OsSBORNE i

The

Complet

Reference

Phil Hanna

JSP: The Complete Reference

About the Author...

Phil Hanna has more than 20 years experience
as a programmer, systems architect, analyst, and
project manager. He has developed network-based
software at IBM, and served as a consultant to
Chase Manhattan Bank. He is the author of
Instant Java Servlets, and works as a software
developer for SAS Institute.

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

JSP: The Complete
Reference

Phil Hanna

Osborne/McGraw-Hill

New York Chicago San Francisco
Lisbon London Madrid Mexico City
Milan New Delhi San Juan

Seoul Singapore Sydney Toronto

McGraw-Hill/Oshorne 27

L Dhiresion of The MoCrrowe- JIl Congomies

Copyright © 2001 by The McGraw-Hill Companies. All rights reserved. Manufactured in the United States of America. Except as per-
mitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by
any means, or stored in a database or retrieval system, without the prior written permission of the publisher.

0-07-219431-6

The material in this eBook also appears in the print version of this title: 0-07-212768-6.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trade-
marked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringe-
ment of the trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate
training programs. For more information, please contact George Hoare, Special Sales, at george_hoare @mcgraw-hill.com or (212)
904-4069.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the
work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and
retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works
based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior con-
sent. You may use the work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your
right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS”. McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES
AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE
WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR
OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its
licensors do not warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will
be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy, error
or omission, regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the con-
tent of any information accessed through the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any
indirect, incidental, special, punitive, consequential or similar damages that result from the use of or inability to use the work, even
if any of them has been advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause what-
soever whether such claim or cause arises in contract, tort or otherwise.

DOI: 10.1036/0072194316

To Mary

This page intentionally left blank.

Contents at a Glance

The Web Programming Environment

1 The Web Marketplace 3
2 Evolution of the Web Application 5
3 Opverview of the Hypertext Transfer Protocol (HTTP) 11
4 IntroductiontoServlets, 23
5 JSPOvVerviewi.iiii 53
Elements of JSP
6 JSP Syntax and Semantics 63
7 Expressions and Scriptlets 89
8 Declarations il 111
9 Request Dispatching 133
10 The Page Directive 161
11 JSP Tag Extensions 183
vii

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

viii

JSP: The Complete Reference

JSP in Action

12 HTML Formsc. i 261
13 Database ACCESSviiiin 291
14 Session and Thread Management 353
15 JSPandJavaBeans 415
16 JSPand XML 451
17 JSP Testing and Debugging 493
18 Deploying Web Applications 529
19 Case Study: A Product Support Center 551
JSP and Other Web Components
20 Communicating with Other Clients 679
21 Communicating with Other Servers 703
Appendixes
A Servlet API Version2.3 723
B JSPAPI Version1.2 793
C HTTP Referenceciiiniiiiiiinennan.. 833

Index ... 845

Contents

Preface
Acknowledgments L

The Web Programming Environment
The Web Marketplace

Evolution of the Web Application
Birthofthe Web i,
Growth of the Web Programming Model
The Shift from Client-Side to Server-Side Solutions

Overview of the Hypertext Transfer Protocol (HTTP) ...
WhatIsHTTP?
A Language for Requesting Documents over

thelnternet o il
The HTTP Specification

ix

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

O o o Ul

11
12

12
12

X

JSP: The Complete Reference

HTTP Request Model

Connecting to the Web Server
Sending the HTTP Request
Server Acceptance of the Request

The HTTP Re

sponse from the Server

Examples
Summary ...

4 Introduction to Se

rvlets

Servlet Lifecycle i

init
service
destroy

Example: Kilometers per Liter to Miles per Gallon Servlet
Servlet Classesoiiiiiiiiiii

Servlet

ServletRequest oL
ServletResponseo L.

Servlet Conte

XE e

Threading Models i
SingleThreadModel
HTTP Sessions
The HttpSession Interface
Summary ...

5 JSP Overview ..

How JSPWorkso e
ABasicExample

Elements of JSP

6 JSP Syntax and Semantics
The JSP Development Model

Components of a JSP
Directives .
Comments .
Expressions
Scriptlets ..
Declarations

Page i

13
14
15
16
16
17
21

23
24
25
26
27
27
31
32
36
41
44
47
49
49
50
52

53
54
56

63
64
65
65
68
69
70
71

Contents

Implicit Objects 74
Standard Actions o ool 75

Tag Extensions L 78

A Complete Example i 78
APageDirective il 83

A <jspinclude> Action ... oo ool 83
Scriptlet 84

JSP Expressions oo 85

A Declarationo oo ool 86
Summary 87
Expressions and Scriptlets 89
EXPressionso i 90
Scriptlets 91
Expression and Scriptlet Handling by the JSP Container 93
HTML Template Data and Expressions 94
Scriptlet Contents L. 94
Container-Generated Initialization and Exit Code 96
Implicit Objects and the JSP Environment 97
Request 98
Response i 99
PageContext i 100

Session ... 102
Applicationo oo ool 103

Out ..o 104

Config 106

Page 106
Exception o . 106
Initialization Parameterso, 107
Summary ... 109
Declarationsol 111
WhatIs a Declaration? 112
Where Declaration Code Is Generated 112
Primary Uses for Declarations 117
Variable Declarations o oo 117
Thread Safety and Instance Variables 118
Method Definitions i 122
Overriding jsplnit and jspDestroy 126

Access to Implicit Objects 128

INNer Classes . ..ot 128

Xi

Xii

JSP: The Complete Reference

10

11

Request Dispatching
Anatomy of Request Processing
Including Other Resources,
The include Directive i,
HowItWorks i i
Effect of Changes in an Included File
Using the include Directive to Copy Source Code
The <jsp:include> Action i
HowItWorks i i
Which MethodtoUse i ...
Forwarding Requests i
The RequestDispatcher Object,
Request Dispatching vs. Redirection
Model Tvs.Model 2
Summary

The Page Directive
language
exXtends ...

Required Interfaces for a JSP Superclass

A JSP Superclass Example
IMPOTt ...
SESSIOML . ettt et e e
buffer and autoFlush
isThreadSafe it
IO o
contentType
errorPage and isErrorPage
Summary ...

JSP Tag Extensions
Why Custom Tags? ...
Developing Your First Custom Tag
Step 1—Definethe Tag
Step 2—Createthe TLD Entry
Step 3—Write the Tag Handler
Step 4—Incorporate the Tag intoa JSP Page
How Tag Handlers Work,
What the JSP Container Does
Whata Tag Handler Does
Tag Librariesuuiuiiiiiiiiiiiiiiiiiiia
The Tag Library Descriptor (TLD)
The taglib Directive

134
136
136
137
138
139
140
141
153
154
158
159
159
160

162
164
164
166
170
172
172
173
174
174
176
181

184
186
186
187
188
192
194
194
196
197
197
199

12

13

Contents

The Tag Handler APT i, 200
The Tag Interface 200

The TagSupportClass 202

The Tag Handler Life Cycle 202
The Flowchart 204

An Example of Generated Code 206
Defining Tag Attributes 212
The Body Tag Handler APToioa.. 219
BodyContent L 219

The BodyTag Interface 221

The BodyTagSupportClass 222

The Body Tag Handler Life Cycle 223
The Flowchart 223
Defining Scripting Variables 226
The TagExtralnfoClass 227
Validating Tag Attributes 236
CooperatingTagsooiiii i 236
Using Syntactic Scoping 236
Implementation of the DatabaseQuery Example 247
The Necessary Tags 247

The Tag Library Descriptor 248

The TagHandlers 249
Summary ... 258

[Part Il _|
JSP in Action

HTMLForms i 261
The FORM Element, 263
Attributes of the FORM Element 264
FormInputElements 268
Elements Created with the INPUT Tag 270
Elements Created with select and option 283

The textarea Element 284

Form Validationl 285
The Contact Us Form with Validation 285

The Server Side of Forms Handling 287
Summary 289
Database Access 291
Overview of JDBC i 292

Basic JDBC Operations 293

Xiii

Xiv JSP: The Complete Reference

Essential JDBC Classesccoviiiniininennnnnn.. 293

A Simple JDBC Example 296

JDBC DIivers ..ottt et e 301
Driver Types ... 303

The JDBC-ODBC Bridge 303
Registering a Driver 305
Connecting toa Databaseiiiia.. 307
The JDBC Database URL 308

The Statement Interfaces 309
Statement ool 309
PreparedStatement 0L 317
CallableStatement, 322
ResultSets i 328
Scrollable Result Sets 332
Updatable ResultSets 336
RowSetsl 338
UsingMetadata i 338
Database Metadata 339
ResultSetMetadata 349

New Features in JDBC 2.0 and Beyond 351
Summary ... 351
14 Session and Thread Management 353
Session Trackingc..uiiiiiiiiiiiiiiiiiiiiiii 354
Hidden Fields 355
URLRewriting 360
Cookies 363

The Session AP 369
Creating Sessions 370

Storing and Retrieving Objects from Sessions 372
Destroying Sessions i 373
Examples Revisited 374

Session Binding Listeners 383

Thread Managementciiiiiiiiiiiinnnnn. 390
Threading Concepts 391

Servlet Threading Models 403
Default Threading Model 403

Single Threaded Model 405
Multithreaded Applications, 406
Application Considerationso, 411

Summary ... 413

15

16

17

18

Contents

JSPand JavaBeans 415
WhatIsaJavaBean? i 416
Bean Properties L 416
Persistence 419
JSP AcCtiONS ..ottt 424
<jsp:useBean> ...l 425
<jsp:setProperty> 430
<jsp:getProperty> il 434
A Complete Example—Personalization with Beans 434
Getting Weather Data fromthe Web 435
The LyricNote Portal 444
Summary ... 448
JSPand XML 451
XML OVeIrVIEW ..ttt e e e e 452
The Problem XML Solves 453
XML Syntaxiiiiiiii i 453
The Document Type Definition 454
XML Parsersouiiii e e e e 457
Document Object Model (DOM) 458
Simple API for XML (SAX) 472
XSL Transformations with XSLT 486
XSLTin Action 487
Summary ... 491
JSP Testing and Debugging 493
Building a Mental Model 494
Translation and Compilation 494
Testing in Isolation i 499
Debugging Tools 500
Capturing Form Parameters 501
A Debugging Web Client 504
Tracing HTTP Requests 510
Summary ... 528
Deploying Web Applications 529
The Web Application Environment 530
Directory Structurel 530
Resource Mappingl 532
The Servlet Context, 535

The Web Archive (war)File 535

XV

Xvi

JSP: The Complete Reference

19

20

21

The Deployment Descriptor—web.xml 538
Sample Deployment Descriptor, 547
Summary ... 549
Case Study: A Product Support Center 551
Process FIOWo 552
DataModel 554
Developing the System 555
Model-View-Controller Architecture 556

Model Classesouiiiii i 557

View Classesoovi i 631

Controller Classescoiiiiiiniinnnnn. 658
Summary ... 676

JSP and Other Web Components

Communicating with Other Clients 679
URL Connectionsuuiiiiiiiiiiiiiiiiiiiia, 680
The URLClassccoiiiiiiiii ... 680
The URLConnection Class 682
The HttpURLConnectionClass 683
Java Applicationsas Clients 684
The JSP Price Quote Serverc.cccvvunin.. 684
The Price Quote Client Application 687
AJava AppletClient 689
TheJavaPlug-In L. 690
The PriceQuoteApplet 691
APerlClient 696
The Generic Database Select Server 696
The Perl Script o il 699
Summary ... 702
Communicating with Other Servers 703
Server-Side Scripting Environments 704
Interoperating with HTTP 704
Sending Mail froma JSPPage i, 710
Approaches to SendingMail 710
E-Mail Notification in the Product Support System 715

Summary ... 719

Contents Xxvii

Appendixes

A Servlet APIVersion23 723
Package javax.servlet i 724
Filter 724
FilterChain 725
FilterConfig L 725
GenericServletl 726
RequestDispatcher 729
Servlet 730
ServletConfig il 731
ServletContext L 732
ServletContextAttributeEvent 736
ServletContextAttributesListener 737
ServletContextEvent 738
ServletContextListener 738
ServletException oo ool 739
ServletInputStream oo oL 740
ServletOutputStream 740
ServletRequestol 743
ServletRequestWrapper 747
ServletResponse 752
ServletResponseWrapper 755
SingleThreadModel 758
UnavailableException 758
Packagejavax.servlethttp 760
Cookie 760
HttpServletl 763
HttpServletRequest 767
HttpServletRequestWrapper 772
HttpServletResponse 777
HttpServletResponseWrapper 780
HttpSessionol 783
HttpSessionActivationListener 786
HttpSessionAttributesListener 787
HttpSessionBindingEvent 788
HttpSessionBindingListener 789
HttpSessionContext 790
HttpSessionEvent 790
HttpSessionListener 791

HEpULS .o 791

Xviii JSP: The Complete Reference

B JSPAPIVersion1.2 793
Package javax.servletjsp i 794
HttpJspPage i 794
JspEnginelnfo 795
JspException 795
JspFactory 796
JspPage 798
JspTagException L 799
JspWriter 800
PageContext il 804
Package javax.servletjsp.tagext 810
BodyContentol 810
BodyTagl 811
BodyTagSupport oL 812
IterationTag i 814
PageData i 814

Tag o 815
TagAttributeInfo oo oo 816
TagData 818
TagExtralnfo o L 820
TagInfo il 821
TagLibraryInfo 824
TagLibraryValidator 826
TagSupport 827
TagVariableInfo 829
TryCatchFinally 831
VariableInfo 831

C HTIPReference 833
HTTP Response Codesccoiiiiiiiiiiiiiiiinnnn. 834
HTTPHeaders 836

Preface

Those riding the second wave benefit from the experience of their predecessors
and the real value emerges. This has been the case with Java. Client-side browser
applications (applets) have encountered limitations in three areas:

The first wave of a new technology is often outpaced by the expectations it generates.

B Browser incompatibilities
B Security overkill

B Performance problems due to long download times

The emergence of server-side Java has changed all this. Java Servlets and JavaServer
Pages (JSP) provide a secure, robust, and platform independent technology for bringing
the power of Java to e-commerce and enterprise Web computing. This being the case,
interest in JSP is flourishing and the demand for JSP skills is running high. Nearly all
the Fortune 500 companies now have or will soon deploy server-side Java applications.

The purpose of this book is to provide a complete reference to JSP technology,
starting with the Web programming environment and elements of JSP, then a deeper
examination of advanced topics.

Xix
Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

XX JSP: The Complete Reference

___ | How this Book Is Organized

This book consists of five parts, starting with high-level overviews and proceeding to
deeper examination of topics.

Part I, “The Web Programming Environment”
The opening section of the book provides an introduction to the Web as a programming
environment and introduces servlets, JSP, and the Web network protocol.

B Chapter 1, “The Web Marketplace”
The first chapter explores the Web as a marketplace for ideas, products,
services, and applications—how we got where we are today, and what will
drive future directions. It introduces Java and explains its significance in the
network computing model.

B Chapter 2, “Evolution of the Web Application”
Chapter 2 is a description of how the application programming model has
evolved as the Web has matured, and how experience with each phase has
driven requirements for the next.

B Chapter 3, “Overview of the Hypertext Transfer Protocol (HTTP)”
This chapter introduces the underlying language of the Web client/server
model, Hypertext Transfer Protocol (HTTP). It develops the basic concepts
critical to understanding the Web programming environment.

B Chapter 4, “Introduction to Servlets”
The intimate connection between JSP and servlets is explained in this overview
chapter. The essential features that they share are outlined and demonstrated.

B Chapter 5, “JSP Overview”
Chapter 5 provides an overview of JavaServer Pages (JSP) as a server-side
scripting environment, a description of the servlet engine, and several tutorial
examples. Only the basics are covered here—Part II considers the topic in depth.

Part Il, “Elements of JSP”

This part deals with the syntax and semantics of JSP, equipping the reader with the
skills necessary to create working code. Topics include basic syntax, scriptlets, expressions,
declarations, including files, forwarding requests, and specifying page behavior.
Developing custom tags is examined at length.

B Chapter 6, “JSP Syntax and Semantics”
This chapter covers the basic syntax of JavaServer Pages, describing how
they merge HTML templates and Java code.

Preface XXi

B Chapter 7, “Expressions and Scriptlets”
This chapter describes the basic model of incorporating Java code fragments
into a JavaServer Page. It covers legal and illegal uses and describes how the
code fragments are composed by the translator into a working servlet.

B Chapter 8, “Declarations”
This chapter considers declarations and advanced usage of Java code within a
JSP. It covers the three most common uses for declarations, providing examples
for all three.

B Chapter 9, “Request Dispatching”
This chapter discusses how HTTP requests can be handled by more than one
server-side component. It describes two methods for including other files, and
explains why one method may be preferable to the other. It covers how to use
the <jsp: forwards> action to pass a request on to another JSP for processing.

B Chapter 10, “The Page Directive”
Chapter 10 describes in detail how the page directive is used to specify the
attributes and behavior of a JavaServer Page. Complete examples are given
for each attribute.

B Chapter 11, “JSP Tag Extensions”
Extensions to the JSP architecture are considered in this chapter, in particular
the ability to define custom tags.

Part Ill, “JSP in Action”

This part looks at how JSP works with JDBC, JavaBeans, and other major components
of the Java environment. Includes detailed coverage of debugging and deployment.

B Chapter 12, “HTML Forms”
Chapter 12 describes HTML Forms, the most common client for servlets
and JavaServer Pages.

B Chapter 13, “Database Access”
Most JSP pages of any consequence need to access a database. This chapter
includes a comprehensive look at Java database connectivity and how it can
be used in Web-based applications.

B Chapter 14, “Session and Thread Management”
HTTP is a stateless protocol, but JavaServer Pages can use HTTP sessions
to overcome this limitation. This chapter explores the issues involved and
describes techniques available to the developer.

B Chapter 15, “JSP and JavaBeans”
This chapter describes JavaBeans and shows how they can be used in conjunction
with JavaServer Pages to isolate business logic into reusable components.

XXxii JSP: The Complete Reference

B Chapter 16, “JSP and XML"”
XML is emerging as the universal language for structured data storage
and interchange. This chapter examines how JSP can use XML both for
input and output.

B Chapter 17, “JSP Testing and Debugging”
Debugging techniques are frequently ignored in programming tutorials but
are indispensable knowledge. JavaServer Pages present their own challenges.
This chapter outlines a basic methodology that can be applied and the tools
that are available.

B Chapter 18, “Deploying Web Applications”
Chapter 18 describes how to move JSP pages out of the development
environment into the production Web environment.

B Chapter 19, “Case Study: A Product Support Center”
This chapter brings together elements discussed throughout the book in a
Web-based system for managing a technical support center.

Part IV, “JSP and Other Web Components”

Part IV deals with the larger context in which JavaServer Pages are used—how
they can communicate with servlets, applets, Perl scripts, FTP, CGI, ASP, and
other server-side agents.

B Chapter 20, “Communicating with Other Clients”
Although HTML forms in Web browsers are the most common client
environment, JSP pages can be used to support any client that can understand
the HTTP protocol. Chapter 20 shows how this can be done.

B Chapter 21, “Communicating with Other Servers”
Further developing the ideas of the previous chapter, this chapter describes
how JSP components can access other protocols. The JavaMail API is discussed.

Part V, “Appendixes”
The book concludes with three appendixes, covering the Servlet API, JSP API, and
HTTP reference.

___| The Lyric Note

Most of the examples in this book are set in the context of a hypothetical company—
The Lyric Note. This is an Internet-based music company that sells books, gifts, sheet
music, music software, and musical instruments. I have populated it with fifty
employees working in eleven departments, and a large product catalog.

Preface XXiii

| servlet and JSP API Levels

As this book is written, the predominant levels of the Servlet and JSP APIs are 2.2

and 1.1, respectively. There are public drafts of the 2.3 and 1.2 levels, but these are

not officially the standards, and are subject to change. This presents a problem for an
author trying to present timely material. Which is more important, discussing what is
actually implemented in the servlet engines people use today, or examining new levels
that no one can actually run yet? I have attempted to do a little of both. The main body
of the book is devoted to Servlet 2.2 and JSP 1.1, while the appendixes list the API from
the latest public drafts of the 2.3 and 1.2 specifications.

___ | Updates

Errata, examples, and updates can be found on my Web site: http:// www.philhanna.com.

This page intentionally left blank.

Acknowledgments

support of a number of people.

I would first like to thank my acquisitions editor at Osborne/McGraw-Hill,
Rebekah Young, who conceived this project and worked with me to shape the scope
and coverage. Thanks also to Mark Karmendy, who applied his considerable skills
to ensure that everything came together, and to Marcia Baker for her careful copy
editing. Thanks also to Osborne’s Production staff for the great job laying out pages.
Karl Moss, my technical editor, provided invaluable assistance and useful suggestions.

I'am indebted to Brian Flagg for his advice and technical assistance with the Product
Support Center case study, and to Tina Armstrong for feedback on its Model-View-
Controller approach. My appreciation to Pierre R. Schwob, CEO of Classical Archives,
LLC, for permission to include composer reference material in the Lyric Note product
catalog. Angela Allen and David Biesack provided helpful comments on the custom
tags material. Many thanks to Jack Keller for his skill in reinforcing structural integrity,
and to Chris Bailey, a singularly creative thinker and a great source of ideas.

I am very grateful for the support of Alan Eaton and Keith Collins of SAS Institute,
who made it possible for me to undertake this project.

Most of all, I would like to thank my wife, Mary, my children, Eleanor and John, and
my mother-in-law, Ann Jordan, for their support, encouragement, kindness, and patience.

It would not have been possible to write this book without the collaboration and

XXV
Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This page intentionally left blank.

The

Complete
Reference

Part |

The Web Programming Environment

Part I provides an introduction to the Web as a programming
environment, focusing on both business and technical aspects. After
examining the evolution of the Web application, it touches on the
underlying client/server architecture and the protocol used to support

it. Part I concludes with an introduction to JavaServer Pages (JSP).

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This page intentionally left blank.

The

Reforince
Chapter 1

The Web Marketplace

JSP: The Complete Reference

ago, the Forum Romanum was the center of power in the Roman world. It was the

place where triumphal marches took place, where ordinary goods and services were
exchanged, and where news and opinions were freely shared (from which we get the
common meaning of the word “forum”). Though partly built of stone, bricks, and mortar,
its expansion was made possible by a new technology: concrete.

Today, the Internet is the global electronic marketplace. The Internet is becoming the
dominant center for the exchange of goods, services, and information, both for business
enterprises and individual consumers. Like the Roman Forum, the growth of the Internet
is made possible by advances in technology—new computer languages, wide acceptance
of networking standards, and inexpensive hardware.

This book is about JavaServer Pages, an enabling technology that brings together
Web browsers, Web servers, and database systems to make applications that are easy to
develop, access, and deploy. Java technology has proven to be unsurpassed in connectivity,
reliability, scalability, and security. This technology, more than any other, promises to drive
the network computing model, and with it, the global electronic marketplace.

No one can predict future trends with certainty. Even the Forum Romanum was
eventually covered with grass and became il Campo Vaccino —the field of cows. But it
is safe to say that the degree to which an enterprise can successfully exchange products,
services, information, and ideas will continue to depend on the degree to which it has
access to the marketplace.

In the heart of Rome near the river Tiber lies the Roman Forum. Two thousand years

The

Reforince
Chapter 2

Evolution of the
Web Application

6 JSP: The Complete Reference

originally conceived as an application environment. Yet today, Web

applications are the mainstay of most Internet use—in particular, of
e-commerce use. This chapter briefly traces the origins of the World Wide Web,
Web applications, and associated technologies, setting the context for more detailed
technical exploration in the remainder of the book.

One of the most remarkable things about the World Wide Web is it wasn’t

___| Birth of the Web

The World Wide Web and its associated Hypertext Transfer Protocol (HTTP) grew out

of work done at the European Laboratory for Particle Physics (CERN) in 1990. Tim
Berners-Lee developed HTTP as a networking protocol for distributing documents

and wrote the first Web browser. The system was used at CERN and other high-energy
physics laboratories and universities in 1991 and 1992, and grew steadily in popularity.
In 1993, the advent of the Mosaic browser led to the explosion of commercial Web use.
In five years, more than 650,000 Web servers were in use worldwide, with uncounted
millions of users.

___| Growth of the Web Programming Model

The idea of using the Web as an application environment developed over time, with
each stage of technology serving as a springboard for new ideas. The first operational
model had the Web server simply serving up documents on request. In this environment,
the content doesn’t change unless a human author supplies a new version of a document.
The client/server interaction is illustrated in Figure 2-1.

Web browser Web server

[[S

_

GET /doc.html
<HTML> ... </HTML>

HTML
documents

Figure 2-1. Static document server model

Chapter 2: Evolution of the Webh Application

HTTP is a simple request/response protocol in which a Web browser asks for a
document (typically using a GET command), and the Web server returns the document
in the form of an HTML data stream preceded by a few descriptive headers. Chapter 3
examines HTTP in greater detail.

What quickly became apparent is if humans could revise the documents handled
by the Web server, so could a text-processing program like a Perl script. The Web
browser is unaware of the difference because the result of an HTTP request is still an
HTML data stream. What’s more, the browser can send more than just a request—it
can send parameters, either by embedding them in the URL or by sending a data stream
with the request. This suggests an HTTP request can be interpreted as a database query
and the query results can be used to build an HTML document dynamically. With the
development of the NCSA HTTPd Web Server came a new specification designated the
Common Gateway Interface (CGI).

A CGI program is invoked by the Web server in response to certain types of requests,
usually requests for documents in a particular directory or filenames having a particular
extension, such as . cgi. The request parameters are passed as key/value pairs, and
the request headers as environment variables. The program reads these parameters and
headers, performs the application task at hand (typically accessing a database to do so),
and then generates an HTTP response. The response is sent back to the requesting Web
browser as if it were an ordinary static document. Figure 2-2 illustrates the process flow.

Web browser Web server

—-—

_

GET /cgi-bin/pgm

A\ 4

<HTML> ... </HTML>

o
CGI program

)

Figure 2-2. Dynamic content generated by a CGl script

JSP: The Complete Reference

CGl is convenient, but it has one big drawback. Ordinarily, CGI spawns a new
process for each HTTP request’. This isn’t a problem when traffic is low, but it creates
a great deal of overhead when the traffic level increases. This being the case, CGI in
general doesn’t scale well.

A significant improvement came with the release in 1997 of the Java Servlet AP,
followed quickly by the JavaServer Pages (JSP) API. These related technologies bring
the full power of Java to the Web server, with database connectivity, network access,
and multithreaded operations, and, notably, a different process model. Servlets and

Web browser Web server
GET /requestURI R .
. <HTML> ... </HTML>
— O O
[S=—=——= N
== e

Servlet engine

| |
Servlets JSP pages J7

A A

A 4 v

J2EE services

A

A4

- Other services
Database

Figure 2-3. Dynamic applications using serviets, JSP, and J2EE

1 Improvements on this exist, such as FastCGI, which handles all requests from a single persistent process.

Chapter 2: Evolution of the Webh Application

JSP pages operate from a single instance that remains in memory and uses multiple
threads to service requests simultaneously. As Figure 2-3 shows, servlets and JSP pages
can make use of the full Java 2 Enterprise Edition (J2EE) environment for sophisticated,
robust applications.

The Shift from Client-Side to
Server-Side Solutions

The Web application model has evolved as the Web has matured, and experience with
each phase has driven requirements for the next. The initial wave of client-side Java

in the form of applets was phenomenally popular, but led to some disappointment as
reality intruded. Considerable incompatibilities occurred between browsers, lengthy
downloads over slow modems, and security restrictions that limited applet usefulness.
Because of this, applet development slowed?, and server-side Java has been the biggest
growth area.

Server-side Java has none of the restrictions of the applet environment. No browser
inconsistencies occur because the browser isn’t required to host a Java virtual machine.
The browser only has to render HTML, which even the oldest browsers do reasonably
well. Also, no client-side setup is involved and no download of large class files. Likewise,
security considerations are limited to those already handled by the Web server, which
is typically in a closed environment with controls in place.

JSP has proved to be a successful server-side technology and an excellent base
for developing Web applications. The remainder of this book explores JSP in-depth
to demonstrate why this is so.

2 Many observers believe client-side Java is poised for a comeback. The Java plug-in eliminates browser
inconsistencies and allows Swing components to be used. Moreover, high-speed Internet connections
are making download considerations increasingly unimportant.

This page intentionally left blank.

The

Reforince
Chapter 3

Overview of the

Hypertext Transfer
Protocol (HTTP)

11

12 JSP: The Complete Reference

his chapter introduces the underlying language used by the Web client/server

model. In doing so, it develops the basic concepts critical to understanding the

Web programming environment. The chapter presents several examples of Web
browsers and servers using this language to communicate. Additional details about
the protocol can be found in Appendix C.

| what Is HTTP?

Whereas Hypertext Markup Language (HTML) is the language used to describe the insides
of Web documents, Hypertext Transfer Protocol (HTTP) is the language used to describe
how these documents are sent over the Internet. The key to understanding Web
programming is understanding this protocol and the environment in which it operates.

A Language for Requesting Documents over the Internet

HTTP prescribes the rules by which browsers make requests and servers supply
responses. This set of rules, or protocol, includes ways to

B Ask for a document by name

B Agree on the data format

B Determine who the user is

B Decide how to handle outdated resources

B Indicate the results of a request

and other useful functions.

HTTP consists of a set of commands written as lines of ordinary ASCII text. When
you use a Web browser, you don’t enter the HTTP commands directly. Instead, when
you type a URL or click a hyperlink, the browser translates your action into HTTP
commands that request the document from the server specified in the URL. The Web
server finds the document and sends it back to the browser, where it’s displayed, along
with its associated graphics and other hyperlinks.

The HTTP Specification

Internet standards are usually specified in a Request for Comments (RFC) published by the
Internet Engineering Task Force (IETF). These RFCs are widely accepted by the Internet
research and development community. Because they’re standards documents, they
tend to be written in formal language, like that of a legal document. This makes them
unsuitable as tutorials, but invaluable for reference.

RFCs are numbered and never change when issued. If a standard is updated,
a new RFC is issued. Being standards, RFCs are widely available on the Internet.
A good, readable online source is Brent Baccala's Connected: An Internet Encyclopedia
(http:/ /www freesoft.org/CIE), which maintains HTML versions of most RFCs and
provides a full-text search engine.

Chapter 3: Overview of the Hypertext Transfer Protocol (HTTP) 13

Several RFCs deal with HTTP:

RFC 1945 A description of HTTP version 1.0
RFC 2068 The initial description of version 1.1
RFC 2616 An updated version of the 1.1 specification

Unless otherwise specified, this book uses the HTTP 1.1 standard as documented in
RFC 2616.

___| HTTP Request Model

The specification describes HTTP as a stateless request/response protocol whose basic
operation is as follows:

1. A client application, such as a Web browser, opens a socket to the Web server’s
HTTP port (80, by default).

2. Through the connection, the client writes an ASCII text request line, followed
by zero or more HTTP headers, an empty line, and any data that accompanies
the request.

3. The Web server parses the request and locates the specified resource.
4. The server writes a copy of the resource to the socket, where it’s read by the client.

5. The server closes the connection.

Figure 3-1 illustrates this basic operation.

A key consideration is this model is stateless. This means in handling a request, the
Web server doesn’t remember anything about previous requests from the same client.
The protocol is simply a request (“please give me this document”) and a response (“OK,
here it is”). Obviously, this imposes limitations on application programming, which

Web browser Web server
GET /document.html HTTP /1.0 -)
— HTTP/1.1 200 OK
Content-Type: text/html

<HTML> ... </HTML>

Figure 3-1. HTTP basic operation

14

JSP: The Complete Reference

typically requires a great deal of back-and-forth conversation, as well as complex objects
that must be initialized and have their state maintained.

The way around this is to have the server assign an identifier to the session
represented by a set of client requests, and to have the client remember the identifier
and supply it to the server with each request. This technique is explored in depth in
Chapter 14.

Let’s examine each of these steps in greater detail.

Connecting to the Web Server

A Web server operates by listening for requests on a particular well-known port number,
usually port 80, although any available port can be used. If a Web server listens on a
different port, URLs that refer to this server must include a colon and the port number
immediately after the server name. For example,

http://www.mycompany.com/mypath.html

refers to an HTML document known to a Web server running on the
www.mycompany.com host on the default port 80. If the server is running
on port 4311 instead, the URL looks like this:

http://www.mycompany.com:4311/mypath.html

Why bother with alternate port numbers, especially because they introduce that
ugly URL syntax? Because this allows more than one server to be running on a single
host. An experimental Web server with different capabilities may need to coexist with
the main server. The Tomcat and JRun servlet engines, for example, can run a mini
HTTP server for testing servlets and JSP pages. Most Web servers provide some
means of hiding this alternate syntax by mapping the URLSs to a different namespace.

A client, such as a Web browser, initiates an HTTP request by opening a TCP/IP
socket to the Web server port, and then opening input and output stream over the
socket. In Java terms, this would amount to a few lines of code:

Socket socket = new Socket (“www.mycompany.com”, 80) ;
InputStream istream = socket.getInputStream() ;
OutputStream ostream = socket.getOutputStream() ;

The parameters required to open the socket are the Web server host name and the
port number. The server host name is extracted from the URL, while the port number
is either implied or also extracted from the URL. The output stream is used to send
HTTP commands to the Web server; the input stream is used to read the response.

Chapter 3: Overview of the Hypertext Transfer Protocol (HTTP) 15

Sending the HTTP Request

Once the socket connection is made, the Web browser writes an HTTP command to
request the document. A request has up to four parts.

The first part is the request line. This consists of three tokens, separated by spaces:
the request method, the request URI, and the HTTP version. The following shows a
typical request line:

GET /mypath.html HTTP/1.0

In this example, the request method is GET, the URI is /mypath.html, and the HTTP
version is HTTP/1.0.

The HTTP specification defines eight possible methods, shown in Table 3-1. Of all
these methods, the vast majority of requests use either GET or POST. These two methods
are the only ones considered in this book.

The second token on the request line is the request Uniform Resource Identifier (URI).
This is the URI of the document or other resource being requested. For all practical
purposes, this corresponds to the URL without the leading http:// and host name.
In the example of http:/ /www.mycompany.com/mypath.html, the request URI is
/mypath.html.

Method Description

GET A simple request to retrieve the resource identified in the URIL

HEAD The same as GET, except the server doesn’t return the requested
document. The server only returns the status line and headers.

POST A request for the server to accept data that will be written to the
client’s output stream.

PUT A request for the server to store the data in the request as the new
contents of the specified URIL

DELETE A request for the server to delete the resource named in the URL

OPTIONS A request for information about what request methods the server
supports.

TRACE A request for the Web server to echo the HTTP request and its headers.

CONNECT A documented but currently unimplemented method reserved for
use with a tunneling proxy.

Table 3-1. HTTP Request Methods

16

JSP: The Complete Reference

The last token on the line is the HTTP version. This indicates the highest level of
the HTTP specification the client application understands. The allowable values are
HTTP/1.0 and HTTP/1.1.

After the request line come any request headers. These are key/value pairs, one pair
per line, with the key and value separated by a colon (:). After the last request header
is written, an empty line consisting of only a carriage return and line feed is sent. This
informs the server that no more headers follow. Even if no headers exist, this empty
line must be sent, so the server doesn’t look for any more headers.

Request headers inform the server further about the identity and capabilities of the
client. Typical request headers might be

User-Agent The vendor and version of the client
Accept A list of content types the client recognizes
Content-Length The number of bytes of data appended to the request

A complete list of request and response headers is found in Appendix C.

For HTTP POST requests, the request may include data. You see later in Chapter 12
how POST data is used to transmit the values of HTML form fields. If data is present,
seeing both the Content -Type and Content -Length request headers used is common.

Server Acceptance of the Request

When a client connects to the Web server’s listening port, the server accepts the connection
and handles the request. In most cases, it does so by starting a thread to process the
request, so it can continue to service new requests. Handling the request means different
things depending on the URI. If the URI represents a static document, the server opens
the document file and prepares to copy its contents back to the client. If the URI is a
program name, such as a CGI script, servlet, or JSP page, and the server is configured
to handle such a request, the server prepares to invoke the program or process.

The HTTP Response from the Server

However the server processes the request, the result is the same—an HTTP response.
Similar to a request, a response consists of up to four parts: a status line, zero or more
response headers, an empty line signaling the end of the headers, and the data that
makes up the request.

The status line consists of up to three tokens:

B The HTTP version. Just as the client indicates the highest version it can understand,
so the server indicates its capabilities.

B The response code. This is a three-digit numeric code that indicates whether the
request succeeded or failed and, if it failed, the reason why. A list of HTTP status
codes is found in Appendix C.

Chapter 3: Overview of the Hypertext Transfer Protocol (HTTP) 17

B An optional response description, which is a human-readable explanation of the
response code.

A typical HTTP response status line looks like this
HTTP/1.0 200 OK

which indicates a successful retrieval of the requested document according to the 1.0
level of the HTTP specification.

After the status line comes the response headers, with an empty line as the delimiter.
Like request headers, these indicate the capabilities of the server and identify details
about the response data. Appendix C lists valid HTTP response headers.

The last part of the response is the requested data itself, typically an HTML document
or image stream. After the data is sent, the server closes its end of the connection.

Examples

A look at several examples can make this clearer. A simple case of a GET request
would be what happens when a URL is typed in a browser address line or a hyperlink
is clicked. If you open the URL http://www.lyricnote.com/simple.html, the
Web browser opens a socket connection to the www. lyricnote.com host on port 80,
and then writes the following line

GET /simple.html HTTP/1.0
followed by an empty line. The Web server returns the following:

HTTP/1.1 200 OK

Date: Wed, 31 Jan 2001 03:55:43 GMT
Server: Apache/1.3.12 (Win32)
Content-Length: 241

Content-Type: text/html

<HTML>

<BODY>

<H3>Welcome</H3> to The Lyric Note</bs,
the best Internet source for

sheet music

musical instruments

books on musical topics

18

JSP: The Complete Reference

music software, and
musical gift items

</BODY>

</HTML>

The browser first parses the status line and sees the status code indicates the request
was successful. The browser then parses each of the request headers, which inform it
241 bytes of HTML follow. The browser reads the HTML, formats it according to the
syntax and semantics of HTML, and displays it in the browser window, as shown in
Figure 3-2.

An HTML document may contain references to other resources that need to be
loaded when the document is loaded. For example, images are often embedded in the
page with the HTML tag. JavaScript files or external style sheets may also be
required. The Web browser (not the server) recognizes these cases and makes additional
requests for the other resources. This bears repeating. The Web server doesn’t read
through the HTML it serves, recognize an tag, and then start sending the bytes
of the image file. The Web server simply sends back the resource that was requested
in one operation. If, a few milliseconds later, the browser requests an image file, the
server returns this in a separate operation. The Web browser does all this under the covers,
so the user is unaware several requests are involved.

/3 http: //u25nv/jspcr/Chap03/examples/simple_html - Microsoft In. [Hi[=] E3

J File Edit Wiew Favontes Toolz Help |

¢+ QR AEI B SHH-
J-"—"«leessl hittp: /A lpricnote. com/simple. html j @ Go
=

Welcome
to The Lyric Note, the best Internet source for

sheet music

musical instruments
books on musical topics
music software, and
musical gift items

|@ Done l_ l_ Ei-g Local intranet -

Figure 3-2. Results of a simple HTTP request

Chapter 3: Overview of the Hypertext Transfer Protocol (HTTP)

To augment the previous example slightly, suppose you open http: //www.

lyricnote.com/compound.html. The browser again opens a socket connection

to www. lyricnote. com port 80 and requests the HTML document,
GET /compound.html HTTP/1.0
which results in the following response:

HTTP/1.1 200 OK

Date: Tue, 30 Jan 2001 23:42:16 GMT
Server: Apache/1.3.12 (Win32)
Content-Length: 380

Content-Type: text/html

<HTML>

<HEAD>

<LINK REL="stylesheet" HREF="lyricnote.css">
</HEAD>

<BODY>

<HR COLOR="#005A9C" ALIGN="LEFT" WIDTH="500">
<H3>Welcome</H3> to The Lyric Note,
the best Internet source for

sheet music

musical instruments

books on musical topics

music software, and

musical gift items

</BODY>

</HTML>

As the browser is parsing the HTML, it notices the style sheet request:
<LINK REL="stylesheet" HREF="lyricnote.css">
and makes a second HTTP request:

GET /lyricnote.css HTTP/1.0

19

20 JSP: The Complete Reference

The Web server retrieves the style sheet and returns it to the client:

HTTP/1.1 200 OK

Date: Tue, 30 Jan 2001 23:42:27 GMT
Server: Apache/1.3.12 (Win32)
Connection: Keep-alive, close
Content-Length: 73

Content-Type: text/plain

h3 {
font-size: 20px;

font-weight: bold;
color: #005A9C;

The browser interprets the style sheet and applies the font size, weight, and color styles
to the <H3> tag. Next, it encounters an image tag

and makes a request for the logo,
GET /images/logo.png HTTP/1.0
which causes the Web server to respond with the image data stream:

HTTP/1.1 200 OK

Date: Tue, 30 Jan 2001 23:42:44 GMT
Server: Apache/1.3.12 (Win32)
Connection: Keep-alive, close
Content-Length: 1280

Content-Type: text/plain

(Binary image data follows)

Finally, the browser renders the completed page, as shown in Figure 3-3.

Chapter 3: Overview of the Hypertext Transfer Protocol (HTTP) 21

/3 http://u25nv/jzpcr/Chap03/examples/compound. html - Microzoft Internet Explorer [Hli[=] E3

J File Edt “iew Favortes Tools Help |

¢ -+ - QA a3 B30 -

JAEIdressl hittp: /v lyrichiote, com/compound. himl j @G0
=
EE The Lyric Note
Welcome

to The Lyric Note, the best Internet source for

sheet music

musical instruments
books on musical topics
music software, and
musical gift items

|@ Done ’_’_ = Local intranet Vi

Figure 3-3. Results of a compound HTTP request

___| Summary

This chapter introduces HTTP, the set of rules by which requests are made and
responses are returned. Understanding these rules is crucial to proper development
and troubleshooting. Important to understand is HTTP is stateless, meaning HTTP
doesn’t by itself retain knowledge from one request to the next. The JSP environment
provides robust ways to remedy this. Another key consideration is that both browsers
and servers can be replaced by workalike software. Applications, applets, and
programs written in other languages can act as clients and diagnostic tools can play
the role of server. Because all they need to do is provide the same HTTP request and
response streams a browser and Web server would use, these other applications are
indistinguishable from the real thing. You'll exploit this capability in later chapters.

This page intentionally left blank.

The

Reforince
Chapter 4

Introduction to Servlets

23

24 JSP: The Complete Reference

technology—Java servlets. Servlets are Java classes that extend the functionality
of a Web server by dynamically generating Web pages. A run-time environment
known as a servlet engine manages servlet loading and unloading, and works with the
Web server to direct requests to servlets and to send output back to Web clients.
Since their introduction in 1997, servlets have become the dominant environment
for server-side Java programming and a widely used portal into application servers.
They offer several key advantages:

To understand JavaServer Pages, it’s necessary to understand their underlying

B Performance Older technologies such as the Common Gateway Interface (CGI)
typically start a new process to handle each incoming request. In the days when
the Web was primarily a repository for academic and scientific research, there
wasn’t very much traffic and this approach worked well. Servlets, by contrast,
are loaded when first requested, and stay in memory indefinitely. The servlet
engine loads a single instance of the servlet class and dispatches requests to it
using a pool of available threads. The resulting performance improvement is
considerable.

B Simplicity Client-side Java applets run in a virtual machine provided by
the Web browser. This introduces compatibility issues that increase complexity
and limit the functionality that applets can provide. Servlets simplify this
situation considerably because they run in a virtual machine in a controlled
server environment and require only basic HTTP to communicate with their
clients. No special client software is required, even with older browsers.

B HTTP Sessions Although HTTP servers have no built-in capability to remember
details of a previous request from the same client, the Servlet API provides an
HttpSession class that overcomes this limitation.

B Access to Java Technology Servlets, being Java applications, have direct
access to the full range of Java features, such as threading, network access,
and database connectivity.

JSP pages, which are automatically translated into servlets, inherit all these advantages.

This chapter provides an overview of how servlets work. It examines the primary
servlet objects and their APL It discusses the servlet engine, the servlet lifecycle, servlet
threading models, and how servlets can maintain persistent state between requests.
This chapter also includes an annotated example of a servlet.

___| servlet Lifecycle

Like their client-side applet counterparts, servlets provide methods that are called
when specific events occur in a larger context. Programming in this environment

Chapter 4: Introduction to Servlets

involves writing predefined methods (sometimes known as callback methods), which
are called as required by a managing program.

An applet, for example, provides methods such as init (), start (), paint (),
stop (), and destroy (), which are called by the applet run-time environment in
response to actions the user takes. The java.applet.Applet base class provides
default implementations for all these methods; you only override those that occur
during events with which you are concerned. You would write an init () method,
for instance, if you have GUI components that need to be created.

Similarly, servlets operate in the context of a request and response model managed
by a servlet engine. The engine does the following:

B Loads a servlet when it’s first requested
B Calls the servlet’s init () method
B Handles any number of requests by calling the servlet’s service () method

B When shutting down, calls each servlet’s destroy () method.

As with applets, there are standard base classes javax.servlet.GenericServlet
and javax.servlet.http.HttpServlet thatimplement the servlet callback methods.
Servlet programming, then, consists of subclassing one of these classes and overriding
the necessary method to accomplish the specific task at hand. The following sections
examine each of these lifecycle methods.

When a request for a servlet is received by the servlet engine, it checks to see if the
servlet is already loaded. If not, the servlet engine uses a class loader to get the particular
servlet class required, and then invokes its constructor to get an instance of the servlet.
After the servlet is loaded, but before it services any requests, the servlet engine calls
an initialization method with the following signature:

public void init (ServletConfig config)
throws ServletException

This method is called only once, just before the servlet is placed into service. The
ServletConfig object provides access to the servlet context (discussed later in this
chapter) and to any initialization parameters coded for the servlet. To maintain a
reference to the servlet context, the config object must be stored as an instance variable,
a task that’s done by the init (ServletConfig) method in GenericServlet. For
this reason, it’s important to call super.init (config) within the init () method
of any subclass.

25

26

JSP: The Complete Reference

Inside the init () method, the servlet can perform any necessary startup tasks,
such as establishing database connections. If any errors occur that make the servlet
unable to handle requests, it should throw an UnavailableException'. This
prevents requests from being directed to the servlet.

service

After the init () method completes successfully, the servlet is able to accept requests.
By default, only a single instance of the servlet is created, and the servlet engine dispatches
each request to the instance in a separate thread. The servlet method that’s called has
the following signature:

public void service (
ServletRequest request,
ServletResponse response)

throws ServletException, IOException;

The servletRequest object is constructed by the servlet engine and acts as a
wrapper for information about the client and the request. This includes the identity
of the remote system, the request parameters, and any input stream associated with
the request. Similarly, the ServletResponse object provides the means for a servlet
to communicate its results back to the original requester. It includes methods for opening
an output stream and for specifying the content type and length.

As important as the service () method is, it’s rarely used. The reason for
this is most servlets are designed to operate in the HTTP environment, for which
there’s a specialized javax.servlet.http package. Rather than extending
javax.servlet.GenericServlet directly, most servlets extend its subclass
javax.servlet.http.HttpServlet. This subclass provides specialized methods
corresponding to each HTTP request method: GET requests are handled by doGet (),
POST requests by doPost (), and so on. The signatures for these methods use
HTTP-specific versions of the request and response objects:

public void doGet (
HttpServletRequest request,

1 UnavailableException is a subclass of ServletException that can optionally include a number of
seconds the servlet is expected to be unavailable. If not specified, the servlet is assumed to be
permanently unavailable.

Chapter 4: Introduction to Servlets

HttpServletResponse response)
throws ServletException, IOException;

The service (Request, Response) method in HttpServlet casts the
request and response objects into their HTTP-specific counterparts, and then calls
service (HttpServletRequest, HttpServletResponse), which examines
the request and calls the appropriate doGet (), doPost (), or other method. A typical
HTTP servlet, then, includes an override to one or more of these subsidiary methods,
rather than an override to service ().

destroy

The servlet specification allows a servlet engine to unload a servlet at any time. This
may be done to conserve system resources or in preparation for servlet engine
shutdown. The servlet engine notifies each loaded servlet this is about to happen
by calling its destroy () method. By overriding destroy (), you can release any
resources allocated during init ().

| Calling destroy () yourself won't actually unload the servlet. Only the servlet engine
can do this.

| Example: Kilometers per Liter to Miles per
Gallon Servlet

Let’s look at a simple servlet. K2MServlet, shown in the following, is a servlet that
creates a fuel efficiency conversion table that expresses kilometers per liter in terms of
miles per gallon.

package jspcr.servlets;

import java.io.*;

import java.text.*;

import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;

/**
* Prints a conversion table of miles per gallon

* to kilometers per liter

*/

28

JSP: The Complete Reference

public class K2MServlet extends HttpServlet
{
private static final DecimalFormat FMT
= new DecimalFormat ("#0.00") ;

private static final String PAGE TOP = ""
"<HTML>"
"<HEAD>"

"< /HEAD>"
"<BODY>"

n <TR> n

"<«TH>Kilometers per Liter</TH>"
"<TH>Miles per Gallon</TH>"

n </TR> n

+ 4+ 4+ o+ o+ o+ o+ + + +

~.

private static final String PAGE BOTTOM =
+ "</TABLE>"
+ "</BODY>"
+ "</HTML>" ;

public void doGet (
HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException

response.setContentType ("text/html") ;
PrintWriter out = response.getWriter() ;

out.println (PAGE TOP) ;

"<TITLE>Fuel Efficiency Conversion Chart</TITLE>"

"<H3>Fuel Efficiency Conversion Chart</H3>"
"<TABLE BORDER=1 CELLPADDING=3 CELLSPACING=0>"

for (double kpl = 5; kpl <= 20; kpl += 1.0) {

double mpg = kpl * 2.352146;
out.println ("<TR>") ;

out.println ("<TD>" + FMT.format (kpl)
out.println ("<TD>" + FMT.format (mpg)
out.println("</TR>") ;

}

out.println (PAGE_BOTTOM) ;

+ "</TD>") ;
+ "</TD>") ;

Chapter 4: Introduction to Servlets

To start, note the two import statements at the beginning of the program:

import javax.servlet.*;
import javax.servlet.http.*;

These statements identify to the compiler that we’ll use classes from the general and

HTTP-specific servlet packages. import statements are not strictly required, but they

make referring to classes possible without specifying their fully qualified names.
Next, the class declaration:

public class K2MServlet extends HttpServlet

A servlet is required at a minimum to implement the javax.servlet.Servlet
interface. To simplify servlet writing, the servlet API provides a basic implementation
of this interface called GenericServlet. It also supplies an HTTP-specific subclass
HttpServlet, which is the base class most commonly used for servlets.

public void doGet (
HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException

Our servlet has no special requirement for startup or termination actions, so it
only overrides one method—doGet (). This will be invoked from the HttpServlet
superclass service () method if the request method is GET.

response.setContentType ("text/html") ;

Before writing any results back to the client, we need to specify any HTTP headers

we want to send. In our case, the only one is Content - Type, which we set to text /html.

PrintWriter out = response.getWriter();

Creating an HTML page consists of writing HTML statements to an output
stream associated with the HTTP request. This output stream can be obtained from
the response object using either its getOutputStream () or getWriter () methods,
depending on whether a binary stream or character output is to be written, respectively.
Important to note is a servlet must chose one or the other of these methods; it cannot
call both. Because we're writing ordinary HTML, we’ll use getWriter () to obtain
a character writer.

29

30 JSP: The Complete Reference

All that remains is to print the text of our HTML table. For convenience, we’ve coded
the page header and footer in the static string variables PAGE_TOP and PAGE_BOTTOM.
We print the table itself in a loop over the desired range of kilometers per liter.

out.println (PAGE_TOP) ;

for (double kpl = 5; kpl <= 20; kpl += 1.0) {
double mpg = kpl * 2.352146;
out.println ("<TR>") ;
out.println("<TD>" + FMT.format (kpl) + "</TD>");
out.println("<TD>" + FMT.format (mpg) + "</TD>");
out.println("</TR>") ;

}

out.println (PAGE_BOTTOM) ;

To run the servlet, we first need to compile it. For this to be successful, the classes
in the servlet API must be in the classpath. These classes are typically found in a JAR
file distributed with the servlet engine. The official JAR file can also be found at the
Apache Jakarta Web site http://jakarta.apache.org.

Next, depending on the servlet engine, it might be necessary to describe the servlet
in the Web application deployment descriptor /WEB-INF/web.xml. For a simple
servlet, this might consist only of a <servlet> tag with its child <servlet-name>
and <servlet-class> elements. In this case, the entry looks like this:

<?xml version="1.0" ?>
<web-app>

<servlet>
<servlet-name>K2M</servlet-name>
<servlet-class>jspcr.servlets.K2MServlet</servlet-class>

</servlets>

</web-app>
Note | <servlet> entries in web.xml must be coded in a specific position with respect to other
elements. See Chapter 18 for details or examine the web-app_2.2.DTD.

In most cases, modifying the web . xm1 file requires the servlet engine be restarted
before any changes take effect.
Finally, the servlet can be invoked using a URL of this form:

http://<servernames>/<webappnames>/servlet/<servletname>

The results for this servlet can be seen in Figure 4-1.

Chapter 4:

Introduction to Servlets

a Fuel Efficiency Conversion Chart - Microzoft Internet Explorer

J Fil= Edit ‘“iew Favoites Tool: Help |
[¢-2-Q0A QAEI B-SEH-
J.-’-\;Idless I@ http: £ u2Bmwdjspord serviet/ K2k j 6o
=
Fuel Efficiency Conversion Chart

Kilometers per Liter |Miles per Gallon

5.00 11.76

6.00 14,11

7.00 16.47

2.00 18.82

9.00 21.17

10.00 23.52

11.00 25.87

12.00 28.23

13.00 30.58

14.00 32.93

15.00 35.28

16.00 37.63

17.00 39.99

18.00 42,34

19.00 44,69

20.00 47.04

=

|@ Done I_l_lg ty Computer -

Figure 4-1. Kilometers per liter to miles per gallon output

Servlet Classes

This section outlines several important classes from the javax.servlet and
javax.servlet.http packages. Full details of the servlet API can be found in

Appendix A.

