earlier than this.

Destroying Sessions
Once created, a session ordinarily persists until it times out or is shut down. Timeout
refers to the maximum length of time between requests that the session will remain
valid. This is an important consideration because the server has no way of knowing
whether a client has finished working with a session, other than by being told explicitly
or by waiting a fixed length of time.

The default timeout interval can be set in the deployment descriptor web.xml:

<web-app>

...

<session-config>

<session-timeout> 30 </session-timeout>

</session-config>

...

</web-app>

The interval is specified as a number of minutes, 30 being the default. The value entered
here applies to all sessions in the application unless they individually override it.

374 J S P : T h e C o m p l e t e R e f e r e n c e

Some applications that use scarce resources like database connections may choose
to time out sooner. These applications can use the setMaxInactiveInterval()
method to select a shorter time period:

session.setMaxInactiveInterval(180);

The argument supplied to setMaxInactiveInterval() is a number of
seconds4. The previous example uses 180 seconds or three minutes. The current
value can be obtained with getMaxInactiveInterval(). If a negative value
is specified, the session never times out.

In some cases, a definite end to the session can be provided. In these cases, the
invalidate() method can be used:

session.invalidate();

This method marks the session as being inactive and unbinds all objects bound to it. For
example, in a shopping cart application that uses a session to store items being ordered,
after the checkout logic writes the order to a database, the session should be destroyed
so, if the user purchases more items, the old session contents won’t still be there.

Examples Revisited
The session API can handle all the session tracking tasks described earlier in this
chapter. In this section, you learn how the hidden fields, URL rewriting, and cookies
examples can be done using the same session API approach.

Hidden Fields Example—The Number Guesser
The number guesser developed in the hidden fields section can be simplified by
moving all the hidden fields into an object stored in an HTTP session. The object in
this example is an inner class named Parameters, which is defined near the top
of the JSP page, but it could just as easily be an externally defined class.

<%@ page session="true" %>

<H3>Number Guess Guesser</H3>

<%!

4 The API is a little inconsistent here. Why use minutes in the deployment descriptor and seconds in
the session API?

public static final int WAY_LO = 0;

public static final int WAY_HI = 101;

public static final String PARMSKEY

= "jspcr.sessions.numguess.parameters";

// Inner class containing state variables

public class Parameters {

int lo;

int hi;

int numGuesses;

int state;

}

%>

<%

Parameters parms=(Parameters) session.getAttribute(PARMSKEY);

if (parms == null) {

parms = new Parameters();

parms.state = 0;

session.setAttribute(PARMSKEY, parms);

}

switch (parms.state) {

case 0: { // Initial screen

%>

<FORM>

Think of a number between

<%= WAY_LO + 1 %> and <%= WAY_HI - 1 %>,

and I'll try to guess it.<P>

Click OK when ready.<P>

<INPUT TYPE="submit" VALUE="OK">

</FORM>

<%

parms.lo = WAY_LO;

parms.hi = WAY_HI;

parms.numGuesses = 0;

parms.state = 1;

break;

}

case 1: { // First guess

parms.numGuesses++;

int guess = (parms.hi + parms.lo)/2;

C h a p t e r 1 4 : S e s s i o n a n d T h r e a d M a n a g e m e n t 375
JS

P
IN

A
C

TIO
N

%>

<FORM>

My first guess is <%= guess %>. How did I do?<P>

<INPUT TYPE="radio"

NAME="result"

VALUE="-1" onClick="submit()"> Too low

<INPUT TYPE="radio"

NAME="result"

VALUE="0" onClick="submit()"> Exactly right

<INPUT TYPE="radio"

NAME="result"

VALUE="1" onClick="submit()"> Too high

</FORM>

<P>

<%

parms.state = 2;

break;

}

case 2: { // After first guess

parms.numGuesses++;

int result =

Integer.parseInt(request.getParameter("result"));

int guess = (parms.hi + parms.lo)/2;

if (result < 0) {

parms.lo = guess;

guess = (parms.hi + parms.lo)/2;

}

else if (result > 0) {

parms.hi = guess;

guess = (parms.hi + parms.lo)/2;

}

if (result != 0) {

%>

<FORM>

<%

if (parms.lo > WAY_LO)

out.println(parms.lo + " is too low.
");

if (parms.hi < WAY_HI)

out.println(parms.hi + " is too high.
");

if ((parms.hi - parms.lo) > 1) {

376 J S P : T h e C o m p l e t e R e f e r e n c e

%>

My next guess is <%= guess %>. How did I do?<P>

<INPUT TYPE="radio"

NAME="result"

VALUE="-1" onClick="submit()"> Too low

<INPUT TYPE="radio"

NAME="result"

VALUE="0" onClick="submit()"> Exactly right

<INPUT TYPE="radio"

NAME="result"

VALUE="1" onClick="submit()"> Too high

</FORM>

<%

}

else {

String[] text = {

"Are we cheating?",

"Did we forget our number?",

"Perhaps we clicked the wrong button?",

"What happened?",

"What gives?",

};

String message = text[(int)(Math.random() * text.length)];

session.removeAttribute(PARMSKEY);

%>

<FORM>

<%= message %><P>

<INPUT TYPE="SUBMIT" VALUE="Start Over">

</FORM>

<%

}

}

else {

parms.numGuesses--;

%>

<FORM>

I win, and after only <%= parms.numGuesses %> guesses!<P>

Do you want to try again?<P>

<INPUT TYPE="SUBMIT" VALUE="Start Over">

</FORM>

<%

session.removeAttribute(PARMSKEY);

C h a p t e r 1 4 : S e s s i o n a n d T h r e a d M a n a g e m e n t 377
JS

P
IN

A
C

TIO
N

}

break;

}

}

%>

The logic remains the same, but where hidden fields were written to the HTML
form, their values are now stored in the Parameter object that’s bound to the session.

URL Rewriting Example—The Page Counter
Similarly, the page counter developed in the URL rewriting section can use an HTTP
session to store the count variable. Because int is a primitive, use the Integer object
wrapper and call its intValue() method to get the actual value.

<%@ page session="true" %>

<HTML>

<HEAD>

<TITLE>Page Counter Using HTTP Session</TITLE>

</HEAD>

<BODY>

<H3>Page Counter Using HTTP Session</H3>

<%

if (session.getAttribute("count") == null)

session.setAttribute("count", new Integer(0));

int count=((Integer) session.getAttribute("count")).intValue();

switch (count) {

case 0:

%> This is the first time you have accessed this page. <%

break;

case 1:

%> You have accessed the page once before.<%

break;

default:

%> You have accessed the page <%= count %> times before.<%

break;

}

session.setAttribute("count", new Integer(count+1));

%>

378 J S P : T h e C o m p l e t e R e f e r e n c e

<P>

Click

<A HREF="<%= response.encodeURL("Counter.jsp") %>">here

to visit the page again.

</BODY>

</HTML>

Each time the page is refreshed, the count is incremented and stored in the session
in a new Integer wrapper. Note, the hyperlink the user clicks to redisplay the page
uses response.encodeURL() to ensure the session tracking works, regardless of
whether the user accepts cookies.

Cookies Example—Language Preference
In the Cookies section, you learned how an application could allow a user to indicate
his language preference, so the rest of the Web pages in that session were displayed
in that language. The application used cookies so the preference would persist even
between sessions. If that persistence isn’t a requirement, the same thing can be done
with the session API.

The main index.jsp page changes little. It still uses a resource bundle for
message text, but now it gets it as a session attribute, rather than a request attribute.
In addition, note the page directive now has session=”true”.

<%@ page session="true" %>

<%@ page import="java.util.*" %>

<%-- Get the appropriate resource bundle from the session --%>

<jsp:include page="getLocale.jsp" flush="true"/>

<%

ResourceBundle RB = (ResourceBundle)

session.getAttribute("RB");

%>

<HTML>

<HEAD>

<TITLE>Using Session API to Store Language Preference</TITLE>

</HEAD>

<BODY>

<P>

<HR>

C h a p t e r 1 4 : S e s s i o n a n d T h r e a d M a n a g e m e n t 379
JS

P
IN

A
C

TIO
N

<%-- Show a row of hyperlinks with language choices --%>

<jsp:include page="languageBar.jsp" flush="true"/>

<%-- Display greeting in appropriate language --%>

<H3><%= RB.getString("greeting") %></H3>

</BODY>

</HTML>

The included modules—getLocale.jsp and setPreferences.jsp—are where
the real change takes place. setPreferences can now do the actual loading of the
appropriate resource bundle, based on the language and country parameters it receives

<%@ page session="true" %>

<%@ page import="java.util.*" %>

<%

// Get parameters for language and country

String language = request.getParameter("language");

String country = request.getParameter("country");

// Get locale-specific resources

Locale locale = null;

if (language != null && country != null)

locale = new Locale(language, country);

if (locale == null)

locale = Locale.getDefault();

ResourceBundle RB = ResourceBundle.getBundle

("jspcr.sessions.welcome", locale);

// Store the resource bundle as an attribute in the session

session.setAttribute("RB", RB);

// Redirect back to the calling JSP

String cameFrom = request.getParameter("cameFrom");

380 J S P : T h e C o m p l e t e R e f e r e n c e

if (cameFrom == null)

cameFrom = request.getContextPath();

cameFrom = response.encodeRedirectURL(cameFrom);

response.sendRedirect(cameFrom);

%>

The resource bundle is stored as a session attribute and the user is redirected
back to the original page. Note, the “cameFrom” URL is passed through the
encodeRedirectURL() method, in case cookies are turned off.

The getLocale JSP page can now simply look in the session for the resource
bundle or use the default bundle if none is found

<%@ page session="true" %>

<%@ page import="java.util.*" %>

<%

// Get the existing resource bundle from the session,

// if one exists

ResourceBundle RB = (ResourceBundle)

session.getAttribute("RB");

// If not, use the default resource bundle

if (RB == null) {

RB = ResourceBundle.getBundle("jspcr.sessions.welcome");

session.setAttribute("RB", RB);

}

%>

The languageBar.jsp page only needs to make one change in two places.
Because it writes URLs for the main page and setPreferences.jsp, it needs to
pass the URLs through response.encodeURL() so session tracking works even
if cookies are turned off:

<%@ page session="true" %>

<%@ page import="java.util.*" %>

<%

String thisURL = HttpUtils.getRequestURL(request).toString();

// Encode the session ID into the URL, if necessary

C h a p t e r 1 4 : S e s s i o n a n d T h r e a d M a n a g e m e n t 381
JS

P
IN

A
C

TIO
N

thisURL = response.encodeURL(thisURL);

thisURL = java.net.URLEncoder.encode(thisURL);

Object[][] locales = {

{new Locale("en", "US"), "English"},

{new Locale("de", "DE"), "Deutsch"},

{new Locale("es", "ES"), "Español"},

{new Locale("fr", "FR"), "Français"},

{new Locale("it", "IT"), "Italiano"},

};

for (int i = 0; i < locales.length; i++) {

Locale locale = (Locale) locales[i][0];

String name = (String) locales[i][1];

StringBuffer sb = new StringBuffer();

if (i > 0)

sb.append(" | ");

sb.append("<A HREF=\"");

// Encode the session ID into the generated URL

StringBuffer sb2 = new StringBuffer();

sb2.append("setPreferences.jsp?cameFrom=");

sb2.append(thisURL);

sb2.append("&language=");

sb2.append(locale.getLanguage());

sb2.append("&country=");

sb2.append(locale.getCountry());

String url = sb2.toString();

url = response.encodeURL(url);

sb.append(url);

sb.append("\"");

sb.append(">");

sb.append(name);

sb.append("");

out.println(sb);

}

%>

382 J S P : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 4 : S e s s i o n a n d T h r e a d M a n a g e m e n t 383
JS

P
IN

A
C

TIO
N

Session Binding Listeners
The session API provides a means for objects to keep track of when they are added
or removed from a session. An object that wants to receive notification of these events
can implement the HttpSessionBindingListener interface. Implementing classes
must provide two methods:

� public void valueBound(HttpSessionBindingEvent event)

� public void valueUnbound(HttpSessionBindingEvent event)

In each case, an instance of HttpSessionBindingEvent is passed to the
methods. The event parameter has methods for retrieving the session and for
determining the name by which the object was bound to the session.

The main advantage gained by session binding listeners is they can free the
resources they acquire, regardless of whether the client explicitly closes the application
or the session times out. This makes the interface useful for managing database
connections. JDBC 2.0 provides for connection pooling, but many drivers don’t yet
implement it. In this case, a session-resident connection that knows enough
to disconnect itself is a workable alternative.

The following example illustrates the technique. BoundConnection
is a wrapper around a java.sql.Connection object and implements
HttpSessionBindingListener, so it can close the connection after it’s
no longer in use.

package jspcr.jdbc;

import java.io.*;

import java.sql.*;

import java.text.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

/**

* A wrapper for a <CODE>Connection</CODE>

* object that is aware it is in an HTTP session.

* This enables it to shut down the connection

* when the session is destroyed.

*/

public class BoundConnection

implements HttpSessionBindingListener, Serializable

{

384 J S P : T h e C o m p l e t e R e f e r e n c e

private transient Connection connection;

/**

* Creates a new <CODE>BoundConnection</CODE> object

* for the specified connection.

* @param con the connection

*/

public BoundConnection(Connection con)

{

this.connection = con;

}

/**

* Returns the underlying connection

*/

public Connection getConnection()

{

return connection;

}

/**

* Called when the <CODE>BoundConnection</CODE>

* is stored in an HTTP session

* @param event the binding event

*/

public void valueBound(HttpSessionBindingEvent event)

{

trace("bound", event);

}

/**

* Called when the <CODE>BoundConnection</CODE>

* is removed from an HTTP session

* @param event the unbinding event

*/

public void valueUnbound(HttpSessionBindingEvent event)

{

if (connection != null)

try {

connection.close();

connection = null;

}

catch (SQLException e) {

C h a p t e r 1 4 : S e s s i o n a n d T h r e a d M a n a g e m e n t 385
JS

P
IN

A
C

TIO
N

e.printStackTrace();

}

trace("unbound", event);

}

/**

* Prints a trace message

*/

private void trace(String s, HttpSessionBindingEvent event)

{

HttpSession session = event.getSession();

java.util.Date now =

new java.util.Date(System.currentTimeMillis());

java.util.Date last =

new java.util.Date(session.getLastAccessedTime());

SimpleDateFormat fmt = new SimpleDateFormat("hh:mm:ss");

StringBuffer sb;

sb = new StringBuffer();

sb.append("TRACE: ");

sb.append(fmt.format(now));

sb.append(" session ");

sb.append(session.getId());

sb.append(" last accessed time ");

sb.append(fmt.format(last));

System.err.println(sb.toString());

sb = new StringBuffer();

sb.append("TRACE: ");

sb.append(fmt.format(now));

sb.append(" session ");

sb.append(session.getId());

sb.append(" connection ");

sb.append(s);

System.err.println(sb.toString());

}

}

The BoundConnection constructor stores a Connection object as a private
instance variable and makes it available through a getConnection() method.
BoundConnection implements the two HttpSessionBindingListener methods:

386 J S P : T h e C o m p l e t e R e f e r e n c e

valueBound() and valueUnbound(). In each of them, it writes a trace message,
so a record exists of when the connection is bound or unbound. The key feature is the
valueUnbound() method, which closes the underlying connection.

The BoundConnection object implements Serializable because sessions
may be serialized, especially in distributable applications. This makes marking the
Connection instance variable as transient necessary so the servlet container
won’t attempt to serialize it. The caller of getConnection(), therefore, needs to
check the value returned for null and, if necessary, create a new BoundConnection.

A JSP page that uses BoundConnection can, therefore, invoke it when the session
begins, giving it a newly opened database connection. When a BoundConnection is
stored in the session, its valueBound() method is triggered. Subsequent requests in
the same session can simply retrieve the BoundConnection from the session and call
its getConnection() method to get the underlying java.sql.Connection. The
reusable connect.jsp module shown in the following implements this logic.

<%@ page import="java.sql.*" %>

<%@ page import="jspcr.jdbc.*" %>

<%

// If there is not already a connection bound to this

// session, create one

if (session.getAttribute("bcon") == null) {

String driver =

application.getInitParameter("jdbc.driver");

String url =

application.getInitParameter("jdbc.url.internal");

Class.forName(driver);

Connection con = DriverManager.getConnection(url);

// Bind the connection to this session

BoundConnection bcon = new BoundConnection(con);

session.setAttribute("bcon", bcon);

// Set the timeout interval to three minutes

session.setMaxInactiveInterval(180);

}

%>

C h a p t e r 1 4 : S e s s i o n a n d T h r e a d M a n a g e m e n t 387
JS

P
IN

A
C

TIO
N

In addition to creating the BoundConnection when necessary, connect.jsp sets
the session timeout interval to three minutes.

The application shown in the following uses a BoundConnection to provide
quick access for repeated database queries. ComposerSearch.jsp prompts for a
nationality and century, and then searches the LyricNote composer database and
displays the results. It includes connect.jsp to do the actual connection and session
binding work.

<%@ page session="true" %>

<%@ page import="jspcr.jdbc.*" %>

<%@ page import="java.sql.*" %>

<%

// Get form parameters or use defaults

String nationality = request.getParameter("nationality");

if (nationality == null)

nationality = "";

String yearRange = request.getParameter("yearRange");

if (yearRange == null)

yearRange = "1901-2000";

%>

<HTML>

<HEAD>

<TITLE>Composer Search</TITLE>

</HEAD>

<BODY>

<CENTER>

<H3>Composer Search</H3>

<FORM METHOD="POST">

Nationality:

<INPUT TYPE="TEXT" NAME="nationality" VALUE="<%= nationality %>">

Century:

<SELECT NAME="yearRange">

<%

// Create the century option list

for (int century = 16; century <= 20; century++) {

int fromYear = (century - 1) * 100 + 1;

int toYear = century * 100;

StringBuffer sb = new StringBuffer();

sb.append("<OPTION");

if (yearRange.startsWith("" + fromYear))

sb.append(" SELECTED");

388 J S P : T h e C o m p l e t e R e f e r e n c e

sb.append(" VALUE='");

sb.append(fromYear);

sb.append("-");

sb.append(toYear);

sb.append("'>");

sb.append(century);

sb.append("th Century</OPTION>");

out.println(sb);

}

%>

</SELECT>

<INPUT TYPE="SUBMIT" VALUE="Search">

</FORM>

<%

// If values were entered in the form, display results

if (!nationality.equals("")) {

%>

<%-- Get the bound connection --%>

<jsp:include page="connect.jsp" flush="true"/>

<TABLE BORDER=0 CELLPADDING=1 CELLSPACING=1>

<%

BoundConnection bcon = (BoundConnection)

session.getAttribute("bcon");

Connection con = bcon.getConnection();

String sql = ""

+ " SELECT lname, fname, born, died"

+ " FROM composers"

+ " WHERE nationality = ?"

+ " AND ((born between ? and ?)"

+ " OR (died between ? and ?))"

+ " ORDER BY born, lname"

;

PreparedStatement pstmt = con.prepareStatement(sql);

int fromYear = Integer.parseInt(yearRange.substring(0, 4));

int toYear = Integer.parseInt(yearRange.substring(5));

pstmt.setString(1, nationality);

pstmt.setInt(2, fromYear);

pstmt.setInt(3, toYear);

pstmt.setInt(4, fromYear);

pstmt.setInt(5, toYear);

ResultSet rs = pstmt.executeQuery();

while (rs.next()) {

String lname = rs.getString(1);

String fname = rs.getString(2);

int born = rs.getInt(3);

int died = rs.getInt(4);

%>

<TR>

<TD><%= fname %> <%= lname %></TD>

<TD><%= born %>-<%= died %></TD>

</TR>

<%

}

rs.close();

pstmt.close();

%>

</TABLE>

<%

}

%>

</CENTER>

</BODY>

</HTML>

To access the session-resident connection, all the application must do is retrieve the
bcon session attribute, cast it to a BoundConnection, and call its getConnection()
method. Notice it’s unnecessary to close the connection explicitly. This is done
automatically when three minutes have expired with no further requests from the
client. The resulting Web page, seen in Figure 14-5, can be used for repeated queries
with a new connection required only for the first one.

The trace entries in the System.err log show the BoundConnection lifecycle in the
HTTP session:

TRACE: 07:55:00 session 8720188469 last accessed time 07:55:00

TRACE: 07:55:00 session 8720188469 connection bound

TRACE: 07:59:38 session 8720188469 last accessed time 07:56:38

TRACE: 07:59:38 session 8720188469 connection unbound

C h a p t e r 1 4 : S e s s i o n a n d T h r e a d M a n a g e m e n t 389
JS

P
IN

A
C

TIO
N

390 J S P : T h e C o m p l e t e R e f e r e n c e

The connection was bound to the session at 07:55:00 and used one or more times,
the last time being 07:56:38. Three minutes later, at 07:59:38, the session timed out,
unbinding the BoundConnection object. This, in turn, caused the valueUnbound()
method to be called, which closed the underlying connection.

Thread Management
Servlets and JSP pages have a significant advantage over older server-side technologies
because they are loaded into memory and run as single instances in a multithreaded
environment. This benefit comes with a tradeoff, however. The multithreaded model

Figure 14-5. A Web database query that uses BoundConnection

introduces difficulties that don’t exist in simpler application models. For example,
if a servlet has instance variables, they can potentially be accessed simultaneously
from different requests. If both requests write to the variables, their values may
be unpredictable.

Fortunately, because the servlet engine is written in Java, it can take advantage of
Java’s built-in support for multithreaded applications. In this section, you learn about
some basic threading concepts, examine two servlet threading models, and consider
an efficient multithreaded application.

Threading Concepts
A thread is a single sequential flow of control with its own stack and program counter.
Programs that use multiple threads appear to be doing more than one thing at a time.
A thread is able to operate independently of other threads in the same process while,
at the same time, sharing all the process objects.

The Web server itself is an example of where threads can be useful. A simple Web
server operates as follows:

1. Creates a ServerSocket and invokes its accept() method to wait for HTTP
clients requests.

2. Gets the client Socket object returned by the accept() method and starts a
separate thread to handle its request.

3. Returns to Step 1 to accept more requests at the same time the last one is being
processed by the other thread.

Java in general (not only in JSP pages) makes creating and using multiple threads
easy. Both the language and the class libraries are built from the ground up with
threads in mind. java.lang.Object, the ultimate base class of all objects, has
methods for synchronizing thread operations, which are inherited by every Java object.

A thread is represented by an instance of the java.lang.Thread class. A new
Thread object isn’t actually associated with an underlying operating system thread
until its start() method is called, which allows its characteristics (name, priority, and
so forth) to be set before it starts. After start() is called, an operating system thread
is created by the Java virtual machine and this thread begins executing the thread’s
run() method. A Thread continues to run until its run() method returns or its
interrupt() method is called.

Creating and Starting Threads
Three techniques are available for starting new threads. The first is to subclass Thread
and override its run() method. Objects of this class can then be created and started
individually. The following Example1.java illustrates this technique. It uses a subclass
of Thread called CounterThread to count to eight, printing the thread name and time
for each iteration, and waiting a random length of time between iterations.

C h a p t e r 1 4 : S e s s i o n a n d T h r e a d M a n a g e m e n t 391
JS

P
IN

A
C

TIO
N

import java.text.*;

import java.util.*;

/**

* A class that demonstrates simple multithreading

*/

public class Example1

{

public static void main(String[] args)

{

/**

* Create, name, and start two counter threads

*/

Thread t1 = new CounterThread();

t1.setName("A");

t1.start();

Thread t2 = new CounterThread();

t2.setName("B");

t2.start();

}

}

/**

* A thread that counts to eight, waiting

* a random length of time between iterations.

*/

class CounterThread extends Thread

{

/**

* Date format used in message. Includes milliseconds.

*/

public static final SimpleDateFormat FMT

= new SimpleDateFormat("hh:mm:ss.SSS aa");

/**

* Starts the run method in a new thread

*/

public void start()

{

System.out.println("Starting " + getName());

392 J S P : T h e C o m p l e t e R e f e r e n c e

super.start();

}

/**

* Where the counter loop takes place.

*/

public void run()

{

for (int i = 0; i < 8; i++) {

try {

sleep((long) (Math.random() * 500 + 100));

}

catch (InterruptedException e) {

break;

}

System.out.println

(FMT.format(new Date())

+ " Thread " + getName()

+ ": Count = " + i);

}

System.out.println(“Leaving “ + getName());

}

}

The mainline launches two CounterThread instances named A and B.
The following program output shows both threads execute simultaneously
and occasionally overlap in their iterations:

Starting A

Starting B

09:55:40.465 PM Thread B: Count = 0

09:55:40.545 PM Thread A: Count = 0

09:55:40.615 PM Thread B: Count = 1

09:55:40.846 PM Thread A: Count = 1

09:55:41.056 PM Thread B: Count = 2

09:55:41.346 PM Thread B: Count = 3

09:55:41.366 PM Thread A: Count = 2

09:55:41.687 PM Thread A: Count = 3

09:55:41.717 PM Thread B: Count = 4

09:55:41.847 PM Thread B: Count = 5

09:55:41.967 PM Thread B: Count = 6

C h a p t e r 1 4 : S e s s i o n a n d T h r e a d M a n a g e m e n t 393
JS

P
IN

A
C

TIO
N

09:55:42.017 PM Thread A: Count = 4

09:55:42.137 PM Thread B: Count = 7

Leaving B

09:55:42.268 PM Thread A: Count = 5

09:55:42.428 PM Thread A: Count = 6

09:55:42.848 PM Thread A: Count = 7

Leaving A

The second technique is to have a class implement the Runnable interface. In this
case, the class must provide its own run() method and also create a Thread object to do
the actual work. The class must pass a reference to itself (using the this variable) in the
Thread constructor. The following Example2.java shows this technique in operation.
Modeled closely after Example1, it creates two threads and passes each of them its this
variable. Note, both threads can run the same run() method simultaneously.

import java.text.*;

import java.util.*;

/**

* A class that demonstrates simple multithreading

* using the Runnable interface.

*/

public class Example2 implements Runnable

{

public static void main(String[] args)

{

new Example2();

}

public Example2()

{

/**

* Start two Runnable threads each using this run method.

*/

Thread t1 = new Thread(this);

t1.setName("A");

t1.start();

Thread t2 = new Thread(this);

t2.setName("B");

394 J S P : T h e C o m p l e t e R e f e r e n c e

t2.start();

}

/**

* Date format used in message. Includes milliseconds.

*/

public static final SimpleDateFormat FMT

= new SimpleDateFormat("hh:mm:ss.SSS aa");

/**

* Where the counter loop takes place.

*/

public void run()

{

Thread t = Thread.currentThread();

System.out.println("Starting " + t.getName());

for (int i = 0; i < 8; i++) {

try {

t.sleep((long) (Math.random() * 500 + 100));

}

catch (InterruptedException e) {

break;

}

System.out.println

(FMT.format(new Date())

+ " Thread " + t.getName()

+ ": Count = " + i);

}

System.out.println("Leaving " + t.getName());

}

}

The output from Example2 is similar to the output from Example1:

Starting main

Starting A

10:10:54.269 PM Thread A: Count = 0

10:10:54.299 PM Thread main: Count = 0

10:10:54.620 PM Thread main: Count = 1

C h a p t e r 1 4 : S e s s i o n a n d T h r e a d M a n a g e m e n t 395
JS

P
IN

A
C

TIO
N

10:10:54.690 PM Thread A: Count = 1

10:10:54.980 PM Thread main: Count = 2

10:10:55.180 PM Thread A: Count = 2

10:10:55.351 PM Thread A: Count = 3

10:10:55.461 PM Thread main: Count = 3

10:10:55.671 PM Thread A: Count = 4

10:10:55.811 PM Thread A: Count = 5

10:10:56.042 PM Thread main: Count = 4

10:10:56.272 PM Thread main: Count = 5

10:10:56.382 PM Thread A: Count = 6

10:10:56.753 PM Thread main: Count = 6

10:10:56.773 PM Thread A: Count = 7

Leaving A

10:10:56.943 PM Thread main: Count = 7

Leaving main

One disadvantage of using the Runnable interface is it’s a class with only one
run() method and so can only perform one kind of background operation, no matter
how many threads it creates. An application that does animation and also listens to a
socket or input stream, for instance, cannot do so by implementing Runnable.

Java 2 introduced a third technique for starting threads, the java.util.Timer
and java.util.TimerTask classes. The Timer class acts as a scheduler of delayed
or repeated tasks. These tasks must extend the TimerTask class and provide a run()
method. Tasks are scheduled for execution with the Timer.scheduleTask() method
in one of its several forms. Unlike in the other two approaches, the TimerTask run()
method doesn’t normally contain an execution loop because Timer can automatically
schedule repeated task execution. The following Example3.java shows the counter
example done with Timer and TimerTask.

import java.text.*;

import java.util.*;

/**

* A class that demonstrates simple multithreading

* using <CODE>java.util.Timer</CODE>

*/

public class Example3

{

public static void main(String[] args)

{

/**

396 J S P : T h e C o m p l e t e R e f e r e n c e

* Create a timer to control the timer tasks

*/

Timer timer = new Timer();

/**

* Create two timer tasks and schedule

* their execution at half-second intervals,

* delaying the second one’s start by 250 ms

*/

TimerTask t1 = new CounterTimerTask("A");

timer.schedule(t1, 0, 500);

TimerTask t2 = new CounterTimerTask("B");

timer.schedule(t2, 250, 500);

}

}

/**

* A TimerTask that counts to eight

*/

class CounterTimerTask extends TimerTask

{

/**

* Date format used in message. Includes milliseconds.

*/

public static final SimpleDateFormat FMT

= new SimpleDateFormat("hh:mm:ss.SSS aa");

private String name;

private int counter;

public CounterTimerTask(String name)

{

this.name = name;

this.counter = 0;

}

/**

* Where the counter loop takes place.

*/

public void run()

C h a p t e r 1 4 : S e s s i o n a n d T h r e a d M a n a g e m e n t 397
JS

P
IN

A
C

TIO
N

398 J S P : T h e C o m p l e t e R e f e r e n c e

{

if (counter == 0)

System.out.println("Starting " + name);

System.out.println

(FMT.format(new Date())

+ " Thread " + name

+ ": Count = " + counter);

counter++;

if (counter >= 8) {

System.out.println("Leaving " + name);

cancel();

}

}

}

The CounterTimerTask object keeps track of the number of times it has been
called and invokes its own cancel() method when it reaches the iteration limit.
Because Example3 uses a fixed schedule for each task, the counter messages alternate
in approximate quarter-second intervals:

Starting A

10:57:44.209 PM Thread A: Count = 0

Starting B

10:57:44.460 PM Thread B: Count = 0

10:57:44.710 PM Thread A: Count = 1

10:57:44.961 PM Thread B: Count = 1

10:57:45.211 PM Thread A: Count = 2

10:57:45.461 PM Thread B: Count = 2

10:57:45.712 PM Thread A: Count = 3

10:57:45.962 PM Thread B: Count = 3

10:57:46.212 PM Thread A: Count = 4

10:57:46.463 PM Thread B: Count = 4

10:57:46.713 PM Thread A: Count = 5

10:57:46.963 PM Thread B: Count = 5

10:57:47.214 PM Thread A: Count = 6

10:57:47.464 PM Thread B: Count = 6

10:57:47.715 PM Thread A: Count = 7

Leaving A

10:57:47.965 PM Thread B: Count = 7

Leaving B

C h a p t e r 1 4 : S e s s i o n a n d T h r e a d M a n a g e m e n t 399
JS

P
IN

A
C

TIO
N

Synchronizing Threads
Multithreaded applications often have operations that must be performed by only one
thread at a time or operations that require multiple threads to act cooperatively. To
accomplish this, a means for protecting critical sections of code must exist, so two
threads don’t run them simultaneously.

To see why this is necessary, consider the following example of a program that
issues invoice numbers to a billing application. The last invoice number used is stored
in a text file. A new invoice number is assigned in a method that reads the file, adds
one to the invoice number, and writes it back to disk. The program starts five threads
to simulate multiple online users accessing the invoice numbering routine at random
times. The invoice handling in this demonstration consists of simply printing the name
of the thread and the invoice number it has been assigned. See if you can spot the bug:

import java.io.*;

import java.net.*;

import java.util.*;

/**

* An illustration of a thread synchronization problem

*/

public class SynchTest implements Runnable

{

public static void main(String args[])

{

new SynchTest();

}

/**

* Creates a new SynchTest object that starts

* five invoice handling threads.

*/

public SynchTest()

{

Thread[] threads = {

new Thread(this, "A"),

new Thread(this, "B"),

new Thread(this, "C"),

new Thread(this, "D"),

new Thread(this, "E"),

};

for (int i = 0; i < threads.length; i++)

threads[i].start();

}

400 J S P : T h e C o m p l e t e R e f e r e n c e

/**

* Simulates handling ten invoices. This method

* will be run by each of the five threads.

*/

public void run()

{

try {

for (int i = 0; i < 10; i++) {

handleInvoice();

Thread.sleep((long) (Math.random()*500));

}

}

catch (InterruptedException ignore) {

}

catch (IOException e) {

e.printStackTrace();

}

}

/**

* The invoice handling method (with a subtle bug)

*/

public void handleInvoice()

throws IOException

{

Thread t = Thread.currentThread();

// Get the last used invoice number from invoice.dat

BufferedReader in =

new BufferedReader(

new FileReader("invoice.dat"));

int invoiceNumber = Integer.parseInt(in.readLine());

in.close();

// Add 1 to get the current invoice number

invoiceNumber++;

System.out.println

(t.getName() + " handles invoice " + invoiceNumber);

C h a p t e r 1 4 : S e s s i o n a n d T h r e a d M a n a g e m e n t 401
JS

P
IN

A
C

TIO
N

// Update the invoice number

PrintWriter out =

new PrintWriter(

new FileWriter("invoice.dat"));

out.println(invoiceNumber);

out.flush();

out.close();

}

}

The program may run several times without any problems, assigning consecutive
invoice numbers to each thread. But after a while, output like the following appears:

A handles invoice 68401

B handles invoice 68402

C handles invoice 68403

D handles invoice 68404

E handles invoice 68405

E handles invoice 68406

D handles invoice 68407

A handles invoice 68408

D handles invoice 68409

B handles invoice 68410

B handles invoice 68411

E handles invoice 68412

C handles invoice 68412

B handles invoice 68413

D handles invoice 68414

E handles invoice 68415

B handles invoice 68416

B handles invoice 68417

A handles invoice 68418

Invoice number 68412 appears twice in the list, assigned to both thread E and
thread C. What happened?

The problem is this: during the time interval from when the invoice number is
read to when it is rewritten in the invoice.dat file, it’s possible for another thread
executing the same method to read the file and get the old number. This thread can
then increment it and update the file, but it can then have a duplicate invoice number.

To prevent this, Java provides a means for getting an exclusive lock on an object
respected by all threads. This locking mechanism is called synchronization and is

402 J S P : T h e C o m p l e t e R e f e r e n c e

triggered by the keyword synchronized. Individual blocks of code can be
synchronized using the following syntax:

synchronized (object) {
// code to be synchronized

}

where object is a reference to any object. Entire methods can be synchronized by using
the synchronized keyword as a method modifier, for example,

public synchronized void myMethod() {

// code to be synchronized

}

which is functionally equivalent to the following:

public void myMethod() {

synchronized(this) {

// code to be synchronized

}

}

When a thread encounters a synchronized block, it first attempts to obtain the lock
on the specified object. If the thread is successful, it executes the block and releases the
lock. If the thread cannot obtain the lock, it waits until the lock is available, acquires
the lock for itself, executes the block, and releases the lock. The Java virtual machine
ensures these operations are performed by only one thread at a time.

In the invoice handling example, the duplicate invoice problem can be eliminated5

by synchronizing the handleInvoice() method:

public synchronized void handleInvoice() throws IOException

{

// Read the file, increment the invoice number,

// and update the file.

...

}

5 Of course, synchronization does nothing to prevent some other Java class or some process running
outside the Java virtual machine from updating the invoice.dat file. The example assumes you
have exclusive control over the file.

JS
P

IN
A

C
TIO

N
C h a p t e r 1 4 : S e s s i o n a n d T h r e a d M a n a g e m e n t 403

For the sake of performance, it’s important not to synchronize any more code than
necessary because this forces threads to walk single file through the synchronized
section. The entire handleInvoice() needn’t be synchronized, just the code from
where the file is opened for reading to where it’s closed for writing.

Servlet Threading Models
The servlet API takes advantage of Java’s built-in support for multithreading to ensure
responsive request handling and good throughput. In doing so, it offers some flexibility
in how threads are used. The process whereby requests are dispatched to one or more
threads is called the servlet threading model. You can choose from two models:

� Multiple threads running a single servlet instance, which is the default
threading model.

� Multiple instances, each running in their own thread. This is referred to
as the single thread model.

Let’s consider the implications of operating in each model.

Default Threading Model
In the default model, only a single instance of the servlet (or JSP) is loaded.6 The servlet
engine maintains a pool of threads, assigning them to requests as they arrive. Each
thread runs the appropriate service method, typically doget() or dopost(). During
periods of peak activity, many requests may be running simultaneously through the
same servlet methods but, because each thread has its own instruction pointer and
stack for local variables, no conflict occurs between requests. Figure 14-6 illustrates
the default model, showing three requests being handled by three threads.

The default model provides good throughput, but some restrictions exist. Because
there is only one servlet instance, only one copy of any instance variable exists. If no
precautions are taken and the code allows the variables to be written, one thread can
overwrite a value needed by another. In Figure 14-6, for example, Request 2 is running
at the same time as both Request 1 and Request 3. If they are all in the doGet()
method writing to an instance variable and, later, reading it, their writes and reads
could possibly overlap. Also, if the doGet() or doPost() method calls subroutines,
it must pass all necessary objects as parameters because it cannot rely on instance
variables to retain their value from the time they are written until the time the
subroutine reads them.

For this reason, avoid using instance variables, unless they are read-only. This may
sound like a restriction, but it’s simply a different point-of-view. The real unit of work,

6 Technically, one instance per servlet name. Several servlet names may be associated with the same
servlet class in the web.xm1 deployment descriptor. See Chapter 18 for details.

404 J S P : T h e C o m p l e t e R e f e r e n c e

after all, is the request, not the servlet instance. Objects of any kind can be stored as
request attributes in a completely thread-safe manner:

public void doGet(

HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException

{

...

openConnection(request);

runQuery(request);

...

}

public void openConnection(HttpServletRequest request)

throws SQLException

{

request.setAttribute

(“connection”, DriverManager.getConnection(...));

}

Figure 14-6. Default threading model—one instance with multiple threads

public void runQuery(HttpServletRequest request)

throws SQLException

{

Connection con = (Connection)

request.getAttribute(“connection”);

Statement stmt = con.createStatement();

ResultSet rs = stmt.executeQuery(“SELECT ...”);

request.setAttribute(“resultSet”, rs);

}

Likewise, you can synchronize critical sections of code in a servlet method,
although care must be exercised to avoid synchronizing too much and adversely
affecting performance.

Single Threaded Model
The alternative to the default model is the single threaded model. In this environ-
ment, the servlet engine guarantees only one request at a time is running the service
method of a servlet instance. To use this model, a servlet must implement the
SingleThreadModel interface. No methods are in this interface; it simply marks
the servlet as requiring this threading treatment. In a JSP page, this model is selected
by means of the page directive:

<%@ page isThreadSafe="false" %>

This causes the generated servlet to specify it implements SingleThreadModel.
Only one thread at a time can execute the doGet() or doPost() method of a

single threaded servlet, so this means instance variables are threadsafe. But the servlet
engine is free to create as many instances of the servlet as it needs to maintain adequate
performance. This mode of operation is illustrated in Figure 14-7, which shows Request
3 waiting until Request 1 is completely finished before it runs, but Request 2 running in
a different instance at the same time as the others.

SingleThreadModel is the source of much confusion. You can find messages
posted to Java newsgroups complaining that network or database connections aren’t
properly isolated, despite the fact that they’re used in a servlet that implements
SingleThreadModel. And it’s easy to see why: the only thing that’s made thread
safe is the servlet instance itself. But, because multiple instances exist, external resources
aren’t protected from simultaneous access.

Finding any compelling advantages afforded by the single threaded model is
difficult. Given a little planning and judicious synchronization, the default model
is usually a better choice.

C h a p t e r 1 4 : S e s s i o n a n d T h r e a d M a n a g e m e n t 405
JS

P
IN

A
C

TIO
N

Multithreaded Applications
A number of server-side environments exist where multiple threads are particularly
useful. One is running an automatically started background process, not attached to
any specific request, similar to a Unix daemon or a Windows NT service. This can
easily be done in a servlet environment, using the following technique:

1. Have the init() method start a thread that performs the desired task.
This may consist of opening a socket to service requests or periodically
reading a Web page for dynamically updated data, such as stock quotes
or news headlines. Maintain a reference to the thread in the servlet context.

2. Use the doGet() method strictly for commands, administrative tasks, and
status reporting. Providing a command that can shut down or restart the
background thread is usually desirable.

3. In the destroy() method, close the thread after releasing any resources
it’s using.

The servlet (or JSP) can be designated as load-on-startup in the deployment
descriptor, so it runs whenever the servlet engine is running, without requiring a user
to be logged on. Because the servlet engine itself can typically be run as a daemon or
service, this amounts to being able to write such processes as Java servlets.

406 J S P : T h e C o m p l e t e R e f e r e n c e

Figure 14-7. Multiple servlet instances in the single threaded model

Another beneficial use of multithreading is for handling long-running requests,
such as complex data analysis or other project-like requests. If a client requests a server
process that takes a considerable amount of time, both the client and the servlet engine
simply wait until it finishes. This needn’t be the case, though.

Consider how print spooling works. A user can click the Print button in a word
processing application and experience only a slight pause while the print request is
queued. Usually, some message about which printer has received the request appears
and possibly a job ID identifying the print request. The spooled output then waits on a
queue for the printer to become available, but the user is free to continue writing the
document or to perform any other tasks. Those other tasks may include monitoring the
print queue status, holding and releasing jobs, changing their priority, canceling them,
and so forth.

A JSP page can operate similarly. Instead of running a complex task in the current
thread, it can be run by launching a background thread, keeping a reference to the
thread as a session attribute. The user can receive notification that the request has been
queued and is being serviced. The JSP page may also provide displays that show the
status of the request and enable the user to hold, release, or cancel it. When the request
completes, the JSP page can provide a hyperlink that enables the results to be viewed.
Extremely long-running requests handled by extremely clever JSP pages might even
have their results e-mailed to the user.

Long Running Requests with Status Messages
A variation on this technique can be used to provide the user with a status screen
indicating the request is being processed, which is replaced by the results when the
request is complete. The key to the technique is using a background session-scoped
thread to do the work and using the <META HTTP-EQUIV="REFRESH"> HTML tag
to have the Web browser automatically monitor the status.

In the following example, the user is logging on and requesting authentication by
means of time-consuming simulated database operation. While the authentication
request is being processed, the user sees an “Authenticating, please wait...” message.
When the request is complete, this message is replaced with the results of the
authentication. Meanwhile, the servlet engine is free to handle other requests without
waiting for the authentication request to complete.

The basic conversation between client and server in this session is as follows:

Client: Please authenticate me. UserID=MyUserID, password=MyPassword
Server: OK, call me back in two seconds for status.
Client: (two seconds later) Are you done?
Server: No, call me back in two seconds for status
Client: (two seconds later) Are you done?
Server: No, call me back in two seconds for status
Client: (two seconds later) Are you done?
Server: Yes, you are authenticated (or not).

C h a p t e r 1 4 : S e s s i o n a n d T h r e a d M a n a g e m e n t 407
JS

P
IN

A
C

TIO
N

408 J S P : T h e C o m p l e t e R e f e r e n c e

The user needn’t request the updated status manually. HTML provides a client-side
automatic means of periodically updating a page:

<META HTTP-EQUIV="REFRESH" CONTENT="seconds; URL=url">

The presence of this <META> tag in an HTML document causes the browser to wait
the specified number of seconds, and then redirect to the specified URL. This feature
is commonly used to indicate a Web site has moved and the user is going to be
automatically forwarded to the new address.

The following JSP implements this protocol using a background worker thread that
simulates the database authentication delay.

<%--

Authenticator.jsp

A JSP page that displays status messages during a

long-running request and does not tie up server

resources waiting for the request to complete.

--%>

<%

// See if there is an authentication worker thread running

WorkerThread worker = (WorkerThread)

session.getAttribute("worker");

// If not, create a new one and start the authentication

if (worker == null) {

String userID = request.getParameter("userID");

String password = request.getParameter("password");

worker = new WorkerThread(userID, password);

session.setAttribute("worker", worker);

}

// Now display either the "please wait" screen

// or the "user authenticated" screen

if (!worker.isDone()) {

String url = HttpUtils.getRequestURL(request).toString();

url = response.encodeURL(url);

%>

C h a p t e r 1 4 : S e s s i o n a n d T h r e a d M a n a g e m e n t 409
JS

P
IN

A
C

TIO
N

<HTML>

<HEAD>

<TITLE>Please Wait</TITLE>

<META HTTP-EQUIV="REFRESH" CONTENT="2; URL=<%= url %>">

</HEAD>

<BODY>

Authenticating, please wait...

</BODY>

</HTML>

<%

}

else {

%>

<HTML>

<HEAD><TITLE>Done</TITLE></HEAD>

<BODY>

Authentication complete.

<%= worker.isAuthenticated() ? " You pass!" : " You fail!" %>

</BODY>

</HTML>

<%

// Done with worker

session.invalidate();

}

%>

<%!

/**

* A background thread that performs a potentially

* long-running task (authentication from a database).

*/

public class WorkerThread implements Runnable

{

private boolean done;

private boolean authenticated;

private Thread kicker;

public WorkerThread(String userID, String password)

{

done = false;

410 J S P : T h e C o m p l e t e R e f e r e n c e

authenticated = false;

kicker = new Thread(this);

kicker.start();

}

public boolean isDone()

{

return done;

}

public boolean isAuthenticated()

{

return authenticated;

}

public void run()

{

// Do the work here

try {

// Pretend to do something that takes five seconds

for (int i = 0; i < 5; i++)

Thread.sleep(1000);

// Randomly authenticate 80% of all users

authenticated = (Math.random() > 0.2);

// We are done

done = true;

}

catch (InterruptedException ignore) {}

finally {

kicker = null;

}

}

}

%>

Application Considerations
The JSP environment offers rich set of alternatives for mapping application characteris-
tics to the HTTP environment. The main consideration is object scope, that is, the period
of time during which an attribute is valid. The page context defines four scopes:

� page

� request

� session

� application

Each scope has its own lifecycle and attributes can be stored in any of them. Objects
in a particular scope are accessible to both JSP pages and servlets in the same servlet
context. The task of the developer is to choose the object scope that matches the object
use requirements.

Page scope is equivalent to the lifetime of the _jspService() method in a single
JSP page. A user ID string, for example, can be given this page scope as follows:

pageContext.setAttribute

("userID", userID, PageContext.PAGE_SCOPE);

or simply

pageContext.setAttribute("userID", userID);

Corresponding getAttribute() methods exist for retrieving the object.
Why bother storing objects in the page context with page scope when they are

already accessible simply as Java variables? The main context for this is JSP custom
tags, which use the page context to communicate between tag handlers and the JSP
page. See Chapter 11 for details about JSP custom tags.

Request scope is almost the same as page scope, but it includes other JSP pages
or servlets invoked by <jsp:include> or <jsp:forward>. Attributes can be set
in the request directly

request.setAttribute("userID", userID);

or by means of the page context:

pageContext.setAttribute

("userID", userID, PageContext.REQUEST_SCOPE);

C h a p t e r 1 4 : S e s s i o n a n d T h r e a d M a n a g e m e n t 411
JS

P
IN

A
C

TIO
N

The effect of the two method calls is identical; the pageContext.setAttribute()
method simply calls request.setAttribute(). Request scope is appropriate for
objects associated with a single request, possibly set in a servlet and used in a JSP page
to which a RequestDispatcher forwards the request.

Session scope is used by multiple requests that identify themselves with the same
session ID and are associated with an active HttpSession with that ID. Attributes can
be set in the session object directly

session.setAttribute("userID", userID);

or by means of the page context:

pageContext.setAttribute

("userID", userID, PageContext.SESSION_SCOPE);

Session scope is appropriate when all three of the following requirements are present:

� The application requires multiple HTTP requests

� Data needs to persist between requests

� One or more server-side objects must persist in a particular state across requests

As considered in this chapter, alternatives like hidden fields, URL rewriting, and
cookies exist when HTTP sessions aren’t required.

Application scope is the common namespace for all servlets and JSP pages in a Web
application. It persists between requests automatically, no session is required. Static
initialization parameters can be set in application scope by using <context-param>
in the web.xml deployment descriptor:

<context-param>

<param-name>jdbc.driver</param-name>

<param-value>sun.jdbc.odbc.JdbcOdbcDriver</param-value>

</context-param>

<context-param>

<param-name>jdbc.url</param-name>

<param-value>jdbc:odbc:composers</param-value>

</context-param>

These static parameters can be retrieved in a servlet or JSP page with the servlet context
getInitParameter() method:

412 J S P : T h e C o m p l e t e R e f e r e n c e

JS
P

IN
A

C
TIO

N
C h a p t e r 1 4 : S e s s i o n a n d T h r e a d M a n a g e m e n t 413

String driver = application.getInitParameter("jdbc.driver");

String url = application.getInitParameter("jdbc.url");

Objects can be stored in and retrieved from application scope with the same methods
as the other three scopes

pageContext.setAttribute

("userID", userID, PageContext.APPLICATION_SCOPE);

or

application.setAttribute("userID", userID);

Application scope is most useful for objects that need to persist between requests,
for objects that must be visible to all users of the application, or for objects that need
to be shared between other servlets and JSP pages.

Summary
The Web application model doesn’t automatically map into the HTTP protocol. HTTP
is stateless, not remembering anything about the client from one request to the next. The
Web browser environment also introduces complications—in an application, each page
depends on its predecessors, but a user may browse pages out of order and leave an
application without signaling she is done.

The solution to the problem is to have the client (browser) remember certain
details and remind the server each time it makes a request. This can involve the client
managing all the data but, in practice, it’s more common to see the client remember
only an identifier of some kind and have the server use that to retrieve the rest of
the data from a database. This virtual conversation (virtual because no persistent
connection is involved) is commonly called a session.

This chapter deals with four techniques for session management:

� Hidden fields in HTML forms These are simple to use, but can only be
transmitted with an HTML form. If the user clicks a hyperlink, the hidden
fields (and, therefore, the session) are lost.

� URL rewriting This involves appending the session identifier to all URLs
generated by the JSP page. Performance-wise, this technique can be expensive.

� Cookies Small named data elements are sent to the client and returned to the
server when the page is revisited. Cookies have the advantage that they can persist
for an arbitrary length of time, even after the client computer is turned off. The
disadvantage is some users turn off cookie support because of concerns for privacy.

� The session API The servlet engine can create an HttpSession object that
acts as a repository for named objects that persist between requests from the
same client in the same application. The client remembers the ID of the session
either with cookies or URL rewriting. The servlet engine determines which of
these techniques the client accepts and adjusts accordingly.

Sessions can be shut down programmatically or they can time out according to a
configurable period of inactivity. The session API provides a means for objects to know
when they have been bound or unbound from a session.

JSP pages, because they run in a pure Java environment, have full access to Java’s
support for multithreaded applications. This chapter discusses basic thread concepts,
such as how to create, start, and synchronize them, and then considers the two servlet
threading models. Two examples of Web applications using multiple threads are
presented.

Even though dynamic content wasn’t planned for in the original HTTP protocol,
the protocol has proved to be quite capable of extension. Building on this flexibility,
the session API provides the framework for making HTTP work in the Web
application environment.

414 J S P : T h e C o m p l e t e R e f e r e n c e

Chapter 15
JSP and JavaBeans

415

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

416 J S P : T h e C o m p l e t e R e f e r e n c e

Great advances in hardware and electronics technology have been made possible
by component engineering. Instead of starting with bare circuits, engineers can
assemble tested modules in novel ways to create higher-level functionality.

Component-based programming extends this idea to the realm of software. In the Java
world, this means JavaBeans.

This chapter describes the JavaBeans programming model and how beans surface
their properties to classes that use them. It explains the interface provided for using
beans in a JSP page. The chapter concludes with a complete example illustrating the
operation of a customizable weather-reporting bean in a JSP page.

What Is a JavaBean?
The definition of a bean is purposely broad. A bean is simply a Java class that meets
two requirements:

� It has a zero-argument constructor.

� It implements Serializable or Externalizable to make it persistent.

By this definition, most classes are already beans or can be converted with little
effort. No required context for running beans exists other than the Java virtual
machine. This allows properly constructed beans to be used in any Java
environment—applets, servlets, JSP pages, or standalone Java applications.

Bean Properties
In addition, most beans have properties. Properties are attributes of the bean for which
the bean provides read and/or write methods. All access to the bean’s properties must
be done through these methods; the underlying data field (if there is one) is private. Part
of the JavaBeans programming model is the naming convention used for these methods.
Unless you make special provision through a BeanInfo class, the read method for a
property is a public method named get<PropertyName>(), where <PropertyName> is
the name of the property with the first letter converted to uppercase. Similarly, the write
method, if there is one, is named set<PropertyName>().

The following example is a JavaBean named Mortgage, which encapsulates the
parameters that describe a mortgage loan:

package jspcr.beans.mortgage;

import java.io.*;

public class Mortgage implements Serializable

{

private double principal;

C h a p t e r 1 5 : J S P a n d J a v a B e a n s 417
JS

P
IN

A
C

TIO
N

private double rate;

private int term;

/**

* Returns the principal.

*/

public double getPrincipal()

{

return principal;

}

/**

* Sets the principal.

* @param principal the principal.

*/

public void setPrincipal(double principal)

{

this.principal = principal;

}

/**

* Returns the annual interest rate

*/

public double getRate()

{

return rate;

}

/**

* Sets the interest rate.

* @param rate the annual interest rate as a percentage.

*/

public void setRate(double rate)

{

this.rate = rate;

}

/**

* Returns the term in months.

*/

public int getTerm()

{

return term;

}

/**

* Sets the term.

* @param term the term in months.

*/

public void setTerm(int term)

{

this.term = term;

}

/**

* Returns the amortization factor, the amount of the

* monthly payment that will pay all principal and

* interest within the specified period of time.

*/

public double getPayment()

{

if (rate == 0)

throw new IllegalArgumentException

("No interest rate specified");

double mrate = rate / 1200.0;

double fv = Math.pow((1 + mrate), term);

double numer = principal * mrate * fv;

double denom = fv - 1.0;

return round(numer / denom);

}

/**

* Utility method that rounds a currency amount to

* the nearest 1/100 of the currency unit.

*/

public static final double round(double x)

{

return ((double) ((long) (x * 100.0 + 0.5))) / 100.0;

}

}

The Mortgage bean has four properties:

418 J S P : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 5 : J S P a n d J a v a B e a n s 419
JS

P
IN

A
C

TIO
N

� principal The amount of money borrowed.

� rate The annual interest rate expressed as a percentage. For example, 6 percent
would be entered as 6.0.

� term The number of months over which payments are to be made on the loan.

� payment A read-only property.

Notice private data fields exist for the first three properties, but not for the fourth, which
is calculated on demand. This underscores that what counts is the existence of the get
and set methods. These methods are the only face the bean shows to the outside world.

Classes interested in changes in a bean’s state can implement one of the many
EventListener interfaces. When a class is registered as an event listener, it receives
callbacks when events of interest happen in the bean. This makes it possible for beans
to act cooperatively to accomplish larger tasks. The AWT and Swing GUI architectures
make extensive use of this event model. Beans used in server-side environments,
however, tend to be used mainly as property repositories and don’t typically
implement support for event listeners.

Persistence
That being the case, a bean must provide some way for its state to persist in between times
in which it is active, even in different Java virtual machines. This is accomplished by having
the bean implement either the Serializable or the Externalizable interface.

Serialization refers to the process of converting objects to a stream of bytes that
can be stored in a file or transmitted across a network. The complementary process
of reassembling the objects from the byte stream is called deserialization. The Java API
provides ObjectOutputStream and ObjectInputStream classes designed for
this purpose.

An object is serialized by being written to an ObjectOutputStream with the output
stream’s writeObject() method. For example, a program that contains a Mortgage
bean can serialize it as follows:

OutputStream fileOut = new FileOutputStream("mortgage.ser");

ObjectOutputStream objOut = new ObjectOutputStream(fileOut);

objOut.writeObject(mortgageBean);

objOut.flush();

fileOut.close();

Later, this or any other program can reconstitute the Mortgage bean from the
mortgage.ser file using the readObject() method of an ObjectInputStream:

InputStream fileIn = new FileInputStream("mortgage.ser");

ObjectInputStream objIn = new ObjectInputStream(fileIn);

420 J S P : T h e C o m p l e t e R e f e r e n c e

Mortgage mortgageBean = null;

try {

mortgageBean = (MortgageBean) objIn.readObject();

}

catch (ClassNotFoundException e) {

// handle exception

}

In these two code snippets, only one object is being serialized, and it’s being
serialized to a file. Serializing multiple objects is just as easy; there are simply multiple
calls to objOut.writeObject(). As long as the program that deserializes the object(s)
knows the correct number of objects and their types, it can read them with multiple calls
to objIn.readObject(). Similarly, the backing stream needn’t be a file—it can be a
socket, a byte array, or punched cards, if the virtual machine supports them.

Note: the Mortgage class needn’t do anything special to be serialized; it only needs
to implement the Serializable interface. Ordinarily, the servlet engine takes care of
all the logic needed to store session and application beans when the servlet engine is
terminated, and restoring them when it’s restarted.

One exception exists, however. Not all objects are serializable. For example, a database
connection cannot be put into suspended animation and reawakened later. Its very
nature requires it to be in communication with a corresponding object in the database
management system. Likewise, threads are tied to underlying operating system threads
and cannot simply be dematerialized and rematerialized. In these cases, the object
containing nonserializable objects must provide a means for them to be reconnected or
restarted. Moreover, it must declare variable references to those objects with the keyword
transient to prevent the normal serialization process from attempting to handle them.

A class that contains transient objects should restore them by providing a method
with this signature:

private void readObject(ObjectInputStream in)

throws IOException

In the readObject() method, the class should first call defaultReadObject()
to restore the serializable data fields, and then perform whatever logic is necessary to
initialize the transient fields. Typically, this restoration is done by calling another
method, which can also be called from the constructor, to avoid duplicate code.

An example can help clarify this:

import java.io.*;

C h a p t e r 1 5 : J S P a n d J a v a B e a n s 421
JS

P
IN

A
C

TIO
N

public class CounterBean implements Runnable, Serializable

{

private transient Thread thread;

private int count;

/**

* Creates a new CounterBean, initializes its count

* to zero, and starts the counting thread

*/

public CounterBean()

{

count = 0;

start();

}

/**

* Restores this CounterBean from an object stream

* and restarts the thread

*/

private void readObject(ObjectInputStream in)

throws IOException

{

try {

// Call this first to restore all the

// non-transient fields

in.defaultReadObject();

}

catch (ClassNotFoundException e) {

throw new IOException(e.getMessage());

}

// Restart the thread

start();

}

/**

422 J S P : T h e C o m p l e t e R e f e r e n c e

* Provides a means to shut down the thread

*/

public void interrupt()

{

if (thread != null)

thread.interrupt();

}

/**

* Starts the counting thread. This method

* is called both from the constructor when

* the object is first created and from the

* readObject method when the object is deserialized.

*/

private void start()

{

if (thread == null) {

thread = new Thread(this);

thread.setPriority(Thread.MIN_PRIORITY);

thread.start();

}

}

/**

* Increments and prints the value of the counter

* every second.

*/

public void run()

{

try {

for (;;) {

Thread.sleep(1000);

count++;

System.out.println(count);

}

}

catch (InterruptedException e) {}

}

}

C h a p t e r 1 5 : J S P a n d J a v a B e a n s 423
JS

P
IN

A
C

TIO
N

The CounterBean class uses a background thread to print the value of a counter
at one-second intervals. The class is serializable, but the thread isn’t, so logic exists for
restarting the thread when the class is deserialized. Note, the thread variable is declared
with the transient keyword. The class has two entry points: its constructor and the
readObject() method. Both entry points call start(), which creates and starts a
thread to handle the counter logic. The thread continues to run until it’s interrupted.

A program that uses this counter bean can invoke it by its constructor, serialize it,
and then deserialize it with the thread apparently picking up where it left off:

import java.io.*;

/**

* A class that uses CounterBean. If a serialized

* version exists, it will deserialize that. Otherwise,

* it will create a new CounterBean.

*/

public class CBTest

{

public static void main(String[] args)

throws IOException, ClassNotFoundException

{

CounterBean bean = null;

// If a serialized version exists, load it

File file = new File("counter.ser");

if (file.exists()) {

System.out.println("Deserializing bean");

FileInputStream fileIn = new FileInputStream(file);

ObjectInputStream objIn = new ObjectInputStream(fileIn);

bean = (CounterBean) objIn.readObject();

objIn.close();

fileIn.close();

}

// Otherwise, create a new bean

else {

System.out.println("Creating new bean");

424 J S P : T h e C o m p l e t e R e f e r e n c e

bean = new CounterBean();

}

// Let the bean run until the user presses the

// enter key

BufferedReader in =

new BufferedReader(

new InputStreamReader(

System.in));

System.out.println("Press Enter to terminate program");

in.readLine();

bean.interrupt();

// Serialize the bean

System.out.println("Serializing bean");

FileOutputStream fileOut = new FileOutputStream(file);

ObjectOutputStream objOut = new ObjectOutputStream(fileOut);

objOut.writeObject(bean);

objOut.flush();

objOut.close();

fileOut.close();

}

}

Instead of implementing Serializable, a bean may implement Externalizable
for its persistence scheme. An Externalizable object handles its own reading and
writing from object streams, using whatever format it chooses. It must provide
readExternal(ObjectInput) and writeExternal(ObjectOutput)
methods for this purpose. But, because Serializable objects can supply their
own readObject() methods using any format desired, Externalizable offers
few advantages and isn’t widely used.

JSP Actions
As you’ve seen, JavaBeans are also Java classes and, as such, can be created and
manipulated in JSP pages using scriptlets, declarations, and expressions. The JSP

C h a p t e r 1 5 : J S P a n d J a v a B e a n s 425
JS

P
IN

A
C

TIO
N

specification provides special support for beans that makes them scriptable at a higher
level, however. This support consists of three standard actions:

<jsp:useBean> For declaring, instantiating, and initializing beans

<jsp:setProperty> For setting bean properties

<jsp:getProperty> For retrieving bean property values

The following sections discuss each of these actions.

<jsp:useBean>
A <jsp:useBean> tag creates or deserializes a bean and associates it with a scripting
variable. The syntax is as follows:

<jsp:useBean id="name" scope="scope" typespec/>

or

<jsp:useBean id="name" scope="scope" typespec>
<body>

</jsp:useBean>

where name, scope, and typespec are defined in the following.

The <jsp:useBean> id Attribute
The name specified in the id attribute is an identifier used as the attribute name for the
bean object in the specified scope and declared as a Java scripting variable in the JSP
page. Because this value is a scripting variable, it is case-sensitive and must conform
to Java naming rules for identifiers. This value is used in the name attribute of the
<jsp:setProperty> and <jsp:getProperty> actions to indicate to which of
possibly several beans the action applies.

The <jsp:useBean> scope Attribute
scope designates the namespace in which the bean exists. These are the same scopes
maintained by the PageContext object. Possible values are

� PAGE Valid for the duration of this JSP page. This is the default scope.

� REQUEST Valid for the remainder of the JSP page and for any other resources
servicing this request through a <jsp:forward> or <jsp:include> action.

426 J S P : T h e C o m p l e t e R e f e r e n c e

� SESSION Valid during the execution of any JSP page or servlet in this
HTTP session.

� APPLICATION Valid in any JSP page or servlet in this Web application
(servlet context).

Beans in any of these scopes can be accessed with the getAttribute() and
setAttribute() methods of the pageContext variable. Beans in the request,
session, or application namespaces can be accessed in servlets with the
getAttribute() and setAttribute() methods of the ServletRequest,
HttpSession, and ServletContext classes, respectively.

The <jsp:useBean> type Specification
The type specification consists of some combination of the class, type, and
beanName attributes. Combinations of these attributes allow flexibility in what the
useBean action does. At least one of class and type must be specified, and beanName
cannot be used if class is specified. This means the valid combinations are

� type only

� class only

� type and class

� type and beanName

The type specification allows new beans to be created, serialized beans to be reused,
or existing beans to be incorporated into the JSP bean framework. Further capabilities
arise from the fact that <jsp:useBean> can have a body of JSP code. The code in the
body of the <jsp:useBean> tag (typically one or more <jsp:setProperty> actions
and scriptlets) is only executed if the bean is newly instantiated in the current request.

The exact operation of the <jsp:useBean> tag is best explained graphically. The
flowcharts in this section describe how the tag is evaluated in each of the four cases
listed previously.

Only type attribute Specified A bean may implement several interfaces, with only
one of them important to the operation of the bean in a given JSP page. The desired
interface can be entered in the type attribute. When only the type is specified, the JSP
engine defines a scripting variable of that type, and then looks in the specified scope for
an attribute whose name matches the given id. If the JSP engine finds a matching object,
it casts the object into the specified type and assigns it to the variable. Otherwise, if it
cannot find the object, the JSP engine throws an InstantiationException. This
process is illustrated in Figure 15-1.

C h a p t e r 1 5 : J S P a n d J a v a B e a n s 427
JS

P
IN

A
C

TIO
N

Only class attribute Specified If a specific bean class is required, the class attribute
should be specified. Again, the JSP engine declares a variable of the class and looks in
the specified scope for an attribute with a matching name. If it finds one, the JSP engine
casts the object into the specified class and assigns it to the variable. Otherwise, the JSP
engine creates a new object of the specified class, assigns this to the variable, and sets it
as an attribute in the scope. If the <jsp:useBean> tag has a body, the body is then
evaluated. This process is shown in Figure 15-2.

Figure 15-1. Flowchart of <jsp:useBean> processing when only type is given

Both type and class Specified A closely related situation is where a specific bean
class is desired, but only a particular interface will be used. In this case, the processing
is the same as the previous case, except the variable type and the casting operations use
the type, not the class. Figure 15-3 shows the algorithm.

428 J S P : T h e C o m p l e t e R e f e r e n c e

Figure 15-2. Flowchart of <jsp:useBean> processing when only class is given

C h a p t e r 1 5 : J S P a n d J a v a B e a n s 429
JS

P
IN

A
C

TIO
N

Type and beanName Specified When an already serialized bean is to be imported
into the JSP environment (such as the Mortgage or CounterBean beans described earlier
in the chapter), the type and beanName attributes should be used. The beanName must

Figure 15-3. Flowchart of <jsp:useBean> processing when both type and class
are given

430 J S P : T h e C o m p l e t e R e f e r e n c e

be in the form used by Beans.instantiate(ClassLoader loader, String name).
The name is first converted to a filename, as follows:

� Periods are converted to “/”

� .ser is appended to the end

So, for example, jspcr.beans.mortgage.Mortgage is converted to
jspcr/beans/mortgage/Mortgage.ser. If a file by that name can be found by
the class loader, it’s deserialized to obtain the object. Otherwise, the original name is
treated as a class name and the class loader tries to create an instance of the named class.
In either case, the new bean is assigned to a scripting variable of the specified id and
stored as an attribute in the appropriate scope. The process is illustrated in Figure 15-4.

<jsp:setProperty>
The <jsp:setProperty> action assigns values to bean properties based on values
in the JSP page. The syntax can be any of the four following forms:

<jsp:setProperty name=”name” property=”property” value=”value” />

or

<jsp:setProperty name=”name” property=”property” param=”param” />

or

<jsp:setProperty name=”name” property=”property” />

or

<jsp:setProperty name=”name” property=”*” />

where name, property, param, and value are as described in the following sections.

The <jsp:setProperty> name Attribute
The name attribute identifies the bean whose properties should be set. The name
must have previously been specified as the id attribute of a <jsp:useBean> tag.

C h a p t e r 1 5 : J S P a n d J a v a B e a n s 431
JS

P
IN

A
C

TIO
N

Figure 15-4. Flowchart of <jsp:useBean> processing when type and beanName
are specified

432 J S P : T h e C o m p l e t e R e f e r e n c e

The <jsp:setProperty> property Attribute
Once the particular bean has been identified, the name of the property or properties
to be set must be specified. This is the role of the property attribute. This attribute
can be either a property name or the special value *. If this attribute is a name, then
the bean must have a corresponding set method for that property. For example, in
our Mortgage bean, setPrincipal(), setRate(), and setTerm() methods
exist, which are used to set the principal, rate, and term properties, respectively.

If the property attribute is *, then the list of the bean’s settable properties is compared
with a list of parameters in the current request. Wherever a match occurs, the set
method is invoked with the corresponding request parameter. So, for example, if an
HTML form contains these fields

<FORM ACTION=”DoMortgage.jsp”>

Principal: <INPUT TYPE=”TEXT” NAME=”principal”>

Annual Interest Rate: <INPUT TYPE=”TEXT” NAME=”rate”>

Term in months: <INPUT TYPE=”TEXT” NAME=”term”>

<INPUT TYPE=”SUBMIT”>

</FORM>

and DoMortgage.jsp has the following actions:

<jsp:useBean id=”loan” class=”jspcr.beans.mortgage.Mortgage”>

<jsp:setProperty name=”loan” property=”*”/>

</jsp:useBean>

Then the setProperty line has the same effect as these lines

<jsp:setProperty

name=”loan”

property=”principal”

value=”<%= request.getParameter(“principal”) %>”/>

<jsp:setProperty

name=”loan”

property=”rate”

value=”<%= request.getParameter(“rate”) %>”/>

<jsp:setProperty

name=”loan”

C h a p t e r 1 5 : J S P a n d J a v a B e a n s 433
JS

P
IN

A
C

TIO
N

property=”term”

value=”<%= request.getParameter(“term”) %>”/>

but with the benefit of requiring fewer lines of code and involving fewer chances for error.
This is also the effect achieved by specifying the property name, but no value or

param attribute. In this case, the property value is assigned from the corresponding
request parameter.