31

32 JSP: The Complete Reference

Servlet

The basic servlet abstraction is the javax.servlet.Servlet interface, shown in
Table 4-1. It prescribes the set of methods that must be implemented by a servlet class
for it to be recognized and managed by a servlet engine. Its primary purpose is to supply
the lifecycle methods init (), service (), and destroy ().

The servlet API provides a concrete implementation of the Servlet interface named
GenericServlet, described in Table 4-2. This class supplies default implementations of
all the interface methods except service (). This means you can write a basic servlet
simply by extending GenericServlet and writing a custom service () method.

Method

void init (
ServletConfigconfig)
throws ServletException

ServletConfig
getServletConfig()

void service (
ServletRequest request,
ServletResponse response)
throws ServletException,
IOException

StringgetServletInfol()

void destroy ()

Description

Called once by the servlet engine after a
servlet is loaded, just before it’s placed
into service. If init () throws an
UnavailableException, the servlet
is then taken out of service. A servlet
should provide some way to store

the config object to implement the
getServletConfig () method (see
GenericServlet).

Returns the ServletConfig object
passed to the servlet’s init () method.

Handles the request described in the
request object, using the response
object to return its results to the requester.

Returns a string that can describe

the servlet. Intended for use by
administrative tools that need to
provide a human-readable description.

Called by the servlet engine when the
servlet is about to be unloaded.

Table 4-1.

Methods in the servlet Interface

Chapter 4: Introduction to Servlets

Method

void destroy ()

String getInitParameter
(String name)

Enumeration
getInitParameterNames ()

ServletConfig
getServletConfig()

ServletContext
getServletContext ()

String getServletInfo ()

void init (ServletConfig
config) throws
ServletException

void init () throws
ServletException

void log (String msg)

Description

Writes a log entry consisting of the word
“destroy”.

Returns the value of the initialization
parameter with the specified name.
Does so by calling
config.getInitParameter (name).

Returns an Enumeration of all

the initialization parameters coded

for this servlet, calling
config.getInitParameterNames ()
to obtain the list. If no initialization
parameters were supplied, returns an
empty Enumeration (not null).

Returns the ServletConfig object that
was passed to the init () method.

Returns the ServletContext referred
to in the config object.

Returns an empty string ().

Stores the config object in an instance
variable, writes a log entry consisting
of the word “init”, and then calls the
convenience method init ().

Can be overridden to handle servlet
initialization. Automatically called
attheend of init (ServletConfig
config), after the config object has
been stored. A concession to servlet
authors who, like me, always forget
to call super.init (config).

Writes an entry to the servlet log, invoking
the servlet context’s 1og () method to

do so. The servlet’'s name is added to the
beginning of the message text.

Table 4-2.

Methods in the GenericServlet Class

33

34

JSP: The Complete Reference

Method Description
void log (String msg, Writes an entry and a stack trace to
Throwable t) the servlet log. This method is also

a pass-through to the corresponding
method in ServletContext.

abstract void service (Request Called by the servlet engine to service

request, Response response) the request described by the request
throws ServletException, object. This is the only abstract method
IOException in GenericServlet, hence, it’s the only

one that must be overridden by subclasses.

String getServletName () Returns the servlet name as specified
in the Web application deployment
descriptor (web.xml).

Table 4-2. Methods in the GenericServlet Class (continued)

In addition to the Servlet interface, GenericServlet also implements
ServletConfig, which handles initialization parameters and the servlet context,
providing convenience methods that delegate to the ServletConfig object that was
passed to init ().

Although the servlet API allows for expansion to other protocols, the current version
supports only protocol-independent servlets” and HTTP servlets. Because virtually all
servlets operate in the Web server environment, few servlets extend GenericServlet
directly. It's more common for servlets to extend its HTTP-specific subclass Ht tpServlet,
described in Table 4-3. See Chapter 3 for an introduction to HTTP.

HttpServlet implements service () by calling methods specific to the HTTP
request method. That is, for DELETE, HEAD, GET, OPTIONS, POST, PUT, and TRACE, it
calls doDelete (), doHead (), doGet (), doOptions (), doPost (), doPut (), and
doTrace (), respectively. It also casts the request and response objects used by these
methods into their HTTP-specific subclasses, described later in this section.

2 What might a protocol-independent servlet be? Perhaps one that doesn't service requests at all,
but simply launches background threads from its init () method and kills them in destroy ().
This could be used to emulate Windows NT services or Unix daemon processes.

| Note |

Chapter 4:

methods it supports explicitly.

The methods that handle GET, POST, PUT, and DELETE by default return an error
indicating the requested method is not supported, so a servlet needs to override the

Introduction to Servlets

Method

void doGet (HttpServletRequest
request, HttpServletResponse
response) throws
ServletException, IOException

void doPost (HttpServletRequest
request, HttpServletResponse
response) throws
ServletException, IOException

void doPut (HttpServletRequest
request, HttpServletResponse
response) throws
ServletException, IOException

void

doDelete (HttpServletRequest
request, HttpServletResponse
response) throws
ServletException, IOException

void

doOptions (HttpServletRequest
request, HttpServletResponse
response) throws
ServletException, IOException

Description

Called by the servlet engine to process
an HTTP GET request. Input parameters,
HTTP headers, and the input stream (if
any) can be obtained from the request
object, and response headers and the
output stream from the response object.

Called by the servlet engine to process
an HTTP POST request. No different
from doGet () from the standpoint of
obtaining parameters and input data or
returning the response.

Called by the servlet engine to process
an HTTP PUT request. The request URI
in this case indicates the destination of
the file being uploaded.

Called by the servlet engine to process
an HTTP DELETE request. The request
URI indicates the resource to be deleted.

Called by the servlet engine to process
an HTTP OPTIONS request. Returns

an Allow response header indicating
the HTTP methods supported by this
servlet. It’s unlikely that a servlet will
need to override this method because
the HttpServlet method already imple-
ments the functionality required by the
HTTP specification.

Table 4-3.

Methods in the HttpServlet Class

35

JSP: The Complete Reference

Method

void

doTrace (HttpServletRequest
request, HttpServletResponse
response) throws
ServletException, IOException

void

service (HttpServletRequest
request, HttpServletResponse
response) throws
ServletException, IOException

void service (Request request,
Response response) throws
ServletException, IOException

Description

Called by the servlet engine to process
an HTTP TRACE request. Causes

the request headers to be echoed as
response headers. It’s unlikely that

a servlet will need to override this
method because the HttpServlet
method already implements the
functionality required by the HTTP
specification.

An intermediate method called

by service (Request request,
Response response) with
HTTP-specific request and response
objects. This is the method that actually
directs the request to doGet (),
doPost (), and so forth. It shouldn’t
be necessary to override this method.

Casts the request and response objects
to their HTTP-specific subclasses and
invokes the HTTP-specific service ()
method.

Table 4-3. Methods in the Ht tpServiet Class (continued)

Servlet Request

The ServletRequest interface encapsulates the details of the client request.
A generic version exists that is protocol-independent and a subinterface exists that
is HTTP-specific.
The protocol-independent version shown in Table 4-4 has methods for

B Finding the host name and IP address of the client

B Retrieving request parameters

B Getting and setting attributes

B Getting the input and output streams

Chapter 4:

Introduction to Servlets

Method

Object getAttribute
(String name)

Enumeration
getAttributeNames ()

String getCharacterEncoding ()

int getContentLength ()

ServletInputStream
getInputStream() throws
IOException

String getParameter
(String name)

Enumeration
getParameterNames ()

String[] getParameterValues
(String name)

String getProtocol ()

Description

Returns the request attribute with the
specified name, or null if it doesn’t
exist. Attributes can be those set by the
servlet engine or those explicitly added
with setAttribute (). The latter
method is useful in connection with

a RequesetDispatcher object.

Returns an Enumeration of the
names of all attributes in this request.
Returns an empty Enumeration if no
attributes exist.

Returns the character encoding used by
this request.

Specifies the length of the input stream,
if any. If not known, returns -1.

Returns the (binary) input stream
associated with this request, if any.
Either get InputStream() or
getReader () may be called, but
not both.

Returns the specified input parameter,
or null, if it doesn’t exist.

Returns a possibly empty
Enumeration of the names
of all parameters in this request.

Returns an array of values for the
specified input parameter name,

or null, if no values exist. Useful

in the case of parameters that can have
multiple values (the HTTP checkbox
element, for example).

Returns the name and version of the
protocol used by this request.

Table 4-4.

Methods in the ServletRequest Class

37

38 JSP: The Complete Reference

Method

String getScheme ()

String getServerName ()

int getServerPort ()

throws IOException

String getRemoteAddr ()

String getRemoteHost ()

void setAttribute
(String name, Object obj)

void remoteAttribute
(String name)

Locale getLocale ()

Enumeration getLocales ()

boolean isSecure ()

RequestDispatcher
getRequestDispatcher
(String name)

BufferedReader getReader ()

Description

Returns the substring of the request
URL up to, but not including, the first
colon (http, for example).

Returns the host name of the server
processing the request.

Returns the port number on which the
receiving host is listening.

Returns a character reader for input
data associated with this request. Either
this method or get InputStream ()
may be called, but not both.

Returns the numeric IP address of the
client host.

Returns the name of the client host,
if known.

Stores a reference to the specified object
in the request under the specified name.

Removes the specified attribute from
the request.

Returns the client’s preferred locale,
if known, else null.

Returns an Enumeration of the
client’s preferred locales, if known;
otherwise, returns the server’s
preferred locale.

Returns true if the request was made
using a secure channel, such as HTTPS.

Returns a RequestDispatcher object
for the specified resource name. See
Chapter 8 for details about request
dispatching.

Table 4-4. Methods in the ServletRequest Class (continued)

Chapter 4: Introduction to Servlets

The HttpServletRequest subinterface in Table 4-5 adds methods to handle

B Reading and writing HTTP headers
B Getting and setting cookies

B Getting path information

B Identifying the HTTP session, if any

Method Description

String getAuthType () If the servlet is protected by an
authentication scheme, such as HTTP
Basic Authentication, returns the
name of the scheme.

String getContextPath () Returns the prefix of the URI that
designates the servlet context (Web
application).

Cookie[] getCookies () Returns an array of the cookies
associated with this request.

long getDateHeader A convenience version of

(String name) getHeader () that converts

its output to a long value suitable
for constructing a Date object.

String getHeader Returns the value of the specified

(String name) HTTP header, if it was supplied
with this request. The name is
case-insensitive.

Enumeration getHeaderNames () Returns an Enumeration of the names
of all HTTP headers supplied with
this request.

Enumeration getHeaders Returns an Enumeration of the values

(String name) of all HTTP headers of the specified
type supplied with this request.
Useful for headers that can have
multiple values.

Table 4-5. Methods in the HttpServletRequest Interface

39

JSP: The Complete Reference

Method

int getIntHeader (String name)

String getMethod ()

StringgetPathInfo()

String getPathTranslated ()

String getQueryString ()

String getRemoteUser ()

String getRequestedSessionId()

String getRequestURI ()

String getServletPath ()

HttpSession getSession ()

HttpSession getSession
(boolean create)

Principal getPrincipal ()

Description

A convenience version of
getHeader () that converts
its output to an int value.

Returns the HTTP request method
(for example, GET, POST, and so forth).

Returns any additional path
information specified in the URL.

Returns any additional path
information specified in the URL,
translated into a real path.

Returns the query string—that portion
of the URL following the “?”, if any.

Returns the name of the remote user,
if the user has been authenticated,
else null.

Returns the session ID returned by
the client.

Returns the portion of the URL
beginning with “/” and the context,
up to, but not including, any query
string.

Returns the substring of the request
URI that follows the context.

Convenience method that calls
getSession (true).

Returns the current HTTP session,
creating a new one if one doesn't exist
and the create parameter is true.

Returns a
java.security.Principal
object representing the current
user if the user has been
authenticated, else null.

Table 4-5.

Methods in the HttpServletRequest Interface (continued)

Chapter 4: Introduction to Servlets
Method Description
boolean Returns true if the requested session

isRequestedSessionIdFromCookie () ID was supplied by a Cookie object,
false otherwise.

boolean Returns true if the requested session
isRequestedSessionIdFromURL () ID was encoded in the request URL,
false otherwise.
boolean Returns true if the session ID
isRequestedSessionIdvalid() returned by the client is still valid.
boolean isUserInRole Returns true if the currently
(String role) authenticated user is associated with

the specified role. Returns false if
not, or if the user isn’t authenticated.

Table 4-5. Methods in the Ht tpServletRequest Interface (continued)

Servlet Response

The function of the servlet response object is to convey results generated by a servlet
back to the client that made the request. A ServletResponse operates mainly as a
wrapper for an output stream, as well as information about its content type and length.
It’s created by the servlet engine and passed to the servlet as the second parameter of
the service () method.

Like the servlet request, the servlet response has both generic protocol-independent
class and an HTTP-specific one. Table 4-6 describes the methods available in the
generic version.

Method Description
void flushBuffer () throws Sends the contents of the output buffer
IOException to the client. Because HTTP requires

headers to be sent before content,
calling this method sends the status
line and response headers, committing
the request.

Table 4-6. Methods in the ServletResponse Interface

41

42

JSP: The Complete Reference

Method

int getBufferSize ()

String getCharacterEncoding ()

Locale getLocale ()

OutputStream getOutputStream ()

throws IOException

Writer getWriter () throws
IOException

boolean isCommitted ()

void reset ()

void setBufferSize
(int nBytes)

Description

Returns the buffer size used by the
response, or 0 if buffering isn’t in effect.

Returns the name of the character
encoding used for the response.
Unless explicitly set otherwise,
this corresponds to ISO-8859-1.

Returns the locale used for the response.
Unless modified with setLocale (),
this defaults to the server’s locale.

Returns a stream that can be used to
write binary output to be returned
to the client. Either this method or
getWriter () can be called, but
not both.

Returns a character writer that can be
used to write text output to be returned
to the client. Either this method or
getOutputStream () can be called,
but not both.

Returns true if the status and response
headers have already been sent back

to the client. Setting headers in the
response after it’s committed has

no effect.

Clears the output buffer as well as
any response headers. Causes an
IllegalStateException if the
response has already been committed.

Sets the minimum buffer size for the
response. The actual buffer size may

be larger and can be obtained by a call
to getBuffersize (). If any output
has already been written, this method
throws an I1legalStateException.

Table 4-6.

Methods in the ServletResponse Interface (continued)

Chapter 4: Introduction to Servlets 43

Method Description
void setContentLength Sets the length of the content body.
(int length)
void setContentType Sets the content type. In HTTP servlets,
(String type) this sets the Content - Type header.
void setLocale Sets the locale to be used in the response.
(Locale locale) In HTTP servlets, this may affect the
Content - Type header value.
Table 4-6. Methods in the ServletResponse Interface (continued)

The HTTP-specific subinterface Ht tpServletResponse adds methods for
manipulating the status code, status message, and response headers. (Appendix C
describes HTTP response headers in detail.) This allows it, for example, to be used to
send cookies or to redirect the user to another URL. It also provides for encoding the
HTTP session ID in URLs written to a Web page. Table 4-7 describes the methods in
HttpServletResponse.

Method Description

void addCookie (Cookie cookie) Causes a Set -Cookie header to be
added to the response.

void addDateHeader Convenience methods that add a

(String name, long date) response header with the specified

void setDateHeader name (or replace all headers of

(String name, long date) that name) using the specified date

value. The long integer date value
should be one suitable for the
java.util.Date (long time)

constructor.
void setHeader (String name, Sets a response header with the
String value) specified name and value.

Table 4-7. Methods in the Ht tpServletResponse Interface

JSP: The Complete Reference

Method

void addIntHeader (String name,
int value)
void setIntHeader (String name,
int value)

boolean containsHeader (String
name)

String
encodeRedirectURL (Stringurl)
String encodeURL (Stringurl)

void sendError (int status)
void sendError (int status,
String msg)

void setStatus (int status)

Description

Adds a response header with the
specified name (or replaces all headers
of that name) using the specified
integer value.

Returns true if the response already
contains a header by this name.

Adds the session ID to the URL unless
the client is known to accept cookies.
The first form should be called only
for URLs intended to be used in
sendRedirect (). Other URLs

to be encoded should be passed to
encodeURL () instead.

Sets the response status code

to the specified value (and,
optionally, the status message).
HttpServletResponse defines a
complete set of integer constants for
the valid status values.

Sets the response status code to the
specified value. Should only be used
for responses that don’t indicate an
error. Error responses should use
sendError () instead.

Table 4-7. Methods in the Ht tpServletResponse Interface (continued)

Besides additional methods, Ht tpServletResponse also defines integer
constants for each possible HTTP response code.

Servlet Context

A servlet context is an interface supplied by the servlet engine to provide services to a
Web application. The servlets in the Web application can use the servlet context to get

Chapter 4: Introduction to Servlets

B The capability to store and retrieve attributes between invocations, and to share
these attributes with other servlets.

B The capability to read the contents of files and other static resources in the
Web application.

B A means to dispatch requests to each other.

B A facility for logging errors and informational messages.

The servlet context has a name (the name of the Web application it belongs to), which is
uniquely mapped to a directory in the file system.
A servlet can get a reference to the servlet context by invoking the
getServletContext () method on the ServletConfig object that
was passed to init (). If the servlet subclasses GenericServlet directly or
indirectly, it can use the inherited convenience method getServetContext ().
Table 4-8 outlines the methods provided by ServletContext.

3

Method Description

Object getAttribute Returns the object bound to the specified
(String name) name in the servlet context or binds an

void setAttribute object using the specified name. Such
(String name, Object obj) objects are global, from the standpoint

of the Web application, because they
can be accessed by the same servlet at
another time or by any other servlet in
the context.

Enumeration Returns an Enumeration of the names
getAttributeNames () of all attributes stored in the servlet
context.

Table 4-8. Methods in the ServietContext Interface

3]JSP pages have it even easier—a reference to the servlet context is automatically stored in the implicit
variable application.

JSP: The Complete Reference

Method

ServletContext
getContext (String uripath)

String getInitParameter
(String name)

Enumeration
getInitParameterNames ()

int getMajorVersion ()
int getMinorVersion ()

String getMimeType
(String fileName)

RequestDispatcher
getNamedDispatcher
(String name)
RequestDispatcher
getRequestDispatcher
(String path)

String getRealPath
(String path)

Description

Returns the servlet context that is
mapped to another URL on the same
server. The URI must be an absolute
path beginning with “/”.

Returns the value of the specified
context-wide initialization parameter.
This isn’t the same as the method of the
same name in ServletConfig, which
applies only to specific servlet for which
itis coded. Instead, it’s a parameter that
applies to all servlets in the context.

Returns a (possibly empty) Enumeration
of the names of all the context-wide
initialization parameters.

Returns the major and minor version
numbers of the level of the servlet API
supported by this context.

Returns the MIME type of the specified
filename. Typically based on the file
extension, rather than the contents of
the file itself (which needn’t necessarily
exist). May return null if the MIME
type is unknown.

Returns a RequestDispatcher for
the servlet or JSP page having the
specified name or path, or null if
the RequestDispatcher cannot be
created. The path, if specified, must
begin with “/” and be relative to the
top of the servlet context.

Given a URI, returns the absolute path
in the file system the URI corresponds to,
or null if the mapping cannot be made.

Table 4-8.

Methods in the ServletContext Interface (continued)

Chapter 4: Introduction to Servlets

Method Description

URL getResource (String path) Returns a URL corresponding to the
InputStream specified absolute path relative to the
getResourceAsStream servlet context, or an input stream for
(String path) reading that URL. Returns null if no

such resource exists.

String getServerInfo () Returns the name and version number
of the servlet engine.

void log (String message) Writes a message to the servlet log,
void log (String message, including a stack trace, if a Throwable
Throwable t) parameter is supplied.

void removeAttribute Removes the specified attribute from the
(String name) servlet context.

Table 4-8. Methods in the ServietContext Interface (continued)

___| Threading Models

By default, the servlet engine loads only a single instance of a servlet. Requests
serviced by the servlet are run in separate threads, but share the same instance and,
therefore, the same instance variables. This fact has several implications, most notably
that instance variables are not thread safe. For example, look at the following servlet:

package jspcr.servlets;

import java.io.*;
import java.sqgl.*;
import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;

/**

* Bad example! Don't try this at home.

*/

public class ColliderServlet extends HttpServlet

48

JSP: The Complete Reference

private Connection con;

public void doGet (
HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException

try {
Class.forName ("sun. jdbc.odbc.JdbcOdbcDriver") ;

con = DriverManager.getConnection ("jdbc:odbc:usda") ;

// ... run some lengthy database operation here
catch (Exception e) {

throw new ServletException(e.getMessage()) ;

Consider what happens when two requests arrive in separate threads a few hundred
milliseconds apart. The first one opens the database connection and stores a reference
to it in the con instance variable. It then uses the connection to perform a table update
or some other database operation. Meanwhile, the second request arrives and opens
another connection and stores a reference to it in the same con instance variable. If the
first operation finishes and tries to do another database operation, it no longer has its
original connection object—it only knows about the second one. Bad things then happen
when it tries to use the second connection.

The same type of problem with instance variables can occur in servlets that call
other methods from within their service method. If these other methods try to access
the servlet request, response, or any object created in the service method that has been
saved in an instance variable, there’s no way to guarantee a request in another thread
won’t corrupt the variables by storing references to its own objects in them*.

The safest approach is simply not to use instance variables, only local variables
defined inside the service method.

4 This particular problem can be solved by using a private class (essentially a data structure) to hold all
objects of interest, and then passing this class as a parameter to the subsidiary methods.

Chapter 4: Introduction to Servlets

SingleThreadModel

Although the single instance multiple thread model is the default, a servlet can change
this behavior by implementing SingleThreadModel. This interface, which has no
methods, informs the servlet engine that it should create a pool of instances and allocate
each incoming request to its own instance and thread. This guarantees no two requests
handled by the same instance will overlap in their execution of the service method. Thus,
instance variables can only be affected by one request at a time, making them thread
safe. Note, because multiple instances may exist, however, there’s nothing to prevent
them from executing concurrently in different threads. If they access external resources
like files or database connections, therefore, they can still come into conflict. There are
few situations in which SingleThreadModel solves a problem that couldn’t be handled
better by other means.

HTTP Sessions

Although navigating through a Web page may seem like a conversation between client
and server, in most cases, it isn’t. Typically, a Web client requests an HTML document,
which is located by the server and transmitted back to the client. If image links are in
the HTML, the client (if it's a Web browser) will make additional requests to the server
for each image. If the user clicks a hyperlink in the page, the client issues a new HTTP
request for it, but all this happens one request at a time. Between each request, the
server moves on to handle other requests, forgetting all about the first client. No
back-and-forth exchange of commands and data occurs, only a request followed

by a response and a disconnect.”

For basic downloading of static documents, this is adequate. However, applications
like shopping carts or iterative search engines need to maintain active objects on the
server that are associated with particular clients. It may take several requests to build
these objects. In this case, a need exists to keep track of to which client the objects
are bound.

Several approaches can be used to solve this problem. Most of them involve
maintaining the object itself on the server, assigning it a unique key the client is
asked to remember. In each subsequent related request, the client passes back the
key, which enables the server to reestablish the context.

This is similar to booking an airline ticket over the telephone. The ticket agent
asks the customer for her name, address, and flight information, entering all this into
a data entry application that assigns a confirmation number, which is reported back

5 HTTP 1.1 does provide a means for connections to persist for a few seconds, so that, for example,
HTML and associated images can be downloaded efficiently. This requires both the client and server
to know about the capability and request it explicitly. The request/response protocol itself, however,
is the same.

49

50

JSP: The Complete Reference

to the customer. Later on, if the customer needs to call back and change anything, she
supplies the confirmation number, which allows the ticket agent to access and update
the original record.

How can the client be induced to remember and supply the key when required?
Several means exist:

B Cookies The server can send a Set-Cookie header in its initial response,
with the session ID as the value of the cookie®. On subsequent requests, the
client can return the value with a Cookie header. However, individual users
might choose to turn off their browser’s cookie capability, so this technique isn’t
guaranteed to work.

B Appending the session ID to the URL For hyperlinks in Web pages created
by a dynamic process, the session ID can be encoded as a request parameter in
the URL. This doesn’t require cookies to be enabled, but it does require every
clickable URL to be so encoded. If one is overlooked (an easy thing to do), the
session link is lost.

B Hidden fields If the application consists of a series of HTML forms using
submit buttons for navigation, the session ID can be stored as a hidden field
that is retrieved with request .getParameter (). Obviously, this only works
if the forms are all dynamically generated.

The HttpSession Interface

The servlet API provides a convenient wrapper around these various techniques called an
HTTP Session. A hashtable-like interface named javax.servlet.http.HttpSession
has setAttribute () and getAttribute () methods that store and retrieve objects

by name. Ht t pSession provides a session ID key that a participating client stores and
returns on subsequent requests in the same session. The servlet engine looks up the
appropriates session object and makes it available to the current request. Table 4-9

lists the methods available in Ht tpSession.

6 Cookies are name/value pairs sent by a Web server that have a specified life span. Client browsers
store cookies and return them automatically to the server each time the browser requests a page from
the same domain. More details about cookies can be found in the RFC 2109 specification.

Chapter 4:

Introduction to Servlets

Method

Object getAttribute
(String name)

void setAttribute

(String name, Object value)
void removeAttribute
(String name)

Enumeration
getAttributeNames ()

long getCreationTime ()
long getLastAccessedTime ()

String getId()

int getMaxInactiveInterval ()
void setMaxInactiveInterval

(int seconds)

void invalidate ()

boolean isNew ()

Description

Stores an object in the session under
the specified name, or returns or
removes an object by that name that
was previously stored.

Returns an Enumeration of the names
of all attributes currently bound to the
session.

Returns a long integer representing
the date and time at which the session
was created or last accessed. The
integer is in the form used by the
java.util.Date () constructor.

Returns the session ID, a unique key
assigned by the servlet engine.

Sets or returns the maximum number
of seconds the session will be kept alive
if no interaction occurs with the client.

Causes the session to expire and
unbinds any objects in it.

Returns true if the client hasn’t yet
joined the session. This is true when
the session is first created and the
session ID is passed to the client, but
the client hasn’t made a second request
that includes the session ID.

51

Table 4-9. Methods in the Ht tpSession Interface

The API also provides an Ht tpSessionBindingListener interface. Objects
that implement this interface must provide valueBound () and valueUnbound ()
methods, which get invoked when the objects are added to or removed from an
HttpSession.

52

JSP: The Complete Reference

Summary

Java servlets are extensions to a Web server that allow Web content to be created
dynamically in response to a client request. They are managed by a servlet engine,
which loads and initializes them, passes them a number of requests for servicing,
and then unloads them. Servlets have key advantages over other server-side
programming environments:

Better performance because they remain resident and can run in multiple
threads simultaneously

Simplicity because they require no client software installation other than
a Web browser

Session tracking

Access to Java technology, including threading, networking, and database
connectivity

Servlets operate in a fixed lifecycle, providing callback methods to a servlet engine
for being initialized, handling requests, and terminating. The API provides two threading
models: the default being a single instance running multiple threads, and the alternative
single threaded model.

The principal classes and interfaces in the servlet API are

The Servlet interface, which prescribes the callback methods that must be
implemented

GenericServlet, a base class that implements the Servlet interface methods
HttpServlet, an HTTP-specific subclass of GenericServlet
ServletRequest, which encapsulates information about the client request

ServletResponse, which provides access to an output stream for results to
be returned to the client

The ServletContext interface, which allows a group of servlets to
interoperate with each other in a Web application

Servlets are the underlying technology for JSP pages. Understanding them is vital to
forming the mental model required to develop and debug in the JSP environment.

The

Reforince
Chanter 5

JSP Overview

54 JSP: The Complete Reference

generate an HTML document dynamically. JSPs are run in a server-side
component known as a JSP container, which translates them into equivalent
Java servlets.
For this reason, servlets and JSP pages are intimately related. What’s possible in one
is, in large part, also possible in another, although each technology has its individual
strengths. Because they are servlets, JSP pages have all the advantages of servlets:

S JavaServer page (JSP) is a template for a Web page that uses Java code to

B They have better performance and scalability than CGI scripts because they
are persistent in memory and multithreaded.

B No special client setup is required.

B They have built-in support for HTTP sessions, which makes application
programming possible.

B They have full access to Java technology—network awareness, threads, and
database connectivity—without the limitations of client-side applets.

But, in addition, JSP pages have advantages of their own:

B They are automatically recompiled when necessary.

B Because they exist in the ordinary Web server document space, addressing JSP
pages is simpler than addressing servlets.

B Because JSP pages are HTML-like, they have greater compatibility with Web
development tools.

This chapter provides an overview of JSP as a server-side scripting environment.
It describes the JSP container operations and walks through a complete example. Only
the basics are covered here; the six chapters of Part II consider JSP pages in-depth.

| How JSP Works

A JSP page exists in three forms:

B JSP source code This is the form the developer actually writes. It exists in a
text file with an extension of . jsp, and consists of a mix of HTML template
code, Java language statements, and JSP directives and actions that describe
how to generate a Web page to service a particular request.

B Javasource code The JSP container translates the JSP source code into the
source code for an equivalent Java servlet as needed. This source code is
typically saved in a work area and is often helpful for debugging.

B Compiled Java class Like any other Java class, the generated servlet code is
compiled into byte codes in a . class file, ready to be loaded and executed.

Chapter 5: JSP Overview 55

The JSP container manages each of these forms of the JSP page automatically, based
on the timestamps of each file. In response to an HTTP request, the container checks to
see if the . jsp source file has been modified since the . java source was last compiled.
If so, the container retranslates the JSP source into Java source and recompiles it.

Figure 5-1 illustrates the process used by the JSP container. When a request for a JSP
page is made, the container first determines the name of the class corresponding to the
. jsp file. If the class doesn’t exist or if it’s older than the . jsp file (meaning the JSP

(Start)

Determine class
name

Yes

Does class
already exist?

Translate JSP
source into Java
servlet source

Class newer
than JSP?

A

A 4

Compile servlet
source code into

class file
Lond 1' q N Instance
oa c. assand | [¢) already
create instance r in g?

.| Send request to
this instance

Figure 5-1. Logic used by a JSP container to manage JSP translation

56

JSP: The Complete Reference

source has changed since it was last compiled), then the container creates Java source
code for an equivalent servlet and compiles it. If an instance of the servlet isn’t already
running, the container loads the servlet class and creates an instance. Finally, the
container dispatches a thread to handle the current HTTP request in the loaded instance.

A Basic Example

To illustrate how JSP works, let’s look at the same example used in the preceding
chapter—converting kilometers per liter to miles per gallon. Here’s the JSP page:

[)

<%@ page session="false" %>
<%@ page import="java.io.*,java.text.*,java.util.*" %>
<%-- Prints a conversion table of miles per gallon
to kilometers per liter --%>

<%!

private static final DecimalFormat FMT

= new DecimalFormat ("#0.00") ;

%>
<HTML>
<HEAD>
<TITLE>Fuel Efficiency Conversion Chart</TITLE>
</HEAD>
<BODY>
<H3>Fuel Efficiency Conversion Chart</H3>
<TABLE BORDER=1 CELLPADDING=3 CELLSPACING=0>
<TR>
<TH>Kilometers per Liter</TH>
<TH>Miles per Gallon</TH>
</TR>
<%

for (double kpl = 5; kpl <= 20; kpl += 1.0) {

double mpg = kpl * 2.352146;

%>
<TR>

<TD><%= FMT.format (kpl) %$></TD>

<TD><%= FMT.format (mpg) %$></TD>
</TR>

)
<%

%>
</TABLE>

</BODY>

</HTML>

Chapter 5: JSP Overview 57

Comparing this to the K2MServlet from Chapter 4, first note the JSP is shorter—33
lines versus 55 lines for the servlet. In addition, it looks more like a Web page. Much
of the HTML is recognizable as ordinary HTML. Also, to the Java programmer, it’s
apparent a loop of some kind exists in which the individual rows of the table are
produced. Finally, sets of special characters appear to mark the boundaries between
Java code and HTML template data. Don’t worry if you don’t understand what they
are—that is covered fully in Chapters 6, 7, and 8.

If you invoke this JSP page from a Web browser, you see the table shown in
Figure 5-2, which, not surprisingly, is the same as what the Chapter 4 servlet produced.

To make the JSP-to-servlet relationship clearer, look at the . java source code
generated by the JSP container. This code will differ greatly, depending on which

a Fuel Efficiency Conversion Chart - Microsoft Intemnet Explorer
J File Edit “iew Favortes Tools Help ‘
€2 00A QES B ISTH
JﬂddeSS I@ hittp: A Au28ree AsporChap05 examples K 2M jzp j #Go

Fuel Efficiency Conversion Chart]

Kilometers per Liter |Miles per Gallon

L.oo 11.76

G.00 14,11

V.00 16.47

8.00 153.82

9.00 21.17

10.00 23.52

11.00 25.87

12.00 28.23

13.00 30.58

14.00 32.93

15.00 35.28

16.00 37.63

17.00 39,99

18.00 42.34

19.00 44,69

20.00 47.04

=l

|@ Daone ’_’_E‘E Local intranet y:

Figure 5-2. Kilometers per liter to miles per gallon output from JSP page

58

JSP: The Complete Reference

container is used and the implementation approach it takes. The code listed here is
what was generated by JRun 3.0 (reformatted slightly for readability):

import javax.servlet.*;

import javax.servlet.http.*;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

import allaire.jrun.jsp.JRundSPStaticHelpers;

import java.io.*;

import java.text.*;

import java.util.*;
public class jrun__ Chap05 examples K2M2ejspl8

extends

allaire.jrun.jsp.HttpdSPServlet

implements allaire.jrun.jsp.JRundspPage

private
private
private
private

ServletConfig config;
ServletContext application;
Object page = this;
JspFactory __ jspFactory

= JspFactory.getDefaultFactory () ;

public void _jspService(
HttpServletRequest request,
HttpServletResponse response)
throws ServletException, java.io.IOException

if (config == null) {
config = getServletConfig() ;
application = config.getServletContext () ;

}

response.setContentType ("text/html; charset=I1S0-8859-1");

PageContext pageContext = _ jspFactory.getPageContext
(this, request, response, null, false, 8192, true);

JspWriter out = pageContext.getOut () ;

try {

out.print ("\r\n<HTML>\r\n"

"<HEAD>\r\n"

"<TITLE>Fuel Efficiency Conversion Chart</TITLE>\r\n"
"</HEAD>\r\n"

"<BODY>\r\n"

"<H3>Fuel Efficiency Conversion Chart</H3>\r\n"

+ 4+ + + o+

Chapter 5: JSP Overview

+ "<TABLE BORDER=1 CELLPADDING=3 CELLSPACING=0>\r\n"
+ "<TR>\r\n<TH>Kilometers per Liter</TH>\r\n"
+ "<TH>Miles per Gallon</TH>\r\n</TR>\r\n") ;

for (double kpl = 5; kpl <= 20; kpl += 1.0) {
double mpg = kpl * 2.352146;
out .print ("\r\n<TR>\r\n <TD>") ;
out.print (FMT. format (kpl)) ;
out .print ("</TD>\r\n <TD>") ;
out.print (FMT. format (mpg)) ;
out .print ("</TD>\r\n</TR>\r\n") ;
}
out.print ("\r\n</TABLE>\r\n</BODY>\r\n</HTML>\r\n") ;
}
catch (Throwable t) {
if (t instanceof ServletException)
throw (ServletException) t;
if (t instanceof java.io.IOException)
throw (java.io.IOException) t;
if (t instanceof RuntimeException)
throw (RuntimeException) t;
throw JRundSPStaticHelpers.handleException
(t, pageContext) ;
} finally {
___jspFactory.releasePageContext (pageContext) ;

}

private static final DecimalFormat FMT
= new DecimalFormat ("#0.00") ;

private static final String[] _ dependencies

= {"/Chap05/examples/K2M.jsp",null};
private static final long[] _ times = {980969842306L,0L};
public String[] _ getDependencies()

{
}

public long[] _ getLastModifiedTimes ()

{
}

public int _ getTranslationVersion()

{

return _ dependencies_ ;

return _ times__ ;

59

60

JSP: The Complete Reference

return 13;

A bit mechanical, as if it were generated by a computer program (which, of course, it
was), but still recognizable as a servlet, especially the middle part, which differs little
from the K2MServlet source code in Chapter 4.

As you see, building a mental model of this process is the key to successful JSP
development and debugging. With this backdrop, let’s proceed to Part II and explore
the elements of JSP more deeply.

The

Complete
Reference

Part 1l

Elements of JSP

The next six chapters deal with the syntax and semantics of JSP, giving
you the skills necessary to create working code. Topics include basic
syntax, scriptlets, expressions, declarations, file inclusion, request
forwarding, and specifying page behavior. The concluding chapter

provides a detailed tutorial on JSP custom tags.

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This page intentionally left blank.

The

Reforince
Chapter 6

JSP Syntax
and Semantics

63

64 JSP: The Complete Reference

in JavaServer Pages, to describe how they are written, and to explain what they

do. This chapter reviews the JSP development model, and then introduces each
JSP element and considers how the element is used in this overall design. The chapter
concludes with an annotated example that illustrates the use of each element. In
covering this material, our concern is with the following;:

The purpose of this chapter is to give an overview of the basic components used

B Syntax The coding structure used to represent the element so the JSP compiler
recognizes it

B Semantics The meaning of the element to the JSP container—what happens
when it is used

Each of the JSP elements described in this chapter is covered in greater detail in the
remaining chapters of Part II.

___| The JSP Development Model

Recall from Chapter 5 that a JSP page exists in three forms:

1. The jsp source file containing HTML statements and JSP elements
2. The Java source code for a servlet program

3. The compiled Java class

To understand how JSP elements operate, it is important to build a mental model
of how these three objects are created and the relationship among them. First, the JSP
developer writes a .jsp source file and stores it somewhere in the document file system
of a Web server or Web application. In this respect, the ,jsp source file is no different from
an ordinary HTML file. The URL by which it is known to the network is the same, except
its filename ends in .jsp instead of .html. Next, when the ,jsp URL is invoked for the first
time, the JSP container reads the .jsp file, parses its contents, and generates the source
code for an equivalent Java servlet. It then compiles the servlet and creates a .class file.
Finally, the JSP container loads the servlet class and uses it to service the HTTP request.
The middle step (generating the servlet source code) is repeated for later requests only if
the jsp file has been updated.

In this design, JSP elements can affect how the JSP container operates during two
operational phases:

B Translation time Generating the Java servlet source code from a .jsp file

B Request time Invoking the servlet to handle an HTTP request

Keeping this model in mind can help you understand the syntactical units of a JSP page
and what their capabilities might be.

Chapter 6: JSP Syntax and Semantics

___| components of a JSP Page

A jsp file can contain JSP elements, fixed template data, or any combination of the two.
JSP elements are instructions to the JSP container about what code to generate and how
it should operate. These elements have specific start and end tags that identify them
to the JSP compiler. Template data is everything else that is not recognized by the JSP
container. Template data (usually HTML) is passed through unmodified, so the HTML
that is ultimately generated contains the template data exactly as it was coded in the
jsp file.

Three types of JSP elements exist:

B Directives

B Scripting elements, including expressions, scriptlets, and declarations
B Actions

Let’s consider each of these elements in more detail.

Directives

Directives are instructions to the JSP container that describe what code should be
generated. They have the general form

<%@ directive-name [attribute="value" attribute="value" ...] %>

Zero or more spaces, tabs, and newline characters can be after the opening <%@ and
before the ending %>, and one or more whitespace characters can be after the directive
name and between attributes/value pairs. The only restriction is that the opening <%@
tag must be in the same physical file as the ending %> tag.

The JSP 1.1 specification describes three standard directives available in all compliant
JSP environments:

M page
B include
B taglib

Although the specification declares that no custom directives can be used in the JSP 1.1

environment, this leaves open the possibility that user-defined directives may be included
in a later specification.

The next three sections provide an overview of each of these directives.

65

66

JSP: The Complete Reference

The page Directive
The page directive is used to specify attributes for the JSP page as a whole. It has the

following syntax:

<%@ page [attribute="value" attribute="value" ...] %>

where the attributes are any of those listed in Table 6-1.

Attribute

language

extends

import

session

buffer

autoflush

Value

The language used in scriptlets, expressions, and
declarations. In JSP 1.1, the only valid value for this
attribute is java.

The fully qualified name of the superclass of this JSP page.
This must be a class that implements the Ht tpJspPage
interface. The JSP specification warns against the use of this
attribute without fully understanding its implications.

A comma-separated list of one or more package.* names
and/or fully qualified class names. This list is used to create
corresponding import statements in the generated Java
servlet. The following packages are automatically included
and need not be specified:

java.lang.*

java.servlet.”

java.servlet.jsp.*

java.servlet.http.*

true or false, indicating whether the JSP page requires an
HTTP session. If the value is true, then the generated servlet
will contain code that causes an HTTP session to be created
(or accessed, if it already exists). The default value is true.

Specifies the size of the output buffer. Valid entries are nnnkb
or none, where nnn is the number of kilobytes allocated for
the buffer. The default value is 8kb.

true if the buffer should be automatically flushed when it is
full, or false if a buffer overflow exception should be thrown.
The default value is true.

Table 6-1. Attributes of the Page Directive

Chapter 6: JSP Syntax and Semantics

Attribute

isThreadSafe

info

isErrorPage

errorPage

contentType

Value

true if the page can handle simultaneous requests
from multiple threads, or false if it cannot. If false,
the generated servlet declares that it implements the
SingleThreadModel interface.

A string that will be returned by the page’s
getServletInfo () method.

true if this page is intended to be used as another JSP’s error
page. In that case, this page can be specified as the value of
the errorPage attribute in the other page’s page directive.
Specifying true for this attribute makes the exception implicit
variable available to this page. The default value is false.

Specifies the URL of another JSP page that will be invoked
to handle any uncaught exceptions. The other JSP page
must specify isErrorPage="true" in its page directive.

Specifies the MIME type and, optionally, the character
encoding to be used in the generated servlet.

Table 6-1. Attributes of the Page Directive (continued)

More than one page directive can be in a file and the attributes specified collectively
apply to the whole file, but no attribute can be specified more than once, with the
exception of the import attribute.

Chapter 10 covers the page directive in more detail.

The include Directive
The include directive merges the contents of another file at translation time into the .jsp
source input stream, much like a #include C preprocessor directive. The syntax is

<%@ include file="filename" %>

where filename is an absolute or relative pathname interpreted according to the current
servlet context. Examples would be

<%@ include file="/header.html" %>
<%@ include file="/doc/legal/disclaimer.html" %>

)

<%@ include file="sortmethod" %>

67

68 ISP: The Complete Reference

The include directive contrasts with the <jsp:include> action described later in
this chapter, which merges the output of another file at request time into the response
output stream. Either element can be used to include standard headers and footers or
other common text in JSP pages. Chapter 8 examines both approaches in detail.

The taglib Directive

The taglib directive makes custom actions available in the current page through the use
of a tag library. The syntax of the directive is

<%@ taglib uri="tagLibraryURI" prefix="tagPrefix" %>

where the attributes are those listed here:

Attribute Value

tagLibraryURI The URL of a Tag Library Descriptor.

tagPrefix A unique prefix used to identify custom tags used later in
the page.

For example, if the following directive is used,
<%@ taglib uri="/tlds/FancyTableGenerator.tld" prefix="ft" %>

and if FancyTableGenerator. t1d defines a tag named table, then the page can
contain tags of the following type

<ft:table>
</ft:table>

JSP tag extensions are considered in detail in Chapter 11.

Comments

The JSP specification provides two means of including comments in a JSP page: one for
hidden comments only visible in the JSP page itself and one for comments included in
the HTML or XML output generated by the page. The former type has the syntax

<%-- This is a hidden JSP comment - -%>
and the latter looks like this:

<!-- This is included in the generated HTML - ->

Chapter 6: JSP Syntax and Semantics 69

When the JSP compiler encounters the start tag <%- - of a JSP comment, it ignores
everything from that point in the file until it finds the matching end tag - -%>. This
means JSP comments can be used to disable (or "comment out") sections of the JSP page.
This is a time-honored technique for temporarily enabling and disabling parts of a
program without making major modifications to the source code. In addition, however,
it means JSP comments cannot be nested because the end tag of an inner comment
would be interpreted as marking the end of the outer comment.

The other comment type uses the normal HTML or XML comment tag. Comments
of this type are passed through unaltered to the response output stream and are included
in the generated HTML. They are invisible in the browser window, but can be seen by
invoking the View Source menu option.

If the purpose of a comment is to enlighten the person viewing it, the second comment
type seems less useful than the first for two reasons: it is found in HTML generated by
a program and it is typically never seen by a human. However, because these HTML
comments are computer-generated, they can incorporate version numbers, dates,
and other identifying numbers that may be useful to technical support personnel
in troubleshooting applications. For example, these three lines included in a JSP page

<!l--
Remote address was <%= request.getRemoteAddr () %>

-->

would record the remote address of the user making a Web request without cluttering the
output. If something goes wrong with the application, technical support personnel can
instruct the user to view the generated HTML source and report the identifying data.

Expressions

JSP provides a simple means for accessing the value of a Java variable or other expression
and merging that value with the HTML in the page. The syntax is

<%= exp %>

where exp is any valid Java expression. The expression can have any data value, as long
as it can be converted to a string. This conversion is usually done simply by generating
an out .print () statement. For example, the JSP code

The current time is <%= new java.util.Date() %>

may generate the servlet code

70 JSP: The Complete Reference

out.write ("The current time is ") ;
out.print (new java.util.Date());
out.write ("\r\n") ;

| Understanding what code is generated can help you remember not to put a semicolon
P inside an expression.

Chapter 7 discusses expressions in more detail.

Scriptlets

A scriptlet is a set of one or more Java language statements intended to be used to
process an HTTP request. The syntax of a scriptlet is

<% statement; [statement; ...] %>

The JSP compiler simply includes the contents of scriptlet verbatim in the body of the
_JjspService () method. A JSP page may contain any number of scriptlets. If multiple
scriptlets exist, they are each appended to the _jspService () method in the order in
which they are coded. This being the case, a scriptlet may contain an open curly brace
that is closed in another scriptlet. Consider the following JSP page, which produces a
Fahrenheit to Celsius temperature conversion table:

<%@ page import="java.text.*" %>
<TABLE BORDER=0 CELLPADDING=3>
<TR>
<TH>Degrees
Fahrenheit</TH>
<TH>Degrees
Celsius</TH>
</TR>
<%
NumberFormat fmt = new DecimalFormat ("###.000") ;
for (int £ = 32; £ <= 212; £ += 20) {

double ¢ = ((f - 32) * 5) / 9.0;
String cs = fmt.format (c);
%>
<TR>

<TD ALIGN="RIGHT"><%= f %></TD>
<TD ALIGN="RIGHT"><%= cs %></TD>
</TR>

N
o

}

[
°>

</TABLE>

Chapter 6: JSP Syntax and Semantics

The example code contains two scriptlets: one for the main body of the loop and
one for the closing curly brace. Between the two scriptlets is the HTML markup for a
single table row, using JSP expressions to access the values. The generated servlet code
converts the scriptlets and what is between them to

NumberFormat fmt = new DecimalFormat ("###.000") ;
for (int £ = 32; £ <= 212; £ += 20) {
double ¢ = ((f - 32) * 5) / 9.0;
String cs = fmt.format (c);
out.write ("\r\n<TR>\r\n<TD ALIGN=\"RIGHT\">") ;
out.print(£);
out.write("</TD>\r\n") ;
out.write ("\r\n<TD ALIGN=\"RIGHT\">") ;
out.print(cs);
out.write ("</TD>\r\n") ;
out.write ("</TR>\r\n") ;

which produces the following output:

Degrees Degrees
Fahrenheit Celsius
32 .000
52 11.111
72 22.222
92 33.333
112 44 .444
132 55.556
152 66.667
172 77.778
192 88.889
212 100.000

Scriptlets are explored at length in Chapter 7.

Declarations

Like scriptlets, declarations contain Java language statements, but with one big difference:
scriptlet code becomes part of the jspService () method, whereas declaration code is
incorporated into the generated source file outside the jspService () method. The
syntax of a declaration section is

<%! statement; [statement; ...] %>

72

JSP: The Complete Reference

Declaration sections can be used to declare class or instance variables, methods, or
inner classes. Unlike scriptlets, they have no access to the implicit objects described in the
next section. If you use a declaration section to declare a method that needs to use the
request object, for example, you need to pass the object as a parameter to the method.

The following shows an example of a JSP page that uses a declaration section:

<%@ page
errorPage="ErrorPage.jsp"
import="java.io.*,java.util.*"

o\°
\"

N
o°

Enumeration enames;
Map map;
String title;

// Print the request headers

map = new TreeMap () ;
enames = request.getHeaderNames () ;

while (enames.hasMoreElements()) {
String name = (String) enames.nextElement () ;
String value = request.getHeader (name) ;

map.put (name, wvalue) ;

}

printTable (out, map, "Request Headers");
// Print the session attributes

map = new TreeMap () ;

enames = session.getAttributeNames () ;

while (enames.hasMoreElements()) {
String name = (String) enames.nextElement () ;
String value = "" + session.getAttribute (name) ;
map.put (name, wvalue) ;

}

printTable (out, map, "Session Attributes");

o°
\

<%-- Define a method to print a table --%>

Chapter 6: JSP Syntax and Semantics

o°

<%!
private static void printTable

(Writer writer, Map map, String title)

// Get the output stream

PrintWriter out = new PrintWriter (writer) ;
// Write the header lines

out.println ("<TABLE BORDER=1 CELLPADDING=3>") ;
out.println
("<TR><TH COLSPAN=2>" + title + "</TH></TR>");

// Write the table rows

Iterator imap = map.entrySet () .iterator() ;
while (imap.hasNext())
Map.Entry entry = (Map.Entry) imap.next();
String key = (String) entry.getKey () ;
String value = (String) entry.getValue() ;
out.println ("<TR>") ;
out.println("<TD>" + key + "</TD>");
("<TD>" + value + "</TD>");
(

out.println("</TR>") ;

out.println

// Write the footer lines

out.println("</TABLE>") ;
out.println("<P>") ;

oe
A\

This JSP page collects data for two tables: the HTTP headers passed to the request
object and the session attributes. The desired output for each is a nicely formatted HTML
table. Of course, the tables could be created while iterating through the data rows, but
this would require duplicating the formatting code. Instead, a private static method
named printTable ()is used, passing it a reference to the output stream, a Map object
containing the key/value pairs, and the table caption.

Chapter 8 discusses declarations in greater detail.

73

74

JSP: The Complete Reference

Implicit Objects

Although scriptlets, expressions, and HTML template data are all incorporated into
the jspService () method, the JSP container writes the skeleton of the method
itself, initializing the page context and several useful variables. These variables are
implicitly available inside scriptlets and expressions (but not declarations). They can be
accessed like any other variable, but do not have to be declared first. For example, the
HttpServletRequest object passed to jspService () is available under the name
request, as shown in the following scriptlet:

N
o\°

String accountNumber = request.getParameter ("acct") ;
if (accountNumber == null)
// ... handle the missing account number problem

o\°
A\

Table 6-2 provides a complete list of implicit variables.

Variable Name Value

request The ServletRequest or HttpServletRequest
being serviced.

response The ServletResponse or HttpServletResponse
that will receive the generated HTML output.

pageContext The PageContext object for this page. This object is a
central repository for attribute data for the page, request,
session, and application.

session If the JSP page uses an Ht tpSession, it is available
here under the name session.

application The servlet context object.

Table 6-2. Implicit Variables

Chapter 6: JSP Syntax and Semantics

Variable Name Value

out The character output stream used to generate the
output HTML.

config The ServletConfig object for this servlet context.

page A reference to the JSP page itself.

exception An uncaught exception that causes the error page to

be invoked. This variable is available only to pages
with isErrorPage="true".

Table 6-2. Implicit Variables (continued)

Additional implicit variables can be created by means of a tag library. See Chapter 11
for discussion of this topic.

Standard Actions

Actions are high-level JSP elements that create, modify, or use other objects. Unlike
directives and scripting elements, actions are coded using strict XML syntax

<tagname [attr="value" attr="value" ...] > ... </tag-name>
or, if the action has no body, an abbreviated form:

<tagname [attr="value" attr="value" ...] />

XML syntax requires the following;:

B Every tag must have matching end tag or use the short form /> previously shown

B Attribute values must be placed in quotes

B Tags must nest properly: <A> ... is legal, but <A> ...
is not.

Seven standard actions are available in all JSP 1.1-compliant environments. These
actions are described at length in Chapter 15. Table 6-3 outlines the syntax.

75

76

JSP: The Complete Reference

Tag Name

<jsp:useBeans

<jsp:setProperty>

<jsp:getProperty>

<jsp:includes>

Description

Declares a Java Bean instance and associates it with
a variable name. Syntax is
<jsp:useBean

id="name"

[type="type"]

[class="class"]

[beanName="beanName" |

[scope="page | request | session | application"]>
...</jsp:useBean>

Sets the values of one or more properties of a bean
previously declared with <jsp:useBean>. Syntax is
<jsp:setProperty

name="id"

prop-expression />
where prop-expression is one of the following;:
property="*"
property="propName"
property="propName" param="parameterName"
property="propName" value="value"
property="propName" value=<%= expression %>

Returns the value of the specified property of a bean.
Syntax is
<jsp:getProperty name="id" property="name" />

Invokes another resource and merges its output
stream with the JSP page output stream. Syntax is
<jsp:include page="URL" flush="true" />

or, if parameters need to be passed:

<jsp:include page="URL" flush="true">
<jsp:param ... />

<jsp:param ... />

%sp:param o />
</jsp:include>

Table 6-3. Standard Actions

Chapter 6: JSP Syntax and Semantics

Tag Name

<jsp:forward>

<jsp:param>

<jsp:plugin>

Description

Forwards this HTTP request to another JSP page or
servlet for processing. Syntax is

<jsp:forward page="URL" />

or, if parameters need to be passed:

<jsp:forward page="URL">

<jsp:param ... />

<jsp:param ... />

<jsp:param ... />
</jsp:forward>

Binds a value to a name and passes the binding to
another resource invoked with <jsp:includes or
<jsp:forwards. Syntax is

<jsp:param name="name" value="value" />

Used to generate the appropriate HTML linkage for
downloading the Java plugin:

<jsp:plugin

type="bean | applet"

code="objectCode"

codebase="objectCodebase"

{ align="alignment" }

{ archive="archiveList" }

{ height="height" }

{ hspace="hspace" }

{ jreversion="jreversion" }

{ name="componentName" }

{ vspace="uvspace" }

{ width="width"}

{ nspluginurl="url" }

{iepluginurl="url"} >

{ <jsp:params>

{ <jsp:param name="name" value="value" />
}+</jsp:params> }}</jsp:plugin>

Table 6-3. Standard Actions (continued)

77

78 JSP: The Complete Reference

Tag Extensions

In addition to the standard actions listed in Table 6-3, the JSP author can write custom
tags to extend JSP functionality of JSP. Chapter 11 is devoted to tag extensions.

___| A complete Example

An example of a JSP page that incorporates all the elements introduced here concludes
this chapter. The page is named Echo. jsp. Its sole function is to pass back to the client
browser an HTML table containing the HTTP request headers the browser sent. The
listing is shown in the following;:

<%@ page import="java.util.*" %>
<HTML>

<HEAD>

<TITLE>Echo</TITLE>

<STYLE>

<jsp:include page="style.css" flush="true"/>
</STYLE>

</HEAD>

<BODY>
<H3>HTTP Request Headers Received</H3>
<TABLE BORDER="1" CELLPADDING="4" CELLSPACING="0">
<%
Enumeration eNames = request.getHeaderNames () ;
while (eNames.hasMoreElements()) ({
String name = (String) eNames.nextElement () ;
String value = normalize (request.getHeader (name)) ;

o\°
\"

<TR> <TD><%= name %></TD> <TD><%= value %></TD> </TR>

N
o°

%>
</TABLE>
</BODY>
</HTML>
<%!
private String normalize (String wvalue)

{

oe
\

When Echo. jsp is first invoked, it creates the following Java source code:

Str
for

}

ret

Chapter 6:

JSP Syntax and Semantics

ingBuffer sb = new StringBuffer();

(int 1 = 0; 1 < value.length();
char ¢ = value.charAt (i) ;
sb.append (c) ;
if (¢ == ';")

sb.append ("
") ;

urn sb.toString() ;

package Chap 00030 _00035;

import
import
import
import
import
import
import
import
import
import
import
import
import

ja
ja
ja
ja
ja
ja
ja
ja
ja
or
ja

org.apache.jasper.JasperException;

ja

vax.servlet.*;
vax.servlet.http.*;
vax.servlet.jsp.*;
vax.servlet.jsp.tagext.*;
va.io.PrintWriter;
va.lio.IOException;
va.io.FileInputStream;
va.io.ObjectInputStream;
va.util.Vector;
g.apache.jasper.runtime. *;
va.beans. *;

va.util.*;

public class

_0002fChap 00030 _00035_0002fEcho_0002ejspEcho_jsp 5

extends HttpJspBase

// begin

private String normalize (String value)

{

Str
for

i++)

ingBuffer sb = new StringBuffer();

(int 1 = 0; 1 < value.length();

char ¢ = value.charAt (i) ;
sb.append (c) ;

i++)

{

[file="Echo.jsp";from=(27,3) ;to=(39,0)]

{

79

80 ISP: The Complete Reference

if (¢ == ';")
sb.append ("
") ;

}

return sb.toString() ;

1
// end

static {

}

public
_0002fChap_00030_00035_0002fEcho_0002ejspEcho_jsp 5()

private static boolean _jspx inited = false;

public final void _jspx init() throws JasperException

{
}

public void _jspService(
HttpServletRequest request,
HttpServletResponse response)
throws IOException, ServletException

JspFactory _jspxFactory = null;
PageContext pageContext = null;
HttpSession session = null;
ServletContext application = null;
ServletConfig config = null;
JspWriter out = null;

Object page = this;

String _value = null;

try {

if (_jspx_inited == false) {

_Jspx_init () ;
_Jjspx_inited = true;

_JjspxFactory = JspFactory.getDefaultFactory() ;

Chapter 6: JSP Syntax and Semantics

response.setContentType ("text/html") ;
pageContext = jspxFactory.getPageContext
(this, request, response, "", true, 8192, true);

application = pageContext.getServletContext () ;
config = pageContext.getServletConfig() ;
session = pageContext.getSession() ;

out = pageContext.getOut () ;

// HTML
// begin [file="Echo.jsp";from=(0,32);to=(7,0)]
out.write ("\r\n\r\n") ;

out.write ("<HTML>\r\n\r\n") ;

out.write ("<HEAD>\r\n") ;

out.write ("<TITLE>Echo</TITLE>\r\n") ;
out.write ("<STYLE>\r\n") ;

// end

// begin [file="Echo.jsp";from=(7,0);to=(7,44)]

{
String Jjspx gStr = "";
out.flush() ;
pageContext.include ("style.css" + Jjspx gStr);

}

// end

// HTML
// begin
out.write

[file="Echo.jsp";from=(7,44) ;to=(14,0)]
("\r\n") ;
out.write ("</STYLE>\r\n") ;
out.write ("</HEAD>\r\n\r\n") ;
out.write ("<BODY>\r\n") ;
out.write ("<H3>HTTP Request Headers Received") ;
("</H3>\r\n") ;
("<TABLE BORDER=\"1\"") ;
(" CELLPADDING=\"4\"") ;
(

" CELLSPACING=\"O0\">\r\n") ;

out.write
out.write
out.write
out.write
// end

// begin [file="Echo.jsp";from=(14,2);to=(19,0)]
Enumeration eNames = request.getHeaderNames () ;
while (eNames.hasMoreElements()) {

81

82 JSP: The Complete Reference

String name = (String) eNames.nextElement () ;
String value = normalize (request.getHeader (name)) ;
// end

// HTML

// begin [file="Echo.jsp";from=(19,2);to=(20,12)]
out.write ("\r\n <TR> <TD>") ;
// end

// begin [file="Echo.jsp";from=(20,15);to=(20,21)]
out.print (name) ;
// end

// HTML

// begin [file="Echo.jsp";from=(20,23);to=(20,33)]
out.write("</TD> <TD>") ;

// end

// begin [file="Echo.jsp";from=(20,36);to=(20,43)]
out.print (value);
// end

// HTML

// begin [file="Echo.jsp";from=(20,45);to=(21,0)]
out.write ("</TD> </TR>\r\n") ;

// end

// begin [file="Echo.jsp";from=(21,2);to=(23,0)]

}

// end

// HTML

// begin [file="Echo.jsp";from=(23,2);to=(27,0)]
out.write ("\r\n</TABLE>\r\n</BODY>\r\n</HTML>\r\n") ;
// end

// HTML

// begin [file="Echo.jsp";from=(39,2);to=(40,0)]
out.write ("\r\n") ;

// end

Chapter 6: JSP Syntax and Semantics

}

catch (Exception ex) {
if (out.getBufferSize() != 0)
out.clear () ;
pageContext .handlePageException (ex) ;

}

finally {
out.flush() ;
_jspxFactory.releasePageContext (pageContext) ;

Let’s consider the JSP page and the generated code section by section.

A Page Directive

The JSP page begins with a page directive indicating the page uses the java.util
package:

<%@ page import="java.util." %>

This directive shows up in the servlet source code at the end of its list of
imported classes:

import org.apache.jasper.runtime.*;
import java.beans.*;

import org.apache.jasper.JasperException;
import java.util.*;

A <jsp:include> Action

The page uses a style sheet to set the look and feel of the output. The style sheet is
incorporated using a <jsp:include> action:

<STYLE>
<jsp:include page="style.css" flush="true"/>
</STYLE>

84 JSP: The Complete Reference

The <jsp:includes> action causes the following style sheet to be read at request time:

body {
color: #000000;
background-color: #FEFEF2;
font: Verdana 9pt;

}i

Scriptlet

Two scriptlets are on the page, with HTML template data located before, between,
and after them. The HTML data

<HTML>

<HEAD>
<TITLE>Echo</TITLE>

is passed through unchanged by means of write statements:

out.write ("\r\n") ;

"<HTML>\r\n\r\n") ;

out.write ("<HEAD>\r\n ") ;

out.write ("<TITLE>Echo</TITLE>\r\n ") ;

out.write

(
(
(
(

Then the first scriptlet is simply copied to the servlet:

Enumeration eNames = request.getHeaderNames () ;

while (eNames.HasMoreElements()) {
String name = (String) eNames.nextElement () ;
String value = normalize (request.getHeaderName ()) ;

Notice the code fragment has an unclosed curly brace on the second line.
The matching brace is supplied by the second scriptlet.

Chapter 6: JSP Syntax and Semantics

JSP Expressions

During each iteration of the loop, the scriptlet extracts a header name and header value
from the request object. Rather than printing these values using out .write (), the page
author switches back into HTML mode and uses JSP expression tags,

oe
\

<TR> <TD><%= name %></TD> <TD><%= value %></TD> </TR>

N
o\°

which generates the following servlet code:

// HTML

// begin [file="Echo.jsp";from=(19,2);to=(20,12)]
out.write ("\r\n <TR> <TD>") ;

// end

// begin [file="Echo.jsp";from=(20,15) ;to=(20,21)]
out.print (name) ;
// end

// HTML

// begin [file="Echo.jsp";from=(20,23);to=(20,33)]
out.write ("</TD> <TD>") ;

// end

// begin [file="Echo.jsp";from=(20,36) ;to=(20,43)]
out.print (value);
// end

// HTML

// begin [file="Echo.jsp";from=(20,45) ;to=(21,0)]
out.write("</TD> </TR>\r\n") ;

// end

85

86 JSP: The Complete Reference

A Declaration

Header values that are lists can be very long and cause the table width to be
distorted. You can get around this problem by scanning the header value for
semicolons and inserting
 tags wherever they are found. This function is
performed by a method called normalize(), which is found at the end of the JSP file:

<%!
private String normalize (String value)
{
StringBuffer sb = new StringBuffer() ;
for (int i = 0; i < value.length(); i++) {
char ¢ = value.charAt (1) ;
sb.append(c) ;
if (¢ == ';")
sb.append ("
") ;

}

return sb.toString() ;

o\°
Vv

As was the case with the two scriptlets, the declaration code is copied verbatim
to the generated servlet, except it is not placed inside the _jspService () method.
Instead, it is written inside the class block, but outside any other method, near the
beginning of the servlet:

// begin [file="Echo.jsp";from=(27,3);to=(39,0)]
private String normalize (String value)

{
StringBuffer sb = new StringBuffer();
for (int i = 0; i < value.length(); i++) {
char ¢ = value.charAt (i) ;
sb.append(c) ;
if (¢ == ';")
sb.append ("
") ;
}
return sb.toString() ;
}
// end

The resulting output is shown in Figure 6-1.

Chapter 6: JSP Syntax and Semantics 87

/] Echo - Microsoft Internet Explorer

J File Edit “iew Favortes Toolz Help |

l¢-2 - QBB AEBI B-STN

J Address I@ http: A fu2Brvfjsper/Chapl5/E cho.jsp j ﬁ Go

HTTP Request Headers Received

accept-language | en-us

cannection keep-alive

cookie JSESSIONID=Tol011lmC30097415570759767 AL
accept _f

host uzEny

accept-encoding | gzip, deflate

Maozilla/4.0 {compatible;

user-agent M S1ES.0,
e Windows NT;
DigExt)
E
|@ Done I_I_E‘Q Local intraret A

Figure 6-1. Output of Echo.jsp

___ | Summary

The JSP development environment provides a means for generating HTML pages
dynamically with server-side Java programming. The syntax allows most of the
HTML to be coded directly, with sections marked off for Java code that controls
the page generation. There is support for including other resources, both static and
dynamic. JavaBeans are fully integrated into the framework, and custom tags allow
functionality to be encapsulated and made available to nonexpert page authors.

The key point this chapter makes is this: a mental model of the JSP development
cycle is crucial to understanding how to create and debug Web applications. Knowledge
of what happens at translation time (static resources are included via the <%@ include
%> directive, for example) versus request time (dynamic request dispatching with
<jsp:includes>) provides insight into which features to use and when to use them.
The remaining chapters of Part II discuss each of these features of the application model
in more detail.

This page intentionally left blank.

The

Reforince
Chapter 7

Expressions
and Scriptlets

89

90

JSP: The Complete Reference

the syntax is not difficult to learn, mastering it doesn’t teach you everything you

need to know. Understanding JSP requires building a mental model of how it
operates—how and when Java source code is generated and when classes are compiled
and loaded.

In this chapter, part of that mental model is clarified by exploring two scripting
elements: expressions and scriptlets. You see how the JSP container combines template
text and JSP scripting elements to generate a Java method that handles user requests.
How a JSP page gets access to the Web environment in which it is used, and how it
communicates its results, is also examined.

The previous chapter provided an overview of JSP syntax and semantics. While

Expressions

A JSP expression is simply a Java' language expression in a JSP page set off from its
surrounding HTML by the delimiters <%= and %>, as the following shows:

<%= expression %>

For example, an expression can be a primitive numeric value,
Simple math: 2 + 2 = <%= 2 + 2 %>

which produces the output:
Simple math: 2 +2=4

or a more elaborate expression involving method calls,

The Java virtual machine vendor is
<%= System.getProperty ("java.vm.vendor") %$>

which produces the output:

The Java virtual machine vendor is Sun Microsystems Inc.

1 Intheory, JSP pages could be written in other languages, as envisioned in the JSP specification. As of
this writing, with a few experimental exceptions, Java is the only supported language. That is why the
technology is called JavaServer Pages (JSP), not Language Independent Server Pages (LISP) or Any
Old Language Server Pages (AOLSP).

Chapter 7: Expressions and Scriptlets 91

An expression can create new objects and manipulate them. This code creates a Date
object and passes it to the format () method of a new SimpleDateFormat object,

Today 1is

<%=
new java.text.SimpleDateFormat ("MMMM d, yyyy")
.format (new java.util.Date())

o°
\Y

which produces (on the appropriate day, of course):
Today is June 28, 2001

The Java expression between the <% and %> delimiters can be as complex as
desired, the only requirement being it must be capable of being evaluated as a
java.util.String, either directly or through the invocation of its toString ()
method or a String.valueOf () method.

| Expressions must not end in a semicolon. They must consist solely of what can legally

appear on the right side of an assignment statement between the equals sign and the
ending semicolon.

___| scriptlets

A scriptlet is a set of Java programming statements embedded in an HTML page. The
statements are distinguished from their surrounding HTML by being placed between
<% and %> markers, as the following shows:

<% statement; [statement; ...] %>

Whitespace is permitted after the <% and before the %>, so the previous scriptlet
could also be written as:

<%
statement;

[statement; ...]
Yo>

Here is an example of a JSP page that uses a scriptlet to generate a table of ASCII
characters:

<HTML>
<BODY>
<CENTER>

92 ISP: The Complete Reference

<H3>ASCII Table</H3>
<TABLE BORDER="0" CELLPADDING="0" CELLSPACING="0">
<%
StringBuffer sb = new StringBuffer();
sb.append ("<TR>") ;
sb.append ("<TH WIDTH=40> </TH>") ;
for (int col = 0; col < 16; col++) {
sb.append ("<TH>") ;
sb.append (Integer.toHexString (col)) ;
sb.append ("</TH>") ;
}
sb.append ("</TR>") ;
for (int row = 0; row < 16; row++) {
()
sb.append ("<T) ;
sb.append (Integer. toHexString (row)) ;
sb.append ("</TH>") ;
for (int col = 0; col < 16; col++) {
char ¢ = (char) (row * 16 + col);
sb.append ("<TD WIDTH=32 ALIGN=CENTER>") ;
(
(

sb.append ("<TR>"
H>l|

sb.append
sb.append ("

c);
</TD>") ;
}
sb.append ("</TR>") ;
}
out.println(sb) ;
%>
</TABLE>
</CENTER>
</BODY>
</HTML>

There are five lines of HTML, followed by the scriptlet open delimiter <%, a number of
lines of Java code, the scriptlet closing delimiter %>, and then the HTML lines needed to
close the document. When invoked, the page produces the output shown in Figure 7-1.

The following section describes how these scripting elements are handled by the
JSP container.

Chapter 7: Expressions and Scriptlets
; http: //u25ny fispcr/Chap06/ASCI_T able. jsp - Microsoft Internet Explorer
J File Edit ‘iew Fawortez Toole Help |
|e-2 - Qa3 BD-SF
| Agdress @ http://u25nw/sper/Chap0B4SCI_T able jsp -] @6o
ASCII Table
n] 1 2 3 4 a] 7 8 9 a h C e f
0 Oo 0o o o o o o o o 0O
1 O O o o o o o o o o O O o o O
2 ! L T Oy o+, -
3 0 1: 2 3 4 5 =} 7 = 9 : ; < = = 7
4 @) B [D E F [H 1 1 K L Il I]
5 P Q R S5 T U ¥ W XK Y Z [N 1 "~ _
6 : a b e d & f g h i] k | m noo
7 pq ro s t uoow W M ¥y oz i | o~ 0O
8 7 ? ? 7 7 ? ? 7 7 ? 7 7 7 ? 7 7
9 7 7 N 7 7 7 7 7 7 7 K 7 7 7 K 7
a Pof £ = ¥ ! o8 T @ & o« = ®
b o + 2] ‘ H L . ’ i o » W Wm0
c A A& A K B & £ ¢ E E E E I 1 I 1
d 2 A o ¢ & 4 O = @ O 0o 0 U ¥ p B
e 4 4 & & &5 & = g o& & & & © i i 1
f & fi [a} a i} [a} a o+ @ U i} 1] v} i b i —
=
[&] Done I_I_E‘I:; Local intranet v
Figure 7-1. Output of the ASCIl_Table JSP

___| Expression and Scriptlet Handling by the

JSP Container

When it encounters a new or revised JSP page, the JSP container parses it and creates
the source code for an equivalent Java servlet’. The expressions, scriptlets, and HTML
template data found in the page are used by the JSP container to create Java source code
for a method named _jspService (). This method corresponds to the service ()
method of a servlet, or the more commonly used doGet () and doPost () methods.
_JspService () is automatically generated by the container. The JSP author must not
define it explicitly.

2 Servlets are discussed at length in Chapter 4.

93

94 ISP: The Complete Reference

The generated _jspService () method consists of up to three types of statements,
depending on the contents of the JSP page:
B Code to handle HTML template data and expressions
B The contents of any scriptlets

B Container-generated initialization and exit code

Let’s examine each of these and see how they are handled.

HTML Template Data and Expressions

Any characters in the JSP page not inside a JSP element (a directive, expression,
scriptlet, or action) are considered part of a fixed HTML template. The JSP container
creates out .write () or out .print () statements that write these characters to the
response output stream. For example, this code

Cash and Marketable Securities
is converted to this:
out.write ("Cash and Marketable Securities\r\n") ;

If the HTML template needs to contain any literal <% strings, they must be treated
specially to avoid confusing the JSP container. The JSP 1.1 specification indicates this
can be done by writing <\ % instead of <%. The JSP container generates code to write
the intended <% in the output stream.

| JSP containers typically generate one long out . write () statement for each
uninterrupted stretch of fixed HTML data. The examples in this book take the
liberty of breaking long character strings into multiple out . write () statements
for the sake of readability.

Besides fixed HTML data, the template also may contain JSP expressions that are
evaluated at run time in and printed with an out .write () statement. Expressions are
considered in the next section.

Scriptlet Contents

Anything found between <% and %> tags is copied verbatim to the jspService ()
method. Hence, the lines in a JSP page

<TABLE BORDER=0>
<TR><TH>Celsius</TH><TH>Fahrenheit</TH></TR>

)
<%

Chapter 7: Expressions and Scriptlets

for (int ¢ = 0; ¢ <= 100; c += 10) {
int £ = 32 + 9*c/5;
out.print ("<TR><TD>" + ¢ + "</TD>");
out.print ("<TD>" + £ + "</TD></TR>") ;

o
>

</TABLE>

are transformed by the JSP container into the following lines in the _jspService ()

method:
// HTML
// begin [file="c2f.jsp";from=(0,0);to=(2,0)]
out.write ("<TABLE BORDER=0>\r\n") ;

[
(
out.write ("<TR>") ;

out.write ("<TH>Celsius</TH>") ;

out.write ("<TH>Fahrenheit</TH>") ;

out.write ("</TR>\r\n") ;

// end

// begin [file="c2f.jsp";from=(2,2);to=(8,0)]

for (int ¢ = 0; ¢ <= 100; c += 10) {
int £ = 32 + 9*c/5;
out.print ("<TR><TD>" + ¢ + "</TD>");
out.print ("<TD>" + £ + "</TD></TR>");
1
// end
// HTML
// begin [file="c2f.jsp";from=(8,2);to=(10,0)]
out.write ("\r\n</TABLE>\r\n") ;
// end

The HTML markup for the table is found in the out .write () statements, and the
scriptlet contents appear unaltered in the body of the method.

If multiple scriptlets are in a page, they are copied in the order they are encountered.

Thus, no functional difference exists between writing this code

N
o

for (int i = 0; i < 10; i++)
out.println (i) ;

o°
\"

95

96 ISP: The Complete Reference

and this,

for (int i = 0; i < 10; i++) { %>
out.println(i); %>

N NN
o® o° o°

>

H,_a
o°

except for several newline characters generated in the latter case (which occur because
they are technically considered fixed HTML data). Because multiple scriptlets are
concatenated and placed into the same method, syntactical units can be started in one
scriptlet and completed in another, as illustrated by the opening and closing curly
braces in the for statement. This also means variables defined in any scriptlet are
treated as local variables of the jspService () method, and retain their value from
one scriptlet or expression to the next.

Container-Generated Initialization and Exit Code

In addition to code that the JSP page author writes, jspService () begins and ends
with statements that initialize and release objects needed in the method. The exact code
generated is implementation-dependent and specific to the JSP container vendor. In
the case of the Celsius-to-Fahrenheit example previously given , Tomcat generates the
following initialization and exit code:

public void jspService(
HttpServletRequest request,
HttpServletResponse response)
throws IOException, ServletException

JspFactory jspxFactory = null;

PageContext pageContext = null;

HttpSession session = null;

ServletContext application = null;

ServletConfig config = null;

JspWriter out = null;

Object page = this;

String value = null;

try {
_jspxFactory = JspFactory.getDefaultFactory () ;
response.setContentType ("text/html;charset=8859 1");
pageContext = jspxFactory.getPageContext

(this, request, response, "", true, 8192, true);

application = pageContext.getServletContext () ;
config = pageContext.getServletConfig() ;

Chapter 7: Expressions and Scriptlets

session = pageContext.getSession() ;
out = pageContext.getOut () ;

// ... your code appears here ...

}

catch (Exception ex) {
if (out.getBufferSize() != 0)
out.clearBuffer () ;
pageContext .handlePageException (ex) ;
}
finally {
out.flush() ;
__jspxFactory.releasePageContext (pageContext) ;

You can see a number of objects are created before the JSP author’s code is added.
The meaning of these objects is the subject of the next section.

Implicit Objects and the JSP Environment

The scriptlets and expressions written in a JSP page do not stand alone as a complete
program—they need an environment in which to operate. The JSP container provides
this environment and makes it accessible to the page author through what are called
implicit objects. These objects are created by container-generated statements at the
beginning of the _jspService () method and are assigned predetermined names
that are the same in all JSP pages. Nine of these objects exist, as listed in Table 7-1.

Object Description

request The Ht tpServletRequest object that was passed to
_JjspService().

response The Ht tpServletResponse object that was passed to
_JjspService().

Table 7-1. Implicit Objects Available Within Scriptlets and Expressions

97

98 ISP: The Complete Reference

Object Description
pageContext A means of accessing page, request, session,

or application attributes.
session The current Ht tpSession object, if one exists.
application The servlet context object.
out The JspWriter response output stream object.
config The servlet configuration object.
page A reference to the current instance of the JSP class itself.
exception An uncaught exception (valid in error pages only).

Table 7-1. Implicit Objects Available Within Scriptlets and Expressions (continued)

These variables can be accessed simply by using their predetermined names like
any other variable. One of these variables has already been used in the examples in this
chapter—the JspWriter out variable,

<%

out.println("out is an <I>");
out.println(out.getClass () .getName()) ;
out.println("</I> object.");

)
>

which produces the output when run under Tomcat:
out is an org.apache.jasper.runtime.JspWriterImpl object.
This, of course, is vendor-specific. JRun 3.0 produces
out is an allaire.jrun.jsp.JRunjspWriter object.
The JSP implicit objects provide the context in which an HTTP request is serviced.

The following sections consider each of these objects in detail.

Request

The request variable contains a reference to the Ht tpServletRequest object
passed in the first parameter of the generated _jspService () method. This object

Chapter T7:

Expressions and Scriptlets

encapsulates the details of the HTTP request generated by the Web browser or other
client—its parameters, attributes, headers, and data. Some of its more useful methods®

are listed in Table 7-2.

Response

The response variable provides access to the other side of the HTTP transaction. This
object encapsulates the output returned to the HTTP client, providing the page auth
or with a means for setting response headers and the status code. It also has methods
for accessing the response output stream, but the JSP specification prohibits directly
accessing this stream. All JSP response output must be written using the out implicit
variable. Methods provided by the Ht tpServletResponse object include those listed

in Table 7-3.

Method
String getHeader(String name)

Enumeration getHeaderNames()
String getParameter(String name)

Enumeration getParameterNames()

HttpSession getSession(boolean create)

Description

Returns the value of the specified
HTTP header, or null if the header
is not present in the request.

Returns an enumeration of all HTTP
headers present in the request.

Given the name of a single-valued
form parameter, returns its value.

Returns an enumeration of the names
of all form parameters passed to this
request.

Returns the current HttpSession
object. If one does not exist, either
creates a new one or returns null,
depending on the create flag.

Table 7-2.

Some Useful Methods of the request Object

3 A complete description of javax.servlet.http. HttpServletRequest and all other classes in the Servlet 2.2

API can be found in Appendix A.

99

100 JSP: The Complete Reference

Method Description

boolean isCommitted() Returns a flag indicating whether
the HTTP response has already
been returned to the client.

void setHeader(String name, String value) Sets an HTTP header with the
specified name and value.
void setStatus(int sc) Sets the HTTP status to the

specified value.

Table 7-3. Some Useful Methods of the response Object

PageContext

JSP code operates within a hierarchy of environments, as shown in Figure 7-2. A single
HTTP request, for example, may be serviced by multiple JSP pages: one that produces
heading information and another that generates detailed output. Similarly, multiple
HTTP requests may be part of a larger HTTP session that starts with a login request,
proceeds through some user selection requests, and then commits the work to a database.
Finally, the set of all HTTP sessions in a servlet context may share a connection pool or
other common objects.

Each of the layers in this hierarchy can have attributes that apply at that level only.
The JSP specification provides for a PageContext object that keeps track of attributes
at four levels:

B The JSP page
B The HTTP request

Application

Session

Request

Page

Figure 7-2. JSP context layers

Chapter 7: Expressions and Scriptlets 101

B The HTTP session
B The overall application

A PageContext object is automatically initialized and assigned to a variable named
pageContext at the beginning of the jspService () method. This object provides
search and update capability for attributes at each of the four levels, as described in
Table 7-4. It also provides methods that forward requests to other resources and
include the output of other resources.

Method Description

Object find Attribute(String name) Searches for an attribute object with
the specified name in the page, request,
session, and application scopes, in that
order, returning the first one found, or
null, if none is found.

Object getAttribute(String name, Returns the attribute object with the

int scope) specified name in the given scope. The
scope parameter value should be selected
from among the PAGE_CONTEXT,
REQUEST_CONTEXT, SESSION _
CONTEXT, and APPLICATION_
CONTEXT constants provided in the
PageContext class.

void removeAttribute(String name, = Removes the attribute object having the

int scope) specified name in the given scope.
void setAttribute(String name, Stores an object as a named attribute in
Object value, int scope) the given scope. The scope parameter

value should be selected from among
the PAGE_CONTEXT, REQUEST _
CONTEXT, SESSION_CONTEXT, and
APPLICATION_CONTEXT constants
defined in the PageContext class.

Table 7-4. Some Useful Methods of the pageContext Object

102

JSP: The Complete Reference

Session

HTTP is a stateless protocol, which means it doesn’t remember from one request to the
next anything about previous requests. However, Web applications frequently involve
more than one request. For example, an application may begin with some kind of user
identification and validation that must be propagated through several other Web pages.
The continuity required for this type of application must be provided by something other
than the Web server.

Several approaches can be taken to accommodate this need, depending on the
requirements of the application. Chapter 14 explores a number of these alternatives
in detail, including;:

B Hidden fields
B Cookies

B URL rewriting
B HTTP sessions

The last item mentioned is of interest here. An HttpSession is a Hashtable-like
object associated with a single Web browser session. It persists between HTTP requests
and can store named objects of any kind. By default, the JSP container creates an
HttpSession object or accesses the currently active one at the beginning of the
_JjspService () method. This object is assigned to a variable named session.

If you do not need to retain objects between requests, you can turn off automatic
session creation by specifying session="false" in the page directive. Doing so can
improve performance by reducing the number of objects of which the servlet engine
has to keep track. Because a session persists until it times out (typically 30 minutes
later) or it is explicitly invalidated, the impact on performance can be considerable.

Table 7-5 outlines several useful methods in the session object.

Method Description

Object getAttribute(String name) Returns the object with the specified
name, if it exists in the session.

Enumeration getAttributeNames() Returns an enumeration of the names
of all the objects stored in the session.

String getlId() Returns the unique session ID. This
ID must be stored by the client (Web
browser) between requests and passed
back to the JSP container to identify
which session is required.

Table 7-5. Some Useful Methods of the session Object

Chapter 7: Expressions and Scriptlets 103

Method Description

int getMaxInactivelnterval() Returns the maximum number of
seconds the session stays active between
user requests. The JSP container closes
the session if no activity occurs over that

length of time.
void invalidate() Closes the session and unbinds all its
objects.
void setAttribute(String name, Stores an object in the session under the
Object value) specified name.

Table 7-5. Some Useful Methods of the session Object (continued)

Remember, the pageContext object can also be used to get and set attributes
in the session in the same manner as the session.getAttribute () and
session.setAttribute () methods.

Application

The application implicit object encapsulates a view of the collection of all servlets,
JSP pages, HTML pages, and other resources in a Web application. This object
implements the javax.servlet.ServletContext interface and is automatically
constructed at the beginning of the jspService () method. It provides information
about the server version, any application-wide initialization parameters, and the
absolute paths of resources within the application. This object also provides a means
for logging messages. Some of its more useful methods are described in Table 7-6.

Method Description

Enumeration getAttributeNames() Returns an enumeration of the names
of all objects stored in the servlet
context.

Object getAttribute(String name) Returns an object with the specified

name that was stored with the
application’s setAttribute() method.

Table 7-6. Some Useful Methods of the application Object

104

JSP: The Complete Reference

Method

String getInitParameter(String name)

Enumeration getInitParameterNames()

String getRealPath(String path)

URL getResource(String path)

InputStream
getResourceAsStream(String path)

Description

Returns the value of the specified
application-wide initialization
parameter.

Returns an enumeration of the names
of all application-wide initialization
parameters.

Converts a path in the context of the
Web application to an absolute path
in the file system, if possible.

Returns the URL (if any) mapped to
the specified path in the application.
The path must begin witha "/" and is
relative to the root of the application.

Similar in operation to getResource(),
but returns an opened input stream to
the resulting URL.

void log(String msg) Writes a message to the log file
associated with this application.
Table 7-6. Some Useful Methods of the application Object (continued)

As is the case with the page, request, and session implicit objects, attributes of
the application object can be manipulated with methods in the pageContext object.
Initialization parameters are discussed in a later section of this chapter.

Out

The whole purpose of a JSP page is to produce some output and send it back to the
user on the other end of the socket connection. As you saw earlier in this chapter, fixed
HTML template data and JSP expressions are written by automatically generated
out.write () and out .print () method calls. The out variable is initialized with a
reference to a javax.servlet.jsp.JIspWriter object early in the jspService()
method. You can have all output generated in this manner or you can write explicitly
to the out object in scriptlets. Thus, the JSP page

N
o\°

String[] colors = {"red", "green", "blue"};

Chapter 7: Expressions and Scriptlets

for (int i = 0; 1 < colors.length;

o°
\

N

%= colors[i] %> <P>

N
o°

o°
\

is functionally equivalent to this one:

N
o°

String[] colors = {"red", "green",
for (int i = 0; i < colors.length;
out.println(colors[i] + " <P>");

o\°
\"

Besides the write () methods common to all j

iv+) |
"blue"};
iv+) |

ava.io.Writer objects, the out

object provides methods for querying and manipulating the output buffer, as shown

in Table 7-7.

Method Description

void flush() Forces buffered data to be written to the
output stream.

int getBufferSize() Returns the size of the output buffer in
bytes, or 0 if the writer is unbuffered.

int getRemaining() Returns the number of bytes remaining
before buffer overflow occurs.

void print(type value) A variety of methods to write objects
of the specified primitive or object
type. No newline character is added
at the end.

void println(type value) Similar to print(), but adds a newline
character at the end.

Table 7-7. Some Useful Methods of the out Object

105

106 JSP: The Complete Reference

Config

Besides application-wide initialization parameters that are made available through the
application object, individual servlet mappings (and, therefore, JSP pages) can have
initialization parameters. The config implicit object provides methods for accessing
these parameters, the servlet context (application), and the servlet name, as detailed in
Table 7-8.

Page
The page implicit object is a variable containing a reference to the current servlet

instance, essentially just an alias for the this variable. This object is not typically
useful to JSP page authors.

Exception

The object referred to by the implicit exception variable is any instance of
java.lang.Throwable that has been thrown, but not caught, by a catch block in
the JSP page. The exception variable is only valid if the <%@ page %> directive has the
isErrorPage="true” attribute. This attribute is discussed in more detail in Chapter 10.

Method Description

String getInitParameter(String name) Returns the value of the specified
servlet initialization parameter, or null,
if the named parameter does not exist.

Enumeration getInitParameterNames() Returns a list of the names of all
initialization parameters for this servlet.

ServletContext getServletContext() Returns a reference to the servlet
context (same as the application implicit
variable).

String name getServletName() Returns the name of the generated
servlet.

Table 7-8. Some Useful Methods of the config Object

Chapter 7: Expressions and Scriptlets 107

| Initialization Parameters

Initialization parameters are external name/value pairs that can be read by a JSP page.
They can be used in the same manner as string constants, but have the added advantage
that they can be modified without requiring the program that uses them to be
recompiled. This makes initialization parameters especially useful for storing installation
and configuration data, such as HTTP proxy server names, application color schemes, or
installation directory names.

These parameters can be specified at the individual JSP and servlet level or for all
the JSP pages in an application. In either case, initialization parameters are declared in
the application's web . xm1 file®. For JSP and servlet level access, this is accomplished by
adding one or more <init-param> elements to the appropriate <servlet> element,
as the following shows:

<servlets>

<servlet-name>Food</servlet-name>
<jsp-file>/Chap07/examples/Food.jsp</jsp-file>

<init-params>

<param-name>DRIVER NAME</param-name>

<param-valuessun. jdbc.odbc.JdbcOdbcDriver</param-values>
</init-param>

<init-params>
<param-name>DATABASE URL</param-names>
<param-value>jdbc:odbc:usda</param-values>
</init-param>

</servlets>

In this example, Food. jsp is a JSP page that accesses a database of nutrition
information. Rather than containing hardcoded values for the JDBC driver name
and database URL, the JSP page gets these values from initialization parameters
using the get InitParameter () method:

String driverName = getInitParameter ("DRIVER NAME") ;
if (driverName == null)

4 The web.xml file and other configuration and deployment issues are discussed in Chapter 18.

108 JSP: The Complete Reference

throw new ServletException
("No DRIVER _NAME parameter was specified");

String databaseURL = getInitParameter ("DATABASE URL") ;
if (databaseURL == null)

throw new ServletException

("No DATABASE URL parameter was specified");

Class.forName (driverName) ;
Connection con = DriverManager.getConnection (databaseURL) ;

Database access parameters are likely needed in several places within a Web
application. Rather than having duplicate values in the web . xm1 file, commonly
used values can be specified at the application level. This is done with the
<context-params> element:

<context-param>
<param-name>DRIVER NAME</param-name>
<param-values>sun.jdbc.odbc.JdbcOdbcDriver</param-values>
</context-param>

<context-param>
<param-name>DATABASE URL</param-name>
<param-value>jdbc:odbc:usda</param-values>
</context-param>

The JSP code for accessing the values is almost the same, except the application
object’s get InitParameter () method is called:

String driverName =
application.getInitParameter ("DRIVER NAME") ;
if (driverName == null)
throw new ServletException
("No DRIVER NAME parameter was specified");

String databaseURL =
application.getInitParameter ("DATABASE URL") ;

Chapter 7: Expressions and Scriptlets 109

if (databaseURL == null)
throw new ServletException
("No DATABASE URL parameter was specified");

Class.forName (driverName) ;
Connection con = DriverManager.getConnection (databaseURL) ;

___ | Summary

JSP pages provide two means for incorporating Java code in the handling of requests:
expressions and scriptlets. JSP expressions are simply Java-language expressions that
yield a string value (or can be converted into one). Expressions are enclosed in <%=
and %> delimiters. Whatever is between the delimiters is made the argument of an
out.print () or out.write () method. For this reason, expressions must not
end in a semicolon. Scriptlets are Java code fragments designed to operate inside
the jspService () method and are marked by the <% and %> delimiters. The
programming statements in a scriptlet are copied directly into the Java source code
of the generated servlet.

To give it linkage to the JSP container, a JSP page has access to a number of implict
objects. These are automatically initialized objects that have predefined variable names.
These variables are

B request
response
pageContext
session
application
out

config

page
B exception

The last variable (exception) is only available to pages with the i sErrorPage=
"true" attribute in their page directive.

This page intentionally left blank.

The

Reforince
Chapter 3

Declarations

112 JSP: The Complete Reference

template data, these two element types share a common environment—they exist

within the jspService () method of a generated Java servlet. While this is
adequate for most request processing, it imposes some restrictions on the servlet’s
capability. This chapter introduces JSP declarations, which allow the JSP author to write
Java code that operates outside the jspService () method.

The previous chapter covered JSP expressions and scriptlets. Along with fixed HTML

| what Is a Declaration?

Similar to a scriptlet, a JSP declaration consists of Java source code embedded within an
HTML page. Declarations are set off from the rest of the page by special opening and
closing tags, as the following shows:

<%! java statements %>

The syntax of a declaration is identical to that of a scriptlet, with one exception: the
opening delimiter is <%!, rather than <%.

Like a scriptlet, the code inside the declaration delimiters is copied verbatim to the
generated Java servlet. The essential difference is where the code is placed: scriptlets are
copied to the inside of the _jspService () method, whereas declarations are written
outside the method as top-level members of the enclosing class. Understanding this
distinction can help develop your mental model of how JSP works and can help explain
unexpected behavior.

Where Declaration Code Is Generated

An example of how code for a declaration is generated would make this clearer. Consider
the following JSP page that uses a scriptlet to display the current time:

)

<%@ page import="java.text.*,java.util.*" %>

o\°

<
DateFormat fmt = new SimpleDateFormat ("hh:mm:ss aa");
String now = fmt.format (new Date()) ;

%>

The time is <%= now %>

The page is stored in a file named ShowTimeS. jsp (S for scriptlet). When this file
is invoked, it displays the current time:

The time is 09:31:45 PM

Chapter 8: Declarations 113

If the user refreshes the page, the time is incremented, as expected:

The time is 09:31:48 PM
The time is 09:31:51 PM
The time is 09:31:53 PM

Now consider the same JSP written with a declaration rather than a scriptlet.
This page is named ShowTimeD. jsp (D for declaration):

<%@ page import="java.text.*,java.util.*" %>

<%!
DateFormat fmt = new SimpleDateFormat ("hh:mm:ss aa");
String now = fmt.format (new Date()) ;

%>

)

The time is <%= now %>

The only difference between ShowTimeS. jsp and ShowTimeD. jsp is line two
in ShowTimeD. jsp starts with <%! instead of <%, making it a declaration rather than
a scriptlet.

When ShowTimeD. jsp is invoked, it, likewise, displays the current time:

The time is 09:32:26 PM
But look what happens when the page is refreshed:

The time is 09:32:26 PM
The time is 09:32:26 PM
The time is 09:32:26 PM

The time is not changing. Why not? The answer can be found in the generated
servlet source code for each page. Here is the scriptlet version,

import javax.servlet.*;

import javax.servlet.http.*;
import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;
import java.io.PrintWriter;

import java.io.IOException;

import java.io.FileInputStream;

114

JSP: The Complete Reference

import java.io.ObjectInputStream;

import java.util.Vector;

import org.apache.jasper.runtime.*;
import java.beans.*;

import org.apache.jasper.JasperException;
import java.text.*;

import java.util.*;

public class ShowTimeS extends HttpJspBase

{
static
{
}

public ShowTimeS ()

{
}

public void jspService(
HttpServletRequest request,
HttpServletResponse response)
throws IOException, ServletException

JspFactory jspxFactory = null;
PageContext pageContext = null;
HttpSession session = null;
ServletContext application = null;
ServletConfig config = null;
JspWriter out = null;

Object page = this;

String _value = null;

try {

_JjspxFactory = JspFactory.getDefaultFactory() ;
response.setContentType ("text/html;charset=8859 1");

pageContext = _jspxFactory.getPageContext

(this, request, response, "", true, 8192,

application = pageContext.getServletContext () ;

config = pageContext.getServletConfig() ;
session = pageContext.getSession() ;
out = pageContext.getOut () ;

Chapter 8:

out.write ("\r\n") ;

DateFormat fmt = new SimpleDateFormat ("hh:mm:ss aa");

String now = fmt.format (new Date()) ;
out.write ("\r\nThe time is ");
out.print (now) ;
out.write ("\r\n") ;
}
catch (Exception ex)
if (out.getBufferSize() != 0)
out.clearBuffer () ;
pageContext .handlePageException (ex) ;
}
finally {
out.flush() ;
_jspxFactory.releasePageContext (pageContext) ;

and here is the declaration version:

import javax.servlet.*;

import javax.servlet.http.*;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;
import java.io.PrintWriter;

import java.io.IOException;

import java.io.FileInputStream;
import java.io.ObjectInputStream;
import java.util.Vector;

import org.apache.jasper.runtime.*;
import java.beans.*;

import org.apache.jasper.JasperException;
import java.text.*;

import java.util.*;

public class ShowTimeD extends HttpJspBase

{

DateFormat fmt = new SimpleDateFormat ("hh:mm:ss aa");

Declarations

115

116

JSP: The Complete Reference

String now = fmt.format (new Date()) ;

static

{
}

public ShowTimeD ()

{
}

public void jspService(

HttpServletRequest request,

HttpServletResponse response)
throws IOException, ServletException

JspFactory jspxFactory = null;
PageContext pageContext = null;

HttpSession session = null;

ServletContext application = null;

ServletConfig config = null;
JspWriter out = null;

Object page = this;

String value = null;

try {

_JjspxFactory = JspFactory.getDefaultFactory() ;
response.setContentType ("text/html;charset=8859 1");

pageContext = _jspxFactory.

getPageContext

(this, request, response, "", true, 8192, true);

application = pageContext.getServletContext () ;
config = pageContext.getServletConfig() ;
session = pageContext.getSession() ;

out = pageContext.getOut () ;

out.write ("\r\n") ;
out.write ("\r\nThe time is
out.print (now) ;
out.write ("\r\n") ;

}

catch (Exception ex) {
if (out.getBufferSize() !=
out.clearBuffer () ;

")

0)

Chapter 8: Declarations

pageContext .handlePageException (ex) ;
}
finally {
out.flush() ;
__jspxFactory.releasePageContext (pageContext) ;

Other than the program names, the difference between the two servlets is the location
of the two scripting lines. In the scriptlet version, they are included in the middle of the
_JjspService () method, making the fmt and now variables local to that method. In the
declaration version, however, they appear as the first entries inside the class. This makes
the two variables instance variables, which are initialized when the servlet instance is first
created and never updated: We will see shortly that this is not only undesirable, it’s also
dangerous.

Primary Uses for Declarations

Declarations can contain any valid Java code, but they are most commonly used in
three contexts:

B Variable Declarations Both class and instance variables can be declared
and initialized.

B Method Definitions Duplicate or overly complex scriptlet code can be
restructured into a main routine that calls other methods.

B Inner Classes Additional classes can be defined and made available to
scriptlets, expressions, and other declaration code.

The remainder of this chapter considers each of these uses in detail.

Variable Declarations

As illustrated in the preceding examples, declarations can be used to define and initialize
variables. The variables will be available to scriptlets, expressions, and other declarations.
These can be class variables (marked with the static keyword), as in the following
example,

o\

static final String[] COLORS = ({

<

117

118 JSP: The Complete Reference

"#CA9A26",
"#3BF428",
"#F7E339",
"#FF40FF",

o°
\

N
o

for (int i = 0; i < COLORS.length; i++) ({
String color = COLORSI[i];
%>
<DIV STYLE="background-color: <%= color%>;
font-size: 12pt;
font-weight: bold;">
This is color <%= color %></DIV>

<%}%>

or instance variables, as the following shows, in a file named vardec2 . jsp:

<%! int count; %>
<

o° o

count = 0;
for (int i = 0; i < 10; i++)
%>
Request <%= Integer.toHexString(request.hashCode()) %>
count = <%= ++count %>

<%

Thread.sleep (250) ;

o°
\"

In either case, the variable declaration is copied verbatim into the generated servlet
as a top-level member of the enclosing class.

Thread Safety and Instance Variables

The instance variable example vardec2. jsp contains a subtle flaw. Each time the
JSP services a request, it sets the count variable to zero, and then enters a loop of ten
iterations, incrementing the count and displaying it along with the request object hash
code. When first tested, it might look like the output shown in Figure 8-1.

Chapter 8:

Declarations

J
le-»-QR A Q=P B

File Edit “iew Favorites Tools Help |

< hitp:#/u25nv/jspcr/Chap07 fexamples... [Hj[=]

2

Request 2b2b55 count
Request 2b2b5S count
Reqguest 2b2bES count
Request 2b2b55 count
Request 2b2b55 count
Request 2b2b5S count
Reqguest 2b2bES count
Request 2b2b55 count
Request 2b2b55 count
Request 2b2b5S count

[l =R xR N N B SN TR B e

o

|

E Dane l_ l_ E‘-_,: Local intranet

RN

Figure 8-1.

First Test of vardec2.jsp

But look what happens when two people request the JSP page at about the same
time (now you know why we added the Thread. sleep (250)—to introduce enough
of a delay to allow for the collision). Figures 8-2 and 8-3 show two requests being
handled simultaneously.

/3 http: //u25nv/jspcr/Chap07 Jexamples. .. =]
J File Edit “iew Favortes Toolz Help
le-2-QR A Q@@ | B >
=l
Request 33f9b8 count = 1
Request 33f9b8 count = 2
Request 33f9b8 count = 3
Request 33f9b8 count = 2
Request 33f9b8 count = 4
Request 33f9b8 count = 6
Request 33f9b8 count = 8
Request 33f9b8 count = 10
Request 33f9b8 count = 12
Request 33f9b8 count = 14
|
E Done I_I_Eﬂ Local intranet 4

Figure 8-2.

vardec?2.jsp Handling Request 33F9B8

119

120 JSP: The Complete Reference

/3 http://u25nv/ispcr/Chap07 /examples... [E[=]

J File Edit Miew Favorites Toolz Help |
le->- 0@ 4 QS| B
B
Request 39c8cl count =1
Request 39c8cl count = 3
Request 39c8cl count = 5
Request 39c8cl count = 7
Request 39c8cl count = 9
Request 39c8cl count = 11
Request 39c8cl count = 13
Request 39c8cl count = 15
Request 39c8cl count = 16
Request 39c8cl count = 17
|
|@ Done ’_|_|_!§'I Local intranet Y

Figure 8-3. vardec2.jsp Handling Request 39C8C1

The first request starts off normally enough for the first three lines. But then the
count drops back to 2, and appears to increment by 2 for the rest of the loop. Similarly,
the second request starts at 1, but then skips all the even numbers. An examination of
the generated source code shows what the problem is:

import javax.servlet.*;

import javax.servlet.http.*;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;
import java.io.PrintWriter;

import java.io.IOException;

import java.io.FileInputStream;
import java.io.ObjectInputStream;
import java.util.Vector;

import org.apache.jasper.runtime.*;
import java.beans.*;

import org.apache.jasper.JasperException;

public class vardec2 extends HttpJdspBase

{
// begin [file="vardec2.jsp";from=(0,3);to=(0,15)]
int count;
// end

Chapter 8: Declarations

static

public vardec2 ()

{
}

public void jspService(
HttpServletRequest request,
HttpServletResponse response)
throws IOException, ServletException

JspFactory jspxFactory = null;

PageContext pageContext = null;

HttpSession session = null;

ServletContext application = null;

ServletConfig config = null;

JspWriter out = null;

Object page = this;

String value = null;

try {
_jspxFactory = JspFactory.getDefaultFactory () ;
response.setContentType ("text/html;charset=8859 1");
pageContext = jspxFactory.getPageContext

(this, request, response, "", true, 8192, true);

application = pageContext.getServletContext () ;
config = pageContext.getServletConfig() ;
session = pageContext.getSession() ;

out = pageContext.getOut () ;

out.write ("\r\n") ;

count = 0;

for (int i = 0; 1 < 10; i++) {
"\r\nRequest ") ;

Integer.toHexString (request.hashCode ())

"\r\ncount = ") ;

out.write
out.print
out.write

—~ o~~~

out.print (++count) ;
out.write ("
\r\n") ;

Thread.sleep (250) ;

121

122

JSP: The Complete Reference

}

out.write ("\r\n") ;

}

catch (Exception ex) {
if (out.getBufferSize() != 0)
out.clearBuffer () ;
pageContext .handlePageException (ex) ;
}
finally {
out.flush() ;
_jspxFactory.releasePageContext (pageContext) ;

The source of the problem is that count is an instance variable, not a local variable in
the jspService () method. Recall that JSP pages are compiled as servlets, which, by
default, run as a single instance with separate threads to handle each request. This being
the case, any instance variables are automatically shared between all request-handling
threads. In the example, the first request got as far as 3, but then the thread that handled
the second request entered _jspService () and reset the shared count variable back
to zero. As the loop progressed, the two threads alternated every 125 milliseconds or so,
each incrementing the value.

Chapter 14 discusses this problem and explores several solutions. The conclusion
presenting itself here is that variable declarations in a JSP page are best used to handle
read-only variables.

Method Definitions

A more common use for declarations is to define additional methods. The syntax is no
different than for any other method definitions, except for the <%! and %> delimiters:

<%!
public int sum(int a, int b)

{
}

return a + b;

o\°
Vv

Chapter 8: Declarations

As with variable declarations, method definitions are copied verbatim into the
generated servlet as top-level members outside the _jspService () method:

public class methdefl extends HttpJspBase

{
// begin [file="methdefl.jsp";from=(0,3);to=(5,0)]
public int sum(int a, int b)
{
return a + b;
}
// end
//
public void _jspService(
HttpServletRequest request,
HttpServletResponse response)
throws IOException, ServletException
{
//
}
}

A typical method definition in a JSP declaration would be for a utility method that
reformats strings produced by a scriptlet. Consider the following JSP page that displays
the value of several system properties in an HTML table:

<TABLE BORDER=1 CELLPADDING=3 CELLSPACING=0>
<%

String[] propNames = {
"java.awt.printerjob",
"java.class.path",

"java.class.version",
"java.ext.dirs",
"java.library.path",

}i

for (int i = 0; i < propNames.length; i++) ({
String name = propNames[i] ;

String value = System.getProperty (name) ;

o°
\"

123

124 JSP: The Complete Reference

<TR>
<TD ALIGN=LEFT VALIGN=TOP><%= name %></TD>
<TD ALIGN=LEFT VALIGN=TOP><%= value %></TD>
</TR>

)
<%

[
>

</TABLE>

The output of the JSP page is shown in Figure 8-4. The problem with this table is
several of the values are quite long, with no embedded spaces. This means the right-hand
table cell is too long to be displayed in the window.

A simple solution for this is to shorten the property value strings. One quality the
offending members have in common is they consist of a list of several values separated
by semicolons. These can be shortened by inserting a
 tag after each semicolon, so
the list will be displayed on multiple lines. This will make the table width requirement
no longer than the longest list entry. This could be done with inline code in the scriptlet,

3 http:/ fu2bnv/jzpcr/Chap07 /examples/ShowProps1.jsp - Microsoft Internet Explorer

J File Edit ‘“iew Favoritezs Toole Help |

|«-= -84 Q=3 BD-SEN

J Address I@ hitp: / u25nfjzpor/Chapl7 fexamples/ShowProps1 . jzp j 6)50

java.awt.printerjob | sun.awt.windows. WPrinterJob

java.class.path d: ftomcat/lib/ant jar; d: ftomeat/dibgasper jar d: fservietapidib/serviet jar; d: ftor
java.class.version |47.0

java.ext.dirs Detjdkl, 3vjrenlibhext

java.library.path Dk, 3vbing . COAOWINNTYSystem32; COOWWINNT, COWINNT CWVWINNTYWSystem32

-
4] | 3

[@] Dane l_ l_ E‘g Local intranet 5

Figure 8-4. Table with Very Wide Cells

Chapter 8: Declarations

but a more readable solution would be to use a normalize () method that applies the
necessary transformation. That way, the <%= value %> expression could simply be
written <%= normalize(value) %>. The following shows the modified JSP page:

<TABLE BORDER=1 CELLPADDING=3 CELLSPACING=0>
<%
String[] propNames = {
"java.awt.printerjob",
"java.class.path",
"java.class.version",
"java.ext.dirs",
"java.library.path",
}i
for (int i = 0; i < propNames.length; i++) {
String name = propNames[i];
String value = System.getProperty (name) ;
%>
<TR>
<TD ALIGN=LEFT VALIGN=TOP><%= name %></TD>
<TD ALIGN=LEFT VALIGN=TOP><%= normalize (value) %></TD>
</TR>

o
<3

%>
</TABLE>
<%!
private static final String normalize (String s)
{
StringBuffer sb = new StringBuffer();
for (int i = 0; 1 < s.length(); i++) {
char ¢ = s.charAt (i) ;
sb.append (c) ;
if (¢ == ';")
sb.append ("
") ;

}

return sb.toString() ;

o°
\"

This time, when the same properties are displayed, the table fits within a more reasonable
window size (see Figure 8-5).