If property attribute is *, or if neither value nor param is specified, and the request
parameter is null or the empty string, then the corresponding bean property is not modified.

The <jsp:setProperty> param Attribute
Mapping request parameters to bean properties is possible when their names are
different by using the param attribute in <jsp:setProperty>. If the param
attribute is specified, the request parameter by that name is assigned to the property
named in the property attribute1.

The <jsp:setProperty> value Attribute
The value attribute specifies the value to be assigned to the bean property. If the
attribute is omitted, then the corresponding request parameter value is used, as
previously described. Otherwise, the value can be specified as a string or as a JSP
expression in the form <%= expression %>. The latter syntax is known as a request
time attribute expression.

If the value is a literal string, then the bean property must have the
java.lang.String type or it must be a primitive type (boolean, byte, char,
double, int, float, long) or the corresponding object wrapper type (Boolean,
Byte, Char, Double, Integer, Float, Long). The nonstring types are converted
from string using the object wrapper valueOf methods. So, for example, the
Mortgage property rate, with its setter method

public void setRate(double x)

{

this.rate = x;

}

1 Normally, you have more latitude in assigning names to form variables than you do to bean
properties because forms are rarely shared between applications. So why make it hard on yourself
when you can simply use the same name in the form as you do in the bean?

434 J S P : T h e C o m p l e t e R e f e r e n c e

can be invoked as follows:

<jsp:setProperty name=”loan” property=”rate” value=”8.75”/>

The JSP translator then creates code to set the property like this:

loan.setRate(Double.valueOf(“8.75”).doubleValue());

If a request time expression is used to supply the value

<jsp:setProperty name=”loan” property=”rate”

value=”<%= LIBOR.getSixMonthLiborRate() + 0.05 %>”/>

then the JSP translator uses introspection to find the property type and casts the
expression into that type:

loan.setRate((double) (LIBOR.getSixMonthLiborRate() + 0.05));

<jsp:getProperty>
Bean property values can be retrieved with the <jsp:getProperty> action. This
action has the form

<jsp:getProperty name=”name” property=”property”/>

where name is the bean with the corresponding id attribute, and property is the name
of the property desired. The property name must be a literal string, not a request time
expression. When the <jsp:getProperty> tag is evaluated at run time, the value of the
corresponding bean property is converted to a string and written to the JSP output stream.

A Complete Example—Personalization
with Beans
Let’s put all these elements together and consider a complete example. Many portal
Web sites customize the content and presentation of the page according to the user’s
preferences. This personalization may take the form of hyperlinks to products and
information related to previous interests the user has expressed. MSNBC, for example,
displays local weather and stock prices of the user’s choice. The idea behind this is the
user is less likely to leave the site to find this information if it’s always there on the
home page.

C h a p t e r 1 5 : J S P a n d J a v a B e a n s 435
JS

P
IN

A
C

TIO
N

We (the LyricNote Web designers) have decided to add information like this to the
home page. The first piece to be added is a line of local weather information, customized
by the user to report the weather for the desired local area.

Getting Weather Data from the Web
The first thing we need is a source of weather information. In the United States, this is
readily available from the National Weather Service, an organization of the National
Oceanic and Atmospheric Administration. Their Web pages provide weather data,
forecasts, current conditions, weather maps, storm predication, and a wealth of other
weather information. Although they are designed to be accessed through a Web
browser by a human user, these Web pages can just as easily be read as a URL input
stream by a Java program.

To do this, we create a weather Observation bean. Observation uses an airport
code as the key to a National Weather Service Web site that reports current weather
observations for that location. The bean has five properties, as listed in Table 15-1:

Most of these properties have only get methods because their values should be set
internally as the bean parses the National Weather Service Web page. The only property
that can be set is the airport code. Calling the setAirportCode() tells the bean to get
the latest readings and update its other properties.

From the airport code, the bean constructs the URL to the specific Web page with
that airport’s weather readings. It then opens the URL input stream and parses the
HTML that flies by for the specific properties it needs: location, time, and temperature.

Property Access Description

airportCode read/write The three-character code for the airport
at which the weather is measured.
Setting this property instructs the
bean to go to the weather Web site
to get the latest readings.

URL read-only The URL for the National Weather
Service Web page that contains this
airport’s readings.

location read-only The airport name.

time read-only The date and time of the observation.

temperature read-only The temperature in degrees Celsius.

Table 15-1. Properties of the Weather Observation Bean

This is the weak link in the chain. A Web page produced by an outside source is obviously
subject to change, so whatever heuristics are used to parse it must be reviewed and updated
periodically. This “Web mining” technique is most useful when it is based on internal
Web sites for which the format is positively known. However, many governmental
and commercial Web sites are computer-generated and present information in a fairly
regular form.

package jspcr.beans.weather;

import java.io.*;

import java.net.*;

import java.text.*;

import java.util.*;

/**

* A bean that extracts weather information from

* the U. S. National Weather Service web site

*/

public class Observation implements Serializable

{

/**

* The base URL for National Weather Service data

*/

private static final String BASEURL =

"http://weather.noaa.gov/weather/current";

/**

* Date format used for parsing observation time

*/

private static final SimpleDateFormat DATEFMT =

new SimpleDateFormat("MMM dd, yyyy - hh:mm aa zzz");

/**

* Airport code

*/

private String airportCode;

/**

* Full name of location

*/

private String location;

436 J S P : T h e C o m p l e t e R e f e r e n c e

/**

* Time of observation

*/

private Date time;

/**

* Temperature in degrees Celsius

*/

private Double temperature;

// ===

// Bean accessor methods

// ===

/**

* Returns the airport code

*/

public String getAirportCode()

{

return airportCode;

}

/**

* Sets the airport code, which

* causes the bean to be reloaded.

* @param airportCode the airportCode.

*/

public void setAirportCode(String airportCode)

throws IOException

{

this.airportCode = airportCode;

loadFromURL(getURL());

}

/**

* Returns the location.

*/

public String getLocation()

{

return location;

}

C h a p t e r 1 5 : J S P a n d J a v a B e a n s 437
JS

P
IN

A
C

TIO
N

/**

* Sets the location.

* @param location the location.

*/

protected void setLocation(String location)

{

this.location = location;

}

/**

* Returns the time.

*/

public Date getTime()

{

return time;

}

/**

* Sets the time.

* @param time the time.

*/

protected void setTime(Date time)

{

this.time = time;

}

/**

* Returns the temperature.

*/

public double getTemperature()

{

return (temperature == null)

? 0

: temperature.doubleValue();

}

/**

* Sets the temperature.

* @param temperature the temperature.

*/

protected void setTemperature(double temperature)

{

438 J S P : T h e C o m p l e t e R e f e r e n c e

this.temperature = new Double(temperature);

}

/**

* Returns the URL of the NWS web page that contains

* current weather conditions at the airport

*/

public URL getURL() throws MalformedURLException

{

StringBuffer sb = new StringBuffer();

sb.append(BASEURL);

sb.append("/K");

sb.append(airportCode.toUpperCase());

sb.append(".html");

return new URL(sb.toString());

}

// ===

// Web page parsing routines

// ===

/**

* Loads the weather data from a URL

*/

protected void loadFromURL(URL url)

throws IOException

{

load(url.openStream());

}

/**

* Parses an HTML input stream to extract a weather

* observation. Note that this uses heuristics to

* determine where each data element can be found

* in the HTML. As such, it is subject to change.

*/

protected void load(InputStream stream) throws IOException

{

location = null;

time = null;

C h a p t e r 1 5 : J S P a n d J a v a B e a n s 439
JS

P
IN

A
C

TIO
N

440 J S P : T h e C o m p l e t e R e f e r e n c e

temperature = null;

BufferedReader in =

new BufferedReader(

new InputStreamReader(stream));

for (;;) {

String line = in.readLine();

if (line == null)

break;

if (location == null)

parseLocation(line);

if (time == null)

parseTime(line);

if (temperature == null)

parseTemperature(line);

}

in.close();

}

/**

* Searches the current line for the location

*/

protected void parseLocation(String line)

{

final String TOKEN1 = "<TITLE>";

final String TOKEN2 = "-";

final String TOKEN3 = "</TITLE>";

int p = line.indexOf(TOKEN1);

if (p != -1) {

p += TOKEN1.length();

p = line.indexOf(TOKEN2, p);

if (p != -1) {

p += TOKEN2.length();

int q = line.indexOf(TOKEN3);

if (q != -1) {

String token = line.substring(p, q).trim();

StringTokenizer st =

new StringTokenizer(token, ",");

token = st.nextToken();

token = st.nextToken();

C h a p t e r 1 5 : J S P a n d J a v a B e a n s 441
JS

P
IN

A
C

TIO
N

setLocation(token);

}

}

}

}

/**

* Searches the current line for the time

*/

protected void parseTime(String line)

{

final String TOKEN1 = "<OPTION SELECTED>";

final String TOKEN2 = "<OPTION>";

int p = line.indexOf(TOKEN1);

if (p != -1) {

p += TOKEN1.length();

int q = line.indexOf(TOKEN2, p);

if (q != -1) {

String token = line.substring(p, q).trim();

Date date = DATEFMT.parse

(token, new ParsePosition(0));

if (date != null)

setTime(date);

}

}

}

/**

* Searches the current line for the temperature

*/

protected void parseTemperature(String line)

{

final String TOKEN1 = "(";

final String TOKEN2 = "C)";

int q = line.lastIndexOf(TOKEN2);

if (q != -1) {

int p = line.lastIndexOf(TOKEN1);

if (p != -1) {

p += TOKEN1.length();

String token = line.substring(p, q).trim();

try {

setTemperature(Double.parseDouble(token));

}

catch (NumberFormatException e) {

e.printStackTrace();

}

}

}

}

}

The heart of the bean is the load() method, which parses the input stream looking
for the location, time, and temperature. Figure 15-5 shows a typical National Weather
Service Web page for weather conditions at the Raleigh-Durham International Airport
in North Carolina.

442 J S P : T h e C o m p l e t e R e f e r e n c e

Figure 15-5. Web page from the National Weather Service for Raleigh-Durham
International Airport

The HTML that produces the Web page contains all the information we need, if we
can find reliable rules for extracting it. The location property turns out to be fairly
simple because it’s enclosed in the HTML <TITLE> ...</TITLE> tags:

<HTML>

<HEAD>

<TITLE>Current Weather Conditions - Raleigh / Durham,

Raleigh-Durham International Airport, NC,

United States </TITLE>

(The title is all on one line in the HTML; it is folded here for readability). The
parseLocation() method tests the current line to see if it contains the <TITLE>
and </TITLE> tokens. If so, the text between the tokens is extracted and the second
comma-delimited field is used as the location name.

The time property is located between the only pair of <OPTION SELECTED>
and <OPTION> tags in the document:

<TD><FORM>

<SELECT><OPTION SELECTED> Nov 05, 2000 - 10:51 PM EDT

<OPTION> Nov 05, 2000 - 09:51 PM CDT

<OPTION> Nov 05, 2000 - 08:51 PM MDT

<OPTION> Nov 05, 2000 - 07:51 PM PDT

<OPTION> Nov 05, 2000 - 06:51 PM ADT

<OPTION> Nov 05, 2000 - 05:51 PM HDT

</SELECT>
 2000.11.06 0251 UTC

</FORM></TD>

(Again, the HTML has been wrapped for readability. The original HTML is all on
one line.) We use the parse() method in SimpleDateFormat to convert the date
and time into a java.util.Date.

The temperature property occurs in the Web page in this form:

<TR VALIGN=TOP>

<TD ALIGN=RIGHT BGCOLOR="#FFFFFF">

Temperature</TD>

<TD> 42.1 F (5.6 C)

</TD>

</TR>

This property is slightly more difficult to isolate because the keyword Temperature
appears on the previous line. We take a simpler approach, looking for the first line ending
in (...C) and parsing the string between the parentheses for the degrees Celsius.

C h a p t e r 1 5 : J S P a n d J a v a B e a n s 443
JS

P
IN

A
C

TIO
N

444 J S P : T h e C o m p l e t e R e f e r e n c e

The rest of the class consists mainly of the appropriate get and set methods for each
of the properties.

The LyricNote Portal
Now we have a bean that hides all the messy details of finding Web pages and parsing
HTML, and simply presents a means of getting current weather conditions given an
airport code. The bean reduces the process to the complexity of a function call, hardly
more difficult than finding the cosine of an angle by calling Math.cos(). We can now
put this bean to work in our portal Web page.

Our strategy is now to record the user’s location preference (airport code) with a
persistent cookie. Each time the Web page is displayed, the airport code is retrieved
from the cookie and is used to initialize an Observation bean. The resulting location,
time, and temperature are displayed unobtrusively on a line under the logo at the top
of the page. In addition, the line contains a hyperlink that enables the user to select a
new airport code. The following shows a portion of the portal JSP:

<%@ page session="false" %>

<HTML>

<HEAD>

<TITLE>LyricNote Portal</TITLE>

<LINK REL="stylesheet" HREF="style.css">

</HEAD>

<BODY>

<HR COLOR="#000000">

<%-- Get weather cookie --%>

<%

String airportCode = "RDU";

Cookie[] cookies = request.getCookies();

if (cookies != null) {

for (int i = 0; i < cookies.length; i++) {

Cookie cookie = cookies[i];

if (cookie.getName().equals("airportCode")) {

airportCode = cookie.getValue();

break;

}

}

}

C h a p t e r 1 5 : J S P a n d J a v a B e a n s 445
JS

P
IN

A
C

TIO
N

%>

<%-- Get the weather observation bean for that location --%>

<jsp:useBean id="wobs" class="jspcr.beans.weather.Observation">

<jsp:setProperty

name="wobs"

property="airportCode"

value="<%= airportCode %>"/>

</jsp:useBean>

<%-- Show weather information --%>

 Weather

<jsp:getProperty name="wobs" property="location"/>

<jsp:getProperty name="wobs" property="time"/>

<jsp:getProperty name="wobs" property="temperature"/> C°

 Select City

<HR COLOR="#000000">

<%-- Show the rest of the web page --%>

</BODY>

</HTML>

The array of cookies returned with the HTTP request is scanned for a cookie whose
name is airportCode. If this cookie exists, its value is substituted for the default
airport code (RDU, for Raleigh/Durham North Carolina). Next, the Observation
bean is declared

<jsp:useBean id="wobs" class="jspcr.beans.weather.Observation">

and initialized with the selected airport code:

<jsp:setProperty

name="wobs"

446 J S P : T h e C o m p l e t e R e f e r e n c e

property="airportCode"

value="<%= airportCode %>"/>

All that remains is to extract the bean properties and to write them to the
output stream:

<jsp:getProperty name="wobs" property="location"/>

<jsp:getProperty name="wobs" property="time"/>

<jsp:getProperty name="wobs" property="temperature"/> C°

Figure 15-6 shows the resulting display.
If the user clicks the Select City hyperlink, a list of airports for which weather

data is known to be available is presented, as seen in Figure 15-7. This isn’t a JSP page,
only a simple HTML form that invokes the proper cookie-setting JSP.

The form action attribute points to SetAirportCode.jsp, which is a nonvisual
JSP page that sends the new airport code cookie to the user and redirects back to the
portal page, as shown in the following code.

Figure 15-6. The LyricNote portal Web page with default weather information

C h a p t e r 1 5 : J S P a n d J a v a B e a n s 447
JS

P
IN

A
C

TIO
N

<%@ page session="false" %>

<%

String airportCode = request.getParameter("airportCode");

if (airportCode != null) {

Cookie cookie = new Cookie("airportCode", airportCode);

final int ONE_YEAR = 60 * 60 * 24 * 365;

cookie.setMaxAge(ONE_YEAR);

response.addCookie(cookie);

}

response.sendRedirect("Portal.jsp");

%>

If the Web user happens to be located in Roswell, New Mexico (or interested in weather
conditions for landing there), and chooses the appropriate line in the airport selection box,
the airport code cookie value is set to ROW. All subsequent requests through the LyricNote
portal cause the Observation bean to retrieve weather conditions at Roswell Industrial
Air Center Airport (see Figure 15-8).

Figure 15-7. The airport selection page

448 J S P : T h e C o m p l e t e R e f e r e n c e

Summary
Component-based programming in the Java architecture uses JavaBeans. The beans
programming model uses public get and set methods to access private bean properties,
event listeners to link other classes to the state of a bean, and serialization to make beans
persistent.

The JSP programming environment provides standard tags for declaring and
accessing beans:

� <jsp:useBean>

� <jsp:setProperty>

� <jsp:getProperty>

The useBean tag can declare, instantiate, and initialize a bean. This tag has a
variety of attribute combinations that enable the bean to be extracted from an existing
namespace, created as a new instance, or restored from a serialized object. The namespaces
supported are page scope, request scope, session scope, or application scope.

Figure 15-8. The LyricNote portal Web page with updated weather information

C h a p t e r 1 5 : J S P a n d J a v a B e a n s 449
JS

P
IN

A
C

TIO
N

setProperty and getProperty are used to store and retrieve properties from
a bean. In addition to literal string values, properties can be set from both form
parameters and request time expressions.

JavaBeans offer significant advantages in the JSP environment. They can be written and
tested in isolation, and then reused in applet, servlet, and standalone application contexts.
JavaBeans also reduce the amount of Java code exposed in JSP scriptlets and declarations.
In conjunction with cookies, custom tags, and other advanced JSP techniques, JavaBeans
provide a reliable, productive base for developing useful Web applications.

This page intentionally left blank.

Chapter 16
JSP and XML

451

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Since its origin in the World Wide Web Consortium (W3C) in 1996 and its adoption as
a W3C recommendation in 1998, the Extensible Markup Language (XML) has established
itself as the universal language for structured data storage and interchange. XML

is used for Web site content management, business to business data exchange, and
applications as diverse as architecture, financial reporting, and music. In addition
to applications, XML tools and extensions are finding their way into all aspects of
programming.

This chapter examines some ways in which XML can be incorporated into Web
applications. After an overview section, it discusses the two XML parser models, and
then XSL transformations. All three technologies are illustrated in three solutions to
the same HTML creation task.

XML Overview
XML is a system of describing structured data with a user-defined set of markup
tags. XML isn’t a language itself, but a system of defining special-purpose languages.
It looks superficially like HTML, which marks sections of a Web document with predefined
, , <TABLE>, and other tags. The difference is HTML has a fixed set of tags,
whereas XML enables you to design any set of tags necessary to describe your data.

For example, a song for voice and piano might be represented in part like this:

<?xml version="1.0"?>

<song>

<title>The Birds</title>

<words-by>Hilaire Belloc</words-by>

<music-by>Benjamin Britten</music-by>

<track name="Voices">

<time-signature>2/2</time-signature>

<tempo>Andante con moto</tempo>

<measure>

<rest duration="1"/>

</measure>

<measure>...</measure>

</track>

<track name="Piano">

<time-signature>2/2</time-signature>

<tempo>Andante con moto</tempo>

<measure>

<note duration="8" value="e" octave="2"/>

<note duration="8" value="g#" octave="2"/>

452 J S P : T h e C o m p l e t e R e f e r e n c e

<note duration="8" value="c#" octave="3"/>

<note duration="8" value="g#" octave="3"/>

<note duration="2" value="f#" octave="3"/>

</measure>

<measure>...</measure>

</track>

</song>

Note, this representation of the song is entirely structural—it has nothing to do with
how the song will appear. Indeed, the same XML document might be used for generating
the printed sheet music and for synthesizing the tones in a MIDI player.

The Problem XML Solves
Earlier text-processing formats often didn’t distinguish between content and presentation.
RTF, for example, has codes for structural data like tables and lists, as well as for fonts and
graphics. HTML suffers from the same problem. Elements like <table>, <tr>, and <td>
with specific width and height attributes are commonly used to influence physical layout
in a Web page, rather than for grouping related items in tabular format.

The problem with this approach is, as new output formats are needed, the formatting
information contained in the document becomes useless. And, worse, tags originally
designed to convey structural information are misused, simply for their side effects, such
as using to cause indentation.

XML, by contrast, focuses entirely on structure. Specific data elements can be clearly
identified and extracted by text search applications. If an XML document needs to be
rendered on a Web browser, it can be programmatically converted to HTML using an
XSL style sheet. If the document needs to be used in a transaction processing system, it
can be parsed by an XML parser, which extracts the specific fields that make up the
transaction. The XML document can be browsed as a tree structure or collapsed into
relational database tables. So long as the application using the document knows the
language in which it’s written, the application can find and extract the data it needs.

XML Syntax
XML is simple, and the rules governing its syntax are easy to learn. An XML document
consists of elements, each of which has a start tag, a body, and an end tag, as the
following illustrates:

<tempo>Andante con moto</tempo>

C h a p t e r 1 6 : J S P a n d X M L 453
JS

P
IN

A
C

TIO
N

The start tag <tempo> consists of a tag name enclosed in the less-than and greater-than
characters. The end tag </tempo> is the same as the start tag, but with a forward slash
following the opening greater-than character. The body consists of everything between
the start tag and the end tag. This may include ordinary text or other XML elements.

A start tag may include attributes, which are name=”value” pairs coded inside the
start tag after the name, but before the closing greater-than character:

<track name="voices"> ... </track>

Attributes in XML must be enclosed in single or double quotes.
If the body of an element is empty, an abbreviated form of the start and end tags can

be used. In this form, the forward slash from the end tag is moved into the start tag just
before the closing greater-than character, and then the body and end tags are omitted.
Therefore, the following two forms are functionally equivalent:

<rest duration="1"></rest>

<rest duration="1"/>

Elements can be nested inside each other to any depth

<song>

<track>

<measure>...</measure>

</track>

</song>

but their end tags must appear in the exact opposite order in which the start tags
appear. That is, elements cannot overlap. The following is illegal:

<I>Do not do this!</I>

A well-formed XML document, therefore, consists of exactly one outer element, called
the document element, which may contain any number of properly nested inner elements.

For complete details on XML syntax, consult the XML 1.0 specification, second
edition, found in the W3C Recommendation of October 6, 2000. This document can
be found at http://www.w3.org/TR/REC-xml.

The Document Type Definition
XML isn’t just a free-form group of tags, however. Clearly, applications that use an XML
document for input need to know what elements it can contain, how these elements can
be nested or repeated, what attributes are allowed, and so on. Likewise, applications that

454 J S P : T h e C o m p l e t e R e f e r e n c e

generate XML documents (as well as humans composing documents with a text editor)
need to know the same structural information. This is the role of the document type
definition (DTD).

A DTD is the definition of the tags and attributes allowed in a specific document
type. For example, a DTD for memo documents might define the <memo>, <from>, <to>,
<subject>, <text>, and <paragraph> tags, indicate <paragraph> elements can only
appear inside <text> elements, and <from> and <to> are required, while the rest are
optional. Then applications that generate memo documents can ensure they only generate
syntactically correct versions. Likewise, validation tools can read human-generated memo
documents and determine whether they adhere to the syntax. This means applications on
the receiving end can be relied on to understand the document and process it correctly.

An XML document indicates the DTD it uses and where to find it with a
<!DOCTYPE> tag immediately before the document element:

<?xml version="1.0"?>

<!DOCTYPE song SYSTEM "song.dtd">

<song>

...

</song>

The DTD can also be embedded in the document itself

<?xml version="1.0"?>

<!DOCTYPE song [

...

]>

<song>

...

</song>

or it can be kept in a public repository:

<?xml version="1.0"?>

<!DOCTYPE song PUBLIC publicid URL>
<song>

...

</song>

A DTD isn’t required but, if present, the document must adhere to it. In the language
of the XML specification, a document is said to be well formed, if it adheres to the syntactical
rules (all elements closed, no nested elements, all attributes in quotes). If the document
has a DTD, it is said to be valid, if it is well formed and adheres to the DTD.

C h a p t e r 1 6 : J S P a n d X M L 455
JS

P
IN

A
C

TIO
N

456 J S P : T h e C o m p l e t e R e f e r e n c e

The DTD for our song document type looks like this:

<!ELEMENT song (title?,words-by?,music-by?,track+)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT words-by (#PCDATA)>

<!ELEMENT music-by (#PCDATA)>

<!ELEMENT track (time-signature|tempo|measure)*>

<!ATTLIST track

name CDATA #IMPLIED>

<!ELEMENT time-signature (#PCDATA)>

<!ELEMENT tempo (#PCDATA)>

<!ELEMENT measure (note|rest)+>

<!ELEMENT note EMPTY>

<!ATTLIST note

duration CDATA #IMPLIED

value CDATA #IMPLIED

octave (1|2|3|4|5|6|7|8) #REQUIRED>

<!ELEMENT rest EMPTY>

<!ATTLIST rest

duration CDATA #IMPLIED>

A DTD consists of a list of elements and attributes. Each element definition gives
the element name followed by a rigorous description of the elements it can contain,
their order, whether they are required, and whether they can be repeated. This
description may take several forms:

� Ordinary text is indicated as (#PCDATA), for parsed character data.

� Allowable subelements are listed in order, separated by commas.

� Mutually exclusive elements are separated by the logical OR symbol |.

� Subelements and parenthesized lists of subelements can be followed by
a repetition count: ? meaning zero or one occurrences, * for zero or more,
and + for one or more.

� Elements that cannot contain a body are described as EMPTY.

For example, the <song> element is allowed to contain the optional <title>,
<words-by>, and <music-by> elements, followed by one or more <track> elements:

<!ELEMENT song (title?,words-by?,music-by?,track+)>

Note, the subelements, if present, must occur only in the order specified. The
<measure> element is defined as containing at least one <note> or <rest> element,
followed by any number of repetitions of <note> or <rest>:

<!ELEMENT measure (note|rest)+>

and the <time-signature> element may contain only ordinary text:

<!ELEMENT tempo (#PCDATA)>

The attributes an element can have are listed in an <!ATTLIST> tag containing the
element name, followed by groups of three tokens for each attribute, designating the
attribute name, type, and default value. For example, the <note> element is described
in the following as having optional duration and value attributes, as well as a required
octave attribute that can take integer values from 1 to 8:

<!ATTLIST note

duration CDATA #IMPLIED

value CDATA #IMPLIED

octave (1|2|3|4|5|6|7|8) #REQUIRED>

If the DTD syntax looks intimidating, don’t worry. Unless you’re a document
definition specialist, you’ll rarely be called on to write one. The informal description
given in this section is intended to give you the basic ability to read a DTD. For a
rigorous definition, consult the XML specification.

The ability to read a DTD is useful in understanding the web.xml deployment
descriptor. The structure and content of web.xml is defined in the web-app_2_2.dtd
(or later versions) listed in the Servlet API specification. If you need to know where
to define initialization parameters for a servlet, for example, the DTD shows they must
be coded in the <servlet> block, just after <servlet-class> and before <load-on-startup>.

XML Parsers
To use an XML document in an application, you need to parse it. An XML parser reads
a document and separates it into start tags, attributes, body contents, and end tags. The
parser has an application programming interface that enables you to extract the elements
you need without the complexity of interpreting the input stream yourself.

Two generally accepted XML parser models exist:

� DOM Document Object Model

� SAX Simple API for XML

The following sections consider each of these models.

C h a p t e r 1 6 : J S P a n d X M L 457
JS

P
IN

A
C

TIO
N

Document Object Model (DOM)
The Document Object Model (DOM) is the W3C standard representation of a document
in memory. Rather than just strings of text, DOM represents a document as a tree of
nodes. The tree can be traversed in any order, nodes can be added and deleted, and
the modified DOM tree can be saved as a new document.

The DOM specification has different versions, referred to as levels. DOM Level 1 was
the core feature set, providing the means for creating and accessing document elements.
DOM Level 2, which was approved as a W3C recommendation on November 13, 2000,
adds support for namespaces.

DOM isn’t just a standard, but an Application Programming Interface (API) as well. The
W3C publishes a list of interfaces that comprise the org.w3c.dom package. Different
vendors, then, supply parsers that implement these interfaces. Popular DOM parsers
include Xerces, from the Apache Software Foundation, and JAXP, from Sun Microsystems.

The DOM API consists of four categories of classes and interfaces:

� Nodes

� Node collections

� Metadata

� Exceptions

Node Interfaces
The basic unit of interest in DOM is the node. Everything in an XML document—
individual elements, attributes in a start tag, comments, element text, and the document
as a whole—are all nodes. Table 16-1 lists the methods in the Node interface.

458 J S P : T h e C o m p l e t e R e f e r e n c e

Method Description

NodeappendChild(NodenewChild)
throwsDOMException

Adds a new child node to the
current node.

Node cloneNode(boolean deep) Makes a copy of the node. If deep
is true, recursively clones all subtrees
under this node. Otherwise, clones the
current node.

NamedNodeMap getAttributes() Returns the named attributes of
this node, if the node is an Element.
Otherwise, returns null.

Table 16-1. Methods in the Node Interface

C h a p t e r 1 6 : J S P a n d X M L 459
JS

P
IN

A
C

TIO
N

Method Description

NodeList getChildNodes() Returns the list of all immediate
child nodes.

Node getFirstChild() Returns the first child node, or null,
if this node isn’t an Element.

Node getLastChild() Returns the last child node, or null,
if this node isn’t an Element.

Node getNextSibling() Returns the next child of the same
parent, or null, if the parent node
isn’t an Element.

String getNodeName() Returns the name of the node, for
named nodes types like Element,
Attr, and Entity. For unnamed
types like Text, CDATAsection,
and Comment, returns #text,
#cdata-section, and #comment,
respectively.

int getNodeType() Returns an integer constant that
indicates this node’s specific type.
The value returned is one of the
following constants defined in the
Node interface:
ATTRIBUTE_NODE
CDATA_SECTION_NODE
COMMENT_NODE
DOCUMENT_FRAGMENT_NODE
DOCUMENT_NODE
DOCUMENT_TYPE_NODE
ELEMENT_NODE
ENTITY_NODE
ENTITY_REFERENCE_NODE
NOTATION_NODE
PROCESSING_INSTRUCTION_NODE
TEXT_NODE

Table 16-1. Methods in the Node Interface (continued)

460 J S P : T h e C o m p l e t e R e f e r e n c e

Method Description

String getNodeValue() For attributes and text-type nodes,
returns the text, otherwise null.

Document getOwnerDocument() Returns the Document node for the
document in which this node occurs.

Node getParentNode() Returns the immediate parent
node, or null, if this is a Document,
DocumentFragment, or Attr node.
New nodes that haven’t yet been added
to a document may also have a null
parent node.

Node getPreviousSibling() Returns the previous child of the same
parent, or null, if the parent node isn’t
an Element.

boolean hasChildNodes() Returns true if this node has
a nonempty list of child nodes.

Node insertBefore(Node child,
Node beforeNode)

Inserts a new child node before the
specified node. beforeNode may
be null, in which case the child node
is appended to the end of the list.

Node removeChild(Node child)
throws DOMException

Removes the specified node from
the list of child nodes. Throws an
exception if the node isn’t a child
of the current node.

Node replaceChild(Node newChild,
Node oldChild) throws
DOMException

Removes oldChild and replaces
it with newChild. Throws an
exception if the node isn’t a child
of the current node.

voidsetNodeValue(Stringvalue)
throwsDOMException

Sets the value of the current node.

Table 16-1. Methods in the Node Interface (continued)

In DOM Level 2, Node has two new methods—isSupported() and
hasAttributes()—and now contains the normalize() method, which
was previously part of the Element interface.

Node has 13 specialized subinterfaces that correspond to particular nodes types,
which can appear in an XML document. These interfaces are listed in Table 16-2.

C h a p t e r 1 6 : J S P a n d X M L 461
JS

P
IN

A
C

TIO
N

Interface Description

Attr An attribute of an Element node. Attr has
methods for retrieving the name and value
of the attribute. In DOM Level 2, the Attr
interface includes a getOwnerElement()
method.

CDATASection A text node enclosed with the <![CDATA[...
]]> escape syntax in the XML document.
CDATA sections are parsed verbatim without
being evaluated. They allow document content
to contain characters and strings that, otherwise,
would be interpreted as XML.

CharacterData A common superinterface for the three
text-containing node types: Text, Comment,
and CDATASection. Provides methods for
getting and setting the character contents, as
well as determining the length of the data.

Comment A node containing an XML comment. The
Comment value doesn’t include the <!- - and
- -> delimiters, only the text of the comment,
including whitespace.

Document The Document node represents the XML
document as a whole. Only one Document
node is in a DOM instance. DOM Level 2
adds support for namespaces to the Document
interface.

Table 16-2. Subinterfaces of Node for Specific Node Types

462 J S P : T h e C o m p l e t e R e f e r e n c e

Node Collection Interfaces
Various DOM API methods return collections of nodes, either ordered lists or maps
of names to nodes. Two interfaces represent these collections: NodeList, shown in
Table 16-3, and NamedNodeMap, in Table 16-4.

Interface Description

DocumentFragment A temporary node used to build a subtree of a
Document node. This interface has no methods.

DocumentType A node representing the <!DOCTYPE> element
at the beginning of the document. This interface
provides methods for getting the DTD name,
entities, and notations defined in the DTD.

Element The most common subinterface of Node.
Represents an XML start tag, body, and end
tag. In addition to the methods it inherits from
Node, Element has methods for setting and
retrieving the attributes that appear in the
start tag. In DOM Level 2, Element includes
numerous namespace-aware methods.

Entity An external component used in an XML
document, such as an image file. DOM level 1
provides only minimal support for this node type.

EntityReference A reference (name or pointer) to an unevaluated
Entity. This interface acts simply as a placeholder
in the document; it defines no methods.

Notation Represents a notation declared in the DTD.
Notations describe the format of external entities.

ProcessingInstruction A processor-specific instruction in the XML
document. Processing instructions employ the
syntax <?<target> [<data>]?>.

Text A Text node contains the character content of
an element body.

Table 16-2. Subinterfaces of Node for Specific Node Types (continued)

JS
P

IN
A

C
TIO

N

The NamedNodeMap interface in DOM Level 2 supports qualified item names in
namespaces.

Node Metadata
XML features can be version-specific. To determine the DOM configuration, DOM
has an interface that enables you to query which features it supports. This interface
is named DOMImplementation. Currently, it consists of a single method

boolean hasFeature(String feature, String version)

which returns true if the specified level of the specified feature is supported. DOM
Level 2 adds two new methods to DOMImplementation to support creating documents.

C h a p t e r 1 6 : J S P a n d X M L 463

Method Description

int getLength() Returns the number of nodes in the list.

Node item(int n) Returns the nth node in the list, where
nodes are numbered 0, 1, ...

Table 16-3. Methods Defined by the NodeList Interface

Method Description

int getLength() Returns the number of nodes in the list.

Node item(int n) Returns the nth node in the list, where
nodes are numbered 0, 1, ...

Node getNamedItem(String name)
void setNamedItem(Node item)
void removeNamedItem(String
name)

Gets, sets, or removes the node having
the specified name. getNamedItem()
returns null if the node doesn’t exist
in the collection.

Table 16-4. Methods Defined by the NamedNodeMap Interface

464 J S P : T h e C o m p l e t e R e f e r e n c e

Exceptions
DOM defines a single exception class named DOMException. This is a subclass of
RuntimeException, which means the compiler won’t require methods that can
throw this exception to declare it or to enclose it in a try/catch block.

DOM Use
A typical DOM-oriented application creates an instance of a DOM parser, and then
instructs it to parse an XML input source to create the DOM tree. Once the tree is
created, the application can navigate through it, examining its contents and extracting
what it needs.

The means for instantiating the parser are implementation-specific. It can be created
directly with the new operator. A higher level approach is available with the Java API
for XML (JAXP) wrapper defined by Sun Microsystems. Under JAXP, an application
creates an instance of DocumentBuilderFactory, optionally sets its namespaceAware
and/or validating properties, and then uses the factory to obtain an instance of the
parser. The factory finds a DOM parser class that matches the required features.

So, to parse an XML document with DOM, an application can do this:

DocumentBuilderFactory factory =

DocumentBuilderFactory.newInstance();

DocumentBuilder builder = factory.newDocumentBuilder();

Document document = builder.parse(fileName);

Element root = document.getDocumentElement();

Let’s look at an example of XML parsing with DOM in a JSP page. The following
XML document was extracted from the LyricNote product catalog, possibly as the
result of a database query. It consists of a list of musical instruments identified by a
product code. For each instrument, the document contains the price, the quantity on
hand, the name of the manufacturer, and a product description. The list is abbreviated
here; the full list has 82 entries.

<?xml version="1.0"?>

<!DOCTYPE products PUBLIC "-//jspcr//products//EN"

"http://u25nv/jspcr/Chap16/examples/products/products.dtd">

<products>

<product code="001000">

<product-type>IN</product-type>

<price>537.00</price>

<on-hand>48</on-hand>

<manufacturer>Clemens-Altman</manufacturer>

<description>Silver Flute - Student</description>

</product>

<product code="001010">

<product-type>IN</product-type>

<price>876.00</price>

<on-hand>83</on-hand>

<manufacturer>Gabriel</manufacturer>

<description>Silver Flute</description>

</product>

...

<product code="001790">

<product-type>IN</product-type>

<price>165.50</price>

<on-hand>94</on-hand>

<manufacturer>Roush and Sons</manufacturer>

<description>Cello case (1/2 size)</description>

</product>

</products>

The JSP parses the document and extracts only products whose manufacturer is
Clemens-Altman. It arranges this subset in an HTML table, with columns for the
product code, the description, and the price. Because the document consists of a set
of product elements, a logical approach is to parse the document and convert it into
a collection of Product objects. The Product object will have fields corresponding
to the XML elements in each product block. Having the Product object help with
the parsing also makes sense. Because DOM creates a tree, you can simply locate each
<product> element, create a Product object, and call its load() method, passing the
DOM element as a parameter.

The following shows the Product object. In addition to its load() method,
Product contains get and set methods for each of its private fields.

package jspcr.xml.samples;

import org.w3c.dom.*;

C h a p t e r 1 6 : J S P a n d X M L 465
JS

P
IN

A
C

TIO
N

public class Product

{

private String code;

private String productType;

private double price;

private int onHand;

private String manufacturer;

private String description;

/**

* Load the product data from a DOM element

*/

public void load(org.w3c.dom.Element element)

{

code = element.getAttribute("code");

for (Node node = element.getFirstChild();

node != null;

node = node.getNextSibling())

{

// Select only element nodes

if (node.getNodeType() != Node.ELEMENT_NODE)

continue;

String tagName = node.getNodeName();

// product-type

if (tagName.equals("product-type")) {

String text = node.getFirstChild().getNodeValue();

productType = text.trim();

}

// price

else

if (tagName.equals("price")) {

String text = node.getFirstChild().getNodeValue();

price = Double.parseDouble(text.trim());

}

466 J S P : T h e C o m p l e t e R e f e r e n c e

// on-hand

else

if (tagName.equals("on-hand")) {

String text = node.getFirstChild().getNodeValue();

onHand = Integer.parseInt(text.trim());

}

// manufacturer

else

if (tagName.equals("manufacturer")) {

String text = node.getFirstChild().getNodeValue();

manufacturer = text.trim();

}

// description

else

if (tagName.equals("description")) {

String text = node.getFirstChild().getNodeValue();

description = text.trim();

}

}

}

// Not shown here - get and set methods

}

� The code field is easy to get because it’s an attribute of the product element. All
you have to do is call element’s getAttribute(“code”) method. The other
fields are slightly more complicated because their values are in text nodes beneath
subelements of product. Our approach is to loop through the child nodes of the
product element, comparing the node name in each to the field names you need
to populate. This loop can be done several ways: Call the getChildNodes()
method on the product element, which returns a NodeList object. The NodeList
has a getLength() method, which tells us the node count, and an item(int
index) method, which returns the node at the specified index within the list.

� Call the product element’s getFirstChild() method, and then each child’s
getNextSibling() method in turn until it returns null.

Our code uses the second method.

JS
P

IN
A

C
TIO

N
C h a p t e r 1 6 : J S P a n d X M L 467

468 J S P : T h e C o m p l e t e R e f e r e n c e

To get the text node values, you can take advantage of the fact that each data
element has no subelements, just parsed character data. Therefore, you can call each
data element’s getFirstChild() method and know you’ll get a text node. The text
itself is available from the getNodeValue() method.Armed with the XML-aware
product element, you can now parse the product catalog XML document and perform
our query. Here is the JSP page:

<%@ page session="false" %>

<%@ page import="java.io.*" %>

<%@ page import="java.net.*" %>

<%@ page import="java.text.*" %>

<%@ page import="javax.xml.parsers.*" %>

<%@ page import="jspcr.xml.samples.*" %>

<%@ page import="org.w3c.dom.*" %>

<%@ page import="org.xml.sax.*" %>

<%

long stime = System.currentTimeMillis();

%>

<HTML>

<HEAD>

<TITLE>(DOM) Clemens-Altman Musical Instruments</TITLE>

</HEAD>

<BODY>

<CENTER>

<H3>Clemens-Altman Musical Instruments</H3>

<H4>(Powered by DOM Level 1)</H4>

<TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0">

<TR>

<TH>Product Code</TH>

<TH>Description</TH>

<TH>Price</TH>

</TR>

<%

// Get a new document builder

DocumentBuilderFactory factory =

DocumentBuilderFactory.newInstance();

DocumentBuilder builder = factory.newDocumentBuilder();

// Define the input source to be an XML document named

// "instruments.xml" in the same directory as this JSP

C h a p t e r 1 6 : J S P a n d X M L 469
JS

P
IN

A
C

TIO
N

StringBuffer requestURL = HttpUtils.getRequestURL(request);

URL jspURL = new URL(requestURL.toString());

URL url = new URL(jspURL, "instruments.xml");

InputSource is = new InputSource(url.openStream());

// Load the document

Document document = builder.parse(is);

Element root = document.getDocumentElement();

root.normalize();

// Define currency formatter

NumberFormat fmt = NumberFormat.getCurrencyInstance();

// Select product code, description, and price

// where manufacturer = "Clemens-Altman"

for (

Node node = root.getFirstChild();

node != null;

node = node.getNextSibling())

{

// Ignore everything but product elements

if (node.getNodeType() != Node.ELEMENT_NODE)

continue;

Element productElement = (Element) node;

if (!productElement.getTagName().equals("product"))

continue;

// Load the product object

Product product = new Product();

product.load(productElement);

// See if the manufacturer is "Clemens-Altman"

String text = product.getManufacturer();

if (!text.equals("Clemens-Altman"))

470 J S P : T h e C o m p l e t e R e f e r e n c e

continue;

// Get the product code, price, and item name

String code = product.getCode();

String description = product.getDescription();

double price = product.getPrice();

%>

<TR>

<TD><%= code %></TD>

<TD><%= description %></TD>

<TD ALIGN="RIGHT"><%= fmt.format(price) %></TD>

</TR>

<%

}

%>

</TABLE>

<P>

<%

long etime = System.currentTimeMillis();

double elapsed = (etime - stime)/1000.0;

%>

Elapsed time: <%= elapsed %> seconds

</CENTER>

</BODY>

</HTML>

After generating the table headings, the JSP page creates an instance of the DOM
DocumentBuilder using the JAXP approach:

DocumentBuilderFactory factory =

DocumentBuilderFactory.newInstance();

DocumentBuilder builder = factory.newDocumentBuilder();

The product catalog XML document is in a file named instruments.xml
in the same directory as the JSP page. You can locate that using the HttpUtils
getRequestURL() method for the JSP URL, and then use the two-argument URL
constructor to get the XML file as a URL:

StringBuffer requestURL = HttpUtils.getRequestURL(request);

URL jspURL = new URL(requestURL.toString());

URL url = new URL(jspURL, "instruments.xml");

InputSource is = new InputSource(url.openStream());

InputSource is a convenience class that wraps a byte stream, a character stream,
or a filename.

With the document builder and input source defined, you are ready to parse:

Document document = builder.parse(is);

Element root = document.getDocumentElement();

The root <products> element is available from the document.getDocumentElement()
method.

Now, loop through the immediate children of the <products> element searching
for <product> elements. Although looking at the XML document suggests you won’t
find anything else, this isn’t the case. Text nodes are separating each <product> block.

for (

Node node = root.getFirstChild();

node != null;

node = node.getNextSibling())

{

if (node.getNodeType() != Node.ELEMENT_NODE)

continue;

Element productElement = (Element) node;

if (!productElement.getTagName().equals("product"))

continue;

Once you find a <product> element, you can create a Product object and have it
navigate the subelements looking for what it needs:

Product product = new Product();

product.load(productElement);

At this point, you can get everything you need from the Product object. You can
determine if its manufacture is Clemens-Altman and print it in the table if this is so.
The results are shown in Figure 16-1.

The main advantage of DOM as a parsing model is it provides random access to
all parts of the document structure. This is made possible by its biggest disadvantage,
though—the entire document must be read and parsed before any part of it is accessible
through the DOM API. For large documents, this overhead can be significant.

C h a p t e r 1 6 : J S P a n d X M L 471
JS

P
IN

A
C

TIO
N

Simple API for XML (SAX)
SAX provides a different approach to parsing. Rather than creating a tree from an XML
document, a SAX parser reads through the file and notifies registered listeners when
certain parsing events occur. These events include

� The beginning of a document

� Reading a start tag at the beginning of a new element

� Reading an end tag at the end of an element

472 J S P : T h e C o m p l e t e R e f e r e n c e

Figure 16-1. Product catalog search using XML DOM parser

� Reading text in the body of an element

� Reading comments

� Reaching the end of a document

A SAX interface defines methods for all these events. An application that wants to
handle particular events can implement one or more of the methods, and then register
as a handler for the document. When the events occur, the handler’s method(s) are
then invoked with values from the element currently being parsed. This makes SAX
ideal for filtering-type applications that require little or no document context.

Like DOM, the SAX API continues to evolve. SAX 1.0 emerged in May 1998 from
design discussions on the XML-DEV mailing list. The SAX 2.0 specification was published
in May 2000. While SAX isn’t an official W3C specification, it’s widely accepted and usually
offered alongside DOM in most parsers. In fact, DOM parsers are often built over SAX
parsers and the JAXP DocumentBuilder interface for DOM uses several SAX classes.

The SAX Parser
The basic SAX interface is Parser. An implementation of the SAX API would supply a
concrete class that implements Parser. This interface defines methods that register the
various handler classes to be used and defines two forms of the parse() method, as
shown in Table 16-5.

C h a p t e r 1 6 : J S P a n d X M L 473
JS

P
IN

A
C

TIO
N

Method Description

void parse(InputSource is)
throws SAXException,
IOException

Causes the parser to begin parsing
the document supplied by the specified
input source.

void parse(String systemId)
throws SAXException,
IOException

Causes the parser to begin parsing the
document referred to in the specified
system ID. This can be a filename or
a fully resolved URL.

void setDocumentHandler
(DocumentHandler handler)

Registers a document handler for
this parser.

void setDTDHandler(DTDHandler
handler)

Registers a DTD handler for this parser.

Table 16-5. Methods in the SAX Parser Interface

474 J S P : T h e C o m p l e t e R e f e r e n c e

Handlers
Four interfaces handle parsing events:

� DocumentHandler defines callback methods for the start and end of a
document, for the start and end of every XML element, for the text of the
document, and for whitespace, comments, and processing instructions.

� ErrorHandler defines callbacks for fatal, recoverable, and warning errors.

� EntityResolver allows custom handling of external entities, such as
document type definitions.

� DTDHandler receives notifications of notation declarations and unparsed
entity declarations in a document type definition.

Of these, you’ll most often employ only the first, DocumentHandler. An
application can implement this interface, and then register itself with the parser
using the setDocumentHandler() method to begin receiving callbacks. The
methods in DocumentHandler are described in Table 16-6.

In addition to the four handler interfaces, the SAX API provides a default
implementation—named HandlerBase—for all four of them. An application would
typically subclass HandlerBase and implement only those necessary methods. Often,
this consists of just the startElement(), characters(), and endElement()methods.

Method Description

void setEntityResolver(Entity
Resolver resolver)

Registers an entity resolver for this
parser. An EntityResolver can
be used to locate external entities in
custom ways.

void
setErrorHandler(ErrorHandler
handler)

Registers an error handler for custom
error handling.

void setLocale(Locale locale)
throws SAXException

Specifies the locale to be used for errors
and warnings.

Table 16-5. Methods in the SAX Parser Interface (continued)

C h a p t e r 1 6 : J S P a n d X M L 475
JS

P
IN

A
C

TIO
N

Method Description

void characters(char[] ch, int
start, int len) throws
SAXException

This method is called with the XML
parser and reads character data in the
text of an element. The character data
is passed in the ch array starting at
start for length len. Conveniently,
a java.lang.String constructor
uses these same three fields.

void endDocument() throws
SAXException

Called when the parser has finished
parsing a document.

void endElement(String name)
throws SAXException

Called when the end tag for the current
element is parsed. The tag name is
passed as a parameter.

void
ignorableWhitespace(char[] ch,
int start, int len) throws
SAXException

This method is called with the XML
parser and reads nonsignificant
character data. The character data
is passed in the ch array starting
at start for length len.

void
processingInstruction(String
target, String data) throws
SAXException

Called when a processing instruction
is encountered.

void
setDocumentLocator(Locator
locator)

Informs the document handler about
the Locator to be used during parsing.
Locator provides line and column
number information useful during
parsing errors.

void startDocument() throws
SAXException

Called when the parser starts parsing
a new document.

void startElement(String name,
AttributeList attrs) throws
SAXException

Called when the parser encounters the
beginning of a new element tag. The
parameters passed include the tag name
and the name/value attribute pairs.

Table 16-6. Methods Defined by DocumentHandler

476 J S P : T h e C o m p l e t e R e f e r e n c e

SAX Use
A typical SAX-oriented application creates an instance of a SAX parser, registers the
document handler, and then invokes the parse() method to start the parsing and
callbacks. In this section, you develop the same product catalog example you did for
DOM. You still use the Product object, but only to store the product properties, not
to do any parsing.

<%@ page session="false" %>

<%@ page import="java.io.*" %>

<%@ page import="java.net.*" %>

<%@ page import="java.text.*" %>

<%@ page import="java.util.*" %>

<%@ page import="javax.xml.parsers.*" %>

<%@ page import="jspcr.xml.samples.*" %>

<%@ page import="org.xml.sax.*" %>

<%

long stime = System.currentTimeMillis();

%>

<HTML>

<HEAD>

<TITLE>(SAX 1.0) Clemens-Altman Musical Instruments</TITLE>

</HEAD>

<BODY>

<CENTER>

<H3>Clemens-Altman Musical Instruments</H3>

<H4>(Powered by SAX 1.0)</H4>

<TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0">

<TR>

<TH>Product Code</TH>

<TH>Description</TH>

<TH>Price</TH>

</TR>

<%

// Get a new SAX parser

SAXParserFactory factory = SAXParserFactory.newInstance();

SAXParser parser = factory.newSAXParser();

// Define the input source to be an XML document named

// "instruments.xml" in the same directory as this JSP

C h a p t e r 1 6 : J S P a n d X M L 477
JS

P
IN

A
C

TIO
N

StringBuffer requestURL = HttpUtils.getRequestURL(request);

URL jspURL = new URL(requestURL.toString());

URL url = new URL(jspURL, "instruments.xml");

InputSource is = new InputSource(url.openStream());

// Parse the input source

parser.parse(is, new ProductParser(out));

%>

</TABLE>

<P>

<%

long etime = System.currentTimeMillis();

double elapsed = (etime - stime)/1000.0;

%>

Elapsed time: <%= elapsed %> seconds

</CENTER>

</BODY>

</HTML>

<%!

// Inner class that parses the XML input source

class ProductParser extends HandlerBase

{

private Product product;

private StringBuffer buffer;

private JspWriter out;

private NumberFormat fmt;

public ProductParser(JspWriter out)

{

this.out = out;

buffer = new StringBuffer();

fmt = NumberFormat.getCurrencyInstance();

}

/**

* Called when a start tag is encountered

*/

public void startElement(String name, AttributeList attrs)

478 J S P : T h e C o m p l e t e R e f e r e n c e

throws SAXException

{

if (name.equals("product")) {

product = new Product();

product.setCode(attrs.getValue("code"));

}

buffer = new StringBuffer();

}

/**

* Accumulates characters from text nodes

*/

public void characters(char[] ch, int start, int len)

throws SAXException

{

buffer.append(ch, start, len);

}

/**

* Called when an end tag is encountered

*/

public void endElement(String name)

throws SAXException

{

String text = buffer.toString().trim();

if (name.equals("price"))

product.setPrice(Double.parseDouble(text));

else if (name.equals("manufacturer"))

product.setManufacturer(text);

else if (name.equals("description"))

product.setDescription(text);

else if (name.equals("product")) {

if (product.getManufacturer().equals("Clemens-Altman")) {

try {

String[] lines = {

"<TR>",

"<TD>", product.getCode(), "</TD>",

"<TD>", product.getDescription(), "</TD>",

"<TD ALIGN='RIGHT'>",

fmt.format(product.getPrice()), "</TD>",

"</TR>",

C h a p t e r 1 6 : J S P a n d X M L 479
JS

P
IN

A
C

TIO
N

};

for (int i = 0; i < lines.length; i++)

out.println(lines[i]);

}

catch (IOException e) {

throw new SAXException(e.getMessage());

}

}

}

}

}

%>

Like DOMBuilderFactory and DOMBuilder, SAXParserFactory and
SAXParser can be invoked through JAXP:

SAXParserFactory factory = SAXParserFactory.newInstance();

SAXParser parser = factory.newSAXParser();

Remember, the SAX technique is to implement DocumentHandler (or extend
HandlerBase) and provide callbacks for the parsing event methods of interest.
An inner class can be used to do that. The JAXP parse() method registers our
ProductParser class as the document handler, and then starts parsing:

parser.parse(is, new ProductParser(out));

The ProductParser class is interested in three events:

� startElement At the beginning of a new <product> element, you need
to create a Product object and store the code attribute in it.

� characters As text flies by, you accumulate it in a StringBuffer.

� endElement At the end of an element, you assign its value from the
StringBuffer, if it’s one of the product fields. If this is the end of a
<product> element, you can print the product in the HTML table, clear
your buffers, and wait for the next product to be parsed.

The resulting HTML table is shown in Figure 16-2. Note the difference in elapsed
time from the DOM version in Figure 16-1.

SAX 2.0
An updated SAX specification was adopted in May 1998. The main improvement
in SAX 2.0 is support for namespaces. Namespaces are groups of tags with a common
prefix that distinguishes them from other tags that may have the same name without
the prefix. This allows packages of XML tags to be defined without worrying about
colliding with similarly named tags.

In API terms, SAX 2.0 deprecates the Parser, DocumentHandler, and
AttributeList interfaces, replacing them with the namespace-aware XMLReader,
ContentHandler, and Attributes interfaces, respectively.

480 J S P : T h e C o m p l e t e R e f e r e n c e

Figure 16-2. Product catalog search using XML SAX 1.0 parser

As you might expect, not all XML products have caught up to the latest DOM and
SAX levels. As of November 2000, JAXP doesn’t yet support SAX 2.0, except in an
early access package. The Xerces-J 1.2.1 release supports SAX 2.0 by itself, but not
through the Xerces version of JAXP, which is still only for SAX 1.0. Check the Sun,
W3C, and xml.apache.org Web sites for updated versions.

In SAX 2.0, our product catalog JSP page looks like this:

<%@ page session="false" %>

<%@ page import="java.io.*" %>

<%@ page import="java.net.*" %>

<%@ page import="java.text.*" %>

<%@ page import="java.util.*" %>

<%@ page import="jspcr.xml.samples.*" %>

<%@ page import="org.xml.sax.*" %>

<%@ page import="org.xml.sax.helpers.*" %>

<%

long stime = System.currentTimeMillis();

%>

<HTML>

<HEAD>

<TITLE>(SAX 2.0) Clemens-Altman Musical Instruments</TITLE>

</HEAD>

<BODY>

<CENTER>

<H3>Clemens-Altman Musical Instruments</H3>

<H4>(Powered by SAX 2.0)</H4>

<TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0">

<TR>

<TH>Product Code</TH>

<TH>Description</TH>

<TH>Price</TH>

</TR>

<%

// Get a new SAX parser

XMLReader parser = new org.apache.xerces.parsers.SAXParser();

DefaultHandler handler = new ProductParser(out);

parser.setContentHandler(handler);

parser.setErrorHandler(handler);

// Define the input source to be an XML document named

C h a p t e r 1 6 : J S P a n d X M L 481
JS

P
IN

A
C

TIO
N

// "instruments.xml" in the same directory as this JSP

StringBuffer requestURL = HttpUtils.getRequestURL(request);

URL jspURL = new URL(requestURL.toString());

URL url = new URL(jspURL, "instruments.xml");

InputSource is = new InputSource(url.openStream());

// Parse the input source

parser.parse(is);

%>

</TABLE>

<P>

<%

long etime = System.currentTimeMillis();

double elapsed = (etime - stime)/1000.0;

%>

Elapsed time: <%= elapsed %> seconds

</CENTER>

</BODY>

</HTML>

<%!

// Inner class that parses the XML input source

class ProductParser extends DefaultHandler

{

private Product product;

private StringBuffer buffer;

private JspWriter out;

private NumberFormat fmt;

public ProductParser(JspWriter out)

{

this.out = out;

buffer = new StringBuffer();

fmt = NumberFormat.getCurrencyInstance();

}

/**

* Called when a start tag is encountered

*/

482 J S P : T h e C o m p l e t e R e f e r e n c e

public void startElement(

String namespaceURI,

String localName,

String qName,

Attributes attrs)

throws SAXException

{

if (qName.equals("product")) {

product = new Product();

product.setCode(attrs.getValue("code"));

}

buffer = new StringBuffer();

}

/**

* Accumulates characters from text nodes

*/

public void characters(char[] ch, int start, int len)

throws SAXException

{

buffer.append(ch, start, len);

}

/**

* Called when an end tag is encountered

*/

public void endElement(

String namespaceURI,

String localName,

String qName)

throws SAXException

{

String text = buffer.toString().trim();

if (qName.equals("price"))

product.setPrice(Double.parseDouble(text));

else if (qName.equals("manufacturer"))

product.setManufacturer(text);

else if (qName.equals("description"))

product.setDescription(text);

else if (qName.equals("product")) {

if (product.getManufacturer().equals("Clemens-Altman")) {

try {

C h a p t e r 1 6 : J S P a n d X M L 483
JS

P
IN

A
C

TIO
N

484 J S P : T h e C o m p l e t e R e f e r e n c e

String[] lines = {

"<TR>",

"<TD>", product.getCode(), "</TD>",

"<TD>", product.getDescription(), "</TD>",

"<TD ALIGN='RIGHT'>",

fmt.format(product.getPrice()), "</TD>",

"</TR>",

};

for (int i = 0; i < lines.length; i++)

out.println(lines[i]);

}

catch (IOException e) {

throw new SAXException(e.getMessage());

}

}

}

}

}

%>

The essential differences are in how the parser is invoked

XMLReader parser = new org.apache.xerces.parsers.SAXParser();

DefaultHandler handler = new ProductParser(out);

parser.setContentHandler(handler);

parser.setErrorHandler(handler);

and in the callback method signatures:

public void startElement(

String namespaceURI, String localName, String qName,

Attributes attrs)

throws SAXException

...

public void endElement(

String namespaceURI, String localName, String qName)

throws SAXException

As seen in Figure 16-3, the resulting output is produced slightly faster than in
SAX 1.0.

C h a p t e r 1 6 : J S P a n d X M L 485
JS

P
IN

A
C

TIO
N

SAX offers a number of advantages over DOM. It’s much simpler and easier to learn,
has much smaller memory use, and doesn’t require an entire document to be loaded.
Nearly all XML parsers have a SAX interface; fewer have a DOM interface. SAX is also
well suited for reading ill-formed documents (like most HTML).

Figure 16-3. Product catalog search using XML SAX 2.0 parser

XSL Transformations with XSLT
As noted earlier, XML is designed purely to identify document structure, not document
appearance. Obviously, though, XML and HTML are closely related, and XML
documents can be converted to HTML. When this happens, style information can
be added. This is the role of Extensible Stylesheet Language (XSL).

XSL is a language for designing style sheets. An XSL style sheet systematically
describes which formatting elements are applied to which elements in an XML source
document to product the desired HTML output. Not surprisingly, an XSL style sheet
itself is an XML document.

Although XSL was originally designed for style sheet purposes, it became apparent
that it could also be used for general XML structure transformations. This manipulation
is performed by an XSL transformation processor (XSLT). XSLT is defined in a W3C
recommendation dated November 1999 (see http://www.w3.org/TR/xslt.html).
Popular XSLT processors are available from the Apache Software Foundation (Xalan),
Microsoft (MSXML), Michael Kay (Saxon), and James Clark (XT).

XSLT is a broad topic, and the subject of numerous books and articles. This book
only gives you a basic introduction, just enough to let you read an XSLT style sheet,
if you need to do so.

XSLT uses an XML document called an XSL style sheet to describe what it modifies
and how. In the style sheet are one or more templates, which identify the particular
XML elements they’re designed to transform, and then provide a set of literals and
nested XSL statements that indicate the format of the output. The key XSLT instructions
are listed in Table 16-7.

486 J S P : T h e C o m p l e t e R e f e r e n c e

Instruction Description

<xsl:stylesheet> The outermost document element in an
XSL style sheet. Required attributes are
xmlns:xsl (the namespace for XSL
tags) and version.

<xsl:template> Identifies a template block. Optional
attribute is match, which specifies
which XML element the template
matches. A rich variety of ways exists
to express the match value. See the
XSLT specification for details.

Table 16-7. Highlights of XSLT Instructions

XSLT in Action
We can do the same example in XSLT that we used to illustrate DOM and SAX. Here’s

the XSL style sheet:

<?xml version="1.0"?>

<xsl:stylesheet

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">

<xsl:output method="html"/>

<xsl:template match="/">

<TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0">

<TR>

<TH>Product Code</TH>

<TH>Description</TH>

<TH>Price</TH>

</TR>

<xsl:apply-templates

select="//product[manufacturer='Clemens-Altman']"/>

</TABLE>

</xsl:template>

C h a p t e r 1 6 : J S P a n d X M L 487
JS

P
IN

A
C

TIO
N

Instruction Description

<xsl:apply-templates> Causes the processor to seek other
elements to match. Optional attribute
is select, which specifies a subset of
elements in the same language as the
<xsl:template> match attribute.

<xsl:value-of> Causes the processor to substitute the
value of the specified element. Optional
attribute is select, which operates the
same as in <xsl:apply-templates>

Table 16-7. Highlights of XSLT Instructions (continued)

488 J S P : T h e C o m p l e t e R e f e r e n c e

<xsl:template match="//product">

<TR>

<TD><xsl:value-of select="@code"/></TD>

<TD><xsl:value-of select="description"/></TD>

<TD ALIGN="RIGHT">

<xsl:value-of select="price"/>

</TD>

</TR>

</xsl:template>

</xsl:stylesheet>

The document element matches the / template, so the HTML used on either side of
the HTML table is coded in the body of this template. In place of the table, there’s a call
back into the XSLT processor:

<xsl:apply-templates

select="//product[manufacturer='Clemens-Altman']"/>

The value of the select attribute indicates any product elements one level
down from the document root that have a manufacturer attribute with a value of
Clemens-Altman will be matched.

So, as the document is parsed, each product element that matches the criteria is passed
to the //product template. This template stands for a single row in the table. It adds
the <TR><TD>...</TD></TR> tags and fills them in with document element text:

<TD><xsl:value-of select="@code"/></TD>

The previous line extracts the value of an attribute named code in the current node.

<TD><xsl:value-of select="description"/></TD>

This line extracts the text value of the <description> tag.
The JSP page is easy. Beyond generating the outer HTML, all it does is create an

instance of the XSLT processor and start it running:

<%@ page session="false" %>

<%@ page import="java.io.*" %>

C h a p t e r 1 6 : J S P a n d X M L 489
JS

P
IN

A
C

TIO
N

<%@ page import="java.net.*" %>

<%@ page import="org.xml.sax.*" %>

<%@ page import="org.apache.xalan.xslt.*" %>

<%

long stime = System.currentTimeMillis();

%>

<HTML>

<HEAD>

<TITLE>(XSLT) Clemens-Altman Musical Instruments</TITLE>

</HEAD>

<BODY>

<CENTER>

<H3>Clemens-Altman Musical Instruments</H3>

<H4>(Powered by XSLT)</H4>

<%

// Create an instance of the XSLT processor

XSLTProcessor p = XSLTProcessorFactory.getProcessor();

// Create the XML input and XSL URL's

StringBuffer requestURL = HttpUtils.getRequestURL(request);

URL jspURL = new URL(requestURL.toString());

URL inURL = new URL(jspURL, "instruments.xml");

URL xslURL = new URL(jspURL, "XSLTSample.xsl");

// Process the stylesheet

p.process(

new XSLTInputSource(inURL.openStream()),

new XSLTInputSource(xslURL.openStream()),

new XSLTResultTarget(out)

);

out.flush();

%>

<P>

<%

long etime = System.currentTimeMillis();

double elapsed = (etime - stime)/1000.0;

%>

Elapsed time: <%= elapsed %> seconds

</CENTER>

</BODY>

</HTML>

The results are shown in Figure 16-4.

490 J S P : T h e C o m p l e t e R e f e r e n c e

Figure 16-4. Product catalog HTML generated by XSLT

This example ran the XSL transformation on the server. Passing XML and the
style sheet over the Web and running the transformation on the client is already
possible. Internet Explorer 5.0 introduced direct support for XML and XSL style
sheets. Unfortunately, the XSLT specification was only in beta form when Microsoft
added these features. Since then, the XSLT language has changed and a number of
features are incompatible with Microsoft’s version. Expecting these difficulties to be
resolved in the future is logical.

Summary
XML is becoming the universal language for structured data storage and interchange.
Using human-readable text files and simple grammatical rules, XML captures not
only data but metadata, information about the structure of the data. Hundreds of
applications are being written or converted to use XML as their input and/or output.
The XML specifications and those for its related technologies are managed by the
World Wide Web Consortium , usually referred to as W3C.

To read XML, you need a parser. Two primary parser models are in general use:

� Document Object Model (DOM) Models an XML document as a tree of
nodes. The DOM API provides methods for navigating a DOM tree in an
arbitrary order: forward, backward, through siblings.

� Simple API for Java (SAX) Event-driven parser model that invokes callback
methods in registered handlers.

XML can be transformed using an XSLT processor and an XSL style sheet.
There’s no question that XML applications will multiply greatly in the future.

JSP can be an enabling technology for these applications.

JS
P

IN
A

C
TIO

N
C h a p t e r 1 6 : J S P a n d X M L 491

This page intentionally left blank.

Chapter 17
JSP Testing
and Debugging

493

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Debugging techniques are frequently glossed over in programming tutorials,
but are indispensable in application development. While programming can
be systematic and code is easily borrowed from other programs, debugging

is often viewed as a process of random trial-and-error changes that may or may
not fix a problem.

The Web application environment presents its own unique difficulties. Because
applications are split into server and client components, request handling involves
multiple cooperating processes. As a result, errors are hard to reproduce, especially
if they occur intermittently.

In this chapter, you see testing and debugging can be as systematic as development.
The chapter outlines basic testing and debugging techniques that can be applied and
develops several tools that can be helpful.

Building a Mental Model
The key to systematic debugging is understanding how the application is designed
to work. This means knowing what components are involved, how they interact, and
what their expected behavior is. This makes it possible to isolate the failing component
and determine what can account for the error.

Translation and Compilation
For example, you know a JSP page exists in three forms, as illustrated in Figure 17-1:

1. JSP Source Code This is what a developer creates—a .jsp file containing
scriptlets, expression, directives, and HTML template code.

2. Generated Servlet Source Code When a JSP page is first requested or
whenever it is requested after any changes to its .jsp file, the JSP container
translates it into an equivalent Java servlet.

3. Compiled Servlet Class After the JSP page is translated into servlet source
code, it is compiled to produce a Java .class file.

Errors can occur at any point during this process. A careful examination of the error
message and a knowledge of where the intermediate forms exist can help us zero in on
the cause.

494 J S P : T h e C o m p l e t e R e f e r e n c e

Figure 17-1. The three forms of a JSP page

JS
P

IN
A

C
TIO

N

Careful reading of error messages is crucial, but you can’t read them if they aren’t
there. Internet Explorer 5.x by default substitutes its own error page when a 500 level
(internal servlet) error occurs. Presumably, this is intended to protect end users from
frightening stack traces, but it makes things difficult for the developer. You can turn
off this feature by selecting the Tools | Internet Options menu item, and then selecting
the Advanced tab. A check box entitled “Show friendly HTTP error messages” is under
the Browsing section of the tree. If you deselect this option, you can see full stack traces
and any other data sent by a servlet exception.

For example, suppose you have a custom tag named timer that keeps track of how
long its body takes to execute. The tag handler is a class named TimerTag, which
takes a snapshot of the current system time in its doStartTag() and doEndTag()
methods and creates a scripting variable with the result.

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

import java.io.*;

import java.net.*;

import java.util.*;

/**

* A tag handler for a custom tag that keeps track

* of how long its body takes to execute

*/

public class TimerTag extends TagSupport

{

private long startTime;

private long endTime;

/**

* Starts the timer

*/

public int doStartTag() throws JspException

{

startTime = System.currentTimeMillis();

return EVAL_BODY_INCLUDE;

}

/**

* Stops the timer and calculates the elapsed time

* in seconds. This is stored as a page context

* attribute using the ID variable name

*/

public int doEndTag() throws JspException

C h a p t e r 1 7 : J S P T e s t i n g a n d D e b u g g i n g 495

496 J S P : T h e C o m p l e t e R e f e r e n c e

{

endTime = System.currentTimeMillis();

double elapsed = (endTime - startTime)/1000.0;

pageContext.setAttribute(getId(), new Double(elapsed));

return EVAL_PAGE;

}

}

A typical use might be to see how long it takes to create a JDBC connection, as shown
in the following JSP code:

<%@ page session="false" %>

<%@ page import="java.sql.*" %>

<%@ taglib prefix="debug" uri="/WEB-INF/tlds/debug.tld" %>

<debug:timer id="t1">

<%

Connection con = null;

try {

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

con = DriverManager.getConnection("jdbc:odbc:usda");

}

finally {

if (con != null)

con.close();

}

%>

</debug:timer>

Connecting to the database took <%= t1 %> seconds.

When this JSP page is run under JRun 3.0, it works. But under Tomcat 3.2, it produces
the following error message:

Error: 500

Location:/jspcr/Chap17/examples/Timer.jsp

Internal Servlet Error:

org.apache.jasper.JasperException:

Unable to compile class for JSP

D:\tomcat\work\localhost_8080%2Fjspcr_0002fChap_00031_00037

_0002fexamples_0002fTimer_0002ejspTimer_jsp_0.java:70:

Class Chap_00031_00037.examples.TimerTag not found.

TimerTag _jspx_th_debug_timer_0 = new TimerTag();

^

Looking at the message carefully, you can find several clues about the nature of
the error. First, it reports the location of the JSP page. This tells you Tomcat was able
to find the JSP source code. Next, the message text says Jasper (the Tomcat JSP translator)
was unable to compile a JSP servlet class and gives the name of the generated .java
source file. This means translation from .jsp to .java completed and the java compiler
was invoked, but failed. So you know this isn’t a run-time error. This isn’t due to a problem
with the JDBC-ODBC driver, so it must be a compilation error with the generated servlet
source code.

Having isolated the failing component, you can understand the rest of the error
message. The generated servlet on line 70 creates an instance of TimerTag() and
stores it in the _jspx_th_debug_timer_0 variable. This is the line that gets the
error message “Class Chap_00031_00037.examples.TimerTag not found.”
So the java compiler (not the JSP translator or the servlet engine) was unable to find
a class. If you can figure out why, you’re done.

The compiler might not find a class for several reasons. The class may not have been
compiled or its .class file may not exist in the classpath. But a careful examination of
the error message points to a different reason. Notice exactly which class the compiler
is looking for: Chap_00031_00037.examples.TimerTag. Where did that package
name come from? Looking back at the tag handler source code, you can see no package
statement and, in the TLD, the fully qualified class name is simply TimerTag. This
accounts for why the class isn’t found—the compiler isn’t looking for it under the
correct name.

But why is the compiler looking for a class with that package name? Because this
is a compile issue, you need to look at the .java file to determine the source of the
problem. The location of this file is servlet engine-dependent, but you can tell from
the error message it’s under the work subdirectory of the Tomcat root. Working your
way down through the Web application subdirectories, you find the servlet source file.
The first few lines show what the problem is

package Chap_00031_00037.examples;

import javax.servlet.*;

import javax.servlet.http.*;

import javax.servlet.jsp.*;

...

import org.apache.jasper.JasperException;

import java.sql.*;

public class ... extends HttpJspBase {

...

}

C h a p t e r 1 7 : J S P T e s t i n g a n d D e b u g g i n g 497
JS

P
IN

A
C

TIO
N

The generated servlet has a package statement and a number of import statements.
From your general Java knowledge, you know classes can be referred to without their
fully qualified package name if an import statement supplies the rest of the name. If
none of the imported packages contain a referenced class name, the compiler assumes
it’s in the same package as the class being compiled. Therefore, the TimerTag class
referred to on line 70 of the generated servlet (remember the error message?) is looked
up in each of the imported packages, where it isn’t found, and is then treated as if it were
a class in the servlet’s own package: Chap_00031_00037.examples. End of mystery.

But this leaves two questions:

� Why does this work in JRun?

� How can you fix the problem?

The first question is easy to answer if you look at JRun’s version of the
generated servlet:

// Generated by JRun, do not edit

import javax.servlet.*;

import javax.servlet.http.*;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

import allaire.jrun.jsp.JRunJSPStaticHelpers;

import java.sql.*;

public class jrun__Chap17__examples__Timer2ejsp1a

extends allaire.jrun.jsp.HttpJSPServlet

implements allaire.jrun.jsp.JRunJspPage

{

...

}

The JRun JSP translator doesn’t generate a package statement, so the generated
servlet is in the default unnamed package. This is the same package the tag handler is
in, so there’s no conflict when the servlet uses the unadorned class name:

TimerTag timer__4_1 = (TimerTag)

JRunJSPStaticHelpers.createTagHandler

(pageContext, "TimerTag");

Now, how can you fix the error under Tomcat? One way is to supply an import
statement for TimerTag, so the java compiler knows not to try to associate it with any

498 J S P : T h e C o m p l e t e R e f e r e n c e

other package. You don’t have access to the generated servlet, only to the JSP source,
which means you could place this statement in your JSP:

<%@ page import=”TimerTag” %>

While this would work, it’s an unsatisfactory solution because it would have to
be done in every JSP page that uses the tag. Apart from the problem of remembering
to do this, it isn’t even clear to the maintenance programmer why this class is being
imported—no visible references exist to it.

A better solution is to assign a package name to the tag handler. If the full class
name is jspcr.debug.TimerTag, then line 70 becomes

jspcr.debug.TimerTag _jspx_th_debug_timer_0

= new jspcr.debug.TimerTag();

and no ambiguity occurs.

A helpful way to separate compilation and run-time errors is to precompile the JSP
page. The JSP 1.1 specification requires compliant JSP containers to do this when a
page is invoked with a request parameter named “jsp_precompile”. The JSP
container translates the JSP page into servlet source code and compiles the servlet,
but won’t cause it to service the request. This needn’t be done from a browser; it can be
done from a batch Java application that simply creates a URL for the request (including
the “jsp_precompile” parameter) and calling its openStream() method.

Testing in Isolation
Given that isolating the failing component is the key to debugging, making this easy
to do is important. Walking through the mental flowchart and identifying both what
should be happening and what is actually happening should be possible. When the
problem area is isolated, it should be possible to test the failing component by itself,
verifying each step of its operation.

To do this, you need to start from a known state. If you’ve changed several sections
of code, recompiled some beans, and modified a deployment descriptor, you may well
find the solution, but you may not see different results because of partial initializations
and leftover classes. To avoid this, you can do the following:

� Delete old copies of translated JSP servlets and classes. A JSP file is only
translated when it’s newer than its corresponding servlet and class file, but
modules it depends on may change without triggering its retranslation.
Changes to files included with the <%@ include %> directive, for example,

C h a p t e r 1 7 : J S P T e s t i n g a n d D e b u g g i n g 499
JS

P
IN

A
C

TIO
N

aren’t guaranteed to cause the including JSP page to be retranslated. Some JSP
containers do this, but the specification doesn’t require it.

� Delete serialized sessions. Some JSP containers save sessions to persistent
storage during shutdown, and then restore them when the JSP container is started
again. JRun, for example, writes serialized sessions to the /WEB-INF/sessions
directory. If you make changes to classes and recompile them, you may have an
old version of the class deserialized when you bring the servlet engine back up.

� Restart the Web server and servlet engine. While this may not be strictly
necessary in all cases, this step lets you be certain all initializations are done
properly. Changes to web.xml and tag library descriptors, for example, may
only be detected during startup.

Once you’re sure of the application state, you can provide it with known input
and follow it through the process. The servlet log provides a central collection point
for messages from the servlet engine, and from individual servlets and JSP pages.
You can write a message to the log with the log() method1, the same as you would
use System.out.println(). Particularly in JSP pages, it’s easy to add a few log
messages, test, add a few more based on the results of that test, and so on. Writing
messages to the servlet log provides a better execution trace than trying to write to
the servlet output stream, which may be corrupted and disappear before you can
analyze it.

Debugging Tools
Most commercial integrated development environments (IDEs) provide some kind of
debugger that enables you to step through the execution of a Java class, examining
and, possibly changing, the values of variables. The JDK includes a command line
debugger named jdb, which performs these same functions, more or less. While
these tools can be useful, they have several drawbacks when used to debug JSP code.

To begin with, JSP pages don’t map closely to their byte code equivalents. They
may consist of scriptlets, directives, expressions, HTML, and custom tags. If you’re
really interested in line-by-line execution tracing, you would need to debug with the
generated servlet source code, not the .jsp file.

In addition, JSP classes are loaded and run in a separate virtual machine controlled
by the servlet engine, possibly linked to a Web server. To debug an individual class,
starting the whole servlet engine in debug mode is necessary. You need to verify all
the same classpath entries are active, the same ports are used, and so on. Given that
you can even figure out how to do this, it tends to make the debug environment very

500 J S P : T h e C o m p l e t e R e f e r e n c e

1 This is a method in the ServletContext class, but it’s also available as a convenience
method of GenericServlet, from which most JSP pages derive. log() is preferable to
System.out.println() because it’s vendor-independent and provided by all servlet containers.

different from the actual run-time environment. Likewise, substantial timing differences
between the two environments may cause timeouts and race conditions that have
nothing to do with the problem being debugged.

In practical terms, you can do little with a line-by-line debugger that you can’t do
with the log() method (or System.out.println(), for that matter). Any variable
you might examine at a breakpoint can just as easily be written to the servlet log. You
can stop execution at any point and produce a stack trace simply by throwing an exception.
Given JSP’s automatic compilation and the browser refresh button, you can probably
do several iterations with new message points faster than you can start the IDE and
bring up the servlet engine in debug mode.

In this section, you learn to develop three tools that are less intrusive and better
adapted to the HTTP request-handling environment. Used in conjunction with log()
method for execution tracing, they can help both in isolating errors and verifying fixes.

Capturing Form Parameters
When an HTML form is used to send request parameters to a JSP or servlet, an obvious
testing requirement is being able to know what parameters it sends and what their value
is. This isn’t always obvious. If a <SELECT> element allows multiple selections, what
is the value of the request parameter? If a TEXT input element isn’t filled in, will it be
passed as a blank or null? What about check boxes that don’t specify a VALUE attribute?

An easy way to find out is to use a debugging JSP page that captures the request
parameters and displays them as name/value pairs in tabular form. The following JSP
page (Echo.jsp) shows how this can be done:

<%@ page session="false" %>

<%@ page import="java.util.*" %>

<HTML>

<HEAD><TITLE>Form Parameters</TITLE></HEAD>

<BODY>

<H3>Form Parameters</H3>

<TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0">

<TR><TH WIDTH=200>Name</TH><TH WIDTH=200>Value</TH></TR>

<%

Enumeration enames = request.getParameterNames();

while (enames.hasMoreElements()) {

String name = (String) enames.nextElement();

String[] values = request.getParameterValues(name);

if (values != null) {

for (int i = 0; i < values.length; i++) {

String value = values[i];

%><TR><TD><%= name %></TD><TD><%= value %></TD></TR><%

C h a p t e r 1 7 : J S P T e s t i n g a n d D e b u g g i n g 501
JS

P
IN

A
C

TIO
N

}

}

}

%>

</TABLE>

</BODY>

</HTML>

Echo.jsp gets a list of all the parameter names from the request object, and
then loops through the list and prints the name and value(s) of each one. The only
wrinkle is a parameter may have more than one value. For example, groups of check
boxes can have the same name but different value attributes. The servlet API takes
care of this, however, by providing a getParameterValues() method in the
request object that returns an array of values.

Figure 17-2 shows an HTML form with several types of input elements. The JSP
page that generates the form is listed in the following:

<%@ page session="false" %>

<HTML>

<HEAD>

<TITLE>Job Application</TITLE>

</HEAD>

<BODY>

<H3>Please Indicate Your Qualifications</H3>

<FORM ACTION="/dailyplanet/apphandler.jsp" METHOD="POST">

<INPUT

TYPE="hidden"

NAME="locale"

VALUE="<%= request.getLocale() %>"

>

<TABLE BORDER="0" CELLPADDING="3" CELLSPACING="0">

<TR>

<TD>

<INPUT TYPE="checkbox" NAME="speed">

Faster than a speeding bullet

<INPUT TYPE="checkbox" NAME="power">

More powerful than a locomotive

502 J S P : T h e C o m p l e t e R e f e r e n c e

<INPUT TYPE="checkbox" NAME="flight">

Able to leap tall buildings with a single bound

</TD>

</TR>

<TR><TD>Name: <INPUT TYPE="text" NAME="name">

<INPUT TYPE="submit" VALUE="Submit"></TD></TR>

</TABLE>

</FORM>

</BODY>

</HTML>

This form enables job applicants to describe their qualifications using a set of
check boxes. Additionally, the user’s locale is captured as a hidden field, so responses
can be sent in the user’s preferred language. Ordinarily, this form is processed by
/dailyplanet/apphander.jsp. To handle this input properly, apphandler.jsp
needs to know the format in which the request parameters will be sent. Without
peeking, would you know the default format of the check box values because they
don’t specify a VALUE attribute?

This is easy to determine. By substituting ACTION=”Echo.jsp” for
ACTION=”dailyplanet.jsp”, you can capture the output of the form and
test it using several different browsers and combinations of values. If you do
this for the form values in Figure 17-2, you get the table shown in Figure 17-3.

C h a p t e r 1 7 : J S P T e s t i n g a n d D e b u g g i n g 503
JS

P
IN

A
C

TIO
N

Figure 17-2. An online job application

504 J S P : T h e C o m p l e t e R e f e r e n c e

Echo.jsp can be enhanced to show more information about the request, such as
the request headers, cookies, and request attributes. The main advantage of Echo.jsp
is it requires no change to the server-side component that processes the form. All it
takes is a quick one-line change to the <FORM> element in the HTML document or JSP
page that submits the form.

A Debugging Web Client
The Echo.jsp server enables you to see what the Web client produces. The other side
of the transaction is how the processing servlet or JSP page responds. Debugging the
server side component is easier when you can view its input and output in isolation,
rather than after a Web browser manipulates it.

This is easier than you might suspect. A Web server doesn’t require a Web browser,
only something that can produce an HTTP request in ordinary ASCII form. Telnet
invoked on port 80 works perfectly well for this:

% telnet www.lyricnote.com 80

Trying...

Connected to www.lyricnote.com.

Escape character is ‘^]’.

GET / HTTP/1.0

HTTP/1.1 200 OK

...

Figure 17-3. Form parameters from the online job application

Unfortunately, the default Telnet client on Windows systems is GUI-based and
awkward to use for this purpose. The GUI window doesn’t scroll and automatically
clears its text after the request is processed. And the Windows client doesn’t handle
the Unix line-ending convention properly.

Duplicating the HTTP request functionality with a standalone console-mode Java
application is easy enough, however. WebClient.java, listed in the following, is a
simple Web client designed to be called from a command line:

import java.io.*;

import java.net.*;

import java.util.*;

public class WebClient

{

/**

* Mainline.

* Reads command line parameters and creates a new

* <CODE>WebClient</CODE> object.

*/

public static void main(String[] args)

throws Exception

{

String host = "localhost";

int port = 80;

for (int i = 0; i < args.length; i++) {

String arg = args[i];

if (arg.startsWith("-")) {

if (arg.equals("-host")) {

if (++i >= args.length)

throw new RuntimeException

("no argument for " + arg);

host = args[i];

}

else if (arg.equals("-port")) {

if (++i >= args.length)

throw new RuntimeException

("no argument for " + arg);

try {

port = Integer.parseInt(args[i]);

}

catch (NumberFormatException e) {

C h a p t e r 1 7 : J S P T e s t i n g a n d D e b u g g i n g 505
JS

P
IN

A
C

TIO
N

throw new RuntimeException

("Invalid port number [" + args[i] + "]");

}

}

else {

System.out.println("Invalid argument: " + arg);

showUsage();

System.exit(0);

}

}

else {

showUsage();

System.exit(0);

}

}

new WebClient(host, port);

}

/**

* Displays the calling syntax

*/

public static void showUsage()

{

String[] text = {

"usage: java WebClient"

+ " [-host <hostName>]"

+ " [-port <portNumber>]",

};

for (int i = 0; i < text.length; i++)

System.out.println(text[i]);

}

/**

* Creates and runs the web client

* @param host the HTTP server

* @param port the server port number

* @exception IOException if a socket error occurs

*/

public WebClient(String host, int port)

throws IOException

{

506 J S P : T h e C o m p l e t e R e f e r e n c e

int contentLength = 0;

// Open a socket to the web host

Socket socket = new Socket(host, port);

// Read input from user and echo it to web host

BufferedReader in =

new BufferedReader(

new InputStreamReader(System.in));

PrintWriter out =

new PrintWriter(socket.getOutputStream());

// First line - request

String line = in.readLine();

out.println(line);

// Header lines

for (;;) {

// Read and echo the line

line = in.readLine();

if (line == null)

throw new IOException("Unexpected EOF");

line = line.trim();

out.println(line);

// End of headers

if (line.equals(""))

break;

// Otherwise, this is a header

int p = line.indexOf(": ");

if (p == -1)

throw new IOException

C h a p t e r 1 7 : J S P T e s t i n g a n d D e b u g g i n g 507
JS

P
IN

A
C

TIO
N

508 J S P : T h e C o m p l e t e R e f e r e n c e

(line + " is not a valid header line");

String name = line.substring(0, p).trim();

String value = line.substring(p+1).trim();

if (name.equalsIgnoreCase("Content-Length")) {

try {

contentLength = Integer.parseInt(value);

}

catch (NumberFormatException e) {

throw new IOException

("Invalid content length " + value);

}

}

}

// Read <contentLength> bytes of content

if (contentLength > 0) {

StringBuffer sb = new StringBuffer();

for (;;) {

line = in.readLine();

if (line == null)

break;

sb.append(line);

int len = sb.length();

if (len < contentLength)

continue;

if (len > contentLength)

sb.setLength(contentLength);

break;

}

// Write data to output stream

out.print(sb.toString());

}

out.flush();

// The server is now working on the request.

// Read its output and dump to stdout

in =

new BufferedReader(

new InputStreamReader(

socket.getInputStream()));

out = new PrintWriter(System.out);

for (;;) {

line = in.readLine();

if (line == null)

break;

out.println(line);

}

// Close files

in.close();

out.close();

socket.close();

}

}

WebClient’s calling syntax is

java WebClient [-host <hostName>] [-port <portNumber>]

When started, it opens a socket connection to the specified host (default is
localhost), and then waits for an HTTP request and optional headers to be entered
from the keyboard. Each line entered by the user is sent out over the socket. Input
terminates when a blank line is entered. This signals to the HTTP server that no more
headers will be sent and the request is complete, except possibly for data being sent
with a POST request.

After the request is sent and processed, the server sends back a response, which is
echoed to the console. A typical exchange might be

D:\jspcr\Chap17\examples>java WebClient

POST /jspcr/Chap17/examples/Echo.jsp HTTP/1.0

Content-type: application/x-www-form-urlencoded

Content-length: 53

speed=on&power=on&flight=on&name=C.+Kent&locale=en_US

HTTP/1.1 200 OK

C h a p t e r 1 7 : J S P T e s t i n g a n d D e b u g g i n g 509
JS

P
IN

A
C

TIO
N

Date: Tue, 05 Dec 2000 03:59:35 GMT

Server: Apache/1.3.12 (Win32)

Connection: Keep-alive, close

Content-Length: 434

Content-Type: text/html; charset=ISO-8859-1

<HTML>

<HEAD>

<TITLE>Form Parameters</TITLE>

</HEAD>

<BODY>

<H3>Form Parameters</H3>

<TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0">

<TR><TH WIDTH=200>Name</TH><TH WIDTH=200>Value</TH></TR>

<TR><TD>flight</TD><TD>on</TD></TR>

<TR><TD>speed</TD><TD>on</TD></TR>

<TR><TD>power</TD><TD>on</TD></TR>

<TR><TD>name</TD><TD>C. Kent</TD></TR>

<TR><TD>locale</TD><TD>en_US</TD></TR>

</TABLE>

</BODY>

</HTML>

Tracing HTTP Requests
To troubleshoot a Web application effectively, you must be able to monitor how it
makes requests and receives responses. You already saw that Java classes can act both
as a Web client and a Web server. In this section, you develop a monitoring tool that
performs both functions, acting as the middleman between the client and server, as
illustrated in Figure 17-4. When this tracer tool is plugged into a Web application, its
server component listens for HTTP requests, logs their headers, and then forwards
them to the real Web server. Its client component then receives the Web server’s response,
logs the headers, and sends the response back to the client. Neither the client nor the
server is aware of the tracer’s presence in the loop.

510 J S P : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 7 : J S P T e s t i n g a n d D e b u g g i n g 511
JS

P
IN

A
C

TIO
N

The tool consists of two main components:

� A Web server proxy that listens for HTTP requests.

� A request handler that copies the client request to the server and
the response back to the client, logging headers in both directions.

The following lists the first component (Tracer.java).

package http;

import java.io.*;

import java.net.*;

import java.util.*;

/**

* Acts as a proxy web server, capturing requests

* and responses and echoing the headers to a

* log stream.

*/

public class Tracer extends Thread implements Logger

{

public static final int DEFAULT_PORT = 8601;

private String host;

private int port;

private int tracerPort;

private PrintWriter logWriter;

Figure 17-4. Configuration of the HTTP tracer in a Web application

// ===

// Class methods

// ===

/**

* Mainline

*/

public static void main(String[] args)

throws IOException

{

String opt_host = null;

String opt_port = null;

String opt_tracerPort = null;

String opt_log = null;

try {

for (int i = 0; i < args.length; i++) {

String arg = args[i];

if (!arg.startsWith("-"))

throw new IllegalArgumentException

("Unknown argument ["

+ arg + "]. Use -h for help");

// -h for help

String keyword = arg.substring(1);

if (keyword.equals("h") ||

keyword.equals("help"))

{

showUsage();

return;

}

// -host <hostname>

if (keyword.equals("host")) {

if (++i >= args.length)

throw new IllegalArgumentException

(arg + " but no argument");

opt_host = args[i];

}

512 J S P : T h e C o m p l e t e R e f e r e n c e

else

// -port <hostname>

if (keyword.equals("port")) {

if (++i >= args.length)

throw new IllegalArgumentException

(arg + " but no argument");

opt_port = args[i];

}

else

// -tracerPort <hostname>

if (keyword.equals("tracerPort")) {

if (++i >= args.length)

throw new IllegalArgumentException

(arg + " but no argument");

opt_tracerPort = args[i];

}

else

// -log <filename>

if (keyword.equals("log")) {

if (++i >= args.length)

throw new IllegalArgumentException

(arg + " but no argument");

opt_log = args[i];

}

else

throw new IllegalArgumentException

("Unrecognized option " + arg);

}

// Verify that there is no port conflict

int testTracerPort = (opt_tracerPort == null)

? DEFAULT_PORT

: Integer.parseInt(opt_tracerPort);

int testHostPort = (opt_port == null)

C h a p t e r 1 7 : J S P T e s t i n g a n d D e b u g g i n g 513
JS

P
IN

A
C

TIO
N

514 J S P : T h e C o m p l e t e R e f e r e n c e

? RequestHandler.DEFAULT_PORT

: Integer.parseInt(opt_port);

if (testTracerPort == testHostPort)

throw new IllegalArgumentException

("Cannot assign port and tracerPort both to "

+ testHostPort);

}

catch (IllegalArgumentException e) {

System.err.println(e.getMessage());

return;

}

// Create the tracer

Tracer tracer = new Tracer();

// Set its properties, if any

if (opt_host != null)

tracer.setHost(opt_host);

if (opt_port != null)

tracer.setPort(Integer.parseInt(opt_port));

if (opt_tracerPort != null)

tracer.setTracerPort

(Integer.parseInt(opt_tracerPort));

if (opt_log != null)

tracer.setLogWriter(new FileWriter(opt_log));

tracer.start();

}

/**

* Displays calling syntax

*/

public static final void showUsage()

{

String[] text = {

"",

"usage: java http.Tracer [options]",

"",

"where options are:",

"",

"-host <hostName> "

+ "(defaults to "

+ RequestHandler.DEFAULT_HOST + ")",

"-port <hostPort> "

+ "(defaults to "

+ RequestHandler.DEFAULT_PORT + ")",

"-tracerPort <localPort> "

+ "(defaults to "

+ DEFAULT_PORT + ")",

"-log <fileName> "

+ "(defaults to System.out)",

};

for (int i = 0; i < text.length; i++)

System.out.println(text[i]);

}

// ===

// Instance methods

// ===

public void run()

{

// Set defaults if not otherwise specified

if (tracerPort == 0)

tracerPort = DEFAULT_PORT;

if (logWriter == null)

logWriter = new PrintWriter(System.out);

// Start proxy server

try {

log("M: Opening tracer server on tracerPort "

+ tracerPort);

ServerSocket server = new ServerSocket(tracerPort);

// Loop forever

C h a p t e r 1 7 : J S P T e s t i n g a n d D e b u g g i n g 515
JS

P
IN

A
C

TIO
N

for (;;) {

// Wait for connection

log("M: Waiting for connections");

Socket client = server.accept();

log("M: Connection received from " + client);

// Dispatch it to a request handler thread

RequestHandler rh = new RequestHandler(client);

rh.setLogger(this);

if (host != null)

rh.setHost(host);

if (port != 0)

rh.setPort(port);

rh.start();

}

}

catch (IOException e) {

e.printStackTrace();

}

}

// ===

// Implementation of Logger

// ===

/**

* Writes a message to the log

* @param message the message

*/

public synchronized void log(String message)

{

logWriter.println(message);

logWriter.flush();

}

// ===

// Accessors

// ===

516 J S P : T h e C o m p l e t e R e f e r e n c e

/**

* Returns the host.

*/

public String getHost()

{

return host;

}

/**

* Sets the host.

* @param host the host.

*/

public void setHost(String host)

{

this.host = host;

}

/**

* Returns the port.

*/

public int getPort()

{

return port;

}

/**

* Sets the port.

* @param port the port.

*/

public void setPort(int port)

{

this.port = port;

}

/**

* Returns the tracerPort.

*/

public int getTracerPort()

{

return tracerPort;

}

C h a p t e r 1 7 : J S P T e s t i n g a n d D e b u g g i n g 517
JS

P
IN

A
C

TIO
N

518 J S P : T h e C o m p l e t e R e f e r e n c e

/**

* Sets the tracerPort.

* @param tracerPort the tracerPort.

*/

public void setTracerPort(int tracerPort)

{

this.tracerPort = tracerPort;

}

/**

* Returns the logWriter.

*/

public Writer getLogWriter()

{

return logWriter;

}

/**

* Sets the logWriter.

* @param logWriter the logWriter.

*/

public void setLogWriter(Writer logWriter)

throws IOException

{

this.logWriter = new PrintWriter(logWriter);

}

}

The Tracer mainline parses the command line, which supports four options:

� -host <hostname> The name of the target Web server host. If not specified,
this defaults to localhost.

� -port <portnumber> The port number on the target Web server. The default
is 80, which is the default HTTP port number.

� -tracerPort <portnumber> The local port number on which the tracer
itself runs. The default is 8601. This port number must be included in the
URL to be traced. For example, if an HTML form has an ACTION attribute
of http://www.lyricnote.com/search/ProductSearch.jsp, then it should be
changed to http://www.lyricnote.com:8601/search/ProductSearch.jsp. This
is the only change that must be made to hook up the tracer to any application.

� -log <filename> The name of a file to which the HTTP headers is to be
written. Log messages go to System.out if this option isn’t specified.

After validating the command line options, the mainline creates a Tracer object, sets
its properties, and starts it.

The run() method creates a java.net.ServerSocket and begins listening for
client connections. When a connection is accepted, run() creates a request-handling
thread to process the transaction. You examine this component shortly. A log message
is written for each of these steps.

Both Tracer and RequestHandler write log messages. Because the log may be
redirected by a command line option, each component needs a handle to the log output
stream. You can accomplish this by defining a Logger interface that Tracer implements.
RequestHandler is passed a reference to Tracer in its role as Logger. To make
clear which component sent the message, each message begins with either C: for client,
S: for server, or M: for the tracer middleman.

The second component of the tool, RequestHandler, acts as a Web client to the
target Web server, passing it the request line, request headers, and any request data
stream it obtains from the real Web client, logging headers as it goes. RequestHandler
then turns around and copies the response line, response headers, and response data
to the client.

package http;

import java.io.*;

import java.net.*;

import java.util.*;

/**

* A proxy HTTP server that handles a single request

*/

public class RequestHandler extends Thread

{

public static final String DEFAULT_HOST = "localhost";

public static final int DEFAULT_PORT = 80;

private Socket client;

private Logger logger;

private String host;

private int port;

// ===

// Constructors

// ===

/**

C h a p t e r 1 7 : J S P T e s t i n g a n d D e b u g g i n g 519
JS

P
IN

A
C

TIO
N

520 J S P : T h e C o m p l e t e R e f e r e n c e

* Creates a new <CODE>RequestHandler</CODE>

* for the specified client

*/

public RequestHandler(Socket client)

{

this.client = client;

}

// ===

// Instance methods

// ===

/**

* Copies the request from the client to the server

* and copies the response back to the client.

*/

public void run()

{

try {

// Open a socket to the web server

if (host == null)

host = DEFAULT_HOST;

if (port <= 0)

port = DEFAULT_PORT;

Socket server = new Socket(host, port);

// Open I/O streams to the client

InputStream cin =

new BufferedInputStream(client.getInputStream());

OutputStream cout =

new BufferedOutputStream(client.getOutputStream());

// Open I/O streams to the server

InputStream sin =

new BufferedInputStream(server.getInputStream());

C h a p t e r 1 7 : J S P T e s t i n g a n d D e b u g g i n g 521
JS

P
IN

A
C

TIO
N

OutputStream sout =

new BufferedOutputStream(server.getOutputStream());

// Copy request line and headers from client to server,

// echoing to logger if specified. Stop after the

// first empty line (end of headers)

int contentLength = 0;

StringBuffer sb = new StringBuffer();

for (;;) {

// Read a byte from client

// and copy it to server

int c = cin.read();

sout.write(c);

// Ignore CR at end of line

if (c == '\r')

continue;

// If LF, process the line

if (c == '\n') {

String line = sb.toString();

sb = new StringBuffer();

// Log the line

logger.log("C: " + line);

// If this is an empty line,

// there are no more headers

if (line.length() == 0)

break;

// If it is a content length header,

// save the content length

522 J S P : T h e C o m p l e t e R e f e r e n c e

int p = line.indexOf(":");

if (p != -1) {

String key = line.substring(0, p).trim();

String value = line.substring(p+1).trim();

if (key.equalsIgnoreCase("content-length"))

contentLength = Integer.parseInt(value);

}

}

// Otherwise, append char to string buffer

else

sb.append((char) c);

}

sout.flush();

// If content length was specified, read input stream

// and copy to server

if (contentLength > 0) {

for (int i = 0; i < contentLength; i++) {

int c = cin.read();

sout.write(c);

}

sout.flush();

}

// Echo the response back to the client

sb = new StringBuffer();

for (;;) {

// Read a byte from server

// and copy it to client

int c = sin.read();

cout.write(c);

// Ignore CR at end of line

if (c == '\r')

continue;

C h a p t e r 1 7 : J S P T e s t i n g a n d D e b u g g i n g 523
JS

P
IN

A
C

TIO
N

// If LF, process the line

if (c == '\n') {

String line = sb.toString();

sb = new StringBuffer();

// Log the line

logger.log("S: " + line);

// If this is an empty line,

// there are no more headers

if (line.length() == 0)

break;

}

// Otherwise, append char to string buffer

else

sb.append((char) c);

}

cout.flush();

// Copy remaining bytes to client

int bytesCopied = 0;

for (;;) {

int c = sin.read();

if (c == -1)

break;

cout.write(c);

bytesCopied++;

}

if (bytesCopied > 0)

cout.flush();

// Close streams and sockets

cin.close();

cout.close();

524 J S P : T h e C o m p l e t e R e f e r e n c e

client.close();

sin.close();

sout.close();

server.close();

}

catch (IOException e) {

e.printStackTrace();

}

}

// ===

// Accessors

// ===

/**

* Returns the client.

*/

public Socket getClient()

{

return client;

}

/**

* Returns the logger.

*/

public Logger getLogger()

{

return logger;

}

/**

* Sets the logger.

* @param logger the logger.

*/

public void setLogger(Logger logger)

{

this.logger = logger;

}

C h a p t e r 1 7 : J S P T e s t i n g a n d D e b u g g i n g 525
JS

P
IN

A
C

TIO
N

/**

* Returns the host.

*/

public String getHost()

{

return host;

}

/**

* Sets the host.

* @param host the host.

*/

public void setHost(String host)

{

this.host = host;

}

/**

* Returns the port.

*/

public int getPort()

{

return port;

}

/**

* Sets the port.

* @param port the port.

*/

public void setPort(int port)

{

this.port = port;

}

}

The heart of RequestHandler is its run() method, which opens a client socket
to the Web server, and then opens the socket’s input and output streams. Likewise,
it opens input and output streams for the Web client. run() method then reads the
request line and request headers, looking for a blank line that signals the end of the

headers. As each header is read, it is logged and passed on to the Web server. If a
Content-Length header is found, its value is noted. After the blank line at the end
of the headers, if the content length is non-zero, the request handler reads that many
bytes from the client input stream and copies them to the server. The same process
is then repeated in reverse for the server’s response, except the Content-Length header
is ignored and the server’s output is read and copied until the end of the file.

An example of where the Tracer tool can be useful is HTTP authentication. Much
of what makes this work happens under the covers of both the browser and the Web
server. An examination of the HTTP headers can make it clear.

HTTP basic authentication works like this:

� A Web user requests a document protected by HTTP basic authentication.

� The Web browser formats an HTTP request and sends it to the Web server.

� The server refuses the request, setting the status code to 401 (Authorization
Required) and sending a WWW-Authenticate header specifying the
authentication type and the realm.

� The browser gets the 401 response code and searches its cache to see if the user
has already logged in to this realm during this session. If the user hasn’t logged
in, the browser prompts for the user ID and password.

� The credentials, obtained either from this prompt or from the browser session
cache, are Base64-encoded2 and the original request is retransmitted, this time
with an Authorization header.

� The server sees the Authorization header, verifies whether the user is
authorized to retrieve the document, and then returns either the document
or another 401 response line.

Here’s what Tracer reports for this process3:

M: Opening tracer server on tracerPort 8601

M: Waiting for connections

M: Connection received from Socket

[addr=ppp-1-247.dialup.lyricnote.com/209.165.213.47,

port=1180,localport=8601]

M: Waiting for connections

526 J S P : T h e C o m p l e t e R e f e r e n c e

2 Base64 encoding converts a byte stream to readable ASCII characters so control characters in the bytes
don’t interfere with the server operations. RFC 2068 describes the algorithm. Note, however, this isn’t
encryption, only a character transformation that can easily be reversed. For this reason, HTTP Basic
Authentication is not particularly secure and should only be used for internal applications where the
security risks are acceptable.

3 The log is reformatted slightly for readability.

The tracer server started by opening a server socket on port 8601. It blocked on the
server socket’s accept() method waiting for clients to connect. Once a connection was
received, a request handler was started and the tracer server resumed listening for other
client requests.

C: GET /logviewer/index.jsp HTTP/1.1

C: Accept: application/msword, application/vnd.ms-excel, ...

C: Accept-Language: en-us

C: Accept-Encoding: gzip, deflate

C: User-Agent: Mozilla/4.0 (compatible; Windows NT 4.0)

C: Host: u25nv:8601

C: Connection: Keep-Alive

C:

The request handler read the request line and six headers, echoing them to the
Web server.

S: HTTP/1.1 401 Authorization Required

S: Date: Tue, 05 Dec 2000 22:28:22 GMT

S: Server: Apache/1.3.12 (Win32)

S: WWW-Authenticate: Basic realm="Servlet Administrators"

S: Keep-Alive: timeout=15, max=100

S: Connection: Keep-Alive

S: Transfer-Encoding: chunked

S: Content-Type: text/html; charset=iso-8859-1

S:

The Web server refused the request, returning a 401 status code (Authorization
Required) and a WWW-Authenticate header specifying the authentication type was
Basic and the realm was “Servlet Administrators”. The Web browser prompted
the user for the user ID (“wolfgang”) and password (“papageno”) for that realm
and reissued the request:

M: Connection received from Socket

[addr=ppp-1-247.dialup.lyricnote.com/209.165.213.47,

port=1184,localport=8601]

M: Waiting for connections

C: GET /logviewer/index.jsp HTTP/1.1

C: Accept: application/msword, application/vnd.ms-excel, ...

C: Accept-Language: en-us

C h a p t e r 1 7 : J S P T e s t i n g a n d D e b u g g i n g 527
JS

P
IN

A
C

TIO
N

C: Accept-Encoding: gzip, deflate

C: User-Agent: Mozilla/4.0 (compatible; Windows NT 4.0)

C: Host: u25nv:8601

C: Connection: Keep-Alive

C: Authorization: Basic d29sZmdhbmc6cGFwYWdlbm8=

C:

S: HTTP/1.1 200 OK

S: Date: Tue, 05 Dec 2000 22:28:37 GMT

S: Server: Apache/1.3.12 (Win32)

S: Connection: Keep-alive, Keep-Alive

S: Content-Length: 142

S: Keep-Alive: timeout=15, max=100

S: Content-Type: text/html; charset=ISO-8859-1

S:

This time, the request included an Authorization header with the Base64-
encoded credentials. And, this time, the server accepted the request and sent back
the document.

Summary
Testing and debugging are indispensable parts of application development. While
programming is systematic and amenable to design patterns, debugging is often
haphazard and performed by trial and error changes. This chapter highlighted two
key aspects of a systematic debugging methodology:

� Building a mental model of the components and their interactions

� Isolating the failing component

Three tools that can assist in this methodology were presented:

� Echo.jsp A JSP page that captures parameters produced by an HTML form

� WebClient A standalone application that simulates a Web browser

� Tracer A standalone application that intercepts and logs HTTP requests

With sufficient forethought and design for testability, debugging can be as systematic
as application development.

528 J S P : T h e C o m p l e t e R e f e r e n c e

Chapter 18
Deploying Web
Applications

529

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

530 J S P : T h e C o m p l e t e R e f e r e n c e

Installing and configuring Web applications has historically been a completely
vendor-specific task. Apache JServ, for example, used both .properties files
and files containing Apache directive extensions to configure its servlet zones

and their attributes. Early versions of JRun came with a raft of .properties files
used to indicate how many servers existed, what ports they used, their classpaths,
what servlets aliases they recognized, which servlets should be preloaded, and so on.
The JSWDK reference implementation used a custom XML format for this purpose.

A certain amount of diversity is inevitable because servlet engines are, after
all, different implementations with their own particular features. But that part of
the configuration task is limited. The part that describes and interacts with servlets
themselves is fairly regular and can be standardized with great benefit. This is precisely
what happened in connection with the introduction of Web applications in the
Servlet 2.2 API.

This chapter describes the structure of a Web application and how to move it out
of the development environment and into a production environment.

The Web Application Environment
A collection of cooperating resources mapped to a common area of the Web server
namespace is referred to by the Servlet 2.2 and JSP 1.1 API specifications as a Web
application. This collection may include servlets, JSP pages, HTML files, images,
supporting classes, and configuration data.

For example, the LyricNote Web site might contain several Web applications:

� products This would include the product catalog database, images, a search
engine, a shopping cart application for customer orders, and Web pages that
describe product categories.

� support This application would provide JSP pages for customers to report
problems and ask questions, defect tracking servlets, servlets for generating
e-mail, and classes that interact with a knowledge base.

� internal MIS applications such as conference room bookings, job postings,
and company newsletters would live here, in a mixture of servlets, JSP pages,
and ordinary HTML.

Directory Structure
A Web application has a prescribed directory structure that all compliant servlet
engines understand. The structure is illustrated in Figure 18-1. The top level, or
application root, contains HTML documents, JSP pages, images, and any other resources
that make up the content of the application. Any number of subdirectories, which also

C h a p t e r 1 8 : D e p l o y i n g W e b A p p l i c a t i o n s 531
JS

P
IN

A
C

TIO
N

contain application content, can be under the root, much like folders in the document
tree of a Web server.

The root directory also contains a special directory named WEB-INF. This directory
and its subdirectories aren’t visible to application users. Instead, they contain servlets,
classes, .jar files, and configuration data that make up the operational parts of the
application. Three entries of note are in WEB-INF:

� classes This directory contains servlets and other classes. These classes are
automatically found by the servlet class loader, as if they were in the application
classpath. classes may have subdirectories that correspond to the package
structure, the same as any other directory in a classpath.

� lib Similar to classes, but contains .jar files. Classes in any .jar file in this
directory are automatically made available to the class loader without having to
be listed explicitly in some classpath.

� web.xml This is an XML document referred to as the deployment descriptor.
It has a rigorously defined vendor-independent structure and is used to
configure the servlets and other resources that make up the Web application.
You examine web.xml in greater detail later in this chapter.

Other files and subdirectories may be in WEB-INF, although the Servlet API
specification doesn’t define any particular ones. One subdirectory commonly used
is tlds, which contains Tag Library Descriptors for JSP custom tags. Because entries

Figure 18-1. Web application directory structure

Other content folders

/WEB-INF

classes

lib

web.xml

Application root (HTML, JSP, images, and so forth)

in this subdirectory are visible to application classes, but not to Web users, WEB-INF
is often used for vendor-specific purposes. JRun, for example, creates a subdirectory
named jsp that contains the Java source code and compiled classes for servlets
generated from JSP pages. JRun also creates a subdirectory named sessions,
which holds serialized versions of any HTTP sessions that are active when the
servlet engine is brought down. In general, WEB-INF is suitable for any data you
want to use in a Web application while keeping it hidden from direct access by users.

Resource Mapping
Web servers have a document root directory that primarily contains HTML files. In
Apache, for example, this is <apache root>/htdocs. Microsoft Internet Information Server
(IIS) uses inetpub/wwwroot. When a URL is clicked in a Web browser, the browser
breaks it down into its server and path components and generates an HTTP request to
the server for the specified resource. The Web server, when it receives the request,
extracts the path from the request header and translates it into a path relative to the
document root directory. For example, if the URL is

http://www.lyricnote.com/products/index.html

the browser opens an HTTP connection to the www.lyricnote.com host and sends it
a request starting with the line

GET /products/index.html HTTP/1.0

If the Web server is Apache and is installed at /usr/local/Apache, then the file sent
back is

/usr/local/Apache/htdocs/products/index.html

If the server is Microsoft IIS and is installed at c:\inetpub, then the file requested is

c:\inetpub\wwwroot\products\index.html

A Web application also has a document root directory, as you’ve seen, but this root
can be anywhere in the file system. The servlet engine, when it recognizes an HTTP
request is for a servlet or JSP page, extracts the Web application name from the URL
and maps the rest to a resource within that application. For example, if the URL is

http://www.lyricnote.com/products/contest/rules.jsp

532 J S P : T h e C o m p l e t e R e f e r e n c e

then the servlet engine creates a request for /contest/rules.jsp and passes it to
the products Web application.1 Servlets are handled similarly. A URL like

http://www.lyricnote.com/products/servlet/Counter

gets passed to the products Web application as a request for the Counter servlet.2

URLs used in a servlet or JSP page within an application to refer to another
resource within the application don’t use the application name. For example, if the
rules.jsp page needs to include the output of the Counter servlet dynamically,
it uses this statement

<jsp:include page=”/servlet/Counter” flush=”true”/>

not this statement

<jsp:include page=”/products/servlet/Counter” flush=”true”/>

The same applies to URLs used by <jsp:include>, the <%@ include %>
directive, the <%@ taglib %> directive, and methods that create
RequestDispatcher objects. The rule for interpreting these relative URL’s is this:

� If the URL begins with /, it’s interpreted as being relative to the application
root directory.

� If it doesn’t begin with /, it’s interpreted as being relative to the current
JSP page.

This brings up a subtle difficulty, however. URLs in a JSP page used as hyperlinks,
form actions, style sheet links, or image sources are interpreted by the browser, not the
server. If the LyricNote home page is a JSP page with a link to /products/contest/
rules.jsp, the link cannot be hardcoded with the products application name.
Why not? Because the application name isn’t necessarily going to be products.
This depends entirely on where the system administrator chose to install the Web
application. It could have been mounted as product_test or staging_area or
anything else. Only when the application is actually running can a JSP page know
the name, which can be obtained from the request.getContextPath() method.

JS
P

IN
A

C
TIO

N
C h a p t e r 1 8 : D e p l o y i n g W e b A p p l i c a t i o n s 533

1 Strictly speaking, the portion of the URL that constitutes the Web application name can be a multilevel
string like /products/test/Wednesday, but it’s more common for a single token to be used.

2 The <servlet-mapping> element of the deployment descriptor can be used to map any URL
substring to a particular servlet. Shown here are the default mappings.

534 J S P : T h e C o m p l e t e R e f e r e n c e

You can get around this in several ways. The JSP page can write every URL as a JSP
expression concatenating request.getContextPath() with the rest of the URL, but
this gets to be tedious and clutters up the code unnecessarily. A more elegant approach
is to use the HTML <BASE> element to assign a context to the page:

<HTML>

<HEAD>

<BASE HREF=”http://www.lyricnote.com/products/”>

</HEAD>

<BODY>

View the contest rules

</BODY>

</HTML>

With the <BASE> statement, the Web browser can interpret any nonabsolute
URLs relative to the HREF attribute. Thus, contest/rules.jsp becomes
http://www.lyricnote.com/products/contest/rules.jsp.

Of course, you aren’t done yet. You still need to figure out the BASE HREF at run
time. The HREF attribute needs to be a complete URL, not just an absolute path from
the server, so you need a number of details. The URL may start with https, if the
connection uses SSL. A port number may exist, not just the default port 80. Fortunately,
the request object can provide all this information. The following scriptlet solves the
problem in a general way.

<%

String scheme = request.getScheme();

String server = request.getServerName();

int port = request.getServerPort();

String path = request.getContextPath();

StringBuffer sb = new StringBuffer();

sb.append(scheme);

sb.append("://");

sb.append(server);

if ((port != -1) && (port != 80)) {

sb.append(":");

sb.append(port);

}

sb.append(path);

sb.append("/");

C h a p t e r 1 8 : D e p l o y i n g W e b A p p l i c a t i o n s 535
JS

P
IN

A
C

TIO
N

String baseURL = sb.toString();

%>

<BASE HREF="<%= baseURL %>">

The Servlet Context
Within a Web application, servlets and JSP pages can share data and functionality through
a common object known as the servlet context. This is an object that implements the
javax.servlet.ServletContext interface. The servlet context serves a number
of useful purposes:

� Object sharing Both servlets and JSP pages can store objects by name in the
servlet context, so they can be retrieved by other servlets and JSP pages. These
bindings persist as long as the application is active.

� Initialization parameters Constants used throughout the application can be
specified in the deployment descriptor and accessed through methods in the
servlet context. This permits configuration details—such as database URLs and
driver class names—to be specified outside any compiled Java code.

� Request dispatching Servlets can forward requests to other servlets and JSP
pages or include their output in the current output stream. The servlet context
provides methods for creating request dispatchers using either a path or a
servlet name.

� Message logging The servlet context has access to the servlet log and can be
used to write messages in a vendor-independent way.

See Table 4-8 for a complete description of the methods provided by the
servlet context.

In a JSP page, the servlet context object is automatically available in the application
implicit variable. In a servlet, it can be obtained with the getServletContext()method.

The Web Archive (war) File
Described so far is the run-time structure of a Web application. For deployment,
this structure must be collapsed into a single file called a Web archive (war) file. This
is nothing more than a .jar file with a different extension (.war), whose top level
corresponds to the root of the Web application.

To use a concrete example, consider the products Web application, shown
in Figure 18-2. Its root directory contains an index.jsp file and four content

536 J S P : T h e C o m p l e t e R e f e r e n c e

subdirectories: contest, debug, images, and sounds. In addition, it contains
a WEB-INF directory with the required classes and lib subdirectories, as well
as the web.xml deployment descriptor.

To create the .war file, go to the products directory and use the JDK jar command
line tool:

D:\lyricnote\products>jar -cvf products.war *

added manifest

adding: contest/(in = 0) (out= 0)(stored 0%)

adding: contest/contest.url(in = 184) (out= 125)(deflated 32%)

adding: contest/index.jsp(in = 1890) (out= 739)(deflated 60%)

adding: debug/(in = 0) (out= 0)(stored 0%)

adding: debug/AddProduct.jsp(in = 400) (out= 240)(deflated 40%)

adding: debug/AddProduct2.jsp(in = 543) (out= 292)(deflated 46%)

adding: debug/Example1.jsp(in = 153) (out= 119)(deflated 22%)

adding: debug/Example1.url(in = 76) (out= 78)(deflated -2%)

adding: images/(in = 0) (out= 0)(stored 0%)

Figure 18-2. Run-time structure of the products Web application

adding: index.jsp(in = 782) (out= 392)(deflated 49%)

adding: sounds/(in = 0) (out= 0)(stored 0%)

adding: sounds/BIRDS.MID(in = 3494) (out= 1138)(deflated 67%)

adding: sounds/ITBGON.MID(in = 975) (out= 478)(deflated 50%)

adding: WEB-INF/(in = 0) (out= 0)(stored 0%)

adding: WEB-INF/classes/(in = 0) (out= 0)(stored 0%)

adding: WEB-INF/lib/(in = 0) (out= 0)(stored 0%)

adding: WEB-INF/web.xml(in = 46) (out= 37)(deflated 19%)

See the JDK documentation for complete details about the jar tool.
The resulting file products.war is ready to be deployed. All Servlet 2.2-compliant

servlet engines are required to accept a .war file directly and construct the corresponding
Web application. The specific means for installing the file are, as you might expect,
vendor-specific. Tomcat, the reference implementation, allows .war files simply to
be dropped into the <tomcat_home>/webapps directory. When Tomcat is restarted,
the .war file is then unpacked and validated, and the new application is available.
Commercial servlet engines usually provide a GUI administration tool for this job.
JRun offers a deployment wizard in its management console (shown in Figure 18-3)
for deploying applications from a .war file.

C h a p t e r 1 8 : D e p l o y i n g W e b A p p l i c a t i o n s 537
JS

P
IN

A
C

TIO
N

Figure 18-3. JRun deployment wizard (detail)

538 J S P : T h e C o m p l e t e R e f e r e n c e

The Deployment Descriptor—web.xml
The web.xml file in the WEB-INF directory is referred to as the deployment descriptor.
This is an XML document in a strictly defined format that specifies the configuration
of the Web application. Among other things, it can be used to describe

� Servlets aliases, mappings, and initialization parameters

� Session timeout limits

� Global parameters to be made available throughout the application

� Security configuration

� Mime types

Because this file is an XML document, its format is described with a document type
definition, or DTD. The DTD is named web-app_x.y.dtd, where x.y is the servlet
API specification version, such as 2.2. It is published by Sun Microsystems and can
be downloaded at http://java.sun.com/j2ee/dtds/web-app_2_2.dtd.

The simplest possible web.xml file looks like this:

<?xml version=”1.0”?>

<!DOCTYPE web-app PUBLIC

“-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN”

“http://java.sun.com/j2ee/dtds/web-app_2_2.dtd”>

<web-app>

</web-app>

In the body of the <web-app> element are other elements that describe
the application configuration. Table 18-1 lists the elements that can be used.

Any elements used inside the <web-app> body must be specified exactly in the order
listed. If multiple occurrences of an element are allowed, they must all occur together,
not intermingled with other elements. For example, all <servlet> elements must
occur before any <servlet-mapping> elements.

C h a p t e r 1 8 : D e p l o y i n g W e b A p p l i c a t i o n s 539
JS

P
IN

A
C

TIO
N

Element Contents

<web-app> This is the top-level element. It may contain
any of the following subelements, in the
order shown:
<icon> (optional)
<display-name> (optional)
<description> (optional)
<distributable> (optional)
<context-param> (zero or more)
<servlet> (zero or more)
<servlet-mapping> (zero or more)
<session-config> (optional)
<mime-mapping> (zero or more)
<welcome-file-list> (optional)
<error-page> (zero or more)
<taglib> (zero or more)
<resource-ref> (zero or more)
<security-constraint> (zero or more)
<login-config> (optional)
<security-role> (zero or more)
<env-entry> (zero or more)
<ejb-ref> (zero or more)

<icon> Allows developer to specify the relative location
within the application of icon files, in either
JPEG or GIF format. These icons can be used
by a GUI administration to represent the
application. It may contain either of the
following elements, or both:
<small-icon> (optional)
<large-icon> (optional)

Table 18-1. Contents of the web.xml Deployment Descriptor

540 J S P : T h e C o m p l e t e R e f e r e n c e

Element Contents

<small-icon> A 16 × 16 icon image filename.

<large-icon> A 32 × 32 icon image filename.

<display-name> A short name for the parent element
(<web-app> or <servlet>), which
can be used by administrative tools.

<description> A description of the parent element that can be
used by administrative tools. This element can
appear in several different contexts in this file.

<distributable> If specified, indicates this application is designed
to run in multiple distributed servlet containers.

<context-param> Defines an application-wide initialization
parameter. Contains the following subelements:
<param-name> (required)
<param-value> (required)
<description> (optional)

<param-name> A parameter name.

<param-value> A parameter value.

<servlet> Defines a servlet and all its associated
configuration. May contain the following
subelements, in this order:
<icon> (optional)
<servlet-name> (required)
<display-name> (optional)
<description> (optional)
<servlet-class> or <jsp-file>
(must specify one or the other)
<init-param> (zero or more)
<load-on-startup> (optional)
<security-role-ref> (zero or more)

Table 18-1. Contents of the web.xml Deployment Descriptor (continued)

JS
P

IN
A

C
TIO

N
C h a p t e r 1 8 : D e p l o y i n g W e b A p p l i c a t i o n s 541

Element Contents

<servlet-name> The name by which a servlet is known to the
servlet container. Note, multiple <servlet>
elements with different servlet names may specify
the same servlet class. In that case, the servlet engine
creates multiple instances of the servlet. A servlet
may call the getServletName() method in
GenericServlet or ServletConfig to
determine its name.

<servlet-class> The fully qualified name of the servlet class.

<jsp-file> The full path to a JSP file relative to the root of
the Web application.

<init-param> Defines a servlet initialization parameter.
Contains the following subelements:
<param-name> (required)
<param-value> (required)
<description> (optional)

<load-on-startup> If specified, this element indicates the servlet
should be preloaded when the servlet engine
starts. This means the servlet’s init() method
will be called and the servlet will then be available
for requests. The value of this element (if any) can
be an integer specifying the relative order in which
this servlet should be started, if several exist.

<servlet-mapping> Specifies which URL patterns should be mapped
to which servlet names. Must contain the following
subelements:
<servlet-name> (required)
<url-pattern> (required).

<url-pattern> Indicates a pattern that must be matched by a
substring of a URL for this servlet to be invoked.
The pattern may include the wildcard character *.

Table 18-1. Contents of the web.xml Deployment Descriptor (continued)

542 J S P : T h e C o m p l e t e R e f e r e n c e

Element Contents

<session-config> Defines session configuration parameters. May
include the <session-timeout> subelement.

<session-timeout> The default number of minutes with no activity
the servlet engine allows before HTTP sessions
are terminated.

<mime-mapping> Defines the MIME type implied by a file
extension. Must contain the following elements:
<extension> (required)
<mime-type> (required).

<extension> A suffix of a filename that indicates its type.
For example, png is used to indicate a Portable
Network Graphics file.

<mime-type> The MIME type associated with a particular
file extension. For example, image/png is used
to indicate a Portable Network Graphics file.

<welcome-file-
list>

A list of zero or more <welcome-file>
elements. When a request is made for a URL
that is a directory, the servlet engine tries each
welcome file in turn.

<welcome-file> The default file to be used to service a request
in a directory if no filename is specified in
the URL. Examples would be index.html,
or index.jsp.

<taglib> Used to define a URL mapping for a JSP tag
library. Must contain the following subelements:
<taglib-uri> (required)
<taglib-location> (required)

<taglib-uri> A string of characters intended to be used in
the uri attribute of a <%@ taglib %> directive.
Although a URL or path is often specified here,
it needn’t point to an actual Web resource. It
serves only as a unique identifier that JSP pages
can use to map taglib directives to tag library
descriptors (TLDs).

Table 18-1. Contents of the web.xml Deployment Descriptor (continued)

C h a p t e r 1 8 : D e p l o y i n g W e b A p p l i c a t i o n s 543
JS

P
IN

A
C

TIO
N

Element Contents

<taglib-location> A URI relative to the Web application root
directory at which a tag library descriptor
(TLD) can be found. For example,
/WEB-INF/tlds/mytags.tld.

<error-page> Maps an HTTP response code or exception type
to a servlet, JSP page, or HTML file that will be
invoked by default when error occurs. Contains
the following subelements:
<error-code> or <exception-type>
(one or the other is required)
<location> (required)

<error-code> An HTTP response code to be mapped to an
error page.

<exception-type> A fully qualified Java exception class name.

<location> The URI of a servlet, JSP page, or HTML file
used as an error page.

<resource-ref> Contains information used to set up a J2EE
resource factory. May contain the following
subelements:
<description> (optional)
<res-ref-name> (required)
<res-type> (required)
<res-auth> (required).

<res-ref-name> Specifies the name of a resource factory reference.

<res-type> Specifies the Java class name of the data source
associated with a resource factory.

<res-auth> Indicates the source of the credentials supplied
to a resource factory. Two possible values
exist: SERVLET—The Web application
supplies the value programmatically.
CONTAINER—Credentials supplied by
the container.

Table 18-1. Contents of the web.xml Deployment Descriptor (continued)

544 J S P : T h e C o m p l e t e R e f e r e n c e

Element Contents

<security-constraint> Defines the security constraints to be
applied to one or more resource collections.
May contain the following subelements:
<web-resource-collection> (one or more)
<auth-constraint> (optional)
<user-data-constraint> (optional)

<web-resource-
collection>

Defines a set of resources in the Web application
to which security constraints can be applied.
May contain the following subelements:
<web-resource-name> (required)
<description> (optional)
<url-pattern> (zero or more)
<http-method> (zero or more)

<web-resource-name> The name by which a Web resource can
be referred.

<http-method> An HTTP method type (for example, GET, POST,
and so forth).

<user-data-constraint> Specifies how data transmitted to and
from the application should be protected.
May contain the following subelements:
<description> (optional)
<transport-guarantee> (required)

<transport-guarantee> Allowed values are
NONE—application doesn’t
require transport guarantees.
INTEGRAL—requires that data
cannot be altered in transit.
CONFIDENTIAL—requires that
data cannot be read in transit.

<auth-constraint> Specifies a list of role names treated collectively
in a <security-constraint> element.
May contain the following subelements:
<description> (optional)
<role-name> (zero or more)

Table 18-1. Contents of the web.xml Deployment Descriptor (continued)

JS
P

IN
A

C
TIO

N
C h a p t e r 1 8 : D e p l o y i n g W e b A p p l i c a t i o n s 545

Element Contents

<role-name> A name used to identify a role in which
an authenticated user may be logged in.
This is the same value specified in the
request.isUserInRole() method
to allow conditional execution of parts
of a servlet by users in different roles.

<login-config> Specifies the type of login configuration.
May include the following subelements:
<auth-method> (optional)
<realm-name> (optional)
<form-login-config> (optional).

<realm-name> A realm name used in HTTP Basic Authentication.

<form-login-config> Specifies the resources used in form-based
login. Must contain the following subelements:
<form-login-page> (required)
<form-error-page> (required)

<form-login-page> Specifies the name of a resource
(HTML file, JSP page, servlet)
that prompts for user name and
password. This page must adhere
to the following requirements:
1. The form must use METHOD=”POST”
and ACTION=”j_security_check”.
2. The user name field must be named
j_username.
3. The password field must be named
j_password.

<form-error-page> Specifies the name of a resource (HTML file, JSP
page, servlet) displayed when the form-based
login isn’t successful.

<auth-method> Specifies the authentication method used.
Four legal values exist
BASIC
DIGEST
FORM
CLIENT-CERT
Not all servlet engines support all methods.

Table 18-1. Contents of the web.xml Deployment Descriptor (continued)

546 J S P : T h e C o m p l e t e R e f e r e n c e

Element Contents

<security-role> Declares a security role name valid for use
in a <security-constraints> element.
May contain the following subelements:
<description> (optional)
<role-name> (required)

<security-role-ref> Creates a mapping between a role name
and an alias for it. May contain the following
subelements:
<description> (optional)
<role-name> (required)
<role-link> (required)
This allows servlets to use the role link in
the request.isUserInRole() method
and have that name equated to the actual role
name. Thereafter, if the application is modified
to use a different role name, the servlet needn’t
be modified.

<role-link> A symbolic name used by a servlet to refer to an
actual role name.

<env-entry> Used to define the J2EE environment entry.
May contain the following subelements:
<description> (optional)
<env-entry-name> (required)
<env-entry-value> (optional)
<env-entry-type> (required)

<env-entry-name> The J2EE environment entry name relative to the
JNDI java:comp/env context.

<env-entry-value> The value of the J2EE environment entry.

<env-entry-type> Must be one of the following:
java.lang.Boolean
java.lang.String
java.lang.Integer
java.lang.Double
java.lang.Float

Table 18-1. Contents of the web.xml Deployment Descriptor (continued)

Sample Deployment Descriptor
Table 18-1 looks formidable but, fortunately, most deployment descriptors use only a
tiny fraction of the possible elements. The following listing shows a typical web.xml file:

<?xml version="1.0"?>

<!DOCTYPE web-app PUBLIC

"-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"

"http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">

<web-app>

<context-param>

<param-name>JDBC.DRIVER</param-name>

<param-value>

C h a p t e r 1 8 : D e p l o y i n g W e b A p p l i c a t i o n s 547
JS

P
IN

A
C

TIO
N

Element Contents

<ejb-ref> Defines a reference to an Enterprise Java Bean
(EJB). May contain the following subelements:
<description> (optional)
<ejb-ref-name> (required)
<ejb-ref-type> (required)
<home> (required)
<remote> (required)
<ejb-link> (optional)

<ejb-ref-name> The JNDI name of an EJB reference.

<ejb-ref-type> The Java class of the EJB.

<home> The fully qualified name of the class that’s the
EJB’s home interface.

<remote> The fully qualified name of the class that’s the
EJB’s remote interface.

<ejb-link> The name of an EJB in an encompassing J2EE
application to which this EJB is linked.

Table 18-1. Contents of the web.xml Deployment Descriptor (continued)

548 J S P : T h e C o m p l e t e R e f e r e n c e

org.enhydra.instantdb.jdbc.idbDriver

</param-value>

</context-param>

<context-param>

<param-name>JDBC.URL</param-name>

<param-value>

jdbc:idb:d:/lyricnote/WEB-INF/db.prp

</param-value>

</context-param>

<servlet>

<servlet-name>Sample</servlet-name>

<servlet-class>

jspcr.servlets.SampleServlet

</servlet-class>

<init-param>

<param-name>message</param-name>

<param-value>Hello, world</param-value>

</init-param>

</servlet>

<servlet>

<servlet-name>daytime</servlet-name>

<servlet-class>

jspcr.services.daytime

</servlet-class>

<load-on-startup>1</load-on-startup>

</servlet>

</web-app>

This deployment descriptor contains four elements: two context parameters and two
servlet declarations. The context parameters define constants available to all servlets
and JSP pages in the Web application. In this case, they define a JDBC driver class
and a database URL. Servlets and JSP pages can retrieve these values with the servlet
context getInitParameter() method. Because this type of information frequently
changes and, typically, varies in different installations, being able to describe it here
rather than hard coding it in a Java class is convenient.

Two servlets are defined. The first one, named Sample, refers to the
jspcr.servlets.SampleServlet class and has one initialization parameter.
This allows the servlet to be called with a URL similar to the following

http://www.lyricnote.com/products/servlet/Sample

without requiring the full servlet class name to be specified. The second servlet, named
daytime, uses the <load-on-startup> element to cause it to be preloaded when
the servlet engine starts.

The Servlet 2.2 API specification provides other sample deployment descriptors.
Likewise, most servlet engines come with examples of this file.

Summary
With the advent of the Servlet 2.2 specification, Web application deployment has
become standardized and vendor-independent. The specification describes a standard
directory structure that contains the Web content, as well as configuration information
and class directories. The configuration is specified in an XML document named
web.xml and known as the deployment descriptor. The directory structure is mirrored
in the web archive (.war) file format. Deploying a Web application and moving it from
one servlet engine to another usually requires little more than installing the .war file
and invoking the servlet engine’s deployment tool.

C h a p t e r 1 8 : D e p l o y i n g W e b A p p l i c a t i o n s 549
JS

P
IN

A
C

TIO
N

This page intentionally left blank.

Chapter 19
Case Study: A Product
Support Center

551

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Our hypothetical Internet music store, LyricNote.com, sells a variety of musical
products: sheet music, musical instruments, books on musical topics, gift items,
and music software. Support for these products involves taking orders over the

phone, checking order status, resolving billing questions, and providing technical support
for software. The last item is the focus of this chapter.

In this case study, you develop a Web-based system for managing the product support
center. Users of the system can report and track product defects, log comments about
them, and route them to the appropriate parties.

In the interest of clarity, this application doesn’t include all the validations, user
controls, or management reporting that a real production system might have. It does,
however, illustrate many of the techniques described throughout the book and provide
a model for further development.

Process Flow
To start, let’s consider the environment in which the system is going to operate.
The process flow is shown in Figure 19-1.

When a customer calls to report a software problem, the first available call center
agent answers the phone. This call center agent may route the call to sales or customer
service, if the problem isn’t software-related. Otherwise, the agent verifies the customer
is entitled to support, meaning the customer is a valid purchaser of the specified
product. The agent creates a problem report and tells the customer to expect a call
from product support.

The problem report is routed to the product support specialist for the product for
which the defect is being reported. Each product support specialist has a queue of open
problem reports and, when a new problem is received, the specialist calls the customer
to get more details, trying to determine if this is a customer problem or a code problem.
Customer problems may involve lack of required hardware or software, or failure
to install the product properly. In these cases, the product support person helps the
customer resolve the problem to the extent possible, and then closes the problem report.

If the problem is code-related, it may be that other customers have encountered it
and a fix already exists. If so, the fix is documented in the knowledge base, which the
product support person can search by appropriate keywords. The patch or procedure
necessary to fix the problem is sent to the customer via e-mail or made available over
the Web.

If the problem isn’t found in the knowledge base, it’s routed to the developer listed
as the primary support for the product. The developer analyzes the problem and attempts
to reproduce it. It may be the product is working as designed, in which case the defect
is rerouted back to product support marked “not a bug.” Otherwise, the developer tries
to isolate the bug and to develop a fix. After unit testing the fix, the developer routes
the problem to quality assurance. The problem report may be updated to indicate
how to reproduce the problem and where to get the code patch necessary to fix it.

552 J S P : T h e C o m p l e t e R e f e r e n c e

JS
P

IN
A

C
TIO

N
C h a p t e r 1 9 : C a s e S t u d y : A P r o d u c t S u p p o r t C e n t e r 553

The quality assurance support person for the product receives the problem report
from development and tests the fix. This is an integration test, in which the effect of the
new code on existing systems is examined. If the fix introduces other problems or fails
to pass all the established test cases, the problem is rerouted to development. Otherwise,
the fix is routed to product support, so the customer can be contacted and supplied
with the new code.

At any point, system users can look up the status of a particular problem, add
comments to it, and route the problem to its next destination. To be most effective, each
routing would be accompanied by e-mail sent to the new problem owner. That part isn’t
developed here, deferring the topic to Chapter 21, which examines the Java Mail API.

Figure 19-1. Product support center process flow

554 J S P : T h e C o m p l e t e R e f e r e n c e

To summarize, the system users and their functions are as follows:

Call center agent Verifies customer entitlement

Enters new problems

Can look up status of existing problems

Product support Receives incoming problem reports from
call center

Can view outstanding problems by product

Interviews customer

Updates problem status

Adds comments

Routes problem to development

Developer Receives problem reports from product support

Can view outstanding problems by product

Analyzes problem and develops fix

Adds comments to problem report

Routes problem to quality assurance

Quality assurance Receives problem reports and fixes from development

Performs integration test

Adds comments to problem report

Routes fixed problems to product support

May route problem back to developer if tests fail

In addition, management can view problem status at any time and can access
reports showing quality statistics, such as time in queues, bugs reported per product,
and outstanding bugs by developer. These reports aren’t included in this application,
but could be developed from the problem database.

Data Model
Table 19-1 describes the database tables that contain all the data necessary to record
and track problems.

Developing the System
JSP is a convenient development environment. Pages get automatically compiled
when necessary and URLs map easily to directory locations. Inside a JSP page, you
can use any mix of HTML and Java you like, which gives you a great deal of flexibility.

JS
P

IN
A

C
TIO

N
C h a p t e r 1 9 : C a s e S t u d y : A P r o d u c t S u p p o r t C e n t e r 555

Table Name Description Fields

customer A list of customers who
have bought LyricNote
products.

customerID
customer name
phone

product A list of products and
their support personnel.

productID
product name
product support person
lead developer
lead tester

custprod A list of customer/product
pairs indicating which
customer bought which
product.

customerID
productID
date purchased

problems The main record of a
reported problem.

problemID
description
severity (1=high,
2=medium, 3=low)
date reported
date resolved (if closed)
customerID
productID

problog A log of events in the life
of a reported problem.

problemID
timestamp
eventID
comments

employees Users of the system,
including call center agents,
product support, developers,
and testers.

employeeID
name
other fields (not used here)

Table 19-1. Data Model for Product Support Application

Unfortunately, these same advantages mean ordinary JSP applications don’t
scale well. As more Java code is embedded in JSP pages, keeping track of it becomes
increasingly more difficult. Unlike Java classes that can be compiled and unit tested,
JSP scriptlet code cannot easily be separated from its container. Being consistent over
large stretches of Java-strewn HTML is also difficult. You may start out using beans to
do most of the work, and then find they don’t do quite what you need, leading you to
cheat with a little extra Java buried in the HTML. These problems are compounded if
the application makes free use of the <%@ include %> directive.

What’s needed in larger applications is a better way to separate code into
components with clear responsibilities. For your product support system, you
use the Model-View-Controller (MVC) design.