125

126 JSP: The Complete Reference

3 http: / fu25nv/ispcr/Chap07 fexamples/ShowProps2.jsp - Microszoft Internet Explorer

J Fle Edt “iew Favorites Tools Help |

J&¢-2 -9 A AP B-SOw

J Address I@ http: / Au2Bnv/ispor/Chap07 fesamples /S howProps2. jsp j @ Go

java.awt.printerjob | sun. awt windows WPrinterJob

java.class.path d: ftomcat/lib/ant jar;

d: ftomcat/libjasper.jar;

d: /servletapi/lib/serviet.jar;
d: ftomcat/libSwebserver.jar;
d: Adk1.3/ib/tools, jar

java.class.version [47.0
java.ext.dirs Dtk 3¥gredJibhyext
java library.path Devyjdk1, 3vhking

COWINNTWSystem32;
CIWWINNT,
CIWWINNT,
W INNTYSystem3z

Nl

|@ Done ’_ l_ E‘!-' Local intranet

Figure 8-5. Same Table with Normalized Cells

Overriding jsplnit and jspDestroy

In the preceding example, the string manipulation could have been done with inline code
in the scriptlet, rather than by a method call. In some circumstances, that is not possible.
For example, if resources need to be acquired or threads started when a JSP page is
loaded, these functions should be performed in the context of the servlet init () and
destroy () methods.

The JSP 1.1 Specification expressly forbids page authors from overriding any of the
servlet lifecycle methods directly, including init () and destroy ()'. However, it
provides two special methods named jspInit () and jspDestroy () that accomplish
the same purpose. These methods are automatically called from within init () and
destroy (), and have empty definitions in the parent JSP page implementation. In

1]JSP 1.1 Specification, Section 3.1. Although some servlet engines do not enforce this restriction, it
would be unwise to ignore it.

Chapter 8: Declarations

Tomcat, for example, the base JSP class org.apache. jasper.runtime.HttpJspBase
defines init () and jspInit () as follows:

public final void init (ServletConfig config)
throws ServletException

{

this.config = config;
jspInit () ;

public void jspInit ()
{
}

Similarly, it defines destroy () and jspDestroy () as follows:

public final void destroy ()

{ jspDestroy () ;

}

public void jspDestroy ()
{

}

The use of the final keyword ensures init () and destroy () themselves cannot
be overridden. This, in turn, guarantees jspInit () and jspDestroy () will always be
called. To add something to the initialization phase of a JSP, the necessary code should be
entered in a JSP declarationZ:

public void jspInit ()

{
TimerThread t = new TimerThread() ;
t.start () ;

2 Curiously enough, the JSP 1.1 specification makes no provision for throwing an exception from
jspInit(), even though init() itself can do so. What can be done if the JSP detects a fatal error during
its jspInit() execution is not clear.

128 JSP: The Complete Reference

Access to Implicit Objects

Unlike scriptlets and expressions, declarations have no access to the implicit objects
described in Chapter 7. The reason for this is apparent when you remember that
methods in declarations are defined outside the jspService () method. Therefore,
if a declaration method needs access to one or more of these objects, the objects must
be passed somehow from jspService (). You can do this in several ways:

B Pass the objects as individual parameters. This is easy to do, but tends to
become unwieldy if more than a few parameters are necessary.

B Pass the pageContext implicit object as a parameter. From the page context,
all the other variables can be accessed indirectly.

B Pass a structure containing all the variables of interest as a single parameter.
You see how to do this in the next section.

The second technique (passing the page context) is illustrated in the following code:

<%@ page import="java.io.*,java.util.*" %>
<%!
public void showSessionID (PageContext pc)
throws IOException
{
JspWriter out = pc.getOut () ;
HttpSession session = pc.getSession() ;
Date created = new Date(session.getCreationTime()) ;
out.println("The session was created at " + created);

o°
\"

N
o

showSessionID (pageContext) ;

o°
\"

The showSessionID () method is able to extract the JspWriter and HttpSession
objects from the page context and use them to write to the current output stream.

| Inner Classes

Just like any other Java class, a JSP page can define inner classes. Inner classes are useful
for running background threads or encapsulating data structures. When used properly,
they can preserve the object-oriented character of a Java program, which can sometimes
be lost in an event-driven environment like JSP.

Chapter 8: Declarations

An inner class can be useful as a data structure that holds implict and other variables.
The page context acts as a wrapper for other objects in the servlet context, session,
request, and page. It also has getAttribute () and setAttribute () methods for
additional user-defined fields, but these must be objects (not primitives like int and
double) and must be cast to the appropriate type when retrieved. An inner class is an
alternative that solves the same problem in a type-safe manner. An example of this
technique is illustrated in the following:

<%@ page import="java.io.*,java.util.*" %>
<%!
/**
* Inner class for passing parameters between methods
*/
class Parameters {
JspWriter out;
HttpSession session;
String url;

public void showSessionID (Parameters parms)
throws IOException

JspWriter out

parms.out;

HttpSession session = parms.session;

String url = parms.url;

Date created = new Date(session.getCreationTime()) ;

out.println("The session was created at " + created
+ "<P>");

out.println("The url parameter was " + url);

o°
\"

N
o°

Parameters parms = new Parameters() ;
parms.out = out;

parms.session = session;

parms.url = request.getParameter ("url");
showSessionID (parms) ;

o°
\

129

130 JSP: The Complete Reference

The generated servlet includes both the inner class and the method definition inside
the top level of the class, and the scriptlet inside _jspService():

import javax.servlet.*;

import javax.servlet.http.*;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;
import java.io.PrintWriter;

import java.io.IOException;

import java.io.FileInputStream;
import java.io.ObjectInputStream;
import java.util.Vector;

import org.apache.jasper.runtime.*;
import java.beans.*;

import org.apache.jasper.JasperException;
import java.io.*;

import java.util.*;

public class PassInnerClass extends HttpJspBase

{

// begin [file="PassInnerClass.jsp";from=(1,3);to=(22,0)]

/**
* Inner class for passing parameters between methods
*/
class Parameters
JspWriter out;
HttpSession session;
String url;

public void showSessionID(Parameters parms)
throws IOException
{
JspWriter out
HttpSession session = parms.session;
String url
Date created = new Date(session.getCreationTime()) ;
out.println("The session was created at " + created

+ NP1

parms.out;

parms.url;

Chapter 8: Declarations

out.println("The url parameter was " + url);

}

// end

//

public void jspService(
HttpServletRequest request,
HttpServletResponse response)
throws IOException, ServletException

//
// begin [file="PassInnerClass.jsp";from=(23,2);to=(29,0)]

Parameters parms = new Parameters() ;
parms.out = out;

parms.session = session;

parms.url = request.getParameter ("url");
showSessionID (parms) ;

// end

___ | Summary

Chapter 7 covered scriptlets and expressions. This chapter introduced a third type of
scripting element, a JSP declaration.

Like a scriptlet, a declaration is used to incorporate Java statements into a JSP page.
The key difference between the two is where the JSP container writes the code in the
generated servlet. With a scriptlet, the code becomes part of the jspService () method,
whereas code in a declaration becomes top-level code in the servlet class. This distinction
is important to understand because it affects the context in which the code operates.

Declarations have three primary uses:

B Variable declarations Both class and instance variables can be defined, although
care must be taken to ensure that write access to the variables is synchronized
because servlets, by default, are multithreaded. The most practical use of variable
declarations is for static final constants.

131

132 JSP: The Complete Reference

B Method definitions Additional methods can be added to the generated
servlet by means of JSP declarations. Because the generated code is not inside
the _jspService () method, however, it does not have access to the implicit
variables (request, response, out, and so forth). These variables must be
explicitly passed to the method if they are to be used. Declarations can be used
to override the jspInit () and jspDestroy () methods.

B Inner classes Declarations provide a convenient means for writing inner classes.
This chapter describes using an inner class as a data structure for passing a set of
variables between methods in the generated servlet.

The

Reforince
Chapter 9

Request Dispatching

133

134 JSP: The Complete Reference

n large-scale Web development projects, having HTTP requests handled by more
Ithan one server-side component is often desirable. Several reasons exist for this:

B Elimination of redundancy Many features of a Web site are common to all
pages, such as headers and footers, navigation bars, and other elements of the
look and feel. Rather than duplicate the HTML that generates these features,
being able to write them once and use them in a number of places is useful.

B Separation of content and presentation Because Java can be used freely
in any part of a JSP, you can easily end up with code that both generates
information and presents it, perhaps reading from a database, performing
calculations, and generating HTML tables. Changing both the logic and the
appearance of the page may be necessary later. Such code can quickly become
overly complex. What makes more sense is to separate the pure Java code that
accesses the database and applies business logic from the JSP code that creates
an output Web page.

This chapter examines features of the JSP environment that allow requests to be
forwarded and the contents or output of other resources to be included. The chapter
also discusses how the RequestDispatcher class works and concludes with a
comparison of two JSP development models.

___| Anatomy of Request Processing

The servlet engine that handles servlet and JSP requests can be part of the Web server
itself (referred to as the in-process model) or it can run in a separate process. In the
latter case, the Web server contains a component referred to as a connector. The
connector intercepts servlet requests and passes them on to the servlet engine by an
implementation-dependent protocol’. Other requests are handled by the Web server
as usual. Figure 9-1 illustrates this out-of-process model.

When the servlet engine receives a request, it assembles all the details about the
request into an HttpServletRequest object. These details include the request headers,
the URI, the query string, any parameters sent, and so on. Similarly, it initializes an
HttpServletResponse object that can hold response headers and the response output
stream. It then invokes the servlet’s service () method (the jspService () method,
if the servlet is a JSP), passing it references to the two objects, as shown in Figure 9-2.

1 JRun features connectors for several widely used Web servers, and employs a proprietary protocol
to communicate requests to its servlet engine. Tomcat uses a protocol known as ajp12 (developed
originally for Apache JServ) to send requests and responses between components.

=

Servlet Engine

Chapter 9: Request Dispatching
Web Browser Web Server
,l: Servlet D Static HTML
Engine Pages
- < Connector <:‘:|

Figure 9-1. The out-of-process serviet engine model

A simple JSP can extract what it needs from the request object, perform the
necessary calculations and other logic, and then create output using the response
object. The remainder of this chapter examines how larger and more complex Web
applications can operate on these request and response objects, passing them through
more than one servlet or JSP.

Servlet
Engine

—

e

Servlet Request

—

Servlet Response

e

Servlet
Jsp)

Figure 9-2. The serviet engine passing request and response objects to a serviet

135

136

JSP: The Complete Reference

Including Other Resources

HTML itself does not have a direct means for including data from other files in its
output. This is unfortunate, because a great deal of HTML markup is common to a
number of pages in a typical Web site—corporate logos, copyright notices, navigation
links, and other features. Besides these static sources of text and images, dynamic
content may need to be included. JSP provides two means incorporating such data:

B The <%@ include %> directive is used to copy static text into the JSP source
code before it is transformed into Java servlet source code and compiled.
Typically, this text is HTML code, but it can be anything that could appear in
a JSP page.

B The <jsp:include> action causes the servlet engine to invoke another URL
and merge its output with that of the original JSP page.

A key point to remember in building a mental model is the <%@ include %>
directive is performed once, at compilation time, whereas the <jsp:include> action
is performed each time a request is made. The next two sections describe each of these
JSP components and how they operate.

The include Directive

The syntax of the include directive is as follows:
<%@ include file="filename" %>

The included filename must be a relative URL specification, meaning it contains
only path information, not protocol or server information. As a consequence, only
resources in the current servlet context can be included by this means.

If the filename begins with “/”, it is considered to be absolute with respect to the
top of the servlet context. Otherwise, the filename is considered to be relative to the
current JSP page. For example, if a Web application has a products subdirectory and
the products/search. jsp page contains the directive

<%@ include file="/includes/header.inc" %>

then the file that would be included is <path>/includes/header. inc, where
<path> is the Web application mount point. If, instead, the directive is

<%@ include file="includes/header.inc" %>

then the file would be <path>/products/includes/header. inc.

Chapter 9: Request Dispatching 137

How It Works

When a <%$@ include %> directive is encountered, the JSP container reads the
specified file and merges its contents into the JSP source code currently being parsed.
For example, if flavors. jsp contains

<H3>Flavors</H3>

Our most popular flavors are:

<%@ include file="flavor list.html" %>
Try them all!

and if flavor list.html contains

Chocolate
Strawberry
Vanilla
</0OL>

the HTML sent to the Web browser is exactly the same as if f1avors. jsp contained this:

<H3>Flavors</H3>

Our most popular flavors are:

Chocolate

Strawberry

Vanilla

</0OL>

Try them all!

We can see the interleaving of the two files in the servlet source code generated by
the Tomcat reference implementation®:

// begin [file="flavors.jsp";from=(0,0);to=(2,0)]
out.write ("<H3>Flavors</H3>\r\n") ;
out.write ("Our most popular flavors are:\r\n");

2 Generated source code examples have been slightly reformatted for readability.

138 JSP: The Complete Reference

// end

// begin [file="flavor list.html";from=(0,0);to=(5,0)]
out.write ("\r\n") ;
out.write ("Chocolate\r\n") ;
out.write ("Strawberry\r\n") ;
out.write ("Vanilla\r\n") ;
out.write ("\r\n") ;
// end

(
(
(
(

// begin [file="flavors.jsp";from=(2,38);to=(4,0)]
out.write ("\r\nTry them all!\r\n");
// end

Other than the filename change in the comment, there is no way to tell that the ordered
list was not simply coded in the original JSP page. In this respect, the <%@ include %>
directive is similar to the C language #include preprocessor directive.

Effect of Changes in an Included File

What happens if the flavor list.html file is modified? The JSP 1.1 specification
makes no provision for notifying the JSP container that an included file has changed,
although it does not prohibit it, and a robust JSP container should do so. JRun
incorporates dependency names and last modification times into the generated source
code so it can determine when files are out of date:

private static final String[] _ dependencies = {
"/Chap09/examples/flavors.jsp",
"/Chap09/examples/flavor list.html",
null

}i

private static final longl[] _ times = {
958963142531L,
958961380337L,
OL

}i

The key point to remember is the file included is the file that exists at compilation
time because this is when the <%@ include %> directive is processed. This is why the
filename cannot be a run-time expression. It also means the included file must exist at
compilation time.

Chapter 9: Request Dispatching

Using the include Directive to Copy Source Code

In addition to being used to copy HTML, the include directive can be used to include
Java source code as a declaration section. For example, a commonly used utility
function can be stored in a file and incorporated into a JSP page with the include
directive. A typical example would be a function that filters out characters with special
meaning in HTML and replaces them with symbolic printable equivalents:

<%!

public static final String webify(String s)

{
StringBuffer sb = new StringBuffer();
int n = s.length();
for (int i = 0; i < n; i++) {
char ¢ = s.charAt(i);
switch (c) {
case '<': sb.append("<"); break;
case '>': sb.append(">"); break;
case '&': sb.append("&"); break;
case '"': sb.append("""); break;
default: sb.append(c); break;
}
}
return sb.toString() ;
}

o\°
Vv

Once defined (by being included), this function can be used in scriptlets and expressions
in the including JSP page:

<%@ include file="webify.jsp" %>

Preformatted text can be coded with the
<%= webify ("<PRE> and </PRE>") %> tags.

Likewise, constants used throughout an application can be coded in a JSP
declaration handled by the include directive:

<%!
static final int BORDER = 1;
static final int CELLPADDING = 3;
static final int CELLSPACING = 0;
static final String[] COLORS = {"#COCOCO", "#EOEOEO"};

o°
\Y

139

140 JSP: The Complete Reference

If the declaration previously shown is stored in the TableConstants. jsp file, then
a JSP page can generate a table with rows of alternating background colors as follows:

<%@ include file="TableConstants.jsp" %>

<TABLE BORDER="<%= BORDER %>"
CELLPADDING="<%= CELLPADDING %>"
CELLSPACING="<%= CELLSPACING %>"

>

N
o°

for (int i = 0; i < 10; i++)
int x = i+1;
int xsqg = x*x;
%>
<TR BGCOLOR="<%= COLORSI[1 % 2] %>">
<TD><%= X %></TD> <TD><%= xsq %></TD>
</TR>
<%
}
%>

</TABLE>

Watch for two things when using the include directive for source code declarations. First,
Note O . ey ;

the JSP 1.1 specification does not guarantee pages that include code in this manner will be

notified if the code changes. Second, the included code uses the namespace of the including

page, so care must be exercised to ensure no duplicate variable definitions occur.

___| The <jsp:include> Action

In contrast to the include directive, the jsp:include action is interpreted each time
a request is made. The syntax of this action is

<jsp:include page="resourcename" flush="true" />

The included resource name must be a relative URL specification, containing only path
information. The resource name is mapped to the current servlet context in the same
way as the filename in an include directive. If the name begins with "/", it refers

to a path beginning at the top of the servlet context; otherwise, it is interpreted as a
path relative to the directory containing the calling JSP. The flush attribute (which

is mandatory) is used to indicate whether to flush the output JspWriter before
including the resource. The only valid value in JSP 1.1 is true.

Chapter 9: Request Dispatching

How It Works

The <jsp:include> action is parsed by the JSP compiler but, rather than being
executed at compilation time, it is converted into Java code that invokes the named
resource at request time. The resource can be a static data source, such as an HTML file
or a dynamic source, such as a JSP page or a servlet. Returning to our ice cream flavors
example, if flavors. jsp might contain

<H3>Flavors</H3>

Our most popular flavors are:

<jsp:include page="/servlet/FlavorList" flush="true" />
Try them all!

where FlavorList is a servlet that extracts the favorite flavors from a database or
some other dynamic source:

import java.io.*;
import java.net.*;
import java.sqgl.*;
import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;

/**
* Returns the current list of favorite flavors
*/
public class FlavorListServlet extends HttpServlet
public static final String JDBC DRIVER =
"sun.jdbc.odbc.JdbcOdbcDriver";

public static final String URL =
"jdbc:odbc:IceCream";

public void doGet (
HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException

PrintWriter out = response.getWriter();

141

142 JSP: The Complete Reference

Connection con = null;
try {

// Connect to the ice cream database

Class.forName (JDBC_DRIVER) ;
con = DriverManager.getConnection (URL) ;

// Run a query to get the top flavors

Statement stmt = con.createStatement () ;

String sqgl =
"SELECT RANK, NAME"
+ " FROM flavors"
+ " WHERE (RANK <= 3)"
+ " ORDER BY RANK"
ResultSet rs = stmt.executeQuery(sql) ;

// Print as an ordered list

out.println ("") ;

while (rs.next()) {
int rank = rs.getInt(1l);
String name = rs.getString(2);
out.println (" " + name) ;

}

out.println("") ;

}

catch (Exception e) {
e.printStackTrace() ;

// Close the database
finally {
if (con != null) {
try {

con.close() ;
!

catch (SQLException ignore) {}

Chapter 9: Request Dispatching

When flavors. jsp is invoked, it produces the following output:

<H3>Flavors</H3>

Our most popular flavors are:

Espresso Chip
Orange Cream
Peanut Butter

</O0OL>

Try them all!

The resulting HTML may look similar, but the underlying mechanism is completely
different, as can be seen in the source code of the servlet Tomcat generates:

// begin [file="flavors.jsp";from=(0,0);to=(2,0)]
out.write ("<H3>Flavors</H3>\r\n") ;
out.write ("Our most popular flavors are:\r\n");
// end

// begin [file="flavors.jsp";from=(2,0);to=(2,55)]
{
out.flush() ;
pageContext.include ("/servlet/FlavorList") ;

}

// end

// begin [file="flavors.jsp";from=(2,55) ;to=(4,0)]
out.write ("\r\nTry them all!\r\n");
// end

Rather than containing the ordered list of flavors, the JSP invokes the pageContext .
include () method to run the servlet that accesses the database. The output of the
servlet is included in the JSP output and the JSP resumes control. Where the include
directive was similar to the C language #include preprocessor directive, the <jsp:
include> action is more like a C language function call.

143

144

JSP: The Complete Reference

Restrictions

A JSP page invoked by a <jsp:include> action has access to all the implicit objects
available to the calling JSP, including the response object. It can write to and flush
the out object, but it cannot set response headers. For example, you can neither
specify a different content type nor can you use a <jsp: include> action to handle
authentication with the Www-Authent icate header. Why not? Because it is too
late—the output stream was flushed before the JSP was included, so any headers
present have already been written to the client.

Run-time Features

Because a <jsp:includes> is evaluated at run time, the page it refers to can be
supplied in a run-time expression, rather than being hardcoded. The following JSP
page is designed to be a comprehensive view of an HTTP servlet request. Rather than
being a long, scrolling list of attribute names and values, the page simulates a tabbed
dialog box, with attributes broken down into logical groups and radio buttons along
the top used to select which group to show.

<%@ page import="java.util.*" %>
<%!
// Table row colors

static final String[] COLORS = {"#EOEOQEQ", "#FOFOFO"};

// Array of tab codes, labels, and JSP's

public static final Stringl[] [] TABS = {
{"uD", "Headers", "ShowRequestHeaders.jsp"},
{"PM", "Parameters", "ShowParameters.jsp"},
{"SR", "ServletRequest Methods",
"ShowServletRequestMethodValues.jsp"},
{"HR", "HttpServletRequest Methods",

"ShowHttpServletRequestMethodValues.jsp"},
}i
%>
<HTML>
<HEAD>
<TITLE>Show Request</TITLE>
</HEAD>
<BODY>
<H2>Show Request</H2>
<FORM>
<TABLE BORDER=0 CELLPADDING=3 CELLSPACING=0>

o°

N

oe

o°

o\°

\%

Chapter 9: Request Dispatching

)

<%-- Radio buttons for selecting the page --%>

<TR>
<TD ALIGN=LEFT>

String which = request.getParameter ("which") ;
if (which == null)
which = TABS[0] [0];
String jspToRun = null;
for (int i = 0; i < TABS.length; i++) ({

String tabCode = TABS[i] [0];
String tabLabel = TABS[i] [1];
String tabJspP = TABS[i] [2];

String CHECKED = "";

if (which.equals(tabCode)) ({
CHECKED = "CHECKED";
jspToRun = tabJSP;

<INPUT NAME="which"
TYPE="RADIO"
VALUE="<%= tabCode %>"
<%= CHECKED %>
onClick="this.form.submit ()"
><%= tabLabel %>

<P>
</TD>
</TR>

<TR>
<TD ALIGN=CENTER VALIGN=TOP>

<%-- Page showing details of the request --%>
<jsp:include page="<%= jspToRun %>" flush="true" />

<%-- Resulting table --%>

<TABLE BORDER=1 CELLPADDING=3 CELLSPACING=0 WIDTH=600>

145

146 JSP: The Complete Reference

<TR>
<TH COLSPAN=2 ALIGN=LEFT BGCOLOR="#000000">

<%= request.getAttribute (" table title") %>

</TH>
</TR>
<TR>
<TH WIDTH=200 ALIGN=LEFT>Name</TH>
<TH WIDTH=400 ALIGN=LEFT>Value</TH>

</TR>
<%
Map entries = (Map)
request.getAttribute (" table entries");
Iterator iNames = entries.keySet () .iterator();
int row = 0;
while (iNames.hasNext()) {
String name = (String) iNames.next () ;

Object value = entries.get (name) ;
%>
<TR BGCOLOR="<%= COLORS [row % 2] %>">
<TD ALIGN=LEFT VALIGN=TOP><%= name %></TD>
<TD ALIGN=LEFT VALIGN=TOP><%= value %></TD>
</TR>
<%

YOW++;

%>

</TABLE>

<P>

</TD>
</TR>

</TABLE>
</FORM>
</BODY>
</HTML>

The categories available for display are coded in a static St ring array. For each
category, a two-character abbreviation exists: a label and the name of a JSP page that
will extract the desired data. There are four categories of attributes:

B Request Headers

B Parameters

Chapter 9: Request Dispatching

B Methods in ServletRequest
B Methods in HttpServletRequest

The string array provides all the information needed to generate the page. The
radio buttons are contained in a self-referring HTML form and are generated in a loop,
with the two-character abbreviation used as the VALUE attribute and the label as the
visible text. When a radio button is clicked, the form is submitted, with the value of
the button supplying the value of the which parameter. Figure 9-3 shows the initial
display, which is the request headers category. When another radio button is clicked
(for example, the ServletRequest Method button), a different table appears in the body

of the table (see Figure 9-4).

/] Show Request - Microsoft Internet Explorer o] %]

J File Edit “iew Favortee Toolz Help |

MName

@ = at Q E2| S Bh- ”
Back Farward Refresh Home Search Favarites Histary il
JAQIdresS I@ hittp: £ Au2B e Azper/Chap08/examples/request /S howRequest j:p j @GU
=

Show Request

% Headers © Parameters © ServletRequest Methods © HttpServletRequest Methods

Request Headers

Yalue

accept

application/msword, application/vnd.ms-excel, image/gif,
image/x-xbitmap, image/jpeg, image/pjpeag,
application/vnd.ms-powerpoint, application/x-comet, */*

accept-encoding gzip, deflate
accept-language en-us
connection Keep-alive

cookie

JSESSIONID=Tol011mC38537076235703503 At

host

uz25nw

user-agent

Maozilla/4.0 (compatible; MSIE 5.0; Windows NT; DigE=t)

|@ Daone

NN

’_ l_ EE: Local intranet

Figure 9-3. HTTP request headers displayed by ShowRequest.jsp

147

148

JSP: The Complete Reference

J File Edit “iew Favorites Took Help |
J@.#-@ﬁ‘@@_@‘%f »
Back Fonuard Stop Refrezh Home Search Favarites Hiztom M ail
JAgIdress I@ hitp: £ Au2BmefjzpondChap08/examples/ request /S howR equest. jzpfwhich=5R j @Go
=l
Show Request
 Headers Parameters # ServletRequest Methods © HttpServletRequest Methods
Kame value
getAuthType null
getContextPath Aspcr
getMethod GET
getPathlInfo null
getPathTranslated null
getQueryString which=5R
getRemotelser rull
getRequestURI Jsper/Chap08/examples/request/ShowRequest.jsp
getRequestedSessionld Tol011mC38E37076235703593At
getServietPath /Chapig/examples/request/ShowRequest.jsp
isRequestedSessionIdFromCookie |true
isRequestedSessionIdFromURL false
isRequestedSessionId¥yalid true
=
|@ Daone '_’_E‘E-’ Local intranet A
Figure 9-4. Serviet request methods shown in the third tab of ShowRequest.jsp

The ShowRequest.jsp determines which radio button was clicked and selects the
corresponding JSP filename from the string array. This filename is then passed in a JSP
expression to the <jsp:include> action:

<jsp:include page="<%= jspToRun %>" flush="true" />

Each of the individual table generating pages creates a list of attribute names and
values, and writes them to a java.util.Map object that is stored as a request attribute.
The table heading string is also stored as a request attribute. When the included JSP

Chapter 9: Request Dispatching

completes, the map is retrieved from the request attribute and rendered in an HTML
table. The JSP that generates the Request Headers tab is shown in the following:

$@ page import="java.util.*" %>

<
o
s

Enumeration eNames = request.getHeaderNames () ;

if (eNames.hasMoreElements()) {
String title = "Request Headers";
Map entries = new TreeMap () ;
while (eNames.hasMoreElements()) {
String name = (String) eNames.nextElement () ;

String value = request.getHeader (name) ;

entries.put (name, value);
request.setAttribute (" table title", title);
request.setAttribute (" table entries", entries);

o\°
\"

This capability to select a page to be included based on run-time information
is a useful characteristic of JSP-based Web applications because it allows complex
processing to be built on table-driven logic.

Passing Parameters to the Included JSP

Parameters can be passed to JSP pages that are invoked through <jsp:include>
actions to provide additional customization. The syntax in this case would be

<jsp:include page="pageName" flush="true">
<jsp:param name="parm1Name" value="parm1Value" />
<jsp:param name="parm2Name" value="parm2Value" />
</jsp:include>

The parameters are passed to the included JSP the same as ordinary form parameters,
and can be retrieved with request .getParameter (name) . If the parameter name is
the same as one the JSP is already using, both values are passed and can be retrieved as
an array of strings using get ParameterValues (name).

The following JSP illustrates how this technique can be used. It includes the same
page twice, using different parameters each time.

o°

<

// Diameter of the earth in kilometers

int distance = 12756;

149

150 JSP: The Complete Reference

o°
\

<H4>Diameter of the Earth in SI (Metric) Units</H4>
<jsp:include page="ShowDiameter.jsp" flush="true">
<jsp:param name="dist" value="<%= distance %>" />
<jsp:param name="units" value="SI" />
</jsp:include>

<H4>Diameter of the Earth in U.S. Customary Units</H4>
<jsp:include page="ShowDiameter.jsp" flush="true">
<jsp:param name="dist" value="<%= distance %>" />
<jsp:param name="units" value="US" />
</jsp:include>

Two parameters are passed:

B dist The distance in kilometers.
B units "SI"if metric units are desired, "US" otherwise.
The ShowDiameter. jsp page retrieves the kilometer distance, converts it to an

integer, and finds the mile equivalent. Then, based on the unit of measure code
passed in the units parameter, it displays the distance in either SI or U.S. units.

N
o°

String dist = request.getParameter ("dist");
int kilometers = Integer.parselnt (dist) ;
double miles = kilometers / 1.609344;

String units = request.getParameter ("units") ;

if (units.equals("sSI")) {

%> Diameter = <%= kilometers %> km <%
else {

%> Diameter = <%= miles %> miles <%

}

oe
\

Figure 9-5 shows the results.

Retrieving the Original URI

When a page is invoked in a <jsp:include> action, it uses the same request
object as its including page, which means request .getRequestURI () and

Chapter 9:

Request Dispatching

/] http: #u25nv/jspcr/Chap08/examples/params/Earth. .. [H[=] B3
J File Edit Miew Favorites Tools Help |

« s @2 @B & | =
Back

Fonward Stop Refresh Home

J Address I@ hittp: #u25refisper/Chap0s/ examples/parame/E arj i Go

=l
Diameter of the Earth in SI {Metric) Units
Diameter = 12756 km
Diameter of the Earth in U.8. Customary Units

Diameter = 7926.210928179432 miles

El
|@ Dane ’_ I_ E‘ﬂ Local intraret 4

Figure 9-5.

A JSP page that includes the same page twice with different parameters

request.getServletPath () return the path to the page originally handling the
request, not the current page. The equivalent values for the included page, however,
are available as attributes of the request. This is illustrated in ShowPathl. jsp:

<PRE>
In ShowPathl.jsp:

request .getRequestURI ()

<%= request.getRequestURI ()

%>
request.getServletPath ()
= <%= request.getServletPath() %>

</PRE>
<jsp:include page="ShowPath2.jsp" flush="true"/>
and the page it includes, ShowPath2. jsp:

<PRE>
In ShowPath2.jsp:

request .getRequestURI ()

151

152 JSP: The Complete Reference

= <%= request.getRequestURI() %>

request.getServletPath ()
= <%= request.getServletPath() %>

javax.servlet.include.request uri
= <%= request.getAttribute
("javax.servlet.include.request uri") %>
javax.servlet.include.servlet path
= <%= request.getAttribute

("javax.servlet.include.servlet path") %>
</PRE>

The output of the two pages is as follows:

In ShowPathl.jsp:

request .getRequestURI ()
= /jspcr/Chap09/examples/ShowPathl.jsp

request.getServletPath ()
= /Chap09/examples/ShowPathl.jsp

In ShowPath2.jsp:

request .getRequestURI ()
= /jspcr/Chap09/examples/ShowPathl.jsp

request.getServletPath ()
= /Chap09/examples/ShowPathl.jsp

javax.servlet.include.request_uri
= /jspcr/Chap09/examples/ShowPath2.jsp

javax.servlet.include.servlet path
= /Chap09/examples/ShowPath2.jsp

The set of attributes that can be retrieved in this fashion is listed in Table 9-1.

Chapter 9: Request Dispatching

Attribute Name

request uri

context path

servlet path

path _info

query string

javax.servlet.

javax.servlet.

javax.servlet.

javax.servlet.

javax.servlet.

include.

include.

include.

include.

include.

Equivalent Method

request .getRequestURI ()

request.getContextPath ()

request.getServletPath ()

request.getPathInfo ()

request.getQueryString()

Table 9-1. Request Attributes That Describe an Included JSP Page

| which Method to Use

The include directive and the <jsp:include> action perform similar functions, and
each has its advantages. The decision to use one or the other should take into account
whether the inclusion needs to be done at run time. The following table compares the

two options:

Criterion

Compilation time
Execution time

Flexibility

<%@ include %> <jsp:include>
Slower—resource must Slightly faster.

be parsed

Slightly faster Slower—resource must be

resolved each time.

Less—page name is fixed More—page can be chosen

at run time.

153

154

JSP: The Complete Reference

Forwarding Requests

To facilitate splitting a Web application into content and presentation, the JSP
environment provides the <jsp: forward> action, which allows requests to be
forwarded from one page to another, or to a servlet. The syntax is

<jsp:forward page="page" />

where page is a URI relative to the current page, or an absolute URI with respect to the
top of the servlet context. Like <jsp:includes>, the <jsp: forwards> action can use a
run-time expression for the page name. Similarly, it can pass parameters to the new JSP
using the following syntax:

<jsp:forward page="page">
<jsp:param name="name_1" value="value_1" />
<jsp:param name="name_2" value="value_2" />

<jsp:param name="name_n" value="value_n" />
</jsp:forward>

When a <jsp: forwards> action is executed, the named page is loaded and the
current page is terminated. The new page has access to the request and response
objects, and is expected to create all the output because the forwarding page cannot
write any output. The following table describes what happens when output buffering
is or is not enabled, and when the buffer has been filled or not.

Buffering Enabled Buffer Filled Action

no N/A If any output has been written, an
IllegalStateException is thrown.

yes no Bulffer is cleared before forwarding.

yes yes IllegalStateException is thrown.

The following code shows a typical use for request forwarding—to separate content
from presentation. The first JSP page is Get FoodGroups . jsp, which reads a list of
food groups from the USDA Nutrient Database:

<%@ page errorPage="/ErrorPage.jsp" %>
<%@ page import="java.io.*" %>
<%@ page import="java.sqgl.*" %>

<%@ page import="java.util.*" %>
<%@ page import="jspcr.forward.*" %>

Chapter 9: Request Dispatching 155

// Load the driver class and establish a connection

Class.forName
("sun.jdbc.odbc.JdbcOdbcDriver") ;

Connection con = DriverManager.getConnection
("jdbc:odbc:usda") ;

// Run a database query to get the list of food groups

Statement stmt = con.createStatement () ;
String sql =
" SELECT FdGp_Cd, FdGp Desc"
+ " FROM fd group"
ResultSet rs = stmt.executeQuery(sql) ;

// Store the results as a list of FoodGroup objects

List fglist = new ArrayList();
while (rs.next()) {
String code = rs.getString(l) ;
String desc = rs.getString(2) ;
FoodGroup fg = new FoodGroup (code, desc);
fglist.add(fg) ;

rs.close() ;

stmt.close () ;

con.close() ;

// Store the list as a request attribute
request.setAttribute ("jspcr. forward.FoodGroups", fglist);

// Now forward the request

$><jsp:forward page="ShowFoodGroups.jsp" />

As the food groups records are read, they are stored in a List structure. The list is
saved as an attribute in the request. When all the records have been extracted from the

156 JSP: The Complete Reference

database, the request is forwarded to ShowFoodGroups . j sp, which retrieves the list
and writes it as an HTML table:

<%@ page import="java.io.*,java.util.*,jspcr.forward.*" %>

<HTML>
<HEAD>
<TITLE>Show Food Groups</TITLE>
<STYLE>
body, td {

background-color: #FFFFFF;
font: 8pt Sans-Serif;
}

</STYLE>
</HEAD>
<BODY>
<CENTER>
<H3>Food Groups</H3>
<%-- Get the list of FoodGroup objects

that was created by database calls --%>

List fglist = (List) request.getAttribute
("jspcr.forward.FoodGroups") ;
Iterator igroups = fglist.iterator();

o°
\"

<TABLE BORDER=1 CELLPADDING=3 CELLSPACING=0>
<TR><TH>Code</TH><TH>Description</TH></TR>

<%-- Loop through the list and print each item --%>
<%
while (igroups.hasNext ()) {
FoodGroup fg = (FoodGroup) igroups.next () ;
%>
<TR>

<TD><%= fg.getCode() %></TD>
<TD><%= fg.getDescription() %></TD>
</TR>

°
<%

o°
\

Chapter 9: Request Dispatching

</CENTER>
</BODY >
</TABLE>

ShowFoodGroups . jsp has the advantage that it can be tested in isolation, without
having to be connected to a database. A stub JSP for testing purposes can be written.
As long as it populates the List attribute, ShowFoodGroups . jsp is unaware that it
is not dealing with a database. The results are shown in Figure 9-6.

/] Show Food Groups - Microsoft Internet Explorer

J File Edit “iew Favortes Tools Help |

l€«-2-Q | Q@ B-S TN

JAgdress I@ http: A Au2Bnyfspor/Chapl8/esamples forvard/GetFoodGroups.jsp j @Go
[
Food Groups
Code Description

0100 |Dairy and Egg Products
0200 |Spices and Herbs
0300 |Baby Foods

0400 |Fats and Qils

0500 |Pouttry Products

0600 |Soups, Sauces, and Gravies

0700 |Sausages and Luncheon Measts

0800 |Breakfast Cereals

0900 | Fruits and Fruit Juices
1000 |Pork Products

1100 [Yegetables and Yegetable Products
1200 |mut and Seed Procducts
1300 |Beef Products

1400 |Beverages

1300 |Finfizh and Shellfish Procducts

1600 |Legumes and Legume Products

1700 |Lamb, Yeal, and Game Products

1800 | Baked Products

1800 | Snacks and Sweets

2000 | Ceresl Grains and Pasta

2100 |Fast Foods

2200 |Meals, Entrees, and Sidedishes

|@ Dane l_ l_ E‘g Local intratet 4

Figure 9-6. A list of food groups created by a pair of JSP pages

157

158 JSP: The Complete Reference

___| The RequestDispatcher Object

The underlying mechanism for both <jsp:include> and <jsp: forwards> is the
javax.servlet.RequestDispatcher class. In the food groups example from the
previous section, the <jsp: forwards> action is translated into the following by Tomcat:

if (true) {
out.clear() ;
String Jjspx_qgfStr = "";
pageContext.forward ("ShowFoodGroups.jsp" + _Jjspx gfStr);
return;

The Tomcat implementation of pageContext, in turn, invokes a RequestDispatcher
to handle the forwarding:

public void forward(String relativeUrlPath)
throws ServletException, IOException

{

String path = getAbsolutePathRelativeToContext (relativeUrlPath) ;
context .getRequestDispatcher (path) . forward (request, response) ;

You can create a RequestDispatcher in three ways:

1. ServletContext.getRequestDispatcher(String path)
B The path must be absolute with respect to the context.

B A dispatcher for a resource in another servlet context can be
created if its context is known. The context can be obtained with
context.getContext(otherContext).

2. ServletContext.getNamedDispatcher(String name)
B The name parameter refers to a servlet alias, rather than a physical pathname.
B A servlet can get its own name with config.getServletName ().

3. ServletRequest.getRequestDispatcher(String name)

B The path can be absolute with respect to the context, or relative with
respect to the page. This is the essential difference between this method
and the first method.

Chapter 9: Request Dispatching 159

Request Dispatching vs. Redirection

Much of what is done by a request dispatcher can also be done by having a JSP or servlet
write a “Moved Temporarily” or “Moved Permanently” status code and the URL of the
next JSP or servlet written in the Location header. The difference is redirection involves a
cooperating client to work, whereas request dispatching is handled entirely on the server
side, with no client interaction.

| Model 1 vs. Model 2

These are all handy features, but they are underused if they are only used hit-or-miss
for headers and footers. They can, instead, be part of a well-coordinated architecture.
If you read JSP newsgroups, you often encounter references to the Model 1 and Model 2
architectures, two different approaches to the structure of a Web application introduced
in the original JSP 0.92 specification.

In a Model 1 application, JSP does it all:

B The user requests a JSP page.
B JSP performs calculations, database access, and so forth.
B The JSP page renders its output with HTML.

The Java code necessary to do all this work can be written directly in the form of
scriptlets, or it can be contained in JavaBeans.

A Model 2 application follows the Model-View-Controller (MVC) paradigm. MVC is an
object-oriented programming concept prominently featured in the Smalltalk language. It
describes a logical partitioning of an application into three parts:

B Model is the logical “inner” representation. It had no visible output, no outside
representation at all. For this reason, it can be run equally well in a servlet, a
standalone GUI, or a batch test program. For example, the model for a chess
game may include an array representing the board, numbers representing each
of the pieces, and some encoding of the rules.

B View is a presentation layer for a model, with little or no programming logic.
It reads from already populated structures and displays them. In our chess
example, the view would be the screen representation of the game, possibly
with alternating colors and ornately carved pieces.

B Controller provides user input and directions to a model. In the chess example,
the controller would be the keyboard.

160

JSP: The Complete Reference

In the case of a Model 2 Web application, all user requests are referred to a single
URL, a servlet sometimes called a dispatcher (the controller). This servlet looks in the
request’s path information for an indication of what it needs to do. There may be a
table of actions and names of JSP pages to handle each of them. These action handlers
constitute the model of the application. They may access a database or perform other
calculations, and then populate JavaBeans or other classes with the results. Finally,
they invoke JSP pages (the view) to present their output.

Which of these models is superior? Model 1 is easier to throw together quickly,
but it doesn’t scale. Too much is packaged together and it becomes unwieldy as the
application grows. Model 2 scales much better and also allows specialists to write
different parts of the application:

B Java programmers can write the model and controller.

B User interface specialists can write JSP pages that do nothing but display output.

___ | Summary

A number of situations exist in which splitting the processing of an HTTP request is
advantageous. JSP provides two general capabilities to support this:

B Including other resources, either with <%@ include %> or <jsp:includes.

B Forwarding a request using <jsp: forwards.

Included resources can be either static (like HTML) or dynamic (like a JSP or servlet).
The capability to forward requests provides the basis for table-driven applications.

Two general development architectures exist, commonly referred to as Model 1 and
Model 2. Model 1 uses JSP pages to accept user input, to access databases as needed,
and to format its output. Model 2 follows the MVC paradigm, allowing complex
projects to be separated as necessary between groups of people who specialize in one
layer or another.

The

Reforince
Chapter 10

The Page Directive

162

JSP: The Complete Reference

SP pages contain not only code that handles requests and generates responses,
but instructions to the JSP compiler as well. These instructions are called directives.
This chapter covers the one most commonly used—the page directive. This
directive provides a means for setting attributes that affect how the page is interpreted
and executed. The syntax is as follows:

<%@ page attribute="value" attribute="value" ... %>
where the attributes can be any of the following:

language="scripting language"
extends="className"
import="importList"
session="true | false"
buffer="none | sizekb"
autoFlush="true | false"
isThreadSafe="true | false"
info="info_text"
contentType="ctinfo"
errorPage="error_url"
isErrorPage="true | false"

The attributes can be specified in any order, and more than one page directive
can be specified in a compilation unit (the JSP page and any files it includes with
the include directive). If multiple page directives are used, however, they cannot
specify the same attribute more than once, with the exception of the import attribute.

The remainder of this chapter discusses each of these attributes in detail.

language

The JSP architecture allows room for it to be extended as a general framework for
server-side scripting. For this reason, it supports a Language attribute in the page
directive. The value specified (which is java by default) applies to all declarations,
expressions, and scriptlets in the current translation unit, including any files specified
in an include directive. All JSP 1.1-compliant containers must support the value
java for the language attribute. No other language is supported in the JSP 1.1
specification, although individual JSP engines may do so.

Although the specification allows for other languages to be used, it imposes some
restrictions. The language must support the Java Runtime Environment to the extent
that it allows access to the standard implicit object variables, to JavaBeans get and set
methods, and to public methods of Java classes.

JRun 3.0 supports both java and javascript as values for the language
attribute. When java is the language used—either explicitly or implicitly—the
scriptlets, expressions, and declarations found in the JSP page are copied to the

Chapter 10: The Page Directive 163

generated servlet as usual. When javascript is specified, there is still a generated
Java servlet, but it does not contain the javascript code. Instead, the servlet
initializes a scripting engine that reads and interprets the original JSP page. For
example, if the JSP page looks like this,

<%@ page language="java" %>

N
o

int k = 10;

o\°

>

k = <%=k

o°

>
then the generated servlet includes the statements,

out .print ("\r\n") ;

int k = 10;
out.print ("\r\nk = ");
out.print (k) ;
out .print ("\r\n\r\n") ;

which treats k as a Java variable, assigns a value to it, and prints it using the out
JspWriter variable.

By contrast, if the same JSP page uses javascript as a value of the language
attribute,

)

<%@ page language="javascript" %>
<%
var k = 10;
%>
k = <%=k %>

then the generated servlet initializes a JRun-specific scripting engine and invokes its
evaluate method, as shown in the following:

if (scriptEngine == null) {
try {
scriptEngine =
ScriptEngineFactory.getScriptEngine ("javascript") ;
scriptEngine.init (pageContext) ;
} catch (Exception e) {
throw new ServletException
("Error initializing scripting engine.", e);

164

JSP: The Complete Reference

}

if (request.getAttribute (SCRIPT KEY) != null) {
scriptEngine.init (
pageContext,
(String) request.getAttribute (SCRIPT KEY),
(String) request.getAttribute (DECLARATION_ KEY)) ;

}

scriptEngine.evaluate (pageContext) ;

Obviously, any JSP pages written in a language not explicitly required by the JSP
specification most likely won’t be portable between JSP containers of different vendors.

| extends

Ordinarily, the JSP container supplies the parent class for any servlet it generates from
a JSP page. However, the specification enables you to subclass another parent class of
your liking by specifying its fully qualified name in the extends attribute of the page
directive. Doing so would let you provide additional behavior to a family of JSP pages
without explicitly coding the behavior in the page.

The JSP specification urges caution when using this capability because it may
prevent the JSP container from providing vendor-specific performance and reliability
enhancements. For example, the standard JSP parent class used by JRun provides
methods for determining dependencies and their last modification times. Similarly,
Tomcat implements a parent class that stores a reference to a specialized class loader.
If you use a different parent class, it ought to provide important functionality that
outweighs these features.

Required Interfaces for a JSP Superclass

For a class to be used as the superclass for JSP pages, it must implement one of the
following interfaces:

B javax.servlet.jsp.JspPage A generic interface, not necessarily for use
with HTTP. Few servlets implement this interface directly.

B javax.servlet.jsp.HttpJspPage Intended for JSP pages that operate
under the HTTP protocol, this interface is an extension of JspPage.

These interfaces define three methods you must implement, which are described
in Table 10-1.

Chapter 10: The Page Directive

Method Description

public void jspInit () Method called automatically from
the servlet init () method when
the JSP page is loaded. Although
you must implement this method,
your implementation needn’t do
anything. The method is designed
as a placeholder to be overridden
by JSP page subclasses for any
initialization work they need to do.

public void jspDestroy () The counterpart of jspInit (), this
method is automatically called from
the servlet’s destroy () method
when a JSP page class is unloaded.

publicvoid jspService This method is the heart of the J[SP
request, response) throws request processing logic. It must
ServletException, IOException not be explicitly defined in the JSP

page because it is the work of the
JSP container to generate the
method from the JSP’s scriptlets,
expressions, and directives. This
method is typically declared to be
abstract in the JSP parent class.

Table 10-1. Methods Required to Be Declared in JSP Superclasses

The exact types of the request and response parameters in the jspService
method are dictated by the protocol they support. For the HTTP environment,
these types are javax.servlet.http.HttpServletRequest and
javax.servlet.http.HttpServletResponse. If you are implementing
a different protocol, you need to define request and response classes to be used
in the method signature.

HttpJdspPage extends JspPage to provide HTTP-specific behavior. JspPage,
in turn, extends javax.servlet.Servlet, which defines the methods listed in
Table 10-2.

165

166 JSP: The Complete Reference

Method Description

public void init (A method invoked by the
ServletConfig config) throws servlet container when a servlet
ServletException is first loaded.

public ServletConfig Returns the servlet’s configuration
getServletConfig() object, which manages the servlet’s

initialization parameters and
servlet context.

public void service (Called by the servlet engine to
ServletRequest request, service a request.
ServletResponse response) throws

ServletException, IOException

public String getServletInfol() Returns a description of the servlet.
By default, returns an empty string.

public void destroy () Called by the servlet engine when
a servlet is being unloaded.

Table 10-2. Methods in the javax.serviet.Servlet Interface

The JSP superclass must adhere to and implement the JSP protocol. This
requires that:

B The init () method must call jspInit ().
B The destroy () method must call jspDestroy ().

B The service () method must cast its request and response parameters into
their protocol-specific classes and invoke _jspService ().

This implementation can be direct or the superclass can itself extends a class that
provides the implementation, such as javax.servlet . http.HttpServlet.

A JSP Superclass Example

Suitably warned and cautious, if you still want to proceed, this section provides a
complete example. Suppose you have a family of JSP pages that all access a common
database. If the JSP pages did not have to bother with loading the JDBC driver and
establishing a database connection, this might simplify matters. The following servlet can
both perform those functions and be used as the parent class of the family of JSP pages.

Chapter 10: The Page Directive

package jspcr.page;

import java.io.*;

import java.sqgl.*;

import javax.servlet.*;
import javax.servlet.http.*;

import javax.servlet.jsp.*;

/**

*

*

*

*/

An example of a JSP superclass that can

be selected with the <CODEsextends</CODE>
attribute of the page directive. This servlet
automatically loads the JDBC-ODBC driver class
when initialized and establishes a connection
to the USDA nutrient database.

public abstract class NutrientDatabaseServlet

extends HttpServlet
implements HttpJspPage

protected Connection con;

/**

* Tnitialize a servlet with the driver

* class already loaded and the database

* connection established.

*/

public void init (ServletConfig config)
throws ServletException

super.init (config) ;
try {

Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver") ;
con = DriverManager.getConnection ("jdbc:odbc:usda") ;

}

catch (Exception e) {

throw new UnavailableException (e.getMessage()) ;

jspInit () ;

/**

167

168 JSP: The Complete Reference

* Closes the database connection when
* the servlet is unloaded.
*/
public void destroy ()
{
try {
if (con != null) {
con.close() ;
con = null;

}

catch (Exception ignore) {}

jspDestroy () ;
super.destroy () ;

/**

* Called when the JSP is loaded.
* By default does nothing.

*/

public void jspInit ()

{

}

/**

* Called when the JSP is unloaded.
* By default does nothing.

*/

public void jspDestroy ()

{

}

/**
* Invokes the JSP's _jspService method.
*/
public final void service(
HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException

_JjspService (request, response);

Chapter 10: The Page Directive 169

/**
* Handles a service request
*/
public abstract void _jspService(
HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException;

In the example, the driver name and database URL are hard-coded. In a production
environment, these values should be configurable parameters.

To use NutrientDatabaseServlet as a JSP superclass, all that is required is
to have the class in the JSP container’s classpath and to have the JSP specify its fully
qualified name in the extends attribute of the page directive, as the following shows:

<%@ page extends="jspcr.page.NutrientDatabaseServlet" %>

<%--
This JSP page subclasses the NutrientDatabaseServlet
parent class, which automatically loads the
database driver and establishes the connection.

o
--%>

<%@ page import="java.io.*,java.sqgl.*" %>
<HTML>

<BODY>

<H3>Food Groups</H3>

<TABLE BORDER=1 CELLPADDING=3 CELLSPACING=0>
<TR><TH>Code</TH><TH>Description</TH></TR>
<%

// Execute a query

Statement stmt = con.createStatement () ;

String sgl = "SELECT * FROM FD GROUP ORDER BY FDGP_DESC";
ResultSet rs = stmt.executeQuery(sql) ;
while (rs.next()) {

String code = rs.getString(l) ;
String desc = rs.getString(2);

o\°
\

170 JSP: The Complete Reference

<TR>
<TD><%= code %></TD>
<TD><%= desc %></TD>
</TR>
<%

}

// Close the database objects

rs.close() ;
stmt.close () ;
%>
</TABLE>
</BODY>
</HTML>

Notice the JSP does not need to define the Connection object. The JSP is a
protected variable of the superclass and, therefore, accessible to its subclasses.

_ | import

The import attribute is used to describe the fully qualified names of classes used
in the JSP page. This makes it possible for the classes to be referred to by their classes
names without the package prefix. This is an optional attribute.