Model-View-Controller Architecture
The idea behind MVC is the visual aspects of a system should be isolated from the
internal workings, which, in turn, should be separate from the mechanism that starts
and controls the internals. The MVC architecture was first prominently adopted by
Smalltalk and its practitioners, but is now a widely used design pattern. Figure 19-2
illustrates how MVC works.

The model refers to code that manages the abstract internal state and operations of
the system. It handles database access and most business logic. The model has no visual
component, providing instead an application programming interface that’s accessible to
other parts of the system. This makes it possible to write a driver program that can test
and debug the model from a simple command line interface.

556 J S P : T h e C o m p l e t e R e f e r e n c e

Figure 19-2. The Model-View-Controller architecture

In a chess game, for example, the model might consist of a set of objects representing
the pieces and a simple 8 × 8 array to hold them. The model could have methods that
indicate whose turn it is to move, that evaluate whether a given move is legal, and that
move pieces from one array element to another. The model would not have code that
provides any visual representation of the board.

The view is the presentation layer of the system. It does no database access
and contains no business logic. What little nonvisual code the view has is limited
to presentation logic, such as looping over an array of objects to be displayed. By
design, a model can be associated with more than one view, perhaps a graphical user
interface (GUI) and a printed report. For example, a Web-based, two-player game could
have one view for each player, both attached to the same model. This wouldn’t require
any changes to the model because the model is unaware of how it is being displayed.

In the case of the chess game, the view would contain code to draw the board and
the pieces, list the moves, and show the clock. It wouldn’t know anything about the
rules of chess, whose turn it was, or even the locations of the pieces. The view would
call methods in the model to keep track of all this. Even though GUI code is often
complex, all a view has to worry about is its visual aspects. Testing and debugging is
straightforward because a stub version of the model can be used to exercise all parts
of the view.

The controller is what manipulates the model according to user input. Based on the
current view, the state of the model, and the actions taken by the user, the controller
calls the model API to update the model state and select the next view. Roughly speaking,
the controller handles input from the user, whereas the view handles output going to
the user1. The chess game might have two controllers—one that conveys the human
player’s moves, and one that chooses the computer’s moves.

In this product support system, the model consists of ordinary Java classes (not
servlets and not network-oriented). Simple JSP pages are used as the view and the
controller is a single servlet with some supporting classes.

Model Classes
Let’s start by examining the product support system model. It consists of three sets
of classes:

� Classes that represent business objects, roughly corresponding to tables in
the database

� The application container and interface classes

� A testing framework

These classes collectively make up the com.lyricnote.support.model
package. In addition to maintaining the application state, the model contains all

JS
P

IN
A

C
TIO

N
C h a p t e r 1 9 : C a s e S t u d y : A P r o d u c t S u p p o r t C e n t e r 557

1 The role of the controller is sometimes handled by the view in a simpler Model-View architecture.

the code that accesses the database, using a session-aware wrapper class to ensure
database resources are properly managed.

Business Objects
Six classes encapsulate business entities used in the data model:

� com.lyricnote.support.model.Customer

� com.lyricnote.support.model.Product

� com.lyricnote.support.model.CustomerProduct

� com.lyricnote.support.model.Employee

� com.lyricnote.support.model.Problem

� com.lyricnote.support.model.ProblemLog

The following sections list the source code for each of these classes and describe their
operation.

Customer Class The first class in the package is the Customer class, which
represents a person or company that has bought LyricNote products and is eligible
for product support. The class contains the customer name and phone number, as well
as a unique customer identifier. The identifier is composed of the first four letters of the
customer’s last name, followed by the first and last letters of the customer’s first name,
ending with a two-digit unique numeric suffix. The class is shown in the following listing:

package com.lyricnote.support.model;

import java.io.*;

import java.sql.*;

import java.util.*;

/**

* A person or company that has bought LyricNote products.

*/

public class Customer implements Serializable

{

private String customerID;

private String name;

private String phone;

/**

* Factory method to create a customer record

* from the current row of a result set.

558 J S P : T h e C o m p l e t e R e f e r e n c e

* @param rs a result set from the customer table

* @exception SQLException if a database error occurs

*/

public static Customer load(ResultSet rs)

throws SQLException

{

Customer customer = new Customer();

String value = null;

value = rs.getString(1);

if (value != null)

customer.setCustomerID(value);

value = rs.getString(2);

if (value != null)

customer.setName(value);

value = rs.getString(3);

if (value != null)

customer.setPhone(value);

return customer;

}

/**

* Returns the object as a CSV string

*/

public String toString()

{

StringBuffer sb = new StringBuffer();

if (getCustomerID() != null)

sb.append(Util.quote(getCustomerID()));

sb.append(",");

if (getName() != null)

sb.append(Util.quote(getName()));

sb.append(",");

if (getPhone() != null)

sb.append(Util.quote(getPhone()));

C h a p t e r 1 9 : C a s e S t u d y : A P r o d u c t S u p p o r t C e n t e r 559
JS

P
IN

A
C

TIO
N

return sb.toString();

}

// ===

// Property accessor methods

// ===

/**

* Returns the customerID.

*/

public String getCustomerID()

{

return customerID;

}

/**

* Sets the customerID.

* @param customerID the customerID.

*/

public void setCustomerID(String customerID)

{

this.customerID = customerID;

}

/**

* Returns the name.

*/

public String getName()

{

return name;

}

/**

* Sets the name.

* @param name the name.

*/

public void setName(String name)

{

this.name = name;

}

/**

560 J S P : T h e C o m p l e t e R e f e r e n c e

* Returns the telephone number

*/

public String getPhone()

{

return phone;

}

/**

* Sets the telephone number.

* @param phone the phone.

*/

public void setPhone(String phone)

{

this.phone = phone;

}

}

In addition to the getter and setter methods for each property, the Customer class
contains a toString() method that returns a comma-separated-values string and a
class method named load(). The load() method creates a Customer object from a
customer table row in an SQL result set. This method is used in the model application
classes to simplify retrieving a collection of Customer objects from the database.

The Util.quote()method in the toString()method is discussed later in this
chapter in the Application Objects section.

Product Class Next is the Product class, representing a row in the product table.
Its properties consist of a unique product identifier, the product name, and the employee
numbers of the product’s primary support person, its lead developer, and its lead tester.
The class is show in the following listing.

package com.lyricnote.support.model;

import java.io.*;

import java.sql.*;

import java.util.*;

/**

* A software product supported by the Product

* Support system.

*/

public class Product implements Serializable

C h a p t e r 1 9 : C a s e S t u d y : A P r o d u c t S u p p o r t C e n t e r 561
JS

P
IN

A
C

TIO
N

{

private String productID;

private String name;

private String productSupport;

private String developer;

private String tester;

/**

* Factory method to create a product record

* from the current row of a result set.

* @param rs a result set from the product table

* @exception SQLException if a database error occurs

*/

public static Product load(ResultSet rs)

throws SQLException

{

Product product = new Product();

String value = null;

value = rs.getString(1);

if (value != null)

product.setProductID(value);

value = rs.getString(2);

if (value != null)

product.setName(value);

value = rs.getString(3);

if (value != null)

product.setProductSupport(value);

value = rs.getString(4);

if (value != null)

product.setDeveloper(value);

value = rs.getString(5);

if (value != null)

product.setTester(value);

return product;

}

562 J S P : T h e C o m p l e t e R e f e r e n c e

/**

* Returns the object as a CSV string

*/

public String toString()

{

StringBuffer sb = new StringBuffer();

if (getProductID() != null)

sb.append(Util.quote(getProductID()));

sb.append(",");

if (getName() != null)

sb.append(Util.quote(getName()));

sb.append(",");

if (getProductSupport() != null)

sb.append(Util.quote(getProductSupport()));

sb.append(",");

if (getDeveloper() != null)

sb.append(Util.quote(getDeveloper()));

sb.append(",");

if (getTester() != null)

sb.append(Util.quote(getTester()));

return sb.toString();

}

// ===

// Property accessor methods

// ===

/**

* Returns the product ID.

*/

public String getProductID()

{

return productID;

}

/**

C h a p t e r 1 9 : C a s e S t u d y : A P r o d u c t S u p p o r t C e n t e r 563
JS

P
IN

A
C

TIO
N

* Sets the product ID.

* @param product the product ID.

*/

public void setProductID(String productID)

{

this.productID = productID;

}

/**

* Returns the product name.

*/

public String getName()

{

return name;

}

/**

* Sets the product name.

* @param name the product name.

*/

public void setName(String name)

{

this.name = name;

}

/**

* Returns the productSupport ID.

*/

public String getProductSupport()

{

return productSupport;

}

/**

* Sets the productSupport ID.

* @param productSupport the productSupport.

*/

public void setProductSupport(String productSupport)

{

this.productSupport = productSupport;

}

564 J S P : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 9 : C a s e S t u d y : A P r o d u c t S u p p o r t C e n t e r 565
JS

P
IN

A
C

TIO
N

/**

* Returns the developer ID.

*/

public String getDeveloper()

{

return developer;

}

/**

* Sets the developer ID.

* @param developer the developer.

*/

public void setDeveloper(String developer)

{

this.developer = developer;

}

/**

* Returns the tester ID.

*/

public String getTester()

{

return tester;

}

/**

* Sets the tester ID.

* @param tester the tester.

*/

public void setTester(String tester)

{

this.tester = tester;

}

}

Like the Customer class, Product contains getter and setter methods for each of
its properties, as well as the customized toString() method and the factory method
for loading a Product object from a result set row.

CustomerProduct Class A key responsibility of the call center agent is to verify
customer entitlement, meaning the person reporting the problem is a valid customer and
has purchased the specified product. This is indicated by the existence of a record linking

566 J S P : T h e C o m p l e t e R e f e r e n c e

the customer and product in the custprod table. The class corresponding to this table
is CustomerProduct, shown in the following listing:

package com.lyricnote.support.model;

import java.io.*;

import java.sql.ResultSet;

import java.sql.SQLException;

import java.util.*;

/**

* A customer/product pair whose existence indicates

* that the customer bought the specified product.

*/

public class CustomerProduct implements Serializable

{

private String customerID;

private String productID;

private Date datePurchased;

/**

* Factory method to create a customer/product record

* from the current row of a result set.

* @param rs a result set from the customer table

* @exception SQLException if a database error occurs

*/

public static CustomerProduct load(ResultSet rs)

throws SQLException

{

CustomerProduct custprod = new CustomerProduct();

custprod.setCustomerID(rs.getString(1));

custprod.setProductID(rs.getString(2));

custprod.setDatePurchased(rs.getDate(3));

return custprod;

}

/**

* Returns the object as a CSV string

*/

public String toString()

{

StringBuffer sb = new StringBuffer();

sb.append(getCustomerID());

sb.append(",");

sb.append(getProductID());

sb.append(",");

sb.append(Util.dateFormat(getDatePurchased()));

return sb.toString();

}

// ===

// Property accessor methods

// ===

/**

* Returns the customerID.

*/

public String getCustomerID()

{

return customerID;

}

/**

* Sets the customerID.

* @param customerID the customerID.

*/

public void setCustomerID(String customerID)

{

this.customerID = customerID;

}

/**

* Returns the productID.

*/

public String getProductID()

{

return productID;

}

/**

* Sets the productID.

C h a p t e r 1 9 : C a s e S t u d y : A P r o d u c t S u p p o r t C e n t e r 567
JS

P
IN

A
C

TIO
N

568 J S P : T h e C o m p l e t e R e f e r e n c e

* @param productID the productID.

*/

public void setProductID(String productID)

{

this.productID = productID;

}

/**

* Returns the datePurchased.

*/

public Date getDatePurchased()

{

return datePurchased;

}

/**

* Sets the datePurchased.

* @param datePurchased the datePurchased.

*/

public void setDatePurchased(Date datePurchased)

{

this.datePurchased = datePurchased;

}

}

CustomerProduct has fields containing the customer ID, the product ID, and
the date the product was purchased. This information comes from product registration
mail-in cards, or manual input, not shown here.

Like the Customer and Product classes, CustomerProduct has getter and
setter methods, a toString() method to create a comma-separated-values string,
and a factory method for loading objects from the database.

Employee Class Associated with each product is a product support person, a lead
developer, and a lead tester. Information about these employees is contained in the
employee table and encapsulated in the Employee class, listed here:

package com.lyricnote.support.model;

import java.io.*;

import java.sql.ResultSet;

import java.sql.SQLException;

import java.util.*;

C h a p t e r 1 9 : C a s e S t u d y : A P r o d u c t S u p p o r t C e n t e r 569
JS

P
IN

A
C

TIO
N

/**

* A LyricNote employee that uses the Product Support system.

*/

public class Employee implements Serializable

{

private String employeeID;

private String name;

private Date dateHired;

private boolean isManager;

private String departmentID;

private String title;

private String email;

private String phone;

/**

* Factory method to create an employee record

* from the current row of a result set.

* @param rs a result set from the employee table

* @exception SQLException if a database error occurs

*/

public static Employee load(ResultSet rs)

throws SQLException

{

Employee employee = new Employee();

employee.setEmployeeID(rs.getString(1));

employee.setName(rs.getString(2));

employee.setDateHired(rs.getDate(3));

employee.setIsManager(rs.getBoolean(4));

employee.setDepartmentID(rs.getString(5));

employee.setTitle(rs.getString(6));

employee.setEmail(rs.getString(7));

employee.setPhone(rs.getString(8));

return employee;

}

/**

* Returns the object as a CSV string

*/

public String toString()

{

StringBuffer sb = new StringBuffer();

570 J S P : T h e C o m p l e t e R e f e r e n c e

sb.append(getEmployeeID());

sb.append(",");

sb.append(Util.quote(getName()));

sb.append(",");

sb.append(Util.dateFormat(getDateHired()));

sb.append(",");

sb.append(getIsManager());

sb.append(",");

sb.append(getDepartmentID());

sb.append(",");

sb.append(Util.quote(getTitle()));

sb.append(",");

sb.append(getEmail());

sb.append(",");

sb.append(getPhone());

return sb.toString();

}

// ===

// Property accessor methods

// ===

/**

* Returns the employee ID.

*/

public String getEmployeeID()

{

return employeeID;

}

/**

* Sets the employee ID.

* @param employeeID the employee ID.

*/

public void setEmployeeID(String employeeID)

{

this.employeeID = employeeID;

}

/**

* Returns the employee name.

*/

public String getName()

{

return name;

}

/**

* Sets the employee name.

* @param name the employee name.

*/

public void setName(String name)

{

this.name = name;

}

/**

* Returns the dateHired.

*/

public Date getDateHired()

{

return dateHired;

}

/**

* Sets the dateHired.

* @param dateHired the dateHired.

*/

public void setDateHired(Date dateHired)

{

this.dateHired = dateHired;

}

/**

* Returns the isManager flag.

*/

public boolean getIsManager()

{

return isManager;

}

/**

* Sets the isManager flag.

* @param isManager the isManager flag.

C h a p t e r 1 9 : C a s e S t u d y : A P r o d u c t S u p p o r t C e n t e r 571
JS

P
IN

A
C

TIO
N

572 J S P : T h e C o m p l e t e R e f e r e n c e

*/

public void setIsManager(boolean isManager)

{

this.isManager = isManager;

}

/**

* Returns the department ID.

*/

public String getDepartmentID()

{

return departmentID;

}

/**

* Sets the department ID.

* @param departmentID the department ID.

*/

public void setDepartmentID(String departmentID)

{

this.departmentID = departmentID;

}

/**

* Returns the title.

*/

public String getTitle()

{

return title;

}

/**

* Sets the title.

* @param title the title.

*/

public void setTitle(String title)

{

this.title = title;

}

/**

* Returns the email.

C h a p t e r 1 9 : C a s e S t u d y : A P r o d u c t S u p p o r t C e n t e r 573
JS

P
IN

A
C

TIO
N

*/

public String getEmail()

{

return email;

}

/**

* Sets the email.

* @param email the email.

*/

public void setEmail(String email)

{

this.email = email;

}

/**

* Returns the phone.

*/

public String getPhone()

{

return phone;

}

/**

* Sets the phone.

* @param phone the phone.

*/

public void setPhone(String phone)

{

this.phone = phone;

}

}

Unlike some of the other tables, the employee table is used in more than just the
product support system. For this reason, it contains more fields than are used in product
support, as shown here:

� employeeID A unique four-digit employee number

� name The employee name

� dateHired The employee’s date of hire

� isManager A boolean variable, which is true if the employee is a manager

� departmentID The code of the department to which the employee belongs

� title Job title

� email E-mail address

� phone Telephone extension

The Employee class (shown in the following listing) encapsulates a row in the
employee table.

package com.lyricnote.support.model;

import java.io.*;

import java.sql.ResultSet;

import java.sql.SQLException;

import java.util.*;

/**

* A LyricNote employee that uses the Product Support system.

*/

public class Employee implements Serializable

{

private String employeeID;

private String name;

private Date dateHired;

private boolean isManager;

private String departmentID;

private String title;

private String email;

private String phone;

/**

* Factory method to create an employee record

* from the current row of a result set.

* @param rs a result set from the employee table

* @exception SQLException if a database error occurs

*/

public static Employee load(ResultSet rs)

throws SQLException

{

Employee employee = new Employee();

employee.setEmployeeID(rs.getString(1));

574 J S P : T h e C o m p l e t e R e f e r e n c e

employee.setName(rs.getString(2));

employee.setDateHired(rs.getDate(3));

employee.setIsManager(rs.getBoolean(4));

employee.setDepartmentID(rs.getString(5));

employee.setTitle(rs.getString(6));

employee.setEmail(rs.getString(7));

employee.setPhone(rs.getString(8));

return employee;

}

/**

* Returns the object as a CSV string

*/

public String toString()

{

StringBuffer sb = new StringBuffer();

sb.append(getEmployeeID());

sb.append(",");

sb.append(Util.quote(getName()));

sb.append(",");

sb.append(Util.dateFormat(getDateHired()));

sb.append(",");

sb.append(getIsManager());

sb.append(",");

sb.append(getDepartmentID());

sb.append(",");

sb.append(Util.quote(getTitle()));

sb.append(",");

sb.append(getEmail());

sb.append(",");

sb.append(getPhone());

return sb.toString();

}

// ===

// Property accessor methods

// ===

/**

C h a p t e r 1 9 : C a s e S t u d y : A P r o d u c t S u p p o r t C e n t e r 575
JS

P
IN

A
C

TIO
N

* Returns the employee ID.

*/

public String getEmployeeID()

{

return employeeID;

}

/**

* Sets the employee ID.

* @param employeeID the employee ID.

*/

public void setEmployeeID(String employeeID)

{

this.employeeID = employeeID;

}

/**

* Returns the employee name.

*/

public String getName()

{

return name;

}

/**

* Sets the employee name.

* @param name the employee name.

*/

public void setName(String name)

{

this.name = name;

}

/**

* Returns the dateHired.

*/

public Date getDateHired()

{

return dateHired;

}

/**

576 J S P : T h e C o m p l e t e R e f e r e n c e

* Sets the dateHired.

* @param dateHired the dateHired.

*/

public void setDateHired(Date dateHired)

{

this.dateHired = dateHired;

}

/**

* Returns the isManager flag.

*/

public boolean getIsManager()

{

return isManager;

}

/**

* Sets the isManager flag.

* @param isManager the isManager flag.

*/

public void setIsManager(boolean isManager)

{

this.isManager = isManager;

}

/**

* Returns the department ID.

*/

public String getDepartmentID()

{

return departmentID;

}

/**

* Sets the department ID.

* @param departmentID the department ID.

*/

public void setDepartmentID(String departmentID)

{

this.departmentID = departmentID;

}

C h a p t e r 1 9 : C a s e S t u d y : A P r o d u c t S u p p o r t C e n t e r 577
JS

P
IN

A
C

TIO
N

/**

* Returns the title.

*/

public String getTitle()

{

return title;

}

/**

* Sets the title.

* @param title the title.

*/

public void setTitle(String title)

{

this.title = title;

}

/**

* Returns the email.

*/

public String getEmail()

{

return email;

}

/**

* Sets the email.

* @param email the email.

*/

public void setEmail(String email)

{

this.email = email;

}

/**

* Returns the phone.

*/

public String getPhone()

{

return phone;

}

578 J S P : T h e C o m p l e t e R e f e r e n c e

/**

* Sets the phone.

* @param phone the phone.

*/

public void setPhone(String phone)

{

this.phone = phone;

}

}

The Employee class has the toString() and load() methods, described earlier.

Problem Class The heart of the system is the set of reported problems. In the data-
base, each problem consists of two types of records: one that represents the problem as
a whole, and another that represents each event in the life of the problem, from when it
is reported until it’s closed. The static problem data is contained in the Problem class,
listed here.

package com.lyricnote.support.model;

import java.io.*;

import java.sql.ResultSet;

import java.sql.SQLException;

import java.util.*;

/**

* A software problem supported by the Problem

* Support system.

*/

public class Problem implements Serializable

{

private String problemID;

private String description;

private int severity;

private java.util.Date dateReported;

private java.util.Date dateResolved;

private String customerID;

private String productID;

/**

* Factory method to create a problem record

C h a p t e r 1 9 : C a s e S t u d y : A P r o d u c t S u p p o r t C e n t e r 579
JS

P
IN

A
C

TIO
N

580 J S P : T h e C o m p l e t e R e f e r e n c e

* from the current row of a result set.

* @param rs a result set from the problem table

* @exception SQLException if a database error occurs

*/

public static Problem load(ResultSet rs)

throws SQLException

{

Problem problem = new Problem();

problem.setProblemID(rs.getString(1));

problem.setDescription(rs.getString(2));

problem.setSeverity(rs.getInt(3));

problem.setDateReported(rs.getTimestamp(4));

problem.setDateResolved(rs.getTimestamp(5));

problem.setCustomerID(rs.getString(6));

problem.setProductID(rs.getString(7));

return problem;

}

/**

* Returns the object as a CSV string

*/

public String toString()

{

StringBuffer sb = new StringBuffer();

sb.append(getProblemID());

sb.append(",");

sb.append(getDescription());

sb.append(",");

sb.append(getSeverity());

sb.append(",");

sb.append(Util.dateTimeFormat(getDateReported()));

sb.append(",");

sb.append(Util.dateTimeFormat(getDateResolved()));

sb.append(",");

sb.append(getCustomerID());

sb.append(",");

sb.append(getProductID());

return sb.toString();

}

C h a p t e r 1 9 : C a s e S t u d y : A P r o d u c t S u p p o r t C e n t e r 581
JS

P
IN

A
C

TIO
N

/**

* Closes the problem

*/

public void close()

{

setDateResolved(Util.toTimestamp(new Date()));

}

// ===

// Property accessor methods

// ===

/**

* Returns the problemID.

*/

public String getProblemID()

{

return problemID;

}

/**

* Sets the problemID.

* @param problemID the problemID.

*/

public void setProblemID(String problemID)

{

this.problemID = problemID;

}

/**

* Returns the description.

*/

public String getDescription()

{

return description;

}

/**

* Sets the description.

* @param description the description.

*/

public void setDescription(String description)

{

this.description = description;

}

/**

* Returns the severity.

*/

public int getSeverity()

{

return severity;

}

/**

* Sets the severity.

* @param severity the severity.

*/

public void setSeverity(int severity)

{

this.severity = severity;

}

/**

* Returns the dateReported.

*/

public java.util.Date getDateReported()

{

return dateReported;

}

/**

* Sets the dateReported.

* @param dateReported the dateReported.

*/

public void setDateReported(java.util.Date dateReported)

{

this.dateReported = dateReported;

}

/**

* Returns the dateResolved.

*/

public java.util.Date getDateResolved()

{

582 J S P : T h e C o m p l e t e R e f e r e n c e

return dateResolved;

}

/**

* Sets the dateResolved.

* @param dateResolved the dateResolved.

*/

public void setDateResolved(java.util.Date dateResolved)

{

this.dateResolved = dateResolved;

}

/**

* Returns the customerID.

*/

public String getCustomerID()

{

return customerID;

}

/**

* Sets the customerID.

* @param customerID the customerID.

*/

public void setCustomerID(String customerID)

{

this.customerID = customerID;

}

/**

* Returns the productID.

*/

public String getProductID()

{

return productID;

}

/**

* Sets the productID.

* @param productID the productID.

*/

public void setProductID(String productID)

C h a p t e r 1 9 : C a s e S t u d y : A P r o d u c t S u p p o r t C e n t e r 583
JS

P
IN

A
C

TIO
N

{

this.productID = productID;

}

}

A Problem object consists of the following fields:

� problemID A unique problem identifier, assigned by the system

� description A brief description of the problem for display in the GUI

� severity The call center agent’s assessment of how critical the problem is
to the customer, with 1=high, 2=medium, 3=low

� dateReported The date and time at which the problem was reported to
the call center

� dateResolved If the problem is closed, this contains the date and time at
which it was closed. The value is null otherwise.

� customerID The eight-character customer identifier

� productID The unique product identifier

ProblemLog Class The events in a problem’s lifecycle are modeled by rows in the
problog table, which contains the following columns:

� problemID The problem identifier, to allow for joining the problog and
problem tables.

� logtime A timestamp generated by the database system. This, combined
with the problem ID, constitute the unique key for this problem log entry.

� eventID A three-character code indicating the nature of the problem log
event. Event ID codes are taken from the following list:

COM—Comment
RPS—Routed to product support
RPD—Routed to product development
RQA—Routed to quality assurance
CNB—Closed—not a bug
CCP—Closed—customer problem
CFX—Closed—fixed

� comments Comments entered by the person making this log entry.

The system uses the ProblemLog class, shown in the following listing, to represent
a row in the problog table.

584 J S P : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 9 : C a s e S t u d y : A P r o d u c t S u p p o r t C e n t e r 585
JS

P
IN

A
C

TIO
N

package com.lyricnote.support.model;

import java.io.*;

import java.sql.ResultSet;

import java.sql.SQLException;

import java.util.*;

/**

* An update to a reported problem.

*/

public class ProblemLog implements Serializable

{

private String problemID;

private java.util.Date logTime;

private String eventID;

private String comments;

/**

* Factory method to create a problem record

* from the current row of a result set.

* @param rs a result set from the problem table

* @exception SQLException if a database error occurs

*/

public static ProblemLog load(ResultSet rs)

throws SQLException

{

ProblemLog probLog = new ProblemLog();

probLog.setProblemID(rs.getString(1));

probLog.setLogTime(rs.getTimestamp(2));

probLog.setEventID(rs.getString(3));

probLog.setComments(rs.getString(4));

return probLog;

}

/**

* Returns the object as a CSV string

*/

public String toString()

{

586 J S P : T h e C o m p l e t e R e f e r e n c e

StringBuffer sb = new StringBuffer();

sb.append(getProblemID());

sb.append(",");

sb.append(Util.dateTimeFormat(getLogTime()));

sb.append(",");

sb.append(getEventID());

sb.append(",");

sb.append(getComments());

return sb.toString();

}

// ===

// Property accessor methods

// ===

/**

* Returns the problemID.

*/

public String getProblemID()

{

return problemID;

}

/**

* Sets the problemID.

* @param problemID the problemID.

*/

public void setProblemID(String problemID)

{

this.problemID = problemID;

}

/**

* Returns the logTime.

*/

public java.util.Date getLogTime()

{

return logTime;

}

/**

* Sets the logTime.

* @param logTime the logTime.

*/

public void setLogTime(java.util.Date logTime)

{

this.logTime = logTime;

}

/**

* Returns the eventID.

*/

public String getEventID()

{

return eventID;

}

/**

* Sets the eventID.

* @param eventID the eventID.

*/

public void setEventID(String eventID)

{

this.eventID = eventID;

}

/**

* Returns the comments.

*/

public String getComments()

{

return comments;

}

/**

* Sets the comments.

* @param comments the comments.

*/

public void setComments(String comments)

{

this.comments = comments;

}

}

C h a p t e r 1 9 : C a s e S t u d y : A P r o d u c t S u p p o r t C e n t e r 587
JS

P
IN

A
C

TIO
N

588 J S P : T h e C o m p l e t e R e f e r e n c e

Application Objects
The business objects represent the individual entities known by the system. For the
purposes of the model, other objects represent the application as a whole. Classes in
this category include the following:

� com.lyricnote.support.model.Model

� com.lyricnote.support.model.WebModel

� com.lyricnote.support.model.Util

The following sections list the source code for each of these classes and describe
their operation.

Model Class During the operation of the system, the business objects reside in an
application container class named Model. This class exposes an API that allows the
controller to manipulate it and the view to extract data from it. One Model object exists
for each user session, so model state is threadsafe.

Model is a fairly large class. Let’s list a section at a time, so you can examine it in detail.

package com.lyricnote.support.model;

import java.io.*;

import java.sql.*;

import java.util.*;

/**

* The model component in the Model-View-Controller architecture

* of the product support application. The model is designed

* to be used in a dedicated HTTP session with a single user,

* however, there is no HTTP-specific code. This allows the

* model to be tested by a batch driver.

*/

public class Model implements Serializable

{

// Configuration fields

private String problemIDFile;

private String jdbcDriver;

private String databaseURL;

private transient Connection con;

// Customer fields

private List customers;

JS
P

IN
A

C
TIO

N
C h a p t e r 1 9 : C a s e S t u d y : A P r o d u c t S u p p o r t C e n t e r 589

private String customerID;

// Product fields

private List products;

private String productID;

// Problem fields

private List problems;

private String problemID;

// Problem log fields

private List problemLogs;

Model contains instance variables that represent the state of the application. These
variables fall into the following categories:

� Configuration fields These include the name of the file containing the next
available problem ID number, the name of the JDBC driver used to access the
database, the database URL, and the database connection object.

� Customer fields The model supports an alphabetic search for customer
names. The results of the most recent search are stored in a java.util.List
of Customer objects. This list is exposed as a property and made available with
the getCustomers() method. In addition, the model has a customerID
property, which supplies an implicit ID for several methods that require it.

� Product fields Like the customer fields, instance variables exist for the current
product search results and the current product ID.

� Problem fields The model has instance variables for the current list of
Problem objects and the currently selected problem.

� Problem log fields Likewise, there’s a java.util.List for the list of
ProblemLog objects associated with the current problem.

// ===

// Configuration and database methods

// ===

/**

* Assigns a globally unique problem ID

*/

public static synchronized String assignProblemID

(String problemIDFile)

{

String id = null;

try {

// Read the next available ID

BufferedReader in =

new BufferedReader(

new FileReader(problemIDFile));

id = in.readLine();

in.close();

// Increment it and rewrite the file

String prefix = id.substring(0, 1);

int suffix = Integer.parseInt(id.substring(1));

suffix++;

String newID = "0000000" + String.valueOf(suffix);

newID = newID.substring(newID.length() - 7);

newID = prefix + newID;

PrintWriter out =

new PrintWriter(

new FileWriter(problemIDFile));

out.println(newID);

out.flush();

out.close();

}

catch (IOException e) {

e.printStackTrace();

}

finally {

return id;

}

}

/**

* Creates a new connection using the currently

* specified JDBC driver and URL

* @exception SQLException if the connection fails

590 J S P : T h e C o m p l e t e R e f e r e n c e

* or if it already exists

*/

public void connect()

throws SQLException

{

if (isConnected())

throw new SQLException("Already connected");

// Verify that the driver and URL have been specified

if (jdbcDriver == null)

throw new SQLException("No jdbcDriver property");

if (databaseURL == null)

throw new SQLException("No databaseURL property");

// Load the driver

try {

Class.forName(jdbcDriver).newInstance();

}

catch (ClassNotFoundException e) {

throw new SQLException

(jdbcDriver + " class could not be loaded");

}

// Open the connection

con = DriverManager.getConnection(databaseURL);

}

/**

* Closes the current connection

*/

public void disconnect()

{

// Close the connection

if (con != null) {

try {

con.close();

}

C h a p t e r 1 9 : C a s e S t u d y : A P r o d u c t S u p p o r t C e n t e r 591
JS

P
IN

A
C

TIO
N

592 J S P : T h e C o m p l e t e R e f e r e n c e

catch (SQLException ignore) {}

finally {

con = null;

}

}

}

/**

* Returns true if there is an active connection

*/

public boolean isConnected()

{

return (con != null);

}

/**

* Returns the jdbcDriver.

*/

public String getJdbcDriver()

{

return jdbcDriver;

}

/**

* Sets the jdbcDriver.

* @param jdbcDriver the jdbcDriver.

*/

public void setJdbcDriver(String jdbcDriver)

{

this.jdbcDriver = jdbcDriver;

}

/**

* Returns the databaseURL.

*/

public String getDatabaseURL()

{

return databaseURL;

}

/**

* Sets the databaseURL.

* @param databaseURL the databaseURL.

*/

public void setDatabaseURL(String databaseURL)public void setDatabaseURL(String databaseURL)

{

this.databaseURL = databaseURL;

}

/**

* Returns the problemIDFile.

*/

public String getProblemIDFile()

{

return problemIDFile;

}

/**

* Sets the problemIDFile.

* @param problemIDFile the problemIDFile.

*/

public void setProblemIDFile(String problemIDFile)

{

this.problemIDFile = problemIDFile;

}

The model contains a set of methods that handle data sources. The first is
assignProblemID(String problemIDFile). This is a class method that
reads the next available problem ID from a file, and then rewrites the file with an
incremented number. The method is synchronized, so the generated IDs are unique.
There are get and set methods for the problem ID file name2.

Database connections are managed with three methods:

� void connect()

� void disconnect()

� boolean isConnected()

The connect() method uses the model’s JdbcDriver and databaseURL
properties to open a JDBC connection to the database. These properties are set
from context parameters specified in the web.xml deployment descriptor. The
disconnect() method closes the connection, and the isConnected() method
exposes a means for testing whether a database connection exists.

C h a p t e r 1 9 : C a s e S t u d y : A P r o d u c t S u p p o r t C e n t e r 593
JS

P
IN

A
C

TIO
N

2 The file name is stored as an instance variable, but the method that uses it is a class method. This is
why it must be passed as a parameter. The reason is the model can be run from the Web or from a
command-line test shell. The file would likely be in different locations in each case.

The connect() and disconnect() methods provide the capability of connecting to a
database, but they don’t choose when and how to do so. In fact, the model itself has
no logic for handling this. This is the task of the controller object, as you will see.

// ===

// Customer methods

// ===

/**

* Returns the customer object corresponding to

* the current customer ID

* @exception SQLException if a database error occurs

*/

public Customer getCustomer()

throws SQLException

{

// Verify that a connection exists

if (!isConnected())

throw new SQLException("No connection");

// Verify that there is a current customer ID

if (customerID == null)

throw new SQLException("No customer ID");

PreparedStatement pstmt = null;

ResultSet rs = null;

Customer customer = null;

try {

// Prepare the query SQL

pstmt = con.prepareStatement

("select * from customers where customerID = ?");

pstmt.setString(1, customerID);

// Execute the query

rs = pstmt.executeQuery();

if (rs.next())

594 J S P : T h e C o m p l e t e R e f e r e n c e

customer = Customer.load(rs);

}

finally {

if (rs != null)

rs.close();

if (pstmt != null)

pstmt.close();

}

// Return the customer

return customer;

}

/**

* Returns the current customer search results

*/

public List getCustomers()

{

return customers;

}

/**

* Uses the specified customer search argument to query

* the database for matching customers. Creates a list

* of customer objects.

* @param searchArgument the search argument

* @exception SQLException if a database error occurs

*/

public void customerSearch(String searchArgument)

throws SQLException

{

// Verify that a connection exists and that

// the search argument has been specified

if (!isConnected())

throw new SQLException("No connection");

PreparedStatement pstmt = null;

ResultSet rs = null;

customers = null;

C h a p t e r 1 9 : C a s e S t u d y : A P r o d u c t S u p p o r t C e n t e r 595
JS

P
IN

A
C

TIO
N

try {

// Prepare the query SQL

pstmt = con.prepareStatement(

"select *"

+ " from customers"

+ " where name like ?"

+ " order by name"

);

searchArgument = searchArgument.trim();

searchArgument = "%" + searchArgument + "%";

pstmt.setString(1, searchArgument);

// Execute the query and copy the results

// to a List

rs = pstmt.executeQuery();

customers = new LinkedList();

while (rs.next()) {

customers.add(Customer.load(rs));

}

}

finally {

if (rs != null)

rs.close();

if (pstmt != null)

pstmt.close();

}

}

/**

* Returns the customerID.

*/

public String getCustomerID()

{

return customerID;

}

/**

* Sets the customerID.

* @param customerID the customerID.

596 J S P : T h e C o m p l e t e R e f e r e n c e

JS
P

IN
A

C
TIO

N
C h a p t e r 1 9 : C a s e S t u d y : A P r o d u c t S u p p o r t C e n t e r 597

*/

public void setCustomerID(String customerID)

{

this.customerID = customerID;

}

There are get and set methods for the current customer ID, and a method for
retrieving from the database the Customer object having that ID. The getCustomer()
method illustrates the function of the Customer.load() method in extracting a
Customer object from a result set. The customerSearch() method selects Customer
objects from the customer table whose name field matches a specified search argument.
The resulting java.util.List is stored as an instance variable and can be retrieved
with getCustomers().

// ===

// Product methods

// ===

/**

* Returns the product object corresponding to

* the current product ID

* @exception SQLException if a database error occurs

*/

public Product getProduct()

throws SQLException

{

// Verify that a connection exists

if (!isConnected())

throw new SQLException("No connection");

// Verify that a current product ID exists

if (productID == null)

throw new SQLException("No product ID");

PreparedStatement pstmt = null;

ResultSet rs = null;

Product product = null;

try {

// Prepare the query SQL

pstmt = con.prepareStatement

("select * from products where productID = ?");

pstmt.setString(1, productID);

// Execute the query

rs = pstmt.executeQuery();

if (rs.next())

product = Product.load(rs);

}

finally {

if (rs != null)

rs.close();

if (pstmt != null)

pstmt.close();

}

// Return the product

return product;

}

/**

* Returns the current product search results

*/

public List getProducts()

{

return products;

}

/**

* Uses the specified product search argument to query

* the database for matching products. Creates a list

* of product objects.

* @param searchArgument the search argument

* @exception SQLException if a database error occurs

*/

public void productSearch(String searchArgument)

throws SQLException

{

598 J S P : T h e C o m p l e t e R e f e r e n c e

// Verify that a connection exists and that

// the search argument has been specified

if (!isConnected())

throw new SQLException("No connection");

PreparedStatement pstmt = null;

ResultSet rs = null;

products = null;

try {

// Prepare the query SQL

pstmt = con.prepareStatement(

"select *"

+ " from products"

+ " where name like ?"

+ " order by name"

);

searchArgument = searchArgument.trim();

searchArgument = "%" + searchArgument + "%";

pstmt.setString(1, searchArgument);

// Execute the query and copy the results

// to a List

rs = pstmt.executeQuery();

products = new LinkedList();

while (rs.next())

products.add(Product.load(rs));

}

finally {

if (rs != null)

rs.close();

if (pstmt != null)

pstmt.close();

}

}

/**

* Returns the productID.

C h a p t e r 1 9 : C a s e S t u d y : A P r o d u c t S u p p o r t C e n t e r 599
JS

P
IN

A
C

TIO
N

600 J S P : T h e C o m p l e t e R e f e r e n c e

*/

public String getProductID()

{

return productID;

}

/**

* Sets the productID.

* @param productID the productID.

*/

public void setProductID(String productID)

{

this.productID = productID;

}

Exactly parallel to the customer methods, product methods get and set the current
product ID, retrieve the corresponding Product object, select products matching a
search string, and retrieve the selection.

// ===

// Customer/product methods

// ===

/**

* Returns a list of CustomerProduct objects

* for the current customer.

* @exception SQLException if a database error occurs

*/

public List getCustomerProducts()

throws SQLException

{

// Verify that a connection exists

if (!isConnected())

throw new SQLException("No connection");

// Verify that a current customer ID exists

if (customerID == null)

throw new SQLException("No customer ID");

PreparedStatement pstmt = null;

ResultSet rs = null;

C h a p t e r 1 9 : C a s e S t u d y : A P r o d u c t S u p p o r t C e n t e r 601
JS

P
IN

A
C

TIO
N

List list = null;

try {

// Prepare the query SQL

pstmt = con.prepareStatement(

"select *"

+ " from custprod"

+ " where customerID = ?"

+ " order by datePurchased desc"

);

pstmt.setString(1, customerID);

// Execute the query and populate the list

rs = pstmt.executeQuery();

list = new LinkedList();

while (rs.next())

list.add(CustomerProduct.load(rs));

}

finally {

if (rs != null)

rs.close();

if (pstmt != null)

pstmt.close();

}

// Return the list

return list;

}

When a customer ID has been selected and stored in the model, the custprod
table can be searched for products purchased by that customer. The resulting list of
CustomerProblem objects is sorted in descending order by date purchased and
returned to the caller.

// ===

// Employee methods

// ===

602 J S P : T h e C o m p l e t e R e f e r e n c e

/**

* Returns the employee object corresponding to

* the specified employee ID

* @param employeeID the employee ID

* @exception SQLException if a database error occurs

*/

public Employee getEmployee(String employeeID)

throws SQLException

{

// Verify that a connection exists

if (!isConnected())

throw new SQLException("No connection");

PreparedStatement pstmt = null;

ResultSet rs = null;

Employee employee = null;

try {

// Prepare the query SQL

pstmt = con.prepareStatement

("select * from employees where employeeID = ?");

pstmt.setString(1, employeeID);

// Execute the query

rs = pstmt.executeQuery();

if (rs.next())

employee = Employee.load(rs);

}

finally {

if (rs != null)

rs.close();

if (pstmt != null)

pstmt.close();

}

// Return the employee

return employee;

}

C h a p t e r 1 9 : C a s e S t u d y : A P r o d u c t S u p p o r t C e n t e r 603
JS

P
IN

A
C

TIO
N

Employee objects can be retrieved from the database by calling getEmployee(),
passing it the employee ID. This is primarily useful for displaying employee names for
the three support IDs in the Product object.

// ===

// Problem methods

// ===

/**

* Factory method to create a new problem record

* and add it to the database

*/

public void newProblem() throws SQLException

{

if (getCustomerID() == null)

throw new SQLException

("No customer ID");

if (getProductID() == null)

throw new SQLException

("No product ID");

Problem problem = new Problem();

String fileName = getProblemIDFile();

problemID = assignProblemID(fileName);

problem.setProblemID(problemID);

problem.setDescription("");

problem.setSeverity(2);

problem.setDateReported(new java.util.Date());

problem.setCustomerID(getCustomerID());

problem.setProductID(getProductID());

// Add to database

PreparedStatement pstmt = null;

try {

pstmt = con.prepareStatement

("insert into problems values(?, ?, ?, ?, ?, ?, ?)");

pstmt.setString(1, problemID);

pstmt.setString(2, problem.getDescription());

pstmt.setInt(3, problem.getSeverity());

pstmt.setTimestamp

(4, Util.toTimestamp(problem.getDateReported()));

pstmt.setNull(5, Types.TIMESTAMP);

pstmt.setString(6, problem.getCustomerID());

pstmt.setString(7, problem.getProductID());

pstmt.executeUpdate();

}

finally {

if (pstmt != null)

pstmt.close();

}

}

/**

* Updates the problem record in the database

* @param problem the problem object

* @exception SQLException if a database error occurs

*/

public void updateProblem(Problem problem)

throws SQLException

{

// Verify that a connection exists

if (!isConnected())

throw new SQLException("No connection");

PreparedStatement pstmt = null;

try {

// Prepare the query SQL

pstmt = con.prepareStatement

(" update problems"

+ " set"

+ " description = ?,"

+ " severity = ?,"

+ " dateResolved = ?"

+ " where problemID = ?"

);

pstmt.setString(1, problem.getDescription());

pstmt.setInt(2, problem.getSeverity());

if (problem.getDateResolved() != null)

pstmt.setTimestamp(3,

Util.toTimestamp(problem.getDateResolved()));

604 J S P : T h e C o m p l e t e R e f e r e n c e

pstmt.setString(4, problem.getProblemID());

// Execute the update

pstmt.executeUpdate();

}

finally {

if (pstmt != null)

pstmt.close();

}

}

/**

* Returns the problem object corresponding to

* the current problem ID

* @exception SQLException if a database error occurs

*/

public Problem getProblem()

throws SQLException

{

// Verify that a connection exists

if (!isConnected())

throw new SQLException("No connection");

// Verify that a current problem ID exists

if (problemID == null)

throw new SQLException("No problem ID");

PreparedStatement pstmt = null;

ResultSet rs = null;

Problem problem = null;

try {

// Prepare the query SQL

pstmt = con.prepareStatement

("select * from problems where problemID = ?");

pstmt.setString(1, problemID);

C h a p t e r 1 9 : C a s e S t u d y : A P r o d u c t S u p p o r t C e n t e r 605
JS

P
IN

A
C

TIO
N

// Execute the query

rs = pstmt.executeQuery();

if (rs.next())

problem = Problem.load(rs);

}

finally {

if (rs != null)

rs.close();

if (pstmt != null)

pstmt.close();

}

// Return the problem

return problem;

}

/**

* Returns the current problem search results

*/

public List getProblems()

{

return problems;

}

/**

* Uses the specified customer ID to query

* the database for problems for that customer.

* Creates a list of problem objects.

* @exception SQLException if a database error occurs

*/

public void customerProblemsSearch(String customerID)

throws SQLException

{

// Verify that a connection exists

if (!isConnected())

throw new SQLException("No connection");

PreparedStatement pstmt = null;

ResultSet rs = null;

606 J S P : T h e C o m p l e t e R e f e r e n c e

problems = null;

try {

// Prepare the query SQL

pstmt = con.prepareStatement

("select * from problems where customerID = ?");

pstmt.setString(1, customerID);

// Execute the query and copy the results

// to a List

rs = pstmt.executeQuery();

problems = new LinkedList();

while (rs.next())

problems.add(Problem.load(rs));

}

finally {

if (rs != null)

rs.close();

if (pstmt != null)

pstmt.close();

}

}

/**

* Uses the specified product ID to query

* the database for problems for that product.

* Creates a list of problem objects.

* @exception SQLException if a database error occurs

*/

public void productProblemsSearch(String productID)

throws SQLException

{

// Verify that a connection exists

if (!isConnected())

throw new SQLException("No connection");

PreparedStatement pstmt = null;

ResultSet rs = null;

C h a p t e r 1 9 : C a s e S t u d y : A P r o d u c t S u p p o r t C e n t e r 607
JS

P
IN

A
C

TIO
N

problems = null;

try {

// Prepare the query SQL

pstmt = con.prepareStatement

("select * from problems where productID = ?");

pstmt.setString(1, productID);

// Execute the query and copy the results

// to a List

rs = pstmt.executeQuery();

problems = new LinkedList();

while (rs.next())

problems.add(Problem.load(rs));

}

finally {

if (rs != null)

rs.close();

if (pstmt != null)

pstmt.close();

}

}

/**

* Returns the problemID.

*/

public String getProblemID()

{

return problemID;

}

/**

* Sets the problemID.

* @param problemID the problemID.

*/

public void setProblemID(String problemID)

{

this.problemID = problemID;

}

608 J S P : T h e C o m p l e t e R e f e r e n c e

A newProblem() method creates a new problem record for the current customer
and product, initializes it, and adds it to the database, and an updateProblem() method
modifies it. Methods exist for retrieving problems by customer and product, which store
their results in a java.util.List that can be retrieved with getProblems().

// ===

// ProblemLog methods

// ===

/**

* Adds a new problem log entry

* @param log a problem log object

* @exception SQLException if a database error occurs

*/

public void addProblemLog(ProblemLog log)

throws SQLException

{

// Verify that a connection exists

if (!isConnected())

throw new SQLException("No connection");

PreparedStatement pstmt = null;

try {

// Prepare the insert SQL

pstmt = con.prepareStatement

("insert into problog values(?, ?, ?, ?)");

pstmt.setString(1, log.getProblemID());

pstmt.setTimestamp(2, Util.toTimestamp(log.getLogTime()));

pstmt.setString(3, log.getEventID());

pstmt.setString(4, log.getComments());

// Execute the statement

pstmt.executeUpdate();

}

finally {

if (pstmt != null)

pstmt.close();

JS
P

IN
A

C
TIO

N
C h a p t e r 1 9 : C a s e S t u d y : A P r o d u c t S u p p o r t C e n t e r 609

610 J S P : T h e C o m p l e t e R e f e r e n c e

}

}

/**

* Uses the specified problem ID to query

* the database for problem log entries for

* that problem.

* Creates a list of problem log objects.

* @exception SQLException if a database error occurs

*/

public void problemLogSearch(String problemID)

throws SQLException

{

// Verify that a connection exists

if (!isConnected())

throw new SQLException("No connection");

PreparedStatement pstmt = null;

ResultSet rs = null;

problemLogs = null;

try {

// Prepare the query SQL

pstmt = con.prepareStatement

("select * from problog where problemID = ?");

pstmt.setString(1, problemID);

// Execute the query and copy the results

// to a List

rs = pstmt.executeQuery();

problemLogs = new LinkedList();

while (rs.next())

problemLogs.add(ProblemLog.load(rs));

}

finally {

if (rs != null)

rs.close();

if (pstmt != null)

pstmt.close();

}

JS
P

IN
A

C
TIO

N
C h a p t e r 1 9 : C a s e S t u d y : A P r o d u c t S u p p o r t C e n t e r 611

}

/**

* Returns the problemLogs.

*/

public List getProblemLogs()

{

return problemLogs;

}

}

Finally, the model has methods to add a log entry for a problem, to search for the
log entries for an existing problem, and to retrieve the search results.

WebModel Class If you read the Model class carefully, you’ll note it contains no
Web-aware methods. This is deliberate. For testing purposes, you want to be able to run
the model using a simple command-line view, so you don’t want to have javax.servlet
or javax.servlet.http classes used anywhere in the model. When it ‘s run from the
Web, however, you want the model to take advantage of a little more knowledge about its
environment. For this reason, you use a subclass of Model that has this awareness.

WebModel implements three methods:

� void init(ServletContext context) extracts application parameters
from the web.xml deployment descriptor. These include the JDBC driver
name, the database URL, and the name of the file containing the next available
product ID. Using web.xml to specify these values makes configuring the
product support application easy for different environments.

� void valueBound(HttpSessionBindingEvent event) is one of two
methods that comprise the HttpSessionBindingListener interface. In
this case, there’s nothing to do in this method, but it must be implemented to
satisfy the compiler.

� void valueUnbound(HttpSessionBindingEvent event) is the other
of the two HttpSessionBindingListener methods. This is where you
perform the important function of closing the database connection when the
session times out or is invalidated.

The WebModel class is shown here:

package com.lyricnote.support.model;

import javax.servlet.*;

import javax.servlet.http.*;

612 J S P : T h e C o m p l e t e R e f e r e n c e

import java.sql.SQLException;

/**

* HTTP-specific subclass of Model. Implements session

* binding and unbinding. Allows the database connection

* to be disconnected when the session times out or is

* invalidated.

*/

public class WebModel

extends Model

implements HttpSessionBindingListener

{

/**

* Initializes the database connection

*/

public void init(ServletContext context)

throws ServletException

{

// Set the model's JDBC driver property

// from an application-scoped value

// in web.xml

String jdbcDriver =

context.getInitParameter("jdbcDriver");

if (jdbcDriver == null)

throw new ServletException

("No jdbcDriver property specified");

setJdbcDriver(jdbcDriver);

// Do likewise for the database URL

String databaseURL =

context.getInitParameter("databaseURL");

if (databaseURL == null)

throw new ServletException

("No databaseURL property specified");

setDatabaseURL(databaseURL);

// and the problem ID assignment file

String problemIDFile =

context.getInitParameter("problemIDFile");

if (problemIDFile == null)

throw new ServletException

JS
P

IN
A

C
TIO

N
C h a p t e r 1 9 : C a s e S t u d y : A P r o d u c t S u p p o r t C e n t e r 613

("No problemIDFile property specified");

setProblemIDFile(problemIDFile);

// Connect to the database

try {

connect();

}

catch (SQLException e) {

throw new ServletException(e.getMessage());

}

}

/**

* Called when the model is bound to a session

*/

public void valueBound(HttpSessionBindingEvent event)

{

}

/**

* Called when the model is removed from a session

*/

public void valueUnbound(HttpSessionBindingEvent event)

{

disconnect();

}

}

Util Class The last of the application object classes is Util, a utility class providing
miscellaneous supporting methods. These methods include the following:

� dateFormat() converts a Date object to a formatted date string

� dateTimeFormat() converts a Date object to a formatted date and time string

� toTimestamp() converts a Date object to a java.sql.Timestamp so it can
be used in a PreparedStatement.setTimestamp() method.

� quote() surrounds a string with quotation marks if it contains any embedded
commas. This is used by the toString() methods ini Customer, Product, and
other business object classes to make values safe for the comma-separated-values
format.

� isClosingEvent() returns true if the specified event ID is one that means
the problem is closed.

The following is a listing of the Util class:

package com.lyricnote.support.model;

import java.text.*;

import java.sql.Timestamp;

import java.util.*;

/**

* Utility methods used in the model package

*/

public class Util

{

private static final SimpleDateFormat DATE_FORMAT =

new SimpleDateFormat("yyyy-MM-dd");

private static final SimpleDateFormat DATE_TIME_FORMAT =

new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");

/**

* Formats a date using the default JDBC format

*/

public static String dateFormat(Date d)

{

return d == null ? "" : DATE_FORMAT.format(d);

}

/**

* Formats a timestamp using the default JDBC format

*/

public static String dateTimeFormat(Date d)

{

return d == null ? "" : DATE_TIME_FORMAT.format(d);

}

/**

* Converts a java.util.Date to a java.sql.Timestamp

*/

public static Timestamp toTimestamp(Date d)

{

return (d == null)

? null

614 J S P : T h e C o m p l e t e R e f e r e n c e

: new Timestamp(d.getTime());

}

/**

* Encloses a string in quotation marks

* if it contains a comma.

* @param s the string

*/

public static String quote(String s)

{

if (s != null) {

if (s.indexOf(",") > -1) {

StringBuffer sb = new StringBuffer();

sb.append('"');

sb.append(s);

sb.append('"');

s = sb.toString();

}

}

return s;

}

/**

* Returns true if the specified event ID

* represents a "close" action

* @param eventID the event ID

*/

public static final boolean isClosingEvent(String eventID)

{

return (

eventID.equals("CNB") ||

eventID.equals("CCP") ||

eventID.equals("CFX"));

}

}

Testing Framework
One of the great benefits of the MVC architecture is that each component can be tested
in isolation. During development, being able to unit test the model is particularly useful,
and its API as methods are added and modified. In this section, you see a command-line
shell that fills this role.

C h a p t e r 1 9 : C a s e S t u d y : A P r o d u c t S u p p o r t C e n t e r 615
JS

P
IN

A
C

TIO
N

Shell Class The test.Shell class is a standalone Java application that acts as
the controller and view for a com.lyricnote.support.model.Model. Like a
Unix shell or a Windows command prompt, the Shell class prompts for commands,
executes them, and displays the results. The syntax for these commands is simply the
corresponding Java syntax that calls methods on the model, as well as a few commands
for listing the available methods, showing help text, and similar control functions.
Shell provides a simple means for exercising each part of the model without the
added complexity of a GUI in the Web environment.

Like the Model class, Shell is fairly lengthy, so let’s discuss it a section at a time.

package test;

import com.lyricnote.support.model.*;

import java.beans.*;

import java.io.*;

import java.lang.reflect.*;

import java.sql.*;

import java.util.*;

/**

* An interactive shell for testing the product support

* application model.

*/

public class Shell

{

private static String PROMPT = "SHELL> ";

private Model model;

private InputStream stream;

private boolean interactive;

// ===

// Class methods

// ===

/**

* Mainline

*/

public static void main(String[] args)

throws Exception

{

Shell shell = new Shell(new Model());

shell.run();

616 J S P : T h e C o m p l e t e R e f e r e n c e

}

/**

* Displays help text for this shell

*/

protected static void help()

{

String[] text = {

"",

"Invoke a method by name,"

+ " or any of the following commands:",

"",

"quit - exits from the shell",

"help - displays this help text",

"methods - displays a list of model methods",

"include <filename> - executes an included file",

"",

};

for (int i = 0; i < text.length; i++)

System.out.println(text[i]);

}

/**

* Extracts a quoted string argument value

* from a method call

*/

protected static String getArgument(String line)

{

String arg = null;

int p = line.indexOf("(\"");

if (p != -1) {

p += 2;

int q = line.indexOf("\")", p);

if (q != -1) {

arg = line.substring(p, q);

}

}

return arg;

}

// ===

// Constructors

C h a p t e r 1 9 : C a s e S t u d y : A P r o d u c t S u p p o r t C e n t e r 617
JS

P
IN

A
C

TIO
N

// ===

/**

* Creates a new Shell with input from System.in

* @param model the model to be used

*/

public Shell(Model model)

{

this(model, System.in);

}

/**

* Creates a new Shell with input from

* the specified input stream

* @param model the model to be used

* @param stream the input stream

*/

public Shell(Model model, InputStream stream)

{

this.model = model;

this.stream = stream;

this.interactive = (stream == System.in);

}

Shell uses a simple main() method to create instances of the model and the shell,
and then invokes that shell’s run() method. The source for command input is initially
System.in but, as you see, it can also be a set of commands stored in a file and processed
with an include command.

// ===

// Main read/execute loop

// ===

/**

* Runs the shell

*/

public void run() throws Exception

{

// Open a line reader over the input stream

BufferedReader in =

618 J S P : T h e C o m p l e t e R e f e r e n c e

new BufferedReader(

new InputStreamReader(stream));

// Read and execute each line

while (true) {

if (interactive)

System.out.print(PROMPT);

String line = in.readLine();

if (line == null)

break;

// Parse and execute the command

try {

if (line.equals("quit"))

break;

else if (line.startsWith("get"))

doGet(line);

else if (line.startsWith("set"))

doSet(line);

else if (line.startsWith("customerSearch"))

customerSearch(line);

else if (line.startsWith("productSearch"))

productSearch(line);

else if (line.startsWith("productProblemsSearch"))

productProblemsSearch(line);

else if (line.startsWith("customerProblemsSearch"))

customerProblemsSearch(line);

else if (line.startsWith("problemLogSearch"))

problemLogSearch(line);

else if (line.startsWith("help"))

help();

else if (line.startsWith("methods"))

methods();

else if (line.startsWith("inc"))

include(line);

else if (line.startsWith("is"))

doGet(line);

else if (line.startsWith("connect"))

C h a p t e r 1 9 : C a s e S t u d y : A P r o d u c t S u p p o r t C e n t e r 619
JS

P
IN

A
C

TIO
N

doConnect();

else if (line.startsWith("disconnect"))

doDisconnect();

else if (line.startsWith("newProblem"))

doNewProblem();

// none of the above

else

System.out.println

("Unrecognized command [" + line + "]");

}

catch (Exception e) {

e.printStackTrace();

}

}

in.close();

if (interactive)

doDisconnect();

}

The run() method opens a character line reader over the input stream and starts
prompting for and executing commands. The parser is a simple list of if statements
that check for specific method names and call wrapper methods that execute them.
For commands beginning with get, is, or set Shell uses reflection to find the
corresponding getter or setter methods in the model and invokes them. If any errors
are encountered, they’re written to System.out.

Here’s the rest of the class, consisting of the methods that can be called from the
main loop (listed alphabetically):

/**

* Invokes the customer problems search method

*/

protected void customerProblemsSearch(String line)

throws Exception

{

String arg = getArgument(line);

model.customerProblemsSearch(arg);

}

/**

620 J S P : T h e C o m p l e t e R e f e r e n c e

* Invokes the customer search method

*/

protected void customerSearch(String line)

throws SQLException

{

String arg = getArgument(line);

model.customerSearch(arg);

}

/**

* Invokes the connect command

*/

protected void doConnect()

{

try {

System.out.println("Connecting...");

model.connect();

System.out.println("Connected");

}

catch (SQLException e) {

System.out.println(e.getMessage());

}

}

/**

* Invokes the disconnect command

*/

protected void doDisconnect()

{

System.out.println("Disconnecting...");

model.disconnect();

System.out.println("Disconnected");

}

/**

* Executes a "get" method

*/

protected void doGet(String line) throws Exception

{

if (!interactive)

System.out.println(line);

C h a p t e r 1 9 : C a s e S t u d y : A P r o d u c t S u p p o r t C e n t e r 621
JS

P
IN

A
C

TIO
N

622 J S P : T h e C o m p l e t e R e f e r e n c e

// Get the read method name

int p = line.indexOf("(");

if (p == -1)

p = line.length();

String readMethodName = line.substring(0, p).trim();

// Lookup the read methods to see

// if this one is found

BeanInfo bi =

Introspector.getBeanInfo(model.getClass());

PropertyDescriptor[] pds =

bi.getPropertyDescriptors();

for (int i = 0; i < pds.length; i++) {

PropertyDescriptor pd = pds[i];

Method method = pd.getReadMethod();

if (method != null) {

String name = method.getName();

if (name.equals(readMethodName)) {

// This method is the read method

// for this property.

// Invoke it and print the result

Object[] args = {};

Object result = method.invoke(model, args);

System.out.println(result);

return;

}

}

}

throw new IllegalArgumentException

("No " + readMethodName + " method found");

}

/**

* Invokes the newProblem method

*/

protected void doNewProblem() throws Exception

{

C h a p t e r 1 9 : C a s e S t u d y : A P r o d u c t S u p p o r t C e n t e r 623
JS

P
IN

A
C

TIO
N

model.newProblem();

System.out.println(model.getProblemID());

}

/**

* Executes a "set" method

*/

protected void doSet(String line) throws Exception

{

if (!interactive)

System.out.println(line);

// Line should look like this:

//

// setSearchArgument("value")

int p = line.indexOf("(");

if (p == -1)

throw new IllegalArgumentException

("No open parenthesis found");

int q = line.indexOf(")", p);

if (q == -1)

throw new IllegalArgumentException

("No close parenthesis found");

String writeMethodName = line.substring(0, p);

String argument = line.substring(p+1, q).trim();

// Argument must be a quoted string

if (!(argument.startsWith("\"") &&

argument.endsWith("\"")))

throw new IllegalArgumentException

("Argument must be a quoted string");

// Strip off the quotes

argument = argument.substring(1, argument.length()-1);

// Find the set method and execute it

BeanInfo bi = Introspector.getBeanInfo(model.getClass());

624 J S P : T h e C o m p l e t e R e f e r e n c e

PropertyDescriptor[] pds = bi.getPropertyDescriptors();

for (int i = 0; i < pds.length; i++) {

PropertyDescriptor pd = pds[i];

Method method = pd.getWriteMethod();

if (method != null) {

String name = method.getName();

if (name.equals(writeMethodName)) {

// This method is the write method

// for this property

Object[] args = { argument };

Object result = method.invoke(model, args);

return;

}

}

}

throw new IllegalArgumentException

("No " + writeMethodName + " method found");

}

/**

* Runs a subshell for the file specified in

* the include statement.

* @param line an "include <path>/file" statement

*/

protected void include(String line) throws Exception

{

if (!interactive)

System.out.println(line);

try {

// Get the name of the file to be included

StringTokenizer st = new StringTokenizer(line);

st.nextToken();

if (!st.hasMoreTokens())

throw new IllegalArgumentException

("No file name specified for include");

String fileName = st.nextToken();

C h a p t e r 1 9 : C a s e S t u d y : A P r o d u c t S u p p o r t C e n t e r 625
JS

P
IN

A
C

TIO
N

// Verify that file exists

File file = new File(fileName);

if (!file.exists())

throw new IllegalArgumentException

(fileName + " not found");

// Run the subshell

System.out.println("Including " + fileName);

new Shell(this.model, new FileInputStream(file)).run();

System.out.println("Done including " + fileName);

}

catch (IllegalArgumentException e) {

System.out.println(e.getMessage());

}

catch (IOException e) {

System.out.println(e.getMessage());

}

}

/**

* Shows the public methods available in the model

*/

protected void methods()

{

// Get the list of declared methods

Class cls = Model.class;

Method[] methods = cls.getDeclaredMethods();

System.out.println(methods.length + " methods:");

// Print the list

for (int i = 0; i < methods.length; i++) {

Method method = methods[i];

String name = method.getName();

Class[] parameterTypes = method.getParameterTypes();

StringBuffer sb = new StringBuffer();

sb.append(name);

sb.append("(");

for (int j = 0; j < parameterTypes.length; j++) {

Class parmClass = parameterTypes[j];

if (j > 0)

sb.append(",");

sb.append(parmClass.getName());

}

sb.append(")");

String s = sb.toString();

System.out.println(" " + s);

}

}

/**

* Invokes the problemLogSearch method

*/

protected void problemLogSearch(String line)

throws Exception

{

String id = getArgument(line);

model.problemLogSearch(id);

}

/**

* Invokes the productProblemsSearch method

*/

protected void productProblemsSearch(String line)

throws Exception

{

String id = getArgument(line);

model.productProblemsSearch(id);

}

/**

* Invokes the productSearch method

*/

protected void productSearch(String line) throws Exception

{

String arg = getArgument(line);

model.productSearch(arg);

}

}

To get an idea of how useful the shell can be, let’s see it in action. When you invoke
the Shell class, its main() method creates an instance of Shell and passes it a new
instance of Model. If you type the help command, you see the following help text:

626 J S P : T h e C o m p l e t e R e f e r e n c e

P:\classes\test>java -classpath .. test.Shell

SHELL> help

Invoke a method by name, or any of the following commands:

quit - exits from the shell

help - displays this help text

methods - displays a list of model methods

include <filename> - executes an included file

SHELL>

To begin with, let’s see what Model methods are available to call. Type the
methods command to see this:

SHELL> methods

33 methods:

connect()

customerProblemsSearch(java.lang.String)

customerSearch(java.lang.String)

disconnect()

getProblemID()

newProblem()

productProblemsSearch(java.lang.String)

productSearch(java.lang.String)

addProblemLog(com.lyricnote.support.model.ProblemLog)

assignProblemID(java.lang.String)

getCustomer()

getCustomerID()

getCustomerProducts()

getCustomers()

getDatabaseURL()

getEmployee(java.lang.String)

getJdbcDriver()

getProblem()

getProblemIDFile()

getProblemLogs()

getProblems()

getProduct()

getProductID()

getProducts()

isConnected()

C h a p t e r 1 9 : C a s e S t u d y : A P r o d u c t S u p p o r t C e n t e r 627
JS

P
IN

A
C

TIO
N

problemLogSearch(java.lang.String)

setCustomerID(java.lang.String)

setDatabaseURL(java.lang.String)

setJdbcDriver(java.lang.String)

setProblemID(java.lang.String)

setProblemIDFile(java.lang.String)

setProductID(java.lang.String)

updateProblem(com.lyricnote.support.model.Problem)

SHELL>

How did this information get there? Looking at the Shell method that implements
the methods command, you see it calls the getDeclaredMethods() method on the
Model class, and then prints the resulting array. This shows a list of every method you
can call from within the shell.

During development, as you add new methods to the model, you see them
automatically added to this list. In the Shell class, all you need to add is an if
statement in the run() method and a subroutine that simply invokes the model
method and prints the results. As you see shortly, you don’t even need to do this for
the property getter and setter methods.

Back to the shell session. You know you can’t do much without a database connection,
so let’s call the model method that reports whether a connection is established

SHELL> isConnected();

false

SHELL>

When the shell sees a command that starts with is or get, it interprets that as a call
to one of the model’s property accessor methods. The shell handles all such interpretation
in its doGet() method. doGet() uses JavaBeans introspection to get a list of getter
methods from the Model class. It then compares the method name from the command
line to the names of the getter methods for a match. When the shell finds a matching
method, it invokes the method and returns the result.

A similar approach is used for setter methods. Any command beginning with set
is dispatched to the doSet(String line) method, which extracts the argument from
the command line, goes through the same introspection to find the appropriate set
method, and invokes the method with the command line argument.

This makes for a natural way of getting and setting model properties. When
you called the shell’s isConnected() method, it passed the call on to the model’s
isConnected() method, which reported no connection occurred.

To create a connection, you know the model needs a JDBC driver name and
a database URL. Set these properties, and then call the connect() method:

628 J S P : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 9 : C a s e S t u d y : A P r o d u c t S u p p o r t C e n t e r 629
JS

P
IN

A
C

TIO
N

SHELL> setJdbcDriver("org.enhydra.instantdb.jdbc.idbDriver");

SHELL> setDatabaseURL("jdbc:idb:D:/jspcr/Chap19/database/db.prp");

SHELL> connect();

Connecting...

Connected

SHELL> isConnected();

true

SHELL>

This time, the isConnected() method indicates the connection is available. If all
you’re testing for now is the database routines, you should call disconnect(), and
then the quit command:

SHELL> disconnect();

Disconnecting...

Disconnected

SHELL> quit

Testing happens over and over, and typing long sequences of commands can be
tedious. For this reason, the shell provides an include command. This allows shell
commands to be read from a file and executed in a subshell. This facility is recursive,
so included modules can, themselves, include other modules.

An immediately useful included module is one that performs the database connection
because this is used with virtually all testing. This module contains the three commands
you just typed to perform the connection:

setJdbcDriver("org.enhydra.instantdb.jdbc.idbDriver");

setDatabaseURL("jdbc:idb:D:/jspcr/Chap19/database/db.prp");

connect();

Now you can start a shell and simply invoke the external set of commands:

P:\classes\test>java -classpath .. test.Shell

SHELL> include connect.inc

setJdbcDriver("org.enhydra.instantdb.jdbc.idbDriver");

setDatabaseURL("jdbc:idb:D:/jspcr/Chap19/database/db.prp");

Connecting...

Connected

SHELL> isConnected();

true

Note, the contents of the included module are echoed to the console as they are read.

With a connection established, you can proceed to test any part of the model,
duplicating the series of steps the GUI application will take and seeing if the results
are what you expect. Let’s try searching for the ScoreWriter product and drilling down
through its problem reports:

SHELL> productSearch("Score");

SHELL> getProducts();

[023500,ScoreWriter,0040,0140,0070]

SHELL> productProblemsSearch("023500");

SHELL> getProblems();

[G0000179,Can't get triplets to work,3,2001-01-14 18:40:39,

2001-01-14 18:42:53,WAGNER01,023500]

SHELL> problemLogSearch("G0000179");

SHELL> getProblemLogs();

[

G0000179,2001-01-14 18:41:09,RPS,They just don't work!,

G0000179,2001-01-14 18:42:20,COM,Told customer to try F5,

G0000179,2001-01-14 18:42:53,CCP,That did it]

SHELL> quit

Disconnecting...

Disconnected

P:\classes\test>

Invoking the productSearch() method, and then getProducts(), you see
the list of products matching the search argument (in this case, a list of one element).
The object is represented by a comma-separated-values string listing the product ID,
its name, and the employee IDs of the product support person, lead developer, and
lead tester. The productProblemsSearch() method then finds the list of problems
reported for ScoreWriter (in this case, also a list of only one element). Finally, the
problemLogSearch() and getProblemLogs() methods get the log entries for
the selected problem.3

Using the Model
This completes the development of the model component. In the early stages of
development, you want to write the Model and Shell classes in tandem, so each
part of the model can be tested in isolation. When bugs are discovered, you can return
to the shell to reproduce them without having to start and stop a Web server or search
through debugging entries in the servlet logs. This results in a more reliable base for
the rest of the application.

630 J S P : T h e C o m p l e t e R e f e r e n c e

3 The listed results have been reformatted slightly to accommodate the line width.

JS
P

IN
A

C
TIO

N

There is, of course, more than one way to design the model. You needn’t use an
application container like the Model class; you could work with the business objects
directly as JavaBeans in an HttpSession. What you saw in this section, however, is
a workable design that accommodates a variety of application requirements without
creating undue complexity in the view and controller.

View Classes
The model could be attached to a standalone Java application. However, the product
support system is accessed by users in at least four roles: call center agents, product
support specialists, developers, and testers. In addition, management may want to
measure quality statistics, such as the average length of time a problem waits in a
queue, the average number of customer callbacks needed to resolve a problem, and
the number of defects outstanding for a particular product. For this reason, the best
system operating environment is probably the company’s intranet, and the presentation
layer consists of JSP pages. In this section, you see how JSP pages can be used as the
view to which the model is attached.

Three general entry points exist into the system:

� By customer Call center agents on the phone with a customer first look up the
customer ID by means of an alpha search of the customer table by customer
name. After selecting a customer from the list of matches, the agent sees details
about the customer, including the products this customer has purchased and
the history of problems reported by the customer. From there, the call center
agent can enter a new problem report or provide status about an existing one.

� By product Product support personnel, developers, and testers are all
assigned to particular products rather than customers. Their initial view
of the system, therefore, is by product. They can use an alpha search of the
product table to find products by name and, from there, they can view the
list of outstanding problems.

� By problem Any users of the system may already know the problem ID
assigned to a particular defect. If they need to update the problem record,
they can use a form that prompts for the specific problem ID.

In all three cases, the application eventually ends up showing a detailed view of
a particular problem. From there, the user can update the problem description and
severity, route the problem to another department, or close the problem. The last JSP
view is then a confirmation screen showing what action was applied.

Figure 19-3 diagrams this application flow. Each of the rectangular boxes represents
a particular JSP page. The circles represent controller actions, which you learn about
shortly. For now, remember that controller actions are what cause changes in the model
and cause the next view to be displayed. The arrows from the JSP view to the controller
actions are labeled with the type of action the user takes with respect to the view: selecting
from a list, entering a search argument, or clicking a submit button.

C h a p t e r 1 9 : C a s e S t u d y : A P r o d u c t S u p p o r t C e n t e r 631

632 J S P : T h e C o m p l e t e R e f e r e n c e

Figure 19-3. View/controller interaction diagram

You examine each of the JSP view pages in more detail shortly. First, however, you
need to look at some supporting classes.

Support Pages
Two sections of code are common to all the JSP view pages. Rather than duplicate them
in every JSP file, you store them in separate text files and include them with the <%@
include %> directive4.

InitModel.jsp Every JSP view page needs to declare the model as a session bean and
ensure a database connection is available. This common function is accomplished by
having the view pages include the following code:

<%-- Define and initialize the model --%>

<jsp:useBean

id="model"

scope="session"

class="com.lyricnote.support.model.WebModel">

<% model.init(application); %>

</jsp:useBean>

<%-- Provide an alias for the controller servlet --%>

<%

String BASEURL = request.getContextPath();

String CONTROLLER = BASEURL + "/servlet/controller";

%>

This code in initModel.jsp does three things:

� Declares a JavaBean named model having session scope and initialized with
a com.lyricnote.support.model.WebModel object.

� Invokes the model’s init() method to extract application variables from
web.xml and establish a session-aware database connection. This method
is called only once, when the model is first bound to the session.

� Initializes constants specifying the base URL for the application and the name
of the controller servlet. These constants are used in URLs and form action
attributes elsewhere in the view.

C h a p t e r 1 9 : C a s e S t u d y : A P r o d u c t S u p p o r t C e n t e r 633
JS

P
IN

A
C

TIO
N

4 Why the include directive rather than <jsp:include>? Because the included sections define and use
constants that need to be common to both the included module and the including module.

634 J S P : T h e C o m p l e t e R e f e r e n c e

Banner.jsp For a common look and feel in all the JSP view pages, a standard header
is used. This header, stored in a file named Banner.jsp, contains an HTML table that
includes the company logo and standard navigation links.

<TABLE BORDER=0 CELLSPACING=3 CELLPADDING=3 WIDTH=500>

<TR>

<TD><IMG SRC="<%= BASEURL %>/images/logo.jpg"></TD>

</TR>

<TR>

<TD CLASS="menucell" ALIGN="RIGHT">

<A CLASS="menuitem"

HREF="<%= BASEURL %>/Problems.jsp">Problems

|

<A CLASS="menuitem"

HREF="<%= BASEURL %>/Products.jsp">Products

|

<A CLASS="menuitem"

HREF="<%= BASEURL %>/Customers.jsp">Customers

</TR>

</TABLE>

Neither InitModel.jsp nor Banner.jsp is designed to be called directly by a
user. To prevent this, they are stored in the /WEB-INF folder. This makes them visible
to the application itself, but not to users on the Web.

ErrorPage.jsp A final supporting module is the error page, listed in the following:

<%@ page session="false" %>

<%@ page import="java.io.PrintWriter" %>

<%@ page isErrorPage="true" %>

<HTML>

<HEAD>

<TITLE>Error Page</TITLE>

<LINK REL="stylesheet" HREF="style.css">

</HEAD>

<BODY>

<H3>Error</H3>

The following error occurred:

C h a p t e r 1 9 : C a s e S t u d y : A P r o d u c t S u p p o r t C e n t e r 635
JS

P
IN

A
C

TIO
N

<PRE>

<%

exception.printStackTrace(new PrintWriter(out));

%>

</PRE>

</BODY>

</HTML>

ErrorPage.jsp does little more than display a stack trace for any uncaught
exception. This is useful during system development, but should probably be replaced
by something more user-friendly in production.

JSP View Pages
Using Figure 19-3 as our road map, let’s look at the nine individual JSP view pages:

� Customers.jsp Prompts for customer search argument

� CustomersList.jsp Selection list of customer search results

� Customer.jsp Detail view of a single customer record

� Problem.jsp Detail view of a single problem record

� Confirm.jsp Confirmation screen shown after problem update

� Products.jsp Prompts for product search argument

� ProductsList.jsp Selection list of product search results

� ProductProblems.jsp Selection list of problems for a product

� Problems.jsp Prompts for a product ID

Customers.jsp The initial entry point of call center agents is typically the customer
search view, listed in the following:

<%@ page session="true" %>

<%@ page errorPage="/ErrorPage.jsp" %>

<%@ page import="com.lyricnote.support.model.*" %>

<%@ include file="/WEB-INF/InitModel.jsp" %>

<HTML>

<HEAD>

<TITLE>Customer Search</TITLE>

<LINK REL="stylesheet" HREF="<%= BASEURL %>/style.css">

</HEAD>

<BODY>

<%@ include file="/WEB-INF/Banner.jsp" %>

<H3>Customer Search</H3>

<FORM

METHOD="POST"

ACTION="<%= CONTROLLER %>/Customers/Search">

Customer name:

<INPUT TYPE="TEXT" NAME="customerSearchArgument" SIZE="20">

<INPUT TYPE="SUBMIT" VALUE="Search">

</FORM>

</BODY>

</HTML>

After including the model initialization and banner code, this JSP page uses an
HTML form to prompt for a customer name search string. If the call center agent is
talking to a customer named Eleanor Wagner, for example, the agent may search for
names containing the letter W, as shown in Figure 19-4. When the agent clicks the search
button, the form is then submitted to a servlet that performs the search (which is dis-
cussed later in this chapter in the Controller Classes section).

636 J S P : T h e C o m p l e t e R e f e r e n c e

Figure 19-4. Customer search page

CustomersList.jsp The results of searching by customer name are stored in a
java.util.List in the model. The CustomerList.jsp page extracts the list and
displays it with the customer ID column as hyperlinks. The JSP source code is listed here:

<%@ page session="true" %>

<%@ page errorPage="/ErrorPage.jsp" %>

<%@ page import="java.util.*" %>

<%@ page import="com.lyricnote.support.model.*" %>

<%@ include file="/WEB-INF/InitModel.jsp" %>

<HTML>

<HEAD>

<TITLE>Customers List</TITLE>

<LINK REL="stylesheet" HREF="<%= BASEURL %>/style.css">

</HEAD>

<BODY>

<%@ include file="/WEB-INF/Banner.jsp" %>

<H3>Customers List</H3>

<TABLE BORDER=0 CELLSPACING=5 CELLPADDING=0>

<TR>

<TH ALIGN=LEFT>Customer ID</TH>

<TH ALIGN=LEFT>Customer Name</TH>

</TR>

<%

List list = model.getCustomers();

if (list != null) {

Iterator it = list.iterator();

while (it.hasNext()) {

Customer customer = (Customer) it.next();

// Get the customer select URL

String customerID = customer.getCustomerID();

String selectURL = CONTROLLER +

"/CustomersList/Select?customerID="

+ customerID;

%>

<TR>

C h a p t e r 1 9 : C a s e S t u d y : A P r o d u c t S u p p o r t C e n t e r 637
JS

P
IN

A
C

TIO
N

<TD><A HREF="<%= selectURL %>"><%= customerID %></TD>

<TD><%= customer.getName() %></TD>

</TR>

<%

}

}

%>

</TABLE>

</BODY>

</HTML>

The Web page with the list of customer whose names contain the letter W is shown in
Figure 19-5.

Customer.jsp After selecting Eleanor Wagner from the list, the call center agent
sees the customer detail page, as illustrated in Figure 19-6. This page has three sections:

� Top left contains the customer ID, name, and phone number.

� Top right has a list of products the customer has purchased. The list is in
descending date of purchase order, and the product name is a hyperlink
used to report a new problem.

638 J S P : T h e C o m p l e t e R e f e r e n c e

Figure 19-5. Customer search results page

C h a p t e r 1 9 : C a s e S t u d y : A P r o d u c t S u p p o r t C e n t e r 639
JS

P
IN

A
C

TIO
N

� Bottom is a history of problems reported by the customer. In this case, you see
one problem, one that has already been resolved.

The list of products enables the call center agent to determine the products for which
Ms. Wagner is entitled to support.

The source code for Customer.jsp is shown here:

<%@ page session="true" %>

<%@ page errorPage="/ErrorPage.jsp" %>

<%@ page import="java.util.*" %>

<%@ page import="com.lyricnote.support.model.*" %>

<%@ include file="/WEB-INF/InitModel.jsp" %>

<HTML>

<HEAD>

<TITLE>Customer Detail</TITLE>

<LINK REL="stylesheet" HREF="<%= BASEURL %>/style.css">

Figure 19-6. Customer detail page

640 J S P : T h e C o m p l e t e R e f e r e n c e

</HEAD>

<BODY>

<%@ include file="/WEB-INF/Banner.jsp" %>

<% Customer customer = model.getCustomer(); %>

<H3>Customer Detail</H3>

<%-- Customer information and products purchased --%>

<TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0>

<TR>

<%-- Left side --%>

<TD VALIGN=TOP>

<TABLE BORDER=0 CELLSPACING=5 CELLPADDING=0>

<TR>

<TD>Customer ID:</TD>

<TD><%= customer.getCustomerID() %></TD>

<TD ROWSPAN=3>

</TD>

</TR>

<TR>

<TD>Name:</TD>

<TD><%= customer.getName() %></TD>

</TR>

<TR>

<TD>Phone:</TD>

<TD><%= customer.getPhone() %></TD>

</TR>

</TABLE>

</TD>

<%-- Right side --%>

<TD VALIGN=TOP>

<TABLE BORDER=0 CELLSPACING=5 CELLPADDING=0>

<TR>

<TH>Product Name</TH>

<TH>Date Purchased</TH>

</TR>

C h a p t e r 1 9 : C a s e S t u d y : A P r o d u c t S u p p o r t C e n t e r 641
JS

P
IN

A
C

TIO
N

<%

List products = model.getCustomerProducts();

if ((products != null) && (products.size() > 0)) {

Iterator it = products.iterator();

while (it.hasNext()) {

CustomerProduct custprod =

(CustomerProduct) it.next();

model.setProductID(custprod.getProductID());

Product product = model.getProduct();

String productName = product.getName();

String datePurchased =

Util.dateFormat(custprod.getDatePurchased());

String NEW_URL =

CONTROLLER + "/Customer/NewProblem"

+ "?customerID=" + custprod.getCustomerID()

+ "&productID=" + custprod.getProductID() ;

%>

<TR>

<TD>

<A HREF="<%= NEW_URL %>"><%= productName %>

</TD>

<TD><%= datePurchased %></TD>

</TR>

<%

}

%>

<TR>

<TD CLASS="fineprint" COLSPAN=2>

Click product name to report new problem.

</TD>

</TR>

<%

}

%>

</TABLE>

</TD>

</TR>

</TABLE>

<HR WIDTH=506 ALIGN=LEFT>

<%-- Problems Reported --%>

642 J S P : T h e C o m p l e t e R e f e r e n c e

<TABLE BORDER=0 CELLSPACING=5 CELLPADDING=0>

<TR>

<TH ALIGN=LEFT>Problem ID</TH>

<TH ALIGN=LEFT>Description</TH>

<TH ALIGN=LEFT>Date Reported</TH>

<TH ALIGN=LEFT>Date Resolved</TH>

</TR>

<%

List list = model.getProblems();

if (list != null) {

Iterator it = list.iterator();

while (it.hasNext()) {

Problem problem = (Problem) it.next();

// Create the problem select URL

String problemID = problem.getProblemID();

String selectURL = CONTROLLER +

"/Problems/Select?problemID="

+ problemID;

String problemDescription = problem.getDescription();

// Get the reported and resolution dates

String dateReported =

Util.dateTimeFormat(problem.getDateReported());

String dateResolved =

Util.dateTimeFormat(problem.getDateResolved());

%>

<TR>

<TD><A HREF="<%= selectURL %>"><%= problemID %></TD>

<TD><%= problemDescription %></TD>

<TD><%= dateReported %></TD>

<TD><%= dateResolved %></TD>

</TR>

<%

}

}

%>

</TABLE>

</BODY>

</HTML>

The JSP source is primarily composed of HTML, with a small amount of Java in
scriptlets and expressions for interacting with the model. The current Customer object
is retrieved from the model with the model’s getCustomer() method. This allows
JSP expressions to populate the customer ID, name, and telephone fields. For the list
of products on the right-hand side, the JSP calls the model’s getCustomerProducts()
method, which returns a list of CustomerProduct objects. The model is used to get each
product name and purchase date in turn. A similar technique is used to get the list of prior
customer problems displayed at the bottom of the page.

Problem.jsp Ms. Wagner reports she’s having a problem with the ScoreWriter
product. When she tries to enter a Db, the software substitutes C# instead. The call
center agent clicks the ScoreWriter hyperlink, which brings up the JSP view page
shown in Figure 19-7.

After entering the description, the problem severity, and comments from the
customer, the agent clicks the submit button to create the problem record.

C h a p t e r 1 9 : C a s e S t u d y : A P r o d u c t S u p p o r t C e n t e r 643
JS

P
IN

A
C

TIO
N

Figure 19-7. Problem detail page

644 J S P : T h e C o m p l e t e R e f e r e n c e

Listed here is the source code for Problem.jsp:

<%@ page session="true" %>

<%@ page errorPage="/ErrorPage.jsp" %>

<%@ page import="java.util.*" %>

<%@ page import="com.lyricnote.support.model.*" %>

<%@ include file="/WEB-INF/InitModel.jsp" %>

<HTML>

<HEAD>

<TITLE>Problem</TITLE>

<LINK REL="stylesheet" HREF="<%= BASEURL %>/style.css">

</HEAD>

<BODY>

<%@ include file="/WEB-INF/Banner.jsp" %>

<%

// Retrieve the problem from the model

Problem problem = model.getProblem();

// Get the customer

model.setCustomerID(problem.getCustomerID());

Customer customer = model.getCustomer();

// Get the product

model.setProductID(problem.getProductID());

Product product = model.getProduct();

// Determine the severity

int severity = problem.getSeverity();

String checked1 = (severity == 1) ? "CHECKED" : "";

String checked2 = (severity == 2) ? "CHECKED" : "";

String checked3 = (severity == 3) ? "CHECKED" : "";

%>

<H3>Problem <%= problem.getProblemID() %></H3>

<FORM METHOD="POST" ACTION="<%= CONTROLLER %>/Problem/Submit">

<INPUT TYPE="HIDDEN" NAME="problemID"

VALUE="<%= problem.getProblemID() %>">

<TABLE BORDER=0 CELLSPACING=5 CELLPADDING=3>

<TR>

<TD>Description:</TD>

<TD>

<INPUT

NAME="description"

TYPE="text"

VALUE="<%= problem.getDescription() %>"

SIZE="50"

>

</TD>

</TR>

<TR>

<TD>Severity:</TD>

<TD>

<INPUT

NAME="severity"

TYPE="radio"

VALUE="1"

<%= checked1 %>

>High

<INPUT

NAME="severity"

TYPE="radio"

VALUE="2"

<%= checked2 %>

>Medium

<INPUT

NAME="severity"

TYPE="radio"

VALUE="3"

<%= checked3 %>

>Low

</TD>

</TR>

<TR>

<TD>Customer:</TD>

<TD><%= customer.getName() %></TD>

</TR>

C h a p t e r 1 9 : C a s e S t u d y : A P r o d u c t S u p p o r t C e n t e r 645
JS

P
IN

A
C

TIO
N

646 J S P : T h e C o m p l e t e R e f e r e n c e

<TR>

<TD>Product:</TD>

<TD><%= product.getName() %></TD>

</TR>

<TR>

<TD>Date</TD>

<TD>

Reported:

<%= Util.dateTimeFormat(problem.getDateReported()) %>

Resolved:

<%= Util.dateTimeFormat(problem.getDateResolved()) %>

</TD>

</TR>

<TR>

<TD>Comments:</TD>

<TD>

<TEXTAREA NAME="comments" COLS="50" ROWS="4">

</TEXTAREA>

</TD>

</TR>

<TR>

<TD>Action:</TD>

<TD>

<SELECT NAME="eventID">

<OPTION VALUE="COM">Comment

<OPTION VALUE="RPS">Route to product support

<OPTION VALUE="RPD">Route to development

<OPTION VALUE="RQA">Route to test

<OPTION VALUE="CNB">Closed - not a bug

<OPTION VALUE="CCP">Closed - customer problem

<OPTION VALUE="CFX">Closed - fixed

</SELECT>

<INPUT TYPE="SUBMIT" VALUE="Submit">

</TD>

</TR>

</TABLE>

</FORM>

<%

// Get log entries for this problem

model.problemLogSearch(problem.getProblemID());

List problemLogs = model.getProblemLogs();

if (problemLogs.size() > 0) {

C h a p t e r 1 9 : C a s e S t u d y : A P r o d u c t S u p p o r t C e n t e r 647
JS

P
IN

A
C

TIO
N

%>

<H4>Problem History</H4><P>

<TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0">

<TR>

<TH>Time</TH>

<TH>Event Code</TH>

<TH>Comments</TH>

</TR>

<%

Iterator it = problemLogs.iterator();

while (it.hasNext()) {

ProblemLog log = (ProblemLog) it.next();

%>

<TR>

<TD><%= Util.dateTimeFormat(log.getLogTime()) %></TD>

<TD><%= log.getEventID() %></TD>

<TD><%= log.getComments() %></TD>

</TR>

<%

}

%>

</TABLE>

<%

}

%>

</BODY>

</HTML>

Again, the JSP is composed primarily of HTML with some Java to access Problem
object, its customer ID, product ID, description, and severity. The list of log entries for
the problem comes from the model’s problemLogSearch() method.

Confirm.jsp After the agent submits the problem record, a confirmation page (see
Figure 19-8) is produced, listing the problem ID assigned, the description, the severity,
the customer comments, and problem routing. The agent gives the problem ID to the
customer on the phone and informs her that ScoreWriter product support will call her
back. The confirmation source code is listed here:

<%@ page session="true" %>

<%@ page errorPage="/ErrorPage.jsp" %>

<%@ page import="com.lyricnote.support.model.*" %>

<%@ include file="/WEB-INF/InitModel.jsp" %>

<HTML>

<HEAD>

<TITLE>Confirmation</TITLE>

<LINK REL="stylesheet" HREF="<%= BASEURL %>/style.css">

</HEAD>

<BODY>

<%@ include file="/WEB-INF/Banner.jsp" %>

<H3>Confirmation</H3>

<TABLE BORDER=0 CELLPADDING=3 CELLSPACING=0>

<TR>

<TD>Problem ID:</TD>

<TD><%= request.getParameter("problemID") %></TD>

</TR>

<TR>

<TD>Description:</TD>

<TD><%= request.getParameter("description") %></TD>

</TR>

<TR>

<TD>Severity:</TD>

<TD><%= request.getParameter("severity") %></TD>

</TR>

<TR>

<TD>Comments:</TD>

<TD><%= request.getParameter("comments") %></TD>

</TR>

<TR>

<TD>EventID:</TD>

<TD><%= request.getParameter("eventID") %></TD>

</TR>

</TABLE>

</BODY>

</HTML>

A useful addition to the system would be e-mail notification of the employee to which the
problem is being routed. Chapter 21 explores ways to do this.

648 J S P : T h e C o m p l e t e R e f e r e n c e

Products.jsp Other users, such as product support personnel, developers, or testers,
may start the application by looking for a particular product. Like the customer search
page, there’s a JSP view page for product search, listed here:

<%@ page session="true" %>

<%@ page errorPage="/ErrorPage.jsp" %>

<%@ page import="com.lyricnote.support.model.*" %>

<%@ include file="/WEB-INF/InitModel.jsp" %>

<HTML>

<HEAD>

<TITLE>Product Search</TITLE>

<LINK REL="stylesheet" HREF="<%= BASEURL %>/style.css">

</HEAD>

<BODY>

<%@ include file="/WEB-INF/Banner.jsp" %>

C h a p t e r 1 9 : C a s e S t u d y : A P r o d u c t S u p p o r t C e n t e r 649
JS

P
IN

A
C

TIO
N

Figure 19-8. Confirmation page

<H3>Product Search</H3>

<FORM

METHOD="POST"

ACTION="<%= CONTROLLER %>/Products/Search">

Product name:

<INPUT TYPE="TEXT" NAME="productSearchArgument" SIZE="20">

<INPUT TYPE="SUBMIT" VALUE="Search">

</FORM>

</BODY>

</HTML>

Like the customer search page, Products.jsp uses an HTML form to prompt for a
search string. Figure 19-9 illustrates a search for products whose name contains the letter S.

ProductsList.jsp As Figure 19-10 shows, two product names contain the letter S:
Music Teacher Studio and ScoreWriter. The ProductsList.jsp page shows the
two product IDs, product names, and the names of the support personnel assigned.
ProductsList.jsp is listed next.

650 J S P : T h e C o m p l e t e R e f e r e n c e

Figure 19-9. Product search page

C h a p t e r 1 9 : C a s e S t u d y : A P r o d u c t S u p p o r t C e n t e r 651
JS

P
IN

A
C

TIO
N

<%@ page session="true" %>

<%@ page errorPage="/ErrorPage.jsp" %>

<%@ page import="java.util.*" %>

<%@ page import="com.lyricnote.support.model.*" %>

<%@ include file="/WEB-INF/InitModel.jsp" %>

<HTML>

<HEAD>

<TITLE>Products List</TITLE>

<LINK REL="stylesheet" HREF="<%= BASEURL %>/style.css">

</HEAD>

<BODY>

<%@ include file="/WEB-INF/Banner.jsp" %>

<H3>Products List</H3>

<TABLE BORDER=0 CELLSPACING=5 CELLPADDING=0>

<TR>

<TH ALIGN=LEFT>Product ID</TH>

<TH ALIGN=LEFT>Product Name</TH>

<TH ALIGN=LEFT>Support</TH>

<TH ALIGN=LEFT>Developer</TH>

<TH ALIGN=LEFT>Tester</TH>

</TR>

<%

List list = model.getProducts();

if (list != null) {

Iterator it = list.iterator();

while (it.hasNext()) {

Product product = (Product) it.next();

// Get the product select URL

String productID = product.getProductID();

String selectURL = CONTROLLER +

"/ProductsList/Select?productID="

+ productID;

String productName = product.getName();

// Get the names of the product support,

// developer, and tester employees

String productSupport = product.getProductSupport();

String productSupportName =

model.getEmployee(productSupport).getName();

String developer = product.getDeveloper();

String developerName =

model.getEmployee(developer).getName();

String tester = product.getTester();

String testerName =

model.getEmployee(tester).getName();

%>

<TR>

<TD><A HREF="<%= selectURL %>"><%= productID %></TD>

<TD><%= productName %></TD>

<TD><%= productSupportName %></TD>

<TD><%= developerName %></TD>

<TD><%= testerName %></TD>

</TR>

<%

}

}

%>

</TABLE>

</BODY>

</HTML>

For each of the three employee IDs in the Product object, the JSP shows the
corresponding employee name. It gets the Employee objects from the model’s
getEmployee() method, and then invokes the Employee.getName() method
to get the name.

652 J S P : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 9 : C a s e S t u d y : A P r o d u c t S u p p o r t C e n t e r 653
JS

P
IN

A
C

TIO
N

ProductProblems.jsp If the ScoreWriter link is selected, the list of problems for that
product is displayed, as shown in Figure 19-11.

<%@ page session="true" %>

<%@ page errorPage="/ErrorPage.jsp" %>

<%@ page import="java.util.*" %>

<%@ page import="com.lyricnote.support.model.*" %>

<%@ include file="/WEB-INF/InitModel.jsp" %>

Figure 19-10. Products list page

<HTML>

<HEAD>

<TITLE>Problems by Product</TITLE>

<LINK REL="stylesheet" HREF="<%= BASEURL %>/style.css">

</HEAD>

<BODY>

<%@ include file="/WEB-INF/Banner.jsp" %>

<H3>Problems by Product</H3>

<%

Product product = model.getProduct();

String productID = product.getProductID();

String productName = product.getName();

%>

Product: <%= productID %> - <%= productName %>

<TABLE BORDER=0 CELLSPACING=5 CELLPADDING=0>

<TR>

<TH ALIGN=LEFT>Problem ID</TH>

<TH ALIGN=LEFT>Description</TH>

<TH ALIGN=LEFT>Date Reported</TH>

<TH ALIGN=LEFT>Date Resolved</TH>

</TR>

<%

List list = model.getProblems();

if (list != null) {

Iterator it = list.iterator();

while (it.hasNext()) {

Problem problem = (Problem) it.next();

// Create the problem select URL

String problemID = problem.getProblemID();

String selectURL = CONTROLLER +

"/Problems/Select?problemID="

+ problemID;

String problemDescription = problem.getDescription();

// Get the reported and resolution dates

String dateReported =

654 J S P : T h e C o m p l e t e R e f e r e n c e

Util.dateFormat(problem.getDateReported());

String dateResolved =

Util.dateFormat(problem.getDateResolved());

%>

<TR>

<TD><A HREF="<%= selectURL %>"><%= problemID %></TD>

<TD><%= problemDescription %></TD>

<TD><%= dateReported %></TD>

<TD><%= dateResolved %></TD>

</TR>

<%

}

}

%>

</TABLE>

</BODY>

</HTML>

C h a p t e r 1 9 : C a s e S t u d y : A P r o d u c t S u p p o r t C e n t e r 655
JS

P
IN

A
C

TIO
N

Figure 19-11. Problems by product page

As the listing of ProductProblems.jsp shows, the current Product object can
be obtained from the model, as well as the list of problems for this product.

When Fred Albright, the product support person for ScoreWriter calls the customer
to get more details about the problem, he selects the problem number from the list by
clicking the hyperlink. He then sees an updated version of the problem (see Figure 19-12).
He enters the results of the customer interview in the comments section and submits
the problem update. The new confirmation is shown in Figure 19-13.

656 J S P : T h e C o m p l e t e R e f e r e n c e

Figure 19-12. Updated problem detail page

Problems.jsp If the problem ID is already known, a user can select the problem
directly, using the JSP view shown in Figure 19-14.

C h a p t e r 1 9 : C a s e S t u d y : A P r o d u c t S u p p o r t C e n t e r 657
JS

P
IN

A
C

TIO
N

Figure 19-13. New confirmation page

Figure 19-14. Problem selection page

The source code for Problems.jsp is similar to the customer and product
search pages:

<%@ page session="true" %>

<%@ page errorPage="/ErrorPage.jsp" %>

<%@ page import="com.lyricnote.support.model.*" %>

<%@ include file="/WEB-INF/InitModel.jsp" %>

<HTML>

<HEAD>

<TITLE>Problem Selection</TITLE>

<LINK REL="stylesheet" HREF="<%= BASEURL %>/style.css">

</HEAD>

<BODY>

<%@ include file="/WEB-INF/Banner.jsp" %>

<H3>Problem Selection</H3>

<FORM

METHOD="POST"

ACTION="<%= CONTROLLER %>/Problems/Select">

Problem ID:

<INPUT TYPE="TEXT" NAME="problemID" SIZE="8">

<INPUT TYPE="SUBMIT" VALUE="select">

</FORM>

</BODY>

</HTML>

On further exploration of the problem, Fred Albright determines it was due to a user
input error. He enters a comment to that effect (see Figure 19-15) and closes the problem.
The confirmation screen is shown in Figure 19-16.

Controller Classes
The last component to develop is the controller, the part of the system that operates on the
model according to user input and selects the next view. In the product support system, this
function is performed by a single servlet, appropriately named ControllerServlet.

The controller functionality can be built a piece at a time by using small,
customized action classes to handle each state transition, rather than hard-coding each
action in the servlet. The mechanism the controller uses to delegate to the action classes
is explained next.

658 J S P : T h e C o m p l e t e R e f e r e n c e

Each time the controller servlet is invoked, it needs to know two things:

� What is the current view?

� What action has the user selected from this view?

C h a p t e r 1 9 : C a s e S t u d y : A P r o d u c t S u p p o r t C e n t e r 659
JS

P
IN

A
C

TIO
N

Figure 19-15. Final problem update page

You may have noticed all the JSP view pages invoke the controller servlet with
additional path information in the URL. This path information contains the name of
the current view and a keyword describing the action the user selected. For example,
from the Customers.jsp page, when the user enters a search string and clicks the
search button, the form is submitted to the controller servlet with the path information
/Customers/Search. Some view pages have more than one possible user action.
From the Customer.jsp page, the user can either click a product name to report a
new problem or select an existing problem for update. In any event, the controller takes
the view name and action keyword, concatenates them, and appends the word Action.
The result is the name of the class that can handle the state transition.

The Action Base Class
Here is a listing of the abstract Action class:

package com.lyricnote.support.controller;

import com.lyricnote.support.model.*;

import java.io.*;

import javax.servlet.*;

660 J S P : T h e C o m p l e t e R e f e r e n c e

Figure 19-16. Final confirmation page

import javax.servlet.http.*;

/**

* The base class for all state transitions

*/

public abstract class Action

{

protected HttpServletRequest request;

protected HttpServletResponse response;

protected ServletContext application;

protected Model model;

/**

* Executes the action. Subclasses should override

* this method and have it forward the request to the

* next view component when it completes processing.

*/

public abstract void run()

throws ServletException, IOException;

/**

* Sets the request.

* @param request the request.

*/

public void setRequest(HttpServletRequest request)

{

this.request = request;

}

/**

* Sets the response

* @param response the response

*/

public void setResponse(HttpServletResponse response)

{

this.response = response;

}

/**

* Sets the servlet context.

* @param application the application.

*/

C h a p t e r 1 9 : C a s e S t u d y : A P r o d u c t S u p p o r t C e n t e r 661
JS

P
IN

A
C

TIO
N

662 J S P : T h e C o m p l e t e R e f e r e n c e

public void setApplication(ServletContext application)

{

this.application = application;

}

/**

* Sets the model.

* @param model the model.

*/

public void setModel(Model model)

{

this.model = model;

}

}

Action contains instance variables for the servlet request and response, the
servlet context, and the model itself. In addition to the getter and setter methods
for these variables, there’s an abstract method named run(). This method is the
only one that must be implemented by the individual action handlers. The run()
method calls model methods to effect the transition, and then creates a request
dispatcher and forwards the request to the next view.

The Controller Servlet
The controller servlet is the driver for all the state transitions. It maintains a cache
in each session of action classes that have been invoked. When a request is made, the
servlet checks the session action map to see if an instance of the class has already been
loaded. If not, it extracts the view name and action keyword from the path information,
concatenates them, and appends Action to the result to get the action class name. It
then loads the class and creates an instance, storing this in the session action map. After
ensuring a model already exists, the servlet then sets the request, response, application,
and model properties in the action object and invokes its run() method.

ControllerServlet is listed here:

package com.lyricnote.support.controller;

import com.lyricnote.support.model.*;

import java.io.*;

import java.sql.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

/**

* The controller component of the Model-View-Controller

* architecture for the LyricNote problem reporting system

*/

public class ControllerServlet extends HttpServlet

{

/**

* Handles an HTTP GET request

*/

public void doGet(

HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException

{

doPost(request, response);

}

/**

* Handles an HTTP POST request

*/

public void doPost(

HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException

{

HttpSession session = request.getSession();

Map actionMap = (Map) session.getAttribute("actionMap");

if (actionMap == null) {

actionMap = new HashMap();

session.setAttribute("actionMap", actionMap);

}

ServletContext context = getServletContext();

try {

// Get the state and event from the path info

String pathInfo = request.getPathInfo();

if (pathInfo == null)

throw new ServletException

("Invalid internal state - no path info");

// Load the action object that handles

C h a p t e r 1 9 : C a s e S t u d y : A P r o d u c t S u p p o r t C e n t e r 663
JS

P
IN

A
C

TIO
N

// this state and event

Action action = (Action) actionMap.get(pathInfo);

if (action == null) {

// This is the first time the servlet has seen

// this action. Get the state and event name

// from pathInfo.

StringTokenizer st =

new StringTokenizer(pathInfo, "/");

if (st.countTokens() != 2)

throw new ServletException

("Invalid internal state - invalid path info ["

+ pathInfo + "]");

String state = st.nextToken();

String event = st.nextToken();

// Form the class name from the state and event

String className =

"com.lyricnote.support.controller."

+ state + event + "Action";

// Load the class and create an instance

try {

Class actionClass = Class.forName(className);

action = (Action) actionClass.newInstance();

}

catch (ClassNotFoundException e) {

throw new ServletException

("Could not load class " + className

+ ": " + e.getMessage());

}

catch (InstantiationException e) {

throw new ServletException

("Could not create an instance of "

+ className + ": " + e.getMessage());

}

664 J S P : T h e C o m p l e t e R e f e r e n c e

catch (IllegalAccessException e) {

throw new ServletException

(className + ": " + e.getMessage());

}

// Cache the instance in the action map

actionMap.put(pathInfo, action);

}

// Ensure that a model exists in the session.

Model model = (Model) session.getAttribute("model");

if (model == null)

throw new ServletException

("No model found in session");

// Now execute the action. The action should perform

// a RequestDispatcher.forward() when it completes

action.setRequest(request);

action.setResponse(response);

action.setApplication(context);

action.setModel(model);

action.run();

}

catch (ServletException e) {

// Use the JSP error page for all servlet errors

request.setAttribute("javax.servlet.jsp.jspException", e);

RequestDispatcher rd =

context.getRequestDispatcher("/ErrorPage.jsp");

if (response.isCommitted())

rd.include(request, response);

else

rd.forward(request, response);

}

}

}

C h a p t e r 1 9 : C a s e S t u d y : A P r o d u c t S u p p o r t C e n t e r 665
JS

P
IN

A
C

TIO
N

666 J S P : T h e C o m p l e t e R e f e r e n c e

The sections that follow describe each of the action classes used in the product
support system.

Action Classes
A review of Figure 19-3 shows seven state transitions occur from one view to another.
These transitions correspond to the following action classes:

� CustomersSearchAction

� CustomersListSelectAction

� CustomersNewProblemAction

� ProductsSearchAction

� ProductsListSelectAction

� ProblemsSelectAction

� ProblemSubmitAction

CustomersSearchAction Class The run() method in this class is called to
accept a customer search argument from the Customers.jsp view and invoke the
customerSearch() method in the model. It then forwards the request to the JSP
view page that displays the search results. A listing of CustomersSearchAction
is shown here:

package com.lyricnote.support.controller;

import java.io.*;

import java.sql.SQLException;

import javax.servlet.*;

import javax.servlet.http.*;

/**

* Searches the database for customers matching the

* customer search argument

*/

public class CustomersSearchAction extends Action

{

/**

* Executes the action

*/

public void run() throws ServletException, IOException

{

// Perform search

String arg = request.getParameter("customerSearchArgument");

if (arg != null) {

arg = arg.trim();

if (!arg.equals("")) {

try {

model.customerSearch(arg);

}

catch (SQLException e) {

throw new ServletException(e.getMessage());

}

}

}

// Forward to customer list JSP

final String next = "/CustomersList.jsp";

RequestDispatcher rd =

application.getRequestDispatcher(next);

if (rd == null)

throw new ServletException

("Could not find " + next);

rd.forward(request, response);

}

}

CustomersListSelectAction Class The user selects a customer from the list by
clicking a hyperlink into the controller that carries the CustomerList view name
and the Select action keyword. In addition, the hyperlink URL has the customer ID
appended as a query string. From this information, the
CustomersListSelectAction class does the following:

� Extracts the customer ID parameter from the URL and stores it in the model

� Invokes the model’s customer problems search method

� Forwards the request to the customer detail JSP view

Here’s a listing of the action class:

package com.lyricnote.support.controller;

import java.io.*;

import java.sql.SQLException;

C h a p t e r 1 9 : C a s e S t u d y : A P r o d u c t S u p p o r t C e n t e r 667
JS

P
IN

A
C

TIO
N

import javax.servlet.*;

import javax.servlet.http.*;

/**

* Gets detailed information for this customer

*/

public class CustomersListSelectAction extends Action

{

/**

* Executes the action

*/

public void run() throws ServletException, IOException

{

// Get customer ID and store it in the model

String customerID = request.getParameter("customerID");

if (customerID == null)

throw new ServletException

("No customer ID specified");

model.setCustomerID(customerID);

// Get the list of problems for this customer

try {

model.customerProblemsSearch(customerID);

}

catch (SQLException e) {

throw new ServletException(e.getMessage());

}

// Forward to customer detail JSP

final String next = "/Customer.jsp";

RequestDispatcher rd =

application.getRequestDispatcher(next);

if (rd == null)

throw new ServletException

("Could not find " + next);

rd.forward(request, response);

}

}

668 J S P : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 9 : C a s e S t u d y : A P r o d u c t S u p p o r t C e n t e r 669
JS

P
IN

A
C

TIO
N

CustomerNewProblemAction Class As noted previously, the Customer view
has two possible actions: creating a new problem or updating an existing one. The
new problem action is handled by the following action class:

package com.lyricnote.support.controller;

import java.io.*;

import java.sql.SQLException;

import javax.servlet.*;

import javax.servlet.http.*;

public class CustomerNewProblemAction extends Action

{

/**

* Executes the action

*/

public void run() throws ServletException, IOException

{

// Get the customer ID and product ID

String customerID = request.getParameter("customerID");

if (customerID == null)

throw new ServletException

("No customer ID");

String productID = request.getParameter("productID");

if (productID == null)

throw new ServletException

("No product ID");

// Create a new problem

try {

model.setCustomerID(customerID);

model.setProductID(productID);

model.newProblem();

}

catch (SQLException e) {

throw new ServletException(e.getMessage());

}

// Forward to problem detail JSP

final String next = "/Problem.jsp";

RequestDispatcher rd =

application.getRequestDispatcher(next);

if (rd == null)

throw new ServletException

("Could not find " + next);

rd.forward(request, response);

}

}

This action class does the following:

� Retrieves the customerID and productID parameters from the request
generated by the view.

� Creates and initializes a new Problem object. It does so by invoking the
newProblem() factory method in the model, which assigns a unique problem
ID and writes the initial record in the database.

� Forwards the request to the problem detail view.

ProductsSearchAction Class Like the customer search action, the product search
action takes a search string from the request and calls a search method in the model,
forwarding the request then to the ProductsList.jsp view.

package com.lyricnote.support.controller;

import java.io.*;

import java.sql.SQLException;

import javax.servlet.*;

import javax.servlet.http.*;

/**

* Searches the database for products matching the

* product search argument

*/

public class ProductsSearchAction extends Action

{

/**

* Executes the action

*/

public void run() throws ServletException, IOException

{

670 J S P : T h e C o m p l e t e R e f e r e n c e

// Perform search

String arg = request.getParameter("productSearchArgument");

if (arg != null) {

arg = arg.trim();

if (!arg.equals("")) {

try {

model.productSearch(arg);

}

catch (SQLException e) {

throw new ServletException(e.getMessage());

}

}

}

// Forward to product list JSP

final String next = "/ProductsList.jsp";

RequestDispatcher rd =

application.getRequestDispatcher(next);

if (rd == null)

throw new ServletException

("Could not find " + next);

rd.forward(request, response);

}

}

ProductsListSelectAction Class When a product ID is selected, this action class
stores it in the model and invokes the model’s product problem search. The request
is then forwarded to the ProductProblems.jsp view, which displays the results.

package com.lyricnote.support.controller;

import java.io.*;

import java.sql.SQLException;

import javax.servlet.*;

import javax.servlet.http.*;

/**

* Searches the database for products matching the

* product search argument

C h a p t e r 1 9 : C a s e S t u d y : A P r o d u c t S u p p o r t C e n t e r 671
JS

P
IN

A
C

TIO
N

672 J S P : T h e C o m p l e t e R e f e r e n c e

*/

public class ProductsListSelectAction extends Action

{

/**

* Executes the action

*/

public void run() throws ServletException, IOException

{

// Get product ID and store it in the model

String productID = request.getParameter("productID");

if (productID == null)

throw new ServletException

("No product ID specified");

model.setProductID(productID);

// Get the list of problems for this product

try {

model.productProblemsSearch(productID);

}

catch (SQLException e) {

throw new ServletException(e.getMessage());

}

// Forward to product problems JSP

final String next = "/ProductProblems.jsp";

RequestDispatcher rd =

application.getRequestDispatcher(next);

if (rd == null)

throw new ServletException

("Could not find " + next);

rd.forward(request, response);

}

}

ProblemsSelectAction Class All three application entry points—customer,
product, and problem—use a common problem select action, which the following lists:

C h a p t e r 1 9 : C a s e S t u d y : A P r o d u c t S u p p o r t C e n t e r 673
JS

P
IN

A
C

TIO
N

package com.lyricnote.support.controller;

import java.io.*;

import java.sql.SQLException;

import javax.servlet.*;

import javax.servlet.http.*;

/**

* Sets the current problem ID

*/

public class ProblemsSelectAction extends Action

{

/**

* Executes the action

*/

public void run() throws ServletException, IOException

{

String problemID = request.getParameter("problemID");

if (problemID != null) {

problemID = problemID.trim();

if (!problemID.equals("")) {

model.setProblemID(problemID);

}

}

// Forward to problem JSP

final String next = "/Problem.jsp";

RequestDispatcher rd =

application.getRequestDispatcher(next);

if (rd == null)

throw new ServletException

("Could not find " + next);

rd.forward(request, response);

}

}

The action class simply stores the problem ID in the model and forwards the request
to the problem detail page.

674 J S P : T h e C o m p l e t e R e f e r e n c e

ProblemSubmitAction Class The last action class needed is the one that accepts
problem updates from the problem detail page. This class

� Retrieves the data entry fields from the requests.

� Retrieves the current Problem object from the model and updates its properties.
If the event ID is one that indicates the problem should be closed, the Problem
object’s close() method is invoked.

� Updates the database record for the problem.

� Adds an entry to the problem log.

� Forwards the request to the next view—the confirmation.

package com.lyricnote.support.controller;

import com.lyricnote.support.model.*;

import java.io.*;

import java.sql.SQLException;

import javax.servlet.*;

import javax.servlet.http.*;

/**

* Submits a problem update

*/

public class ProblemSubmitAction extends Action

{

/**

* Executes the action

*/

public void run() throws ServletException, IOException

{

// Get the parameters

String problemID = request.getParameter("problemID");

String description = request.getParameter("description");

String severity = request.getParameter("severity");

String comments = request.getParameter("comments");

String eventID = request.getParameter("eventID");

try {

// Get the problem object from the model

model.setProblemID(problemID);

Problem problem = model.getProblem();

// Update the problem object

problem.setDescription(description);

problem.setSeverity(Integer.parseInt(severity));

if (Util.isClosingEvent(eventID))

problem.close();

model.updateProblem(problem);

// Add a problem log record

ProblemLog log = new ProblemLog();

log.setProblemID(problemID);

log.setLogTime(new java.util.Date());

log.setEventID(eventID);

log.setComments(comments);

model.addProblemLog(log);

}

catch (SQLException e) {

throw new ServletException(e.getMessage());

}

// Forward to confirmation JSP

final String next = "/Confirm.jsp";

RequestDispatcher rd =

application.getRequestDispatcher(next);

if (rd == null)

throw new ServletException

("Could not find " + next);

rd.forward(request, response);

}

}

C h a p t e r 1 9 : C a s e S t u d y : A P r o d u c t S u p p o r t C e n t e r 675
JS

P
IN

A
C

TIO
N

Summary
This chapter brings together elements discussed throughout the book in a Web-based
system for managing a product support center. The system supports the following
process flow:

� A customer with a problem calls a toll-free number and speaks to a call
center agent.

� The agent verifies the customer is entitled to support for the specified product,
enters a problem report, gives the confirmation number to the customer, and
routes the problem to product support.

� Product support calls the customer to determine whether it’s a code problem or
customer problem. If the problem turns out to be a code problem, for which no
fix is currently available, it’s routed to development.

� The responsible developer analyzes the problem. If the problem isn’t a bug,
the developer reroutes the problem to product support to inform the customer.
If the problem is a bug, the developer codes and unit tests a fix and routes the
problem to quality assurance.

� Quality assurance performs integration tests. If the fix needs more work,
the problem is rerouted back to development. Otherwise, it’s sent to product
support, where the fix is forwarded to the customer and the problem is closed.

The data model required to support this system consists of relational database tables
that represent customers, products, customer/product pairs, employees, problem reports,
and problem log entries.

The system architecture employed is known as Model-View-Controller (MVC).
This consists of three components:

� Model The internal workings of the application, including database
access and business logic. Has no visual code—can be operated by a
simple command-line driver.

� View The presentation layer that retrieves data from the model and displays
it for the user’s interaction.

� Controller The component that accepts user input and operates on the model
to change its state and present the next view.

The resulting system keeps complexity to a minimum by partitioning code to
provide components that can be tested in isolation. This yields a robust, full-featured,
and easy to extend application.

676 J S P : T h e C o m p l e t e R e f e r e n c e

Part IV
JSP and Other Web Components

JavaServer pages aren’t only a presentation layer for Web applications;

they can act as the client or server for other applications. The next two

chapters deal with the larger context in which JavaServer pages are

used—how they can communicate with Java applications, applets, Perl

scripts, mail servers, and other server-side agents.

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This page intentionally left blank.

Chapter 20
Communicating with
Other Clients

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Web browsers are the most common JSP clients, but they aren’t the only ones.
As more applications become Web-enabled, network resources become
important components in all types of systems. The Internet can serve as

the communications link over which raw data can be delivered, without dictating
how it’s presented. For example, up-to-the-minute currency exchange rates can be
made available for use in batch computations. Interactive travel booking can be part
of an executive information system. Current weather conditions, news headlines, and
stock prices can be embedded in small information windows in other
applications—maybe even in consumer electronic products.

This is possible because any program that can use the HTTP protocol can act as a
JSP client. Using basic classes in the java.net package, applications can make HTTP
requests and read the results as if they were simply the contents of a file. What’s more,
the file content is dynamic and can be controlled by the parameters of the request.

In this chapter, you walk through the development of three types of nonbrowser
JSP clients:

� A Java application

� A Java applet

� A Perl script

Each example consists of a JSP server and a client that can take advantage of it.
But first, let’s examine the basic technique.

URL Connections
The key to being the server is appearing to be an input stream. The Java class libraries
provide three classes that make this possible:

� java.net.URL

� java.net.URLConnection

� java.net.HttpURLConnection

The URL Class
A Uniform Resource Locator (URL) is a unique address of an object available on a
network, as well as an indication of the protocol that must be used to operate on that
object.1 These protocols include ftp, http, gopher, mailto, news, and others used
in specialized applications. The URLs we consider in this chapter use the Hypertext
Transfer Protocol (HTTP).

680 J S P : T h e C o m p l e t e R e f e r e n c e

1 The complete URL specification is in RFC 1738, which can be found at
http://www.freesoft.org/CIE/RFC/1738/index.htm.

JS
P

A
N

D
O

TH
ER

W
EB

C
O

M
P

O
N

EN
TS

An HTTP URL consists of five parts:

<scheme>://<host>[:<port>]/<path>[?<query string>]

The scheme is either http, for unencrypted transmissions, or https, for
transmissions that use an encryption technique such as Secure Sockets Layer (SSL).
The host part is the fully qualified domain name of a network host, possibly
represented as a dotted decimal IP address. The port number is optional and defaults
to 80 if not specified. The path is an address within the host HTTP server’s document
space, which is usually structured as a directory tree. A URL can also contain request
parameters encoded in the query string.

The java.net.URL class is an object-oriented wrapper for URLs. It provides
methods to build URLs from strings and to access the previously described individual
parts. In addition, the java.net.URL class has two important methods that allow the
contents of the resource pointed to by the URL to be accessed and, in some cases,
modified. These methods are listed in Table 20-1.

In many cases, reading from a remote network resource is as simple as this:

URL url = new URL(“http://servername/path/filename”);

InputStream in = url.openStream();

int c;

while ((c = in.read()) != -1) {

// ... do something with this byte

}

C h a p t e r 2 0 : C o m m u n i c a t i n g w i t h O t h e r C l i e n t s 681

Method Description

public URLConnection
openConnection()

Makes a connection to the remote object
represented by the URL.

public final InputStream
openStream()

Opens a URLConnection and creates
an InputStream for reading its contents.
This is a convenience method that calls
openConnection().getInputStream().

Table 20-1. Some Useful Methods in java.net.URL

The URLConnection Class
The underlying class that makes this possible is java.net.URLConnection. This
is an abstract class whose subclasses represent connections between a program and
a remote network resource. Using a URLConnection involves four steps:

1. A URLConnection object is created by calling the openConnection()
method of a URL.

2. The connection is configured for the specific task at hand. This may include
indicating whether the connection should be used for input, output, or both,
as well as setting request properties to indicate the content type, length, and
other headers.

3. The connection is made, usually implicitly (although the connect() method
can be used for this purpose).

4. The remote resource becomes accessible. The connection can supply the
resource contents and any response headers sent with it.

A few of the methods you use most often are listed in Table 20-2.

682 J S P : T h e C o m p l e t e R e f e r e n c e

Method Description

public void
setRequestProperty
(String key, String value)

Sets a general request property,
such as an HTTP header, for the
connection. An example might be
a key of Content-Length, with an
integer value representing the number
of bytes in the data portion of the request.

public OutputStream
getOutputStream()

Returns an output stream for writing
data to the connection, such as form
parameters in an HTTP POST request.

public InputStream
getInputStream()

Returns an input stream for reading data
from the connection. Programs that call
this method typically wrap the result
in a buffered stream of some kind for
performance reasons.

Table 20-2. Some Useful Methods in java.net.URLConnection

The HttpURLConnection Class
URLConnection is an abstract, protocol-neutral class. For this reason, it doesn’t have
a public constructor. It can only be created by calling the openConnection() method
of a URL. The actual object returned by this call is a protocol-specific subclass that
handles the URL’s protocol. For the examples in this chapter, this subclass is
java.net.HttpURLConnection.

Well, almost. HttpURLConnection itself is abstract. The vendor of the Java virtual
machine supplies an actual implementation class. You can see what that class is by
calling the getClass() method of the object returned by openConnection():

import java.io.*;

import java.net.*;

public class ShowConnectionClass

{

public static void main(String[] args)

throws IOException

{

URL url = new URL("http://www.ibm.com");

URLConnection con = url.openConnection();

Class conClass = con.getClass();

System.out.println

("Connection class is " + conClass.getName());

}

}

With the Sun JVM, the output of this program is

Connection class is sun.net.www.protocol.http.HttpURLConnection

An HttpURLConnection provides three additional capabilities beyond what is
supplied by URLConnection:

� A means of specifying the request method

� Direct access to the HTTP response code

� A set of constants that give mnemonic names to HTTP response codes

Table 20-3 describes several methods of interest.
In the following sections, you see how a URL connection makes it possible to view

a JSP page as if it were a programmable file.

JS
P

A
N

D
O

TH
ER

W
EB

C
O

M
P

O
N

EN
TS

C h a p t e r 2 0 : C o m m u n i c a t i n g w i t h O t h e r C l i e n t s 683

Java Applications as Clients
Our hypothetical Internet music company, LyricNote.com, participates with other
online retailers in a price quotation system managed by a discount product buying
service. Customers can ask the buying service for a quote on a particular musical
instrument, and the buying service then searches the Web sites of its participating
suppliers for the best price. Each supplier returns a price quotation as an XML
document in a standard format prescribed by the buying service.

The JSP Price Quote Server
Because the price quote request is different every time, LyricNote.com cannot simply
return a static XML document. Rather, it uses a JSP page to generate XML on the fly
from the results of a database search. The JSP page (PriceQuote.jsp) is listed here:

684 J S P : T h e C o m p l e t e R e f e r e n c e

Method Description

public int getResponseCode() Extracts the HTTP response code
from the first line of the response.
For example, if the response line is
HTTP/1.0 404 Not found, this
method returns 404.

public String
getResponseMessage()

Returns the rest of the response line
after the response code. For example,
if the response line is HTTP/1.0 404
Not found, this method returns
Not found.

public static void
setFollowRedirects
(boolean set)

If set to true, causes a response code
of 301 (Moved Permanently) or 302
(Moved Temporarily) to result in
another request to the forwarding
address to be generated automatically.

public void
setRequestMethod
(String method)

Specifies the HTTP request method to
be used: GET, POST, HEAD, OPTIONS,
PUT, DELETE, or TRACE.

Table 20-3. Useful Methods in java.net.HttpURLConnection

<%@ page

session="false"

import="java.sql.*,java.text.*"

contentType="text/xml"

%><%

// Define constants for JDBC driver name and

// database URL

String DRIVER = "org.enhydra.instantdb.jdbc.idbDriver";

String DB_URL = "jdbc:idb:"

+ "D:/lyricnote/WEB-INF/database/products/db.prp";

// Get the product search argument and desired quantity

String product = request.getParameter("product");

if (product == null)

throw new ServletException("No product specified");

String qstring = request.getParameter("quantity");

if (qstring == null)

throw new ServletException("No quantity specified");

int quantity = 0;

try {

quantity = Integer.parseInt(qstring);

}

catch (NumberFormatException e) {

throw new ServletException("Quantity not numeric");

}

// Load the driver

Class.forName(DRIVER);

// Create a connection

Connection con = null;

try {

con = DriverManager.getConnection(DB_URL);

// Create a select statement

PreparedStatement pstmt = con.prepareStatement

JS
P

A
N

D
O

TH
ER

W
EB

C
O

M
P

O
N

EN
TS

C h a p t e r 2 0 : C o m m u n i c a t i n g w i t h O t h e r C l i e n t s 685

(

" select itemcode, price, description"

+ " from products"

+ " where prodtype = 'IN'"

+ " and description like ?"

+ " and onhand >= ?"

);

// Supply values for substitution parameters

pstmt.setString(1, "%" + product + "%");

pstmt.setInt(2, quantity);

// Execute the query

ResultSet rs = pstmt.executeQuery();

// Create the XML

%><?xml version="1.0"?>

<price-quote>

<supplier>LyricNote.com</supplier>

<date><%=

new SimpleDateFormat("yyyy-MM-dd")

.format(new java.util.Date())

%></date>

<%

while (rs.next()) {

String itemCode = rs.getString(1);

double price = rs.getDouble(2) / 100;

String description = rs.getString(3);

%> <item

code="<%= itemCode %>"

price="<%= new DecimalFormat("###.00").format(price) %>"

description="<%= description %>"/>

<%

}

%></price-quote><%

}

finally {

if (con != null)

con.close();

686 J S P : T h e C o m p l e t e R e f e r e n c e

}

%>

The JSP page extracts the product search argument and desired quantity from
request parameters, and then opens a database connection to the LyricNote product
database and searches for matching items. The results are written as XML.

The odd indentation scheme (with back-to-back delimiters in %><% and
%></price-quote>%<) is used to prevent newline characters or other extraneous
whitespace from being written to the output stream. A later example in this chapter
shows another technique that can be used to accomplish this.

The Price Quote Client Application
We consider only a simplified version of the client Java application—one that
illustrates how to make the connection, not what to do with the data.

import java.io.*;

import java.net.*;

/**

* An example of a Java application that acts as a JSP client.

*/

public class PriceQuoteReader

{

public static void main(String[] args)

{

// Define the supplier URL and the two search arguments.

// These are hard-coded for the purposes of this example.

String supplier =

"http://www.lyricnote.com/PriceQuote.jsp";

String product = "Clarinet";

int quantity = 3;

// Append the search arguments to the URL so that

// they will be recognized as parameters to an

// HTTP GET request

StringBuffer sb = new StringBuffer();

sb.append(supplier);

sb.append("?product=");

JS
P

A
N

D
O

TH
ER

W
EB

C
O

M
P

O
N

EN
TS

C h a p t e r 2 0 : C o m m u n i c a t i n g w i t h O t h e r C l i e n t s 687

sb.append(URLEncoder.encode(product));

sb.append("&quantity=");

sb.append(URLEncoder.encode(String.valueOf(quantity)));

String supplierURL = sb.toString();

try {

// Now create the URL instance

URL url = new URL(supplierURL);

// and open its input stream

InputStream stream = url.openStream();

// Read each line of the XML that is returned.

// All this example does it print the results;

// the real application would do something more

// useful

BufferedReader in =

new BufferedReader(

new InputStreamReader(stream));

while (true) {

String line = in.readLine();

if (line == null)

break;

System.out.println(line);

}

in.close();

}

catch (IOException e) {

e.printStackTrace();

}

}

}

PriceQuoteReader uses hard-coded values for the supplier URL, the product
search string, and the requested quantity. It creates a URL that includes the search
string and quantity as request parameters, and then calls URL.openStream() to

688 J S P : T h e C o m p l e t e R e f e r e n c e

JS
P

A
N

D
O

TH
ER

W
EB

C
O

M
P

O
N

EN
TS

initiate the connection. It then reads and prints the resulting XML document,
shown here:

<?xml version="1.0"?>

<price-quote>

<supplier>LyricNote.com</supplier>

<date>2001-01-25</date>

<item

code="001130"

price="369.00"

description="Wendecker B Flat Clarinet"/>

<item

code="001140"

price="522.00"

description="Clemens-Altman B Flat Clarinet - Wood"/>

<item

code="001150"

price="417.00"

description="Gabriel E Flat Clarinet - Wood"/>

<item

code="001160"

price="548.00"

description="Wendecker B Flat Bass Clarinet"/>

<item

code="001170"

price="307.00"

description="Clemens-Altman E Flat Clarinet"/>

</price-quote>

The XML contains the supplier name and request date, followed by elements for
each matching product—in this case, clarinet models with at least three available
for purchase.

A Java Applet Client
The buying service’s main application has the capability to search specific sites in
real-time. For this, it uses a Java applet.

A little background is necessary before proceeding. Applets were the first wave of
Java technology, a means of embedding small interaction GUI applications in a Web
page. They generated a great deal of attention quickly, before the technology was
robust enough to justify the hype. Part of the problem was different browsers offered
different levels of support, and the differences increased over time. Sun Microsystems
came up with a workable solution to this problem, known as the Java plug-in.

C h a p t e r 2 0 : C o m m u n i c a t i n g w i t h O t h e r C l i e n t s 689

The Java Plug-In
The Plug-in is a browser-specific embedded object that manages its own Java virtual
machine. This means it isn’t dependent on the level of support provided by the
browser, if any. Early versions of the Plug-in came with an HTML converter that
transformed <APPLET> tags to their browser-specific counterparts <OBJECT>
(for Microsoft Internet Explorer) and <EMBED> (for Netscape Navigator).

JSP introduced a simpler means of using the Plug-in in a Web page, namely, the
<jsp:plugin> action. When <jsp:plugin> is used in a JSP page, it’s replaced in
the output HTML document by either the <object> or <embed> tags, depending
on the browser. The rather formidable syntax of this tag is shown here:

<jsp:plugin
type="bean|applet"
code="<classname>"
codebase="<codebase>”
align="<alignment>"
archive="<archiveList>"
height="height>"
hspace="hspace>"
jreversion="<jreversion>"
name="componentName>"
vspace="vspace>"
width="width>"
nspluginurl="url>"
iepluginurl="url>"

>
<jsp-params>

<jsp:param name="name>" value="value>"/>
...
<jsp:param name="name>" value="value>"

</jsp-params>
<jsp-fallback>Arbitrary text</jsp-fallback>
</jsp-plugin>

The JSP specification describes most of the attributes by saying they’re “As defined
by HTML spec,” with the following exceptions:

� type This can be bean or applet.

� jreversion This indicates the level of the Java Runtime Environment (JRE)
required, with the default being “1.1.”

690 J S P : T h e C o m p l e t e R e f e r e n c e

JS
P

A
N

D
O

TH
ER

W
EB

C
O

M
P

O
N

EN
TS

� nspluginurl The URL from which the Netscape version of the plug-in
will be downloaded, if necessary

� iepluginurl The URL from which the Internet Explorer version of the
plug-in will be downloaded, if necessary

The <jsp-params> section specifies the applet parameters to be used, and
<jsp-fallback> contains text that will be displayed if the applet cannot be started.

Fortunately, only a few of the attributes are required, namely, type, code,
codebase, height, and width.

The advantage of using the plug-in for applets is it makes having a stable,
predictable JVM that supports Java 2 possible. In particular, it means applets can
use the Java Foundation Classes (Swing) for their GUI.

The PriceQuoteApplet
Listed here is the source code for the applet used to interrogate the price quote server:

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import java.io.*;

import java.net.*;

public class PriceQuoteApplet extends JApplet

{

private JTextField txtProduct;

private JTextField txtQuantity;

private JButton btnPost;

private JTextArea txtOutput;

/**

* Creates the GUI components

*/

public void init()

{

Container content = getContentPane();

content.setLayout(new BorderLayout());

JPanel pnl;

// Top row

C h a p t e r 2 0 : C o m m u n i c a t i n g w i t h O t h e r C l i e n t s 691

pnl = new JPanel();

pnl.add(new JLabel("Product:"));

pnl.add(txtProduct = new JTextField(12));

pnl.add(new JLabel("Quantity:"));

pnl.add(txtQuantity = new JTextField(4));

pnl.add(btnPost = new JButton("POST"));

content.add(pnl, BorderLayout.NORTH);

// Results panel

pnl = new JPanel();

pnl.add(txtOutput = new JTextArea(12, 40));

content.add(pnl, BorderLayout.CENTER);

// Start listening for button clicks

btnPost.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent event)

{

try {

doPost();

}

catch (IOException e) {

txtOutput.setText(e.getMessage());

}

}

});

}

/**

* Makes the request and writes the XML results

* to the output text area

*/

public void doPost() throws IOException

{

// Extract the parameters from the GUI

String product = txtProduct.getText().trim();

String quantity = txtQuantity.getText().trim();

// Create POST data using the search arguments

// as request parameters

692 J S P : T h e C o m p l e t e R e f e r e n c e

JS
P

A
N

D
O

TH
ER

W
EB

C
O

M
P

O
N

EN
TS

StringBuffer sb = new StringBuffer();

sb.append("product=");

sb.append(URLEncoder.encode(product));

sb.append("&quantity=");

sb.append(URLEncoder.encode(String.valueOf(quantity)));

String postData = sb.toString();

// Create the URL from which the quote will be read

URL supplierURL = new URL(getCodeBase(), "PriceQuote.jsp");

// Open a URLConnection instance

HttpURLConnection con = (HttpURLConnection)

supplierURL.openConnection();

// Set up for writing and reading

con.setDoOutput(true);

con.setDoInput(true);

con.setUseCaches(false);

// Tell the server that the input stream

// contains POST data and give it the length

con.setRequestProperty(

"Content-type",

"application/x-www-form-urlencoded");

con.setRequestProperty(

"Content-length",

String.valueOf(postData.length()));

// Open an output stream for the connection

// and write the POST data to it

OutputStream out = con.getOutputStream();

out.write(postData.getBytes());

out.flush();

// Open an input stream and copy the results

// into the output text area

C h a p t e r 2 0 : C o m m u n i c a t i n g w i t h O t h e r C l i e n t s 693

694 J S P : T h e C o m p l e t e R e f e r e n c e

BufferedReader in =

new BufferedReader(

new InputStreamReader(

con.getInputStream()));

txtOutput.setText("");

while (true) {

String line = in.readLine();

if (line == null)

break;

txtOutput.append(line);

txtOutput.append("\n");

}

// Close the output and input streams

in.close();

out.close();

}

}

The applet consists of two text fields for the product type and quantity, a button to
initiate the search, and a text area to display the results. This isn’t a book on Swing, so
we won’t go into the details of how the GUI is constructed. The method of interest is
doPost(), for two reasons:

� It shows how an applet connects to a URL input stream

� It does so using the HTTP POST method

POST differs from GET because the request parameters are supplied through the
request body, rather than appended to the URL. doPost() builds the request body
as name/value pairs, using the URL encoding mechanism described in Chapter 12
(HTML Forms). It then opens a URLConnection to the JSP page, configures it with
the content type and length, and then writes the request body. doPost() reads the
results and shows them in the output text area.

The JSP page that contains the applet is listed in the following. Figure 20-1 shows
the resulting output.

C h a p t e r 2 0 : C o m m u n i c a t i n g w i t h O t h e r C l i e n t s 695
JS

P
A

N
D

O
TH

ER
W

EB
C

O
M

P
O

N
EN

TS

<%@ page session="false" %>

<jsp:plugin

type="applet"

code="PriceQuoteApplet.class"

codebase="."

width="500"

height="300"

jreversion="1.2"

>

</jsp:plugin>

Figure 20-1. Results of running PriceQuoteApplet

A Perl Client
Because communication between the JSP server and its clients uses HTTP, it isn’t even
necessary for the client to be written in Java. Perl, for example, is a widely used
scripting language, particularly in CGI applications, text processing, and system
administration. With excellent socket support, Perl can easily access server applications
written in JSP.

An area in which JSP can extend Perl is by providing better database support.
Because virtually all database systems are accessible through some form of JDBC
driver, and because Perl can read from JSP URL connections, Perl applications can use
JSP as middleware for database access.

The Generic Database Select Server
The JSP page listed here provides a means for making SQL SELECT queries on any
JDBC-accessible database. It accepts an HTTP request with three parameters:

� DRIVER The JDBC driver class name

� URL The JDBC database URL

� QUERY A SELECT statement to be executed

The results are written in tab-separated-values format, with the column names in
the first row.

This JSP page illustrates another technique for preventing extraneous whitespace
introduced by JSP elements from interfering with the strict output format. This is
done by calling response.reset() to clear the output buffer before it writes the first
line of genuine text. Note, reset() also clears any headers that were written and the
status code. For this reason, the Servlet 2.3 specification added a resetBuffer() method.

<%@ page session="false" %>

<%@ page import="java.io.*" %>

<%@ page import="java.sql.*" %>

<%

Connection con = null;

try {

// Get the driver name and database URL parameters

String driver = request.getParameter("DRIVER");

if (driver == null)

throw new ServletException

696 J S P : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 2 0 : C o m m u n i c a t i n g w i t h O t h e r C l i e n t s 697
JS

P
A

N
D

O
TH

ER
W

EB
C

O
M

P
O

N
EN

TS

("No driver class name specified");

String url = request.getParameter("URL");

if (url == null)

throw new ServletException

("No url class name specified");

// Get the SELECT statement to be executed

String query = request.getParameter("QUERY");

if (query == null)

throw new ServletException

("No QUERY parameter specified");

// Verify that it is a SELECT statement

query = query.trim();

if (!query.toUpperCase().startsWith("SELECT"))

throw new ServletException

("Only SELECT statements are valid");

// Make sure the driver is loaded

Class.forName(driver);

// Open the connection

con = DriverManager.getConnection(url);

// Compile the query statement. If it is invalid,

// a SQLException will be thrown.