The value of an import attribute is a comma-separated list of package names
(each terminated with the wildcard string ".*") and/or fully qualified class names.
These names are converted directly to import statements in the generated Java servlet.
The syntax is fairly flexible. To import all classes in the java. io, java.sql, and
java.util packages, for example, you can use any of the following,

<%@ page import="java.io.*,java.sqgl.*,java.util.*" %>
or on individual lines (because newlines count as whitespace inside the string),

<%@ page import="
java.io.*,
java.sqgl.¥*,
java.util.=*

o
">

Chapter 10: The Page Directive 171

or using separate page directives:

)

<%@ page import="java.io.*" %>

[

<%@ page import="java.sgl.*" %>

)

<%@ page import="java.util.*" %>
All these generate the same Java code, apart from differences in whitespace:

import java.io.*;
import java.sqgl.*;
import java.util.*;

Note, importing classes does not involve loading anything; it is simply a shorthand
way of letting you use class names inside your Java methods without having to specify
the package to which they belong. If you import java.util. *, you can write

Vector names = new Vector() ;
instead of
java.util.Vector names = new java.util.Vector();

which affects only the Java compiler, not the run-time class image. You can import
thousands of classes, but only those you actually refer to will be required at run time.
The default import list consists of four packages:
B java.lang
B javax.servlet
B javax.servlet.http
B javax.servlet.jsp

You do not need to supply an import statement for classes in these packages; you also
do not need to qualify them with their package names.

Note | Remember, import is the only attribute of the page directive that can be specified more
than once.

172 JSP: The Complete Reference

| session

The session attribute of the page directive indicates whether the page requires an
HTTP session. Two values are possible:

B session="true" if the page needs an HTTP session. This is the default value.

B session="false" if no HTTP session is required. If this is specified, the
session implicit variable is undefined and will cause a translation error
if used.

If your JSP page does not required a session, it is valuable from a performance
standpoint to specify session="false", so unnecessary sessions will not be created,
using up memory and CPU cycles.

Chapter 14 describes HTTP sessions and session management in detail.

| buffer and autoFlush

The buf fer and autoFlush attributes are used to describe the output buffering
model the JSP will employ. The buf fer attribute can have the value "none", indicating
all output will be written directly to the servlet response object’s output stream, or it
can have a integer value with a “kb” suffix. In the latter case, output is stored in memory
in a buffer of the specified size. Depending on whether autoFlush is “true” or “false”,
when the buffer is full, either the output will be flushed or a buffer overflow exception
will be thrown. The default buffer size is 8kb. Table 10-3 summarizes the results of each
combination of values for the two attributes:

Buffer AutoFlush Effect

none true Characters are written to the
servlet response output stream
as soon as they are generated.

none false An illegal combination.
autoFlush="false" is
meaningless if buffering
is not in effect.

Table 10-3. Effects of Each Combination of Buffer and AutoFlush

Chapter 10: The Page Directive

Buffer AutoFlush Effect

8kb true An 8,192-byte buffer is used. When
this buffer is filled, it is automatically
flushed. This is the default value.

8kb false An 8,192-byte buffer is used. When this
buffer is filled, an exception is thrown.

sizekb true A size times 1,024-byte buffer is
used. When this buffer is filled,
it is automatically flushed.

sizekb false A size times 1,024-byte buffer is used.
When this buffer is filled, an exception
is thrown.

Table 10-3. Effects of Each Combination of Buffer and AutoFlush (continued)

| isThreadSafe

By default, servlet engines load a single instance of a servlet and use a pool of threads
to service individual requests. This means two or more threads can be executing the
same servlet methods simultaneously. If the servlet has instance variables, and if no
provision is made to synchronize access, the threads can collide and interfere with each
others’ access to the variables.

The servlet API provides a way around this—the SingleThreadModel interface.
This interface has no methods; it simply marks a servlet as requiring a dedicated thread
for each instance of the servlet'. The isThreadSafe attribute of the page directive
provides a means for causing SingleThreadModel to be associated with a JSP page.

If you specify isThreadSafe="true", you are asserting that you take care of any
possible thread conflicts, so the JSP contain can safely dispatch multiple requests to the
servlet simultaneously,

<%@ page isThreadSafe="true" %>

1 Chapter 14 discusses threading issues in more detail.

173

174 JSP: The Complete Reference

which generates the following class signature:

public class jrun__ ChaplO_examples isThreadSafe exl2ejsp25
extends allaire.jrun.jsp.HttpdSPServlet
implements allaire.jrun.jsp.JRundspPage

If the value is "false", then the JSP container generates a servlet that implements
SingleThreadModel,

<%@ page isThreadSafe="false" %>
which generates

public class jrun ChaplO_ examples isThreadSafe ex22ejsp25
extends allaire.jrun.jsp.HttpdSPServlet
implements allaire.jrun.jsp.JRundspPage, SingleThreadModel

If not specified, the value of isThreadSafeis "true".

Note | SingleThreadModel is of limited value because it only prevents thread conflicts within
an instance of a servlet. Nothing can prevent the [SP container from loading multiple
instances of a servlet, each with a dedicated thread. In this case, competition for external

resources like databases and file locks is obviously still unregulated. Careful planning
is the only sure design guideline.

___linfo

The info attribute of the page directive lets you specify descriptive information about
the JSP page, for example:

<%@ page info="Shopping Cart Checkout Page" %>

The value of this attribute is compiled into the class and is available by means of
the servlet's get ServletInfo () method. This allows servlet engines to provide a
useful description for their servlets in an administrative interface.

___ | contentType

A JSP page ordinarily generates HTML output, but other content types can also be
produced. By specifying the content Type="value" attribute in the page directive,

Chapter 10: The Page Directive 175

you can cause an HTTP Content - Type header to be returned to the requesting
application. Consider the simple JSP page shown in the following:

<%@ page contentType="text/plain" %>
Hello, world!

Under JRun, the HTTP request and response may look like this:

GET /jspcr/Chapl0/examples/contentType/exl.jsp HTTP/1.0

HTTP/1.1 200 OK

Date: Wed, 28 Jun 2000 05:36:33 GMT

Server: Apache/1.3.12 (Win32)

Set-Cookie: jsessionid=7179962170594302;path=/
Expires: Thu, 01 Dec 1994 16:00:00 GMT
Connection: Keep-alive, close

Cache-Control: no-cache="set-cookie, set-cookie2"
Content-Length: 17

Content-Type: text/plain

Hello, world!

If the contentType attribute is not specified, the request and response will look
something like this:

GET /jspcr/Chapl0/examples/contentType/ex2.jsp HTTP/1.0

HTTP/1.1 200 OK

Date: Wed, 28 Jun 2000 05:40:15 GMT

Server: Apache/1.3.12 (Win32)

Set-Cookie: jsessionid=210659962170816161;path=/
Expires: Thu, 01 Dec 1994 16:00:00 GMT
Connection: Keep-alive, close

Cache-Control: no-cache="set-cookie, set-cookie2"
Content-Length: 15

Content-Type: text/html; charset=IS0-8859-1

Hello, world!

In addition to the content type, the character set can be specified, using the syntax:

<%@ page contentType="type/subtype; charset=charset" %>

176

JSP: The Complete Reference

errorPage and isErrorPage

If an exception occurs while a JSP page is being evaluated, the servlet engine typically
dumps a stack trace to the browser. This may be helpful to the programmer during
development, but it is undesirable in a commercial Web application. JSP offers a simple
and convenient solution that requires the coordinated use of two attributes:
errorPage and isErrorPage.

A JSP page can indicate that a specific error page should be displayed when it
throws an uncaught exception,

<%@ page errorPage="error_ur " %

where error_url is the URL of another JSP page in the same servlet context. That JSP
page must use the following attribute in its page directive:

<%@ page isErrorPage="true" %>

An error page has access to the exception through the exception implicit
variable®. It can extract the error message text with exception.getMessage (),
displaying or logging it as necessary. It can also generate a stack trace with
exception.printStackTrace ().

The page need not be elaborate. It may simply report the exception:

<%@ page isErrorPage="true" session="false"%>
<H3>Application Error</H3>
The error message 1is:

<%= exception.getMessage () %>

This might be appropriate as a placeholder to be fleshed out later in the
development process, adding a corporate logo, for example, as well as instructions
for how to proceed.

Because an error page is itself a JSP page, it has access to the servlet context, session
(if any), request, and other servlet objects. This makes it possible for the page to capture

2 This is the only circumstance in which a JSP page has access to this variable.

Chapter 10: The Page Directive 177

diagnostic information, possibly forwarding it to technical support personnel. Here is
an example of such an error page:

<%@ page isErrorPage="true" session="false"%>

<HTML>

<HEAD><TITLE>Tracking Error Page</TITLE></HEAD>
<BODY>

<CENTER>

<I><UsMonolithic
Technologies Corporation</Us</I>

<P>

You found a bug we didn't know about:

<%= exception.getMessage() %$>

<P>

)

<%-- Create a form to submit to Tech Support --%>

<FORM ACTION="/send diags.jsp">

<INPUT TYPE="submit" VALUE="Please click here">
<P>

to send this information

to our Technical Support department:

<P>

)

<%-- Supply date, time, and servlet name --%>

N
o

String dateTime new java.util.Date () .toString() ;
String remoteAddr request .getRemoteAddr () ;
String servletContext = request.getContextPath() ;

%>
<TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0">
<TR>
<TD>Date and Time:</TD>
<TD><%= dateTime %>
<INPUT TYPE="hidden"
NAME="bug.dateTime"
VALUE="<%= dateTime %>">

178 JSP: The Complete Reference

</TD>
</TR>

<TR>
<TD>Web Client:</TD>
<TD><%= remoteAddr %>
<INPUT TYPE="hidden"
NAME="bug.remoteAddr"
VALUE="<%= remoteAddr %>">
</TD>
</TR>
<TR>
<TD>Application:</TD>
<TD><%= servletContext %>
<INPUT TYPE="hidden"
NAME="bug.servletContext"
VALUE="<%= servletContext %>">
</TD>
</TR>
</TABLE>

°

<%-- Include the stack trace as a hidden field --%>

<INPUT TYPE="hidden" NAME="bug.stackTrace"

VALUE="<%
java.io.PrintWriter pw = new java.io.PrintWriter (out) ;
exception.printStackTrace (pw) ;

o
F>"

</FORM>
</CENTER>
</BODY>
</HTML>

This page, named TrackingErrorPage. jsp, displays the error message
associated with the exception, as well as the date, time, IP address of the client, and
the Web application name. A button is provided that enables the user to forward this
information together with a stack trace to the technical support department (using
some other JSP page, not shown here). JSP pages in this application should then
include a reference to the error page in its page directive:

Chapter 10: The Page Directive 179

<%@ page errorPage="TrackingErrorPage.jsp" %>

Figure 10-1 illustrates the results of an exception thrown by an application JSP page
that uses this error page.

It is less well known that ordinary servlets can also use this capability. All a servlet
needs to do is to emulate what a JSP-generated servlet does

1. Enclose the body of its doGet () or doPost () methodina try ..

. catch
block that catches all exceptions.

2. In the catch block, store the exception as an attribute in the request named
javax.servlet.jsp.jspException.

3. Forward the request to the error page URL using a RequestDispatcher.

; Tracking Emror Page - Microsoft Internet Explorer
J Fil= Edit “iew Favortes Toolz Help |
J¢-2 -9 dQEd D SEw
J Address IE http:/fuzBnyjspor/Chap03/examples/enorPage/ShowHeaders jsp j @Eo
|
Monolithic
Technologies Corporation
¥ou found a bug we didn't know about: unknown protocol: http2
Flease click here |
to send this information to our Technical Support department:
Date and Time: |\Wed Aug 02 22:33:47 EDT 2000
Web Client: 209,170.132.77
Application: Jispor
=
|@ Daone I_I_E‘:_! Local intranet -
Figure 10-1. A diagnostic error page

180 JSP: The Complete Reference

This example shows how this is done:

package jspcr.page;

import java.io.*;
import java.net.*;
import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;

public class BuggyServlet extends HttpServlet
public void doGet (
HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException

try {
// ... body of servlet here
1

catch (Exception e) {

// A servlet can use the JSP error page
// mechanism by storing the exception

// as a request attribute and forwarding
// the request to the error page.

request.setAttribute
("javax.servlet.jsp.jspException", e);

getServletContext () .getRequestDispatcher
("/Chapl0/examples/errorPage/TrackingErrorPage.jsp")
.forward (request, response) ;

Chapter 10: The Page Directive

___ | Summary

The page directive enables a page author to supply instructions to the JSP container.
This chapter describes the operation of each attribute that can be specified:

language The scripting language (java, by default)

extends A specialized superclass for the page

import The packages and classes that should be visible to the generated servlet
session Whether to create an HTTP session object

buffer The outputbuffering model

autoFlush Whether to flush the buffer when full or throw an exception
isThreadsafe Whether toimplement SingleThreadModel

info A description of the page to be displayed in a development tool
contentType The character encoding used by the JSP response
isErrorPage Whether to supply access to the implicit exception variable

errorPage The URL of a page that handles uncaught exceptions

181

This page intentionally left blank.

The

Reforince
Chapter 11

JSP Tag Extensions

184 JSP: The Complete Reference

by making it possible to extend the page authoring environment with custom

tags. Custom tags are XML-like extensions to the syntax and semantics of a JSP
page that are backed by user-written tag handlers. Collections of tags are organized
into tag libraries that can be packaged as JAR files, enabling their functionality to be
easily distributed and installed over any JSP 1.1-compliant servlet engine.

This chapter introduces custom tags, giving an overview of their role and advantages.

It gives an extended, step-by-step example of how to write and deploy a custom tag,
and then proceeds to the details of tag libraries, the tag library descriptor, the tag
extension API, and tag handlers. Several examples of tag environments are explored.
The chapter concludes with the implementation of the database query tag given in the
tirst example.

The JavaServer Pages 1.1 specification significantly enhanced the JSP architecture

___| Why Custom Tags?

Most programmers can write ordinary HTML, and most Web designers can learn to
write simple JSP pages. But really good HTML with navigation, browser detection,
image handling, and forms interaction requires a knowledgeable author—a specialist."
Likewise, Java programming that accesses databases, handles transactions, and
communicates with sockets is beyond what could be expected from an HTML author.

Custom tags provide a means for bridging the gap between the two specialties. Java
programmers can provide application functionality in convenient packages that Web
designers can use as building blocks. While JavaBeans can also encapsulate code, they
are most useful as repositories for attributes. Notions of iteration, nesting, or cooperative
actions are difficult to express with beans. Custom tags enable a higher-level application-
specific approach to JSP development.

For example, a database query written with custom tags might look like the following,

<db:connect url="mydatabase">

<db:runQuerys>

SELECT *
FROM FD_GROUP
WHERE FdGp_Desc LIKE 'S%F%'

ORDER BY Fde_Cd
</db:runQuery>

<table border="1" cellpadding="3" cellspacing="0">

1 Bring up http://www.cnn.com or http://www.msnbc.com and view the HTML source. How much
of it do you think you could write?

Chapter 11: JSP Tag Extensions

<tr><th>Food Group Code</ths<thsDescription</th></tr>
<db: forEachRow>
<tr>
<td><db:getField name="FdGp Cd"/></td>
<td><db:getField name="FdGp Desc"/></td>
</tr>
</db:forEachRow>
</table>

</db:connect>

where connect, runQuery, forEachRow, and getField are application-oriented
custom tags.

All the logic in the previous example could have been written with scriptlets embedded
in the JSP page. For example, the equivalent code for the <db: connect > tag might
include loading the driver class, opening a connection to the database (possibly getting
an existing connection from a pool), setting up Statement and ResultSet objects,
and handling any of several exceptions that might be thrown. Also possible would be
to incorporate most of the logic in a JavaBean, although scriptlet code would still be
required for looping over the result set. Neither alternative is as convenient as packaging
the logic into a set of HTML-like tags whose function is readily apparent to both Web
designers and servlet developers.

Besides the separation of content and presentation, other benefits of custom
tags include:

B Simplicity It’s significantly easier to express a complex task as a cooperating
set of subtasks with their own attributes and control flow than it is to write it as
a monolithic block of code. Not only is this easier to code, it’s easier to understand.
In the previous database query, for example, it’s easy to guess correctly what
the scope of the database connection is, that an implied result set is created by
the <db: runQuery> block, and that <db: forEachRow> iterates over this
result set.

B Opportunity for code reuse There may be hundreds of database queries
in a Web application. Sharing scriptlet code is difficult without resorting to <%@
include %> directives that obscure the logic and may have undesirable side
effects. Tag libraries make it easier to package standard code and share it
throughout an application.

B Suitability for authoring tools Integrated development environments (IDEs)
can only see scriptlet blocks as blocks of ASCII text. Custom tags, however, by
virtue of having a Tag Library Descriptor, lend themselves to being managed
by a development tool that can display their descriptions, validate their
attributes, and so on.

185

186 JSP: The Complete Reference

To get a better idea of how to develop custom tags, let’s take a simple example and
walk through its development step by step.

___| Developing Your First Custom Tag

Resisting the temptation to write a “Hello, World!” tag, we will develop an example
of a marginally useful component—a custom tag that retrieves the name and version
of the Web server. The implementation of this tag, as well as all the other tags we
develop, will follow the same four basic steps:

1. Define the tag.

2. Write the entry in the Tag Library Descriptor.
3. Write the tag handler.

4. Use the tag in a JSP page.

Step 1—Define the Tag

To start, we need to define the syntax of the tag clearly. This involves answering such
questions as:

B What is the name of the tag? As we will see later on, custom tags are always
used with a namespace qualifier, so it isn’t necessary to make tag name globally
unique.

B What attributes does it have? For example, the HTML <TABLE> tag has the
optional attributes BORDER, CELLPADDING, CELLSPACING, and WIDTH (among
others). Custom tags can define any numer of required or optional attributes,
which are passed to the tag handler when the tag is evaluated.

B Will the tag define scripting variables? The standard action
<jsp:useBean id="xyz" class="jspcr.beans.XYZBean">,
for example, causes a variable named xyz of type jspcr.beans.XYZBean
to be defined. This variable is then available to the <jsp:getProperty>
and <jsp:setProperty> actions, as well as to Java code in any scriptlets
or expressions that follow. Custom tags can create scripting variables in
the same manner.

B Does the tag do anything special with the body contained between its start and
end tags? The HTML <TABLE> tag expects table rows and table cells before its
terminating </TABLE> end tag. Each of these elements rely on information
provided by related elements above them in the evaluation stack. Custom tag
applications can likewise feature nested tags that cooperatively perform some
function. The tag body can also contain non-JSP data (such as SQL statements)
that are evaluated by the tag.

Chapter 11: JSP Tag Extensions

In the case of the first example tag, there isn’t much to do. We’ll call the tag
getWebServer. It has no attributes because it doesn’t need to be configured
differently in different JSP pages. The tag defines no scripting variables, simply
returning the string containing the Web server name in place of the getWebServer
tag. Finally, the tag has no body to be considered because its entire function is
contained in its start tag.

Step 2—Create the TLD Entry

A Tab Library Descriptor (TLD) is an XML document that defines the names and
attributes of a collection of related tags. Here is the TLD we will use with the
getWebServer example tag:

<?xml version="1.0" ?>
<taglib>
<tlibversion>1.0</tlibversion>
<jspversion>1.1l</jspversion>
<shortname>diag</shortname>
<tag>
<name>getWebServer</name>
<tagclass>jspcr.taglib.diag.GetWebServerTag</tagclass>
<bodycontent>empty</bodycontent >
</tag>
</taglib>

Later on in this chapter, we will look at TLDs in detail, but the key thing to focus
on here is that a TLD maps a tag name

<name>getWebServer</name>
to a fully qualified class name:
<tagclass>jspcr.taglib.diag.GetWebServerTag</tagclasss>

The JSP container uses this mapping to create the appropriate servlet code when it
evaluates the custom tag at compile time.

We will give this file the name diagnostics.t1d. For the purposes of this
example, the only thing we need to worry about is copying the file to the right place.
A TLD can be placed anywhere in the Web application directory system, but putting
it under the WEB- INF directory makes sense because it won’t be made available for
direct public access. By convention, TLDs are usually installed in a directory named
/WEB-INF/tlds. If there is a Web application named test, for example, then

188 JSP: The Complete Reference

diagnostics.tld would be found in /test /WEB-INF/t1ds/. Written as a URI
relative to the servlet context, this would be /WEB-INF/t1ds/diagnostics.tld.

Step 3—Write the Tag Handler

A tag’s action is implemented in a Java class known as a tag handler. Instances of tag
handlers are created and maintained by the JSP container, and predefined methods in
these classes are called directly from a JSP page’s generated servlet.

In the sample tag, we need to get the name of the Web server (for example, Apache,
Microsoft IIS, Netscape Enterprise, and so forth). The servlet API doesn’t provide an
obvious way to get this information. The request object tells a lot about the Web client
and the servlet context knows about the servlet engine, but neither of these objects
appears to know what software product happens to be listening on port 80. However,
this information is provided by the Web server itself when it sends the HTTP response
back to the Web client. The approach we’ll take is to make a dummy HTTP request
ourselves within the tag handler, and then extract the server information from the HTTP
headers that are returned.

Here is the complete source code for the tag handler:

package jspcr.taglib.diag;

import javax.servlet.http.*;
import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;
import java.io.*;

import java.net.*;

/**

* Handler for the "getWebServer" tag

*/

public class GetWebServerTag extends TagSupport

{

public int doStartTag() throws JspException

{

try {
// Get the request object from the page context

HttpServletRequest request =
(HttpServletRequest) pageContext.getRequest () ;

// Request information from web server

URL url = new URL("http",

Chapter 11: JSP Tag Extensions

request .getServerName (),

request .getServerPort (),

VAR
URLConnection con = url.openConnection/() ;
((HttpURLConnection) con) .setRequestMethod ("OPTIONS") ;
String webserver = con.getHeaderField("server");

// Write it to the output stream

JspWriter out = pageContext.getOut () ;
out .print (webserver) ;

catch (IOException e) {
throw new JspException (e.getMessage()) ;

}

return SKIP BODY;

Let’s look at the source code in detail to see what we expect it to do.
package jspcr.taglib.diag;

The first line identifies the package name. It isn’t strictly necessary to place the code
in a package, but it helps to organized related classes and makes for more meaningful
Javadoc documentation. Besides, some JSP engines don’t correctly generate import
statements for custom tags, so classes without a package name can cause compilation
errors in the generated servlet.

import javax.servlet.http.*;
import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;
import java.io.*;

import java.net.*;

Simple tag handlers usually need to import only the javax.servlet.jsp and
javax.servlet.jsp.tagext packages, as well as the java.io.IOException class.
In this case, we need the Ht tpServletRequest class from javax.servlet.http,
as well as several classes from java.net.

public class GetWebServerTag extends TagSupport

190

JSP: The Complete Reference

A tag handler needs to implement either the Tag interface or the BodyTag interface,
both of which are in the javax.servlet.jsp.tagext package. BodyTag is a
subinterface of Tag. While the tag author is free to implement these interfaces directly,
it usually is more convenient to extend one of the default implementation classes
TagSupport or BodyTagSupport, overriding only those methods we need for the
task at hand. The example tag doesn’t support a tag body, so we simply extend the
TagSupport class.

public int doStartTag() throws JspException

This method is called when the start tag is encountered, after any attributes it
specifies have been set in the tag handler, but before the body of the tag is processed.
In this case, no body and no attributes exist, so all the code will be contained in the
doStartTag () method. Note, the method lets you throw a JspException if the
code runs into trouble. Because we will be accessing network classes that can throw
java.io.IOException, we enclose the entire method ina try ... catch block
that converts this to a JspException for handling by the JSP container. Note, likewise,
the method returns an integer return code (more about this shortly).

HttpServletRequest request =
(HttpServletRequest) pageContext.getRequest () ;

To send an HTTP request to the Web server, we need to know the host name and
port number of the request we received. This information can be found in the request
object, which can be obtained from the pageContext object. The observant reader will
notice that pageContext is nowhere defined in this class. The reason for this is it’s
defined as a protected field in the TagSupport superclass, which makes it accessible
to subclasses like ours. This variable is set just before doStartTag () is called when
the TagSupport . setPageContext () method is called?.

URL url = new URL("http",
request .getServerName (),
request .getServerPort (),
OF
URLConnection con = url.openConnection() ;
((HttpURLConnection) con) .setRequestMethod ("OPTIONS") ;
String webserver = con.getHeaderField("server");

2 Reading the source code for TagSupport and BodyTagSupport is helpful. These are fairly small
classes, and it’s instructive to see where the page context and body content variables come from, and
how findAncestorWithClass works. The source is usually available from the same place the
servlet.jar classes are obtained.

Chapter 11: JSP Tag Extensions

We use the 4-argument constructor of java.net . URL that takes a protocol name,
server name, port number, and path, and, from this, we get a URLConnect ion object.
Because we don’t actually care about the contents of any particular file, we specify the
OPTIONS method rather than GET or POST. We could also use HEAD, which is essentially
the same as GET, but returns only headers. Occasionally, however, Web servers report
that HEAD is not a supported method. OPTIONS should work for any HTTP/1 . 1-compliant
Web server (after all, its purpose is to return a list of request methods the Web server
does support). Invoking the connection object’s getHeaderField () method causes
the request to be sent and the appropriate HTTP header in the response to be read.

JspWriter out = pageContext.getOut () ;
out .print (webserver) ;

After capturing the desired information in the webserver variable, we can simply
write it to the current servlet output stream, which we can obtain from the page context.
The effect is that the get Server tag used in the JSP Page is replaced by the server
information obtained from the HTTP request.

return SKIP BODY;

Finally, we exit from the method returning the integer constant SKIP_BODY, which
is defined in the Tag interface. Because we have defined this tag to have no body, there’s
no need to evaluate it, and the JSP page will throw a run-time exception if any other
return code is specified.

Compiling the Sample Code

This completes the tag handler. The source code file must be named
GetWebServerTag.java, and its compiled class must have the fully qualified
name jspcr.taglib.diag.GetWebServerTag. An easy way to ensure

this is to create the appropriate set of directories under the Web application’s
/WEB-INF/classes directory,

/WEB-INF/classes/jspcr/taglib/diag

and place the . java source file in the diag directory. The program can be compiled
from the /WEB- INF/classes directory with the command

javac jspcr/taglib/diag/GetWebServerTag.java

with appropriate provision being made for having the servlet.jar file somewhere
in the classpath. This should put a GetWebServerTag.class file in the same
directory as GetWebServerTag. java. If this isn’t the case, make sure the package
statement has been entered correctly.

191

192 JSP: The Complete Reference

Step 4—Incorporate the Tag into a JSP Page

At this point, the tag is ready to be used. The following JSP page (ShowServer. jsp)
demonstrates how this is done:

<%@ taglib prefix="diag" uri="/WEB-INF/tlds/diagnostics.tld" %>
<HTML>

<HEAD>
<TITLE>Basic Example of a Custom Tag</TITLE>
</HEAD>

<BODY>
<H3>Basic Example of a Custom Tag</H3>
The web server is <diag:getWebServer/>
</BODY>

</HTML>

The taglib Directive

The first line contains the taglib directive:
<%@ taglib prefix="diag" uri="/WEB-INF/tlds/diagnostics.tld" %>

This directive must appear in the JSP page before any of the custom tags it refers to
are used. The top of the page is a good place.

How to Use the Tag in the JSP Page
The rest of the Web page is traditional HTML, with the exception of the line on which
the custom tag is specified:

The Web server is <diag:getWebServer/>

When ShowServer. jsp is first invoked, the JSP container uses information from
the taglib directive to locate the tag library descriptor and to identify where its tags
are used on this page. When the generated servlet receives a request, it produces the
following HTML,

<HTML>

<HEAD>

Chapter 11: JSP Tag Extensions 193

<TITLE>Basic Example of a Custom Tag</TITLE>
</HEAD>

<BODY>
<H3>Basic Example of a Custom Tag</H3>

The web server is Apache/1.3.12 (Win32)
</BODY>

</HTML>

depending, of course, on the actual Web server involved. The results are shown in
Figure 11-1.
Worth noting is custom tags used in JSP pages must conform to strict XML rules:

1. All tags must be completed, either by a matching end tag,

<diag:name>

</diag:name>

3 Baszic Example of a Custom Tag - Microsoft Internet Explorer

J File Edit “iew Fawortez Tools Help |

l¢-2-0R0d AaEI DS

JﬁQdTESS I@ hittp://u29ny AsperdChapl 1/zample/ShowS erver. jsp j @ Go

Basic Example of a Custom Tag

The web server is apache/1.3.12 (Win32)

S

|@ Done l_ I_ E‘!_l Local intranet

Figure 11-1. Output of a JSP using the custom tag to identify the Web server
software

194 JSP: The Complete Reference

2. or by the shortcut form, if there’s no body:

<diag:name/>.

3. All attributes must be quoted, even numeric ones:

<diag:for id="I" start="1" end="10">

</diag:for>

4. Nested tags cannot overlap; this

<diag:A>
<diag:B>
</diag:A>
</diag:B>

is illegal.

5. Case is significant in tag and attribute names.

___ | How Tag Handlers Work

A tag handler is a Java class that performs the action of a custom tag by implementing
a set of predefined methods that a JSP container calls. In this section, we will learn
about the structure of a tag handler, the interfaces it implements, its lifecycle, and
how it works with attributes and scripting variables. Wealso look at cooperating

and nested tags, and show how they can interact. To start, however, let’s review

how the JSP container translates and invokes a JSP page.

What the JSP Container Does

Recall that a JSP page exists in three forms:

The . jsp file The original source file the page author writes, which may
include HTML, scriptlets, expressions, declarations, action tags, and directives.

The .java file Java source code for a servlet that’s equivalent to the . jsp
file. This servlet is generated by the JSP container.

The .class file The compiled form of the generated Java servlet.

When a JSP page is requested by an HTTP client, the JSP container checks the
modification dates of the . jsp and . java files. If the . java file doesn’t exist or if
it’s older than the . jsp file (as it would be if the JSP page had been modified), the JSP
container re-creates the Java servlet and compiles it. During this step, the following
transformations take place:

The <%@page %>, <%¥@ include %>, and <%@ taglib %> directives supply
translation-time information to the JSP container.

Chapter 11: JSP Tag Extensions

B JSP expressions and lines of HTML get translated into out . print ()
statements inside the _jspService () method in the order they occur.

B Scriptlets are copied verbatim into _jspService ().

B Declarations are copied verbatim into the source code outside of _jspService ().

B Standard JSP actions such as <jsp:include>, <jsp:useBean>, and
<jsp:setPropertys> are translated into the run-time logic that performs
their function.

B Custom tags are expanded into Java statements that call methods in their
corresponding tag handler.

Tag-Related Code Generated by the Container

The container uses the taglib directives to locate Tag Library Descriptors (TLDs)
and to match them to custom tags used in the page based on the tag prefix used. For
example, if the directive is

<%@ taglib prefix="db"
uri="/WEB-INF/tlds/database.tld" %>

then the container reads the database. t1d file to get a list of tags it describes and
the name of the tag handler class associated with each one. When it encounters a tag
later in the page with a namespace prefix,

<db:connect url="mydatabase">

it looks for a tag library associated with that prefix that has a tag with the specified
name. The container uses information about the tag’s structure, which it finds in the
TLD, to generate a series of Java statements that accomplish the tag’s function. In the
case of the db: connect tag previously shown, this would include

1. Code to create an instance of the connect tag handler or obtain one from a pool.

2. Code to pass the connect tag handler a reference to the pageContext object.
This is a useful feature because it gives the tag handler access to the JSP page’s
Request, Response, HttpSession, ServletContext, and output stream
objects. It also means the tag handler can get or set attributes at any level the
page context manages.

3. Code to pass a reference to the parent tag, if db: connect is nested within
another custom tag.

4. A call to the connect tag handler’s setUrl () method, passing the
“mydatabase” value.

5. A call to a method named doStartTag (), which the connect tag handler
implements to perform any action that takes place when its start tag is
encountered (more about this shortly).

195

196 JSP: The Complete Reference

What a Tag Handler Does

In the body of a JSP page, a custom tag may look like this:

<app:mail from="Accounting Manager" to="Staff" >
<app:subject>Expense Reports</app:subjects>
Please be sure to submit all expense reports before
the fifteenth day of the month to allow sufficient
processing time. Thanks.

</app:mail>

The components of this tag include:

B A start tag <app:mail .. .> with zero or more attributes
B Anendtag</app:mails>

B The lines between the start and end tag, known as the body of the tag, which
may include ordinary text or other JSP statements.’

In transforming the tag into servlet code, the container invokes the tag handler for each

of these components, using the pageContext object to share attributes to the handler.

The invocation of these methods is sometimes referred to as the tag handler’s lifecycle.
For this to work, a tag handler must implement one of two interfaces:

B javax.servlet.jsp.tagext.Tag for tags that don’t operate on their
bodies.

B javax.servlet.jsp.tagext.BodyTag for tags that do. BodyTagisa
subinterface of Tag.

These interfaces specify the lifecycle methods the tag handler must provide.

The API also provides two support classes—TagSupport and BodyTagSupport—
that act as the default implementation of the two interfaces. Most tag handlers extend
these support classes rather than implementing the interfaces directly, although the
interfaces aren’t particularly complex. One benefit of using a support class is you can
override only the methods you need to change, allowing the support class to handle
the rest. In addition, the support class can take care of saving the page context and
body content objects in protected variables, so subclasses can simply access them.

3 A tagis not required to have a body. A tag may simply perform its function based on the attributes
specified in the start tag. In this case, using the shorthand <tag ... /> notation is common.

Chapter 11: JSP Tag Extensions 197

___| Tag Libraries

Custom tags are implemented and distributed in a structure known as a tag library,
sometimes referred to as a taglib. A tag library is a collection of classes and
meta-information that includes

B Tag Handlers Java classes that implement the functionality of custom tags.

B Tag Extra Information Classes that supply the JSP container with logic for
validating tag attributes and creating scripting variables.

B A Tag Library Descriptor (TLD) An XML document that describes the
properties of the individual tags and the tag library as a whole.

The components of a tag library can be installed anywhere they are accessible to
the JSP container. The tag handler and tag extra information classes need to be located
where they can be found by the JSP container class loader. The tag library descriptor
can be anywhere that can be located by a URL. For ease of deployment, however, the
JSP 1.1 specification mandates that the JSP container must accept a tag library packaged
as a JAR file having a certain fixed structure. In such a JAR file, the classes should be in
a directory tree starting at the root that matches their package structure, and the TLD
must be a file named taglib.t1d in the /META-INF directory. This means a tag
library can be deployed simply by copying its JAR file to the /WEB-INF/11ib directory.
Or, the classes can be unzipped into the /WEB-INF/classes directory and the TLD
can be placed in another Web-accessible location. This is typically a directory named
/WEB-INF/tlds, although this is only a convention, not a requirement.

The Tag Library Descriptor (TLD)

The tag library configuration information needed by a JSP container is stored in a Tag
Library Descriptor (TLD). A TLD is an XML document that describes the individual tags
in the library, their tag handlers and attributes, as well as version and identifying
information about the library as a whole.

TLD Elements

The document type definition (DTD) for a tag library descriptor can be found at
http://java.sun.com/j2ee/dtds/Web-jsptaglibrary 1 1.dtd.Avalid
TLD consists of a single <taglib> element having certain subelements in a fixed order:

B tlibversionisarequired element containing the version number of the tag
library. This is a dotted decimal number consisting of up to four groups of
digits separated by decimal points, such as “1.0”, or “1.3.045".

198

JSP: The Complete Reference

jspversion is an optional element identifying the minimal level of the
JSP specification required to support the tag library. For example, for JSP
version 1.1, this would be “1.1”.

shortname is a short descriptive name that identifies the tag library. A JSP
authoring tool might use this name as a default prefix for tags from this library.
The DTD prescribes this name should have no white space and must begin with
an alphabetic character; however, the restriction about white space seems
widely ignored in practice. shortname is a required element.

uri is an optional element that defines a unique URI, which identifies this
library. This is typically the URL of the location from which the latest version
of the taglib can be downloaded.

info is an optional element in which descriptive information about the tag
library is entered. This is intended for human viewing in a JSP authoring tool.

tag One or more tag entries can be in a TLD. These describe the individual
tags that comprise the library.

A tag element itself consists of up to six types of subelements:

name The tag name as it will be used in a JSP page. Together with a namespace
prefix that identifies the tag library, the name uniquely identifies a tag to the
JSP container.

tagclass A required element consisting of the fully qualified name of the
tag handler that implements the tag.

teiclass An optional element consisting of the fully qualified name of the
Tag Extra Information (TEI) class used by this tag, if any. A TEI class provides
information about scripting variables the tag handler creates, as well as any
validations that can be performed on tag attributes.

bodycontent Optionally describes how the tag handler uses its body
content. The possible values are

empty The tag body must be empty

JSP The tag body consists of other JSP elements

tagdependent The tag body is interpreted by the tag itself,
with no JSP transformations

info Optional human-readable descriptive information about the tag.

attribute Optional information about attributes that can be coded when
the tag is used in a JSP page. This entry is described more fully in the “Defining
Tag Attributes” section later in this chapter.

Chapter 11: JSP Tag Extensions 199

The taglib Directive

The purpose of the taglib directive is to specify the location of the TLD and assign
it a short alias (prefix) that distinguishes its tags on this page. Its syntax is as follows:

)

<%@ taglib prefix="tag prefix" uri="taglibURI" %>
where the two attributes are

tag prefix A name, unique on this page, used to identify tags from this library.
If the prefix is diag, for example, then any tag from this tag library
used on this page should be written as <diag:xxx>, where xxx is
the tag name.
The prefix can be any valid XML name token, although Sun
Microsystems reserves the prefixes jsp, jspx, java, javax,
servlet, sun, and sunw.

taglibURI The URI of the tag library itself. This can be an absolute path name
beginning with / that is interpreted relative to the top of the Web
application as in the previous example. Or, it can be a URL that acts
as a symbolic name for the TLD. In this case, the name must be
mapped to the actual TLD by means of a <taglib> entry in the
Web .xml file. This approach is discussed in the next section.

Mapping Tag Libraries in the web.xml File

Suppose the JAR file containing the classes and TLD for version 3.8.2 of a taglib is
named util v3_8_2.jar and is deployed in the /WEB-INF/1ib directory of a Web
application. A taglib directive can refer to this directly as follows:

<%@ taglib
prefix="util"
uri="/WEB-INF/lib/util v3 8 2.jar"

o°
\

Of course, when version 3.8.3 is installed, this means all JSPs that use this tag library
must be updated with the new version number.

An alternative to this is to map the physical location of the TLD to a symbolic name
that can be used in a taglib directive. This is done by adding a <taglib >* element to

4 Why couldn’t they use a different name for this element? The TLD file already has a <taglib> element
with a completely different meaning. Why afford the poor JSP author such an opportunity for confusion?

200 JSP: The Complete Reference

the /WEB-INF/web.xml deployment descriptor for this Web application. For the
previous example, this element would have the following structure:

<taglib>
<taglib-urisuri</taglib-uris>
<taglib-location>
/WEB-INF/lib/util v3 8 2.jar
</taglib-location>
</taglib>

where uri can be any valid URI, perhaps a file-like mnemonic such as /util-taglib
or the URL of a place where the latest version of the taglib can be found. This makes it
possible to code the taglib directive as

<%@ taglib
prefix="util"
uri="http://www.vendor.com/taglibs/util"

oe
\Y

Note that the URI needn’t refer to an actual file. Rather, it’s a unique identifier that
enables the JSP container to search for in web . xm1 for the actual file location. Also note,
this mapping technique only works for JAR files coded in the prescribed format (TLD in
/META-INF/taglib. t1ld)and some JSP container implementations are known to be
buggy in this respect. When in doubt, you can always put the JAR file in /WEB-INF/1ib
and the TLD in /WEB-INF/t1ds, and refer to the /WEB-INF/tlds/filename.tld
directly in your JSP page.

___| The Tag Handler API

The following section describes the methods associated with the Tag interface and the
TagSupport class.

The Tag Interface

Table 11-1 lists the lifecycle methods that must be supported by classes implementing
the Tag interface.

The interface also includes four constants that represent the possible return code
from the doStartTag () and doEndTag () methods:

B EVAL BODY INCLUDE When returned by doStartTag (), indicates the page
implementation servlet should evaluate the tag body.

B SKIP BODY When returned by doStartTag (), indicates the servlet should
ignore the body of this tag.

Chapter 11: JSP Tag Extensions

Method

public void setPageContext
(PageContext ctx)

public void setParent
(Tag parent)

public Tag getParent ()

public int doStartTag()
throws JspException

public int doEndTag ()
throws JspException

public void release ()

Description

The generated servlet calls this method first
before requiring the handler to do anything
else. The implementing class should save the
context variable so it’s available at any point in
the tag lifecycle. From the page context, the tag
handler can access all the JSP implicit objects
and can get and set attributes in any scope.

Enables a tag to find the tag above it in the
evaluation stack. Called immediately after
setPageContext.

Returns the parent tag.

Called after the page context, parent, and any
attributes coded on the start tag have been
set. The return code indicates whether the
JSP implementation servlet should evaluate
the tag body (EVAL_BODY_ INCLUDE) or not
(SKIP_BODY). The method can throw a
JspException to indicate a fatal error.

Called when the end tag has been
encountered. The return code indicates
whether the JSP implementation servlet
should continue with the rest of the page
(EVAL PAGE) or not (SKIP_PAGE). The
method can throw a JspException to
indicate a fatal error.

Guaranteed to be called before page exit.
Allows the tag handler to release any
resources it holds and reset its state so

it can be reused, if necessary.

Table 11-1. Methods in the Tag Interface

B EVAL PAGE When returned by doEndTag (), indicates the rest of the page

should be evaluated as usual.

B SKIP PAGE When returned by doEndTag(), indicates the rest of the page

should be skipped.

201

202 JSP: The Complete Reference

The TagSupport Class

javax.servlet.jsp.tagext.TagSupport is a concrete class that implements
the Tag interface. In addition to the interface, the TagSupport class provides the
additional methods listed in Table 11-2.

Extending this class rather than directly implementing the interface is usually
advantageous. In addition to providing default implementations for all the required
methods and storing the pageContext variable, TagSupport offers several convenience
methods. findAncestorWithClass () is particularly useful for supporting nested
tags. An outer tag, for example, can manage a set of objects as instance variables,
providing public accessors that make these objects accessible to inner tags. The database
tag example later in this chapter illustrates the technique.

___| The Tag Handler Life Cycle

The flowchart in Figure 11-2 describes the events in the life of a tag handler. The
process shown in the flowchart corresponds to the Java code the JSP container generates
for a tag when the JSP page is translated into a servlet. Knowing when each of your

Method Description

public static Tag Looks in the run-time tag stack for the

findAncestorWithClass (Tag desired parent tag handler. A tag handler

thisTag, Class cls) can provide methods that child tags
within its scope can call.

public void setId(String id) Stores or retrieves the name specified

public String getId() in the id attribute.

public void setValue (String Stores or retrieves a value under the

name, Object o) given name in a local hashtable.

public Object getValue (String

name)

public void Removes the named value from the local

removeValue (String name) hashtable.

public Enumeration Returns a java.util.Enumeration

getValues () of the keys in the hashtable.

Table 11-2. Additional Methods in the TagSupport Class

Chapter 11:

JSP Tag Extensions

=

v

Get an instance of
the tag handler

'

Set page context
and parent tag

'

Call setXXX()
methods for
specified attributes

v

doStartTag()

SKIP_PAGE

EVAL_BODY_INCLUDE

Handle body
of tag

v

v

v

doEndTag()

SKIP_PAGE

(e)

EVAL_PAGE

(Continue >

Figure 11-2.

Flowchart of the tag handler life cycle

203

204

JSP: The Complete Reference

tag handler methods will be called, and what the state of the page and container will
be is important. Understanding this protocol can help you write code that works as
you expect. Also important is to remember the tag itself doesn’t exist in the generated
servlet at run time—the tag has been replaced by equivalent code that sets attributes
and calls methods in the tag handler.

Let’s consider each step in the flowchart.

The Flowchart

To start, the generated servlet needs to create an instance of the tag handler class. It
usually does so by invoking a method in a factory class that is part of the JSP container.
The factory class may maintain a pool of tag handler instances so it can reuse tag
handlers that are no longer active.

Next, the tag handler instance is initialized and made aware of the state of the servlet
in which it exists. The servlet does this by calling two methods in the tag handler:

setPageContext (Page The PageContext object contains references to all the

Context ctx) JSP implicit object, and provides access to attributes at
the page, request, session, and application level. When
the servlet calls this method, the tag handler should save
the context in an instance variable so it will be available
to all the handlers” methods. Note, the TagSupport base
class does this automatically.

setParent (Tag Tags in a JSP page may be nested, that is, contained

parent) within the body of another tag. Inmediately after
setPageContext () is called, the servlet calls
setParent (), passing a reference to the tag that
contains this one, if any. If the tag isn’t nested, the
parameter will be null. Having access to enclosing tags
makes it possible for a tag to call methods in any of its
parents, which makes cooperative action practical. The
TagSupport class also saves this variable automatically.

If a tag supports attributes, the run-time values of these attributes are passed to the
tag handler by means of setter methods, which the handler must supply. For example,
the database connection tag at the beginning of this chapter

<db:connect url="mydatabase">

has one attribute, named url. Its tag handler must have a method with the signature

public void setUrl (String value)

Chapter 11: JSP Tag Extensions 205

that stores the value of the url attribute, most likely in a private instance variable. For each
attribute xxx coded in the start tag, the generated servlet will have a set Xxx (value)
method call. These calls are located immediately after the setParent () call.

At this point, the tag handler’s doStartTag () method is called. The page context
and parent tag have already been set, as have all the tag’s attributes. The method can
read these variables and perform whatever calculations and operations necessary to
implement the tag’s functionality. It can access the servlet output writer by calling
pageContext .getOut (). It can change the values of scripting variables in the JSP
page by setting attributes in the page context. This is examined in detail later in this
chapter, in the section entitled “Defining Scripting Variables.” If any fatal errors are
encountered, the method should throw a JspException.

The doStartTag () method must return an integer return code, either SKIP_BODY or
EVAL_ BODY INCLUDE. If the return code from doStartTag () is EVAL _BODY_ INCLUDE,
then the body of the tag is handled as usual. If the return code is SKIP_BODY,
everything in the original JSP page up to this tag’s end tag is ignored.

| SKIP_BODY is the default return code of doStartTag () in the TagSupport base
class, providing a rare instance of where TagSupport can actually perform a useful
function without being subclassed—you can use it as the handler for a custom tag that
“comments out” code. If you make the following entry in a TLD
<tag>
<name>skip</names>
<tagclass>javax.servlet.jsp.tagext.TagSupport</tagclass>
<bodycontent>JSP</bodycontent >
</tag>

then you can surround any part of a JSP page’ with
<prefix.skip>

</prefix.skip>

and it won't be executed at run time.

After the tag body is either evaluated or ignored, the tag handler’s doEndTag ()
method is invoked. Like doStartTag (), this method must return an integer return
code that indicates how to proceed. If the value is EVAL_PAGE, the rest of the page is
evaluated; if it’'s SKIP PAGE, the servlet code executes an immediate return from
_JjspService().

5 Well, not any part. Scriptlets, expressions, standard actions, and HTML template data will be
suppressed if they are inside the skip tag body, but you cannot use tags inside a scriptlet, expression,
or declaration.

206 JSP: The Complete Reference

An Example of Generated Code

The interaction between the generated servlet and a tag handler becomes clearer when
we look at an example. Let’s develop an enhanced version of the getWebServer
tag from earlier in the chapter, one that lets us specify any header name, rather than
hard coding the choice of the Server header. To do this, the tag will accept an
attribute called name. The following section discusses tag attributes at length but,

for the purposes of this example, all we need to know is the attribute is described

in the TLD and communicated to the tag handler using its setName () method. This
tag will be called getWebServerHeader. The TLD requires a small addition:

<tag>
<name>getWebServerHeader</name>
<tagclass>jspcr.taglib.diag.GetWebServerHeaderTag</tagclass>
<bodycontent>empty</bodycontent >
<attribute>
<names>name</name>
<required>true</required>
<rtexprvaluestrue</rtexprvalue>
</attributes>
</tag>

The name attribute is defined as a required field and its value can be supplied by
a request time expression if desired, rather than being coded as a literal.

Not surprisingly, the tag handler is almost identical to the one for getWebServer.
Here’s the source code for the getWebServerHeader tag handler:

package jspcr.taglib.diag;

import javax.servlet.http.*;
import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;
import java.io.*;

import java.net.*;

/**

* Handler for the "getWebServerHeader" tag

*/

public class GetWebServerHeaderTag extends TagSupport

{

private String name;

/**

Chapter 11: JSP Tag Extensions

* Sets the name property. A call to this method
* ig automatically generated by the JSP container
* when a tag with the name attribute is used in

* a JSP page.

*/

public void setName (String name)

{

this.name = name;

public int doStartTag() throws JspException

{

try {

// Get the request object from the page context

HttpServletRequest request =
(HttpServletRequest) pageContext.getRequest () ;

// Request information from web server

URL url = new URL("http",
request .getServerName (),
request .getServerPort (),
ll/ll)l.

URLConnection con = url.openConnection() ;

((HttpURLConnection) con) .setRequestMethod ("OPTIONS") ;

// Extract the requested header
String header = con.getHeaderField (name) ;
// Write it to the output stream

JspWriter out = pageContext.getOut () ;
out .print (header) ;

catch (IOException e) {
throw new JspException (e.getMessage()) ;

}

return SKIP BODY;

207

208

JSP: The Complete Reference

The main difference is the addition of the name attribute. This required a name
variable and a setName () method be created. Then, rather than

String webserver = con.getHeaderField("server") ;
you have
String header = con.getHeaderField (name) ;

where name is the value coded in the JSP tag.

In the JSP page, we’ll use the old tag to get the Web server product name
and the new tag to get the A11ow header. Because the tag handler makes an
HTTP request using the OPTIONS method, the server should return an Allow
header that lists the request methods it will accept. Here is the updated page,
named ShowServerHeader. jsp:

<%@ taglib prefix="diag" uri="/WEB-INF/tlds/diagnostics.tld" %>
<HTML>

<HEAD>
<TITLE>Custom Tag with Attributes</TITLE>
</HEAD>

<BODY>
<H3>Custom Tag with Attributes</H3>

Request methods supported by this instance of
<diag:getWebServer/>

are

<H4><diag:getWebServerHeader name="allow"/></H4>
</BODY>

</HTML>

When ShowServerHeader . jsp is run, it produces the output shown in Figure 11-3.
Let’s examine part of the jspService () method servlet that the JSP container
(JRun 3.0, in this example) generated for ShowServerHeader . jsp. The source code

Chapter 11: JSP Tag Extensions

/23 Custom Tag with Attributes - Microsoft Internet Explorer

J File Edit “iew Favortez Toolz Help |

Je-2 - QR A QI BD-IST

JAddrBSS I@ http: A #u25my fjzper/Chapl 1 AsampledShowServerH eader. jzp j #Go
=

Custom Tag with Attributes
Request methods supported by this instance of Apache/1.3.12 (Win32) are

GET, HEAD, OPTIONS, TRACE

NI

|@ Daone ’_ ’_ E‘g Local intranet

Figure 11-3. Output of the enhanced tag example

has been reformatted and modified slightly for clarity. Note, you needn’t write this;
it’s what the JSP container generates based on your JSP page and TLD definition.

PageContext pageContext = _ jspFactory.getPageContext
(this, request, response, null, true, 8192, true);
JspWriter out = pageContext.getOut () ;

try {

out.print ("\r\n\r\n"
+ "<HTML>\r\n\r\n"
"<HEAD>\r\n"
"<TITLE>Custom Tag with Attributes</TITLE>\r\n"
"< /HEAD>\r\n\r\n"
"<BODY>\r\n"
"<H3>Custom Tag with Attributes</H3>\r\n\r\n"
"Request methods supported by this instance of"

n \r\n") ;

+ o+ o+ o+ o+ o+ o+

209

210

JSP: The Complete Reference

GetWebServerTag tagl = (GetWebServerTag)
JRundSPStaticHelpers.createTagHandler
(pageContext, "GetWebServerTag") ;

tagl.setPageContext (pageContext) ;
tagl.setParent (null) ;
tagl.doStartTag() ;

if (tagl.doEndTag() == Tag.SKIP PAGE) {
return;

out.print ("\r\n"
+ "are\r\n"
+ "<H4S") ;

GetWebServerHeaderTag tag2 = (GetWebServerHeaderTag)
JRundSPStaticHelpers.createTagHandler
(pageContext, "GetWebServerHeaderTag") ;

tag2.setPageContext (pageContext) ;
tag2.setParent (null) ;
tag2.setName ("allow") ;
tag2.doStartTag() ;

if (tag2.doEndTag() == Tag.SKIP PAGE) {
return;

out.print ("</H4>\r\n\r\n</BODY>\r\n\r\n</HTML>\r\n") ;

Near the beginning of _jspService (), the servlet creates and initializes its
page context:

PageContext pageContext = _ jspFactory.getPageContext
(this, request, response, null, false, 8192, true);

The JspFactory has a getPageContext () method that takes a reference to the
current servlet, the request and response objects, the URL for the error page (if any), a

Chapter 11: JSP Tag Extensions

flag indicating whether the page needs an HTTP session, the output buffer size,
and a flag indicating whether the buffer should be autoflushed. The method returns
an initialized page context that encapsulates all these objects.

JspWriter out = pageContext.getOut () ;

Having initialized a page context object, the servlet uses it to obtain a reference to
the response output writer. The tag handler can use this same method call to do its
own output to the page, if desired. The issue becomes slightly more complicated for
tag handlers that interact with their body content, as we will see in the next section.

GetWebServerTag tagl = (GetWebServerTag)
JRunJSPStaticHelpers.createTagHandler
(pageContext, "GetWebServerTag") ;

After printing the page headings, the servlet creates an instance of the tag handler,
using a static method in a helper class. This helper class may use a pool of tag handler
instances or perform other optimizations—the JSP specification doesn’t dictate how
this should be done. This affords servlet engine vendors the opportunity to distinguish
their product’s performance and functionality.

tagl.setPageContext (pageContext) ;
tagl.setParent (null) ;

As the flowchart in Figure 11-2 indicates, the generated servlet then calls the tag
handler’s setPageContext () and setParent () methods. No parent tag exists in
this case, so the parameter value is null.

tagl.doStartTag() ;

With the page environment thus fully described to the tag handler, its doStartTag ()
method is called. Note, no return code is captured, even though doStartTag ()
returns one. The reason for this is the TLD indicates the getWebServer tag has no
body (<bodycontent>empty</bodycontents>), so no conditional code is generated
to handle it. The JSP container is able to optimize the code rather than checking a
meaningless return value.

if (tagl.doEndTag() == Tag.SKIP PAGE) {
return;

211

212 JSP: The Complete Reference

The doEndTag () method can return either EVAL PAGE or SKIP PAGE. The effect
of each becomes clear when we see that SKIP_PAGE simply causes a return from the
_JjspService () method.