PreparedStatement stmt = con.prepareStatement(query);

// Execute the query

ResultSet rs = stmt.executeQuery();

// Reset the response buffer to eliminate

// any nonsignificant whitespace

response.reset();

// Write the column headings

response.setContentType("text/tab-separated-values");

ResultSetMetaData rmd = rs.getMetaData();

int nColumns = rmd.getColumnCount();

StringBuffer buffer = new StringBuffer();

for (int i = 0; i < nColumns; i++) {

int col = i+1;

if (i > 0)

buffer.append("\t");

buffer.append(rmd.getColumnName(col));

}

out.println(buffer.toString());

// Write the data from the result set

while (rs.next()) {

buffer = new StringBuffer();

for (int i = 0; i < nColumns; i++) {

int col = i+1;

if (i > 0)

buffer.append("\t");

buffer.append(rs.getString(col));

}

out.println(buffer.toString());

}

// Done

rs.close();

stmt.close();

}

finally {

if (con != null) {

try {

con.close();

}

catch (SQLException ignore){}

}

}

%>

698 J S P : T h e C o m p l e t e R e f e r e n c e

The Perl Script
Perl’s unofficial motto is “there is more than one way to do it.” This being the case,
any Perl script is only one of many possible implementations of the same task.

The script we use to access the JSP database server is GetBooks.pl. This opens a
socket to the LyricNote Web server on port 80, and then makes an HTTP GET request
with the three required parameters, including the SQL query to be executed.

#! perl -w

==

Program: GetBooks

#

Description:

#

Sample Perl script that sends a database

query to the SQLSelect.jsp

==

use strict;

use IO::Socket;

my $hostName = "u25nv";

my $hostPort = "80";

Open a socket to the host

my $socket = new IO::Socket::INET(

PeerAddr => $hostName,

PeerPort => $hostPort,

Proto => "tcp"

);

Set autoflush on

my $saveSelect = select $socket;

$| = 1;

select $saveSelect;

Create the command

my $cmd = "";

JS
P

A
N

D
O

TH
ER

W
EB

C
O

M
P

O
N

EN
TS

C h a p t e r 2 0 : C o m m u n i c a t i n g w i t h O t h e r C l i e n t s 699

$cmd .= "DRIVER=" . encode("org.enhydra.instantdb.jdbc.idbDriver");

$cmd .= "&URL=" . encode("jdbc:idb:D:/lyricnote/WEB-

INF/database/products/db.prp");

$cmd .= "&QUERY=" . encode(<<EOF);

SELECT itemCode, description

FROM PRODUCTS

WHERE PRODTYPE='BK'

EOF

my $cmdLength = length($cmd);

Send the HTTP request

print $socket (<<EOF);

POST /jspcr/Chap20/examples/SQLSelect.jsp HTTP/1.0

Content-Type: application/x-www-form-urlencoded

Content-Length: $cmdLength

$cmd

EOF

Read back the status code

my $line = <$socket>;

my ($httpVersion, $status) = split(/\s+/, $line);

if ($status != 200) {

Handle the error ...

}

else {

Skip the rest of the headers and display the results.

End of headers is signaled by a blank line.

my $inData = 0;

while (<$socket>) {

chomp;

($inData == 0) && do {

$inData = 1 unless (/\S/);

next;

700 J S P : T h e C o m p l e t e R e f e r e n c e

};

($inData == 1) && do {

print "$_\n";

next;

};

}

}

Done

$socket->close();

Subroutine to URL-encode a parameter string

sub encode {

my $s = shift;

$s =~ s/([^A-Za-z0-9])/"%" . sprintf("%02X", ord($1))/eg;

$s =~ s/ /+/g;

return $s;

}

In this case, GetBooks.pl requests the InstantDB database driver for use with
the LyricNote product database, and requests the item code and description of every
music-related book. The following shows the results:

itemcode description

000030 Dorothy Wendecker: Bartok in New York

000040 Conrad Stock: Beethoven and the Weather

000120 Louis Krouse: The Bad Tsar

000150 Alice Gabriel: Did Salieri Do the Deed?

000160 John Glass: Stravinsky and the 20th Century Ballet

000170 Gray Raphael: Vox Humana

000200 Nicholas Thiers: Oh Boy! Oboe!

000220 Douglas Benton: Some Kind of Brass

000240 Theresa McDonald: The Lyric Viola

000270 Violet Barber: Who's Afraid of the Twelve Tone Row?

000280 Rita Fall: What's My Melodic Line

000290 Mary Wright: More Ballet Bloopers

000330 Anna Maria Pontius: Purcell Mania

C h a p t e r 2 0 : C o m m u n i c a t i n g w i t h O t h e r C l i e n t s 701
JS

P
A

N
D

O
TH

ER
W

EB
C

O
M

P
O

N
EN

TS

Summary
Although the most common JSP client is a Web browser, any program that can use
the HTTP protocol can act as a client. This chapter illustrates three alternative clients:

� A standalone Java application that requests a dynamically created
XML document

� A Java applet that uses HTTP POST to access the JSP server

� A Perl script that uses JSP as its database server

The flexibility offered by this HTTP communications link makes incorporating
JSP-based components in applications of all kinds possible.

702 J S P : T h e C o m p l e t e R e f e r e n c e

Chapter 21
Communicating with
Other Servers

703

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

The preceding chapter demonstrated that clients other than Web browsers can
access JSP pages. Using HTTP as the common technology, Java applications,
applets, and programs written in other languages can use JSP pages as nonvisual

components in systems of any kind.
The reverse is also true—JSP pages can act as clients to other servers. In this

chapter, you examine two of these server environments and how JSP pages can
interoperate with them.

Server-Side Scripting Environments
JSP and servlets provide dynamic content over the Internet, but so do a number of
other technologies:

� CGI The Common Gateway Interface drives thousands of interactive Web sites,
usually with Perl scripts accessing databases and other system resources.

� ASP Microsoft’s Active Server Pages is a widely used server environment that
enables developers to intermingle HTML and scripting commands to provide
dynamic content.

� PHP PHP is an open source cross-platform server scripting environment that
uses embedded HTML and a Perl-like language.

� Cold Fusion Allaire’s Cold Fusion is a server-side application environment
that uses a tag-based server scripting language, called CFML, to perform
database access and generate Web output.

Finding organizations that use more than one of these technologies or, perhaps all of
them, isn’t unusual. This is because enterprise computing resources are often widely
distributed, with divisional or departmental needs dictating different solutions. Regardless
of the merits of JSP or any of these technologies, it may be organizationally difficult to
mandate a common application environment. Converting legacy applications is expensive.
However, converting them may also be unnecessary because, in many cases, these
applications can interoperate. The key infrastructure, once again, is the HTTP protocol,
the common delivery mechanism used in all these environments.

Interoperating with HTTP
A situation in which the need for interoperatability arises is joint activity of related
companies. A group of companies may be owned by a parent company that uses a
consolidated accounting system. The subsidiary companies may be required to submit
budget figures, sales information, and payroll data. And they may need to download
prices, discount rates, and corporate charges from the parent. These companies may
not be using the same application systems, especially if they were combined in mergers
or acquisitions.

704 J S P : T h e C o m p l e t e R e f e r e n c e

JS
P

A
N

D
O

TH
ER

W
EB

C
O

M
P

O
N

EN
TS

Our hypothetical LyricNote.com is such a company. Its merchandise is priced in
both U. S. and Canadian dollars, and its parent company guarantees the exchange rate.
The rate to be used varies daily, and the parent company makes it available by means
of a CGI program used by all its subsidiaries. The product catalog Web application at
LyricNote.com needs to use this rate information. For the JSP pages, this means
reading from URL connections.

Reading from Remote Network Resources
You may recall from Chapter 20 that both java.net.URL and java.net.
URLConnection provide methods for reading input streams generated by a remote
network resource. The basic technique for a GET request is

URL url = new URL(“http://servername/path?parm=value”);

URLConnection con = url.openConnection();

InputStream in = con.getInputStream();

or, using a convenience method in java.net.URL:

URL url = new URL(“http://servername/path?parm=value”);

InputStream in = url.openStream();

The first method is preferable if you need to configure the connection further before
opening the input stream. This can be the case if you need to send request headers or
if you need to use the HTTP POST method, illustrated here:

import java.io.*;

import java.net.*;

import java.util.*;

public class PostRateRequest

{

public static void main(String[] args)

throws Exception

{

// Set up the two request parameters

String postData = "c1=USD&c2=CAD";

// Open the URL connection for reading and writing

URL url = new URL(

"http://u25nv/cgi-bin/currency/GetRate.cgi");

URLConnection con = url.openConnection();

C h a p t e r 2 1 : C o m m u n i c a t i n g w i t h O t h e r S e r v e r s 705

con.setDoOutput(true);

con.setDoInput(true);

// Set request headers for content type and length

con.setRequestProperty(

"Content-type",

"application/x-www-form-urlencoded");

con.setRequestProperty(

"Content-length",

String.valueOf(postData.length()));

// Issue the POST request

OutputStream out = con.getOutputStream();

out.write(postData.getBytes());

out.flush();

// Read the response

InputStream in = con.getInputStream();

while (true) {

int c = in.read();

if (c == -1)

break;

System.out.print((char) c);

}

System.out.flush();

// Done

in.close();

out.close();

}

}

LyricNote.com uses this technique to read the U.S. to Canadian dollar exchange
rate from its parent company’s Web site. CatalogSearch.jsp, listed in the following,
lists product prices in both U.S. and Canadian dollars. It gets the exchange rate from
the currency CGI program used in the preceding example, this time embedded in its
jspInit() method. Figure 21-1 shows the results.

706 J S P : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 2 1 : C o m m u n i c a t i n g w i t h O t h e r S e r v e r s 707
JS

P
A

N
D

O
TH

ER
W

EB
C

O
M

P
O

N
EN

TS

In jspInit(), the JSP page uses an HTTP GET request for the USD-CAD exchange
rate offered by the parent company. It reads the single line result and converts this into
a double. Later on, prices (in whole cents) are read from the database and converted to
dollars to two decimal places. The exchange rate is then applied to get the Canadian
dollar equivalent, which is rounded to the nearest five cents.

<%@ page session="false" %>

<%@ page import="java.io.*" %>

<%@ page import="java.net.*" %>

<%@ page import="java.sql.*" %>

<%@ page import="java.text.*" %>

<%!

private static double EXCHANGE_RATE;

// Get the US to Canadian dollar exchange rate

public void jspInit()

Figure 21-1. Catalog search output illustrating USD-CAD exchange rates obtained
from CGI resource

{

try {

URL url = new URL(

"http://u25nv/cgi-bin/currency/GetRate.cgi"

+ "?c1=USD"

+ "&c2=CAD");

BufferedReader in =

new BufferedReader(

new InputStreamReader(

url.openStream()));

String line = in.readLine();

in.close();

EXCHANGE_RATE = Double.parseDouble(line);

}

catch (IOException e) {

e.printStackTrace();

}

}

%>

<%

// Get search string

String search = request.getParameter("search");

if (search == null)

search = "";

search = search.trim();

// Connect to database

String DRIVER = "org.enhydra.instantdb.jdbc.idbDriver";

String DB_URL = "jdbc:idb:" +

"D:/lyricnote/WEB-INF/database/products/db.prp";

Class.forName(DRIVER);

Connection con = null;

try {

con = DriverManager.getConnection(DB_URL);

// Create a query using the search string

PreparedStatement stmt = con.prepareStatement

("select itemcode, price, description"

708 J S P : T h e C o m p l e t e R e f e r e n c e

+ " from products"

+ " where description like ?");

stmt.setString(1, "%" + search + "%");

// Run the query and display the results

ResultSet rs = stmt.executeQuery();

%>

<HTML>

<HEAD>

<TITLE>Catalog Search</TITLE>

</HEAD>

<BODY>

<HR WIDTH="500" ALIGN="LEFT" COLOR="#005A9C">

<H3>Catalog Search Results</H3>

<FORM>

<INPUT TYPE="TEXT" NAME="search" VALUE="<%= search %>">

<INPUT TYPE="SUBMIT" VALUE="Search Again">

</FORM>

<TABLE BORDER="1" CELLPADDING="5" CELLSPACING="0">

<TR>

<TH>Item</TH>

<TH>Price
(USD)</TH>

<TH>Price
(CAD)</TH>

<TH>Description</TH>

</TR>

<%

NumberFormat fmt = NumberFormat.getCurrencyInstance();

while (rs.next()) {

String itemCode = rs.getString(1);

double price = rs.getDouble(2) / 100;

double price_c =

((long)(price * EXCHANGE_RATE * 20 + 0.5)) / 20.0;

String description = rs.getString(3);

%>

<TR>

<TD><A HREF="productDetail.jsp?itemCode=<%= itemCode %>"

><%= itemCode %></TD>

<TD ALIGN="RIGHT"><%= fmt.format(price) %></TD>

<TD ALIGN="RIGHT"><%= fmt.format(price_c) %></TD>

<TD><%= description %></TD>

C h a p t e r 2 1 : C o m m u n i c a t i n g w i t h O t h e r S e r v e r s 709
JS

P
A

N
D

O
TH

ER
W

EB
C

O
M

P
O

N
EN

TS

710 J S P : T h e C o m p l e t e R e f e r e n c e

</TR>

<%

}

%>

</TABLE>

</BODY>

</HTML>

<%

}

finally {

if (con != null)

con.close();

}

%>

Sending Mail from a JSP Page
The product support system case study in Chapter 19 glossed over a procedural difficulty.
When a problem is routed to a support person, how does that person know? The
developers and testers can read the current list of problems for products they support,
but they don’t know when a new one appears unless they happen to be looking for it.
When a customer is waiting, having the appropriate support personnel notified by
some active process is especially important. This situation is made to order for e-mail.

Notification by e-mail from within a program isn’t always a good idea, especially
if hard-coded addresses are used, which eventually become out-of-date. In this case,
however, the identities of the support persons and their e-mail addresses are obtained
from the product support database. Because e-mail is a familiar mechanism for which
the infrastructure already exists, it’s a good solution to this problem

Approaches to Sending Mail
Several options exist for sending e-mail from within an application. This section
considers three:

� SMTP using sockets

� The sun.net.smtp.SmtpClient class

� The JavaMail API

C h a p t e r 2 1 : C o m m u n i c a t i n g w i t h O t h e r S e r v e r s 711
JS

P
A

N
D

O
TH

ER
W

EB
C

O
M

P
O

N
EN

TS

SMTP
The simplest approach is to use the Simple Mail Transfer Protocol (SMTP) over TCP/IP
sockets. Dating back to 1982, SMTP is one of the oldest Internet protocols. It employs
a small set of text commands to supply the e-mail parameters:

HELO Identifies the sender domain.

MAIL Identifies the sender.

RCPT Identifies the recipient. More than one RCPT command may be used.

DATA Indicates the beginning of the message body. Everything up to the
next line with “.” by itself is part of the body.

QUIT Terminates the session.

An example of an SMTP session is shown here (lines sent by the client are indicated
by boldface):

220 pluto.lyricnote.com ESMTP Sendmail 8.9.3/8.9.3;

Mon, 29 Jan 2001 06:58:24 -0500 (EST)

HELO lyricnote.com

250 pluto.lyricnote.com Hello dialup.rdu.lyricnote.com

[209.170.132.190], pleased to meet you

MAIL FROM: phanna@lyricnote.com

250 phanna@lyricnote.com... Sender ok

RCPT TO: phanna@lyricnote.com

250 phanna@lyricnote.com... Recipient ok

DATA

354 Enter mail, end with "." on a line by itself

SUBJECT: Mail Test

This is a test of the mail system

This is only a test

Beeeeeeeeeeeeeeeeeeeeeeeep

This concludes the test of the mail system

.

250 UAA07253 Message accepted for delivery

QUIT

221 pluto.lyricnote.com closing connection

The complete SMTP protocol specification is in RFC 821, which can be found at
http://www.freesoft.org/CIE/RFC/821/index.htm.

SMTP mail can be sent simply by opening a java.net.Socket to the mail host,
and using its input and output streams, as shown in the example. This socket-based
approach has the advantage of being easy to implement, but it becomes more complex
when things like attachments are added. For this reason, few applications use it directly.

The sun.net.smtp.SmtpClient Class
Another option is to use the sun.net.smtp.SmtpClient supplied with the Java
Runtime Environment (JRE) from Sun Microsystems. This class is a thin object-oriented
wrapper around the raw SMTP socket protocol. The SmtpClient version of the
preceding example is listed here:

import java.io.*;

import sun.net.*;

import sun.net.smtp.*;

public class MailTest

{

public static void main(String[] args)

throws Exception

{

SmtpClient client = new SmtpClient("mail.lyricnote.com");

client.from("phanna@lyricnote.com");

client.to("phanna@lyricnote.com");

PrintStream out = client.startMessage();

out.println("SUBJECT: Mail test");

out.println("This is a test of the mail system");

out.println("This is only a test");

out.println("Beeeeeeeeeeeeeeeeeeeeeeeep");

out.println("This concludes the test of the mail system");

client.closeServer();

}

}

While this approach is marginally simpler than using sockets, it suffers from one
major drawback: the sun.net.* classes are undocumented and subject to change. Sun
allows them to be used (indeed, the Sun JRE won’t work without them), but warns they
can be changed or dropped from future versions with no notice.

712 J S P : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 2 1 : C o m m u n i c a t i n g w i t h O t h e r S e r v e r s 713
JS

P
A

N
D

O
TH

ER
W

EB
C

O
M

P
O

N
EN

TS

The JavaMail API
The third option is the JavaMail API. JavaMail is a set of API’s that model the components
of a mail system in an abstract way—a pluggable architecture for POP, SMTP, IMAP, and
other mail protocols. JavaMail is available for JDK 1.1.x and higher, and is a required
component of the Java 2 Enterprise Edition (J2EE).

JavaMail includes classes both for sending and receiving mail. Only the sending side is
considered here. The JavaMail classes and complete documentation can be downloaded
from http://java.sun.com/products/javamail.

JavaMail’s highlights are illustrated here, with the same example shown previously:

import java.util.*;

import javax.mail.*;

import javax.mail.internet.*;

public class JavaMailTest

{

public static void main(String[] args)

throws Exception

{

// Create a session with the LyricNote mail host

Properties props = new Properties();

props.put("mail.host", "mail.lyricnote.com");

Session mailSession = Session.getInstance(props, null);

// Create address objects for the sender and receiver

Address fromUser =

new InternetAddress("phanna@lyricnote.com");

Address toUser =

new InternetAddress("phanna@lyricnote.com");

// Create the message body

Message body = new MimeMessage(mailSession);

body.setFrom(fromUser);

body.setRecipient(Message.RecipientType.TO, toUser);

714 J S P : T h e C o m p l e t e R e f e r e n c e

body.setSubject("Mail Test");

body.setContent(

"This is a test of the mail system\n"

+ "This is only a test\n"

+ "Beeeeeeeeeeeeeeeeeeeeeeeeeeeeep\n"

+ "This concludes the test of the mail system",

"text/plain");

// Send the message

Transport.send(body);

}

}

Typically, seven steps are involved in sending mail with JavaMail:

1. Create a session to the mail host using Session.getInstance().

2. Create sender and recipient address objects with new InternetAddress().

3. Create a message body with new MimeMessage(Session session).

4. Specify the addresses with the Message object’s setFrom() and
setRecipient().

5. Specify the subject with setSubject().

6. Specify the message body and encoding type with setContent().

7. Send the message with Transport.send(message).

The first step creates a new Session object. Session acts as the connection
to the mail host. A new instance of this object is obtained by calling the static method
Session.getInstance(Properties props, Authenticator auth). The
properties supplied to this method must include, at a minimum, the mail host. The
auth parameter can be null if no authentication is required.

Step two represents the sender and recipient(s) as InternetAddress objects.
This class models addresses according to RFC 822, “Standard for the Format of ARPA
Internet Text Messages,” which can be obtained from
http://www.freesoft.org/CIE/RFC.

Next, a message body object is created with new MimeMessage(). This class
represents a multipart Internet mail message, including its content and headers. The
constructor takes a reference to the Session object, so the message can be related to
the mail host and other session parameters.

C h a p t e r 2 1 : C o m m u n i c a t i n g w i t h O t h e r S e r v e r s 715
JS

P
A

N
D

O
TH

ER
W

EB
C

O
M

P
O

N
EN

TS

The fourth step sets the message body’s from and recipient properties, using
setFrom(Address fromUser) and setRecipient(Message.RecipientType
type, Address toUser), respectively. The type parameter is used to distinguish
among TO, CC, and BCC recipients.

Optional step five sets the subject of the mail message, using the message object’s
setSubject(String subject) method.

Step six creates the actual message text using the message object’s
setContent(Object body, String type) method. The body parameter
specifies the text, and type indicates the MIME type (usually text/plain).

Finally, the mail is sent with the static Transport.send(Message message)
method. Transport is an abstract class whose concrete implementation is supplied
by the mail service provider, such as the Sun smtp.jar file.

E-Mail Notification in the Product Support System
Back to the problem at hand. The product support system needs to notify the
appropriate support person, developer, or tester when an problem is routed to that
person. This routing occurs in the model component, in its addProblemLog()
method (see the com.lyricnote.support.Model class listing in Chapter 19).
The routing event IDs are as follows:

RPS Routed to product support

RPD Routed to product development

RQA Routed to test

In addProblemLog(), you can determine if the event ID is one of these three.
If so, call a new model method notifySupport(ProblemLog log), listed here:

/**

* Sends email to the appropriate support person

*/

public void notifySupport(ProblemLog log)

throws SQLException, IOException

{

// Get the problem object

String problemID = log.getProblemID();

setProblemID(problemID);

Problem problem = getProblem();

716 J S P : T h e C o m p l e t e R e f e r e n c e

// Create the subject line from the problem ID

// and problem description

StringBuffer sb = new StringBuffer();

sb.append("Problem ID: ");

sb.append(problemID);

sb.append(" ");

sb.append(problem.getDescription());

String subject = sb.toString();

// Get the product object. We need this to find out

// the support ID's and the corresponding e-mail

// addresses

String productID = problem.getProductID();

setProductID(productID);

Product product = getProduct();

// Determine the appropriate party to receive the mail

String employeeID = null;

String eventDescription = null;

String eventID = log.getEventID();

if (eventID.equals("RPS")) {

employeeID = product.getProductSupport();

eventDescription = "ROUTED TO PRODUCT SUPPORT";

}

else

if (eventID.equals("RPD")) {

employeeID = product.getDeveloper();

eventDescription = "ROUTED TO DEVELOPMENT";

}

else

if (eventID.equals("RQA")) {

employeeID = product.getTester();

eventDescription = "ROUTED TO TEST";

JS
P

A
N

D
O

TH
ER

W
EB

C
O

M
P

O
N

EN
TS

}

else

return;

eventDescription += "\r\n";

eventDescription += log.getComments();

// Lookup that person's email address

Employee employee = getEmployee(employeeID);

String email = employee.getEmail();

// Send mail to the party

Address fromUser = new InternetAddress

("support@lyricnote.com", "Product Support System");

Address toUser = new InternetAddress

(email, employee.getName());

Properties props = new Properties();

props.put("mail.host", "mail.lyricnote.com");

Session mailSession = Session.getInstance(props, null);

Message body = new MimeMessage(mailSession);

try {

body.setFrom(fromUser);

body.setRecipient(Message.RecipientType.TO, toUser);

body.setSubject(subject);

body.setContent(eventDescription, "text/plain");

Transport.send(body);

}

catch (MessagingException e) {

throw new IOException(e.getMessage());

}

}

C h a p t e r 2 1 : C o m m u n i c a t i n g w i t h O t h e r S e r v e r s 717

718 J S P : T h e C o m p l e t e R e f e r e n c e

Figure 21-2 shows this new feature in action. A problem is reported against the
MIDI Transposer product. The call center agent fills out the problem report and selects
“Route to product support” as the action. When the agent clicks the Submit button, the
problem is added to the database and the model’s addProblemLog() method is
called. Because the event is RPS, the notifySupport() method is invoked, resulting
in the message shown in Figure 21-3 being sent to the product support representative.

Figure 21-2. Problem report that includes routing to product support

C h a p t e r 2 1 : C o m m u n i c a t i n g w i t h O t h e r S e r v e r s 719
JS

P
A

N
D

O
TH

ER
W

EB
C

O
M

P
O

N
EN

TS

Summary
Just as programs other than Web browsers can be JSP clients, so JSP pages can be clients
to other servers. This chapter considers two such environments:

� Obtaining data from a CGI server

� Sending mail with the JavaMail API

JSP, servlets, CGI, PHP, and ASP, as well as other server-side scripting environments
all use a common technology for delivering content to their clients: the HTTP protocol.
The java.net package provides the URL and URLConnection classes, which have
methods for accessing resources through HTTP.

The JavaMail API is a scalable and extensible architecture for modeling all parts
of a mail system. Implementations of specific mail protocols such as POP, SMTP, and
IMAP are freely available.

Figure 21-3. E-mail message sent to the product support representative

This page intentionally left blank.

Part V
Appendixes

This section of the book contains reference material on the Servlet API,

the JSP API, and the HTTP protocol.

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This page intentionally left blank.

Appendix A
Servlet API Version 2.3

723

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This appendix describes each class in the two servlet packages:

� javax.servlet Servlet classes not specific to any protocol

� javax.servlet.http HTTP-specific servlet classes

For each class, the following sections are included:

� Class name

� Context (full name, type, superclass, interfaces implemented)

� Class description

� Details of each method in the class

The classes and methods described here are based on the final public draft of the
Servlet 2.3 specification. Although the final draft is likely to be very close to
the official specification, there may be changes. Consult the latest version of the
specification at http://java.sun.com/products/servlet/index.html if in doubt.

A number of classes and methods are described as deprecated. This means that
they are no longer recommended for use, and may be discontinued in future versions.

Package javax.servlet

Filter

Full Name: javax.servlet.Filter

Type: Interface

Classes that implement the Filter interface perform filtering tasks on a request,
a response, or both. The classes implement doFilter()to do so.

Methods
doFilter

public void doFilter(

ServletRequest request,

ServletResponse response,

FilterChain chain)

throws IOException, ServletException

724 J S P : T h e C o m p l e t e R e f e r e n c e

A
P

P
EN

D
IX

ES
A p p e n d i x A : S e r v l e t A P I V e r s i o n 2 . 3 725

This method is called by the servlet engine whenver a request is passed through
the filter chain.

getFilterConfig

public FilterConfig getFilterConfig()

Returns the FilterConfig for this Filter.

setFilterConfig

public void setFilterConfig(FilterConfig filterConfig)

Sets the FilterConfig object. The servlet engine also calls this method with null
when it is done with the Filter.

FilterChain

Full Name: javax.servlet.FilterChain

Type: Interface

Superinterface: none

Provides a view of the filter invocation chain. A Filter uses FilterChain to invoke
the next filter in a chain.

Methods
doFilter

public void doFilter(

ServletRequest request,

ServletResponse response)

throws IOException, ServletException

Invokes the next filter in the chain or the resource at the end of the chain.

FilterConfig

Full Name: javax.servlet.FilterConfig

Type: Interface

726 J S P : T h e C o m p l e t e R e f e r e n c e

Passes information to a filter during initialization.

Methods
getFilterName

public String getFilterName()

Returns the filter name.

getInitParameter

public String getInitParameter(String name)

Returns the value of the specified parameter or null, if it does not exist.

getInitParameterNames

public Enumeration getInitParameterNames()

Returns an enumeration of the servlet’s initialization parameter names. If there are no
initialization parameters, returns an empty enumeration.

getServletContext

public ServletContext getServletContext()

Returns the ServletContext in which the caller is executing.

GenericServlet

Full Name: javax.servlet.GenericServlet

Type: Abstract class

Implements: javax.servlet.Servlet
javax.servlet.ServletConfig
java.io.Serializable

A base class for servlets that do not use HTTP protocol-specific features.
GenericServlet implements the basic features of all servlets:

A
P

P
EN

D
IX

ES
A p p e n d i x A : S e r v l e t A P I V e r s i o n 2 . 3 727

� Initialization

� Request handling

� Termination

The only method that must be overridden is service(), which actually
handles requests.

HttpServlet, the base class for HTTP servlets, is more commonly used as the
superclass for servlets.

Constructors
GenericServlet

public GenericServlet()

An empty constructor which performs no work. Any servlet initialization should be
done in the init() method.

Methods
destroy

public void destroy()

Called by the servlet engine when the servlet is unloaded. Servlet authors can override
this method to release any allocated resources.

In GenericServlet, this method simply logs the fact that it was executed.

getInitParameter

public String getInitParameter(String name)

Given an initialization parameter name, returns the value of the parameter. If no such
parameter exists, returns null.

getInitParameterNames

public Enumeration getInitParameterNames()

Returns an Enumeration of the names of all the initialization parameter that exist for
this servlet.

728 J S P : T h e C o m p l e t e R e f e r e n c e

getServletConfig

public ServletConfig getServletConfig()

Returns the ServletConfig object associated with this servlet.

getServletContext

public ServletContext getServletContext()

Returns the ServletContext object associated with this servlet.

getServletInfo

public String getServletInfo()

Returns identifying information about the servlet, such as author, version, and copyright.

getServletName

public String getServletName()

Returns the name of this servlet instance.

init

public void init() throws ServletException

A convenience method that calls super.init(config).

init

public void init(ServletConfig config)

throws ServletException

Called by the servlet container to indicate that the servlet is being placed into service

log

public void log(String msg)

Writes the specified message to the servlet log file.

log

public void log(String message, Throwable t)

Writes the specified message to the servlet log file. The message in the Throwable
is also written to the log.

service

public abstract void service(

ServletRequest req,

ServletResponse res)

throws ServletException, IOException

Called by the servlet container to allow the servlet to handle a request.

RequestDispatcher

Full Name: javax.servlet.RequestDispatcher

Type: Interface

An object used to pass requests from a client to any resource on the server.

Methods
forward

public void forward(

ServletRequest request,

ServletResponse response)

throws ServletException, IOException

Passes a request from a servlet to another servlet, JSP page, or HTML document.
forward can only be called before the response has been committed.

include

public void include(

A
P

P
EN

D
IX

ES
A p p e n d i x A : S e r v l e t A P I V e r s i o n 2 . 3 729

ServletRequest request,

ServletResponse response)

throws ServletException, IOException

Includes the content of another servlet, JSP page, HTML document in current output
buffer. The included resource may not set any response headers.

Servlet

Full Name: javax.servlet.Servlet

Type: Interface

Defines the methods that all servlets must implement. The servlet API provides
concrete implementations of this interface in the GenericServlet and
HttpServlet classes.

Methods
destroy

public void destroy()

Called by the servlet container when the servlet is being taken out of service.

getServletConfig

public ServletConfig getServletConfig()

Returns the ServletConfig object associated with this servlet.

getServletInfo

public String getServletInfo()

Returns identifying information about the servlet.

init

public void init(ServletConfig config) throws ServletException

730 J S P : T h e C o m p l e t e R e f e r e n c e

A
P

P
EN

D
IX

ES
A p p e n d i x A : S e r v l e t A P I V e r s i o n 2 . 3 731

Called by the servlet container when the servlet is being placed into service. The init
method must complete normally before the servlet will receive any requests.

service

public void service(

ServletRequest req,

ServletResponse res)

throws ServletException, IOException

Called by the servlet container to handle a request.

ServletConfig

Full Name: javax.servlet.ServletConfig

Type: Interface

Used by the servlet engine used to pass information to a servlet during initialization.

Methods
getInitParameter

public String getInitParameter(String name)

Returns the value of the specified initialization parameter, or null if it does not exist.

getInitParameterNames

public Enumeration getInitParameterNames()

Returns an enumeration of the names of the servlet’s initialization parameters, or an
empty enumeration if none exist.

getServletContext

public ServletContext getServletContext()

Returns the ServletContext associated with the servlet.

732 J S P : T h e C o m p l e t e R e f e r e n c e

getServletName

public String getServletName()

Returns the name of the servlet instance as recorded in the web.xml deployment
descriptor.

ServletContext

Full Name: javax.servlet.ServletContext

Type: Interface

Defines the list of methods that are available to a servlet for communicating with
its servlet container. The servlet context can store attributes that are available to all
servlets in the application.

Methods
getAttribute

public Object getAttribute(String name)

Returns the application-level attribute with the specified name, or null if it does
not exist. The object must be cast into the appropriate type.

getAttributeNames

public Enumeration getAttributeNames()

Returns an enumeration of the attribute names in the servlet context.

getContext

public ServletContext getContext(String uripath)

Returns the ServletContext object of another URL on the same server. The path
must begin with "/" and will be interpreted as being relative to the Web server’s
document root.

A
P

P
EN

D
IX

ES
A p p e n d i x A : S e r v l e t A P I V e r s i o n 2 . 3 733

getInitParameter

public String getInitParameter(String name)

Returns the specified initialization parameter:

getInitParameterNames

public Enumeration getInitParameterNames()

Returns an enumeration of the names of the servlet context’s initialization parameters,
or an empty enumeration if there are none.

getMajorVersion

public int getMajorVersion()

Returns the integer to the left of the decimal point in the Servlet API version number.

getMimeType

public String getMimeType(String file)

Returns the MIME type of the specified file, or null if the MIME type is not known.

getMinorVersion

public int getMinorVersion()

Returns the number to the right of the decimal place in the Servlet API version number.

getNamedDispatcher

public RequestDispatcher getNamedDispatcher(String name)

Returns a RequestDispatcher for the specified servlet, or null if the
RequestDispatcher cannot be returned.

getRealPath

public String getRealPath(String path)

Given a URI path in the current servlet context, converts the path into the absolute
file name to which it refers.

getRequestDispatcher

public RequestDispatcher getRequestDispatcher(String path)

Returns a RequestDispatcher for the specified resource, or null if it cannot be
created. The path name must begin with "/" and is interpreted as being relative to the
root of the servlet context.

getResource

public URL getResource(String path) throws MalformedURLException

Returns a URL for the specified resource, or null if it cannot be created. The path name
must begin with "/" and is interpreted as being relative to the root of the servlet context.

getResourceAsStream

public InputStream getResourceAsStream(String path)

Returns an InputStream for the specified resource, or null if it cannot be created.
The path name must begin with "/" and is interpreted as being relative to the root of
the servlet context.

getResourcePaths

public Set getResourcePaths()

Returns a Set of strings representing the paths to resources held in the web application.
The paths begin with a leading /, and are relative to the root of the servlet context.

getServerInfo

public String getServerInfo()

Returns the name and version of the servlet engine. The returned value is in the form
servername/version_number.

734 J S P : T h e C o m p l e t e R e f e r e n c e

A
P

P
EN

D
IX

ES
A p p e n d i x A : S e r v l e t A P I V e r s i o n 2 . 3 735

[deprecated] getServlet

public Servlet getServlet(String name) throws ServletException

No longer supported, for security reasons. See HttpSessionListener for an
alternative approach.

getServletContextName

public String getServletContextName()

Returns the name of the Web application, corresponding to the display-name
element for this ServletContext in the web.xml deployment descriptor.

[deprecated] getServletNames

public Enumeration getServletNames()

No longer supported, for security reasons. See HttpSessionListener for an
alternative approach.

[deprecated] getServlets

public Enumeration getServlets()

[deprecated] log

public void log(Exception exception, String msg)

No longer supported. Use log(String message, Throwable t) instead.

log

public void log(String msg)

Writes the specified message to the servlet log.

log

public void log(String message, Throwable throwable)

736 J S P : T h e C o m p l e t e R e f e r e n c e

Writes the specified message and a stack trace for a given Throwable to the
servlet log.

removeAttribute

public void removeAttribute(String name)

Removes the attribute with the specified name from the servlet context.

setAttribute

public void setAttribute(String name, Object object)

Stores an object under the specified attribute name in this servlet context.

ServletContextAttributeEvent

Full Name: javax.servlet.ServletContextAttributeEvent

Type: Class

Extends: javax.servlet.ServletContextEvent

Used for notifications about changes to the attributes of the servlet context of a
web application.

Constructors
ServletContextAttributeEvent

public ServletContextAttributeEvent(

ServletContext source,

String name,

Object value)

Constructs a ServletContextAttributeEvent from the specified context for
the specified name and value.

Methods
getName

public String getName()

A
P

P
EN

D
IX

ES
A p p e n d i x A : S e r v l e t A P I V e r s i o n 2 . 3 737

Returns the name of the attribute that changed.

getValue

public Object getValue()

Returns the value of the attribute that was added removed or replaced. The value
depends on whether the attribute was added, changed, or deleted. For changes
or deletions, it is the value of the old attribute. For additions, it is the value of the
new attribute.

ServletContextAttributesListener

Full Name: javax.servlet.ServletContextAttributesListener

Type: Interface

Superinterface: java.util.EventListener

Classes implementing this interface will receive notification of changes to the servlet
context’s attribute list.

Methods
attributeAdded

public void attributeAdded(ServletContextAttributeEvent scab)

Called when a new attribute is added to the servlet context

attributeRemoved

public void attributeRemoved

(ServletContextAttributeEvent scab)

Called when an existing attribute is removed from the servlet context.

attributeReplaced

public void attributeReplaced

(ServletContextAttributeEvent scab)

Called when an existing attribute is replaced in the servlet context.

738 J S P : T h e C o m p l e t e R e f e r e n c e

ServletContextEvent

Full Name: javax.servlet.ServletContextEvent

Type: Class

Extends: java.util.EventObject

Event class for notifications about changes to the servlet context.

Constructors
ServletContextEvent

public ServletContextEvent(ServletContext source)

Creates a ServletContextEvent from the given context.

Methods
getServletContext

public ServletContext getServletContext()

Returns the ServletContext that changed.

ServletContextListener

Full Name: javax.servlet.ServletContextListener

Type: Interface

Superinterface: java.util.EventListener

Classes implementing this interface will receive notification about changes to
the servlet context.

Methods
contextDestroyed

public void contextDestroyed(ServletContextEvent sce)

Called when the servlet context is about to be shut down.

A
P

P
EN

D
IX

ES
A p p e n d i x A : S e r v l e t A P I V e r s i o n 2 . 3 739

contextInitialized

public void contextInitialized(ServletContextEvent sce)

Called when the Web application is ready to process requests.

ServletException

Full Name: javax.servlet.ServletException

Type: Class

Extends: java.lang.Exception

A generic servlet exception.

Constructors
ServletException

public ServletException()

Creates a new servlet exception.

ServletException

public ServletException(String message)

Creates a new servlet exception with the specified message.

ServletException

public ServletException(String message, Throwable rootCause)

Creates a new servlet exception that includes a message and the root cause exception.

ServletException

public ServletException(Throwable rootCause)

Creates a new servlet exception that includes the root cause exception.

740 J S P : T h e C o m p l e t e R e f e r e n c e

Methods
getRootCause

public Throwable getRootCause()

Returns the root cause exception for the current servlet exception.

ServletInputStream

Full Name: javax.servlet.ServletInputStream

Type: Abstract class

Extends: java.io.InputStream

An input stream a servlet can use for reading binary data from a client request
Typically retrieved with the ServletRequest.getInputStream() method.

Methods
readLine

public int readLine(byte[] b, int off, int len)

throws IOException

Reads one line at a time from the input stream, starting at the specified offset. Reads
bytes into an array until it reads the specified number of bytes or a newline character
(also read into the array). Returns -1 if end of file is reached before the maximum
number of bytes is read.

ServletOutputStream

Full Name: javax.servlet.ServletOutputStream

Type: Abstract class

Extends: java.io.OutputStream

An output stream used to send binary data to a client. Typically retrieved with
the ServletResponse.getOutputStream() method.

A
P

P
EN

D
IX

ES
A p p e n d i x A : S e r v l e t A P I V e r s i o n 2 . 3 741

Methods
print

public void print(boolean b) throws IOException

Writes a boolean value to the client but no carriage return-line feed character at
the end.

print

public void print(char c) throws IOException

Writes a character to the client but no carriage return-line feed at the end.

print

public void print(double d) throws IOException

Writes a double value to the client but no carriage return-line feed at the end.

print

public void print(float f) throws IOException

Writes a float value to the client but no carriage return-line feed at the end.

print

public void print(int i) throws IOException

Writes an int to the client but no carriage return-line feed at the end.

print

public void print(long l) throws IOException

Writes a long value to the clientbut no carriage return-line feed at the end.

print

public void print(String s) throws IOException

Writes a String to the client but no carriage return-line feed character at the end.

println

public void println() throws IOException

Writes a carriage return-line feed to the client.

println

public void println(boolean b) throws IOException

Writes a boolean value to the client, followed by a carriage return-line feed.

println

public void println(char c) throws IOException

Writes a character to the client followed by a carriage return-line feed.

println

public void println(double d) throws IOException

Writes a double value to the client followed by a carriage return-line feed.

println

public void println(float f) throws IOException

Writes a float value to the client followed by a carriage return-line feed.

println

public void println(int i) throws IOException

Writes an int to the client followed by a carriage return-line feed character.

742 J S P : T h e C o m p l e t e R e f e r e n c e

A
P

P
EN

D
IX

ES
A p p e n d i x A : S e r v l e t A P I V e r s i o n 2 . 3 743

println

public void println(long l) throws IOException

Writes a long value to the client followed by a carriage return-line feed.

println

public void println(String s) throws IOException

Writes a String to the client followed by a carriage return-line feed.

ServletRequest

Full Name: javax.servlet.ServletRequest

Type: Interface

An interface that represents a client request to a servlet. The servlet engine creates
a ServletRequest object and passes it as an argument to the servlet’s service
method. Has methods for retrieving parameter names and values, attributes, and
the input stream.

Methods
getAttribute

public Object getAttribute(String name)

Returns the value of the specified attribute, or null if no attribute of the specified
name exists.

getAttributeNames

public Enumeration getAttributeNames()

Returns an Enumeration of the names of the attributes available to this request,
or an empty Enumeration if the request has no attributes.

getCharacterEncoding

public String getCharacterEncoding()

744 J S P : T h e C o m p l e t e R e f e r e n c e

Returns the name of the character encoding used in the body of this request,
or null if the request does not specify a character encoding

getContentLength

public int getContentLength()

Returns the length of the request body or -1 if the length is not known. In HTTP
servlets, this is the same as the value of the CGI variable CONTENT_LENGTH.

getContentType

public String getContentType()

Returns the MIME type of the body of the request, or null if not known. In HTTP
servlets, same as the value of the CGI variable CONTENT_TYPE.

getInputStream

public ServletInputStream getInputStream() throws IOException

Retrieves the body of the request as binary data. Either getInputStream()
or getReader() may be called to read the body, but not both.

getLocale

public Locale getLocale()

Returns the preferred Locale in which the client will accept content, if specified.
Otherwise, returns the default locale for the server.

getLocales

public Enumeration getLocales()

Returns an Enumeration of Locale objects in order of user preference, or an
Enumeration containing one Locale, the default locale for the server, if the
client indicates no preferred locale.

getParameter

public String getParameter(String name)

A
P

P
EN

D
IX

ES
A p p e n d i x A : S e r v l e t A P I V e r s i o n 2 . 3 745

Returns the value of a request parameter as a String, or null if the parameter
does not exist.

getParameterMap

public Map getParameterMap()

Returns a java.util.Map of the parameters of this request.

getParameterNames

public Enumeration getParameterNames()

Returns a java.util.Enumeration of the names of the parameters in this request,
or an empty Enumeration if the request has no parameters.

getParameterValues

public String[] getParameterValues(String name)

Returns an array of String objects containing all the values of the given request
parameter, or null if the parameter does not exist.

getProtocol

public String getProtocol()

Returns the name and version of the protocol the request uses. The value returned is
in the form protocol/majorVersion.minorVersion. In HTTP servlets, this is the same as the
CGI variable SERVER_PROTOCOL.

getReader

public BufferedReader getReader() throws IOException

Retrieves the body of the request as character data. Either getInputStream()
or getReader() may be called, but not both.

[deprecated] getRealPath

public String getRealPath(String path)

No longer supported.

746 J S P : T h e C o m p l e t e R e f e r e n c e

getRemoteAddr

public String getRemoteAddr()

Returns the Internet Protocol (IP) address of the client that sent the request. For HTTP
servlets, same as the CGI variable REMOTE_ADDR.

getRemoteHost

public String getRemoteHost()

Returns the name of the client that sent the request, or the client’s IP address if the
name cannot be determined. For HTTP servlets, same as the CGI variable REMOTE_HOST.

getRequestDispatcher

public RequestDispatcher getRequestDispatcher(String path)

Returns a RequestDispatcher object for the resource located
at the specified path.The difference between this method and
ServletContext.getRequestDispatcher() is that this
method can take a relative path.

getScheme

public String getScheme()

Returns the scheme used to make the request.

getServerName

public String getServerName()

Returns the server host name for the server receiving the request. In HTTP servlets,
this is the same as the CGI variable SERVER_NAME.

getServerPort

public int getServerPort()

A
P

P
EN

D
IX

ES
A p p e n d i x A : S e r v l e t A P I V e r s i o n 2 . 3 747

Returns the port number to which this request was sent. In HTTP servlets, this is
the same as the CGI variable SERVER_PORT.

isSecure

public boolean isSecure()

Returns true if this request was made using a secure channel, such as https.

removeAttribute

public void removeAttribute(String name)

Removes the named attribute from this request.

setAttribute

public void setAttribute(String name, Object o)

Binds an attribute to this request under the given name.

setCharacterEncoding

public void setCharacterEncoding(String env)

throws UnsupportedEncodingException

Specifies the character encoding used in the body of this request. Must be called
before reading the request parameters or input data are read.

ServletRequestWrapper

Full Name: javax.servlet.ServletRequestWrapper

Type: Class

Implements: javax.servlet.ServletRequest

An implementation of ServletRequest that can be subclassed to extend the servlet
engine’s implementation class.

748 J S P : T h e C o m p l e t e R e f e r e n c e

Constructors
ServletRequestWrapper

public ServletRequestWrapper(ServletRequest request)

Creates a ServletRequest adapter for the given request object.

Methods
getAttribute

public Object getAttribute(String name)

Returns the value of the specified attribute, or null if no attribute of the specified
name exists.

getAttributeNames

public Enumeration getAttributeNames()

Returns an Enumeration of the names of the attributes available to this request,
or an empty Enumeration if the request has no attributes.

getCharacterEncoding

public String getCharacterEncoding()

Returns the name of the character encoding used in the body of this request, or null
if the request does not specify a character encoding

getContentLength

public int getContentLength()

Returns the length of the request body or -1 if the length is not known. In HTTP
servlets, this is the same as the value of the CGI variable CONTENT_LENGTH.

getContentType

public String getContentType()

Returns the MIME type of the body of the request, or null if not known. In HTTP
servlets, same as the value of the CGI variable CONTENT_TYPE.

getInputStream

public ServletInputStream getInputStream() throws IOException

Retrieves the body of the request as binary data. Either getInputStream() or
getReader() may be called to read the body, but not both.

getLocale

public Locale getLocale()

Returns the preferred Locale in which the client will accept content, if specified.
Otherwise, returns the default locale for the server.

getLocales

public Enumeration getLocales()

Returns an Enumeration of Locale objects in order of user preference, or an
Enumeration containing one Locale, the default locale for the server, if the client
indicates no preferred locale.

getParameter

public String getParameter(String name)

Returns the value of a request parameter as a String, or null if the parameter
does not exist.

getParameterMap

public Map getParameterMap()

Returns a java.util.Map of the parameters of this request.

getParameterNames

public Enumeration getParameterNames()

A
P

P
EN

D
IX

ES
A p p e n d i x A : S e r v l e t A P I V e r s i o n 2 . 3 749

Returns a java.util.Enumeration of the names of the parameters in this request,
or an empty Enumeration if the request has no parameters.

getParameterValues

public String getParameterValues(String name)

Returns an array of String objects containing all the values of the given request
parameter, or null if the parameter does not exist.

getProtocol

public String getProtocol()

Returns the name and version of the protocol the request uses. The value returned is
in the form protocol/majorVersion.minorVersion. In HTTP servlets, this is the same as
the CGI variable SERVER_PROTOCOL.

getReader

public BufferedReader getReader() throws IOException

Retrieves the body of the request as character data. Either getInputStream()
or getReader() may be called, but not both.

getRealPath

public String getRealPath(String path)

Returns getRealPath(String path).

getRemoteAddr

public String getRemoteAddr()

Returns the Internet Protocol (IP) address of the client that sent the request.
For HTTP servlets, same as the CGI variable REMOTE_ADDR.

getRemoteHost

public String getRemoteHost()

750 J S P : T h e C o m p l e t e R e f e r e n c e

A
P

P
EN

D
IX

ES
A p p e n d i x A : S e r v l e t A P I V e r s i o n 2 . 3 751

Returns the name of the client that sent the request, or the client’s IP address if
the name cannot be determined. For HTTP servlets, same as the CGI variable
REMOTE_HOST.

getRequest

public ServletRequest getRequest()

Returns the wrapped request object.

getRequestDispatcher

public RequestDispatcher getRequestDispatcher(String path)

Returns a RequestDispatcher object for the resource located
at the specified path. The difference between this method and
ServletContext.getRequestDispatcher() is that this
method can take a relative path.

getScheme

public String getScheme()

Returns the scheme used to make the request.

getServerName

public String getServerName()

Returns the server host name for the server receiving the request. In HTTP servlets,
this is the same as the CGI variable SERVER_NAME.

getServerPort

public int getServerPort()

Returns the port number to which this request was sent. In HTTP servlets, this is
the same as the CGI variable SERVER_PORT.

isSecure

public boolean isSecure()

752 J S P : T h e C o m p l e t e R e f e r e n c e

Returns true if this request was made using a secure channel, such as https.

removeAttribute

public void removeAttribute(String name)

Removes the named attribute from this request.

setAttribute

public void setAttribute(String name, Object o)

Binds an attribute to this request under the given name.

setCharacterEncoding

public void setCharacterEncoding(String enc) throws

UnsupportedEncodingException

Specifies the character encoding used in the body of this request. Must be called
before reading the request parameters or input data are read.

setRequest

public void setRequest(ServletRequest request)

Sets the request object.

ServletResponse

Full Name: javax.servlet.ServletResponse

Type: Interface

Encapsulates all information about the response generated for a request, including
response headers, the status code, and the output stream. HttpServletResponse
extends this interface for HTTP-specific features.

Methods
flushBuffer

public void flushBuffer() throws IOException

A
P

P
EN

D
IX

ES
A p p e n d i x A : S e r v l e t A P I V e r s i o n 2 . 3 753

Causes the buffer to be written to the client, thus committing the response.

getBufferSize

public int getBufferSize()

Returns the actual buffer size used in the response. If buffering is turned off, returns zero.

getCharacterEncoding

public String getCharacterEncoding()

Returns the name of the character set encoding for this response.

getLocale

public Locale getLocale()

Returns the locale used by the response.

getOutputStream

public ServletOutputStream getOutputStream()

throws IOException

Returns the ServletOutputStream for this response. Cannot be called if
getWriter() has already been called for this response.

getWrite r

public PrintWriter getWriter() throws IOException

Returns a PrintWriter for this response. Cannot be called if getOutputStream()
has already been called for this response

isCommitted

public boolean isCommitted()

Returns true if the response has already been committed, which implies that the
response already had its status code and headers written.

754 J S P : T h e C o m p l e t e R e f e r e n c e

reset

public void reset()

Clears any existing data in the response buffer as well as the status code and headers.
If the response has been committed, throws an IllegalStateException.

resetBuffer

public void resetBuffer()

Clears any existing data in the response buffer. This method differs from reset() in
that it does not clear the status code and headers. If the response has been committed,
throws an IllegalStateException.

setBufferSize

public void setBufferSize(int size)

Sets the preferred buffer size for the response body. The servlet engine will use a
buffer at least as large as the size requested. The actual buffer size can be retrieved
with getBufferSize(). Must be called before any body content is written, or it
will throw an IllegalStateException.

setContentLength

public void setContentLength(int len)

Indicates to the client the length of the content written to the response.

setContentType

public void setContentType(String type)

Sets the content type.

setLocale

public void setLocale(Locale loc)

A
P

P
EN

D
IX

ES
A p p e n d i x A : S e r v l e t A P I V e r s i o n 2 . 3 755

Sets the locale of the response. Must be called before getWriter(). The default locale
is the one used by the server.

ServletResponseWrapper

Full Name: javax.servlet.ServletResponseWrapper

Type: Class

Implements: javax.servlet.ServletResponse

A base class for subclasses that implement ServletResponse. Its default behavior
is to invoke corresponding methods in the servlet engine’s ServletResponse
implementation class.

Constructors
ServletResponseWrapper

public ServletResponseWrapper(ServletResponse response)

Creates a ServletResponseWrapper for the specified response object.

Methods
flushBuffer

public void flushBuffer() throws IOException

Causes the buffer to be written to the client, thus committing the response.

getBufferSize

public int getBufferSize()

Returns the actual buffer size used in the response. If buffering is turned off,
returns zero.

getCharacterEncoding

public String getCharacterEncoding()

756 J S P : T h e C o m p l e t e R e f e r e n c e

Returns the name of the character set encoding for this response.

getLocale

public Locale getLocale()

Returns the locale used by the response.

getOutputStream

public ServletOutputStream getOutputStream()

throws IOException

Returns the ServletOutputStream for this response. Cannot be called if
getWriter() has already been called for this response.

getResponse

public ServletResponse getResponse()

Returns the wrapped ServletResponse object.

getWriter

public PrintWriter getWriter() throws IOException

Returns a PrintWriter for this response. Cannot be called if getOutputStream()
has already been called for this response

isCommitted

public boolean isCommitted()

Returns true if the response has already been committed, which implies that the
response already had its status code and headers written.

reset

public void reset()

Clears any existing data in the response buffer as well as the status code and headers.
If the response has been committed, throws an IllegalStateException.

A p p e n d i x A : S e r v l e t A P I V e r s i o n 2 . 3 757
A

P
P

EN
D

IX
ES

resetBuffer

public void resetBuffer()

Clears any existing data in the response buffer. This method differs from reset() in
that it does not clear the status code and headers. If the response has been committed,
throws an IllegalStateException.

setBufferSize

public void setBufferSize(int size)

Sets the preferred buffer size for the response body. The servlet engine will use a
buffer at least as large as the size requested. The actual buffer size can be retrieved
with getBufferSize(). Must be called before any body content is written, or it
will throw an IllegalStateException.

setContentLength

public void setContentLength(int len)

Indicates to the client the length of the content written to the response.

setContentType

public void setContentType(String type)

Sets the content type.

setLocale

public void setLocale(Locale loc)

Sets the locale of the response. Must be called before getWriter(). The default
locale is the one used by the server.

setResponse

public void setResponse(ServletResponse response)

Saves a reference to the Response object being wrapped.

758 J S P : T h e C o m p l e t e R e f e r e n c e

SingleThreadModel

Full Name: javax.servlet.SingleThreadModel

Type: Interface

An interface that can be implemented by a servlet to indicate to the servlet engine that
multiple threads cannot be used to access the service() method concurrently. This
ensures that servlets will handle only one request at a time. There are no methods in
this interface; it is simply a marker to indicate that it wants this behavior.

Although this makes a single instance of the servlet thread-safe within its own
service() method, it does not prevent multiple instances from accessing external
resources at the same time.

Methods
SingleThreadModel does not define any methods; it is simply a marker interface.

UnavailableException

Full Name: javax.servlet.UnavailableException

Type: Class

Extends: javax.servlet.ServletException

A subclass of ServletException thrown by a servlet when it can no longer handle
requests, either temporarily or permanently.

Constructors

[deprecated] UnavailableException

public UnavailableException(int seconds, Servlet servlet, String msg)

No longer supported.

[deprecated] UnavailableException

public UnavailableException(Servlet servlet, String msg)

A
P

P
EN

D
IX

ES

No longer supported.

UnavailableException

public UnavailableException(String msg)

Creates a new exception with a message specifying that the servlet is permanently
unavailable.

UnavailableException

public UnavailableException(String msg, int seconds)

Creates a new exception for the servlet with the specified error message indicating
that the servlet is temporarily unavailable. Accepts an integer indicating the number
of seconds the servlet is expected to be unavailable. If the number is zero or negative,
no estimate is available.

Methods
[deprecated] getServlet

public Servlet getServlet()

No longer supported.

getUnavailableSeconds

public int getUnavailableSeconds()

Returns the length of time in seconds the servlet expects to be unavailable, or a
negative number if the unavailability is permanent or of indeterminate length.

isPermanent

public boolean isPermanent()

Returns true if the servlet is permanently unavailable.

A p p e n d i x A : S e r v l e t A P I V e r s i o n 2 . 3 759

760 J S P : T h e C o m p l e t e R e f e r e n c e

Package javax.servlet.http

Cookie

Full Name: javax.servlet.http.Cookie

Type: Class

Implements: java.lang.Cloneable

A cookie is a small collection of key/value pairs that a servlet sends to a requester.
The requester (usually a Web browser) is asked to store the information locally and
return it the next time it makes a request the same URL.

Servlet engines can use cookies to store session information that is unique to a
particular client. This usage is transparent to the servlet author. You can also explicitly
send and receive cookies with the HttpServletResponse.addCookie() and
HttpServletRequest.getCookies() methods, respectively.

Users can refuse to accept cookies, so your application should handle this case.

Constructors
Cookie

public Cookie(String name, String value)

Creates a new cookie with the specified name and value.

Methods
clone

public Object clone()

Returns a copy of the cookie.

getComment

public String getComment()

Returns the cookie comment.

getDomain

public String getDomain()

Returns the cookie domain name.

getMaxAge

public int getMaxAge()

Returns the maximum number of seconds that the cookie should be stored before it
is deleted. Note that this is relative to the time that setMaxAge() was called, not the
current time.

getName

public String getName()

Returns the cookie name. Note that there is no setName method; you must set the
cookie’s name in the constructor.

getPath

public String getPath()

Returns the path under which the cookie is visible. A request for any URL in that path
or any of its subdirectories will cause the cookie to be returned. See RFC 2109 for more
information about cookie paths.

getSecure

public boolean getSecure()

Returns true if the user agent (browser) will return cookies using a secure protocol.

getValue

public String getValue()

Returns the cookie’s value.

A p p e n d i x A : S e r v l e t A P I V e r s i o n 2 . 3 761
A

P
P

EN
D

IX
ES

getVersion

public int getVersion()

Returns the cookie protocol version:

0 Original Netscape specification
1 RFC 2109 specification

setComment

public void setComment(String purpose)

Sets the cookie’s comment field to the specified string.

setDomain

public void setDomain(String pattern)

Sets the cookie’s domain. A domain can be used to restrict the cookie’s visibility to a
subset of servers in a particular addressing scheme. The domain name is converted to
lower case before it is stored. If no domain is specified, the cookie is returned only to
the server that sent it. See RFC 2109 for details.

setMaxAge

public void setMaxAge(int expiry)

Specifies the length of time in seconds that the cookie should persist. A positive or
zero value requests the browser to delete the cookie after the specified interval. A
negative value requests the browser to keep the cookie active only for the duration
of the current browser instance.

setPath

public void setPath(String uri)

Specifies a path in which the cookie should be visible. If a path of /servlet/abc
is specified, for instance, then the cookie will be returned along with any requests for
a URL containing that path, e.g., /servlet/abc/def. If no path is specified, / is

assumed. The path must include the servlet that sets the cookie. See RFC 2109 for
more details about cookie paths.

762 J S P : T h e C o m p l e t e R e f e r e n c e

A p p e n d i x A : S e r v l e t A P I V e r s i o n 2 . 3 763
A

P
P

EN
D

IX
ES

setSecure

public void setSecure(boolean flag)

Tells the user agent (browser) whether to return the cookie using a secure protocol
or not.

setValue

public void setValue(String newValue)

Sets the cookie’s value to the specified string.

setVersion

public void setVersion(int v)

Sets the cookie protocol version:

0 Original Netscape specification
1 RFC 2109 specification

HttpServlet

Full Name: javax.servlet.http.HttpServlet

Type: Abstract class

Extends: javax.servlet.GenericServlet

Implements: java.io.Serializable

An abstract base class for servlets that operate in an HTTP environment. HttpServlet
is a thin extension of GenericServlet that provides specific methods for HTTP GET,
POST, PUT, DELETE, HEAD, OPTIONS, and TRACE requests. The service() method
determines the HTTP request type and invokes the appropriate method.

A typical HttpServlet subclass will override doGet(), doPost(), or both,
but not service().

764 J S P : T h e C o m p l e t e R e f e r e n c e

Constructors
HttpServlet

public HttpServlet()

Default (empty) constructor. Performs no work. All servlet initialization should be
performed in the init() method inherited from GenericServlet.

Methods
doDelete

protected void doDelete(

HttpServletRequest req,

HttpServletResponse resp)

throws ServletException, IOException

Handles an HTTP DELETE request. As with doPut(), this type of request is not
generally initiated directly by a Web browser.

doGet

protected void doGet(

HttpServletRequest req,

HttpServletResponse resp)

throws ServletException, IOException

Handles an HTTP GET request. By default, does nothing except return an error
indicating that the servlet does not handle the GET method. Servlet authors that
override doGet() will typically perform the following steps:

1. Read and handle HttpServletRequest parameters.

2. Get an output stream by calling either getWriter() or getOutputStream()
in the HttpServletResponse object.

3. Set the Content-Type header in the response object.

4. Write the output HTML page.

A p p e n d i x A : S e r v l e t A P I V e r s i o n 2 . 3 765
A

P
P

EN
D

IX
ES

doHead

protected void doHead(

HttpServletRequest req,

HttpServletResponse resp)

throws ServletException, IOException

Handles an HTTP HEAD request. This is functionally similar to the GET request, except
that no response body is returned, only status and headers.

doOptions

protected void doOptions(

HttpServletRequest req,

HttpServletResponse resp)

throws ServletException, IOException

Handles an HTTP OPTIONS request and returns a list of methods that the HTTP server
supports. This method is generally not overridden.

doPost

protected void doPost(

HttpServletRequest req,

HttpServletResponse resp)

throws ServletException, IOException

Handles an HTTP POST request. By default, does nothing except return an error
indicating that the servlet does not handle the POST method. Servlet authors that
override doPost() will typically perform the following steps:

1. Read and handle HttpServletRequest parameters.

2. Get an output stream by calling either getWriter() or getOutputStream()
in the HttpServletResponse object.

3. Set the Content-Type header in the response object.

4. Write the output HTML page.

doPut

protected void doPut(

HttpServletRequest req,

HttpServletResponse resp)

throws ServletException, IOException

Handles an HTTP PUT request. The name of the resource to be written can be found
by calling the request object’s getRequestURI() method, and the resource data itself
can be read from the request object’s input stream. HTML forms do not support the
PUT method; this type of request is not generally initiated directly by a Web browser.

doTrace

protected void doTrace(

HttpServletRequest req,

HttpServletResponse resp)

throws ServletException, IOException

Handles an HTTP TRACE request and echoes back the request headers. This method is
generally not overridden.

getLastModified

protected long getLastModified(HttpServletRequest req)

Returns the time (in milliseconds since January 1, 1970) that the request object was last
modified, or -1 if the time is not known. The default implementation always returns -1.

service

protected void service(

HttpServletRequest req,

HttpServletResponse resp)

throws ServletException, IOException

The main entry point for HTTP requests. This method determines the request method
(GET, POST, etc.) and dispatches the request to the appropriate handler method
(doGet(), doPost(), etc.) In the case of the GET method, it tries to determine if
the resource has been modified since it was last requested. If not, it returns just an
HTTP NOT_MODIFIED status line. This method is generally not overridden.

766 J S P : T h e C o m p l e t e R e f e r e n c e

service

public void service(

ServletRequest req,

ServletResponse res)

throws ServletException, IOException

A convenience method that converts a protocol-neutral request to an HTTP request,
if possible, and then invokes the HTTP-specific service() method.

HttpServletRequest

Full Name: javax.servlet.http.HttpServletRequest

Type: Interface

Superinterface: javax.servlet.ServletRequest

Encapsulates all information about an HTTP request: its parameters, attributes,
headers, and input data.

Methods
getAuthType

public String getAuthType()

If the server uses an authentication scheme like BASIC or SSL, returns the name of this
scheme, otherwise returns null.

getContextPath

public String getContextPath()

Returns the portion of the request URI that specifies the servlet context (application).
The path starts with but does not end with a "/" character.

getCookies

public Cookie[] getCookies()

A p p e n d i x A : S e r v l e t A P I V e r s i o n 2 . 3 767
A

P
P

EN
D

IX
ES

768 J S P : T h e C o m p l e t e R e f e r e n c e

Returns an array containing all of the Cookie objects the client sent with this request.
Returns null if no cookies were sent.

getDateHeader

public long getDateHeader(String name)

Given a request header name, converts the corresponding header value into a Date object,
which is returned as a long value (the number of milliseconds since January 1, 1970). If
the specified request header does not exist, returns -1.

getHeader

public String getHeader(String name)

Returns the string value of the specified request header, or null if the named header is
not found in the request.

getHeaderNames

public Enumeration getHeaderNames()

Returns an Enumeration of all the header names found in this request. If there are no
headers, returns either null or an empty Enumeration, depending on the servlet engine.

getHeaders

public Enumeration getHeaders(String name)

For headers that can occur multiple times in a request, this method will return an
Enumeration of the header values.

getIntHeade

public int getIntHeader(String name)

Given a request header name, converts the corresponding header value into an integer
and returns the integer value. If the specified request header does not exist, returns -1.

A p p e n d i x A : S e r v l e t A P I V e r s i o n 2 . 3 769
A

P
P

EN
D

IX
ES

getMethod

public String getMethod()

Returns the HTTP method contained in the first line of the request, e.g., GET or POST.

getPathInfo

public String getPathInfo()

Returns the substring of the request URL that follows the servlet name, or null if there
is no additional path information. Same as the CGI variable PATH_INFO.

getPathTranslated

public String getPathTranslated()

Returns the substring of the request URL that follows the servlet name converted to
a real filesystem path, or null if there is no additional path information. Same as the
CGI variable PATH_TRANSLATED.

getQueryString

public String getQueryString()

Returns the substring of the request URL that follows the "?", or null if there
is no query string. Usually found only in GET requests. Same as the CGI variable
QUERY_STRING.

getRemoteUser

public String getRemoteUser()

Returns the user name, if HTTP authentication is active and the user had logged in.
Returns null otherwise. Same as the CGI variable REMOTE_USER.

getRequestedSessionId

public String getRequestedSessionId()

Returns the value of the session ID returned by the client. Usually the same as the
current session, but may refer to an old expired session. Returns null if the request
does not specify a session ID.

getRequestURI

public String getRequestURI()

Returns the substring of the request URL starting with the protocol name (e.g.,
http://) if present, and extending to but not including the query string (which
starts with "?").

getRequestURL

public StringBuffer getRequestURL()

Reconstructs the entire URL used for the request. Includes the protocol, server name,
port number (if other than the default), and file name. Does not include the query string.

getServletPath

public String getServletPath()

Returns the part of this request’s URL that calls the servlet. This includes either the
servlet name or a path to the servlet, but does not include any extra path information
or a query string. Same as the value of the CGI variable SCRIPT_NAME.

getSession

public HttpSession getSession()

A convenience method that returns the value of HttpSession.getSession(true).

getSession

public HttpSession getSession(boolean create)

Returns the current HttpSession object or creates a new one (if the create
parameter is true). The returned value depends on whether the session already
exists and whether the create parameter is true or false:

770 J S P : T h e C o m p l e t e R e f e r e n c e

Session Exists create Returned

false false null

false true new session

true false existing session

true true existing session

getUserPrincipal

public Principal getUserPrincipal()

If the user has been authenticated, returns a java.security.Principal object for
the user. Otherwise, the method returns null.

isRequestedSessionIdFromCookie

public boolean isRequestedSessionIdFromCookie()

Returns true if the request session ID was received from a Cookie as opposed to
being sent as part of the request URL.

[deprecated] isRequestedSessionIdFromUrl

public boolean isRequestedSessionIdFromUrl()

No longer supported. Use isRequestedSessionIdFromURL() instead.

isRequestedSessionIdFromURL

public boolean isRequestedSessionIdFromURL()

Returns true if the requested session ID came in as part of the request URL as
opposed to being sent from a Cookie.

isRequestedSessionIdValid

public boolean isRequestedSessionIdValid()

Returns true if the request specifies the ID of a valid, active session.

A p p e n d i x A : S e r v l e t A P I V e r s i o n 2 . 3 771
A

P
P

EN
D

IX
ES

isUserInRole

public boolean isUserInRole(String role)

Returns true if the authenticated user is included in the specified logical "role" in the
deployment descriptor.

HttpServletRequestWrapper

Full Name: javax.servlet.http.HttpServletRequestWrapper

Type: Class

Extends: javax.servlet.ServletRequestWrapper

Implements: javax.servlet.http.HttpServletRequest

This class is a concrete implementation of HttpServletRequestwhich can be overriden
in servlet-engine-neutral way to provide additional functionality to the request object.
By default, looks through to the corresponding servlet-engine-specific methods.

Constructors
HttpServletRequestWrapper

public HttpServletRequestWrapper(HttpServletRequest request)

Creates a request object wrapping the given request.

Methods
getAuthType

public String getAuthType()

If the server uses an authentication scheme like BASIC or SSL, returns the name of this
scheme, otherwise returns null.

getContextPath

public String getContextPath()

772 J S P : T h e C o m p l e t e R e f e r e n c e

A p p e n d i x A : S e r v l e t A P I V e r s i o n 2 . 3 773
A

P
P

EN
D

IX
ES

Returns the portion of the request URI that specifies the servlet context (application).
The path starts with but does not end with a "/" character.

getCookies

public Cookie getCookies()

Returns an array containing all of the Cookie objects the client sent with this request.
Returns null if no cookies were sent.

getDateHeader

public long getDateHeader(String name)

Given a request header name, converts the corresponding header value into a Date object,
which is returned as a long value (the number of milliseconds since January 1, 1970).
If the specified request header does not exist, returns -1.

getHeader

public String getHeader(String name)

Returns the string value of the specified request header, or null if the named header
is not found in the request.

getHeaderNames

public Enumeration getHeaderNames()

Returns an Enumeration of all the header names found in this request. If there are no
headers, returns either null or an empty Enumeration, depending on the servlet engine.

getHeaders

public Enumeration getHeaders(String name)

For headers that can occur multiple times in a request, this method will return an
Enumeration of the header values.

getIntHeader

public int getIntHeader(String name)

Given a request header name, converts the corresponding header value into an integer
and returns the integer value. If the specified request header does not exist, returns -1.

getMethod

public String getMethod()

Returns the HTTP method contained in the first line of the request, e.g., GET or POST.

getPathInfo

public String getPathInfo()

Returns the substring of the request URL that follows the servlet name, or null if there
is no additional path information. Same as the CGI variable PATH_INFO.

getPathTranslated

public String getPathTranslated()

Returns the substring of the request URL that follows the servlet name converted to
a real filesystem path, or null if there is no additional path information. Same as the
CGI variable PATH_TRANSLATED.

getQueryString

public String getQueryString()

Returns the substring of the request URL that follows the "?", or null if there
is no query string. Usually found only in GET requests. Same as the CGI variable
QUERY_STRING.

getRemoteUser

public String getRemoteUser()

774 J S P : T h e C o m p l e t e R e f e r e n c e

A p p e n d i x A : S e r v l e t A P I V e r s i o n 2 . 3 775
A

P
P

EN
D

IX
ES

Returns the user name, if HTTP authentication is active and the user had logged in.
Returns null otherwise. Same as the CGI variable REMOTE_USER.

getRequestedSessionId

public String getRequestedSessionId()

Returns the value of the session ID returned by the client. Usually the same as the
current session, but may refer to an old expired session. Returns null if the request
does not specify a session ID.

getRequestURI

public String getRequestURI()

Returns the substring of the request URL starting with the protocol name (e.g.,
http://) if present, and extending to but not including the query string (which
starts with "?").

getRequestURL

public StringBuffer getRequestURL()

Reconstructs the entire URL used for the request. Includes the protocol, server name,
port number (if other than the default), and file name. Does not include the query string.

getServletPath

public String getServletPath()

Returns the part of this request’s URL that calls the servlet. This includes either the
servlet name or a path to the servlet, but does not include any extra path information
or a query string. Same as the value of the CGI variable SCRIPT_NAME.

getSession

public HttpSession getSession()

A convenience method that returns the value of HttpSession.getSession(true).

getSession

public HttpSession getSession(boolean create)

Returns the current HttpSession object or creates a new one (if the create
parameter is true). The returned value depends on whether the session already
exists and whether the create parameter is true or false:

getUserPrincipal

public Principal getUserPrincipal()

If the user has been authenticated, returns a java.security.Principal object for
the user. Otherwise, the method returns null.

isRequestedSessionIdFromCookie

public boolean isRequestedSessionIdFromCookie()

Returns true if the request session ID was received from a Cookie as opposed to
being sent as part of the request URL.

isRequestedSessionIdFromUrl

public boolean isRequestedSessionIdFromUrl()

Returns the value of the deprecated isRequestedSessionIdFromUrl() method on
the wrapped request object.

isRequestedSessionIdFromURL

public boolean isRequestedSessionIdFromURL()

Returns true if the requested session ID came in as part of the request URL as
opposed to being sent from a Cookie.

isRequestedSessionIdValid

public boolean isRequestedSessionIdValid()

Returns true if the request specifies the ID of a valid, active session.

776 J S P : T h e C o m p l e t e R e f e r e n c e

A p p e n d i x A : S e r v l e t A P I V e r s i o n 2 . 3 777
A

P
P

EN
D

IX
ES

isUserInRole

public boolean isUserInRole(String role

Returns true if the authenticated user is included in the specified logical "role" in the
deployment descriptor.

HttpServletResponse

Full Name: javax.servlet.http.HttpServletResponse

Type: Interface

Superinterface: javax.servlet.ServletResponse

Encapsulates all information about the response generated for an HTTP request,
including response headers, the status code, and the output stream.

Methods
addCookie

public void addCookie(Cookie cookie)

Writes a Set-Cookie header for the specified Cookie.

addDateHeader

public void addDateHeader(String name, long date)

Writes a date header for an HTTP header that can have multiple values.

addHeader

public void addHeader(String name, String value)

Writes a general header for an HTTP header that can have multiple values.

addIntHeader

public void addIntHeader(String name, int value)

Writes an integer header for an HTTP header that can have multiple values.

778 J S P : T h e C o m p l e t e R e f e r e n c e

containsHeader

public boolean containsHeader(String name)

Returns true if the response already contains a header with the specified name.

[deprecated] encodeRedirectUrl

public String encodeRedirectUrl(String url)

No longer supported.

encodeRedirectURL

public String encodeRedirectURL(String url)

Supports session tracking by optionally appending the encoded session ID as a parameter
in a URL intended to be used with sendRedirect(). This is not necessary if the client
supports cookies. The servlet engine makes this determination; it is always safe to filter
URLs to be written through this method.

[deprecated] encodeUrl

public String encodeUrl(String url)

No longer supported.

encodeURL

public String encodeURL(String url)

Supports session tracking by appending the encoded session ID as a parameter in
the specified URL if necessary. This is not necessary if the client supports cookies.
The servlet engine makes this determination; it is always safe to filter URLs to be
written through this method.

sendError

public void sendError(int sc) throws IOException

Sets the HTTP status code to the specified value. The response object is committed after
this method is called; any further writing to it has no effect.

A p p e n d i x A : S e r v l e t A P I V e r s i o n 2 . 3 779
A

P
P

EN
D

IX
ES

sendError

public void sendError(int sc, String msg) throws IOException

Sets the HTTP status code to the specified value and sets the status message. The
response object is committed after this method is called; any further writing to it
has no effect.

sendRedirect

public void sendRedirect(String location) throws IOException

Sets the HTTP status code to 302 (moved temporarily) and writes a Location header
with the specified value. The user agent (Web browser) will usually interpret this
response and request the new URL automatically.

setDateHeader

public void setDateHeader(String name, long date)

Writes a response header with the specified name and a correctly formatted date value.

setHeader

public void setHeader(String name, String value)

Writes a response header with the specified name and value.

setIntHeader

public void setIntHeader(String name, int value)

Writes a response header with the specified name and a string-formatted integer value.

setStatus

public void setStatus(int sc)

Sets the status code for this response.

780 J S P : T h e C o m p l e t e R e f e r e n c e

[deprecated] setStatus

public void setStatus(int sc, String sm)

No longer supported.

HttpServletResponseWrapper

Full Name: javax.servlet.http.HttpServletResponseWrapper

Type: Class

Extends: javax.servlet.ServletResponseWrapper

Implements: javax.servlet.http.HttpServletResponse

A concrete implementation of HttpServletResponse which can be extended to
allow customization of the response object. By default, methods in this class look
through to their counterparts in the servlet engine’s implementation class.

Constructors
HttpServletResponseWrapper

public HttpServletResponseWrapper(HttpServletResponse response)

Creates a response adapter wrapping the specified response.

Methods
addCookie

public void addCookie(Cookie cookie)

Writes a Set-Cookie header for the specified Cookie.

addDateHeader

public void addDateHeader(String name, long date)

Writes a date header for an HTTP header that can have multiple values.

A p p e n d i x A : S e r v l e t A P I V e r s i o n 2 . 3 781
A

P
P

EN
D

IX
ES

addHeader

public void addHeader(String name, String value)

Writes a general header for an HTTP header that can have multiple values.

addIntHeader

public void addIntHeader(String name, int value)

Writes an integer header for an HTTP header that can have multiple values.

containsHeade

public boolean containsHeader(String name)

Returns true if the response already contains a header with the specified name.

encodeRedirectUrl

public String encodeRedirectUrl(String url)

Invokes the deprecated encodeRedirectUrl() method in the
servlet-engine-specific class.

encodeRedirectURL

public String encodeRedirectURL(String url)

Supports session tracking by optionally appending the encoded session ID as a parameter
in a URL intended to be used with sendRedirect(). This is not necessary if the client
supports cookies. The servlet engine makes this determination; it is always safe to filter
URLs to be written through this method.

encodeUrl

public String encodeUrl(String url)

Invokes deprecated encodeUrl(String url) method in the
servlet-engine-specific class.

782 J S P : T h e C o m p l e t e R e f e r e n c e

encodeURL

public String encodeURL(String url)

Supports session tracking by appending the encoded session ID as a parameter in
the specified URL if necessary. This is not necessary if the client supports cookies.
The servlet engine makes this determination; it is always safe to filter URLs to be
written through this method.

sendError

public void sendError(int sc) throws IOException

Sets the HTTP status code to the specified value. The response object is committed after
this method is called; any further writing to it has no effect.

sendError

public void sendError(int sc, String msg) throws IOException

Sets the HTTP status code to the specified value and sets the status message. The
response object is committed after this method is called; any further writing to it
has no effect.

sendRedirect

public void sendRedirect(String location) throws IOException

Sets the HTTP status code to 302 (moved temporarily) and writes a Location header
with the specified value. The user agent (Web browser) will usually interpret this response
and request the new URL automatically.

setDateHeader

public void setDateHeader(String name, long date)

Writes a response header with the specified name and a correctly formatted date value.

A p p e n d i x A : S e r v l e t A P I V e r s i o n 2 . 3 783
A

P
P

EN
D

IX
ES

setHeader

public void setHeader(String name, String value)

Writes a response header with the specified name and value.

setIntHeader

public void setIntHeader(String name, int value)

Writes a response header with the specified name and a string-formatted integer value.

setStatus

public void setStatus(int sc)

Sets the status code for this response.

setStatus

public void setStatus(int sc, String sm)

Invokes the deprecated setStatus(int sc, String sm) method in the
servlet-engine-specific class.

HttpSession

Full Name: javax.servlet.http.HttpSession

Type: Interface

An HttpSession is a repository of named references to objects belonging to a user’s
browser session. This repository remains active in the server between user requests.
A session has a unique session ID assigned by the server that the client keeps track of
and passes back with each subsequent request.

A session is created by calling the HttpServletRequest.getSession(true)
or HttpServletRequest.getSession() method. The session ID is then passed
to the client either by a cookie or as a parameter in a generated URL. The session is
considered "new" until the client joins it, that is, until the client passes back the session
ID in a subsequent request. The isNew() method can be used to determine this.

Objects are stored in the session using the setAttribute() method, and can be
retrieved with the getAttribute() method. If an object in a session implements the
HttpSessionBindingListener interface, it will be notified whenever it is bound
to or unbound from a session.

784 J S P : T h e C o m p l e t e R e f e r e n c e

Methods
getAttribute

public Object getAttribute(String name)

Returns the object with the specified name if it exists in the session, or null if it does not.

getAttributeNames

public Enumeration getAttributeNames()

Returns an Enumeration of the names of all the objects bound to this session.

getCreationTime

public long getCreationTime()

Returns the time the session was created in milliseconds from January 1, 1970.

getId

public String getId()

Returns the session identifier.

getLastAccessedTime

public long getLastAccessedTime()

Returns the time the session was last accessed in milliseconds from January 1, 1970.

getMaxInactiveInterval

public int getMaxInactiveInterval()

Returns the maximum number of seconds this session can remain active between
requests. If the time interval is exceeded, the servlet engine is permitted to terminate it.

A p p e n d i x A : S e r v l e t A P I V e r s i o n 2 . 3 785
A

P
P

EN
D

IX
ES

Some servlet engines erroneously treat this value as milliseconds or minutes. You should
verify this method’s operation if you depend on it being correct.

[deprecated] getSessionContext

public HttpSessionContext getSessionContext()

No longer supported.

[deprecated] getValue

public Object getValue(String name)

No longer supported. Use getAttribute(String name) instead.

[deprecated] getValueNames

public String getValueNames()

No longer supported. Use getAttributeNames() instead.

invalidate

public void invalidate()

Closes the session, calling valueUnbound() for any
HttpSessionBindingListener objects bound to the session.

isNew

public boolean isNew()

Returns true if a session has been created but the client has not yet issued a request
with that session ID.

[deprecated] putValue

public void putValue(String name, Object value)

No longer supported. Use setAttribute(String name, Object value) instead.

removeAttribute

public void removeAttribute(String name)

Removes a reference to an object in the session with the specified name. If the object
implements the HttpSessionBindingListener interface, the servlet engine calls its
valueUnbound() method. Ignored if the specified value does not exist in the session.

[deprecated] removeValue

public void removeValue(String name)

No longer supported. Use removeAttribute(String name) instead.

setAttribute

public void setAttribute(String name, Object value)

Stores a reference to an object in the session under the specified name. If the object
implements the HttpSessionBindingListener interface, the servlet engine calls
its valueBound() method.

setMaxInactiveInterval

public void setMaxInactiveInterval(int interval)

Specifies the maximum number of seconds this session can remain active between
requests. If the time interval is exceeded, the servlet engine is permitted to terminate it.

Some servlet engines erroneously treat this value as milliseconds or minutes. You should
verify this method’s operation if you depend on it being correct.

HttpSessionActivationListener

Full Name: javax.servlet.http.HttpSessionActivationListener

Type: Interface

Objects can register to receive notification of session activation and passivation events
by implementing this interface.

786 J S P : T h e C o m p l e t e R e f e r e n c e

A p p e n d i x A : S e r v l e t A P I V e r s i o n 2 . 3 787
A

P
P

EN
D

IX
ES

Methods
sessionDidActivate

public void sessionDidActivate(HttpSessionEvent se)

Will be called when the session has just been activated.

sessionWillPassivate

public void sessionWillPassivate(HttpSessionEvent se)

Will be called when the session is about to be passivated.

HttpSessionAttributesListener

Full Name: javax.servlet.http.HttpSessionAttributesListener

Type: Interface

Superinterface: java.util.EventListener

Objects can register to receive notification of attribute add/remove events by
implementing this interface.

Methods
attributeAdded

public void attributeAdded(HttpSessionBindingEvent se)

Will be called when an attribute has been added to a session.

attributeRemoved

public void attributeRemoved(HttpSessionBindingEvent se)

Will be called when an attribute has been removed from a session.

788 J S P : T h e C o m p l e t e R e f e r e n c e

attributeReplaced

public void attributeReplaced(HttpSessionBindingEvent se)

Will be called when an attribute has been replaced in a session.

HttpSessionBindingEvent

Full Name: javax.servlet.http.HttpSessionBindingEvent

Type: Class

Extends: javax.servlet.http.HttpSessionEvent

An event object that is passed as a parameter to the valueBound() and
valueUnbound() methods of an HttpSessionBindingListener. Using
methods in the event object, the HttpSessionBindingListener can get the
name by which it was bound and a reference to the HttpSession itself.

Constructors
HttpSessionBindingEvent

public HttpSessionBindingEvent

(HttpSession session, String name)

Creates a new HttpSessionBindingEvent object for the specified session. The name
parameter indicates the name by which the listening object was bound to the session.

HttpSessionBindingEvent

public HttpSessionBindingEvent

(HttpSession session, String name, Object value)

Creates a new HttpSessionBindingEvent object for the specified session. The name
parameter indicates the name by which the listening object was bound to the session,
and the value parameter contains its value.

Methods
getName

public String getName()

Returns the name by which the object is known to the session.

getSession

public HttpSession getSession()

Returns the session to which the listener object was bound or unbound.

getValue

public Object getValue()

Returns the value of the attribute being added, changed, or deleted.

HttpSessionBindingListener

Full Name: javax.servlet.http.HttpSessionBindingListener

Type: Interface

Superinterface: java.util.EventListener

Objects that implement this interface are notified when they are bound to or
unbound from an HttpSession. The object must provide valueBound() and
valueUnbound() methods, each of which have a HttpSessionBindingEvent
parameter that allows the object to determine its name and the session to which
it belongs.

Methods
valueBound

public void valueBound(HttpSessionBindingEvent event)

Called when an object is bound to a session.

valueUnbound

public void valueUnbound(HttpSessionBindingEvent event)

Called when an object is unbound from a session.

A p p e n d i x A : S e r v l e t A P I V e r s i o n 2 . 3 789
A

P
P

EN
D

IX
ES

790 J S P : T h e C o m p l e t e R e f e r e n c e

HttpSessionContext

Full Name: javax.servlet.http.HttpSessionContext

Type: Interface

Formerly used to allow direct interservlet communication, this class is now deprecated.

Methods
[deprecated] getIds

public Enumeration getIds()

No longer supported.

[deprecated] getSession

public HttpSession getSession(String sessionId)

No longer supported.

HttpSessionEvent

Full Name: javax.servlet.http.HttpSessionEvent

Type: Class

Extends: java.util.EventObject

Represents an event notification for changes to sessions in a web application.

Constructors
HttpSessionEvent

public HttpSessionEvent(HttpSession source)

Creates a new session event from the specified source.

A p p e n d i x A : S e r v l e t A P I V e r s i o n 2 . 3 791
A

P
P

EN
D

IX
ES

Methods
getSession

public HttpSession getSession()

Returns a reference to the session that changed.

HttpSessionListener

Full Name: javax.servlet.http.HttpSessionListener

Type: Interface

Classes that implement HttpSessionListener receive notification when sessions
are created or invalidated.

Methods
sessionCreated

public void sessionCreated(HttpSessionEvent se)

Called when a new session is created.

sessionDestroyed

public void sessionDestroyed(HttpSessionEvent se)

Called when a session is invalidated.

HttpUtils

Full Name: javax.servlet.http.HttpUtils

Type: Class

A utility class providing methods useful in HTTP servlets.

Constructors
HttpUtils

public HttpUtils()

Creates a new HttpUtils object.

Methods
getRequestURL

public static StringBuffer getRequestURL

(HttpServletRequest req)

Returns the entire URL used for the specified request. Includes the protocol, server
name, port number (if other than the default), and file name. Does not include the
query string.

parsePostData

public static Hashtable parsePostData

(int len, ServletInputStream in)

Reads the servlet request input stream for the specified length and parses it into
key/value pairs by calling parseQueryString().

parseQueryString

public static Hashtable parseQueryString(String s)

Given a query string containing URLEncoded parameters and values, returns a
Hashtable containing the parsed names and values. In the hashtable, the parameter
name is the key and the corresponding value is an array of strings. If the parameter
occurs only once, the array length is one; otherwise, there are multiple entries in
the array. See java.net.URLEncoder for specifics of how the decoding is done.

792 J S P : T h e C o m p l e t e R e f e r e n c e

Appendix B
JSP API Version 1.2

793

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This appendix describes each class in the two JSP packages:

� javax.servlet.jsp Base JavaServer Page classes

� javax.servlet.jsp.tagext JSP custom tags

For each class, the following sections are included:

� Class name

� Context (full name, type, superclass, interfaces implemented)

� Class description

� Details of each method in the class

The classes and methods described here are based on the proposed final draft of the
JSP 1.2 specification. Although the final draft is likely to be very close to the official
specification, there may be changes. Consult the latest version of the specification at
http://java.sun.com/products/jsp if in doubt.

Package javax.servlet.jsp

HttpJspPage

Full Name: javax.servlet.jsp.HttpJspPage

Type: Interface

Superinterface: javax.servlet.jsp.JspPage

A subinterface of JspPage that is implemented by HTTP-specific classes generated by
a JSP engine. The JSP engine will automatically create a _jspService() method that
contains all the scriptlet code defined in the page. The JSP author should not override
this method.

Methods

_jspService

L B-1 public void _jspService(

HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException

794 J S P : T h e C o m p l e t e R e f e r e n c e

The body of the JSP page. The JSP author must not define this method, since it will be
defined by the servlet code generated by the JSP container. _jspService() is where
scriptlets are executed and where HTML template output is produced.

JspEngineInfo

Full Name: javax.servlet.jsp.JspEngineInfo

Type: Abstract class

A class that provides information about the JSP engine. An instance of this class is
returned by the JspFactory.getEngineInfo() method.

This class is designed primarily for use by JSP engine developers.

Constructors
JspEngineInfo

L B-2 public JspEngineInfo()

Creates a new JspEngineInfo object.

Methods
getSpecificationVersion

L B-3 public abstract String getSpecificationVersion()

Returns the JSP specification version supported by the JSP engine.

JspException

Full Name: javax.servlet.jsp.JspException

Type: Class

Extends: java.lang.Exception

The generic base class for JSP exceptions. A number of methods in the custom tags
classes throw this exception.

A p p e n d i x B : J S P A P I V e r s i o n 1 . 2 795
A

P
P

EN
D

IX
ES

Constructors
JspException

L B-4 public JspException()

Creates a new JspException with no associated error message.

JspException

L B-5 public JspException(String msg)

Creates a new JspException with the specified message.

JspException

L B-6 public JspException(String message, Throwable rootCause)

Creates a new JspException with the specified message and associates the specified
root cause exception with it.

JspException

L B-7 public JspException(Throwable rootCause)

Creates a new JspException associated with the specified root cause exception.

Methods
getRootCause

L B-8 public Throwable getRootCause()

Returns the exception that caused this JspException.

JspFactory

Full Name: javax.servlet.jsp.JspFactory

Type: Abstract class

796 J S P : T h e C o m p l e t e R e f e r e n c e

A class that provides factory methods for creating the objects necessary to support
the JSP environment. Includes a static method for assigning the default JspFactory.

This class is designed primarily for use by JSP engine developers.

Constructors
JspFactory

L B-9 public JspFactory()

Creates a new JspFactory object.

Methods
getDefaultFactory

L B-10 public static synchronized JspFactory getDefaultFactory()

Returns the currently registered JspFactory object.

getEngineInfo

L B-11 public abstract JspEngineInfo getEngineInfo()

Returns the JspEngineInfo object for this JSP implementation.

getPageContext

L B-12 public abstract PageContext getPageContext(

Servlet servlet,

ServletRequest request,

ServletResponse response,

String errorPageURL,

boolean needsSession,

int buffer,

boolean autoflush)

A p p e n d i x B : J S P A P I V e r s i o n 1 . 2 797
A

P
P

EN
D

IX
ES

Returns the PageContext object. Calling this method causes the
PageContext.initialize() method to be invoked and causes
the following attributes to be set:

� The requesting servlet

� The ServletConfig for the requesting servlet

� The ServletRequest object

� The ServletResponse object

� The URL of the JSP's error page, if one was specified

� Whether the JSP needs an HTTP session

� The buffer size

� Whether the buffer should be autoflushed on overflow.

These resources are released when the releasePageContext() method is called.

A call to this method is automatically generated by the JSP engine and should not be
coded by the JSP author.

releasePageContext

L B-13 public abstract void releasePageContext(PageContext pc)

Releases the PageContext, including any resources obtained when
getPageContext() was invoked.

A call to this method is automatically generated by the JSP engine and should not be
coded by the JSP author.

setDefaultFactory

L B-14 public static synchronized void setDefaultFactory(JspFactory factory)

Sets the default JspFactory object. Should only be called by the JSP engine itself.

JspPage

Full Name: javax.servlet.jsp.JspPage

Type: Interface

Superinterface: javax.servlet.Servlet

798 J S P : T h e C o m p l e t e R e f e r e n c e

A subinterface of Servlet that is implemented by classes generated by a JSP engine.
The jspInit() and jspDestroy() methods can be overridded by the JSP author
to perform what the Servlet init() and destroy() methods do.

Methods
jspDestroy

L B-15 public void jspDestroy()

A method invoked when the generated JSP servlet is destroyed. If used, it must
be defined within a JSP declaration.This method should be overridden instead of
destroy().

jspInit

L B-16 public void jspInit()

A method invoked when the generated JSP servlet is initialized. If used, it must be
defined within a JSP declaration.This method should be overridden instead of init().

JspTagException

Full Name: javax.servlet.jsp.JspTagException

Type: Class

Extends: javax.servlet.jsp.JspException

A subinterface of JspException used in tag handlers to indicate a fatal error.

Constructors
JspTagException

L B-17 public JspTagException()

Creates a new JspTagException with no associated message.

JspTagException

L B-18 public JspTagException(String msg)

Creates a new JspTagException with the specified message.

A p p e n d i x B : J S P A P I V e r s i o n 1 . 2 799
A

P
P

EN
D

IX
ES

Methods

JspWriter

Full Name: javax.servlet.jsp.JspWriter

Type: Abstract class

Extends: java.io.Writer

A subclass of java.io.Writer that is used to write JSP output. Its role is primarily
the same as java.io.PrintWriter. This class is instantiated by the generated
_jspService() by calling the underlying servlet's getWriter() method, which
makes it illegal later to call getOutputStream().

The out implicit variable is an instance of this class.

Methods
clear

L B-19 public abstract void clear() throws IOException

Clears the page buffer. Throws an IOException if the buffer has already been cleared
(i.e., if a full buffer of data has already been written to the output stream).

clearBuffer

L B-20 public abstract void clearBuffer() throws IOException

Clears the page buffer. Does not throw an IOException.

close

L B-21 public abstract void close() throws IOException

Flushes and closes the stream.

flush

L B-22 public abstract void flush() throws IOException

Flushes the output stream.

800 J S P : T h e C o m p l e t e R e f e r e n c e

getBufferSize

L B-23 public int getBufferSize()

Returns the actual buffer size used.

getRemaining

L B-24 public abstract int getRemaining()

Returns the number of unused bytes remaining in the buffer.

isAutoFlush

L B-25 public boolean isAutoFlush()

Returns an indication of whether the JSP autoFlush flag is set.

newLine

L B-26 public abstract void newLine() throws IOException

Writes the system line.separator string.

print

L B-27 public abstract void print(boolean b) throws IOException

Prints a boolean value.

print

L B-28 public abstract void print(char c) throws IOException

Prints a character value.

print

L B-29 public abstract void print(char[] s) throws IOException

Prints an array of characters.

A p p e n d i x B : J S P A P I V e r s i o n 1 . 2 801
A

P
P

EN
D

IX
ES

print

L B-30 public abstract void print(double d) throws IOException

Prints a double-precision floating-point number.

print

L B-31 public abstract void print(float f) throws IOException

Prints a single-precision floating-point number.

print

L B-32 public abstract void print(int i) throws IOException

Prints an integer value.

print

L B-33 public abstract void print(long l) throws IOException

Prints a long integer value.

print

L B-34 public abstract void print(Object obj) throws IOException

Prints an object using its toString() method.

print

L B-35 public abstract void print(String s) throws IOException

Prints a string.

println

L B-36 public abstract void println() throws IOException

Prints the system line.separator character(s).

802 J S P : T h e C o m p l e t e R e f e r e n c e

println

L B-37 public abstract void println(boolean x) throws IOException

Prints a boolean value followed by a newline.

println

L B-38 public abstract void println(char x) throws IOException

Prints a character value followed by a newline.

println

L B-39 public abstract void println(char[] x) throws IOException

Prints an array of characters followed by a newline.

println

L B-40 public abstract void println(double x) throws IOException

Prints a double-precision floating-point number followed by a newline.

println

L B-41 public abstract void println(float x) throws IOException

Prints a single-precision floating-point number followed by a newline.

println

L B-42 public abstract void println(int x) throws IOException

Prints an integer followed by a newline.

println

L B-43 public abstract void println(long x) throws IOException

Prints a long integer followed by a newline.

A p p e n d i x B : J S P A P I V e r s i o n 1 . 2 803
A

P
P

EN
D

IX
ES

println

L B-44 public abstract void println(Object x) throws IOException

Prints an object followed by a newline.

println

L B-45 public abstract void println(String x) throws IOException

Prints a string followed by a newline

PageContext

Full Name: javax.servlet.jsp.PageContext

Type: Abstract class

PageContext is a wrapper object that encapsulates all the details of a single invocation
of a JSP to handle a request. It contains methods to initialize and release the session,
writer, request, and response objects. It also provides methods to set and retrieve
attributes in the various namespaces accessible to the JSP.

A PageContext object is created and initialized by the JSPFactory when its
getPageContext() method is called and released when its releasePageContext()
is called. These two method calls are automatically performed by code generated by
the JSP engine.

Constructors
PageContext

L B-46 public PageContext()

Creates a new PageContext object.

Methods
findAttribute

L B-47 public abstract Object findAttribute(String name)

804 J S P : T h e C o m p l e t e R e f e r e n c e

Searches the page, request, session, and application scopes (in that order) for the
specified attribute, returning the value of the first match. If the attribute does not
exist in any scope, returns null.

forward

L B-48 public abstract void forward(String relativeUrlPath)

throws ServletException, IOException

Calls the forward() method associated with a RequestDispatcher for this servlet.
See javax.servlet.RequestDispatcher for details.

getAttribute

L B-49 public abstract Object getAttribute(String name)

Returns the specified attribute in page scope, or null if the attribute does not exist.

getAttribute

L B-50 public abstract Object getAttribute(String name, int scope)

Returns the specified attribute in the indicated scope, or null if the attribute does not
exist. Scope choices are indicated with the following constants:

PageContext.PAGE_SCOPE
PageContext.REQUEST_SCOPE
PageContext.SESSION_SCOPE
PageContext.APPLICATION_SCOPE

getAttributeNamesInScope

L B-51 public abstract Enumeration

getAttributeNamesInScope(int scope)

Returns an Enumeration of attribute names in the specified scope. See
getAttribute(String name, int scope) for a list of scope values.

getAttributesScope

L B-52 public abstract int getAttributesScope(String name)

A p p e n d i x B : J S P A P I V e r s i o n 1 . 2 805
A

P
P

EN
D

IX
ES

Returns the scope of the first attribute of the specified name. See
getAttribute(String name, int scope) for a list of scope values.

getException

L B-53 public abstract Exception getException()

Returns the Exception object passed to an ErrorPage.

getOut

L B-54 public abstract JspWriter getOut()

Returns the JspWriter for this response.

getPage

L B-55 public abstract Object getPage()

Returns the servlet associated with this PageContext.

getRequest

L B-56 public abstract ServletRequest getRequest()

Returns the ServletRequest associated with this PageContext.

getResponse

L B-57 public abstract ServletResponse getResponse()

Returns the ServletResponse associated with this PageContext.

getServletConfig

L B-58 public abstract ServletConfig getServletConfig()

Returns the ServletConfig associated with this PageContext.

806 J S P : T h e C o m p l e t e R e f e r e n c e

getServletContext

L B-59 public abstract ServletContext getServletContext()

Returns the ServletContext associated with this PageContext.

getSession

L B-60 public abstract HttpSession getSession()

Returns the HttpSession for this request or null, if no session exists.

handlePageException

L B-61 public abstract void handlePageException(Exception e)

throws ServletException, IOException;

Used to process an unhandled exceptions thrown by the current page. Calls the
ErrorPage if one is active.

Although this method is not deprecated, handlePageException(Throwable t)
is more general and should be used instead of this method.

handlePageException

L B-62 public abstract void handlePageException(Throwable t)

throws ServletException, IOException

Used to process an unhandled exceptions thrown by the current page. Calls the
ErrorPage if one is active.

include

L B-63 public abstract void include(String relativeUrlPath)

throws ServletException, IOException

Calls the include() method associated with a RequestDispatcher for this servlet.
See javax.servlet.RequestDispatcher for details.

A p p e n d i x B : J S P A P I V e r s i o n 1 . 2 807
A

P
P

EN
D

IX
ES

initialize

L B-64 public abstract void initialize(

Servlet servlet,

ServletRequest request,

ServletResponse response,

String errorPageURL,

boolean needsSession,

int bufferSize,

boolean autoFlush)

throws IOException, IllegalStateException,

IllegalArgumentException

Stores the servlet, request, response, errorPageURL, needsSession,
bufferSize, and autoFlush attributes and makes the appropriate implicit
variables available to the JSP. This method is called by the getPageContext()
method and should not be called directly by the JSP author.

popBody

L B-65 public JspWriter popBody()

Restores the JspWriter saved by the previous pushBody(), and updates the out
implicit variable and the value of the PageContext "out" attribute.

pushBody

L B-66 public BodyContent pushBody()

Saves the current JspWriter and creates a new BodyContent object, making it the
value of the PageContext "out" attribute and the out implicit variable.

release

L B-67 public abstract void release()

Performs the opposite of initialize, releasing the PageContext and the resources
it acquired. This method is called by the releasePageContext() method and
should not be called directly by the JSP author.

808 J S P : T h e C o m p l e t e R e f e r e n c e

removeAttribute

L B-68 public abstract void removeAttribute(String name)

Searches the page, request, session, and application scopes (in that order) for the
specified attribute and removes the first matching attribute.

removeAttribute

L B-69 public abstract void removeAttribute(String name, int scope)

Removes the attribute associated with the specified name and scope. Scope choices
are indicated with the following constants:

PageContext.PAGE_SCOPE
PageContext.REQUEST_SCOPE
PageContext.SESSION_SCOPE
PageContext.APPLICATION_SCOPE

setAttribute

L B-70 public abstract void setAttribute

(String name, Object attribute)

Sets the specified attribute with page scope. setAttribute(String name,
Object o, int scope) can be used to set attributes in other scopes.

setAttribute

L B-71 public abstract void setAttribute

(String name, Object o, int scope)

Sets the attribute associated with the specified name and scope. Scope choices are
indicated with the following constants:

PageContext.PAGE_SCOPE
PageContext.REQUEST_SCOPE
PageContext.SESSION_SCOPE
PageContext.APPLICATION_SCOPE

A p p e n d i x B : J S P A P I V e r s i o n 1 . 2 809
A

P
P

EN
D

IX
ES

Package javax.servlet.jsp.tagext

BodyContent

Full Name: javax.servlet.jsp.tagext.BodyContent

Type: Abstract class

Extends: javax.servlet.jsp.JspWriter

BodyContent is a subclass of javax.servlet.jsp.JspWriter, but differs from its
superclass, in that its contents aren't automatically written to the servlet output stream.
Instead, they're accumulated in what amounts to a string buffer. After the tag body is
completed, the original JspWriter is restored, but the BodyContent object is still
available in doEndTag() in the bodyContent variable. Its contents can be retrieved
with its getString() or getReader() methods, modified as necessary, and written
to the restored JspWriter output stream to be merged with the page output.

Methods
clearBody

L B-72 public void clearBody()

Resets the BodyContent buffer to empty. This can be useful if the body is being
written to the enclosing writer in doAfterBody().

flush

L B-73 public void flush() throws IOException

Overrides the JspWriter.flush() method so it always throws an exception.
Flushing a BodyContent writer isn't valid because it isn't connected to an actual
output stream to which it could be written.

getEnclosingWriter

L B-74 public JspWriter getEnclosingWriter()

Returns the writer object (possibly another BodyContent) next higher in the stack.

810 J S P : T h e C o m p l e t e R e f e r e n c e

getReader

L B-75 public abstract Reader getReader()

Returns a reader for the body content after it has been evaluated. This reader can be
passed to other classes that can process a java.io.Reader, such as StreamTokenizer,
FilterReader, or an XML parser.

getString

L B-76 public abstract String getString()

Returns a string containing the body content after it has been evaluated.

writeOut

L B-77 public abstract void writeOut(Writer out) throws IOException

Writes the body content to the specified output writer.

BodyTag

Full Name: javax.servlet.jsp.tagext.BodyTag

Type: Interface

Superinterface: javax.servlet.jsp.tagext.IterationTag

An extension of the IterationTag interface which adds new methods having to do
with body handling.

Methods
doInitBody

L B-78 public void doInitBody() throws JspException

A lifecycle method called after setBodyContent(), but just before the body is
evaluated. If the body is evaluated multiple times, this method is called only once.

A p p e n d i x B : J S P A P I V e r s i o n 1 . 2 811
A

P
P

EN
D

IX
ES

setBodyContent

L B-79 public void setBodyContent(BodyContent b)

Invoked by the JSP servlet after the current JspWriter has been pushed and a new
BodyContent writer has been created. This occurs just after doStartTag().

BodyTagSupport

Full Name: javax.servlet.jsp.tagext.BodyTagSupport

Type: Class

Extends: javax.servlet.jsp.tagext.TagSupport

Implements: javax.servlet.jsp.tagext.BodyTag

A useful base class that implements all the methods of BodyTag. Tag handlers can
extend BodyTagSupport and override only those methods that need to be changed.

Constructors
BodyTagSupport

L B-80 public BodyTagSupport()

Creates a new BodyTagSupport object.

Methods
doAfterBody

L B-81 public int doAfterBody() throws JspException

Invoked at the end of each evaluation of the body. Returns Tag.SKIP_BODY by
default. If you override this method, you should return either Tag.SKIP_BODY
or IterationTag.EVAL_BODY_AGAIN.

doEndTag

L B-82 public int doEndTag() throws JspException

812 J S P : T h e C o m p l e t e R e f e r e n c e

Invoked at the end of the scope of a custom tag. Returns EVAL_PAGE by default but can
be overridden by an implementation that returns SKIP_PAGE.

doInitBody

L B-83 public void doInitBody() throws JspException

A lifecycle method called after setBodyContent(), but just before the body is
evaluated. If the body is evaluated multiple times, this method is called only once.
By default, this implementation does nothing.

doStartTag

L B-84 public int doStartTag() throws JspException

See doStartTag() in the Tag interface. This implementation returns
EVAL_BODY_BUFFERED.

getBodyContent

L B-85 public BodyContent getBodyContent()

Returns the current BodyContent.

getPreviousOut

L B-86 public JspWriter getPreviousOut()

Returns the surrounding JspWriter.

release

L B-87 public void release()

Releases the tag handler state.

setBodyContent

L B-88 public void setBodyContent(BodyContent b)

Stores a reference to the BodyContent object.

A p p e n d i x B : J S P A P I V e r s i o n 1 . 2 813
A

P
P

EN
D

IX
ES

IterationTag

Full Name: javax.servlet.jsp.tagext.IterationTag

Type: Interface

Superinterface: javax.servlet.jsp.tagext.Tag

An extension of the Tag interface that defines semantics for repeated evaluation of the
tag body.

Methods
doAfterBody

L B-89 public int doAfterBody() throws JspException

A lifecycle method called after the body has been evaluated, but while the BodyContent
writer is still active. This method must return either EVAL_BODY_AGAIN or SKIP_BODY.
If the return code is EVAL_BODY_AGAIN, the body is evaluated again and
doAfterBody() is called again.

PageData

Full Name: javax.servlet.jsp.tagext.PageData

Type: Abstract class

A class that can be listed in the TLD as a validator for a JSP page. Provides a method for
reading the XML document that corresponds to the JSP page.

Constructors
PageData

L B-90 public PageData()

Creates a new PageData object.

814 J S P : T h e C o m p l e t e R e f e r e n c e

Methods
getInputStream

L B-91 public abstract InputStream getInputStream()

Returns the JSP page as an XML document.

Tag

Full Name: javax.servlet.jsp.tagext.Tag

Type: Interface

A set of lifecycle methods that must be implemented by custom tag handlers.

Methods
doEndTag

L B-92 public int doEndTag() throws JspException

Called when the end tag has been encountered. The return code indicates whether the
JSP implementation servlet should continue with the rest of the page (EVAL_PAGE) or
not (SKIP_PAGE). The method can throw a JspException to indicate a fatal error.

doStartTag

L B-93 public int doStartTag() throws JspException

Called after the page context, parent, and any attributes coded on the start tag have
been set. The return code indicates whether the JSP implementation servlet should
evaluate the tag body (EVAL_BODY_INCLUDE or BodyTag.EVAL_BODY_BUFFERED)
or not (SKIP_BODY). The method can throw a JspException to indicate a fatal error.
BodyTag.EVAL_BODY_BUFFERED is valid only if the tag handler implements BodyTag.

A p p e n d i x B : J S P A P I V e r s i o n 1 . 2 815
A

P
P

EN
D

IX
ES

getParent

L B-94 public Tag getParent()

Returns the parent tag (the closest enclosing tag handler), or null if there is no
parent tag.

release

L B-95 public void release()

Guaranteed to be called before page exit. Allows the tag handler to release any
resources it holds and reset its state so it can be reused, if necessary.

setPageContext

L B-96 public void setPageContext(PageContext pc)

The generated servlet calls this method first before requiring the handler to do anything
else. The implementing class should save the context variable so it's available at any
point in the tag lifecycle. From the page context, the tag handler can access all the JSP
implicit objects and can get and set attributes in any scope.

setParent

L B-97 public void setParent(Tag t)

Sets the parent tag. Enables a tag handler to find the tag above it in the evaluation
stack. Called immediately after setPageContext.

TagAttributeInfo

Full Name: javax.servlet.jsp.tagext.TagAttributeInfo

Type: Class

A class describing information on the attributes of a tag, available at translation time.

816 J S P : T h e C o m p l e t e R e f e r e n c e

Constructors
TagAttributeInfo

L B-98 public TagAttributeInfo(

String name,

boolean required,

String type,

boolean reqTime)

Creates a new TagAttributeInfo. Intended to be called only from code in the
TagLibrary object.

Methods
canBeRequestTime

L B-99 public boolean canBeRequestTime()

True if this attribute can hold a request-time value.

getIdAttribute

L B-100 public static TagAttributeInfo getIdAttribute

(TagAttributeInfo[] a)

Utility method that searches an array of TagAttributeInfo objects for the attribute
that is named "id".

getName

L B-101 public String getName()

Returns the attribute name.

getTypeName

L B-102 public String getTypeName()

Returns the attribute type as a string.

A p p e n d i x B : J S P A P I V e r s i o n 1 . 2 817
A

P
P

EN
D

IX
ES

isRequired

L B-103 public boolean isRequired()

Returns true if the attribute is required.

toString

L B-104 public String toString()

Returns the object formatted as a string.

TagData

Full Name: javax.servlet.jsp.tagext.TagData

Type: Class

Implements: java.lang.Cloneable

Contains translation-time information about the attributes of a tag. Intended for use by
JSP containers only.

Constructors
TagData

L B-105 public TagData(Hashtable attrs)

Creates a new TagData object from a hashtable.

TagData

L B-106 public TagData(Object[][] atts)

Creates a new TagData object from a two-dimensional array of attribute/value pairs.

818 J S P : T h e C o m p l e t e R e f e r e n c e

Methods
getAttribute

L B-107 public Object getAttribute(String attName)

Returns the attribute having the specified name. Can also return
REQUEST_TIME_VALUE if the value must be specified at request
time, or null if the attribute was not specified in the tag.

getAttributes

L B-108 public Enumeration getAttributes()

Returns an Enumeration of the attributes.

getAttributeString

L B-109 public String getAttributeString(String attName)

Returns the attribute's value object in string form.

getId

L B-110 public String getId()

Returns the value of the id attribute, if it was specified.

setAttribute

L B-111 public void setAttribute(String attName, Object value)

Sets an attribute to the specified value.

A p p e n d i x B : J S P A P I V e r s i o n 1 . 2 819
A

P
P

EN
D

IX
ES

TagExtraInfo

Full Name: javax.servlet.jsp.tagext.TagExtraInfo

Type: Abstract class

A tag that needs to define variables or perform validation on its attributes must define
a class that extends the TagExtraInfo class. This subclass is associated with the custom
tag in the tag library descriptor.

Constructors
TagExtraInfo

L B-112 public TagExtraInfo()

Creates a new TagExtraInfo object.

Methods
getTagInfo

L B-113 public final TagInfo getTagInfo()

Returns the TagInfo for this class.

getVariableInfo

L B-114 public VariableInfo getVariableInfo(TagData data)

Based on the list of attribute names and values in the data parameter, constructs an
array of VariableInfo objects that describe the name, type, existence, and scope of
each scripting variable to create.

isValid

L B-115 public boolean isValid(TagData data)

Returns true if the attributes referred to in the TagData parameter are valid.

820 J S P : T h e C o m p l e t e R e f e r e n c e

setTagInfo

L B-116 public final void setTagInfo(TagInfo tagInfo)

Sets the TagInfo for this class.

TagInfo

Full Name: javax.servlet.jsp.tagext.TagInfo

Type: Class

An object representation of a Tag element in the tag library descriptor.

Constructors
TagInfo

L B-117 public TagInfo(

String tagName,

String tagClassName,

String bodycontent,

String infoString,

TagLibraryInfo taglib,

TagExtraInfo tagExtraInfo,

TagAttributeInfo attributeInfo)

Creates a new TagInfo object from a tag library descriptor in JSP 1.1 format.

TagInfo

L B-118 public TagInfo(

String tagName,

String tagClassName,

String bodycontent,

String infoString,

TagLibraryInfo taglib,

TagExtraInfo tagExtraInfo,

TagAttributeInfo attributeInfo,

A p p e n d i x B : J S P A P I V e r s i o n 1 . 2 821
A

P
P

EN
D

IX
ES

String displayName,

String smallIcon,

String largeIcon,

TagVariableInfo tvi)

Creates a new TagInfo object from a tag library descriptor in JSP 1.2 format.

Methods
getAttributes

L B-119 public TagAttributeInfo[] getAttributes()

Returns an array describing the attributes of this tag, or null if there are no attributes.

getBodyContent

L B-120 public String getBodyContent()

Returns the bodycontent attribute of this tag as specified in the tag library descriptor.

getDisplayName

L B-121 public String getDisplayName()

Returns the displayName attribute of this tag as specified in the tag library descriptor.

getInfoString

L B-122 public String getInfoString()

Returns the info element for this tag as specified in the tag library descriptor.

getLargeIcon

L B-123 public String getLargeIcon()

Returns the path to the large icon for this tag as specified in the tag library descriptor.

822 J S P : T h e C o m p l e t e R e f e r e n c e

getSmallIcon

L B-124 public String getSmallIcon()

Returns the path to the small icon for this tag as specified in the tag library descriptor.

getTagClassName

L B-125 public String getTagClassName()

Returns the name of the tag handler class.

getTagExtraInfo

L B-126 public TagExtraInfo getTagExtraInfo()

Returns the name of the tag extra information class.

getTagLibrary

L B-127 public TagLibraryInfo getTagLibrary()

Returns a reference to the TagLibraryInfo object for this tag.

getTagName

L B-128 public String getTagName()

Returns the tag name.

getTagVariableInfos

L B-129 public TagVariableInfo getTagVariableInfos()

Returns the TagVariableInfo objects associated with this TagInfo.

getVariableInfo

L B-130 public VariableInfo getVariableInfo(TagData data)

Returns a reference to the VariableInfo object for this tag.

A p p e n d i x B : J S P A P I V e r s i o n 1 . 2 823
A

P
P

EN
D

IX
ES

isValid

L B-131 public boolean isValid(TagData data)

Returns the results of evaluating the isValid() method of the associated
TagExtraInfo class.

setTagExtraInfo

L B-132 public void setTagExtraInfo(TagExtraInfo tei)

Stores a reference to the TagExtraInfo for this tag.

setTagLibrary

L B-133 public void setTagLibrary(TagLibraryInfo tl)

Sets the TagLibraryInfo property.

toString

L B-134 public String toString()

Returns the object as a string for debugging purposes.

TagLibraryInfo

Full Name: javax.servlet.jsp.tagext.TagLibraryInfo

Type: Abstract class

A class that encapsulates information associated with a taglib directive and its
underlying tag library descriptor (TLD).

Methods
getInfoString

L B-135 public String getInfoString()

Returns the info property from the TLD.

824 J S P : T h e C o m p l e t e R e f e r e n c e

getPrefixString

L B-136 public String getPrefixString()

Returns the prefix assigned in the taglib directive.

getReliableURN

L B-137 public String getReliableURN()

Returns the reliableURL property from the TLD.

getRequiredVersion

L B-138 public String getRequiredVersion()

Returns the required version of the JSP container.

getShortName

L B-139 public String getShortName()

Returns the short name property from the TLD.

getTag

L B-140 public TagInfo getTag(String shortname)

Returns the TagInfo object associated with a given tag name.

getTags

L B-141 public TagInfo[] getTags()

Returns an array of TagInfo objects for all tags defined in this tag library.

getURI

L B-142 public String getURI()

Returns the value of the uri attribute from the taglib directive.

A p p e n d i x B : J S P A P I V e r s i o n 1 . 2 825
A

P
P

EN
D

IX
ES

TagLibraryValidator

Full Name: javax.servlet.jsp.tagext.TagLibraryValidator

Type: Abstract class

A validator class that can be associated with a JSP page in the TLD. The validator
operates on the XML document representation of the JSP page.

Constructors
TagLibraryValidator

L B-143 public TagLibraryValidator()

Creates a new TagLibraryValidator.

Methods
getInitParameters

L B-144 public Map getInitParameters()

Returns the initialization parameters.

release

L B-145 public void release()

Releases validation data used by this validator.

setInitParameters

L B-146 public void setInitParameters(Map map)

Provides initialization key/value parameters to the validator.

validate

L B-147 public String validate

(String prefix, String uri, PageData page)

Validates the JSP page. Returns null if the page is valid.

826 J S P : T h e C o m p l e t e R e f e r e n c e

TagSupport

Full Name: javax.servlet.jsp.tagext.TagSupport

Type: Class

Implements: javax.servlet.jsp.tagext.IterationTag
java.io.Serializable

A concrete implementation of the Tag interface. Tag handlers can extend this class and
implement only those methods that need to be changed.

Constructors
TagSupport

L B-148 public TagSupport()

Creates a new TagSupport object.

Methods
doAfterBody

L B-149 public int doAfterBody() throws JspException

Invoked after the tag body is evaluated.

doEndTag

L B-150 public int doEndTag() throws JspException

Called when the end tag has been encountered. The return code indicates whether
the JSP implementation servlet should continue with the rest of the page (EVAL_PAGE)
or not (SKIP_PAGE). The method can throw a JspException to indicate a fatal error.
The TagSupport implementation returns EVAL_PAGE.

doStartTag

public int doStartTag() throws JspException

Called after the page context, parent, and any attributes coded on the start tag have
been set. The return code indicates whether the JSP implementation servlet should
evaluate the tag body (EVAL_BODY_INCLUDE or BodyTag.EVAL_BODY_BUFFERED)
or not (SKIP_BODY). The method can throw a JspException to indicate a fatal error.

A p p e n d i x B : J S P A P I V e r s i o n 1 . 2 827
A

P
P

EN
D

IX
ES

BodyTag.EVAL_BODY_BUFFERED is valid only if the tag handler implements
BodyTag. The TagSupport implementation returns SKIP_BODY.

findAncestorWithClass

L B-151 public static final Tag findAncestorWithClass

(Tag from, Class klass)

Searches the stack of parent tags for the nearest tag handler of the specified class.
This enables an "inner" tag to access information in its enclosing tags.

getId

L B-152 public String getId()

Returns the value of the id attribute of this tag.

getParent

L B-153 public Tag getParent()

Returns the immediate parent tag of this tag handler instance.

getValue

L B-154 public Object getValue(String k)

Returns the object stored in this tag handler under the given name.

getValues

L B-155 public Enumeration getValues()

Returns an enumeration of the names of the values stored in this tag handler.

release

L B-156 public void release()

Guaranteed to be called before page exit. Enables the tag handler to release any
resources it holds and reset its state so it can be reused, if necessary.

828 J S P : T h e C o m p l e t e R e f e r e n c e

removeValue

L B-157 public void removeValue(String k)

Removes the value stored in this tag handler under the specified name, if any.

setId

L B-158 public void setId(String id)

Sets the id attribute for this tag.

setPageContext

L B-159 public void setPageContext(PageContext pageContext)

The generated servlet calls this method first before requiring the handler to do anything
else. The implementing class should save the context variable so it's available at any
point in the tag lifecycle. From the page context, the tag handler can access all the JSP
implicit objects and can get and set attributes in any scope.

setParent

L B-160 public void setParent(Tag t)

Sets the parent tag. Enables a tag handler to find the tag above it in the evaluation
stack. Called immediately after setPageContext.

setValue

L B-161 public void setValue(String k, Object o)

Stores the object under the specified name in the tag handler.

TagVariableInfo

Full Name: javax.servlet.jsp.tagext.TagVariableInfo

Type: Class

A class that encapsulates tag variable information extracted from a tag library.

A p p e n d i x B : J S P A P I V e r s i o n 1 . 2 829
A

P
P

EN
D

IX
ES

Constructors
TagVariableInfo

L B-162 public TagVariableInfo(

String nameGiven,

String nameFromAttribute,

String className,

boolean declare,

int scope)

Creates a new TagVariableInfo object.

Methods
getClassName

L B-163 public String getClassName()

Returns the value of the <variable-class> element in the TLD.

getDeclare

L B-164 public boolean getDeclare()

Returns the value of the <declare> element in the TLD.

getNameFromAttribute

L B-165 public String getNameFromAttribute()

Returns the value of the <name-from-attribute> element in the TLD.

getNameGiven

L B-166 public String getNameGiven()

Returns the value of the <name-given> element in the TLD.

830 J S P : T h e C o m p l e t e R e f e r e n c e

getScope

L B-167 public int getScope()

Returns the value of the <scope> element in the TLD.

TryCatchFinally

Full Name: javax.servlet.jsp.tagext.TryCatchFinally

Type: Interface

An additional interface that can be implemented by tag handlers to enable them to be
called in the catch and finally blocks of the tag invocation.

Methods
doCatch

L B-168 public void doCatch(Throwable t) throws Throwable

This method is invoked in the catch block if an exception occurs while evaluating
the body of a tag.

doFinally

L B-169 public void doFinally()

This method is invoked in the finally block if an exception occurs while evaluating
the body of a tag.

VariableInfo

Full Name: javax.servlet.jsp.tagext.VariableInfo

Type: Class

A data structure that provides configuration information about scripting variables
created by a custom tag. Use primarily in the getVariableInfo() method of a
TagExtraInfo subclass.

A p p e n d i x B : J S P A P I V e r s i o n 1 . 2 831
A

P
P

EN
D

IX
ES

Constructors
VariableInfo

L B-170 public VariableInfo(

String varName,

String className,

boolean declare,

int scope)

Creates a new VariableInfo object. The parameters are as follows:

� varName The name of the variable to be created

� className The fully qualified name of the variable class

� declare A boolean value that is true if the generated servlet should contain
a declaration for the variable

� scope An integer representing the scope of the variable. May be AT_BEGIN,
AT_END, or NESTED.

Methods
getClassName

L B-171 public String getClassName()

Returns the class name.

getDeclare

L B-172 public boolean getDeclare()

Returns the boolean attribute representing whether the variable should be declared or not.

getScope

L B-173 public int getScope()

Returns the integer representing the variable scope.

getVarName

L B-174 public String getVarName()

Returns the variable name.

832 J S P : T h e C o m p l e t e R e f e r e n c e

Appendix C
HTTP Reference

833

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

834 J S P : T h e C o m p l e t e R e f e r e n c e

This appendix consists of two tables, one describing Hypertext Transfer Protocol
(HTTP) response codes and another describing HTTP headers. For more details
about HTTP, refer to the specification, RFC 2616.

HTTP Response Codes
Response codes are three-digit numeric codes that appear on the first line of the response
sent by an HTTP server. There are five categories of response codes, indicated by their
first digit:

� 1xx: Informational Request received, continuing process

� 2xx: Success The action was successfully received, understood, and accepted

� 3xx: Redirection Further action must be taken in order to complete the request

� 4xx: Client Error The request contains bad syntax or cannot be fulfilled

� 5xx: Server Error The server failed to fulfill an apparently valid request

The following table lists the individual code and their meanings:

Response Code Meaning

100 Continue

101 Switching Protocols

200 OK

201 Created

202 Accepted

203 Non-Authoritative Information

204 No Content

205 Reset Content

206 Partial Content

300 Multiple Choices

301 Moved Permanently

302 Found

303 See Other

Response Code Meaning

304 Not Modified

305 Use Proxy

307 Temporary Redirect

400 Bad Request

401 Unauthorized

402 Payment Required

403 Forbidden

404 Not Found

405 Method Not Allowed

406 Not Acceptable

407 Proxy Authentication Required

408 Request Time-out

409 Conflict

410 Gone

411 Length Required

412 Precondition Failed

413 Request Entity Too Large

414 Request-URI Too Large

415 Unsupported Media Type

416 Requested range not satisfiable

417 Expectation Failed

500 Internal Server Error

501 Not Implemented

502 Bad Gateway

503 Service Unavailable

504 Gateway Time-out

505 HTTP Version not supported

A p p e n d i x C : H T T P R e f e r e n c e 835
A

P
P

EN
D

IX
ES

HTTP Headers
Headers are key/value pairs that describe attributes of the client or server, the resources
to be transmitted, and how the connection should operate. There are four different types
of headers:

� General headers Can be used either in a request or a response, and relate to
the transaction as a whole rather than specific resources.

� Request headers Allow a client to pass information about itself and the form
of response it is expecting.

� Response headers Used by a server to pass information about itself and
the response.

� Entity headers Define information about the resource being transferred.
Can be used either in a request or a response.

Headers are sent as individual lines of text in the form

<name>: <value><CRLF>

where

name is the header name, which is case insensitive;
value is the header value; and
CRLF is a carriage return/line feed.

Note that there is a colon and one or more spaces separating the name from the value.
A JSP page can read HTTP headers using the getHeader() method of its request

object, and can write them with response.setHeader(). java.net.URLConnection
provides similar methods for accessing headers in a URL stream.

The following table describes the headers available in HTTP/1.1:

Header Description

Accept Specifies media types that the client is able to handle, in
order of preference. Multiple types may be specified in a
comma-separated list. Wildcards are acceptable. Example:

Accept: image/jpeg, image/pjpeg, image/png,
/

836 J S P : T h e C o m p l e t e R e f e r e n c e

Header Description

Accept-Charset Specifies character sets that the client is able to handle, in
order of preference. Multiple types may be specified in a
comma-separated list. Wildcards are acceptable. Example:

Accept-Charset: iso-8859-1,*,utf-8

Accept-Encoding Specifies the encoding mechanisms that the client
understands. Example:

Accept-Encoding: gzip,compress

Accept-Language Specifies the list of natural languages that the client
prefers. Example:

Accept-Language: en,de

Accept-Ranges A response header that allow the server to indicate that it
will accept requests for parts of a resource at a given offset
and length. The value of the header is the unit of measure
in which range requests are understood. Examples:

Accept-Ranges: bytes
Accept-Ranges: none

Age Allows the server to specify the length of time in seconds
that has elapsed since the response was generated on the
server. This header is primarily used with cached
responses. Example:

Age: 30

Allow A response header that specifies a list of HTTP methods
supported by the resource in the request URI. Example:

Allow: GET, HEAD, PUT

Authorization A request header used to specify the credentials (the realm
and encoded user ID and password) necessary to access a
resource. Example:

Authorization: Basic YXV0aG9yOnBoaWw=

A p p e n d i x C : H T T P R e f e r e n c e 837
A

P
P

EN
D

IX
ES

838 J S P : T h e C o m p l e t e R e f e r e n c e

Header Description

Cache-Control A general header used to specify caching directives.
Example:

Cache-Control: max-age=30

Connection A general header used to indicate whether or not to keep
the socket connection open. Examples:

Connection: close
Connection: keep-alive

Content-Base An entity header that specifies the base URI for resolving
relative URLs within the entity. If the Content-Base header

is not specified, then relative URLs are resolved using
either the Content-Location URI (if it is present and
absolute) or using the request URI. Example:

Content-Base: http://www.lyricnote.com

Content-Encoding A modifier to the media type that indicates how an entity
has been encoded (zipped, compressed, and so on.) Example:

Content-Encoding: gzip

Content-Language Used to specify the natural language of the data in the
input stream. Example:

Content-Language: en

Content-Length Specifies the length in bytes of the data contained in the
request or response. Example:

Content-Length: 382

Content-Location Specifies the location (URI) of the resource contained in
the request or response. If this is an absolute URL, it also
functions as the base from which relative URLs in the entity
are resolved. Example:

Content-Location:
http://www.lyricnote.com/newsletter

Header Description

Content-MD5 An MD5 digest of the entity body, used as a checksum.
The sender and receiver both compute the MD5 digest.
The receiver compares its computed value against the
value transmitted in this header. Example:

Content-MD5: <base64 of 128 bit MD5 digest>

MD5 is described in RFC 1321.

Content-Range Sent with a partial entity body; indicates the low and high
byte offset of the section to be inserted. Also indicates the
total length of the entity body. Example:

Content-Range: 1001-2000/5000

Content-Type Indicates the MIME type of an entity body sent or received.
Example:

Content-Type: text/html

Date The date at which the HTTP message was sent. Example:

Date: Mon, 06 Mar 2000 18:42:51 GMT

ETag An entity header which assigns a unique identifier to the
resource being sent. For resources that can be requested
using more than one URL, the ETag can be used to
determine whether the same resource is actually sent.
Example:

ETag: "208f-419e-30f8dc99"

Expires Specifies a date after which the entity should be
considered stale. Example:

Expires: Mon, 05 Dec 2008 12:00:00 GMT

From A request header giving the e-mail address of the human
user who controls the user agent. Example:

From: webmaster@lyricnote.com

A p p e n d i x C : H T T P R e f e r e n c e 839
A

P
P

EN
D

IX
ES

Header Description

Host The host name (and, optionally, port number) of the
resource being requested. This field is mandatory for
requests made using HTTP/1.1. Example:

Host: www.lyricnote.com

If-Modified-
Since

If included with a GET request, makes the request
conditional upon the last modification date of the
resource. If this header is present and the resource has
not been modified since the specified date, a 304 (not
modified) response should be returned. Example:

If-Modified-Since: Wed, 01 Mar 2000 12:00:00
GMT

If-Match If included in a request, specifies one or more entity tags
(see ETag). The resource is only sent if its ETag matches
one in the list. Example:

If-Match: "208f-419e-30f8dc99"

If-None-Match If included in a request, specifies one or more entity tags
(see ETag). The operation is only performed if the
resource's ETag matches none of the entries in the list.
Example:

If-None-Match: "208f-419e-30f8dc99"

If-Range Specifies an entity tag (see ETag) for a resource that the
client already has a copy of. Must be used together with a
Range header. If the entity has not been modified since the
last time it was retrieved by the client, the server will send
only the range specified, otherwise, it will send the entire
resource. Example:

Range: bytes=0-499
If-Range: "208f-419e-30f8dc99"

If-Unmodified-
Since

Similar to but opposite in sense from If-Modified-Since.
The requested entity is only returned if it has not been
modified since the specified date. Example:

If-Unmodified-Since: Wed, 01 Mar 2000 12:00:00
GMT

840 J S P : T h e C o m p l e t e R e f e r e n c e

Header Description

Last-Modified Specifies the date and time the requested resource was last
modified. Example:

Last-Modified: Wed, 08 Mar 2000 12:00:00 GMT

Location Used to redirect the requester to another location for a
resource that has moved. Used in conjunction with a 302
(moved temporarily) or 301 (moved permanently) status
code. Example:

Location:
http://www2.lyricnote.com/index.jsp

Max-Forwards A request header used with the TRACE method to specify
the maximum number of proxies or gateways through
which the request can be routed. Proxies or gateways
should decrement the number before passing on the
request. Example:

Max-Forwards: 3

Pragma A general header that sends implementation-specific
information. Example:

Pragma: no-cache

Proxy-
Authenticate

Similar to WWW-Authenticate, but designed to request
authentication only from the next server in the request
chain (a proxy). Example:

Proxy-Authenticate: Basic realm=Admin

Proxy-
Authorization

Similar to Authorization, but not intended to pass any
further than a proxy server in the immediate server chain.
Example:

Proxy-Authorization: Basic YXV0aG9yOnBoaWw=

Public Lists the set of methods supported by the server.
Example:

Public: OPTIONS, MGET, MHEAD, GET, HEAD

A p p e n d i x C : H T T P R e f e r e n c e 841
A

P
P

EN
D

IX
ES

842 J S P : T h e C o m p l e t e R e f e r e n c e

Header Description

Range Specifies a unit of measure and a range of offsets from
which a partial resource is requested. Example:

Range: bytes=206-5513

Referer A (misspelled) request header field that indicates
the original resource from which a request was made.
For HTML forms, this is the address of the Web page
containing the form. Example:

Referer: http://www.lyricnote.com/product/
search.html

Retry-After A response header field sent by a server in conjuction with
a 503 (Service Unavailable) status to indicate how long to
wait before requesting the resource again. The time can
either be a date or a number of seconds. Examples:

Retry-After: 18
Retry-After: Thu, 09 Mar 2014 16:45:15 GMT

Server A response header that indicates the identity and version
number of the Web server software. Example:

Server: Apache/1.3.12 (Win32)

Transfer-
Encoding

A general header that indicates the type of transformation
that has been performed on the message body that should
be reversed by the receiver. Example:

Transfer-Encoding: chunked

Upgrade Allows a server to specify a new protocol or protocol
version. Used in conjunction with the 101 (Switching
Protocols) response code. Example:

Upgrade: HTTP/2.0

Header Description

User-Agent Specifies the type of software used to make the request
(typically, a Web browser). Examples:

User-Agent: Mozilla/4.0 (compatible; MSIE
5.5; Windows NT; DigExt)
User-Agent: Mozilla/4.7 [en] (WinNT; I)

Vary A response header field used to signal that the response
entity was selected from the available representations of
the response using server-driven negotiation. Example:

Vary: *

Via A general header containing a list of all intermediate hosts
and protocols use to satisfy the request. Example:

Via: 1.0 fred.com, 1.1 wilma.com

Warning A response header used to supply additional information
about the status of a response. Example:

Warning: 99 www.lyricnote.com Piano needs
tuning

WWW-
Authenticate

A response header challenging the user agent to supply
a user ID and password. Used in conjunction with the 401
(Not authorized) status code. Expects an Authorization
header in reply. Example:

WWW-Authenticate: Basic realm=lyricnote_mgmt

A p p e n d i x C : H T T P R e f e r e n c e 843
A

P
P

EN
D

IX
ES

This page intentionally left blank.