After printing the intervening HTML, the servlet begins work on the second tag:

GetWebServerHeaderTag tag2 = (GetWebServerHeaderTag)
JRunJSPStaticHelpers.createTagHandler
(pageContext, "GetWebServerHeaderTag") ;

tag2.setPageContext (pageContext) ;
tag2.setParent (null) ;
tag2.setName ("allow") ;
tag2.doStartTag() ;

The only difference between the handling of this tag and the previous one results
because the getWebServerHeader tag has a name attribute. This is transformed into
a call to the tag handler’s setName () method just before doStartTag () is called.
The end tag is handled the same, with its return code determining whether to exit from
the jspService () method or continue.

___| Defining Tag Attributes

A custom tag can have any number of attributes, which are name/value pairs coded in
the start tag when it’s used in a JSP page. For example, the tag shown in the following

<opera:role name="Papageno" range="baritone"
description="a bird-catcher"/>

has three attributes: name, range, and description. Attributes may be required or
optional, and their values can be coded as string literals or supplied at request time
using JSP expressions (if the tag allows this).

For each attribute a tag supports, its tag handler must supply two things:

B An instance variable to store the attribute

B One or more setAttrname () methods, where Attrname is the attribute
name with the first letter capitalized.

For the previous example tag, the tag handler might look like this:

/**
* RoleTag

*/

Chapter 11:

public class RoleTag extends TagSupport

{

// Three attributes:

private String name;
private String range;
private String description;

// ... and their setter methods:

public void setName (String nameFromJSPTag)

{

name = nameFromdJSPTag;

public void setRange (String rangeFromJSPTag)

{

range = rangeFromdJSPTag;

JSP Tag Extensions

public void setDescription(String descriptionFromJSPTag)

{

description = descriptionFromJSPTag;

public int doStartTag() throws JspException
{
try {
JspWriter out = pageContext.getOut () ;
out.println ("<TR>") ;
out.println("<TD>" + name + "</TD>");
out.println("<TD>" + range + "</TD>");
out.println(
out.println("</TR>") ;

}

catch (IOException e) {

throw new JspException (e.getMessage()) ;

}

return SKIP BODY;

"<TD>" + description + "</TD>");

213

214

JSP: The Complete Reference

The JSP container generates code in the JSP servlet to take attribute values coded in a
custom tag and sends them to the tag handler. It does this by calling the set At t rname ()
methods for each attribute. This is done after the page context and parent tag have
been set, but just before doStartTag () has been called. For example, if a JSP page
uses the <opera:roles> tag as follows

<%@ page session="false" %>
<%@ taglib prefix="opera" uri="/WEB-INF/tlds/opera.tld" %>

<HTML>

<HEAD><TITLE>The Magic Flute</TITLE></HEAD>

<BODY>

<H2>The Magic Flute</H2>

<H3>Dramatis Personae</H3>

<TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0">
<TR><TH>Role</TH><TH>Range</TH><TH>Description</TH>

<opera

<opera:

<opera:

<opera:

<opera:

</TABL
</BODY
</HTML

:role

role

role

role

role

E>
>

>

name="Tamino" range="Tenor"
description="an Egyptian prince"/>

name="Pamina" range="Soprano"
description="daughter of the Queen of the Night"/>

name="Papageno" range="Baritone"
description="a bird-catcher"/>

name="Queen of the Night" range="Soprano"
description="die Sternflammende Kdénigin"/>

name="Sarastro" range="Bass"
description="High Priest of Isis and Osiris"/»>

then the generated servlet (again using JRun as the container) would handle each
of the <opera:role> tags with code similar to the following;:

RoleTag roleTag = (RoleTag)

JRunJSPStaticHelpers.createTagHandler

(pageContext, "RoleTag") ;

Chapter 11: JSP Tag Extensions

roleTag.setPageContext (pageContext) ;
roleTag.setParent (null) ;

roleTag.setRange ("Baritone") ;
roleTag.setName ("Papageno") ;
roleTag.setDescription("a bird-catcher") ;

roleTag.doStartTag () ;

The property setter method is all that’s required for a tag to support an attribute,
but more information can be specified in the TLD. In the <tag> element, there can be
any number of <attribute> elements in the following form:

<attribute>
<names>attributeName</names>
<required>true|false</required>
<rtexprvalue>true|false</rtexprvalue>
</attribute>

Only the attribute name is required; the other two elements are optional and default
to false.

If <required>true</requireds is specified, then the attribute must be coded
everywhere the tag is used or a fatal translation error will occur. Otherwise, the attribute
is optional. The tag handler should take care to handle the case where the attribute hasn’t
been specified, in which case the instance variable will be null.

If <rtexprvalue>true</rtexprvalues is specified, then the attribute value
may be specified with a request time expression. Attributes coded in this manner
have the form

attribute="<%= scriptlet expression %>"

where the quotes may include nothing but the JSP expression. In addition to making it
possible to supply a value for the attribute at run time, this also causes the type of the
expression to be preserved. In other words,

date="<%= new java.util.Date() %>"
would result in the generated servlet code

tag.setDate (new java.util.Date());

215

216

JSP: The Complete Reference

which would cause the tag handler’s public void setDate (Date date) method to
be invoked, rather than public void setDate (String date).

Here is an example of a custom tag with two optional attributes, each of which can
be specified with request time expressions.

<x:formattedDate date="date" format="format"/>

The date attribute should be specified at a java.util.Date object in a request time
expression, but the format can be either a java.text.SimpleDateFormat or the
format string that SimpleDateFormat uses. The TLD would look like this:

<?xml version="1.0" ?>
<taglibs>

<tlibversion>1.0</tlibversion>
<jspversion>1l.1l</jspversions>
<shortnamesutil</shortnames>

<tag>
<name>formattedDate</name>
<tagclass>jspcr.taglib.util.FormattedDateTag</tagclass>
<bodycontent>empty</bodycontent >
<info>
Returns a date formatted using the specified format.
If no date is specified, uses current date.
Default date format is MM/dd/yyyy
</info>

<attributes>
<name>date</name>
<required>false</requireds>
<rtexprvaluestrue</rtexprvalues>
</attribute>

<attributes>
<name>format</name>
<required>false</requireds>
<rtexprvaluestrue</rtexprvalues>
</attribute>
</tag>

</taglib>

Chapter 11: JSP Tag Extensions

Here is the tag handler:

package jspcr.taglib.util;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

import java.io.*;

import java.text.*;
import java.util.*;

/**
* FormattedDateTag

*/

public class FormattedDateTag extends TagSupport

{

// The date attribute

private Date date;
public void setDate (Date date)

{

this.date = date;

// The format attribute

private SimpleDateFormat format;
public void setFormat (String fmtstr)

{
}

public void setFormat (SimpleDateFormat fmt)

{

format = new SimpleDateFormat (fmtstr) ;

format = fmt;

/**

* Prints the date when the start tag is encountered
*/

public int doStartTag() throws JspException

{

// Get date attribute, defaulting to current date

217

218

JSP: The Complete Reference

Date date = this.date;
if (date == null)
date = new Date() ;

// Get date format attribute, defaulting
// to month/day/year

SimpleDateFormat format = this.format;
if (format == null)

format = new SimpleDateFormat ("MM/dd/yyyy") ;

// Format and print

try {
pageContext.getOut () .print (format.format (date)) ;
}

catch (IOException e) {

throw new JspException (e.getMessage()) ;

return SKIP BODY;

Note two setFormat () methods exist: one takes a java.text.SimpleDateFormat ;

another takes a string and creates a SimpleDateFormat from it. The method for
which the JSP container generates servlet code depends on whether the tag is coded
with a request time expression. Here is an example of how the tag can be used:

)

<%@ page session="false" %>
<%@ page import="java.util.*,java.text.*" %>
<%@ taglib prefix="x" uri="/WEB-INF/tlds/util.tld" %>

N
o

Calendar gc = new GregorianCalendar (1931, 6, 25);
Date then = gc.getTime() ;
SimpleDateFormat fmt =

new SimpleDateFormat ("MMMMM d, yyyy");

o°
\

Chapter 11: JSP Tag Extensions 219

The date was

<x:formattedDate date="<%= then %>" format="<%= fmt %>" />.

When used in the preceding JSP page, the tag produces the output

The date was July 25, 1931.

___| The Body Tag Handler API

Simple tags are useful components that perform their function entirely within
their start tag. However, the real power of custom tags results from their capability
to interact with their tag body. This makes it possible for a custom tag to

B Post-process its body text, perhaps sorting it, making an HTML table from it, or

filtering out characters like “<” and “>”, replacing them with their HTML-safe
equivalents “&1t;” and “> ;”.

B Define new implicit objects and create scripting variables for them.

B Cooperate with nested tags to perform complex operations.

Tags that operate on their body are an extension of the tags discussed so far in this
chapter. They implement a subinterface of javax.servlet.jsp.tagext.Tag, known
as javax.servlet.jsp.tagext.BodyTag. As was the case with the TagSupport
class, a base class implementation of BodyTag also exists, called BodyTagSupport.

BodyContent

When the JSP container generates code for a tag that has a body, it saves and restores
the object that represents the current servlet output writer. Before the body of the tag
is processed, a new output writer is created—this one an instance of the BodyContent
class. While the body is being evaluated, the out scripting variable as well as the value
returned by pageContext .getOut () both refer to the new writer object. If several
levels of nesting exist, the writers are saved on a stack, so each level has its own writer.

BodyContent is a subclass of javax.servlet.jsp.JspWriter, but differs
from its superclass, in that its contents aren’t automatically written to the servlet
output stream. Instead, they’re accumulated in what amounts to a string buffer. After
the tag body is completed, the original JspWriter is restored, but the BodyContent
object is still available in doEndTag () in the bodyContent variable. Its contents can
be retrieved with its get String () or getReader () methods, modified as necessary,
and written to the restored JspWriter output stream to be merged with the page
output. Table 11-3 lists the additional methods that BodyContent provides.

220

JSP: The Complete Reference

Method

public void flush()
throws IOException

public void clearBody ()

public Reader
getReader ()

public String
getString()

publicvoid
writeOut (Writer w)

public JspWriter
getEnclosingWriter ()

Description

Overrides the JspWriter. flush () method
so it always throws an exception. Flushing a
BodyContent writer isn’t valid because it isn’t
connected to an actual output stream to which
it could be written.

Resets the BodyContent buffer to empty. This
can be useful if the body is being written to the
enclosing writer in doAfterBody ().

Returns a reader for the body content after it
has been evaluated. This reader can be passed to
other classes that can process a java.io.Reader,
such as StreamTokenizer, FilterReader,
or an XML parser.

Returns a string containing the body content
after it has been evaluated.

Writes the body content to the specified output
writer.

Returns the writer object (possibly another
BodyContent) next higher in the stack.

Table 11-3. Additional Methods in the BodyContent Class

Why does the JSP container create this elaborate structure for custom tag output?
We already learned the JSP container allows output to be post-processed and filtered,
but it’s also because not all body content is intended to produce output. For example,
in the earlier database query

<db: runQuerys>

SELECT *
FROM FD_GROUP
WHERE FdGp_Desc LIKE 'S%F%'

ORDER BY FdGp_Cd
</db:runQuery>

the body is not HTML at all, but a character string representing an SQL statement.
This would presumably be read with the BodyContent .getString () method and

Chapter 11: JSP Tag Extensions

passed to a JDBC statement object whose output would be written to the Web page.
This is automatically possible because the BodyContent object stores its output in a

buffer rather than writing it.

The BodyTag Interface

Tags that interact with their body content have a slightly more complex life cycle, so
they require a few more methods in their tag handlers. For this reason, an extension
of the Tag interface called BodyTag exists, which inherits all the methods required by
Tag, but adds three new ones having to do with body handling. Table 11-4 describes

the interface.

In addition to the three new methods, the BodyTag interface also defines one new

integer constant:

B EVAL BODY TAG When returned by doStartTag (), causes a new
BodyContent object to be created and associated with this tag handler.
When returned by doAfterBody (), causes the JSP servlet to evaluate
the body again after updating any scripting variables controlled by this
tag. This makes it possible for a tag handler to loop through a list of elements,
evaluating the body for each one.

Method

publicvoid
setBodyContent (BodyContent
out)

publicvoid doInitBody ()
throws JspException

public int doAfterBody ()
throws JspException

Description

Invoked by the JSP servlet after the current
JspWriter has been pushed and a new
BodyContent writer has been created. This
occurs just after doStartTag ().

A lifecycle method called after
setBodyContent (), butjust before the body
is evaluated. If the body is evaluated multiple
times, this method is called only once.

A lifecycle method called after the body has
been evaluated, but while the BodyContent
writer is still active. This method must return
either EVAL, BODY TAG or SKIP BODY. If the
return code is EVAL_BODY_TAG, the body is
evaluated again and doAfterBody () is
called again.

Table 11-4. Methods in the BodyTag Interface

221

222 JSP: The Complete Reference

Note | In addition to SKIP_BODY, doStartTag () can return either EVAL BODY
INCLUDE or EVAL BODY TAG, both of which indicate the body should be processed.
However, tag handlers that implement BodyTag cannot return EVAL BODY

INCLUDE, and tag handlers that don’t implement BodyTag cannot return EVAL
BODY _TAG. Both of these actions cause run-time exceptions.

The BodyTagSupport Class

As was the case with the Tag interface, BodyTag has a default implementation class
called javax.servlet.jsp.tagext.BodyTagSupport. This class extends
TagSupport, but with a few subtle changes. Table 11-5 describes the public methods
implemented by BodyTagSupport.

Body tag handlers are free to implement the BodyTag interface directly, but
BodyTagSupport is usually a more convenient base class.

Method

public int doStartTag()
throws JspException

public int doEndTag ()
throws JspException

public void
setBodyContent
(BodyContent out)

public void doInitBody ()
throws JspException

public int doAfterBody ()
throws JspException

Description

Overrides doStartTag () in
TagSupport, returning
EVAL BODY TAG by default
instead of SKIP_ BODY.

Invokes doEndTag () in TagSupport,
returning its result.

Stores the new body content object in a
protected variable named bodyContent.
Subclasses can access this variable directly.

Does nothing by default. Intended to be
overridden by subclasses that need to
perform initialization before the body
is evaluated.

Called by the JSP servlet after each time
the body has been evaluated. The body
content object is still active. This method
must return either SKIP_BODY or

EVAL BODY TAG, which causes

the body to be evaluated again and
doAfterBody () to be called again.

Table 11-5. Methods in BodyTagSupport

Chapter 11: JSP Tag Extensions 223

Method Description

public void release () Sets the bodyContent variable to
null, and then calls super.release().
An overriding method must call
super.release () as well, otherwise
bodyContent may not be available
for garbage collecting.

public BodyContent Returns the bodyContent variable.

getBodyContent () Subclasses already have access to the
protected variable, but this method
allows unrelated tag handler classes
to send output to this body content.

public JspWriter A convenience method that calls

getPreviousOut () getEnclosingWriter () on the
bodyContent variable and returns
the result.

Table 11-5. Methods in BodyTagSupport (continued)

___| The Body Tag Handler Life Cycle

Figure 11-4 depicts the slightly more complex life cycle of tag handlers that interact with
their body.
The following section describes each event in the life cycle flowchart.

The Flowchart

The first few steps down to doStartTag () are no different than they were in Figure 11-2.
The first difference is in the handling of the return code from this method. doStartTag ()
in a body tag handler can return either SKIP_BODY, which causes an immediate
branch to doEndTag (), or EVAL BODY TAG, which starts the chain of events that
handle the tag body.

When EVAL BODY TAG is returned from doStartTag (), the JSP servlet® invokes
the page context’s pushBody () method, which does three things:

1. Saves the current JspWriter on a stack.

6 The term JSP servlet in this section refers to the servlet generated by the JSP container based on the JSP
Ppage source code.

224 JSP: The Complete Reference

(Start >
»| Push writer
v
Get an instance of l
the tag handler
l dolnitBody/()
Set page context l
and parent tag
Handle body
4—
l of tag
Call setXXX() l
methods for
specified attributes
l doAfterBody() EVAL_BODY_TAG
doStartTag() i
l EVAL_BODY_TAG
Pop writer
SKIP_PAGE
SKIP_PAGE
»| doEndTag()
I
SKIP_PAGE EVAL_PAGE
(Return > (Continue >
Figure 11-4. Flowchart of the Body Tag Handler Life Cycle

Chapter 11: JSP Tag Extensions

2. Creates a new BodyContent object and stores it in the page context’s attributes
in page scope under the name out.

3. Assigns the new BodyContent object to the JSP page implicit variable out.

After this, the JSP servlet calls the tag handler’s setBodyContent () method with the
new writer.

Next, the tag handler’s doInitBody () method is called to handle any necessary
initialization before the body is evaluated. This initialization could also be done in
doStartTag (), but the new BodyContent object isn’t available there yet.
doInitBody () isn’t called if no body is in the tag, and can throw a JspException
if it detects any fatal errors.

At this point, the servlet handles the body of the tag as it normally would, writing
its output to the BodyContent object. The processing depends on the value of
the <bodycontent > element of the tag in the TLD. Three possible values exist for
this element:

B empty The tag body must be empty.

B Jsp Scriptlets, expressions, and template HTML are evaluated as usual. If any
other custom tags are within the scope of the body, they are also evaluated, the
same as they would be if used elsewhere on the page. If any of these have tag
handlers that implement BodyTag, then the process is done recursively—the
current BodyContent is pushed, a new BodyContent is assigned to the inner
tag, and so on.

B tagdependent The contents of the body are written verbatim to the
BodyContent. Scriptlets and expressions appear in their original JSP source
form, rather than being interpreted by the JSP container.

After handling the body, the servlet invokes the tag handler’s doAfterBody ()
method. If the tag handler wants to write its body content to the enclosing JspWriter
at this time, it can do so, as follows

JspWriter out = bodyContent.getEnclosingWriter () ;
out.println (bodyContent.getString()) ;
bodyContent.clear () ;

or, as

JspWriter out = bodyContent.getEnclosingWriter () ;
bodyContent .writeOut (out) ;
bodyContent.clear () ;

225

226 JSP: The Complete Reference

If the body content isn’t too large, it may be easier to wait until doEndTag (), and then
write the body content in one operation.
The doAfterBody () method can return one of two possible return codes:

B SKIP BODY proceeds with the rest of the page.

B EVAL BODY_ TAG causes the body to be evaluated again, followed by
the doAfterBody () method. This would typically be done if an array
or enumeration is being processed, with the next element in the array
or enumeration being assigned to a scripting variable at each iteration.

When the doAfterTag () finally returns SKIP_BODY, the loop (if any) is exited.
The body content is now completed, so the process of creating it is reversed:

1. A call to pageContent . popBody () retrieves the immediately previous
JspWriter.

2. The writer is assigned back to the out scripting variable.

Finally, the doEndTag () method is called, allowing the tag handler to send its
content back to the output stream. At this point, pageContext.getOut() refers to the
original writer, the same one that existed before the tag was processed. However, the
body content is still available in the protected bodyContent variable. It can be written
to the servlet output stream as follows

JspWriter out = pageContext.getOut () ;
out.println (bodyContent.getString()) ;

or simply

bodyContent .writeOut (pageContext.getOut ()) ;

doEndTag () should return either SKIP_PAGE, to cause the rest of the JSP page to be
ignored, or EVAL PAGE, to cause the page to be evaluated as usual.

Before we can give a detailed example of generated code for a body tag, we first
need to understand how a tag handler interacts with scripting variables.

| Defining Scripting Variables
JSP page authors are familiar with scripting variables—these often are Java variables

defined in a scriptlet or a <jsp:useBean> action. For example, in the scriptlet at the
beginning of this code,

Chapter 11: JSP Tag Extensions

N
o°

String[] flavors = {"Chocolate", "Strawberry", "Vanilla"};
for (int i = 0; i < flavors.length; i++)

%>

Flavor <%= 1 %> 1is <%= flavors[i] %>

)
<%

oe
\

the integer variable i and the string array variable flavors are defined, and are later available
for use by other scriptlets and expressions on the page. Similarly, in this JSP page,

<jsp:useBean id="ml" class="Meteor"/>
<jsp:setProperty name="ml"
property="bane"
value="The atmosphere"/>
Ahhhh! <%= ml.getBane() %>! Ahhhh!

the <jsp:useBean> action causes a variable named m1 of class Meteor to be defined.
This is used by the <jsp:setProperty> action that follows and is available to the
expression on the last line.

Custom tags can also define scripting variables in their tag handlers and,
as in the previous examples, the variables are then available to scriptlets, expressions,
and other tags on the same page. The mechanism for defining such variables is the
TagExtraInfo class.

The TagExtralnfo Class

A tag that needs to define variables or perform validation on its attributes needs to
define a class that extends the TagExtraInfo class. This subclass is associated with
the custom tag in the TLD:

<tag>
<name>mytag</name>
<tagclass>mypackage .MyTagHandler</tagclass>
<teiclass>mypackage.MyTagTEI</teiclass>

</tag>
The TEI comes into play during JSP translation time. When the JSP parser reads a

taglib directive, it loads the associated tag and TEI class names for each tag from the
TLD. Then, when a tag is parsed, methods in its TEI are invoked that get information

227

228 JSP: The Complete Reference

about scripting variables and validations. By overriding these methods in a TEI subclass,
a tag author can create variables and verify the tag attributes are valid. Table 11-6 lists
the methods available in the TagExtraInfo class.

The method of primary interest is getVariableInfo (). This method is called
by the JSP parser at page translation time and is expected to return an array of
VariableInfo objects. VariableInfo is essentially only a data structure having
four fields:

B varName The name of the variable to be created.

B className The fully qualified name of the variable’s class.

B declare A boolean variable that is true if the JSP parser should create an
actual definition for the variable (as opposed to assuming a variable of that
class will have already been defined earlier in the servlet).

B scope Aninteger indicating the point at which the variable should be
defined (or considered active).

Method Description

public VariableInfol[] Based on the list of attribute names and

getVariableInfo (TagData data) valuesin the data parameter, constructs
an array of VariableInfo objects that
describe the name, type, existence, and
scope of each scripting variable to create.

public boolean Called by the JSP parser at page

isValid(TagData data) translation time. Given a list of attribute
names and values, the method can
validate them individually and in
combination with each other. Returns
true if the attributes are valid, false
otherwise. The default implementation
simply returns true.

public void Sets the TagInfo object used by this class.
setTagInfo (TagInfo info)
public TagInfo getTagInfo () Returns the TagInfo object used by

this class.

Table 11-6. The TagExtralnfo Class

Chapter 11: JSP Tag Extensions

Three possible values exist for scope and each is represented by a constant defined in
VariableInfo:

B AT BEGIN The variable is defined when the start tag is encountered and
remains visible for the rest of the page. This is the visibility of the id variable
defined by <jsp:useBean>, for example.

B AT END The variable is defined after the end tag and remains visible for the
rest of the page.

B NESTED The variable is only defined within scope of the body of the tag.

Example: The enumerate Tag

To illustrate the use of a TEI class, develop a tag named enumerate, which loops
over a java.util.Enumeration, making each element in turn available as a scripting
variable in the tag body. Here is the TLD definition for the tag;:

<tag>
<names>enumerate</names
<tagclass>jspcr.taglib.util.EnumerateTag</tagclass>
<teiclass>jspcr.taglib.util.EnumerateTEI</teiclass>
<bodycontent>JSP</bodycontent>
<info>

Iterates tag body through an enumeration

</info>

<attribute>
<names>enumeration</name>
<requireds>true</requireds>
<rtexprvaluestrue</rtexprvalue>
</attributes>
</tag>

The tag takes one required attribute named enumeration. The type of this
attribute is a java.util.Enumeration, so its value must be supplied by a
request-time expression. The tag handler takes care of the actual iteration using
the Enumeration.hasMoreElements () and nextElement () methods:

package jspcr.taglib.util;

import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import java.io.*;

229

230 JSP: The Complete Reference

import java.util.*;

/**

* EnumerateTag

*/

public class EnumerateTag extends BodyTagSupport

{

// Enumeration attribute

private Enumeration list;
public void setEnumeration (Enumeration list)

{

this.list = list;

public int doStartTag() throws JspException

{

// Do not evaluate the body if the list is empty

if (list.hasMoreElements()) {

// Create a scripting variable named "element"

// that contains the value of the current
// element of the enumeration

pageContext.setAttribute
("element", list.nextElement()) ;

return EVAL BODY TAG;

}

return SKIP BODY;

public int doAfterBody () throws JspException

{

// Get next element. This will be assigned
// to the scripting variable named "element"

if (list.hasMoreElements()) {

pageContext.setAttribute
("element", list.nextElement()) ;

Chapter 11: JSP Tag Extensions

return EVAL BODY TAG;

// If no more elements, exit from the loop

return SKIP BODY;

public int doEndTag() throws JspException

{

// getOut () now refers to the original JspWriter

try {
bodyContent .writeOut (pageContext.getOut ()) ;
}

catch (IOException e) {
throw new JspException (e.getMessage()) ;

return EVAL PAGE;

Notice as each element of the enumeration is processed, it is stored in the page context
as an attribute under the name element.

To make the current element available as a scripting variable, we employ a TEI class:

package jspcr.taglib.util;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

/**

* EnumerateTEI

*/

public class EnumerateTEI extends TagExtralInfo

{

public VariableInfo[] getVariableInfo(TagData tagData)

{

return new VariableInfol[] {

231

232 JSP: The Complete Reference

new VariableInfo (

"element", // Variable name
"java.lang.Object", // Class

true, // Create a declaration?
VariableInfo.NESTED // Scope

The getVariableInfo () method in this case returns an array of length 1 containing
aVariableInfo object for the desired scripting variable. The constructor declares that
B The variable name should be element .
B Its class should be java.lang.Object.
B The JSP parser should generate a declaration for the variable.
B The variable should be visible to the JSP page throughout the evaluation
of the body, but not afterward.

The following EnumTest . jsp page shows the tag in action:

)

<%@ page session="false" %>
°

<%@ page import="java.util.*" %>
<%@ taglib prefix="util" uri="/WEB-INF/tlds/util.tld" %>

The scriptlet below loads the properties object.
It could just as easily be loaded from a file.

Properties flavors new Properties() ;

flavors.setProperty ("Vanilla", "The perennial favorite");
flavors.setProperty ("Chocolate", "Rich and smooth") ;
flavors.setProperty ("Strawberry", "Dazzling and fruity");

o\°
A\

<TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0">
<TR><TH>Flavor</TH><TH>Description</TH></TR>

The enumerate tag will evaluate its body

Chapter 11: JSP Tag Extensions

for each item in the properties object.

<util:enumerate enumeration="<%= flavors.propertyNames () %>">
<%

String description = flavors.getProperty((String) element) ;
%>
<TR>

<TD><%= element %></TD>

<TD><%= description %></TD>
</TR>
</util:enumerates

</TABLE>

The enumerate tag appears near the end of the file. Its value is assigned from the
java.util.Enumeration returned by flavors.propertyNames (). Notice the
element variable has no visible declaration—it’s an implicit variable with a fixed
name, similar to request, response, session, and other implicit variables defined
everywhere in the JSP environment. The page uses element twice, once in a scriptlet,
where it’s used to get a property value, and once in a JSP expression, where its string
value is printed in an HTML table.

Let’s examine the servlet code generated by JRun for the enumerate tag. Comparing
this to the flowchart shown in Figure 11-4 can be helpful.

EnumerateTag enumTag = (EnumerateTag)
JRundSPStaticHelpers.createTagHandler
(pageContext, "EnumerateTag") ;

enumTag.setPageContext (pageContext) ;
enumTag.setParent (null) ;
enumTag.setEnumeration(flavors.propertyNames ());

The JSP page specified the value of the enumeration attribute with

[

enumeration="<%= flavors.propertyNames () %>"

This is passed on to the tag handler with a call to its setEnumeration () method.
Next, the generated servlet invokes doStartTag () and checks its return code. Recall
the doStartTag () reads the first element of the enumeration and stores it in the page
context with setAttribute ("element", list.nextElement ()).

233

234 JSP: The Complete Reference

int rc = enumTag.doStartTag() ;
JRundSPStaticHelpers.checkStartval
("EnumerateTag", rc, BodyTag.EVAL BODY TAG, 24);

If the enumeration isn’t empty, the doStartTag () method returns EVAL._BODY_TAG,
which triggers the first pass through evaluating the body:

if (rc == BodyTag.EVAL BODY TAG) {
out = pageContext.pushBody () ;

enumTag.setBodyContent ((BodyContent) out) ;
enumTag.doInitBody () ;

do {
java.lang.Object element =
(java.lang.Object)
pageContext.getAttribute ("element") ;

After setting up the nested body content and calling doInitBody (), the servlet
enters a do while loop. The first statement of the loop is a getAttribute () for the
element variable, which was just set in doStartTag ().

out.print ("\r\n") ;

String description =
flavors.getProperty((String) element) ;

out.print ("\r\n<TR>\r\n <TD>") ;

out .print (element) ;
out.print ("</TD>\r\n <TD>") ;

out .print (description) ;
out.print ("</TD>\r\n</TR>\r\n") ;

}

while (enumTag.doAfterBody () == BodyTag.EVAL BODY TAG) ;

The element variable is then used to print the table entry, and then doAfterBody ()
is called. doAfterBody () repeats the logic, which gets the next element, and sets it as
the element attribute in pageContext. As long as elements are available,

Chapter 11: JSP Tag Extensions

doAfterBody () returns EVAL BODY_TAG, which causes the next loop iteration,
assigning a new value to element as it runs.

out = pageContext.popBody () ;

}
if (enumTag.doEndTag() == Tag.SKIP PAGE) ({
if (true)
return;

Finally, after the enumeration is exhausted, doAfterBody () returns SKIP_BODY
and the loop terminates. The previous JspWriter is popped from the stack, and
doEndTag () dumps the result shown in Figure 11-5.

Synchronizing Scripting Variables

When a scripting variable is defined in a TEI, the JSP container generates servlet
code not only to define the variable, but also to synchronize it with its value inside
the tag handler. Recall the tag handler uses pageContext .setAttribute ()

to assign the desired value. The generated servlet code has a corresponding
pageContext.getAttribute () statement that assigns the value to the scripting
variable after each of the “do” methods in the tag life cycle. Which variables get

/) http://u25nv/fispcr/Chap11/sample/EnumT est jsp - Microzoft In... [H=] B3

J File Edit “iew Fawortez Tool:e Help |

le-»-QRA QAE3 B-S90w

JAQdTBSS I@ http: A Au2Bre/zper/Chapl 1/sample/E numT est.jsp j IZ‘J‘}GD
=l
Flavor Description
Yanilla The perennial favaorite

Strawberry | Dazzling and fruity

Chocolate |Rich and smooth

&L

|@ Daone I_ l_ E‘g Local intranet

Figure 11-5. Output of the enumerate tag test

235

236 JSP: The Complete Reference

updated in this manner depends on their scope as defined in the TEI. Table 11-7
describes the assignment:

Validating Tag Attributes

In addition to defining scripting variables, the TEI provides the public boolean
isValid(TagData data) method in which tag attributes can be validated. In

this method, you can extract the list of attribute names and values from the data
parameter and check whether their values are valid. If not, you can return false

to cause a page compilation error. For example, if a tag has several attributes, each of
which is optional, but one of which must be specified, you cannot specify that semantic
using the <attributes> elements in the TLD alone. The isValid () method is your
only opportunity to do so.

To navigate through the list of attributes, you can call methods in the Taghata
parameter that is passed to isvalid (). Table 11-8 lists some of the methods available.
One drawback of the isvValid () method, however, is no obvious way exists to

emit a meaningful error message. Either the tag as a whole is valid or it isn't.

___| cooperating Tags

Custom tags can interact with each other to perform useful operations. One approach
commonly used is described as syntactic scoping, in which a tag handler calls methods
in its parent classes. This section gives an extended example of the techniques.

Using Syntactic Scoping
Recall that tags can be nested, that is, a tag can be used in the body of another tag. The
TagSupport class provides the means for a tag handler to find the tag handlers of its

Method Scope of Variables Synchronized
doStartTag () AT BEGIN, NESTED

doInitBody () AT BEGIN, NESTED
doAfterBody () AT BEGIN, NESTED

doEndTag () AT BEGIN, NESTED, AT END

Table 11-7. How Scope of Scripting Variables Affects Synchronization

Chapter 11: JSP Tag Extensions

Method Description

public void String getId () Returns the name of the ID attribute, if it
was specified.

public Object Given an attribute name, returns the

getAttribute (String name) attribute value as an Object. If the

attribute’s value is unknown at translation
time (that is, it is specified with a request
time expression), this method returns
TagData.REQUEST TIME VALUE.

public String Given an attribute name, returns the
getAttributeString (String attribute value as a java.lang.String,
name) if possible.

public Enumeration Returns an enumeration of the tag
getAttributes () attribute names. Used in conjunction

with getAttribute (), this can
allow stepping through a list of all
attribute/value pairs.

Table 11-8. Some Useful Methods in TagData

enclosing tags using its findAncestorWithClass () method. This is a static method
that takes two parameters—a reference to the current tag handler (this) and the class
of the parent tag of interest:

OuterTag ot = (OuterTag)

findAncestorWithClass (this, OuterTag.class) ;
if (ot == null)

throw new JspException ("No outer tag found");

Once the parent tag is found, all its public methods can be called directly. The following
section illustrates how this technique can be used.

Example: The switch Tag
We can use syntactic scoping to emulate the Java language switch . .. case construct.
We need three tags:

B switch The outer tag whose body defines the scope of the switch logic. This
tag has a value attribute that defines the condition to be tested and determines
which case block should be executed.

237

238

JSP: The Complete Reference

B case A tagrepresenting one possible case block. We will give it two
attributes: one to specify an exact value to match, another to specify a substring.
A third attribute specifies whether the comparison should be case-sensitive.
We use a TEI class isvalid () method to verify only one of the first two
attributes is specified.

B default The block to be executed if none of the other case blocks succeed.

Here are the TLD entries we need:

<tag>
<name>switch</name>
<tagclass>jspcr.taglib.util.SwitchTag</tagclass>
<bodycontent>JSP</bodycontent >
<info>
The enclosing tag for a switch/case block
</info>

<attributes>
<names>value</name>
<requireds>true</required>
<rtexprvaluestrue</rtexprvalue>
</attribute>
</tag>

<tag>
<names>case</names>
<tagclass>jspcr.taglib.util.CaseTag</tagclass>
<teiclass>jspcr.taglib.util.CaseTEI</teiclass>
<bodycontent>JSP</bodycontent>
<info>

A case block to be included in the body of a switch

</info>

<attributes>
<name>match</name>
<required>false</requireds>
<rtexprvaluestrue</rtexprvalue>
</attributes>

<attribute>
<name>contains</name>
<required>false</requireds>

Chapter 11: JSP Tag Extensions

<rtexprvaluestrue</rtexprvalue>
</attributes>

<attributes>
<names>caseSensitive</name>
<required>false</requireds>
<rtexprvaluestrue</rtexprvalue>
</attributes>
</tag>

<tag>
<name>default</name>
<tagclass>jspcr.taglib.util.DefaultTag</tagclass>
<bodycontent>JSP</bodycontent>
<info>

The default case included in the body of a switch

</info>

</tag>

The logic isn’t particularly complicated. The switch tag provides public accessor
methods for its value property and for a boolean completed property, which keeps
track of whether a case block has matched the value and claimed the switch. Here is
the tag handler:

package jspcr.taglib.util;

import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

/**
* A tag that emulates the switch ... case construct.
* Within the body of this statement there can be
* any number of case tag, including one default tag.
* The first one that matches the text is executed,
* and the rest are bypassed.
*/
public class SwitchTag extends TagSupport
{
// The value attribute. This is the text that
// case statements will compare to.

239

240 JSP: The Complete Reference

private String value;

public void setValue (String value)
{ this.value = value; }

public String getValue ()
{ return value; }

// A flag that indicates whether the switch statement
// is complete. This happens when one of the case
// statements matches the value and is executed.

private boolean complete;

public void setComplete (boolean complete)
{this.complete = complete; }

public boolean isComplete ()
{ return complete; }

/**

* No real setup is required. All this method
* needs to do is return EVAL BODY INCLUDE

*/

public int doStartTag() throws JspException

{

return EVAL BODY INCLUDE;

The case tag is also fairly simple. It finds its enclosing switch tag using
findAncestorWithClass ().The case tag first calls the switch tag’s isComplete ()
method to see whether any other case has already claimed the switch. If so, it returns
SKIP BODY, soits body isn't executed. Otherwise, it calls the switch tag’s getValue ()
method to retrieve the string to match. If the match succeeds, the case tag claims
the switch with setComplete (true) and returns EVAL BODY INCLUDE. Here is
the tag handler listing;:

package jspcr.taglib.util;

import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

/**
* The body of this tag will be executed if it

Chapter 11: JSP Tag Extensions

* satisfies the condition specified in its attributes
* with respect to the value of the enclosing switch tag

*/

public class CaseTag extends TagSupport

{

// Value of an exact string to be matched

private String match;
public void setMatch(String match)
{ this.match = match; }

// Value of a substring that could be contained
// in the switch tag's value

private String contains;
public void setContains (String contains)
{ this.contains = contains; }

// Value of a boolean flag that indicates whether
// the match or comparison should be case sensitive.

private boolean caseSensitive;
public void setCaseSensitive(String flag)

{

caseSensitive = new Boolean(flag) .booleanvValue () ;

public int doStartTag() throws JspException

{

// Find the enclosing switch tag so that we
// can call its methods

SwitchTag switchTag = (SwitchTag)
findAncestorWithClass (this, SwitchTag.class) ;

// If the switch has already been satisfied,
// skip the body of this statement

if (switchTag.isComplete())
return SKIP BODY;

// Test for an exact match, if the match attribute

241

242 JSP: The Complete Reference

// was specified
if (match != null) {

String parentValue = switchTag.getValue() ;
if (!caseSensitive)
parentValue = parentValue.toUpperCase () ;

String thisValue = match;
if (!caseSensitive)
thisvValue = thisValue.toUpperCase() ;

// If exact match, claim the switch
if (parentValue.equals(thisValue))
switchTag.setComplete (true) ;
return EVAL BODY INCLUDE;
// Otherwise, ignore the body
return SKIP BODY;
// Test for an substring match, if the contains attribute
// was specified
if (contains != null) {
String parentValue = switchTag.getValue() ;
if (!caseSensitive)
parentValue = parentValue.toUpperCase () ;
String thisValue = contains;
if (!caseSensitive)

thisvValue = thisValue.toUpperCase() ;

// If parent value contains this substring,
// claim the switch

if (parentValue.indexOf (thisValue) != -1) {
switchTag.setComplete (true) ;
return EVAL BODY INCLUDE;

Chapter 11: JSP Tag Extensions

// Otherwise, ignore the body

return SKIP BODY;

return SKIP BODY;

The TEI verifies that either the match attribute or the contains attribute have
been specified, but not both:

package jspcr.taglib.util;

import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

/**

* Validates the attributes of a case tag
*/

public class CaseTEI extends TagExtraInfo

{

public boolean isValid(TagData tagData)

{

// The tag must contain either the match attribute
// or the contains attribute, but not both.

boolean noMatch =
(tagData.getAttribute ("match") == null);

boolean noContains =
(tagData.getAttribute ("contains") == null);

return (noMatch != noContains) ;

The default tag handler works just like case, except its match condition
is always true. default doesn’t work exactly like its Java counterpart because

243

244 JSP: The Complete Reference

it’s not guaranteed to be executed last, unless it happens to be coded last. Here is
the source code:

package jspcr.taglib.util;

import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

/**

* The body of this tag will be executed if no other
* case tag has been encountered that satisfied

* the enclosing switch tag.

*/

public class DefaultTag extends TagSupport

{

public int doStartTag() throws JspException

{
// Find the enclosing switch tag so that we
// can call its methods

SwitchTag switchTag = (SwitchTag)
findAncestorWithClass (this, SwitchTag.class) ;

// If the switch has already been satisfied,
// skip the body of this statement

if (switchTag.isComplete())
return SKIP BODY;

// Otherwise, claim the switch

switchTag.setComplete (true) ;
return EVAL BODY INCLUDE;

Used together, these tags can test a condition and execute the desired block. This
JSP page illustrates their use:

<%@ page session="false" %>
<%@ taglib prefix="util" uri="/WEB-INF/tlds/util.tld" %>

N
o

Chapter 11: JSP Tag Extensions

String value = request.getParameter ("value") ;
if (value == null)
value = "B";
%>
<H3>The value is <%= value %></H3>
<util:switch value="<%= value %>">

<util:case match="A">
<H3>The match="A" case block was selected</H3>
</util:case>

<util:case contains="B">
<H3>The contains="B" case block was selected</H3>
</util:case>

<util:defaults>
<H3>None of the case blocks were selected</H3>
</util:defaults>

</util:switchs>

When we run the JSP page with a parameter value of A, we get the results shown in
Figure 11-6. With a value of beauty (containing B, case-insensitive), the results are as
shown in Figure 11-7. Finally, if the value is C, which matches none of the case blocks,
the resulting page is Figure 11-8.

http: //u25nv/jspci/Chap11/sample/T estSwitch_jsp?value=A - Micr... =] E3
J File Edit “iew Favorites Toolz Help ‘

|- QAW AP B-STH
J Address I@ http: A fu2Bnwdjzpor/Chapl 1/zamples/ T estSwitch. jzp value=a, j @ Go
=l

The value is A

The match="A" case block was selected

SN K

|@ Daone l_ l_ E‘g Local intranet

Figure 11-6. The switch test with value=A

245

246

JSP: The C

omplete Reference

43 http://u25nv/ispcr/Chap11/sample/T estSwitch.jsp?value=beauty ... =] E3

J File Edit “iew Favorites Toolz Help ‘

J#-2- QR4 AEI B-SEH

J Address IE hitp: Afu2Bre daper/Chapl 1 Asampled T estS witch jspYvalue=beauty j f? Go

= |
The value is beauty
The contains="B" case block was selected
=
|@ Dore ’_,_E‘ﬂ Local intranet y

Figure 11-7. The switch test with value=beauty

3 http: //u2Bnv/izpci/Chap11/sample/T estSwitch_jsp?value=C - Micr.__ =]

J File Edit “iew Favoites TJoolz Help ‘

Je-> -0 A QEI DS

Jf—\gldress @ http: £ u2Bmw/jzpor/Chapl 1 Asample/ T estSwitch.jzp vwalue=C j @GD

|
The value is C

MNone of the case blocks were selected

|&] Done l_ l_ E‘g Local intranet

NI

Figure 11-8.

The switch test with value=C

Chapter 11: JSP Tag Extensions 247

___| Implementation of the DatabaseQuery Example

This chapter concludes with the implementation of the database query example that
was described at the beginning:

<db:connect url="mydatabase">

<db:runQuerys>

SELECT *
FROM FD_GROUP
WHERE FdGp_Desc LIKE 'XF%'

ORDER BY FdGp_Cd
</db:runQuery>

<table border="1" cellpadding="3" cellspacing="0">
<tr><th>Food Group Code</ths><thsDescription</th></tr>
<db: forEachRow>
<tr>
<td><db:getField name="FdGp Cd"/></td>
<td><db:getField name="FdGp Desc"/></td>
</tr>
</db:forEachRows>
</tables>

</db:connect>

The Necessary Tags

Four cooperating tags exist:
connect Opens a database connection and manages implicit
Statement and ResultSet objects

runQuery Reads an SQL statement in its body and tells the connect
tag to execute it

forEachRow An iterator over the ResultSet

getField Retrieves the current value of the named field

248 JSP: The Complete Reference

The Tag Library Descriptor

The TLD for these tags is shown here:

<tag>

<name>connect</name>
<tagclass>jspcr.taglib.jdbc.ConnectTag</tagclass>
<bodycontent>JSP</bodycontent>
<info>Opens a database connection and manages

a Statement and ResultSet object</info>

<attribute>
<names>url</name>
<requireds>true</requireds>
<rtexprvalues>true</rtexprvalue>
</attribute>

</tag>

The connect tag opens a connection and manages a Statement and ResultSet
object. These aren’t exposed as scripting variables; they’re only accessible through
other tags in this library. The connection is closed when the end tag is encountered.
The syntax is

<db:connect url="mydatabase”>

The driver class name could easily be added as another attribute. I made it implicit
here to simplify the JSP.

<tag>

<name>runQuery</name>
<tagclass>jspcr.taglib. jdbc.RunQueryTag</tagclass>
<bodycontent>JSP</bodycontent>
<info>Reads and executes the SQL statement
in the tag body</info>

</tag>

The runQuery tag reads an SQL statement from its body and executes it using the
Statement object created by the enclosing connect tag. It can only be used in the body of
a connect tag. The syntax of the runQuery tag is

<db:runQuery>sql statement</db:runQuery>

Chapter 11: JSP Tag Extensions

The result set is also managed by the connect tag.

<tag>
<name>forEachRow</name>
<tagclass>jspcr.taglib.jdbc.ForEachRowTag</tagclass>
<bodycontent>JSP</bodycontent>
<info>Iterates over the current result set</info>
</tag>

The forEachRow tag iterates over the current result set, so the getField tag can
access its values. This can only be used the body of a connect tag after a runQuery tag.
Its syntax is

<db:forEachRow>

</db:forEachRow>

<tag>
<name>getField</name>
<tagclass>jspcr.taglib.jdbc.GetFieldTag</tagclass>
<bodycontent>empty</bodycontent >
<info>Retrieves a field
from the current result set row</infos

<attributes>
<names>name</name>
<requireds>true</required>
<rtexprvaluestrue</rtexprvalues>
</attribute>

</tag>

The getField tag reads a field from the current result set row and returns its
value as a String. this can only appear in the body of a forEachRow tag. Its syntax is

<db:getField name="fieldName” />

The Tag Handlers

Four tag handlers need to be developed. Because no scripting variables are defined,
we don’t need any TEI classes.

249

250

JSP: The Complete Reference

Connect

The connect tag takes a database URL as an attribute, so the tag handler needs an
instance variable and a setUrl () method:

package jspcr.taglib.jdbc;

import
import
import
import

/**

javax.servlet.jsp.*;
javax.servlet.jsp.tagext.*;
java.io.*;

java.sqgl.*;

* ConnectTag

*/

public class ConnectTag extends TagSupport

{

public static final String DRIVER CLASS

= "sun.jdbc.odbc.JdbcOdbcDriver";

private String url;

public void setUrl (String url)

{

this.url = url;

It defines the Connection, Statement, and ResultSet objects and provides public
accessor methods for each, as well as a public runQuery () method:

private Connection con;

private Statement stmt;

private ResultSet rs;

public Connection getConnection() { return con; }

Chapter 11: JSP Tag Extensions 251

public Statement getStatement () { return stmt; }
public ResultSet getResultSet () { return rs; }

/**

* Runs a query

* @param sgl an SQL statement

*/

public void runQuery (String sqgl)
throws SQLException

rs = stmt.executeQuery(sql) ;

The whole database operation is contained between the start and end tags, so the two
lifecycle methods manage startup and shutdown:

/**
* Loads the driver class, opens a database
* connection, and creates a Statement object
*/
public int doStartTag() throws JspException
{
con = null;
try {
Class.forName (DRIVER_CLASS) ;
con = DriverManager.getConnection (url) ;
stmt = con.createStatement () ;
}
catch (Exception e) {
throw new JspException (e.getMessage()) ;

}

return EVAL BODY INCLUDE;

/**

* Closes the connection and other JDBC objects
*/

public int doEndTag() throws JspException

252 JSP: The Complete Reference

try {

if (rs != null) {
rs.close() ;
rs = null;

}

if (stmt != null) {
stmt.close() ;
stmt = null;

}

if (con != null) {
con.close() ;
con = null;

}

}

catch (SQLException e)
throw new JspException (e.getMessage()) ;

}

return EVAL PAGE;

RunQuery

The runQuery tag does three things:
B Extracts an SQL statement from its body.
B Finds the enclosing connect tag.

B Executes the connect.runQuery() method.

The source code is listed here:

package jspcr.taglib.jdbc;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;
import java.io.*;

import java.sqgl.*;

import java.util.*;

/**
* RunQueryTag

*/

Chapter 11: JSP Tag Extensions

public class RunQueryTag extends BodyTagSupport

{

/**

* Reads the SQL statement in the body of the tag
* and asks the connect tag to execute it.

*/

public int doEndTag() throws JspException

{

// Get the SQL to be run

String sqgl = bodyContent.getString() ;
if (sgl == null)
throw new JspException
("No SQL statement found in body of runQuery tag");

sql = sgl.trim() ;
if (sgl.equals(""))
throw new JspException
("Empty SQL statement found in body of runQuery tag");

// Locate the enclosing connect tag

ConnectTag connectTag = (ConnectTag)
findAncestorWithClass (this, ConnectTag.class) ;
if (connectTag == null)

throw new JspException
("runQuery must be used in the body of a connect tag");

// Tell the connect tag to run the query

try {
connectTag.runQuery (sql) ;
}

catch (SQLException e) {
throw new JspException (e.getMessage()) ;
// Normal return

return EVAL PAGE;

253

254

JSP: The Complete Reference

ForEachRow

This is an iterator tag, similar to the enumerate tag described earlier in this
chapter. Like runQuery, it first gets a reference to the connect tag using
findAncestorWithClass (). From the connect tag handler instance, it can get
the result set using getResultSet (). Using a private convenience method called
incrementRow (), it advances the result set to the next row. Either doStartTag ()
or doAfterBody () can detect the end of the result set and return SKIP_BODY
accordingly.

package jspcr.taglib.jdbc;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

import java.io.*;

import java.sqgl.*;

/**

* ForEachRowTag

*/

public class ForEachRowTag extends BodyTagSupport

{

private ConnectTag connectTag;

/**
* Sets up for the first iteration of the result set
*/
public int doStartTag() throws JspException
{
connectTag = (ConnectTag)
findAncestorWithClass (this, ConnectTag.class) ;
if (connectTag == null)
throw new JspException
("forEachRow must be in the body of a connect tag");
return incrementRow () ;

/**

* After each row has been evaluated,

* increment the result set and indicate

* when end is reached.

*/

public int doAfterBody () throws JspException

Chapter 11: JSP Tag Extensions

return incrementRow () ;

/**

* When end tag is reached, dump the results
*/

public int doEndTag() throws JspException

{

try {
pageContext.getOut () .print (bodyContent.getString()) ;
}

catch (IOException e) {
throw new JspException (e.getMessage()) ;

}

return EVAL PAGE;

/**

Convenience method for getting the next row.
Used by both <CODE>doStartTag</CODE>

and <CODE>doAfterBody</CODE>.

Returns EVAL BODY TAG if a row exists,

SKIP BODY otherwise.

/

private int incrementRow () throws JspException

{

L T

ResultSet rs = connectTag.getResultSet () ;

if (rs == null)
throw new JspException
("No result set found - no query has been run");

// Get the next row or indicate that there are no rows
boolean hasNext = false;
try {

hasNext = rs.next();

catch (SQLException e)
throw new JspException (e.getMessage()) ;

255

256 JSP: The Complete Reference

return (hasNext) ? EVAL BODY TAG : SKIP_BODY;

GetField

Like its counterparts runQuery and forEachRow, getField uses public methods in
the enclosing connect tag. It extracts the specified field value from the ResultSet
and sends it to the current output writer.

package jspcr.taglib.jdbc;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;
import java.io.*;

import java.sqgl.*;

/**

* GetFieldTag

*/

public class GetFieldTag extends TagSupport

{

private String name;

public void setName (String name)

{

this.name = name;

/**

* Returns the value of the specified

* field in the result set as a string.

*/

public int doEndTag () throws JspException

{

Chapter 11: JSP Tag Extensions 257

// Get the enclosing Connect tag

ConnectTag connectTag = (ConnectTag)
findAncestorWithClass (this, ConnectTag.class) ;
if (connectTag == null)

throw new JspException
("getField must be in the body of a connect tag");

// Get its current result set

ResultSet rs = connectTag.getResultSet () ;
if (rs == null)
throw new JspException
("No result set exists - no query has been run");

try {

// Get the specified field and write it
// to the output stream

String value = rs.getString(name) ;
JspWriter out = pageContext.getOut () ;
out .print (value) ;

}

catch (SQLException e)
throw new JspException (e.getMessage()) ;

}

catch (IOException e) {
throw new JspException (e.getMessage()) ;

// Normal completion

return SKIP BODY;

When the database query is run, it produces the results shown in Figure 11-9.

258 JSP: The Complete Reference

J File Edit “iew Favortes Tool: Help |
le-2 QR A QB BD-SETN
JAgIdress I@ hitp: A4u2BmejzperndChapl1 /sample/DE Queny. jsp j WGD
=l
Selected Food Groups
Food Group Code Description
0300 Baby Foods
0400 Fats and Qils
[uj=Ixln] Fruits and Fruit Juices
1500 Finfish and Shellfish Products
2100 Fast Foods
=
|@ Dane I_I_E‘g Local intratet y

Figure 11-9. Output of the database query

___ | Summary

Custom tags are an elegant, robust method of extending the JSP authoring environment,
allowing development teams to provide a toolkit of application-specific JSP tags that
can be used by page designers who aren’t proficient in Java programming. A tag’s
functionality is implemented by a Java class called a tag handler, which provides
methods that are called by the JSP container at various points in the tag’s life cycle.
Sets of related tags can cooperate to accomplish complex tasks. Collections of tag
handlers and configuration information are packaged in tag libraries, which have a
vendor-independent structure and can be deployed with a minimum of effort.

Cglfnplete

Reference

Part 111

JSP in Action

This section looks at how JSP works with major components of the Java
environment. After gaining a background in HTML forms and JDBC
database access, you'll examine advanced topics such as session
management, threading, JavaBeans, and XML. Chapters 17 and 18
cover debugging and deploying Web applications, respectively, and
Chapter 19 presents a complete case study incorporating techniques

from throughout the book.