Index

Symbols
<%@include%> directive. See include

directive
<% and %> markers, 90, 91

A
accept attribute, 267
accept-charset attribute, 267
action attribute, 263, 264
action class, 660–662

CustomerNewProblemAction, 669–670
CustomersListSelectAction, 667–668
CustomersSearchAction, 666–667
ProblemSubmitAction, 674–675
ProductsListSelectAction, 671–672
ProductsSearchAction, 670–671
ProductsSelectAction, 672–673

actions
<jsp:include>, 83–84
syntax for standard, 75–77, 83–84

Active Server Pages (ASP), 704
addCookie method, 777, 780
addDateHeader method, 777, 780
addHeader method, 777, 781
addIntHeader method, 777, 781
airport selection for weather

information, 444–448
applets

as clients, 689–695
evolution of, 689

application objects
application implicit objects, 98, 103–104
in case study Model class, 588–615
Util class in product support

application, 613–615
WebModel class in product support

application, 611–613
application root of Web application, 530, 531
application scope, 412–413
application/x-www-form-urlencoded

encoding technique, 265–266

845
Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

applications
definition of Web, 530
directory structure of Web, 530–532
evolution of programming model

for Web, 6–9
flow and view/controller interaction,

631–633
handling authentication requests

in multithreaded, 407–410
Java applications as clients, 684–689
mapping characteristics to HTTP

environment, 411–413
Number Guess Guesser, 360,

374–378
options for sending e-mail from, 710
for Price Quote client, 687–689
shift from client-side to

server-side, 9
See also LyricNote.com sample

applications; product
support application

architecture
of JDBC driver types, 304
Model 1 vs. Model 2 development,

159–160
See also MVC system architecture

ASCII_markersTable JSP, 93
ASP (Active Server Pages), 704
attributeAdded method, 737, 787
attributeRemoved method, 737, 787
attributeReplaced method, 737, 788
attributes

defining for custom tags, 186
defining tag, 212–219
in DTD, 456, 457
of FORM element, 264–268
for <jsp:setProperty> tag, 430,

432–434
for <jsp:useBean> tag, 425–430
for page directive, 66–67, 162,

171, 181
validating tag, 236

authentication requests in
multithreaded applications, 407–410

autoFlush attribute for page directive,
172–173, 181

B
Banner.jsp, 634
Base64 encoding, 526
beans

bean properties, 416–419
customizing weather information

using, 434–444
declaring view page model as

session beans, 633
persistence and serialization of, 416,

419–424
sample code for Mortgage, 416–419
support for event listeners, 419
weather Observation, 435

Berners-Lee, Tim, 6
body tag handler API, 219–223

life cycle of, 223–226
methods in BodyTagSupport class,

222–223
methods of BodyContent class for,

219–221
methods of BodyTag interface,

221–222
BodyContent class, 219–221, 810–811
BodyTag class, 221–222, 811–812
BodyTagSupport class, 190, 222–223,

812–813
BornBetween query example, 324–328
BoundConnection constructor, 385–390
browsers. See Web browsers
buffer attribute for page directive,

172–173, 181
business objects, 558–587

in Customer class, 558–561
in CustomerProduct class, 565–568
in Employee class, 568–579
in Problem class, 579–584
in ProblemLog class, 584–587
in Product class, 561–565
product support application

objects vs., 588
residence in Model application

container, 588
buttons

defined, 263
as input elements, 282

846 J S P : T h e C o m p l e t e R e f e r e n c e

C
call center agent

role in process flow, 552, 553, 554
system entry points for, 631, 632
verifying customer entitlement,

565–568
CallableStatement interface, 295, 322–328
callback methods, 25
canBeRequestTime method, 817
case study. See product support application
case tag, 240–243
cell width for tables, 124–126
CFML, 704
CGI (Common Gateway Interface)

defined, 354
development of, 7–8
as server, 704, 719

character sets in HTML forms, 267
check boxes

defined, 263
as input elements, 273

.class files, 194
classes

Action, 660–662
BodyContent, 219–221, 810–811
BodyTag, 811–812
BodyTagSupport, 812–813
compilation of servlet source code

to Java class, 494
comprising session API, 369
controller, 658–675
CounterBean, 423–424
Customer, 558–561
CustomerNewProblemAction,

669–670
CustomerProduct, 565–568
CustomersListSelectAction, 667–668
CustomersSearchAction, 666–667
declarations defining inner,

128–131, 132
declarations written to enclosing, 112
declaring and initializing variables,

117–122, 131–132
Employee, 568–579

encapsulating business entities
in data model, 558

Filter, 724–725
FilterChain, 725
FilterConfig, 725–726
GenericServlet, 33–34, 726–729
HttpJspPage, 794–795
HttpServlet, 763–767
HttpServletRequest, 767–772
HttpServletRequestWrapper, 772–777
HttpServletResponse, 777–780
HttpServletResponseWrapper,

780–783
HttpSession, 783–786
HttpSessionActivationListener,

786–787
HttpSessionAttributesListener,

787–788
HttpSessionBindingEvent, 788–789
HttpSessionBindingListener, 789
HttpSessionListener, 791
HttpUtils, 791
IterationTag, 814
java.net.HttpURLConnection class,

683–684
java.net.URLConnection, 682
JavaBeans as Java, 424–425
for javax.servlet.http package,

760–792
for javax.servlet package, 724–759
JDBC, 293–296
JspEngineInfo, 795
JspException, 795–796
JspFactory, 796–798
JspPage, 798–799
JspWriter, 800–804
model classes for case study, 557–631
PageContext, 804–809
PageData, 814–815
Problem, 579–584
ProblemLog, 584–587
ProblemSubmitAction, 674–675
Product, 561–565
ProductParser, 479
ProductsListSelectAction, 671–672
ProductsSearchAction, 670–671

I n d e x 847

ProductsSelectAction, 672–673
RequestDispatcher, 158, 729–730
servlet, 31–47
Servlet API version 2.3 deprecated, 724
ServletRequestWrapper, 747–752
ServletResponse, 752–755
ServletResponseWrapper, 755–757
Shell, 616–630
SingleThreadModel, 758
Tag, 815–816
TagAttributeInfo, 816–818
TagData, 818–819
TagExtraInfo, 227–235, 820–821
TagInfo, 821–824
TagLibraryInfo, 824–825
TagLibraryValidator, 826
TagSupport, 202, 827–829
TagVariableInfo, 829–831
TryCatchFinally, 831
UnavailableException, 758–759
Util, 613–615
VariableInfo, 831–832
view, 631–658
in Web application directory

structure, 531
WebModel, 611–613
See also Shell class; superclasses;

and specific classes by name
clear method, 800
clearBody method, 810
clearBuffer method, 800
clients, 680–702

Java applets as, 689–695
Java applications as, 684–689
Perl, 696–701
types of nonbrowser, 680
URL connections, 680–684
Web browsers as, 164

client-side applications, 9
clone method, 760
close method, 800
Cold Fusion, 704
columns in JDBC result sets, 336–338
comments

syntax for, 68–69

using TagSupport class for, 205
Common Gateway Interface. See CGI
compilation

compiling source code for tag
handlers, 191

detecting errors in, 494–499
distinguishing compilation and

run-time errors, 499
compiled servlet class, 494
config implicit object, 98, 106
Confirm.jsp view page, 647–649
confirmation page for product support

application, 649, 657, 660
connect() method, 593, 594
connect tag

developing tag handler for, 250–252
function of, 247, 248, 249

connecting to databases
connecting to PDA database with

RowSet interface, 338
establishing connection from

Shell class, 628–630
JDBC databases, 307–308
JDBC URL argument and, 308
methods for, 594
opening connections, 294, 295

connectors for out-of-process servlet
engine model, 134, 135

constants
describing scrollable result sets, 334
EVAL_BODY_INCLUDE, 222
EVAL_BODY_TAG, 221, 222

constructors
for BodyTagSupport, 812
for BoundConnection, 385–390
for Cookie class, 760–763
for GenericServlet, 727
for HttpServlet, 764
for HttpServletRequestWrapper, 772
for HttpServletResponseWrapper, 780
for HttpSessionBindingEvent, 788
for HttpSessionEvent class, 790–791
for HttpUtils, 791, 792
for JspEngineInfo, 795
for JspException class, 796

848 J S P : T h e C o m p l e t e R e f e r e n c e

for JspFactory, 797
for JspTagException, 799
for PageContext, 804
for PageData class, 814
for ServletContextAttributeEvent, 736
for ServletContextEvent, 738
for ServletException class, 739
for ServletRequestWrapper, 748
for ServletResponseWrapper, 755–757
for Shell class, 567–568
for TagAttributeInfo class, 817
for TagData, 818
for TagExtraInfo, 820
for TagInfo, 821–822
for TagLibraryValidator class, 826
for TagSupport, 827–829
for TagVariableInfo, 830
for UnavailableException, 758–759
for VariableInfo, 831–832

Contact Us form, 285–287
adding script block into HTML

form, 285
data extracted from, 290
server program for, 288–289, 290
setting trigger for validation on, 285
writing validation functions, 286–287

containers
expressions and scriptlets in JSP, 65–66
initialization and exit code generated

by, 96–97
JSP container transforming JSP page,

55, 194–195
out.write() statement in JSP, 94
translating and invoking JSP page

with JSP, 194–195
containsHeader method, 778, 781
content

incorporating dynamic, 136
splitting from presentation, 134,

154–157
of Web applications, 530–531
XML solution to separating

presentation and, 453
content types for HTML forms, 267

contentType attribute for page directive,
174, 181

context
functions of servlet, 535
PageContext class, 804–809
pageContext implicit object, 98,

100–101, 128
storing references to servlet, 45

context layers
illustrated, 100
pageContext implicit object and,

100–101
contextDestroyed method, 738
contextInitialized method, 739
controller

accepting and responding to user
input with, 557

classes for case study, 658–675
defined, 557
functions of, 658–660
See also controller classes;

ControllerServlet
controller classes, 658–675

controller servlet, 662–666
CustomerNewProblemAction class,

669–670
CustomersListSelectAction class,

667–668
CustomersSearchAction class, 666–667
functions of controller, 658–660
listing of Action base class, 660–662
ProblemSubmitAction class, 674–675
ProductsListSelectAction class,

671–672
ProductsSearchAction class, 670–671
ProductsSelectAction class, 672–673

ControllerServlet
function of, 658
listing for, 662–666

conversion tables
fuel efficiency, 27–31, 56–60
U.S. to Canadian dollars, 705–710

cookies
browser support turned off for, 368
constructors and methods for, 760–763

I n d e x 849

customizing weather information
using, 445–446

providing in HTTP sessions, 50
session tracking with, 363–369,

371–372, 413–414
setting and retrieving with HTTP

headers, 364
copying source code with include

directive, 139–140
counter.jsp page, 361, 362
CounterBean class, 423–424
creating

sessions, 370–372
and starting threads, 391–398

custom tags
about, 184, 258
attributes defined for, 212–219
benefits of, 184–186
body tag handler API and, 219–223
creating entry in Tag Library

Descriptor, 187–188
defining, 186–187
defining scripting variables, 186,

226–227
function of tag handlers, 196
illustration of incorporated, 193
incorporating into JSP page, 192–194
writing tag handler for, 188–191
See also tags

customer
detail page for, 639
search page in product support

application, 636
as system entry point for product

support application, 631, 632
Customer class, 558–561
Customer.jsp view page, 638–643
CustomerList.jsp view page, 637–638
CustomerNewProblemAction class,

669–670
CustomerProduct class, 565–568
Customers.jsp view page, 635–636
CustomersListSelectAction class, 667–668
CustomersSearchAction class, 666–667
customizing weather information on portal

Web page, 444–448

D
data

extracted from Contact Us form, 290
extracting from result sets, 328–332
See also metadata

data model for product support application
about, 554–555
business objects in, 558–587
See also models

database query example
connect tag in, 247, 248, 249
forEachRow tag function in, 247, 248
getField tag in, 247, 249
implementing with custom tags,

247–258
runQuery tag in, 247, 248
TLDs for, 248–249

databases
access in MVC architecture, 556
access with JDBC 2.0 and JNDI,

293, 295
connecting to JDBC, 307–308
database metadata, 339–343
database tables in product support

application, 554–555
establishing connection from Shell

class, 628–630
implementing queries with custom

tags, 247–258
issuing SQL statements in JDBC,

294, 295
loading driver classes, 294, 295
methods for connecting to, 594
naming data sources in JSP pages

with JDBC connections, 307
opening connection, 294, 295
RowSet interface in PDA database

connections, 338
See also database query example;

JDBC
debugging tools, 500–528

about, 500–501
capturing form parameters with

Echo.jsp, 501–504
tracing HTTP requests with Tracer,

510–528

850 J S P : T h e C o m p l e t e R e f e r e n c e

WebClient, 504–510
See also testing and debugging

declarations, 112–132
access to implicit objects, 128
defined, 112, 131
defining inner classes, 128–131, 132
example of, 86–87
generating code for, 112–117
in method definitions, 122–128, 132
overriding jspInit() and jspDestroy()

methods, 126–127
syntax for, 71–73, 112
uses for, 117
variable, 117–122, 131–132

default tag, 243–244
default threading model, 403–405
defining scripting variables, 186, 226–236

overview, 227
synchronizing scripting variables,

235–236
with TagExtraInfo class, 227–235
validating tag attributes, 236

delimiters
for expressions, 90, 91
in opening syntax of declarations

and scriptlets, 112
deploying Web applications, 530–549

definition of Web applications, 530
deployment descriptor in, 538–547
directory structure of Web

applications, 530–532
functions of servlet context, 535
resource mapping, 532–535
sample deployment descriptor,

547–549
standardizing with Servlet 2.2

specification, 530, 549
Web archive (.war) files, 535–537, 549

deployment descriptor
in deploying Web applications,

538–547
sample code for, 547–549

deserialization, 419
destroy method, 27, 727, 730
destroying sessions, 373–374

developer's role in process flow, 552, 553,
554

developing product support application
creating supporting modules in,

633–635
developing JSP pages, 555–556
writing Model and Shell classes in

tandem, 630–631
directives, 65–68, 83

about, 65
include, 67–68, 136–140
page, 66–67
taglib, 68, 192
See also include directive; taglib

directive
directory structure of Web applications,

530–532
disconnect() method, 594
doAfterBody method, 812, 814, 827
doCatch method, 831
document element, 454
Document Object Model parser. See DOM

parser
document type definition. See DTD
DocumentHandler interface

defined, 474
methods defined by, 475

documents
DOM representations of, 458
generating XML document from JSP

page, 684–689
locating with URLs, 532–535

doDelete method, 764
doEndTag method, 812–813, 815, 827
doFilter method, 724–725
doFinally method, 831
doGet method, 764
doHead method, 765
doInitBody method, 811, 813
DOM (Document Object Model) parser,

457, 458–472, 491
example in JSP page, 464–472
exceptions to, 464
levels of, 458, 461
node collection interfaces, 462–463
node interface of, 458–461

I n d e x 851

node metadata, 463
SAX vs., 485
subinterfaces of node, 461–466

DOMImplementation interface, 463
doOptions method, 765
doPost method, 765
doPut method, 766
doStartTag method, 813, 815, 827
doTrace method, 766
DriverManager class, 296, 307
drivers, 301–307

creating database connections
with, 307

JDBC-ODBC bridge, 292, 303, 305
loading driver classes, 294, 295
overview of JDBC, 292, 301–303
registering JDBC, 305–307
types of JDBC, 303, 304

DTD (document type definition), 454–457
attributes in, 456, 457
elements in, 456–457
finding for TLD, 197
format of deployment descriptor, 538
role of, 455–456

DTDHandler interface, 474
dynamic content

avoiding dynamic syntax errors
with prepared statements, 320–322

incorporating on JSP pages, 136
technologies providing, 704

E
Echo.jsp, 501–504
elements

comments, 68–69
declarations, 71–73, 86–87
directives, 65–68, 83
in DTD, 456–457
expressions, 69–70, 85
form input, 268–285
implicit objects, 74–75
scriptlets, 70–71, 84
specifying order of within

<web-app> body, 538

types of JSP, 65
for use in deployment descriptor,

538–547
See also FORM element; form input

elements; INPUT tag elements
e-mail

options for sending from
applications, 710

of product support problem
supports, 715–719

sending from JSP page, 710–719
sending with JavaMail, 713–715
sending with SMTP over TCP/IP

sockets, 711–712
sun.net.smtp.SmtpClient class

option for, 712
Employee class, 568–579
encodeRedirectUrl method, 778, 781
encodeRedirectURL method, 778, 781
encodeUrl method, 778, 781
encodeURL method, 778, 782
enctype attribute, 263, 265–267

about, 265
application/x-www-form-urlencoded

type of, 265–266
multipart/form-data type of, 266–267

entity headers, 836
EntityResolver interface, 474
enumerate tag

illustrated output for, 235
sample code for, 229–235

error pages for exceptions, 179, 180
ErrorHandler interface, 474
errorPage attribute for page directive,

176–180, 181
ErrorPage.jsp, 634–635
errors

avoiding dynamic syntax errors with
prepared statements, 320–322

creating error module for view
pages, 634–635

detecting in compilation, 494–499
distinguishing compilation and

run-time, 499
errorPage and isErrorPage attributes

for page directive, 176–180, 181

852 J S P : T h e C o m p l e t e R e f e r e n c e

initiated in debugging environment,
500–501

isolating failing components, 499–500
sample code for diagnostic error

page, 179, 180
substituting browser error messages

for servlet, 495
turning messages on/off, 495

EVAL_BODY_INCLUDE constant, 222
EVAL_BODY_TAG constant, 221, 222
event listeners, bean support for, 419
exception implicit object, 98, 106
exceptions

displaying with servlet, 179
to DOM parser, 464
error pages for, 179, 180
run-time exceptions implementing

BodyTag interface, 222
execute method, 312–314
executeBatch method, 314–316
executeQuery method, 311–312
executeUpdate method, 310–311
expressions and scriptlets, 90–109

application implicit object, 98,
103–104

config implicit object, 98, 106
container-generated initialization

and exit code, 96–97
context layers and pageContext

implicit object, 100–101
delimiters for expressions, 90, 91
exception implicit object, 98, 106
expressions defined, 90–91
handling by JSP container, 65–66
HTML template data and

expressions, 94
implicit objects available within,

97–106
initialization parameters, 107–109
out implicit object, 98, 104–105
page implicit object, 106
request implicit objects, 97, 98–100
response implicit objects, 97, 99–100
sample code from scriptlets, 94–96
scriptlets defined, 91–93
semicolons inside expressions, 70, 91

session implicit object, 98, 102–103
syntax of expressions, 69–70, 85

extends attribute for page directive,
164–170, 181

example of JSP superclass, 166–170
overview, 164, 181
required interfaces for JSP

superclass, 164–166
Extensible Markup Language. See XML
Externalizable interface, 416, 424
extracting data from result sets, 328–332

F
file selection elements, 263
file upload input fields, 276–280
filenames

get and set methods for problem ID,
593

in include directive, 136–138
in <jsp:include> action, 140

files
.class, 194
debugging with Echo.jsp, 501–504
effect of changes in included, 138
.jar, 535
.java, 194
.jsp, 64, 194
limitations on size of uploaded, 277
mapping tag libraries to web.xml,

199–200
for three forms of JSP page, 54–56,

64, 194
.war, 535–537, 549
web.xml, 199–200, 531, 538–547
See also filenames

FilterChain class, 725
FilterConfig class, 725–726
findAncestorWithClass method, 828
findAttribute method, 804–805
flowchart

of body tag handler life cycle,
223–226

for <jsp:useBean> processing, 427,
428, 429, 431

of tag handler life cycle, 203–205

I n d e x 853

flush method, 800, 810
flushBuffer method, 752–753, 755
forEachRow tag

developing tag handler for, 254–256
function in database query example,

247, 248
FORM element

accept attribute, 267
accept-charset attribute, 267
action attribute of, 264
attributes of, 264–268
enctype attribute of, 263, 265–267
function and syntax of, 263–264
method attribute of, 264–265
name attribute, 267–268

form input elements, 268–285
created with INPUT tag, 270–282
created with select and option tags,

283–284
sample coding illustrating, 268–270
textarea element, 284

form parameters, capturing
with debugging tools, 501–504

forward method, 729, 805
forwarding requests, 154–158
fuel efficiency conversion table, 27–31,

56–60
future of Internet, 4

G
general headers, 836
generated servlet source code

debugging of, 500
translation of .jsp file to, 494

generic database select server, 696–698, 702
GenericServlet class, 33–34, 726–729
GET request

basic technique for, 705
reading from remote network

resources, 705–710
getAttribute method, 732, 743, 748, 784,

805, 819
getAttributeNames method, 732, 743,

748, 784
getAttributeNamesInScope method, 805

getAttributes method, 819, 822
getAttributesScope method, 805–806
getAttributeString method, 747, 819
getAuthType method, 767, 772
getBodyContent method, 813, 822
getBufferSize method, 753, 755, 801
getCharacterEncoding method, 743–744,

748, 753, 755–756
getClassName method, 830, 832
getComment method, 760
getContentLength method, 744, 748
getContentType method, 744, 748–749
getContext method, 732
getContextPath method, 767, 772–773
getCookies method, 767–768, 773
getCreationTime method, 784
getDateHeader method, 768, 773
getDeclare method, 830, 832
getDefaultFactory method, 797
getDisplayName method, 822
getDomain method, 761
getEnclosingWriter method, 810
getEngineInfo method, 797
getException method, 806
getField tag

developing tag handler for, 256–257
function in database query example,

247, 249
getFilterConfig method, 725
getFilterName method, 726
getHeader method, 768, 773
getHeaderNames method, 768, 773
getHeaders method, 768, 773
getId method, 784, 819, 828
getIdAttribute method, 817
getIds method, 790
getInfoString method, 822, 824
getInitParameter method, 726, 727, 731, 733
getInitParameterNames method, 726, 727,

731, 733
getInitParameters method, 826
getInputStream method, 744, 749, 815
getIntHeader method, 768, 774
getLargeIcon method, 822
getLastAccessedTime method, 784
getLastModified method, 766
getLocale method, 744, 749, 753, 756

854 J S P : T h e C o m p l e t e R e f e r e n c e

getLocales method, 744, 749
getMajorVersion method, 733
getMaxAge method, 761
getMaxInactiveInterval method, 784–785
getMethod method, 769, 774
getMimeType method, 733
getMinorVersion method, 733
getName method, 736–737, 761, 788–789,

817
getNamedDispatcher method, 733
getNameFromAttribute method, 830
getNameGiven method, 830
getOut method, 806
getOutputStream method, 753, 755, 756
getPage method, 806
getPageContext method, 797–798
getParameter method, 744–745, 749
getParameterMap method, 745, 749
getParameterNames method, 745, 749–750
getParameterValues method, 745, 750
getParent method, 816, 828
getPath method, 761, 774
getPathInfo method, 769, 774
getPathTranslated method, 769, 774
getPrefixString method, 825
getPreviousOut method, 813
getProtocol method, 745, 750
getQueryString method, 769, 774
getReader method, 745, 750, 811
getRealPath method, 733–734, 745, 750
getReliableURN method, 825
getRemaining method, 801
getRemoteAddr method, 746, 750
getRemoteHost method, 746, 750–751
getRemoteUser method, 769, 774–775
getRequest method, 751, 806
getRequestDispatcher method, 734, 746,

751
getRequestedSessionId method, 769–770,

775
getRequestURI method, 770, 775
getRequestURL method, 770, 775, 792
getRequiredVersion method, 825
getResource method, 734
getResourceAsStream method, 734
getResourcePaths method, 734
getResponse method, 756, 806

getRootCause method, 796
getScheme method, 746, 751
getScope method, 831, 832
getSecure method, 761
getServerName method, 746, 751
getServerPath method, 770
getServerPort method, 746–747, 751
getServlet method, 735, 759
getServletConfig method, 728, 730, 806
getServletContext method, 726, 728, 731,

738, 807
getServletContextName method, 735
getServletInfo method, 728, 730, 734
getServletName method, 728, 732
getServletNames method, 735
getServletPath method, 770, 775
getServlets method, 735
getSession method, 770–771, 775–776, 789,

790, 791, 807
getSessionContext method, 785
getShortName method, 825
getSmallIcon method, 823
getSpecificationVersion method, 795
getString method, 811
getTag method, 825
getTagClassName method, 823
getTagExtraInfo method, 823
getTagInfo method, 820
getTagLibrary method, 823
getTagName method, 823
getTags method, 825
getTagVariableInfos method, 823
getTypeName method, 817
getUnavailableSeconds method, 759
getURI method, 825
getUserPrincipal method, 771, 776
getValue method, 737, 761, 785, 789, 828
getValueNames method, 785
getValues method, 828
getVariableInfo method, 228–229, 820, 823
getVarName method, 832
getVersion method, 762
getWebServerHeader tag handler, 206–212
getWriter method, 753, 756
getXXX() methods, 331–332

I n d e x 855

H
handlePageException method, 807
handlers

for SAX parsing events, 474–475
See also body tag handler API; tag

handler API; tag handlers
headers

creating standardized headers
with Banner.jsp, 634

setting and retrieving cookies
with HTTP, 364

syntax for HTTP, 836
table of HTTP, 836–843
types of, 836
See also response headers

help for Shell class, 626–627
hidden elements, 263
hidden fields, 280–281

handling session tracking tasks
with session API, 374–378

session tracking with, 355–360
storing session IDs in, 50

HTML (Hypertext Markup Language)
data and expressions in template, 94
form input elements created with

INPUT tag, 270–282
incorporating dynamic content

on JSP pages, 136
XML vs., 452–453

HTML forms, 262–290
about, 262–263
adding JavaScript script block into, 285
attributes of FORM element, 264–268
debugging with Echo.jsp, 501–504
form input elements, 268–285
function and syntax of FORM

element, 263–264
hidden fields in, 413
overview, 289–290
server side forms handling, 287–289
validating, 285–287
See also FORM element; form

input elements
HTTP (Hypertext Transfer Protocol), 12–21

about, 12

authentication using Tracer, 526–528
connecting to Web server, 14
development of, 6
examples of requests, 17–21
headers for, 836–843
HTTP request model, 13–14
HTTP response to servers, 16–17
purpose of, 354
reception of HTTP requests by

servers, 16
requests with CGI script, 7
response codes for, 834–835
RFC specifications for, 12–13
sending HTTP requests, 15–16
servlets and HTTP sessions, 49–51
setting and retrieving cookies with

HTTP headers, 364
technologies delivering content to

clients with, 719
tracing HTTP requests with Tracer,

510–528
types of headers, 836
using HttpSession interface in

sessions, 50–51
HTTP GET request

basic technique for, 705
reading from remote network

resources, 705–710
HTTP POST method, 694, 702
HttpJspPage class, 794–795
HttpServlet class, 34–36, 763–767
HttpServletRequest class, 767–772
HttpServletRequest object, contents of, 134
HttpServletRequest subinterface,

methods in, 39–41
HttpServletRequestWrapper class, 772–777
HttpServletResponse class, 43–44, 777–780
HttpServletResponseWrapper class,

780–783
HttpSession class, 50–51, 369, 783–786
HttpSessionActivationListener classes,

786–787
HttpSessionAttributesListener class,

787–788
HttpSessionBindingEvent class, 370,

788–789

856 J S P : T h e C o m p l e t e R e f e r e n c e

HttpSessionBindingListener class, 370,
383–385, 789

HttpSessionContext class, 790
HttpSessionEvent class, 790–791
HttpSessionListener class, 791
HttpURLConnection class, 683–684
HttpUtils class, 791
Hypertext Markup Language. See HTML
Hypertext Transfer Protocol. See HTTP

I
id attribute for <jsp:useBean> tag, 425
IDEs (integrated development

environments)
custom tags vs., 185
debuggers in, 500

IETF (Internet Engineering Task Force), 12
images as input fields, 281–282
implicit objects

access of declarations to, 128
application, 98, 103–104
available within expressions and

scriptlets, 97–106
config, 98, 106
exception, 98, 106
out, 98, 104–105
page, 98, 106
pageContext, 98, 100–101
request, 97, 98–100
response, 97, 99–100
session, 102–103
syntax of, 74–75
See also objects

import attribute for page directive,
170–171, 181

include directive, 136–140
cautions using, 140
copying source code with, 139–140
criteria for using <jsp:include> action

or, 153, 633
defined, 67–68
effect of changes in included files, 138
functioning of, 137–138
syntax of, 67, 136

include method, 729–730, 807
info attribute for page directive, 174, 181
init method, 25–26, 728, 730–731
initialization parameters

for expressions and scriptlets,
107–109

specifying outside compiled Java
code, 535

initialize method, 808
InitModel.jsp, 633
inner classes

defined, 128
example of declarations for, 129–130
functions of, 132
using declarations with, 128–131, 132

in-process model, 134
INPUT tag elements, 270–282

buttons, 282
checkboxes, 273
file upload input fields, 276–280
hidden fields, 280–281
image input fields, 281–282
passwords, 272–273
radio buttons, 274–275
reset controls, 276
submit buttons, 275–276
syntax and attributes of, 270–271
text as input, 271–272

instance variables
declaring and initializing, 117–122,

131–132
thread safety and, 118–122

InstantDB, 299
integrated development environments.

See IDEs
Internet

development of WWW, 6
evolution of programming model for

Web applications, 6–9
future of, 4
online resources on HTTP

specifications, 12
Internet Engineering Task Force (IETF), 12
interoperability of server-side scripting

technologies, 704–705

I n d e x 857

invalidate method, 785
invoking stored procedures, 295, 322–328
isAutoFlush method, 801
isCommitted method, 753, 756
isErrorPage attribute for page directive,

176–180, 181
isNew method, 785
isolating failing components, 499–500
isPermanent method, 759
isRequestedSessionIdFromCookie method,

771, 776
isRequestedSessionIdFromURL method,

771, 776
isRequestedSessionIdFromUrl method,

771, 776
isRequestedSessionIdValid method,

771, 776
isRequired method, 818
isSecure method, 747, 751–752
isThreadSafe attribute for page directive,

173–174, 181
isUserInRole method, 772, 777
isValid method, 820, 824
IterationTag class, 814

J
J2EE (Java 2 Enterprise Edition), 8, 9
.jar files, 535
Java

applets as clients, 689–695
applications as clients, 684–689
compiling servlet source code to

Java class, 494
evolution of applets, 689
flexibility added with JNDI, 293, 295
J2EE version, 8, 9
JavaBeans as classes in, 424–425
plug-ins, 690–691
separating code from JSP code, 134
specifying initialization parameters

compiled code, 535
See also JavaBeans; JAXP

Java 2 Enterprise Edition (J2EE), 8, 9
.java files, 194
Java API for XML (JAXP)

support for SAX 2.0, 481
uses for, 464

java.net.HttpURLConnection class, 683–684
java.net.URL class, 680–681
java.net.URLConnection class, 682
Java Runtime Environment (JRE), 712
java.sql.CallableStatement interface, 322–328
java.sql.PreparedStatement subinterface,

317–322
avoiding dynamic syntax errors

with, 320–322
batch update example for, 317–320
overview of, 317

java.sql.Statement interface
execute method of, 312–314
executeBatch method of, 314–316
executeQuery method of, 311–312
executeUpdate method of, 310–311
overview of, 309–310
PreparedStatement subinterface of,

317–322
java.util.ResourceBundle object, 365
JavaBeans, 416–449

adding customized weather
information to portal Web page,
444–448

bean properties, 416–419
customizing weather information

using beans, 434–444
defined, 416
as Java classes, 424–425
<jsp:getProperty> tag, 434, 448, 449
<jsp:setProperty> tag, 430–434,

448, 449
<jsp:useBean> tag, 425–430, 448
overview, 416, 448–449
persistence and serialization

of beans, 416, 419–424
See also Java

JavaMail API
about, 719
documentation resources for, 713
option for e-mail, 713–715

JavaServer Pages, 54–60
annotated example of, 78–87
as clients to other servers, 704, 719

858 J S P : T h e C o m p l e t e R e f e r e n c e

creating supporting modules in,
633–635

debugging tools for, 500–501
developing for product support

application, 555–556
development of, 8
example of DOM parser in, 464–472
example of fuel efficiency conversion

table, 56–60
forms of, 54–56, 64, 194
generating code for declarations,

112–117
how JSP container transforms JSP

page, 55, 194–195
incorporating custom tags into,

192–194
making SQL SELECT queries on

JDBC-accessible database, 696–698
overview of, 54
passing parameters to included,

149–150, 151
Perl script using database select

server in, 696–698, 702
plug-ins, 690–691
request attributes describing

included, 152, 153
scope of, 4
sending mail from, 710–719
translation and compilation in,

494–499
See also testing and debugging

JavaServer Pages elements, 65–78
comments, 68–69
declarations, 71–73, 86–87
directives, 65–68, 83
expressions, 69–70, 85
implicit objects, 74–75
scriptlets, 70–71, 84
types of, 65

javax.servlet classes, 724–759
Filter class, 724–725
FilterChain, 725
FilterConfig, 725–726
GenericServlet, 726–729
RequestDispatcher, 729–730
Servlet class, 730–731

ServletConfig, 731–732
ServletContext, 732–736
ServletContextAttributeEvent,

736–737
ServletContextAttributesListener,

737
ServletContextEvent, 738
ServletContextListener, 738–739
ServletException, 739–740
ServletInputStream, 740
ServletOutputStream, 740–743
ServletRequest, 743–747
ServletRequestWrapper, 747–752
ServletResponse, 752–755
ServletResponseWrapper, 755–757
SingleThreadModel, 758
UnavailableException, 758–759

javax.servlet.http classes, 760–792
Cookie, 760–763
HttpServlet, 763–767
HttpServletRequest, 767–772
HttpServletRequestWrapper,

772–777
HttpServletResponse, 777–780
HttpServletResponseWrapper,

780–783
HttpSession, 783–786
HttpSessionActivationListener,

786–787
HttpSessionAttributesListener,

787–788
HttpSessionBindingEvent, 788–789
HttpSessionBindingListener, 789
HttpSessionContext, 790
HttpSessionEvent, 790–791
HttpSessionListener, 791
HttpUtils, 791

javax.servlet.jsp classes, 794–810
HttpJspPage, 794–795
JspEngineInfo, 795
JspException, 795–796
JspFactory, 796–798
JspPage, 798–799
JspTagException, 799–800
JspWriter, 800–804
PageContext, 804–809

I n d e x 859

javax.servlet.jsp.HttpJspPage interface, 164
javax.servlet.jsp.JspPage interface, 164
javax.servlet.jsp.tagext classes, 810–832

BodyContent, 810–811
BodyTag, 811–812
BodyTagSupport, 812–813
IterationTag, 814
PageData, 814–815
Tag, 815–816
TagAttributeInfo, 816–818
TagData, 818–819
TagExtraInfo, 820–821
TagInfo, 821–824
TagLibraryInfo, 824–825
TagLibraryValidator, 826
TagSupport, 827–829
TagVariableInfo, 829–831
TryCatchFinally, 831
VariableInfo, 831–832

javax.servlet.Servlet interface, 32, 166,
730–731

javax.sql package, core API in, 293
JAXP (Java API for XML)

support for SAX 2.0, 481
uses for, 464

jdb debugger, 500
JDBC, 292–351

advantages of, 292–293
basic operations of, 293, 294, 295
classes of, 293–296
connecting to database, 307–308
drivers, 292, 301–307
essential classes, 293–296
example of, 296–301
features of 2.0, 351
getting information about

connections, 339
navigating scrollable result sets, 333
overview of, 292–301, 351
result sets, 328–338
SQL statement interfaces in, 309–328
using metadata, 338–350
See also drivers; metadata; result sets;

Statement interface
JDBC drivers

defined, 292
JDBC-ODBC bridge, 292, 303, 305

overview of, 301–303
registering, 305–307
types of, 303, 304

JDBC URL argument, 308
JDBC-ODBC bridge, 292, 303, 305

defined, 292
JNDI (Java Naming and Directory

Interface), 293, 295
JRun connectors, 134
JRun deployment wizard, 537
<jsp:forward> action, 154–157
<jsp:getProperty> tag, 434, 448, 449
<jsp:include> action, 140–153

criteria for using include directive or,
153, 633

example of, 83–84
function of, 136, 141–143
passing parameters to included JSP

pages, 149–150, 151
restrictions in, 144
retrieving original URI, 150–153
run-time features of, 144–149
syntax of, 140

<jsp:setProperty> tag, 430–434, 448, 449
name attribute for, 430
param attribute for, 433
property attribute for, 432–433
syntax for, 430
value attribute for, 433–434

<jsp:useBean> tag, 425–430, 448
with class only specified, 427–428
id attribute for, 425
scope attribute for, 425–426
syntax of, 425
with type and beanName specified,

429–430, 431
with type and class specified,

428–429
with type only specified, 426–427
valid combinations of type

specification for, 426
JSP 1.1 specifications

cautions using extends attribute, 164
prohibitions against overriding

servlet lifecycle methods directly,
126, 127

using include directive, 140

860 J S P : T h e C o m p l e t e R e f e r e n c e

.jsp source files
defined, 194
development and translation to

servlet, 494
operation of JSP elements in, 64

JSP API 1.2, 794–832
classes and methods for

javax.servlet.jsp, 794–810
javax.servlet.jsp.tagext classes and

methods, 810–832
JSP pages. See JavaServer Pages; JSP

API 1.2
JSP Price Quote server, 684–687
jspDestroy() method

defined, 799
overriding, 126–127

JspEngineInfo class, 795
JspException class, 795–796
JspFactory class, 796–798
jspInit() method

defined, 799
overriding, 126–127

_jspService() method
about, 93–94, 794–795
declarations for code operating

outside, 112
passing objects from, 128

JspPage class, 798–799
JspTagException class, 799–800
JspWriter class, 800–804

L
language attribute for page directive,

162–164, 181
language preference

setting with cookies, 364–369
setting with session API, 379–382

lib directory, 531
life cycle

of body tag handlers, 223–226
overriding servlet, 126–127
of servlet, 24–27
of tag handlers, 196, 202–212

line-by-line debugging, 500–501

loading driver classes, 294, 295
log method

defined, 728–729, 735–736
using during isolation testing, 500,

501
LyricNote.com sample applications,

684–701
client application for Price Quote,

687–689
JSP Price Quote server, 684–687
Perl database search script, 699–701
source code for PriceQuoteApplet,

691–696
See also product support application

M
main read/execute loop for Shell class,

618–620
managing threads, 390–391
mapping tag libraries to web.xml file,

199–200
menus created with select and option tags,

283–284
message logging, 535
metadata, 338–350

from Access database, 344–349
database metadata, 339–343
defined, 338
querying DOM node for feature

support, 463
ResultSetMetaData methods, 296,

349–350
viewing metadata on JDBC

connections with, 344
MetadataExplorer.jsp, 339–343, 344
method attribute, 263, 264–265
methods

for BodyContent class, 219–221
for BodyTag class, 811–812
for BodyTag interface, 221–222
for BodyTagSupport class, 812–813
for Cookie class, 760–763
declarations overriding jspInit() and

jspDestroy(), 126–127

I n d e x 861

declaring additional, 122–128, 132
definitions copied within servlets, 123
deprecated Servlet API version 2.3, 724
destroy, 27
for DocumentHandler interface, 475
for Filter class, 724–725
for FilterChain class, 725
for FilterConfig class, 726
in GenericServlet class, 33–34
for GenericServlet class, 727–729
getVariableInfo, 228–229
getXXX(), 331–332
HTTP request, 15
for HttpJspPage class, 794–795
for HttpServlet class, 35–36
for HttpServletRequest subinterface,

39–41
for HttpServletRequestWrapper,

772–777
for HttpServletResponse class, 43–44,

777–780
for HttpServletResponseWrapper

class, 780–783
for HttpSession class, 784–786
for HttpSessionActivationListener, 787
for HttpSessionAttributesListener

class, 787–788
for HttpSessionBindingEvent class, 788
for HttpSessionBindingListener class,

789
for HttpSessionContext class, 790
for HttpSessionEvent class, 791
for HttpSessionListener class, 791
for HttpUtils class, 791
for IterationTag class, 814
for java.net.HttpURLConnection

class, 684
for java.net.URL class, 681
for java.net.URLConnection class, 682
in javax.servlet.Servlet interface, 32,

166, 730–731
JDBC navigation methods for

scrollable result sets, 333
for JspEngineInfo class, 795
for JspException class, 796
for JspFactory class, 797–798

for JspPage class, 799
for JspWriter class, 800–804
listing Shell class, 627–628
log, 500, 501
for NamedNodeMap interface, 463
in node interface, 458–461
for NodeList interface, 463
of out implicit object, 104–105
for PageContext class, 804–809
of pageContext implicit object, 101
for PageData class, 814–815
of request implicit objects, 99–100
for RequestDispatcher class, 729–730
required for declaration in JSP

superclasses, 165
ResultSetMetaData, 296, 349–350
in SAX Parser interface, 473–474
for Servlet class, 730–731
Servlet Context interface, 45–47
servlet init, 25–26
for ServletConfig class, 731–732
for ServletContext class, 732–736
for ServletContextAttributeEvent

class, 736–737
for ServletContextAttributes

Listener class, 737
for ServletContextEvent class, 738
for ServletContextListener class,

738–739
for ServletException class, 740
for ServletInputStream class, 740
for ServletOutputStream class,

741–743
for ServletRequest class, 36–38,

743–747
for ServletRequestWrapper class,

748–752
for ServletResponse class, 752–755
in ServletResponse interface, 41–43
for ServletResponseWrapper class,

755–757
for servlets, 25
of session object, 102–103
for Shell class, 616–617
for Statement interface, 310–316
for Tag interface, 200–201

862 J S P : T h e C o m p l e t e R e f e r e n c e

for TagAttributeInfo class, 817–818
for TagData class, 819
in TagData parameter, 236, 237
for TagExtraInfo class, 228, 820–821
for TagInfo class, 822–824
for TagLibraryInfo class, 824–825
for TagLibraryValidator class, 826
for TagSupport class, 202, 827–829
for TagVariableInfo class, 830
for TryCatchFinally class, 831
for VariableInfo class, 832
See also specific methods listed by name

Microsoft Access
metadata from database in, 344–349
support stored procedure queries in,

324–328
viewing metadata database in, 344

MIDI (Musical Instrument Digital
Interface) files, 277

Model 1 vs. Model 2 Web applications,
159–160

Model class
application objects in, 588–615
using, 630–631

model classes, 557–631
application objects, 588–615
business objects in data model,

558–587
testing framework for model,

615–630
types of supporting, 557–558
See also models; MVC system

architecture
models

coding logic for model in MVC
architecture, 556

declaring view page as session bean,
633

default threading, 403–405
HTTP request, 13–14
in-process, 134
Model 1 vs. Model 2 Web

applications, 159–160
out-of-process servlet engine,

134–135

product support application data,
554–555

for programming Web applications,
6–9

single threaded, 49, 173, 174, 403,
405–406

for static document server, 6
for testing and debugging, 494
See also DOM parser; MVC system

architecture; servlet threading
models

Model-View-Controller system
architecture. See MVC system
architecture

mouse clicking on images, 281–282
multipart/form-data encoding technique,

266–267
multithreaded applications, 406–410

long running requests with status
message, 407–410

overview of, 406–407
See also session and thread

management; threads
Musical Instrument Digital Interface

(MIDI) files, 277
MVC (Model-View-Controller) system

architecture, 556–676
controller classes, 658–675
defined, 159–160
illustrated, 556
model classes, 557–631
overview of, 556–557
system entry points for case study,

631
testing framework for model,

615–630
view classes, 631–658

N
name attribute

for HTML forms, 267–268
for <jsp:setProperty> tag, 430

NamedNodeMap interface, 462, 463
names. See filenames

I n d e x 863

namespace support in SAX 2.0, 480
navigation methods for JDBC scrollable

result sets, 333
nesting tags, 236–237
newLine method, 801
node interface

of DOM parser, 458–461
returning collection of nodes, 462–463
subinterfaces of, 461–466

NodeList interface, 462, 463
nonbrowser clients, 680
Number Guess Guesser, 360, 374–378

O
objects

serialization of, 420
storing and retrieving from sessions,

372–373
storing and sharing with servlet

context, 535
See also application objects; business

objects; implicit objects
online job application

form parameters from, 504
sample code for debugging, 501–504

opening database connection, 294, 295
optional response description, 17
out implicit object, 98, 104–105
overriding jspInit() and jspDestroy()

methods, 126–127

P
package javax.servlet, 724–759

Filter class, 724–725
FilterChain class, 725
FilterConfig class, 725–726
GenericServlet class, 726–729
RequestDispatcher class, 729–730
Servlet class, 730–731
ServletConfig class, 731–732
ServletContext class, 732–736
ServletContextAttributeEvent class,

736–737

ServletContextAttributesListener
class, 737

ServletContextEvent class, 738
ServletContextListener class, 738–739
ServletException class, 739–740
ServletInputStream class, 740
ServletOutputStream class, 740–743
ServletRequest class, 743–747
ServletRequestWrapper class, 747–752
ServletResponse class, 752–755
ServletResponseWrapper class,

755–757
SingleThreadModel class, 758
UnavailableException class, 758–759

package javax.servlet.http, 760–792
Cookie class, 760–763
HttpServlet class, 763–767
HttpServletRequest class, 767–772
HttpServletRequestWrapper class,

772–777
HttpServletResponse class, 777–780
HttpServletResponseWrapper class,

780–783
HttpSession class, 783–786
HttpSessionActivationListener class,

786–787
HttpSessionAttributesListener class,

787–788
HttpSessionBindingEvent class,

788–789
HttpSessionBindingListener class, 789
HttpSessionContext class, 790
HttpSessionEvent class, 790–791
HttpSessionListener class, 791
HttpUtils class, 791

package javax.servlet.jsp, 794–810
HttpJspPage class, 794–795
JspEngineInfo class, 795
JspException class, 795–796
JspFactory class, 796–798
JspPage class, 798–799
JspTagException class, 799–800
JspWriter class, 800–804
PageContext class, 804–809

package javax.servlet.jsp.tagext, 810–832
BodyContent class, 810–811

864 J S P : T h e C o m p l e t e R e f e r e n c e

BodyTag class, 811–812
BodyTagSupport class, 812–813
IterationTag class, 814
PageData class, 814–815
TagAttributeInfo class, 816–818
TagData class, 818–819
TagLibraryInfo class, 824–825
TagLibraryValidator class, 826
TagSupport class, 827–829
TryCatchFinally class, 831
VariableInfo class, 831–832

package javax.sql, 293
page counter, 360–363, 378–379
page directive, 162–181

attributes for, 66–67, 162, 181
buffer and autoFlush attributes for,

172–173, 181
contentType attribute for, 174, 181
errorPage and isErrorPage attributes

for, 176–180, 181
extends attribute for, 164–170, 181
import attribute for, 170–171, 181
info attribute for, 174, 181
isThreadSafe attribute for,

173–174, 181
language attribute for, 162–164, 181
session attribute for, 172, 181
specifying attributes for, 171
syntax for, 162

page implicit object, 98, 106
page scope, 411
PageContext class, 804–809
pageContext implicit object, 100–101

defined, 98
passing as parameter from

_jspService(), 128
PageData class, 814–815
param attribute for

<jsp:setProperty> tag, 433
parameters

debugging by capturing form,
501–504

specifying initialization parameters
outside compiled Java code, 535

parsePostData method, 792
parseQueryString method, 792

Parser interface, 473–474
parsers, 457–485

DOM, 457, 458–472, 491
SAX, 472–473
See also DOM parser; SAX parser

passwords, as input element, 272–273
PDA (Personal Digital Assistants),

database connections with, 338
performance

criteria for using <jsp:include> action
or include directive, 153

eliminating redundancy with request
dispatching, 134

servlets and improved, 24
Perl clients, 696–701

Perl database search script, 699–701
PHP, 704
plug-ins, 690–691
popBody method, 808
precompiling JSP page, 499
PreparedStatement interface, 295, 317–322
preventing

extraneous whitespace, 696
newline characters, 687

Price Quote client application, 687–689
PriceQuoteApplet, 691–696
print method, 741–742, 801–802
println method, 742–743, 802–804
Problem class, 579–584
Problem.jsp view page, 643–647
ProblemLog class, 584–587
problems

problem detail page, 643, 656
problem selection page, 657
problem update page, 659
problems by product page, 655
as system entry point for product

support application, 631, 632
Problems.jsp view page, 657–658
ProblemSubmitAction class, 674–675
process flow

call center agent role in, 552, 553, 554
developer role in, 552, 553, 554
product support specialist role in,

552, 553, 554
processing result sets, 294, 295

I n d e x 865

product catalog example
generated by XSLT, 487–491
searching with XML DOM parser,

464–472
XML SAX 1.0 parser search of, 476–480
XML SAX 2.0 parser search of, 480–485

Product class, 561–565
product support application, 552–676

confirmation page for, 649, 657, 660
controller classes for, 658–675
customer detail page in, 639
customer search page in, 636
data model for, 554–555
developing JSP pages for, 555–556
e-mail notification in, 715–719
model classes for, 557–631
MVC system architecture in, 556–676
overview, 552, 676
problem detail page for, 643, 656
problem selection page for, 657
problem update page, 659
problems by product page, 655
process flow for, 552–554, 676
product search page, 650
system entry points for, 631, 632
testing framework for model, 615–630
view classes for, 631–658
See also MVC system architecture;

view pages
product support specialist in process flow,

552, 553, 554
ProductParser class, 479
ProductProblems.jsp view page, 653–657
products

problems by product page, 655
product search page, 650
products list page, 653
as system entry point for product

support application, 631, 632
Products.jsp view page, 649–650
products Web application, 536
ProductsList.jsp view page, 650–653
ProductsListSelectAction class, 671–672
ProductsSearchAction class, 670–671
ProductsSelectAction class, 672–673

programming model for Web applications,
6–9

properties
bean, 416–419
of weather Observation bean, 435

property attribute for <jsp:setProperty> tag,
432–433

protocol-independent servlets, 34
protocols, 12
pushBody method, 808
putValue method, 785

Q
quality assurance in process flow, 553, 554
QueryExample2.jsp dynamic syntax errors,

320–323

R
radio buttons

defined, 263
as input fields, 274–275

reading input streams from remote
network resources, 705–710

readLine method, 740
read-only variables, in variable

declarations, 122
redundancy eliminated with request

dispatching, 134
registering JDBC drivers, 305–307
release method, 808, 813, 816, 826, 828
releasePageContext method, 798
removeAttribute method, 736, 747, 752,

786, 809
removeValue method, 786, 829
request attributes describing included JSP

pages, 152, 153
request dispatching, 134–160

about, 134, 160
components for including other

resources in, 136
creating RequestDispatcher object, 158
forwarding requests, 154–158
include directive, 136–140, 153

866 J S P : T h e C o m p l e t e R e f e r e n c e

incorporating dynamic content on
JSP pages, 136

<jsp:include> action, 83–84, 136,
140–153

Model 1 vs. Model 2, 159–160
out-of-process servlet engine model,

134–135
redirection vs., 159
selecting include directive or

<jsp:include> action, 153
servlet context function in, 535
splitting content from presentation,

134, 154–157
Request for Comments (RFC), defined, 12
request handler function

in HTTP tracer tool, 511
in Tracer debugging tool, 519–525

request headers, 836
request implicit objects, 97, 98–100
request line, 15
request scope, 411–412
RequestDispatcher class, 729–730
requests

example of HTTP, 17–21
model for HTTP, 13–14
sending HTTP, 15–16

reset controls, 276
reset method, 754, 756
resetBuffer method, 754, 757
resource mapping, 532–535
ResourceBundle object, 365
response codes

defined, 16
HTTP response to servers, 16–17
reception of HTTP requests by

servers, 16
table of HTTP, 834–835

response headers
defined, 836
displaying from static String array,

146, 147
<jsp:include> action unable to set, 144
setting and retrieving cookies with

HTTP, 364
response implicit objects, 97, 99–100

response variable in expressions and
scriptlets, 99–100

result sets, 328–338
defined, 328
extracting data from, 328–332
getXXX() methods provided by

ResultSet object, 331–332
RowSet interface, 338
scrollable, 332–336, 337
updatable, 336–338

ResultSetMetaData methods, 296, 349–350
reusable code in tag libraries, 185
rewriting URLs, 378–379, 413
RFC (Request for Comments)

defined, 12
HTTP specifications, 12–13

RowSet interface, 338
run method, 620–626
runQuery tag

developing tag handler for, 252–253
function in database query example,

247, 248
run-time processing

distinguishing compilation and
errors in, 499

exceptions implementing BodyTag
interface during, 222

features of <jsp:include> action
during, 144–149

structure of products Web
application during, 536

S
sample code

for Action class, 660–662
adding customized weather

information to portal Web page,
444–448

BornBetween query example,
324–328

for Contact Us form, 285–287
for converting U.S. to Canadian

dollars, 705–710

I n d e x 867

for custom tags for implementing
database query, 247–258

for debugging online job application,
501–504

for declarations, 86–87
for deployment descriptor, 547–549
for diagnostic error page, 179, 180
for fuel efficiency conversion table,

56–60
for generating and mailing problem

reports, 715–719
for HTTP GET request, 17–21
illustrating form input elements,

268–270
for interaction between tag handler

and servlets, 206–212
of JDBC used in JSP page, 296–301
for JSP Price Quote server, 684–687
for LyricNote.com applications,

684–701
for monitoring Web client and server

with tracer, 510–528
for Mortgage bean, 416–419
for Perl database search script, 699–701
product catalog generated by XSLT,

487–491
for product catalog search using

XML DOM parser, 464–472
for product catalog search using

XML SAX 1.0 parser, 476–480
for product catalog search using

XML SAX 2.0 parser, 480–485
for products Web application, 535–537
for sending e-mail with SMTP over

sockets, 711–712
of server side forms handling, 287–289
using TagExtraInfo class, 229–235
validating HTML forms, 285–287
See also LyricNote.com sample

applications; product support
application

SAX (Simple API for XML) parser,
472–485, 491

about, 472–473
DOM vs., 485
handlers for parsing events, 474–475
methods in Parser interface, 473–474

product catalog search using
version 1.0, 476–480

product catalog search using
version 2.0, 480–485

scope attribute for <jsp:useBean> tag, 425–426
script blocks added in HTML form, 285
scripting variables

defining, 186, 226–236
synchronizing, 235–236

scriptlets
contents of sample, 94–96
defined, 91–93
opening syntax of declaration vs., 112
syntax for, 70–71, 84

scrollable result sets, 332–336, 337
security with password control, 273
select and option tags, 283–284
selection menus, 262
semantics. See syntax and semantics
semicolons inside expressions, 70, 91
sendError method, 778–779, 782
sending HTTP requests, 15–16
sendRedirect method, 779, 782
separating compilation and

run-time errors, 499
Serializable interface, 416, 419–420, 424
serialization of beans, 419–424
servers

connecting to Web, 14
HTTP response to, 16–17, 834–835
JSP Price Quote, 684–687
limitations on size of

uploaded files, 277
model for static document server, 6
submitting forms to, 275

server-side applications
forms handling, 287–289
shift from client-side to, 9

server-side scripting environments, 704–719
e-mail notification in product

support system, 715–719
interoperability of technologies,

704–705
JavaMail API option for e-mail,

713–715
JavaServer Pages as clients to other

servers, 704, 719

868 J S P : T h e C o m p l e t e R e f e r e n c e

options for sending e-mail from
applications, 710

reading from remote network
resources, 705–710

sending mail from JSP page, 710–719
sending mail with SMTP over

TCP/IP sockets, 711–712
sun.net.smtp.SmtpClient class

e-mail option, 712
technologies providing dynamic

content, 704
service method, 26–27, 729, 731, 766–767
<servlet> tag, 30
Servlet 2.2 specification for Web

application deployment, 530, 549
Servlet API version 2.3, 724–792

about deprecated classes
and methods, 724

javax.servlet classes, 724–759
javax.servlet.http classes, 760–792
See also javax.servlet classes;

javax.servlet.http classes
servlet context, 44–47

functions of, 535
methods in Servlet Context interface,

45–47
storing references to, 45

servlet engine
calling destroy () method, 27
defined, 24
functions of, 25
invoking URLs with <jsp:include>

action, 136
model of out-of-process, 135
restarting during isolation

testing, 500
See also servlets

Servlet interface, 32, 166, 730–731
servlet request objects, in model of

out-of-process servlet engine, 135
servlet response objects

function of, 41
in model of out-of-process servlet

engine, 135
servlet threading models, 47–49, 403–406

default threading model, 403–405

single threaded model, 405–406
types of, 403
See also single threaded model

ServletConfig class, 731–732
ServletContext class, 732–736
ServletContextAttributeEvent class,

736–737
ServletContextAttributesListener class, 737
ServletContextEvent class, 738
ServletContextListener class, 738–739
ServletException class, 739–740
ServletInputStream class, 740
<servlet-mapping> element of deployment

descriptor, 533
ServletOutputStream class, 740–743
ServletRequest class

displaying attributes with static
String array, 146–147, 148

methods in, 36–38, 743–747
ServletRequestWrapper class, 747–752
ServletResponse interface, 41–43
ServletResponseWrapper class, 755–757
servlets, 24–52

classes of, 31–47
compilation of servlet source code

to Java class file, 494
controller, 662–666
creating fuel efficiency conversion

table, 27–31, 56–60
deleting old copies for isolation tests,

499–500
destroy method for, 27
displaying error message and

exceptions with, 179
GenericServlet class, 33–34
HTTP sessions, 49–51
HttpServlet class methods, 34–36
HttpServletResponse interface

methods, 43–44
init method for, 25–26
javax.servlet.Servlet interface, 32,

166, 730–731
lifecycle of, 24–27
method definitions copied within, 123
methods used with, 25

I n d e x 869

overriding jspInit and jspDestroy
methods, 126–127

overview, 24, 52
sample code interaction between tag

handler and, 206–212
service method for, 26–27
Servlet Context interface methods,

45–47
ServletRequest interface, 36–38
ServletResponse interface methods,

41–43
translation of .jsp file to generated

servlet source code, 494
Web applications using, 6
See also servlet engine

session and thread management, 354–414
application considerations, 411–413
multithreaded applications, 406–410
overview, 354, 413–414
servlet threading models, 403–406
session API, 369–390
session tracking, 354–369
thread management, 390–403

session API, 369–390
classes comprising, 369
creating sessions, 370–372
destroying sessions, 373–374
handling hidden field tracking

tasks with, 374–378
rewriting URLs with, 378–379
session binding listeners, 383–390
session management by, 369, 414
session tracking mechanisms, 371–372
setting session language preferences

with, 379–382
storing and retrieving objects from

sessions, 372–373
See also sessions

session attribute for page directive, 172, 181
session binding listeners, 383–390
session implicit object, 98, 102–103
session scope, 412
session tracking, 354–369

with cookies, 363–369, 371–372,
413–414

with hidden fields, 355–360
management by session API, 369, 414
with URL rewriting, 360–363
using session API, 369

sessionCreated method, 791
sessionDestroyed method, 791
sessionDidActivate method, 787
sessions

appending to URLs session IDs, 50
creating, 370–372
declaring view page model as

session bean, 633
deleting for isolation testing, 500
destroying, 373–374
managing with session API, 369,

371–372, 414
setting language preferences for,

379–382
storing and retrieving objects from,

372–373
See also session API

sessionWillPassivate method, 787
setAttribute method, 736, 747, 752, 786,

809, 819
setBodyContent method, 812, 813
setBufferSize method, 754
setCharacterEncoding method, 747, 752
setComment method, 762
setContentLength method, 754, 757
setContentType method, 754, 757
setDateHeader method, 779, 782
setDefaultFactory method, 798
setDomain method, 762
setFilterConfig method, 725
setHeader method, 779, 783
setId method, 829
setInitParameters method, 826
setIntHeader method, 779, 783
setLocale method, 754–755, 757
setMaxAge method, 762
setMaxInactiveInterval method, 786
setPageContext method, 816, 829
setParent method, 816, 829
setPath method, 762
setRequest method, 752

870 J S P : T h e C o m p l e t e R e f e r e n c e

setResponse method, 757
setSecure method, 763
setStatus method, 779, 780, 783
setTagExtraInfo method, 824
setTagInfo method, 821
setTagLibrary method, 824
setValue method, 763, 829
setVersion method, 763
Shell class, 616–630

class methods for, 616–617
constructors for, 567–568
establishing database connection,

628–630
listing available methods, 627–628
main read/execute loop for, 618–620
overview, 616
run() method opening character line

reader, 620–626
typing help command, 626–627
writing in tandem with Model class,

630–631
Simple API for XML parser.

See SAX parser
single threaded model

avoiding thread conflicts with, 49, 173
defined, 403, 405–406
illustrated, 406
limitations of, 174

SingleThreadModel class, 758
SKIP_BODY return code, 205
SMTP (Simple Mail Transfer Protocol),

sending mail with, 711–712
source code

compiling for tag handler, 191
copying with include directive,

139–140
debugging generated servlet, 500
development and translation to

servlet, 494
listing for ControllerServlet,

662–666
for Model class, 588–615

special characters, nonblank, 265
SQL statements

issuing in JDBC databases, 294, 295

SQL statement interfaces in JDBC,
309–328

See also Statement interface
standardizing headers with Banner.jsp, 634
state hidden field, 359
Statement interface, 309–328

defined, 294–295
execute method of, 312–314
executeBatch method of, 314–316
executeQuery method of, 311–312
executeUpdate method of, 310–311
invoking stored procedures with

CallableStatement interface, 295,
322–328

overview of base, 309–310
PreparedStatement subinterface of,

317–322
static document server model, 6
status line tokens in HTTP, 16–17
stored procedures invoked with

CallableStatement interface, 295,
322–328

String array
displaying response headers from,

146, 147
ServletRequest methods for

displaying attributes with,
146–147, 148

subinterfaces of node interface, 461–466
submit buttons, 275–276
sun.net.smtp.SmtpClient class, 712
superclasses

example of JSP, 166–170
methods required for declaration

in, 165
required interfaces for JSP, 164–166
See also classes; and specific

superclasses by name
support pages for view page, 633–635
switch... case construct, 237–240
switch tag

example of in switch... case
construct, 237–240

testing execution of desired text
blocks with, 245–246

I n d e x 871

synchronizing
scripting variables, 235–236
threads, 399–403

syntactic scoping, 236–246
syntax and semantics, 64–87

avoiding dynamic syntax errors with
prepared statements, 320–322

calling syntax for WebClient, 509
comments, 68–69
declarations, 71–73, 86–87, 112
defined, 64
defining syntax for custom tags,

186–187
directives, 65–68, 83
example of JSP page, 78–87
expressions, 69–70, 85
of FORM element, 263–264
forms of JSP pages, 54–56, 64, 194
HTTP header syntax, 836
implicit objects, 74–75
for import attribute for page

directive, 170–171
include directive syntax, 136–138
of INPUT tag, 270–271
for JDBC URL argument, 308
for <jsp:setProperty> tag, 430
for <jsp:useBean> tag, 425–430, 448
method definition syntax for

declarations, 122
necessary in debugging, 87
scriptlets, 70–71, 84, 112
of select and option tags, 283
setting attributes for page

directive, 162
standard actions, 75–77, 83–84
syntax for forwarding

presentations, 154
tag extension syntax, 78
taglib directive syntax and

attributes, 199
for URL parameters, 360
XML syntax, 75, 453–454

system entry points for case study, 631, 632
System.out.println method, 500, 501

T
tables, normalizing wide cells for, 124–126
Tag class, 815–816
tag extensions, 184–258

actions of tag handlers, 194–196
benefits of custom tags, 184–186
body not required for tags, 196
body tag handler API, 219–223
body tag handler life cycle, 223–226
cooperating tags, 236–246
creating custom tag entry in Tag

Library Descriptor, 187–188
defining custom tags, 186–187
defining scripting variables, 186,

226–236
implementing of database query

example, 247–258
incorporating custom tags into JSP

page, 192–194
life cycle of tag handlers, 196, 202–212
overview, 184
syntax for, 78
tag attribute definitions, 212–219
tag handler API, 200–202
tag libraries, 197–200
writing tag handler for custom tag,

188–191
See also custom tags; tag handlers;

tag libraries
tag handler API, 200–202

Tag interface life cycle methods,
200–201

TagSupport class of, 202
tag handlers

body tag handler API, 219–223
body tag handler life cycle, 223–226
compiling source code for, 191
for connect tag, 250–252
for database query example, 249–258
defined, 258
defining tag attributes, 212–219
for forEachRow tag, 254–256
function of, 196
for getField tag, 256–257

872 J S P : T h e C o m p l e t e R e f e r e n c e

how JSP container transforms JSP
page, 55, 194–195

life cycle of, 196, 202–205
as part of tag libraries, 197
for runQuery tag, 252–253
run-time exceptions implementing

BodyTag interface, 222
sample code for

getWebServerHeader, 206–212
tag-related code generated by

container, 195
writing for custom tag, 188–191
See also body tag handler API; tag

extensions; tag handler API
tag libraries, 197–200

defined, 184, 197, 258
mapping to web.xml file, 199–200
as source of reusable code, 185
TLD elements of, 197–198

Tag Library Descriptors. See TLDs
TagAttributeInfo class, 816–818
TagData class

methods in, 818–819
passing parameters in, 236, 237

TagExtraInfo (TEI) class, 227–235
about, 227–229
methods for, 228, 820–821
sample code using, 229–235
validating tag attributes, 236

TagInfo class, 821–824
taglib. See tag libraries
taglib directive

defined, 68, 192
locating TLDs with, 195
mapping tag libraries to web.xml

file, 199–200
syntax and attributes of, 199

TagLibraryInfo class, 824–825
TagLibraryValidator class, 826
tags

coding <servlet>, 30
role of DTD, 455
syntax of XML start and end,

453–455
XML, 452
See also custom tags; tag extensions

TagSupport class
about, 202
constructors and methods for,

827–829
reading source code for page context

and body context variable
information, 190

using as handler for tag commenting
out code, 205

TagSupport superclass, 190
TagVariableInfo class, 829–831
TEI. See TagExtraInfo class
testing and debugging, 494–528

building mental model for, 494
debugging tools, 500–528
isolating failing components,

499–500
in MVC architecture, 615
overview, 494
precompiling to distinguish

compilation and run-time errors, 499
Shell class for product support

application, 616–630
testing text block execution with

switch tag, 245–248
translation and compilation of JSP

page forms, 494–499
turning error messages on/off, 495
See also debugging tools; Shell class

text
as input element, 271–272
text entry elements, 262

textarea element, 284
threading models. See servlet

threading models
threads, 390–403

avoiding conflicts with
SingleThreadModel interface,
49, 173

creating and starting, 391–398
instance variables and safety of,

118–122
limitations of SingleThreadModel

interface, 174
managing, 390–391

I n d e x 873

printing value of counter as
background, 423–424

synchronizing, 399–403
threading concepts, 391
threading models, 47–49
types of servlet threading models,

47–49, 403–406
timeouts, 373
tlds subdirectory, 531–532
TLDs (Tag Library Descriptors)

commonly used subdirectory for,
531–532

as contents of web.xml deployment
descriptor, 542

creating custom tag entry in, 187–188
for database query example, 248–249
elements of, 197–198
locating with taglib directive, 195
as part of tag library, 197

TomCat
detecting and fixing compilation

errors generated in, 496–499
running .war files in, 537

toString method, 818, 824
Tracer, 510–528

configuring to monitor Web client
and server, 510–511

parsing options for, 518
RequestHandler, 519–525
setting up Web server proxy, 511–519
usefulness in HTTP authentication,

526–528
translation and compilation in forms

of JSP page, 494–499
triggers for form validation, 285
TryCatchFinally class, 831
turning error messages on/off, 495
type specifications for <jsp:useBean> tag

with class only specified, 427–428
with type and beanName specified,

429–430, 431
with type and class specified, 428–429
with type only specified, 426–427
valid combinations, 426

U
UnavailableException class, 758–759
UnavailableException subclass, 26
updatable result sets, 336–338
URI (Uniform Resource Identifier)

defined, 15
retrieving original, 150–153

URLConnection class, 682
URLs (Uniform Resource Locators)

about URL class, 680–681
appending session IDs to, 50
browser interpretation of application

name in, 533–534
methods for java.net.URL class, 681
resource mapping and document

location with, 532–535
rewriting, 378–379, 413
session tracking by rewriting, 360–363
standard form cited for Web

application names, 533
syntax for parameters, 360
types of URL connections, 680–684

Util class, 613–615

V
validate method, 826
validating

HTML forms, 285–287
tag attributes, 236

value attribute for <jsp:setProperty> tag,
433–434

valueBound method, 789
valueUnbound method, 789
variable declarations. See variables
VariableInfo class, 831–832
variables

advantage of read-only, 122
declaring and initializing class and

instance, 117–122, 131–132
defining scripting, 186, 226–236
implicit, 74–75
thread safety and instance, 118–122

874 J S P : T h e C o m p l e t e R e f e r e n c e

versions
Java J2EE, 8, 9
of SAX parser interface, 473

view pages, 631–658
application flow and view/controller

interaction, 631–633
Confirm.jsp, 647–649
creating error module for, 634–635
creating standardized headers with

Banner.jsp, 634
CustomerList.jsp, 635, 637–638
Customers.jsp, 635–636
declaring model as session bean in

InitModel.jsp, 633
as presentation layer of system, 557
Problem.jsp, 635, 643–647
Problems.jsp, 635, 657–658
ProductProblems.jsp, 653–657
support pages for, 633–635
See also MVC system architecture

W
.war files, 535–537, 549
weather information

customizing for portal Web page,
444–448

customizing using beans, 434–444
localizing Web page for National

Weather Service, 442
properties of weather Observation

bean, 435
weather Observation bean, 435
Web applications, 6–9, 530–549

defined, 530
deployment descriptor in, 538–547
development of JavaServer Pages, 8
directory structure of, 530–532
evolution of programming model

for, 6–9
functions of servlet context, 535
historical development of WWW, 6
necessary knowledge of syntax in

debugging, 87

resource mapping, 532–535
sample deployment descriptor,

547–549
shift from client-side to server-side

applications, 9
splitting content from presentation

in, 134, 154–157
standardizing deployment with

Servlet 2.2 specification, 530, 549
Web archive (.war) files, 535–537, 549

Web archive (.war) files, 535–537, 549
Web browsers

as clients, 680
interpretation of application name in

URLs, 533–534
plug-ins, 690–691
role in CGI script responses, 7
simulating for debugging, 504–510
substituting error messages for

servlet errors, 495
See also cookies

Web pages
adding customized weather

information to portal, 444–448
for National Weather Service for

localized conditions, 442
reliability of retrieving data from

outside sources, 436
servlets and, 24

Web servers
configuring HTTP tracer for

monitoring, 510–511
HTTP protocols for connecting to, 14
out-of-process servlet engine model

within, 135
resource mapping and document

root directory of, 532
restarting for isolation testing, 500
thread operations in, 391

web.xml file
as deployment descriptor in Web

applications, 457, 538–547
mapping tag libraries to, 199–200
in Web application directory

structure, 531

I n d e x 875

<web-app> element
contents of, 539
specifying order of elements

within, 538
WebClient, 504–510

calling from command line, 505
configuration of HTTP tracer for

monitoring, 510–511
syntax for calling in, 509
typical exchange with server, 509–510

WEB-INF root directory, 531
WebModel class, 611–613
whitespace in scriptlets, 91
writeOut method, 811
writing, validation functions for HTML

forms, 286–287
WWW (World Wide Web), 6

X
Xerces-J 1.2.1 support for SAX 2.0, 481
XML (Extensible Markup Language),

452–491
adding style information with XSLT,

486–491

distinguishing between content and
presentation in, 453

document type definition (DTD),
454–457

DOM parser, 457, 458–472, 491
elements of deployment descriptor,

538–547
generating XML document from

JSP page, 684–689
overview, 452–457
sample deployment descriptor,

547–549
SAX parser, 472–485, 491
syntax of, 75, 453–454
types of XML parsers, 457
See also DOM parser; parsers;

SAX parser
XSL (Extensible Stylesheet Language)

style sheet, 486
XSLT (XSL transformation), 486–491

about, 486
key instructions for, 486–487
sample code for generating product

catalog, 487–491

876 J S P : T h e C o m p l e t e R e f e r e n c e

INTERNATIONAL CONTACT INFORMATION

AUSTRALIA
McGraw-Hill Book Company Australia Pty. Ltd.
TEL +61-2-9417-9899
FAX +61-2-9417-5687
http://www.mcgraw-hill.com.au
books-it_sydney@mcgraw-hill.com

CANADA
McGraw-Hill Ryerson Ltd.
TEL +905-430-5000
FAX +905-430-5020
http://www.mcgrawhill.ca

GREECE, MIDDLE EAST,
NORTHERN AFRICA
McGraw-Hill Hellas
TEL +30-1-656-0990-3-4
FAX +30-1-654-5525

MEXICO (Also serving Latin America)
McGraw-Hill Interamericana Editores S.A. de C.V.
TEL +525-117-1583
FAX +525-117-1589
http://www.mcgraw-hill.com.mx
fernando_castellanos@mcgraw-hill.com

SINGAPORE (Serving Asia)
McGraw-Hill Book Company
TEL +65-863-1580
FAX +65-862-3354
http://www.mcgraw-hill.com.sg
mghasia@mcgraw-hill.com

SOUTH AFRICA
McGraw-Hill South Africa
TEL +27-11-622-7512
FAX +27-11-622-9045
robyn_swanepoel@mcgraw-hill.com

UNITED KINGDOM & EUROPE
(Excluding Southern Europe)
McGraw-Hill Education Europe
TEL +44-1-628-502500
FAX +44-1-628-770224
http://www.mcgraw-hill.co.uk
computing_neurope@mcgraw-hill.com

ALL OTHER INQUIRIES Contact:
Osborne/McGraw-Hill
TEL +1-510-549-6600
FAX +1-510-883-7600
http://www.osborne.com
omg_international@mcgraw-hill.com

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This page intentionally left blank.

	About the Author...
	Copyright
	Contents at a Glance
	Contents
	Preface
	Acknowledgments
	Part I The Web Programming Environment
	1 The Web Marketplace
	2 Evolution of the Web Application
	3 Overview of the Hypertext Transfer Protocol (HTTP)
	4 Introduction to Servlets
	5 JSP Overview
	Part II Elements of JSP
	6 JSP Syntax and Semantics
	7 Expressions and Scriptlets
	8 Declarations
	9 Request Dispatching
	10 The Page Directive
	11 JSP Tag Extensions
	Part III JSP in Action
	12 HTML Forms
	13 Database Access
	14 Session and Thread Management
	15 JSP and JavaBeans
	16 JSP and XML
	17 JSP Testing and Debugging
	18 Deploying Web Applications
	19 Case Study: A Product Support Center
	Part IV JSP and Other Web Components
	20 Communicating with Other Clients
	21 Communicating with Other Servers
	Part V Appendixes
	Appendix A Servlet API Version 2.3
	Appendix B JSP API Version 1.2
	Appendix C HTTP Reference
	Index
	INTERNATIONAL CONTACT INFORMATION