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This page intentionally left blank.

The

Reforince
Chapter 12

HTML Forms

262 JSP: The Complete Reference

this input usually comes from HTML forms. Like their paper counterparts,
HTML forms consist of a set of labels and entry fields arranged in a logical
sequence. When a user fills out a form and clicks the Submit button, the entry field
names and values are transmitted to a program associated with the Web server for
processing. Figure 12-1 illustrates a typical form.
HTML provides a basic set of elements or input controls that can accommodate
a wide range of data entry requirements. The set includes

Most applications need user input at some point and, in the Web environment,

B Text entry elements Rectangular boxes for single line or multiple line input.

B Selection menus Lists of options displayed in a drop-down list box. These
can have an external form displayed on the screen and an internal code value
associated with the selected item or items.

#Z} Contact Us - Microsoft Internet Explorer

J File Edit Wiew Favorites Tool: Help |

J€«-2 QA QEI B-STH

J Address I@ hitp: /Au25ny/lyricnate/contactusindex. jspYsessionid=1631 5038981 8747910 j #Go

Products Contact Us

et m

From: IJ. Brahms
To IInfDrmation Technologyj
foure-mall Jighannes@jb.org
Phane nurmber; I(gw) LEE-1833 @¥Day ‘O Evening
Search e e :
Contact us omrments: Love your ScoreWriter software! -l
=l

Flease check all that apply:
¥ Cormrment only, no response necessary
¥ Please add me to your mailing list

Clearl

AN

|@ ’_ ’_ E'g Local intraret

Figure 12-1. An HTML form used for feedback from a Web site

Chapter 12: HTML Forms

B Buttons Rectangular controls that simulate a pushbutton on a control panel.
These are most often used to initiate a command, such as to submit a form or
clear the input fields.

B Check boxes Small squares that can be either checked or unchecked, on
or off. Check boxes can be used to specify options that have yes or no values.

B Radio buttons Similar to check boxes, radio buttons indicate yes or no values.
However, they usually occur in mutually exclusive groups, so selecting one
causes all the others to be unselected.

B File selection elements Controls that enable a user to specify the name of a
file to be uploaded. Typically, this control includes a Browse button that causes
a file selection dialog box to pop up.

B Hidden elements Nonvisual elements used to create parameters with
constant values.

The set of elements that can be used in an HTML form is standardized and formally
documented in the HTML specification (available at http:/ /www.w3.org/TR/html4/).
This specification is the work of the World Wide Web Consortium (W3C), which updates it
periodically as new features emerge. As might be expected, not all browsers implement
all features. This chapter uses HTML 4.01 as the basis for describing how forms work, but
features mainly those elements and attributes that are widely supported.

This chapter describes elements used in HTML forms, how they are used, and how
browsers render them. It discusses how forms are validated and submitted. The chapter
then briefly examines the server side of forms handling.

The FORM Element

The FORM element is the basic structure behind HTML forms and has three main purposes:

B To group input elements together syntactically
B To identify a server-side program that handles the form processing

B To specify what data values are to be sent and in what form

A FORM element is described in HTML with the <FORM> tag. The syntax of this element
is shown here:

<FORM
action="uri"”
method="method”
enctype="“content type”
accept-charset="charsets”

263

264 JSP: The Complete Reference

accept="content types”
name="form name” >

</FORM>

The attributes and their values are described in the following section.

Attributes of the FORM Element

Of the six attributes listed, the only required one is act ion. In practice, attributes other
than action and method are rarely used. Here are the definitions of each attribute.

The action Attribute

When a form is completed and the user clicks the Submit button, the Web browser
creates an HTTP request that packages all the form data and sends it to a program
on some Web server. This program is specified in the act ion attribute.

The value of the action attribute must be an HTTP Uniform Resource Identifier
(URI). (See http:/ /www.ietf.org/rfc/rfc2396.txt for the formal definition of a URL)
This means it has the form

[http:/ / <servername>][/]<path>

To submit the form, the Web browser opens a socket connection to the specified
server (which defaults to the server from which the HTML page was downloaded)
and makes an HTTP request using the specified path. The path typically points to
a servlet, JSP page, or CGI program. This program receives the HTTP request and
the form data, either in the URI itself or in an input stream, depending on the HTTP
method used (see the following method).

Specifying a query string on the URI is possible. In this case, the parameter(s)
encoded in the query string is merged with those specified in the body of the form.
This is usually unnecessary because a hidden field can accomplish the same purpose.

The method Attribute

The HTTP protocol provides a number of request types used for file transfer, download,
delete, and diagnostic operations. Of these, only GET and POST are valid for use in
HTML forms. The method attribute is where this is specified.

An HTTP GET or POST request is ordinarily interpreted by the Web server as a
request to retrieve the document named in the URL. When the Web server has been
configured to handle servlets, CGI programs, or other server-side scripting
environments, it interprets requests for those resources as requests to invoke them as
programs. The output produced by such a program (typically an HTML document) is
sent back to the requester, the same as if it were a static document requested by name.

The difference between the GET and POST methods when used in an HTML form
is in how they supply input data to the server process:

Chapter 12: HTML Forms

B GET Form values are appended to the URI as a query string

B POST Form values are supplied in the input stream

Although either method can be used, and the servlet API makes the choice fairly
transparent, several characteristics should be taken into account. Because GET requests
cause input values to be appended to the request URI, they are visible as name/value
pairs on the browser address line and in Web server logs. This makes GET undesirable
for sending sensitive data like passwords. Moreover, some servers and browsers may
have restrictions on the length of URL’s they can handle. In addition, GET requests
are described in the HTTP specification as idempotent, which means they can safely
be repeated without undesirable side effects. Under certain circumstances, this means
a server can tell a client to reuse its existing copy of a resource rather than sending it a
new copy. This is usually not what you want as a response from form input. For these
reasons, POST is usually a better choice for the request method.

The method attribute is optional. If not specified, GET is used by default. The value
of the attribute can be specified in either uppercase or lowercase.

The enctype Attribute

Form input values can be transmitted to the server in several different ways. The
method of encoding the values into a data stream is described as the content type,
and is specified in the enctype attribute when the POST method is used. Two
commonly used encodings exist

B application/x-www-form-urlencoded

B multipart/form-data

application/x-www-form-urlencoded Ifnot specified (and it usually isn't),
the value of the enctype attribute is application/x-www-form-urlencoded. (See
RFC 1738, available at http:/ /www.freesoft.org/CIE/RFC /1738 /index.htm, for a complete
discussion of URL encoding.) This encoding technique involves the following steps:

1. Replace all nonblank special characters' in input element names or values with
$xx, where xx is the two-digit hexadecimal value of the corresponding ASCII
character code.

2. Replace any spaces with a plus (+) sign.

1 Some disagreement exists about which characters these are. RFC 1738 describes them as any
nonalphanumeric character other than “$-_.+!*' () ,”. However, Internet Explorer, Netscape
Navigator, and java.net. URLEncoder limit the exclusions to only “~ . *”. At any rate, because both
the encoding and decoding are done by programs that agree, this isn’t a real problem.

265

266

JSP: The Complete Reference

3. Combine each resulting pair of names and values with an equals (=) sign
between them.

4. Connect the resulting name=value strings in the order they occur in the form,
separating them with ampersands (&).

The server process unwinds the encoding by reversing each step, recovering the
original parameter names and values.

For example, if a form contains an input field named product, with a value of
“Great Music@Home”, and another field named quantity, with a value of 3, the
encoded string would be

product=Great+Music%40Home&quantity=3

The purpose of URL encoding is to make it safe to append character strings to a
URL. If spaces, quotation marks, or other delimiter characters appear in a URL, they
may confuse programs that process them.

multipart/form-data multipart/form-data isanewer approach used
primarily to support file uploading. (RFC 2388 (http://www.ietf.org/rfc/rfc2388.txt)
describes the use of multipart/form-data with HTML forms.) In this encoding, each
input field and its value are sent in their own block in the input stream. A special
delimiter string called a boundary marks the beginning and end of each block. The
boundary is a pseudorandom string chosen by the Web browser and is specified
in the Content - Type header. Within each block are one or more HTTP headers,
followed by a blank line, and then a line containing the value of the input field. The
field name is passed in the Content -Disposition header.

So, using the previous example, if a form contains the input fields product with
a value of “Great Music@Home” and quant ity with a value of 3, the browser would
create an HTTP request that contains something like this:

POST /someURI HTTP/1.0
Content-Type: multipart/form-data;boundary=7d025a324c0138
Content-Length: 178

--7d025a324c0138
Content-Disposition: form-data; name="product"

Great Music@Home
--7d025a324c0138

Chapter 12: HTML Forms

Content-Disposition: form-data; name="quantity"

3
--7d025a324c0138--

The main disadvantage of multipart/form-data encoding is it isn’t directly
supported in the current servlet API. That is, the individual field names cannot be
retrieved with get ParameterNames (), and their values cannot be read with
getParameterValues ().Reading and parsing the input stream to obtain this
information is necessary.

The accept-charset Attribute

A character set in HTTP use is a set of rules for converting a set of bytes to a set of

characters. The most widely used character set is ISO-8859-1, a superset of ASCII

that maps the additional byte values in the range 127-255. If the accept -charset

is used, it should contain a list of character set values separated by commas or blanks.
The purpose of accept -charset is to indicate which character sets the server

program can interpret and process. In practice, however, this attribute is rarely used

and, indeed, seems to be ignored by Internet Explorer and Netscape Navigator.

The accept Attribute

A FORM tag can indicate the content types its server-side handler program is designed
to accept. If specified, the accept attribute must contain a comma-separated list of
content types, such as text /html, or image/jpg. This is only a hint to the Web browser,
however, and the browser is free to ignore it (which most do).

The name Attribute

A form can have a name by which it is referred to in <SCRIPT> sections elsewhere in
the document. For example, in the following form:

<form
method="post"
action="diag/ShowParms.jsp"
name="prodform"
onsubmit="return checkform() ;"
<pre>
Product: <input type="text" name="product"
Quantity: <input type="text" name="quantity"
</pre>
</forms>

267

268

JSP: The Complete Reference

where checkform () is a JavaScript function that validates form input fields,
checkform() canread the values of the two input fields as document . prodform.
product.value and document . prodform.quantity.value, respectively.

The HTML specification deprecates the name attribute in favor of the 1d attribute,
however, id isn’t yet recognized by the JavaScript document object model. name is still
a better choice if you need to integrate your form with JavaScript.

Form Input Elements

Within the body of a <FORM>. . . </FORM> tag, the individual data fields are described.
The HTML consists of descriptive labels for each field and the appropriate HTML tags
that create the required controls. Visual layout is usually accomplished with an HTML
table, so field labels and controls are horizontally and vertically aligned. The following
HTML produced the form shown in Figure 12-1:

<form method="post" action="diag/ShowParms.jsp">
<table border="0" cellpadding="3" cellspacing="0">

<tr valign="top">

<td>From:</td>

<td><input name="from" type="text" size=32></td>
</tr>

<tr valign="top">
<td>To:</td>
<tds>
<select name="to" size=1>
<option value="CS">Customer Service
<option value="EX">Executive
<option value="FI">Finance
<option value="HR">Human Resources
<option value="IT">Information Technology
<option value="MK">Marketing
<option value="FA">Facilities
<option value="PC">Purchasing
<option value="SP">Shipping
</select>
</td>
</tr>

<tr valign="top">

Chapter 12: HTML Forms

<td>Your e-mail:</td>
<td><input name="email" type="text" size=20></td>
</tr>

<tr valign="top">
<td>Phone number:</tds>
<td>
<input name="phone" type="text" size=20>
<input name="dayphone" type="radio" wvalue="1" checked>Day
<input name="dayphone" type="radio" wvalue="0">Evening
</td>

</tr>

<tr valign="top">
<td>Comments:</td>
<td>
<textarea name="comments" rows=5 cols=40></textareas
</td>
</tr>

<tr valign="top">
<td colspan=2>

Please check all that apply:

<input name="category" type="checkbox" value="1">
Comment only, no response necessary

<input name="category" type="checkbox" value="2">
Please add me to your mailing list

</td>
</tr>

<tr valign="top">
<td> </td>
<tds>
<input type="submit" value="Send">
<input type="reset" value="Clear">
</td>
</tr>

<input type="hidden" name="remoteHost"

269

270 JSP: The Complete Reference

value="209.170.132.238">

<input type="hidden" name="userAgent"

value="Mozilla/4.0 (compatible; MSIE 5.0; Windows NT; DigExt)">
</table>

</forms>

We use this form in the examples throughout this section.
Four sets of HTML tags are used to create form input elements:

<INPUT> A generic tag used for several specific element types.
<SELECT> and <OPTION> Used to create a menu or a drop-down list box.
<TEXTAREA> Used for multiline text input.

<BUTTON> Used to create submit, reset, and general purpose pushbuttons. This
tag isn’t yet widely supported and, for this reason, will not be covered here.

Elements Created with the INPUT Tag

The HTML INPUT tag is used for a number of element types. It has a large number of
attributes, many of which are specific to only certain field types. The following syntax
diagram describes those attributes common to most types:

<INPUT

type="text | password | checkbox | radio | submit |
reset | file | hidden | image | button"
name="name”

value="value”

size="size”>

where the attributes are defined as follows:

type="type” indicates the specific field type to be used. If not specified,
defaults to text.

name="name” is used to assign an identifier to the field so it can be
manipulated by scripts or style sheets. This is also the name by which
the field can be retrieved by the server program.

value="value” can be used to assign an initial value to the field.

size="size” indicates its visual width, either in pixels or characters (for text fields).

In addition to these attributes, INPUT tags can specify event handlers that invoke
scripting actions in the browser when certain events occur. The value of the event

Chapter 12: HTML Forms

handler attribute is a snippet of scripting code, typically JavaScript. Event handler
attributes are named after the event they handle, with a prefix of “on”:

onfocus occurs when a user tabs to the field or clicks the mouse in the field,
so it receives the keyboard focus.

onblur occurs when a user tabs or clicks out of the field, so it loses the
keyboard focus.

onselect occurs when some text is selected (not supported by Netscape
Navigator).

onchange occurs when a user changes the control’s value, and then commits
the change by tabbing or clicking out of the field.

When a form is submitted, the browser extracts the name and value of each control,
converts these according to the encoding type specified (or implied) on the <FORM> tag,
and sends the resulting data stream to the server process.

The following sections consider each <INPUT> type:

Text

This is the simplest and most common <INPUT> type, used for entering a single line of
text. Its syntax is as follows:

<INPUT

type="text”
name="name”
value="value”

size="size”
maxlength="maxlength”>

with the attributes having the following meanings:

type="text” indicates this is a text control.

name="name” specifies a name by which scripts can refer to this control.
This is also the name by which the text can be retrieved by the server program.

value="value” can be used to assign an initial text value. This attribute
is useful when a form appears on the same page as the output of the form
processing program.

size="size” specifies the display width. If not specified, the browser chooses
a default size, which may be unsuitable. Specifying a preferred size is best.

maxlength="maxlength” sets a limit on the number of characters that can be
typed into the field.

271

272 JSP: The Complete Reference

A TEXT input element is typically displayed as a rectangular box. For example, the
HTML shown here,

<tr valign="top">

<td>From:</td>

<td><input name="from" type="text" size=32></td>
</tr>

might be rendered like this:

From: J. Brahms

Password

A variation on the text control is the password control. The only difference is the

characters a user types aren’t visible onscreen. Instead, a mask character, such as an
asterisk, is displayed for each character typed. The syntax of the password input tag
is shown here:

<INPUT
type="password”
name="name”
value="value”
size="size”
maxlength="maxlength”>

with the attributes having the same meaning as they do for the text input tag.
A password input element is also typically displayed as a rectangular box.
For example, the HTML shown here, used in a technical support application

<tr valign="top">

<td>Support ID:</td>

<td><input name="suppid" type="password" size=10></td>
</tr>

might be rendered like this:

Support 1D l—

Chapter 12: HTML Forms 273

| This is a minimal form of security, designed simply to prevent prying eyes from seeing
what is typed in a password field. The characters transmitted to the server process,
however, are those the user originally typed, not the asterisks. Using a password control
doesn’t encrypt or otherwise hide the value of the field, except visually as it is typed.

Checkbox

A check box control is used to present an option that’s either true or false. Its syntax is
shown here,

<INPUT
type="checkbox”
name="name”
value="value”

checked>
with the attributes defined as follows:

B type="checkbox” indicates this is a check box control.

B name="name” specifies a name by which scripts can refer to this check box.
This is also the name by which the check box value can be retrieved by the
server program. A group of check boxes can have the same name if they
represent multiple values of the same field, which aren’t mutually exclusive.

B value="value” can be used to specify the value returned when this box is
checked. If not specified, the value defaults to the two character string on.
(That’s on, not true, 1, yes, or checked.)

B checked, if present, indicates the check box has an initial selected state.
A check box supports one additional event handler attribute:

B onclick occurs when the user clicks the check box;

and it does not support the onchange event.
A check box is usually rendered as a small square box, with a check mark present or
absent, reflecting the boolean value of the control. For example, the HTML shown here,

<tr valign="top">

<td colspan=2>

Please check all that apply: <brs>

<input name="category" type="checkbox" value="1">
Comment only, no response necessary

<input name="category" type="checkbox" value="2">
Please add me to your mailing list

274

JSP: The Complete Reference

</td>
</tr>

might look like this:

Flease check all that apply:
W Comment only, No reSpOnsSe NeCRSSany
W Please add meto wour mailing list

Radio

A radio control, like a check box, is used to present an option that is either true or false.
The difference is, a group of radio buttons are mutually exclusive in operation. When
one is clicked, any others with the same name attribute are cleared. In this respect, they
operate like the buttons on a car radio—when one is pushed in, any others are pushed
out. The syntax of the radio control is shown here

<INPUT
type=“radio”
name="name”

value="value”
checked>

with the attributes defined as follows:

B type="radio” indicates this is a radio button control.

B name="name” specifies a name by which scripts can refer to this radio button.
This is also the name by which the radio button value can be retrieved by the
server program. A group of radio buttons can have the same name, if they
represent mutually exclusive values of the same field.

B value="value” specifies the value returned with the form when this button is in
a selected state. This is a required attribute.

B checked, if present, indicates this radio button is the initially selected one of
the group.

Like the check box, a radio button supports the onclick event, but not onchange.
A radio button is usually rendered as a small circle, with an inner dot present or
absent, reflecting the Boolean value of the control. For example, the HTML shown here,

<tr valign="top">
<td>Phone number:</tds>

Chapter 12: HTML Forms

<td>
<input name="phone" type="text" size=20>
<input name="dayphone" type="radio" wvalue="1" checked>Day
<input name="dayphone" type="radio" wvalue="0">Evening
</td>

</tr>

might look like this:

Phone number; ||:9-| 9) 555-1833 = Dy s Evening

Submit

To submit a form to the server, there must be a way of indicating the user is done
entering data. This is the role played by the submit input type. A Submit button is
unlike other controls because it ordinarily does not contribute to the data stream sent
to the server. Here is the Submit button’s syntax,

<INPUT
type="submit”
name="name”
value="value”>

with the attributes defined as follows:

B type="submit” indicates this is a submit control.

B name="name” specifies a name by which scripts or the server program can
refer to this Submit button. This is normally unnecessary from the standpoint
of the server because it’s clear the Submit button must have been clicked or else
the form wouldn’t have been submitted. It can be useful, however, if several
Submit buttons are in the form and each one has a different value.

B value="value” specifies the value displayed on the button (and returned
with the form, if the name attribute is also present). If not specified, defaults
to “Submit Query” in Internet Explorer 5.x and Netscape
Communicator 4.75. Other browsers may supply a different
default.

This control supports the onclick event, but not onchange.
A Submit button is usually rendered as a rectangular pushbutton with the text
specified in the value attribute. For example, if a Submit button is coded like this,

<input type="submit" value="Send">

275

276

JSP: The Complete Reference

it might appear like this:

Send

Reset
Closely related to Submit is Reset, which is used to set all controls in the form back to
their initial values. Like the Submit button, Reset does not contribute to the data stream

sent to the server. Its syntax is,

<INPUT
type=“reset”
value="value”>

with the attributes defined as follows:

B type="“reset” indicates this is a reset control.

B value="value” specifies the value displayed on the button (and returned with the
form, if the name attribute is also present). If not specified, defaults to “Reset”.

This control supports the onclick event, but not onchange.
A Reset button is usually rendered as a rectangular pushbutton with the text
specified in the value attribute. For example, if a Submit button is coded like this,

<input type="reset" value="Clear">

it might appear like this:

Clear

File

Some applications call for files to be uploaded to the server. For example, technical
support applications may handle stack traces sent in by users. Bulletin board systems
may accept file submissions. Web pages that are front ends to applications like these
can use the file input control. Here is its syntax,

<INPUT
type="file”
name="name"”
size="size” >

Chapter 12: HTML Forms 277

with its attributes defined as follows:

B type=“file” indicates this is a file control.

B name="name” specifies a name by which scripts can refer to this file control.
This is also the name by which the field will be known to the server program,
although in a different format, as you soon see.

B size="size” indicates the visual width of the file name input field.
A file control is typically rendered as a text field with an associated Browse button.

The filename can be entered directly in the text field, or the user can click the button to
use a file selection dialog box:

Browse.. |

Two changes must be made to a form for it to use the file control:

B The request method must be POST.

B The encoding type (specified in the enctype attribute in the <FORM> tag)
must be multipart/form-data.

If these conditions aren’t met, the control is still displayed, but is treated like an
ordinary text input field—all that will be sent to the server is the filename.

More significant changes also must be made to the server program. It must be
able to extract the file contents, as well as the other nonfile parameter values, using
the multipart/form-data encoding format discussed earlier in this chapter.

Limitations can also be imposed by the Web server on the size of files that can be
Note e : .
uploaded. The purpose of these restrictions is to prevent denial of service attacks

that use huge files to bring down the Web server.

As an example of a file upload application, suppose LyricNote.com sponsors a
contest in which users can upload MIDI files of their own musical compositions”. The
winner(s) of the contest would receive music software products that LyricNote sells.
Figure 12-2 shows the input form.

2 MIDI (Musical Instrument Digital Interface) uses a file format in which musical notes are described
rather than actually recorded. Their content is re-created by MIDI-compatible instruments or
media players.

278 JSP: The Complete Reference

The following HTML generates the form:

<form method="post"
action="http://u25nv/lyricnote/servlet/midi_ contest"
enctype="multipart/form-data"
>
<table border="0" cellpadding="3" cellspacing=0>
<tr valign="top">
<td colspan="2">
Are you a budding composer?
Submit a MIDI file of your own composition
for a chance to win a copy of ScoreWriter 4.5.
Click
<A HREF="product/midi contest/rules.html"shere
for official rules.
</td>
</tr>

<tr valign="top">

<td>Your name:</td>

<td><input name="name" type="text" size=32></td>
</tr>

<tr valign="top">

<td>Your e-mail:</td>

<td><input name="email" type="text" size=20></td>
</tr>

<tr valign="top">

<td>Title of composition:</tds>

<td><input name="title" type="text" size=48></td>
</tr>

<tr valign="top">

<td>MIDI file name:</td>

<tds><input type="file" name="midifile" size=32></td>
</tr>

<tr valign="top">
<td> </td>
<td>
<input type="submit" value="Send">

Chapter 12: HTML Forms

<input type="reset" value="Clear">
</td>
</tr>

</table>
</form>

When the form is submitted, the browser generates an HTTP request with a data
stream in multipart/form-data format that contains, in part, the following:

Content-Type: multipart/form-data;
boundary=--------------------------- 7d01012174012c¢
Content-Length: 1507

————————————————————————————— 7d01012174012¢
Content-Disposition: form-data; name="name"

S. Vetter
————————————————————————————— 7d01012174012¢
Content-Disposition: form-data; name="email"

vetter@lyricnote.com
————————————————————————————— 7d01012174012c¢
Content-Disposition: form-data; name="title"

It-B-Gone

————————————————————————————— 7d01012174012c
Content-Disposition: form-data; name="midifile";
filename="C:\my midi files\Itbgon.mid"
Content-Type: audio/mid

MThd... (binary data not shown)
————————————————————————————— 7d01012174012c--

We can see the four input fields are present, each in their own blocks delimited by
the boundary string. Each block has a Content -Disposition header that specifies
the field name. The last block, which contains the uploaded file, also has a filename
attribute on its Content -Disposition header that gives the original file name on
the client system, as well as a Content - Type header, which indicates the file data is
in a binary format known as audio/mid. The server program can parse the data stream
and extract the field values and file content.

279

280 JSP: The Complete Reference

/) MIDI Contest - Microsoft Internet Explorer [_ 1ol =]
J File Edit ‘“iew Favortes Toolz Help |

|¢-3 QA Q=S B SHN

J.&gdless I@ hittp: £ u2BrAprichateproducts /midi_cantest/index. jsp j ﬁGo

[% The Lyric Note

Producfs MIDI Contest

Are you a budding cormposer? Submit & MIDI file of your own composition for a
chance to win a copy of ScoreWriter 4.5, Click here for official rules.

Your name: |5_ Watter

Your e-mail:

|vener@lyricnute.cum

0 Title of |It—EI—Gone
Search cormposition:
Contact us

WD file name: |Chrmy_midi_files\tgon.mid

Clear |

"
. Browse. . |

N

|@ ’_ ’_ E‘g Local intranet

Figure 12-2. A form that includes a file upload input field

Hidden

Not all input comes from the user, at least not directly. Some forms may use
constants that are hard coded or dynamically generated. An INPUT element
with type="hidden” can be used for this purpose. Its syntax is shown here,

<INPUT
type="hidden”
name="name"”
value="value” >

and the attributes have the following meanings:

B type="hidden” indicates this is a hidden control.

B name="name” specifies a name by which scripts can refer to this control.
This is also the name by which the text can be retrieved by the server program.

Chapter 12: HTML Forms

B value="value” must be used to assign an initial text value.

As you might guess, a hidden field has no visual representation. Its only purpose
is to create a parameter with a constant value. This might be a transaction code of some
kind, which a dispatching servlet would use as a key to a table of other classes. More
often, though, a hidden field has a value that’s dynamically generated by the servlet
or a JSP page that created the HTML. For example,

<input type="hidden" name="remoteHost"
value="<%= request.getRemoteHost () %>">

<input type="hidden" name="userAgent"
value="<%= request.getHeader ("user-agent") %>">

would store the IP address or host name on which the Web browser is running
and a string identifying the browser software and version number as hidden fields
in the form. These fields might be useful to technical support people working on a
problem with the form.

Image

An image can be used as an input field in which the user clicks with the mouse rather
than typing with the keyboard. The information in this case is the location within the
image of where the mouse click occurred. The image input type can be used for this
purpose. Its syntax is shown here,

<INPUT
type="image”
name="name"”
src="imageurl”>

and the attributes have the following meanings:

B type="image” indicates this is an image control.

B name="name” specifies a name by which scripts can refer to this control. This
is also the name by which a mouse click location can be retrieved by the server
program.

B src="imageurl” is the URL of an image file.

Two parameters are created in the data stream for an image control, one each for
the x and y coordinates of the click. The coordinates are given in units of pixels and
are relative to the top-left corner of the image, which is (0, 0). The parameter names
are composed of the image control name with “.x” or “.y” appended. For example,

281

282 JSP: The Complete Reference

a form might contain an image of a staff of musical notation and invite the user to click
the desired note:

Click the Note

Fal

s

LT

If the image input control were coded like this,
<input type="image" name="staff" src="images/clef/tcstaff.png">

and if the user clicked the note C above middle C, approximately at (108, 40), the
resulting data stream would be this:

staff.x=108&staff.y=40

Clicking an image control causes the form to be submitted. It isn’t necessary for the
user to click the Submit button.

Button

Besides the Submit and Reset buttons, a generic Button input type exists. Its syntax is
shown here,

<INPUT
type="button”
name="name"”
value="value” >

with the attributes defined as follows:

B type="button” indicates this is a button control.
B name="name” specifies a name by which scripts can refer to this button.
B value="value” specifies the value displayed on this button.

For this control to be useful, it must define the onclick event handler attribute.
A JavaScript function can then refer to the button name and value.

Chapter 12: HTML Forms 283

Elements Created with select and option

The select and option tags can be used together to create a scrollable list of menu
items. Referring to the customer feedback example in Figure 12-1, the user selects the
destination of the form from a drop-down list. The HTML used to create this list is
shown here:

<select name="to" size=1>
<option value="CS">Customer Service
<option value="EX">Executive
<option value="FI">Finance
<option value="HR">Human Resources
<option value="IT">Information Technology
<option value="MK">Marketing
<option value="FA">Facilities
<option value="PC">Purchasing
<option value="SP">Shipping
</select>

The syntax of the select tag is shown here,
<select name="name” size="number”"multiple> options </select>
where the attributes mean the following:

B name="name” assigns a name by which the server program can refer to the list.

B size="number” indicates the number of elements visible at one time; the height
of the list box. If the number is 1, the list is a drop-down menu.

B multiple, if specified, lets the user select more than one item.
Note, the <select> tag must be closed by a </selects>.
The heart of the select list is the set of option tags with their associated values

and descriptions. Frequently, such lists are dynamically generated from a database
query. The option tag has the following syntax,

<option value="value” selected> text </option>
where

B value="value” specifies the value returned with the form, if this item is
selected. If this attribute isn’t specified, the body of the option tag is returned.

B selected, if present, preselects the item.

284

JSP: The Complete Reference

The text between the start and end tags (referred to as the body) is what’s
actually displayed in the list box. The closing </option> tag isn’t required
and is frequently omitted.

When the form is submitted, the value of the selected item is the value associated
with the select element. In the previous example, if the user selected the last item in
the list, the value returned in the data stream would be this:

to=SP

If the multiple attribute is specified on the <select > tag, and the user selects
multiple items, the parameter name then appears multiple times in the data stream
associated with different values. So, if the user had selected not only shipping, but
finance and marketing as well, the data stream would look like this:

to=FI&to=MK&to=SP

The textarea Element

Whereas the text and password input fields are single-line only, the textarea
element can accept multiple lines. This makes the textarea element useful for
entering comments or other free-form text, which could be longer than one line.
Both a height and width can be specified, and scrollbars are added by the browser
as necessary. The syntax of textarea is as follows,

<textarea name="name” rows="number” cols="number”>
... text ...
</textarea>

where

B name="name” assigns the name by which this field will be known to scripts
and the server program.

B rows="number” specifies the number of rows in the visible height of the text
area. This is not a limit on the number of rows that can actually be in the list box,
it’s only a limit on how many rows are displayed at a time as the list is scrolled.

B cols="number” specifies the width in characters of the visible width of the text
area. This is not a limit on the number of columns that can actually be in the list
box, only its display width.

Chapter 12: HTML Forms 285

| Form validation

User interface programming is inherently complex. The amount of code devoted to
validating input fields is often greater than what performs the actual function. Required
fields have to be checked to ensure they are nonempty, and optional fields must have
default values assigned. All fields may need to be validated against a set of acceptable
values or algorithms. The validity of some fields may depend on the values of others.

All this validation can be done by the server program, but the back-and-forth
network traffic may make it too expensive in terms of response time. For this reason,
validation is better done on the client using a scripting language such as JavaScript.
A wide variety of JavaScript books are available, so I won’t go into any detail about
how JavaScript works, other than to present a complete example.

The Contact Us Form with Validation

Let’s add some minimal validation to the “Contact Us” form example shown in
Figure 12-1. You need to do three things.

Setting the Trigger

First, you need to force some code to be executed when the form is submitted. To do
this, set the onsubmit attribute in the form tag:

<form method="post"
action="diag/ShowParms.jsp"
onsubmit="return validate(this) ;">

The string specified in the onsubmit attribute is evaluated before the form is
submitted. Only if it evaluates to true is the form actually submitted. In principle,
the validation code could be entered directly as the onsubmit attribute value, but
it’s simpler to call a function and return its value. This also makes adding new code
easier as validation requirements change.

Adding a Script Block

To incorporate JavaScript statements into the HTML you generate, you must enclose
them in <SCRIPT> ... </SCRIPT> tags. To ensure these tags have been loaded and
evaluated, placing them in the <HEAD> ... </HEAD> section of the HTML is best.

286 JSP: The Complete Reference

Writing the Validation Functions

The third step is to write the validation functions themselves:

function validate (frm) {
if (!hasData(frm.from.value)) ({
alert ("Please type your name in the 'From:' box");
return false;

}

return true;

}

function hasData(s) {
if (s == null)
return false;
var n = s.length;
for (var i = 0; 1 < n; i++) {
var ¢ = s.charAt(i);
switch (c) {
case ' ':
case '\t':
case '\n':
continue;
default:
return true;

}

return false;

Two functions are shown here:

B validate(frm) Given areference to the form, performs all necessary
validations and returns true if no errors are found.

B hasData(s) A utility function that returns true if the specified string
has at least one non-whitespace character.

The only field you can really validate is the user name. In this example, you simply
verify it’s nonblank. If the user doesn’t enter anything in the field, the result is as shown
in Figure 12-3.

Chapter 12: HTML Forms 287

/3 Contact Us - Microsoft Internet Explorer
J File Edit “iew Favortes Tools Help |
J¢-2 - QRAQHI B-SHE
JAgdreSS I@ http: £ Au2Bnw Apricnote/contactus/indes_wvalidated.jsp j @Go
=l
Eg The Lyric Note
Contact Us
Frarn: |
Ta: ICustDmerSewice j
LT R v co:0 Inrnet Explover S|
Ph ber: I
Lt & Pleasze type your name in the 'From:' box
Contact us Coments:
Ef
Flease check all that apply:
I comment only, no response necessary
[T Please add me to your mailing list
Send | Clear |
]
[&] Done [|5 Localintranet y
Figure 12-3. The Contact Us Form with JavaScript Validation

___| The Server Side of Forms Handling

A variety of models for handling forms are on the server side. The case study in
Chapter 19 examines this question in-depth. For illustrative purposes, you develop
a simple JSP page that only collects the request parameters and formats them in a

288 JSP: The Complete Reference

readable HTML table. The server program is ShowParms. jsp, which is used in
the Contact Us example:

[)

<%@ page import="java.io.*,java.util.*" %>
<%@ taglib prefix="lyric" uri="/WEB-INF/tlds/taglib.tld" %>

<html>

<head>

<titles>Parameter Values</titles>

<base href="<lyric:baseURL/>">

<link rel="stylesheet" href="styles/diag.css">
</head>

<body>

<centers>

<table border="1" cellpadding="3" cellspacing="1" width="600">
<trs>

<td colspan="2" align="center" class="header"s

Parameter Values

</td>
</tr>
<tr><ths>Name</th><th>Value</th></tr>
<%
int currentRow = 0;
Enumeration eNames = request.getParameterNames () ;

while (eNames.hasMoreElements()) ({
String name = (String) eNames.nextElement () ;
request .getParameterValues (name) ;

String[] wvalues

for (int i = 0; i < values.length; i++) {
String value = values[i];
currentRow++;
String rowClass = "row" + (currentRow % 2);

%>

<tr valign="top">

<td align="right" class="<%= rowClass %>"><%= name %></td>
<td align="left" class="<%= rowClass %>"> <%= value %> </td>
</tr>

)
<%

oe
\%

Chapter 12: HTML Forms

</table>
</center>
</body>
</htmls>

The program opens with two directives:

<%@ page import="java.io.*,java.util.*" %>
<%@ taglib prefix="lyric" uri="/WEB-INF/tlds/taglib.tld" %>

A tag library is declared and assigned the prefix “1yric”. You use only one tag
from it, the one that returns the base URL of the Web application. When used in the
HTML <BASE> tag, it makes creating relative and absolute links easier to the images,
style sheets, and other resources in the application.

<base href="<lyric:baseURL/>">

The heart of the program is the call to get ParameterNames (), which returns
an enumeration of the form field names, and the subsequent loop over these names,
retrieving their respective values with get ParametervValues (Striing name).

Enumeration eNames = request.getParameterNames () ;
while (eNames.hasMoreElements()) {
String name = (String) eNames.nextElement () ;
String[] values = request.getParameterValues (name) ;

When the form in Figure 12-1 is submitted to ShowParms. jsp, the results are as
shown in Figure 12-4.

Summary

HTML forms provide a GUI environment that’s easy for users to work with and easy
to handle in a server program. Controls exist for text entry, menu selection, and Boolean
selections, such as check boxes and radio buttons. With an alternate encoding type,
forms can support the client side of file uploading. Constant values can be specified
in hidden fields. Forms can be validated with client-side functions written in JavaScript,

289

290 JSP: The Complete Reference

=8 Parameter ¥alues - Microzoft Internet Explorer

J File Edit ‘“iew Favoites Toolz Help |

|«-2 - QRNAQREI B SN

J Address I@ hittp: 2B ricnote/diagsS howParms. jzp j ﬁ Go
|
Name Value

userAgent | Mozilla/d.0 (compatible; MSIE 5.0; Windows NT, DigExt)

remoteHost | 209.170.132.235

from |J. Brahms

email |johannesi@jb.org
phone |(915) 555-15833

comments | Love your ScaoreVWriter software!

dayphone |1
to (IT

category | 1

category |2

frow=7.4+Erahmssto=ITsenail=jochannes@ib. orgsphone=%258919%294555-1
§33sdayphone=1sconments=Love+your+Scorellriter+softwmares 2l scatego
RAMY DATA: ry=lscategory==2sremoteHost=209.170.132. 238 suzerdgent=Mo=zilla%2F4
O+%28compatibl e$3B+MSIE+S. 0%53EBHTindows+N T4 3B+ igEx 529

&l

|@ l_ l_ E‘g Local intranet

Figure 12-4. Data extracted from the Contact Us Form

which saves network transmission and processing time. Server programs, whether JSP
pages or servlets, can use the servlet API to retrieve parameter names and values, and
to return the results to the browser that submitted the form.

The

Reforince
Chapter 13

Database Access

292

JSP: The Complete Reference

consequence need access to it. Web sites for online retailers make their catalogs
available for browsing. Theater Web pages may list show times and movie
infor mation. Search engines prompt for keywords and return sets of matching links.

In addition to read-only access, many JSP pages act as front-ends to applications
that store data as well. In a shopping cart checkout function, lists of items to be ordered
must be converted into transactions that are processed by other systems: order fulfillment,
shipping, and accounting.

Java provides a comprehensive and general-purpose means for handling database
use with a technology known as JDBC'. JDBC makes Commumcatlon possible with a
wide variety of database management systems using SQL”. This chapter contains an
overview of JDBC and how it can be used in Web-based applications. It covers JDBC
drivers, how to connect to a database, how to execute SQL statements, and how to
read their results. It describes JDBC’s mechanisms for robust transaction handling
and connection pooling. The concluding section discusses new features in JDBC 2.0
and beyond.

The corporate database is the heart of the business and most JSP pages of any

Overview of JDBC

JDBC is an application programming interface between Java programs and database
management systems. Like Oracle’s Oracle Call Interface (OCI) or Microsoft’s Open
Database Connectivity (ODBC), JDBC is a call-level interface. This means a program
uses method or function calls to access its features, as opposed to embedded SQL
statements, which are translated by a precompiler.

A programmer uses a Java class known as a JDBC driver to connect to a database.
Hundreds of JDBC drivers exist—at least one for each widely used database, whether
commercial or shareware. A special JDBC driver, known as the JDBC-ODBC bridge,
makes using ODBC as an intermediary possible, which makes the vast number of
ODBC drivers usable from JDBC.

The great advantage of JDBC is it provides a standard interface to all database
management systems. JDBC queries that work on an Oracle database require little
or no changes to work with DB2, or SQL Server, or any other database. The few
differences that remain usually have to do with data type names and support for
certain operation types. Even these differences can usually be resolved program-
matically using metadata provided by the JDBC connection.

JDBC also eases the transition from legacy systems to Web-enabled applications.
Embedded SQL products, which have been around since the early 1980s, for the most
part use SQL statements and operations that can be duplicated by JDBC calls. The

1 According to Sun Microsystems, JDBC is not an acronym. In particular, it does not stand for Java
Database Connectivity.
2 Structured Query Language (SQL) is a topic large enough to fill several books. One of the best is SQL:

The Complete Reference, by James R. Groff & Paul N. Weinberg, published by Osborne/McGraw-Hill,
ISBN 0-07-211845-8.

Chapter 13: Database Access 293

syntax and semantics of SQL statements in a batch mainframe COBOL application
require few changes when the applications are converted to Java.

Basic JDBC Operations

Working with JDBC isn’t difficult. Depending on the task to be performed, usually
only four steps are required:

1. Load a JDBC driver for your DBMS. This typically involves only
aClass.forName () statement specifying the driver class name.

2. Use that driver to open a connection to a particular database. This is done with
a call to a static getConnection (url) method to the DriverManager class.
The url argument is in a specific form that indicates the driver type and the
data source to use.

3. Issue SQL statements through the connection. Once the connection is
established, it can be used to create Statement objects through which
SQL commands can be made.

4. Process result sets returned by the SQL operations. The ResultSet interface
provides methods to step through each row and get the values of each column.

Figure 13-1 illustrates these four steps.

With JDBC 2.0, a bit more flexibility occurs. Using Java Naming and Directory Interface
(JNDI), an application can look up a DataSource object by name from a naming service,
rather than hard-coding the driver class name and database URL. Additionally, JDBC 2.0
result sets have more capabilities. They can be accessed in random order rather than
sequentially from start to finish. They can be updated and have the updates propagated
back to the underlying table. They can also be dynamically linked to their base table(s)
so changes there are reflected concurrently in the result set. Figure 13-2 shows the basic
steps involved in JDBC 2.0 database access.

Essential JDBC Classes

The JDBC interface is contained in the java. sql and javax.sql packages.’ It consists
mainly of interfaces rather than concrete classes because each vendor’s implementation
is specific to their particular database protocol. The core APl in java.sqgl consists of
16 interfaces, 8 classes, and 4 exception types. The Optional Package API adds another
12 interfaces and 2 classes. Many of these classes are of interest primarily to JDBC driver
developers. A smaller subset of these is more commonly used, as outlined in the following;:

B Connection An active link to a database through which a Java program can
read and write data, as well as explore the database structure and capabilities.

3 javax.sql contains the JDBC 2.0 Optional Package API, formerly known as the JDBC 2.0 Standard
Extension API.

294 JSP: The Complete Reference

Driver Manager

Load the JDBC driver class:

Class, forName("driverName") ; Driver

- : 3
Open a database connection:

DriverManager.getConnection Connection
("jdbe:xxx:datasource”) ;

Database

Issue SQL statements: v

stmt = con.createStatement() ;
stmt.executeQuery
("SELECT * FROM myTable")

Statement

Process result set:

while (rs.next()) {
name = rs.getString ("name") ; ResultSet
amount = rs.getInt("amt") ;

A4

}

Figure 13-1. Four steps involved in basic JDBC operations

A Connection object is created either by a call to DriverManager.get
Connection () or DataSource.getConnection (), in JDBC 2.0.

B statement An object that allows SQL statements to be sent through a
connection and retrieves the result sets and update counts they produce.
Three types of statements exist, each one a specialization of its predecessors:

B Statement Used to execute static SQL strings. A Statement is created with
Connection.createStatement().

Chapter 13:

Database Access

Get a DataSource using JNDI:

InitialContext ctx =

Naming Service

new InitialContext() ;
DataSource ds = (Datasource)
ctx.Jookup ("datasourcename");

Data Source

A 4

Open a database connection:

Connection con = ds.getConnection();

Connection

Issue SQL statements:

stmt = con.createStatement(
ResultSet. TYPE_SCROLL_SENSITIVE,
ResultSet. CONCUR_UPDATABLE);
stmt.executeQuery(
("SELECT * FROM myTable");

Process result set:

v

Statement

v

while (rs.next()) {
name = rs.getString ("name") ;
amount = rs.getInt("amt") ;

ResultSet

}

Database

Figure 13-2. Database access with JDBC 2.0 and JNDI

B PreparedStatement An extension of Statement that uses precompiled SQL,
possibly with dynamically set input parameters.. PreparedStatement objects
are often used in a loop with SQL insert operations. They are created with
Connection.prepareStatement(sqlstring).

B CallableStatement A PreparedStatement that invokes a stored procedure.
Not all database management systems support stored procedures but, for
those that do, CallableStatement provides a standard invocation syntax.

295

296 JSP: The Complete Reference

B ResultSet An ordered set of table rows produced by an SQL query or a
call to certain metadata functions. A ResultSet is most often encountered
as the return value of a Statement . executeQuery (sqlstring) method call.
The JDBC API provides a next () method for iterating through the rows of a
ResultSet and getXXX () methods for extracting the column values, where
XXX is the Java data type. JDBC 2.0 adds a number of methods for randomly
accessing and updating rows.

B DatabaseMetaData An interface containing numerous methods that
provide information about the structure and capabilities of a database.
The DatabaseMetaData object is returned by the getMetaData ()
method of a Connection object.

B ResultSetMetaData An interface that describes the columns of a
ResultsSet. This can be obtained by calling the result set’s getMetaData ()
method. It contains methods that describe the number of columns, as well as
each column’s name, display size, data type, and class name.

B DriverManager An interface that registers JDBC drivers and supplies
connections that can handle specific JDBC URLs. The only method commonly

used is the static DriverManager .getConnection (), in one of its three
forms, which returns an active Connection object bound to the specified
JDBC URL.

B sQLException The base exception class used by the JDBC APIL
SQLException has methods that can supply the SQLState value any
vendor-specific error code. It can also be linked to another SQLException
if more than one exception occurred.

One of the stated goals of the JDBC API was it should be simple and easy to master.
Learning these seven classes and three or four of their main methods can easily be done
in a few days, which has helped to make JDBC a popular and well-accepted technology.

A Simple JDBC Example

Let’s consider an example of JDBC used in a JSP page. Our hypothetical LyricNote
company maintains an internal employee database containing two tables: departments
and employees. These tables were created with the following SQL:

CREATE TABLE departments (
deptno char(2),
deptname char (40),
deptmgr char (4)

Chapter 13:

and

CREATE TABLE employees (

deptno char (2),
empno char (4),
lname char (20),
fname char (20),
hiredate date,
ismgr bit,
deptno char (2),
title char (50),
email char(32),
phone char (4)

Database Access

Our example JSP page displays a list of departments identifying their manager’s
name, title, telephone number, and e-mail address. The SQL to assemble this list is

as follows:
SELECT D.deptname, E.fname, E.lname, E.title, E.email, E.phone
FROM departments D, employees E
WHERE D.deptmgr = E.empno

ORDER BY D.deptname

The D and E prefixes are pseudotable names used to qualify column names, so the

DBMS can distinguish which table supplies which columns.
The complete JSP source code is

)

<%@ page session="false" %>
<%@ page import="java.sqgl.*" %>
<%@ page import="java.util.*" %>

<HTML>

<HEAD>

<TITLE>Department Managers</TITLE>

</HEAD>

<BODY>

<p>
<hr color="#000000">

<H2>Department Managers</H2>

)
<%

297

298 JSP: The Complete Reference

String DRIVER = "org.enhydra.instantdb.jdbc.idbDriver";
String URL =
"jdbc:idb:d:/lyricnote/WEB-INF/database/internal/db.prp";

// Open a database connection

Class.forName (DRIVER) ;
Connection con = null;

try {
con = DriverManager.getConnection (URL) ;
// Get department manager information

String sgl = ""
" SELECT D.deptname, E.fname, E.lname,"

+ " E.title, E.email, E.phone"
+ " FROM departments D, employees E"
+ " WHERE D.deptmgr = E.empno"
+ " ORDER BY D.deptname"
Statement stmt = con.createStatement () ;
ResultSet rs = stmt.executeQuery(sql) ;
%>
<DL>
<%
while (rs.next()) {

7

String dept rs.getString
String fname = rs.getString
String lname = rs.getString
String title = rs.getString
String email = rs.getString

String phone = rs.getString

7

)
)
) ;
).
)
)

7

I

1
2
3
4
5
6

(
(
(
(
(
(6);
%>
<DT><%= dept %></DT>
<DD>
<%= fname %> <%= lname %>,
(919) 555-0822 x<%= phone %
</DD>

)
<%

%= title %>

, <%= email %>

AARRAN

Chapter 13: Database Access 299

rs.close() ;
rs = null;

stmt.close () ;
stmt = null;
}
finally {
if (con != null) {
con.close() ;

%>
</DL>
</BODY >
</HTML>

Let’s examine each section.
To begin with, three page directives exist

[)

<%@ page session="false" %>
<%@ page import="java.sgl.*" %>
<%@ page import="java.util.*" %>

We explicitly request no HTTP session should be created. This should be done in
all JSP pages that don’t require access to a session because it saves the server resources
required to establish and maintain a session.

After the HTML that creates the page headings, a scriptlet interrogates the
LyricNote internal database and displays the results. It begins with the declaration
of two string constants that define the JDBC driver name and database URL. For
convenience, keep this information isolated in a declarations section for ease of
modification:

String DRIVER = "org.enhydra.instantdb.jdbc.idbDriver";
String URL =
"jdbc:idb:d:/lyricnote/WEB-INF/database/internal/db.prp";

This example uses the InstantDB* database and connects to the LyricNote internal
database, whose Properties fileis db.prp.

4 InstantDB is a free, all-Java relational DBMS available from http://instantdb.enhydra.org/index.html.
InstantDB has a number of advanced features and supports JDBC 2.0.

300

JSP: The Complete Reference

The real work begins with the next statements:

Class.forName (DRIVER) ;
Connection con = null;

try {
con = DriverManager.getConnection (URL) ;

The Class.forName () call causes the JDBC driver class to be loaded. According to
the JDBC specification, drivers should include a static initialization section that causes
an instance to be created and registered with the driver manager. Some older drivers
fail to do this and, in that case, invoking the newInstance() method on the driver class
is necessary. The DriverManager class provides the actual connection in response to
the call to its static getConnection () method.

Note, the con variable that holds a reference to the connection is declared and

assigned a null value. Then the rest of the page is enclosed ina try { . ..} block
followed by
finally {
if (con != null) {

con.close() ;

The reason for this is, once opened, the connection needs to be closed, regardless
of whether any errors occur or exceptions are thrown. This can be guaranteed by the
finally { ... } block. Including a catch block is unnecessary; in our case, the default
exception handler is good enough.

Once the connection is established, the SQL query can be run. For this, we call the
Connection object’s createStatement () method to obtain a Statement object,
on which we can invoke the executeQuery () method.

String sgl = ""
+ " SELECT D.deptname, E.fname, E.lname,"

+ " E.title, E.email, E.phone"
+ " FROM departments D, employees E"
+ " WHERE D.deptmgr = E.empno"

+

" ORDER BY D.deptname"

Statement stmt = con.createStatement () ;
ResultSet rs = stmt.executeQuery(sql) ;

Chapter 13: Database Access 301

executeQuery () returns a ResultSet. Our listing simply reads each row of this
set by invoking its next () method in a loop:

while (rs.next()) {
String dept = rs.getString(l);
String fname = rs.getString(2);
String lname = rs.getString(3);
String title = rs.getString(4);
String email = rs.getString(5);
String phone = rs.getString(6) ;

%>
<DT><%= dept %></DT>
<DD>
<%= fname %> <%= lname %>,
(919) 555-0822 x<%= phone %
</DD>

o
<3

= title %>

, <%= email %>

Inside the loop, we extract each column value with the ResultSet .getString
(columnNumber) method, and then format and print the department name, manager
name, title, telephone number, and e-mail lines.

Finally, we close all the JDBC objects we created and set their references to null,
so they can be garbage collected.

rs.close();
rs = null;

stmt.close() ;
stmt = null;

The Connection objectis closed in the finally { ... } block previously discussed.
The finished product is shown in Figure 13-3.

| JDBC Drivers

To insulate programs from the specifics of particular database protocols, JDBC uses
a middle layer composed of a DriverManager class and one or more JDBC drivers.
A driver is Java class, usually supplied by the database vendor, which implements
the java.sqgl.Driver interface. The primary function of the driver is to connect
to a database and return a java.sql.Connection object.

302 JSP: The Complete Reference

ﬂ:Depaltmen! Managerz - Microzoft Internet Explorer

Fie Edt View Favoites Iook Hep n
=]

l£—— The Lyric Note

Department Managers

Customer Service

Stuart Michael, Manager of Customer Service

{919) 555-0822 %5103, smichael@lyricnote.com
Executive

Catherine Brenner, President and CEO

(919) 555-0822 x5104, chrenner@lyricnote.com
Finance

Theresa McDonald, Executive YP and CFO

(219) 555-0822 x5153, tmcdonald@lyricnote.com
Human Resources

Juan Pablo Garcia, Director of Human Resources

(919) 555-0822 x5154, jpgarciad@lyricnote.com
Information Technology

Catherine Schech, Director of Information Technology

(919) 555-0822 5110, cschech@lyricnote, com
Marketing

Conrad Stock, YP and Director of Marketing

(919) 555-0222 ®5167, cstock@lyricnote.com
Product Development

Simon Bickel, Director of Product Development

(919) 555-0822 x5139, shickel@lyricnote.com
Purchasing

Magdalene Renner, Purchasing Manager

(219) E55-0822 x5109, mrenner@lyricnote. com
Shipping

Mathias Strayer, Shipping Manager

(219) 555-0822 %5130, mstrayer@lyricnote,.com

@] Done T Local intranet

Figure 13-3. Output of the simple JDBC example

Drivers aren’t called directly by application programs. Instead, they're registered
with the DriverManager, which determines the appropriate driver for a particular
connection request and makes the connection through it.

Hundreds of JDBC drivers exist, covering virtually all database management systems.
Most of them can be downloaded from vendor Web sites. A searchable list can be found
at http:/ /industry java.sun.com/products/jdbc/drivers.

The next section discusses the four JDBC driver types, the special case of the
JDBC-ODBC bridge, and the mechanics of registering a driver.

Chapter 13: Database Access 303

Driver Types

The JDBC specification classifies drivers as being one of four types, according to their
architecture. These types are

B Type 1—JDBC-ODBC bridge Drivers of this type connect to databases through
an intermediate ODBC driver. Several drawbacks are involved with this approach,
so Sun describes it as being experimental and appropriate for use only where no
other driver is available. Both Microsoft and Sun provide type 1 drivers.

B Type 2—Native API, partly Java Similar to a JDBC-ODBC bridge, type 2
drivers use native methods to call vendor-specific API functions. These drivers
are also subject to the same limitations as the JDBC-ODBC bridge, in that they
require native library files to be installed on client systems, which must be
configured to use them.

B Type 3—Pure Java to database middleware Type 3 drivers communicate using
a network protocol to a middleware server, which, in turn, communicates to one
or more database management systems.

B Type 4—Pure Java direct to database Drivers of this type call directly into the
native protocol used by the database management system.

The architecture of each of the four driver types is shown in Figure 13-4.

What difference does the driver type make? From the standpoint of the application
programmer, not much. The classifications mean more to the system architect. Type 1
and type 2 drivers require native code to be installed and configured on client systems.
Type 4 drivers may not be suitable if the DBMS is behind a firewall. Likewise, each
of the four driver types has its own performance characteristics, but the application
programming interface is exactly the same in all four cases.

The JDBC-ODBC Bridge

The type 1 JDBC-ODBC bridge driver requires special considerations. As we have
seen, several problems are involved in using it. First, the JDBC-ODBC bridge driver
is limited to the capabilities of the underlying ODBC driver, which is single threaded
and may, therefore, perform poorly under a heavy load. Also, it requires native code
library JdbcOdbe . d11 to be installed on the client system. Finally, to be of any use,
the JDBC-ODBC bridge driver requires an ODBC data source to be configured. These
restrictions make it unsuitable for applets intended for use on the external internet.
Sun recommends the bridge should only be used for experimental purposes when
no other JDBC driver is available.

304)SP: The Complete Reference

Java
Application

ODBC API Layer

A

y

y

[Type 1 Driver] [Type 2 Driver] [Type 3

Driver] [Type 4 Driver]

A 4
Database
ODBC API Layer Middleware Layer
Dynamic Link Dynamic Link
Library (DLL) Library (DLL)
DBMS DBMS DBMS DBMS
A4 A4 A4 A\ 4
Database Database Database Database

Figure 13-4. The four JDBC driver-type architectures

Chapter 13: Database Access 305

On the other hand, the JDBC-ODBC bridge offers several significant advantages.
Because JSP pages aren’t operating in the applet environment, they have none of these
limitations. ODBC is widely supported, so using the bridge makes possible accessing
a wide variety of existing systems for which data sources are already configured.
Likewise, ODBC-enabled database products, such as Microsoft Access and FoxBase,
are widely available. These features make the JDBC-ODBC bridge a good choice for
low-volume Web applications and a useful tool for learning JDBC.

To use the JDBC-ODBC bridge in a Java application, a suitable ODBC data source
must be configured. On Windows systems, this is done through the Control Panel ODBC
Data Sources application. The data source should be configured as a System DSN, not a
User DSN, because the JSP engine is typically running under a system user profile. The
driver class name is sun. jdbc . odbc . JdbcOdbceDriver if the Sun JVM is being used or
com.ms . jdbc.odbc.JdbcOdbeDriver for the Microsoft virtual machine. The database
URL used in the getConnection () statementis jdbc: odbc :dsn, where dsn is the data
source name.

Microsoft supplies ODBC drivers for its Access database product, as well as dBase,
Excel, FoxPro, and a number of others, including a text driver that can use ordinary
text files (.txt and .csv) as a simple database system.

Registering a Driver

For a JDBC driver to be used, it must first be registered with the driver
manager. You can accomplish this in several ways, but each involves calling
DriverManager.registerDriver ().

The most common approach is simply to load the driver class:

try {
Class.forName ("MyJddbcDriver") ;
}

catch (ClassNotFoundException e) {
// Report the exception

A driver class loaded in this fashion should create an instance of itself and register
it with the driver manager, using logic similar to the following;:

static {
PrintStream log = DriverManager.getLogStream() ;
if (log != null)
log.println ("MyJddbcDriver class loaded") ;
MyJdbcDriver driver = new MyJdbcDriver () ;

try {
DriverManager.registerDriver (driver) ;

306

JSP: The Complete Reference

catch (SQLException e) {
if (log != null)
log.println("Unable to register driver");

Some older drivers have been known to omit this step, doing the registration in
their constructor instead. In that case, creating an instance of the driver is necessary,
using the following method’:

try {
Class. forName ("MyJddbcDriver") ;

}

catch (ClassNotFoundException e)
// Report the exception

}

catch (InstantiationException e) {
// Report the exception

}

catch (IllegalAccessException e)
// Report the exception

Another approach to driver registration is to put the driver name in the
jdbc.drivers system property. This is a colon-delimited list of driver class
names, which DriverManager loads during its initialization. For example, a
standalone Java application that uses this approach might be invoked as follows:

java -Djdbc.drivers=org.enhydra.instantdb.jdbc.idbDriver MyPGM

Some JDBC driver vendors, notably Oracle, recommend explicitly creating an
instance of the driver and registering it with the driver manager:

DriverManager.registerDriver (
new oracle.jdbc.driver.OracleDriver()) ;

JDBC 2.0 allows connections to be made through a DataSource object that is
registered with a JNDI service provider. JRun 3.0, for example, provides a means
for defining JDBC data sources at the Web server level, as well as a quick online test

5 A tedious workaround, isn’t it? You could simply catch Exception itself, but that always leaves you
open to applying the wrong logic to exceptions you didn’t anticipate.

Chapter 13: Database Access 307

for connectivity. The advantage of this approach is driver class names and database
URL'’s are stored in the naming service, rather than being hard coded in application
programs. Only the data source name is required. The sample JSP page associated
with Figure 13-3 earlier in this chapter could have its connection logic replaced with
the following;:

InitialContext ctx = new InitialContext() ;
DataSource ds = (DataSource) ctx.lookup
("java:comp/env/jdbc/lyricnote internal") ;

Connection con = null;

try {
con = ds.getConnection();

}

finally {
if (con != null)
con.close() ;

Note | JSP pages using a DataSource for [DBC connections must import javax.sql. * and

javax.naming. * or else fully qualify the references to InitialContext and DataSource.

Another advantage of using a DataSource is other advanced database features like
connection pooling and distributed transactions can be implemented entirely with
changes to bindings in the naming service. No changes to the JSP source code are required.

Connecting to a Database

After a driver is loaded and registered, it can be used to create database connections.
DriverManager provides three methods for doing this:

getConnection (String url)
getConnection (String url, String userID, String password)
getConnection (String url, Properties prop)

Internally, DriverManager uses the same private worker method to handle each
of these methods.

The driver manager maintains a list of registered drivers. When its get Connection ()
method is invoked, it interrogates each driver in turn to see if it will accept the specified
URL. The driver manager does this by calling the driver’s connect () method, which
returns either null if the driver cannot accept the URL or an active Connection object
if it can.

As noted previously, JDBC 2.0 allows DataSource to be used instead of
DriverManager to establish connections. In this case, the URL parameter isn’t
used, because it’s stored in the naming service.

308 JSP: The Complete Reference

The JDBC Database URL

The key argument to DriverManager.getConnection() is a JDBC URL, which is a string
with three components separated by semicolons:

<protocol> : <subprotocol > : <subname>
where

B protocol is always jdbc.

B subprotocol is a vendor-specific string that identifies the driver to be used. The
driver indicates whether it can handle that subprotocol when asked by the driver
manager. For example, the JDBC-ODBC bridge uses the reserved value odbc
as its subprotocol. This value is intended to be unique across all driver vendors.
Sun Microsystems acts as an informal registrar of JDBC subprotocols.

B subname identifies the specific database to connect to. This string contains
whatever the driver needs to identify the database. It may also contain
connection parameters the database needs.

Examples of JDBC URLs are
jdbc:odbc:usda

This would indicate an ODBC data source named usda that is accessed by the
JDBC-ODBC bridge driver.

jdbc:idb:c:/path/database.prp

InstantDB interprets the subname to be a properties file that describes the database
location and characteristics.

"jdbc:oracle:thin:@"
+ " (DESCRIPTION="

' (ADDRESS= (HOST=u25nv) "
(PROTOCOL=tcp) "
(
(

PORT=4311))"
' (CONNECT_DATA= (SID=music)))"

+ o+ o+ o+

This is a lengthy connection string that might be used with the Oracle thin client driver.
As was the case with driver registration, JDBC 2.0 makes possible using
a DataSource from a naming service to hide the details of the JDBC URL.

Chapter 13: Database Access 309

| The Statement Interfaces

The SQL language consists of statements that create, manipulate, and extract data from
a relational database. JDBC provides an object-oriented representation of these SQL
statements that encapsulates their text, execution status, and results. Not surprisingly,
this representation is called the java.sgl.Statement interface. Statement objects
send SQL commands to a database, which can be any of the following types:

B A data definition command such as CREATE TABLE or CREATE INDEX
B A data manipulation command such as INSERT or UPDATE
B A SELECT statement for performing a query

Data manipulation commands return a count of the number of rows modified,
whereas a SELECT statement returns a set of rows known as a result set.

The Statement interface has two specialized subinterfaces that extend its capabilities:
PreparedStatement, which uses precompiles SQL, and CallableStatement, which
invokes stored procedures. The following section discusses all three types of statements
and how they are used.

Statement

The base interface is java.sqgl . Statement. Because this is an interface,
it doesn’t have a constructor; instead, it’s obtained from the connection object
with Connection.createStatement (). A typical example follows

Connection con = null;

try {
con = DriverManager.getConnection (URL) ;
Statement stmt = con.createStatement () ;

stmt.close () ;
}
finally {
if (con != null)
con.close() ;

JDBC 2.0 introduces an additional form of createStatement () that takes
parameters indicating where its result sets should be scrollable or not and whether
they reflect concurrent changes in the underlying table. The section on result sets later
in this chapter describes these features in more detail.

310 JSP: The Complete Reference

Once a statement is created, it can be used to execute commands. Four methods exist
for doing this: executeUpdate, executeQuery, execute, and executeBatch. The
choice of which method to use depends on the expected results:

B executeUpdate is intended for use with the SQL INSERT, UPDATE, or DELETE
statements, or with data definition statements such as CREATE TABLE. It returns
a count of the number of rows updated.

B executeQuery is used to execute an SQL SELECT statement and to return a
result set.

B execute can be used for either purpose, but is intended for those statements
that return either an update count, multiple result sets, or some combination.
It returns a boolean flag that indicates whether its result was an update count
or a result set. Additional methods are available that navigate through results.

B executeBatch allows multiple update statements to be executed in a batch.
The update counts are returned in an array.

The following examples illustrate each of these methods.

The executeUpdate Method

In this example, an erroneous product description is corrected with an SQL UPDATE
statement invoked by the executeUpdate method.

import java.sqgl.*;

public class UpdateExample
public static void main(String[] args)
throws ClassNotFoundException, SQLException

String DRIVER = "org.enhydra.instantdb.jdbc.idbDriver";
String URL = "jdbc:idb:"
+ "D:/lyricnote/WEB-INF/database/products/db.prp";

Class.forName (DRIVER) ;
Connection con = null;

try {
con = DriverManager.getConnection (URL) ;

Statement stmt = con.createStatement () ;
int nRows = stmt.executeUpdate (
" UPDATE products"
+ " SET description ="

+ "'Telemann: Concerto No. 1 in F for Two Horns'"

Chapter 13: Database Access

+ " WHERE itemcode = '022370'"

)
System.out.println(nRows + " rows updated") ;
stmt.close() ;

}

finally {
if (con != null)
con.close() ;

When successfully executed, the program prints “1 rows updated”.

The executeQuery Method
To see that the erroneous listing was corrected, this example uses a SELECT statement
to display all sheet music titles in the product catalog that are Telemann concertos:

import java.sqgl.*;

public class QueryExample
{
public static void main(String[] args)
throws ClassNotFoundException, SQLException

String DRIVER = "org.enhydra.instantdb.jdbc.idbDriver";
String URL = "jdbc:idb:"
+ "D:/lyricnote/WEB-INF/database/products/db.prp";

Class.forName (DRIVER) ;
Connection con = null;

try {
con = DriverManager.getConnection (URL) ;

Statement stmt = con.createStatement () ;
ResultSet rs = stmt.executeQuery (
" SELECT itemcode, description"

+ " FROM products"

+ " WHERE prodtype = 'SM'"

+ " AND description like 'Telemann%'"

+ " AND description like '%Concerto%'"
)i
while (rs.next()) {

String itemCode = rs.getString(l);

311

312

JSP: The Complete Reference

String description = rs.getString(2);
System.out.println(itemCode + " " + description);
}
rs.close() ;
stmt.close() ;
}
finally {
if (con != null)
con.close() ;

When run, it produces the corrected output:

022340 Telemann: Double Viola Concerto in G

022350 Telemann: Viola Concerto in G

022360 Telemann: Concerto for Horn Quartet

022370 Telemann: Concerto No. 1 in F for Two Horns

The process of getting values from the result set is explained later in this chapter.

The execute Method

Although the execute method can be used for either queries or updates, it’s strictly
necessary only for operations that may return multiple results. The Statement interface
provides methods for determining what has been returned and for processing the
results. The most common use for execute is for processing unknown SQL strings,
such as in this example, which reads and processes SQL statements from a file:

import java.io.*;
import java.sqgl.*;

public class ExecuteExample
public static void main(String[] args)
throws ClassNotFoundException, SQLException, IOException

String DRIVER = "org.enhydra.instantdb.jdbc.idbDriver";
String URL = "jdbc:idb:"
+ "D:/lyricnote/WEB-INF/database/products/db.prp";

Chapter 13: Database Access 313

Class.forName (DRIVER) ;

Connection con = null;

try {
con = DriverManager.getConnection (URL) ;
Statement stmt = con.createStatement () ;

// Read SQL statements from a file
BufferedReader in =
new BufferedReader (

new FileReader ("executeExample.sqgl")) ;

while (true) ({

String line = in.readLine() ;
if (line == null)
break;

// Execute statement

boolean hasResultSet = stmt.execute(line) ;
while (true) ({

if (hasResultSet) {
ResultSet rs = stmt.getResultSet () ;
System.out.println ("Processing result set");

// ... process result set
rs.close() ;
}
else {
int count = stmt.getUpdateCount () ;
if (count == -1)
break;
System.out.println ("Processing update count") ;
// ... process update count

// See if there are any more results

hasResultSet = stmt.getMoreResults() ;

}

stmt.close () ;

314

JSP: The Complete Reference

in.close() ;
}
finally {
if (con != null)
con.close() ;

The initial return code from execute is a boolean value that is true if the
statement execution produced a result set. If not, the update count can be obtained
with Statement . getUpdateCount (). If the update count is -1, then no more
results exist. Otherwise, the Statement .getMoreResults () method can be called
to cycle through the next result set or update count. It returns a boolean value with the
same interpretation as the one returned by execute.

The executeBatch Method

JDBC 2.0 introduced the capability to submit a group of update statements to be
executed as a batch. In some cases, this can represent a significant performance
improvement. The methods used in connection with batch updates are these:

B clearBatch resets a batch to the empty state.
B addBatch adds an update statement to the batch.

B executeBatch submits the batch and collects update counts.

Not all drivers support batch updates. Those that do indicate this by returning
true from their DatabaseMetaData . supportsBatchUpdates () method.

One driver that does implement this is the JDBC-ODBC bridge with Microsoft Access.
In the following example, the LyricNote composers Access database is updated with
a table of composers who lived to at least the age of 90.

import java.io.*;
import java.sqgl.*;
import java.util.*;

public class BatchUpdateExample

{
public static void main(String[] args)
throws ClassNotFoundException, SQLException, IOException

{

Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver") ;

Chapter 13: Database Access 315

Connection con = null;
try {

// Connect to the composers database

con = DriverManager.getConnection
("jdbc:odbc:composers") ;

Statement stmt = con.createStatement () ;

// Clear the existing table and create a new one

stmt .executeUpdate ("DROP TABLE over90") ;

stmt .executeUpdate (
" CREATE TABLE over90"

+ n (n

+ " lastName VARCHAR (20) , "
+ " firstName VARCHAR (20) , "
+ " age INTEGER"

+ n) n

)

// Set up for handling all-or-nothing transaction
con.setAutoCommit (false) ;

// Add insert statements to a batch
stmt.clearBatch() ;

stmt .addBatch ("INSERT INTO over90 VALUES"
+ "('Rodrigo', 'Joaquin',99)");

stmt .addBatch ("INSERT INTO over90 VALUES"
+ " ('Gossec', 'Francois-Joseph',96)");

stmt .addBatch ("INSERT INTO over90 VALUES"
+ "('Ruggles', 'Carl',96)");

stmt .addBatch ("INSERT INTO over90 VALUES"
+ "('Widor', 'Charles-Marie',94)") ;

stmt .addBatch ("INSERT INTO over90 VALUES"
+ "('Sibelius', 'Jean',93)");

stmt .addBatch ("INSERT INTO over90 VALUES"
+ "('Copland', 'Aaron',91)");

stmt.addBatch ("INSERT INTO over90 VALUES"

316 JSP: The Complete Reference

+ " ('Auber', 'Daniel Francois',90)");
stmt .addBatch ("INSERT INTO over90 VALUES"
+ "('Stravinsky', 'Igor',90)");

// Execute the batch and check the update counts
int [] counts = stmt.executeBatch() ;

boolean allGood = true;
for (int i = 0; i < counts.length; i++)
if (counts[i] != 1)
allGood = false;

// Commit or roll back the transaction
if (allGood) {

System.out.println
("Transaction successful with "

+ counts.length + " statements committed") ;
con.commit () ;
else {
System.out.println("Transaction failed");
con.rollback() ;
// Done

stmt.close () ;

}

finally {
if (con != null)
con.close() ;

Setting off the connection’s autoCommit flag enables us either to commit or
rollback the batch update as a whole.

Chapter 13: Database Access 317

PreparedStatement

java.sql.PreparedStatement is a subinterface of Statement that uses
precompiled SQL. This may result in performance improvements if the statement
is used repeatedly. A PreparedStatement differs from Statement in that its
execute methods don’t take a SQL string as a parameter. Instead, the SQL string
is specified when the PreparedStatement is created, as shown here:

PreparedStatement pstmt = con.prepareStatement (sqlstring) ;

The string to be executed may contain substitution parameters, which are indicated
by the presence of a question mark (?) in the string. These parameters act as placeholders
in the statement and must be filled in with values before they are executed. To do this,
the API provides a number of setXXX () methods, where XXX is the Java data type.

The batch update example, which created and loaded a table of composers who
lived to at least the age of 90, could also be written with a PreparedStatement that
is executed in a loop, as shown here:

import java.io.*;

import java.sqgl.*;

import java.util.*;

public class PreparedStatementExample

{

public static void main(String[] args)
throws ClassNotFoundException, SQLException, IOException

String DRIVER = "sun.jdbc.odbc.JdbcOdbcDriver";
String URL = "jdbc:odbc:composers";

Connection con = null;
try {

// Load the driver class

Class.forName (DRIVER) ;

// Connect to the database

con = DriverManager.getConnection (URL) ;

// Create the new table

318 JSP: The Complete Reference

Statement stmt = con.createStatement () ;

try {
stmt .executeUpdate ("DROP TABLE OVER90") ;
catch (SQLException ignore) {}
stmt .executeUpdate (
" CREATE TABLE over90"

+ n (n

+ " lastName VARCHAR (20) , "
+ " firstName VARCHAR (20) , "
+ " age INTEGER"

+ n) n

)i
stmt.close() ;
stmt = null;

// Prepare a statement to do inserts into the table

PreparedStatement pstmt = con.prepareStatement (
"INSERT INTO over90 VALUES(?, 2, ?)"
)

// Read composer names and ages from a file
// that uses tabs to separate the fields

BufferedReader in =
new BufferedReader (

new FileReader ("over90.txt")) ;

while (true) ({

String line = in.readLine() ;
if (line == null)
break;

// Split the line into the last name, first name
// and age tokens

StringTokenizer st = new StringTokenizer (line, "\t");
if (st.countTokens() != 3)
throw new IOException ("Expected 3 fields");

Chapter 13: Database Access

String lastName = st.nextToken() ;
String firstName = st.nextToken() ;
int age = Integer.parselnt (st.nextToken()) ;

// Set the parameters in the prepared statement

pstmt.setString(l, lastName) ;
pstmt.setString (2, firstName) ;
pstmt.setInt (3, age);

// Update the record

pstmt .executeUpdate () ;
System.out.println(
“Added record for " + firstName + " " 4+ lastName) ;

in.close() ;

pstmt.close () ;
pstmt = null;

}

finally {
if (con != null)
con.close() ;

Consider several key points in the code. First, the statement needs to be created
with substitution parameters:

PreparedStatement pstmt = con.prepareStatement (
"INSERT INTO over90 VALUES(?, ?, ?)"
)

Three question marks are here, one for each column in the table. Notice no difference
exists in use between numeric and string parameters. Both are coded simply as question
marks, with no embedded quotes or apostrophes needed.

319

320

JSP: The Complete Reference

To use the values that were read from the file in the INSERT statement, employ the
setString () and setInt () methods:

pstmt.setString(l, lastName) ;
pstmt.setString (2, firstName) ;
pstmt.setInt (3, age);

The first parameter to the setXXX () methods is the column number, which starts
at 1 for the first column, 2 for the second, and so on. The second parameter is the value
to be inserted.

setXXX () methods exist for all data types, as well as two special ones:
setObject () and setNull (). Type conversions into any JDBC data type
can be made with setObject (), which takes a third parameter:

pstmt.setObject (int column, Object value, int typeNumber)

where typeNumber is an static integer constant defined in java.sqgl. Types.
Similarly, setNull () can be used to store the appropriate null type in a parameter:

pstmt.setNull (int column, int typeNumber)

Using Prepared Statements to Avoid Dynamic Syntax Errors
While the primary motivation for using prepared statements is performance, another
subtle advantage exists. Suppose you want to make a JSP page that can run queries
against the LyricNote product database. The page includes a form in which a search
argument can be entered. This argument is extracted from the request parameters and
an SQL statement is then constructed on the fly. Here is part of the JSP page showing
how the SQL is constructed:

ResultSet rs = stmt.executeQuery (
" SELECT itemcode, description"
+ " FROM products™
+ " WHERE prodtype = 'SM'"
+ " AND description like '$" + searchFor + "&'"

)i

When the JSP page is used to search for works by Stravinsky, it returns the results
shown in Figure 13-5.

If, however, you search specifically for Stravinsky’s L'Histoire du Soldat, you get the
nasty error screen shown in Figure 13-6.

Chapter 13: Database Access 321

r;Fsl:ap'mg DBrien - oft Internet Explorer
Fle Edt View Faveites Tool Hep n
" - DA QD EBESH
Addiess |€| hitkp: A/ u2 5w spcs hap] 3lexsmples/statements/ DuenE xample2 jsp ;l & Go

Sheet Music Search

Search for: [Stravinsky %‘
Item Code Description

020950 Stravinsky: Cantata

020960 Stravinsky: Conductor and Tarantula

020970 Stravinsky: Faun and Shepherdess Op, 2

020980 Stravinsky: Symphony in Eb Cp. 1

0z0990 Stravinsky: Pastorale

021000 Stravinsky: Scherzo fantastique Op. 2
0z1010 Stravinsky: Fireworks Op. 4

0zi0zo Stravinsky: Funaral Dirge Cp. &
0z1030 Stravinsky: Four Etudes Op, 7
021040 Stravinsky: L'Oiseau de Feu

021050 Stravinsky: Petrushka

021060 Stravinsky: Le Sacre du Printemps

&) Done T4 Local riranet

Figure 13-5. Normal output of QueryExampleZ2.jsp

Fie Edit Wiew Favoites Took Help “
- - D5 QEId B S
Address lgl hitp /A28 /ispen/Chapl 3esamples/statlements D uenE sample2. jsp j oo

500 Internal Server Error

Figper fChap 13 fexamples fstatement s /QusryExanple? . Jsp:

jawax, servlet, ServietException: Exception thrown on line '45' from page "DIady?
java.sgl.S0LExceprion: SELECT itemcode, description

FROM products
THERE prodoype = 'EMY
AND description like '$L'Histoire du Soldack!

Don't understand $0L after: "Histoire”

Expected: “{" found: "Histoire"
At org.enhydra. instantdb, db. 30LProg, execute (30LProg. Java: 2135)
at org.enhydra. instancdb, jdbe. idbicatenent., exeoute (idbitatensnt, java:
at org.enhydra.instancdb. jdbe. idbicatensnt. evecute(uery (idhStatensnt,
at jrun_ Chapl3_ exanples_ stacements_ QueryExampleZZejsp2d. _Jspierw:
at allaire.jrun.jsp.HetpdSPServlet. service (HetpIST Serviet. jova: 40)
at allsire.jrun. serviet. JRunSE. service (JBunsE. java:r 1013)
at allaire.jrun.servlec, JRUndE. rundervlet [TRUNSE. Java: 925) =1
at allaire.jrun. serviet. JRunNanedDispaccher. forvard (JRunfanedDispatcl
at allsire.jrun.jsp.J5PServlet. service (J5PServiet. Java: 174)
At allaire.jrun.servlec, JRUn3E. service (JRun3E. java: 1013)
at allaire.jrun. serviet. JRunSE. nmServliet [TRumSE. java: 925)
at allsire.jrun. serviet. JRunPedqueschispatcher. forwvard (JRumPequesthiag
AF allairs dram asruler TRORAF sarwice i THMAF dsua:11311 LILI

4 |
2] Dane

Local intranet

Figure 13-6. Syntax error caused by an unescaped apostrophe

322

JSP: The Complete Reference

What happened? The explanation can be found in the error message:

javax.servlet.ServletException
java.sqlSQLException: SELECT itemcode, description

FROM products
WHERE prodtype = 'SM!'
AND description like '$L'Histoire du Soldat%'

Don't understand SQL after: "Histoire"

The word L’Histoire has an embedded apostrophe, so when the LIKE clause is
evaluated, it terminates too soon, viewing '$L' as the operand it is trying to match.
Whatever follows is parsed as if it were SQL, which causes the error.

This problem can be avoided by scanning user input for embedded apostrophes
and replacing them with a safe alternative, but this is more complicated than it sounds.
This technique, referred to as escaping characters, varies in different databases and SQL
dialects. A JDBC-architected way exists to indicate the escape character, but this adds
complexity everywhere user input has to be handled.

A simpler and cleaner way to handle this is to use a PreparedStatement with
a substitution parameter. The code that needs to be changed is this:

PreparedStatement pstmt = con.prepareStatement (
" SELECT itemcode, description\n"

+ " FROM products\n"
+ " WHERE prodtype = 'SM'\n"
+ " AND description like 2"
)i
pstmt.setString (1, "%" + searchFor + "%");

ResultSet rs = pstmt.executeQuery() ;

The operand of the LIKE clause is now simply a question mark and the search
argument is now added dynamically at run time. The query now works with any
type of input, regardless of its meaning in SQL, as seen in Figure 13-7.

CallableStatement

A further refinement of PreparedStatement is embodied in java.sqgl.
CallableStatement. This interface is used to invoke stored procedures,

if the database supports them®. Oracle, for example, allows procedures to be
written in PL/SQL. Queries written in Microsoft Access can be invoked through
the JDBC-ODBC bridge as stored procedures.

6 Few, if any, noncommercial databases support stored procedures.

Chapter 13: Database Access 323

A Escaping 0'Brien - Miciosoft Intemet Explorer

Fle Edit Miew Favaites Lo Help n

t-3 - QP E QGBS

hgd‘Eﬁlgl g A rrejspenhiap Pk (¥l ji j G
B

Sheet Music Search

Search for: |L'

Item Code Description

ooBeaso Georges Bizet: L'Aresienne Suite No.2 for orchestra

o1ovoo Francois Couperin: L'Atalante

010900 Claude Debussy: L'lsle joyeuse

011290 Henri Duparc: Llnvitation au voyage

011780 Cesar Franck: L'Organiste 2

015350 Giacomao Meyerbear: L'africaine

o18vs0 Camille Saint-Saens: L'Attente

019710 Schubert: L'abaile

020400 Fernando Sor Yarations sur L'4ir de Mozart Op.9

ozoss0 Fernando Sor L'Encouragement, Op.34

021040 Stravinsky: L'Qiseau de Feu

021150 Stravinsky: L'Histoire du Soldat

022050 Yivaldi: Sinfonia in C for strings and b.c. from the opera L'Climpiade, RY.725
=

&] Done T Local intrznet
Figure 13-7. QueryExample2.jsp output after changing it to use a PreparedStatement

Like its immediate superinterface PreparedStatement, a CallableStatement
is created with an explicit command string that gets precompiled:

CallableStatement cstmt = con.prepareCall (escapeString) ;

It also uses question marks to indicate substitution parameters. The syntax of a
stored procedure call used with CallableStatement is as follows:

{? = call procedureName (2, ?, ..., ?)}

If there is no return value from the procedure, the “? =" should be omitted.
Similarly, if there are no input parameters, the “ (?, ?, ..., ?)” isnot used.

Because CallableStatement extends PreparedStatement, it uses the same
methods for setting substitution parameter values:

String sgl = "{call myproc(?, ?)}";
CallableStatement cstmt = con.prepareCall(sql) ;
cstmt.setString(l, "New York");
cstmt.setDouble (2, "19.73");

cstmt .executeQuery () ;

324

JSP: The Complete Reference

If any of the parameters are OUT or INOUT, their types must be registered with
CallableStatement.registerOutParameter () before the call is executed. Their
values can be retrieved with the same get XXX () methods used by PreparedStatement.

Stored Procedures in Microsoft Access
Microsoft Access supports queries written in SQL or developed with its own design
wizard. These queries can be invoked by name using the JDBC-ODBC bridge and
a CallableStatement. Figure 13-8 shows the design view of a query that creates
a list of composers born during a specified year interval. The beginning and ending
years are input parameters to the query.

When run using 1891-1900 as the year interval, 12 records are selected. The results
are shown in Figure 13-9.

This query can be run from a JSP page using CallableStatement, as illustrated
in the following listing. The steps the JSP page performs are as follows:

1. Prompts for the beginning and ending year in an HTML form.
2. Connects to the Access database through the JDBC-ODBC bridge.
3. Creates a CallableStatement that calls the query.

4. Sets the beginning and ending year parameter from the form values.

File Edit Wew Insset Cuery Took Window Help

B- & @- ! %Rz a - @EANBDA-E
=10]]
EE Tables HEF Cueries l 8 Forms I B Reports 2 Macras] <& Madules]
@ BornBetwesn Open
@ CourkByhge
Design
R ListByAge —I
@ Crvardl &

5 BornBetween : Select Query

o
Field: | =] Tname nfionaity bon died =
Table: [Camposers Composers Composers Compasers Compozers
St Ascending :
Show:] [] ¥
Criteria Beween [lo] And Thi]

Ready

Figure 13-8. Design view of the BornBetween query

Chapter 13: Database Access 325

@, Microsoft Access

File Edit Wiew Insert Format Records Took ‘Window Help

-HSRY $BE & 23 TR R DA [
| =10l %]

Tables HEF Cueries l 8 Forms I B Reports] 2 Macras] <& Madules]

@ BornBetwesn Open

@ CourkByhge Design

B ListByhge

B overan e |
g2t BornBetween : Select Query

fname Iname ionality horn died 2
[A=ergey] Frokofiey Russian 1891 1953
| |Darius tlilhaud French 1892 1974
| |Pster Warack Englizh 1894 1930
| |Paul Hindemith German 1895 1963
| Carl Orff German 1695 1982
| |Emesto Lecuona Cuban 1896 1963
——|_|George Gershwin American 18498 1937

| |Viktor Ullmann Austrian 1898 1944
| |Francis Foulenc French 1699 1963
| |Randall Thompson American 1889 1984
| |Aaron Copland American 1900 1940 =
Record: el ([T 1 L] of 42

Datasheat View

Figure 13-9. Results of the BornBetween query for 1891-1900

5. Executes the query.
6. Displays the results in an HTML table.

<%@ page session="false" %>
<%@ page import="java.sqgl.*" %>

<%
// Prompt for beginning and ending years
String sLo = request.getParameter ("lo");
if (sLo == null)
sLo = "";
String sHi = request.getParameter ("hi");
if (sHi == null)
sHi = " ",
%>

<H3>Select Composers by Year Born</H3>
<FORM>
<TABLE>
<TR>
<TD>Year range:

326

JSP: The Complete Reference

o\°

o°

o\°

<INPUT TYPE="TEXT" NAME="1lo" SIZE=4 VALUE="<%= sLo %>">
and
<INPUT TYPE="TEXT" NAME="hi" SIZE=4 VALUE="<%= sHi %>">

<INPUT TYPE="SUBMIT" VALUE="Search"s>

</TD>
</TR>

</TABLE>
</FORM>

if

<P>

int lo
int hi = Integer.parselnt (sHi);

(!sLo.equals("") && (!sHi.equals(""))) {

Integer.parselnt (sLo) ;

// Load the driver

Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver") ;
Connection con = null;

try {

// Connect to the composers database

con = DriverManager.getConnection
("jdbc:odbc:lyricnote internal") ;

// Set up callable procedure

String sgl = "{call BornBetween(?, ?)}";
CallableStatement cstmt = con.prepareCall (sql) ;
cstmt.setInt (1, lo);

cstmt.setInt (2, hi);

ResultSet rs = cstmt.executeQuery() ;

<TABLE BORDER=1 CELLPADDING=3 CELLSPACING=0>

<TR>
<TH>Name</TH>
<TH>Nationality</TH>
<TH>Lived</TH>

</TR>

// Print the result set

Chapter 13: Database Access

while (rs.next()) {
String fname = rs.getString(1l);
String lname = rs.getString(2);
String nationality = rs.getString(3) ;
int yearBorn = rs.getlInt (4);
int yearDied = rs.getInt(5);

o
\

<TR>
<TD><%= fname %> <%= lname %></TD>
<TD><%= nationality %></TD>
<TD><%= yearBorn %$>-<%= yearDied %></TD>
</TR>

N
oe

}

oe
\

</TABLE>

N
o°

rs.close() ;

rs = null;
cstmt.close() ;
cstmt = null;

}
finally {
if (con != null) {
con.close() ;
con = null;
}
}

The results are as shown in Figure 13-10.

Of course, because the query itself is SQL-based, couldn’t you just execute the
equivalent SQL inside the JSP page with an ordinary Statement? Perhaps, but
several good reasons exist why you may choose not to do this:

B The query has already been written and tested in the native Microsoft Access
environment. Hundreds of queries may already be developed, with little
justification for conversion.

B If the query is modified in its original form, the changes are automatically
reflected in the Web-based version.

B The query may use database features that work within Access, but aren’t
supported through the ODBC and JDBC-ODBC bridge layers.

327

328

JSP: The Complete Reference

a hitp: //u2Snv/jspoi/Chapl 3/examples/stateme. .. [H[=]
Fle Edi View Favoiles Took Hel n
Adiess [&] http/u2Bne/isper/Chap] 3eramples/state 7| o Go
|
Select Composers by Year Born
Year range: W and W Search
Name Nationality Lived
Sergey Prokofiev |Russian 1891-19532
Darius Milhaud French 1892-1974
Peter Warlock English 1894-1930
Paul Hindemith German 1895-1963
Carl Orff German 1895-1082
Ernesto Lecuona |Cuban 1896-1963
George Gershwin | Amearican 1898-1937
Viktor Ullmann Austrian 1898-1944
Francis Poulenc |French 1899-1963
Randall Thompson | American 1899-1984
#aron Copland American 1900-1990
Kurt Weill German 1900-1950
I |
&) Done % Local intanet
Figure 13-10. Web-based version of the BornBetween query for 1891-1900

| Result Sets

A result set is an ordered list of table rows, represented in JDBC with the
java.sqgl.ResultSet interface. Result sets are produced by executeQuery ()
or by certain metadata method calls. Once it is created, the data in a result set

can be extracted as follows:

1. Move to the desired row, by calling the ResultSet .next () method or
by one of the richer set of methods provided by JDBC 2.0—absolute (),
relative (), next (), previous (), first (), last (), beforeFirst (),
orafterLast ().

2. Retrieve desired column values with ResultSet .getXXX (columnNumber)
or ResultSet.getXXX (columnName), where XXX is the JDBC data type.

The following is a simple example, with a JSP page that searches the LyricNote
composer database for those born in Ireland:

<%@ page session="false" %>

o

<%@ page import="java.sqgl.*" %>

Chapter 13: Database Access 329

<HTML>

<HEAD>

<TITLE>Irish Composers</TITLE>

</HEAD>

<BODY>

<H3>Irish Composers</H3>

<TABLE BORDER=0 CELLPADDING=3 CELLSPACING=1>

<

o°

// JDBC driver name and database URL can be stored
// in web.xml as context parameters so that they

// do not have to be hard-coded.

String DRIVER = application.getInitParameter ("jdbc.driver") ;
String URL = application.getInitParameter ("jdbc.url.internal");

// Load the driver
Class.forName (DRIVER) ;

Connection con = null;

try {

// Connect to the database

con = DriverManager.getConnection (URL) ;

Statement stmt = con.createStatement () ;
// Create a query to select Irish composers
String sql =

"SELECT lname, fname, born, died"

+ " FROM composers"

+ " WHERE nationality = 'Irish'";
// Execute the query to create a result set
ResultSet rs = stmt.executeQuery(sql) ;
// Loop through each row of the result set

while (rs.next()) {

// Extract the two string values and two

// integer values from the current row

330 JSP: The Complete Reference

String lastName = rs.getString(l);
String firstName = rs.getString(2);
int born = rs.getInt(3);
int died = rs.getInt (4);

// Print a table row with the wvalues
%>
<TR>
<TD><%= firstName %> <%= lastName $%$></TD>
<TD><%= born %$>-<%= died %></TD>
</TR>

o
<%

// After last row is printed, close the result set
// and the statement

rs.close() ;

stmt.close () ;

// Always close the connection

finally {
if (con != null) {
con.close () ;

con = null;

%>
</TABLE>
</BODY>
</HTML>

A ResultSet object is created when the Statement executes a query. The JSP
page reads each row by using the next () method, and then extracts each column
value with getString () or getInt (). The results are shown in Figure 13-11.

Chapter 13: Database Access

g Irish Composers - Microsoft Internet Explorer

File Edit “iew Favortes Tools Help n

DM QES BT

Address |€| hitp://u28nv/ jspor/Chapl 34examples/rs/Getlrish.jzp j o Go

|

Irish Composers

John Field 1782-1837
Charles Villiers Stanford 1852-1924

&] Done " Local intranet

Figure 13-11.

A simple example of result set processing

A number of getXXX () methods can be called on a ResultSet object. Table 13-1

contains the complete list.

Two versions of each getXXX () method exist: one that takes an integer column
number (1, 2, ...) and one that takes a column name string. Accessing columns by number
can be slightly more efficient, although column names make maintenance easier when the

order of fields changes.

Method Description

getArray Returns an SQL array.

getAsciiStream Returns an opened java.io.InputStream of ASCII
characters. Translation to ASCII (if necessary) is
handled by the JDBC driver.

getBigDecimal Returns a java.math.BigDecimal.

getBinaryStream Returns an opened java.io.InputStream.
No translation is done on the stream.

getBlob Returns a java.sql.Blob (Binary Large Object).

getBoolean Returns a boolean value.

Table 13-1. getXXX() Methods Provided by ResultSet

331

332

Scrollable Result Sets

Originally, result sets could only be navigated in one direction (forward) and starting
at only one point (the first row). With JDBC 2.0, the programmer has a great deal more
flexibility. The cursor (row pointer) can be manipulated as if it were an array index.
Methods exist for reading both forward and backward, for starting from any row, and
for testing the current cursor location. Table 13-2 lists the available navigation methods.

JSP: The Complete Reference

Method

getByte
getBytes

getCharacterStream

getClob

getDate

getDouble
getFloat
getInt
getLong
getObject
getRef

getShort
getString

getTime

getTimestamp

Description

Returns a single byte.

Returns an array of bytes.

Returns a java.io.Reader character stream.
Returns a java.sql.Clob (Character Large Object).

Returns a java.sqgl .Date. Note, this is a subclass of
java.util.Date.

Returns a double value.

Returns a float value.

Returns an integer value.
Returns a long integer value.
Returns a java.lang.Object.

Returns a java.sqgl.Ref, which is a reference to a
SQL structured type value.

Returns a short integer value.
Returns a string.
Returns a java.sqgl.Time value.

Returns a java.sql.Timestamp value, which
includes time in nanoseconds.

Table 13-1. getXXX() Methods Provided by ResultSet (continued)

JDBC 2.0 introduced significant new features in result sets, which are discussed in

the next three sections.

Chapter 13: Database Access

Method

boolean next ()
boolean previous ()
boolean first ()
boolean last ()

void beforeFirst ()

void afterLast ()

boolean absolute (int row)

boolean relative (int row)

boolean isBeforeFirst ()
boolean isAfterLast ()
boolean igFirst ()

boolean isLast ()

Description

Advances the cursor to the next row.
Moves the cursor back one row.
Moves the cursor to the first row.
Moves the cursor to the last row.

Moves the cursor before the first row, usually
in anticipation of calling next ().

Moves the cursor after the last row, usually in
anticipation of calling previous ().

Moves the cursor to the specified row.
Specifying a negative number moves the
cursor relative to the end of the result set;
absolute (-1) is the same as last ().

Moves the cursor forward or backward the
number of rows specified.

True if the cursor is before the first row.
True if the cursor is after the last row.
True if the cursor is positioned on the first row.

True if the cursor is positioned on the last row.

333

Table 13-2. JDBC 2.0 Navigation Methods for Scrollable Result Sets

To use scrollable result sets, the Statement object must be created with parameters
that indicate the specific capabilities requested. For this reason, a new form of the
Connection.createStatement () method exists

public Statement createStatement
(int resultSetType, int resultSetConcurrency)
throws SQLException

where resultSetType is the type of scrolling to be used and resultSetConcurrency indicates
whether the result set can be updated. Both parameters take their values from constants
in ResultSet, as shown in Table 13-3.

334

JSP: The Complete Reference

Constant

Meaning

TYPE FORWARD ONLY JDBC 1.0-style navigation in which the cursor

starts at the first row and can only move forward.

TYPE_SCROLL_INSENSITIVE All cursor positioning methods are enabled;

the result set doesn’t reflect changes made by
others in the underlying table.

TYPE_SCROLL_ SENSITIVE All cursor positioning methods are enabled;
the result set reflects changes made by others
in the underlying table.

CONCUR_READ ONLY The result set won't be updatable.

CONCUR_UPDATABLE Rows and be added and deleted, and columns
can be updated.

Table 13-3.

Constants in ResultSet that Can Be Used to Describe Scrollable
Result Sets

The following JSP page is an example of using a scrollable result set to display only
the last page of a potentially lengthy query.

<%@ page import="java.sqgl.*" %>

<%@ page import="java.text.*" %>

<%!

public static final DecimalFormat PRICE_FMT
= new DecimalFormat ("$#, ###.00") ;

%>
<HTML>
<HEAD>

<TITLE>Scrollable Example</TITLE>

</HEAD>
<BODY>

<P>
<HR COLOR="#000000">

o
<3

// Get driver name and database URL from configuration
// parameters stored in web.xml

String DRIVER

application.getInitParameter ("jdbc.driver") ;

String URL = application.getInitParameter ("jdbc.url") ;

Chapter 13: Database Access 335

// Load the driver
Class.forName (DRIVER) ;
Connection con = null;

Statement stmt = null;
ResultSet rs = null;

try {
// Connect to the database
con = DriverManager.getConnection (URL) ;
// Open a statement that supports scrollable result sets
stmt = con.createStatement (
ResultSet.TYPE SCROLL_INSENSITIVE,
ResultSet.CONCUR_READ ONLY) ;
// Execute the query
rs = stmt.executeQuery (
" SELECT itemcode, price, description"
+ " FROM products"
" WHERE prodtype = 'IN'"

" ORDER BY description"
) ;

// Calculate number of rows

rs.last () ;
int nRows = rs.getRow() ;

// Back up ten rows
rs.relative(-10) ;

// Now print last page of result set
%>

<H3>

336 JSP: The Complete Reference

Musical Instruments
- Items <%= rs.getRow() + 1 %> through <%= nRows %>
</H3>
<TABLE BORDER=1 CELLPADDING=3 CELLSPACING=0>
<TR><TH>Item</TH><TH>Price</TH><TH>Description</TH></TR>
<%
while (rs.next()) {
String itemcode = rs.getString(l);
double price = rs.getLong(2) / 100.0;
String description = rs.getString(3);
%>
<TR>
<TD><%= itemcode %></TD>
<TD ALIGN="RIGHT"><%= PRICE_ FMT.format (price) $></TD>
<TD><%= description %></TD>

</TR>
<%
}
}
finally {
if (rs != null) { rs.close(); rs = null; }
if (stmt != null) { stmt.close(); stmt = null; }
if (con != null) { con.close(); con = null; }
}
%>
</TABLE>
</BODY>
</HTML>

The Statement object is opened so the result sets it creates are scrollable, but not
updatable. Having these properties, the ResultSet can be asked how many rows it
contains, which wasn’t possible in JDBC 1.0. By positioning the cursor at the last row
and issuing a relative (-10) method call, the last ten rows in the result set can be
isolated and printed. Figure 13-12 shows the results.

Updatable Result Sets

With JDBC 2.0, updating columns in a result set is possible, both to add new rows and
to delete existing rows. In each of these cases, the corresponding rows in the underlying
table are then also updated.

Chapter 13: Database Access 337

a Scrollable Example - Microzoft Internet Explorer

Fle Edit View Favoilss Tools Help n
@A RS B FH
Address |€| hitpe/fuZSmedper/Chapl 3/examples /s serollableCatalog po j o~ Bo
=

E The Lyric Note

Musical Instruments - Items 73 through 82

Item Price Description
001560 $25.00 Schech violin E string

001090 $685.00 wendecker Alto Horn

001160 4$548.00 wWendecker B Flat Bass Clarinet
001120 $259.00 Wendecker B Flat Clarinet

001120 $820.00 Wendecker Baritone Horn

001050 $651.50 Wendecker C Trumpet

001280 $320.00 Wendecker E Flat alto Saxophone
001290 $453.00 Wendecker E Flat alto Saxophone - Professional
001020 £1,374.95 wendecker Professional Flute - Silver
001240 £34.00 wWendecker Recorder - Wood

2] Done = Local inbanet

Figure 13-12. Showing the last page of a lengthy query using a scrollable result set

For a result set to be updated, it must have been produced by a Statement object
created with a concurrency type of ResultSet . CONCUR UPDATABLE. JDBC 2.0
provides updateXxxX () methods, where XXX is the JDBC data type, similar to the
existing get XXX () methods. These methods take a column number or column name
parameter, and a value parameter, as illustrated in the following example:

double mySalary = rs.getDouble (“SALARY") ;
mySalary *= 2.0;

rs.updateDouble (“"SALARY”, mySalary) ;
rs.updateString (*HOME PHONE”, unlisted) ;
rs.updateRow () ;

The updated values aren’t automatically replicated in the underlying table until
updateRow () is called. The updates can be canceled explicitly with ResultSet.
cancelRowUpdates () if updateRow () hasn’t yet been called or implicitly if a
cursor movement method is called before updateRow ().

338 JSP: The Complete Reference

New rows can be added to the result set and the underlying table with insertRow ().
This involves a special cursor position known as the insert row. The following example
illustrates how this works:

rs.moveToInsertRow () ;

rs.setString(“employeeid”, “M1205”) ;
rs.setString(“firstName”, “Maria”);
rs.setString(“lastName”, “Alicia”);

rs.insertRow () ;
rs.moveToCurrentRow () ; // Return to where we were

In like fashion, rows in a result set and its underlying table can be deleted with
deleteRow (). To do so, the cursor must be positioned at the row to be deleted, as
shown here:

rs.last(); // Delete the last row
rs.deleteRow () ;

RowSets

The javax.sqgl package contains a RowSet interface, which extends and generalizes
java.sqgl.ResultSet so it can be detached from its database connection. This can
be useful for Personal Digital Assistant (PDA) applications that cannot easily maintain

a connection and have a limited amount of memory. At press time, RowSets are still in
their infancy. Sun Microsystems has three early access implementations of the interface
that can be used to explore their capabilities:

B CachedRowSet A serializable, disconnectable RowSet that can be populated
from a JDBC result set.

B JdbcRowSet A connected RowSet also populated from a JDBC result set,
which behaves according to the JavaBeans model.

B wWebRowSet A subclass of CachedRowSet that can write its contents as an
XML document.

__ | Using Metadata

JDBC provides a rich set of metadata—data about data—for database connections and
result sets. This section describes these two interfaces, how instances of them are obtained,
and highlights of what information they can provide.

Chapter 13: Database Access 339

Database Metadata

Information about a JDBC connection can be obtained with Connection.
getMetaData (). This method returns an instance of java.sqgl .DatabaseMetaData,
an interface that has more methods (149 in all) than any other class or interface in the
java.sql or javax.sqgl packages. These methods describe the features the database
supports, what tables it contains, and what columns are in these tables. Using metadata,
differences in the SQL language and capabilities of database systems can be minimized.

Viewing all the information a DatabaseMetaData object provides can be in-
structional. Because so many methods are in the interface, coding all the individual
calls by hand is tedious. For this purpose, using reflection to list all the metadata
methods programmatically, and then invoke each one and print the results, is easier.
The following JSP page (MetadataExplorer. jsp) illustrates the technique:

)

<%@ page session="false" %>

<%@ page import="java.sqgl.*" %>

<%@ page import="java.util.*" %>

<%@ page import="java.lang.reflect.*" %>
<%

// Get required driver name parameter

String driverName = request.getParameter ("driverName") ;
if (driverName == null)
driverName = "";
driverName = driverName.trim() ;
if (driverName.equals(""))
throw new ServletException ("No driverName parameter") ;

// Get required database URL parameter

String url = request.getParameter ("url") ;
if (url == null)

url = "";
url = url.trim();

if (url.equals(""))
throw new ServletException("No url parameter");

// Get optional userID parameter
String userID = request.getParameter ("userID") ;

if (userID == null)
userID = "";

340

JSP: The Complete Reference

userID = userID.trim() ;
// Get optional password parameter

String password = request.getParameter ("password") ;
if (password == null)
password = "";
password = password.trim() ;
// Load the driver

Class.forName (driverName) ;
Connection con = null;

try {

// Open the database connection and get the metadata

con = DriverManager.getConnection (url, userID, password) ;
DatabaseMetaData md = con.getMetaDatal() ;

// Use reflection to get a list of methods that the

// metadata class supports. Select only public methods
// that take no parameters and that return either

// a string or a boolean.

Class mdclass = md.getClass() ;

Method[] methods = mdclass.getDeclaredMethods () ;

Map methodMap = new TreeMap () ;

for (int i = 0; i < methods.length; i++) {
Method method = methods[i];

// Public methods only

if (!Modifier.isPublic (method.getModifiers()))
continue;

// with no parameters

if (method.getParameterTypes () .length > 0)
continue;

// that return String or boolean

Chapter 13: Database Access

Class returnType = method.getReturnType ()

if ((returnType != java.lang.Boolean.TYPE) &&
(returnType != java.lang.String.class))
continue;

// Add selected methods to sorted map
methodMap.put (method.getName (), method) ;

%>
<HTML>
<HEAD>
<TITLE>Metadata Explorer</TITLE>
<LINK REL="stylesheet" HREF="style.css">
</HEAD>
<BODY>
<CENTER>
<H3>
Metadata Explorer for
<%= md.getDatabaseProductName () %>
<%= md.getDatabaseProductVersion() %>

[<%= driverName %>]
</H3>
<TABLE BORDER=0 CELLPADDING=3 CELLSPACING=1>
<TR CLASS="header"s>
<TH CLASS="header">Method</TH>
<TH CLASS="header">Value</TH>
</TR>
<%

// Generate the table

int row = 0;

Iterator im = methodMap.keySet () .iterator() ;
while (im.hasNext()) {
String methodName = (String) im.next () ;

Object methodValue = null;

Method method = (Method) methodMap.get (methodName) ;

// Invoke the method and get the result

341

342)SP: The Complete Reference

try {
Object[] noParameters = new Object [0];
methodValue = method.invoke (md, noParameters) ;

}

catch (Exception ignore) ({}
// Display the results

TOW++;
String rowClass = "row" + (row % 2);
%>
<TR CLASS="<%= rowClass %>">
<TD><%= methodName %></TD>
<TD><%= formatLine (methodValue) %></TD>
</TR>

)
<%

}

finally {
if (con != null)
con.close() ;

%>
</TABLE>
</CENTER>
</BODY>
</HTML>
<%!
/**
* Formats an object in an HTML-friendly way,
* making sure it doesn't exceed 48 characters
* in width.
*/
private static String formatLine (Object obj)
{
if (obj == null)
return "";

StringBuffer out = new StringBuffer();
StringBuffer line = new StringBuffer();
StringTokenizer st =

Chapter 13: Database Access

new StringTokenizer (obj.toString(), ",;", true);

while (st.hasMoreTokens()) ({
if (line.length() > 48) {
out.append(line.toString()) ;
out .append ("
") ;
line = new StringBuffer();

}

line.append (st.nextToken()) ;

}

out.append (line.toString()) ;

return out.toString() ;

oe
\

This JSP page is designed to be invoked from an HTML form that supplies the
driver name, JDBC URL, user ID, and password fields, as shown in Figure 13-13.

When run against a Microsoft Access database using the JDBC-ODBC bridge, the
MetadataExplorer produces the output partially listed in Figure 13-14. The complete
listing is contained in Table 13-4.

fa Metadata Explorer Form - Microzoft Intemet Explorer [_ O] %]
Fie Edit View Favortes Tools Help n
y A (o £ — =
2-QAQEIS B-IHEH-
Addiess |€| hittp: £ w25y fjzperfChapl 3/examples/metadataetadataE xplorer html j p)[io
=
Metadata Explorer
Driver class: |sun.jdbc odbc. JdbeOdbeDriver
Database URL: [jdbc:odbc:Composers
User 1D:
Password:
=
&) Done = Local intranet

Figure 13-13. Parameter input form for MetadataExplorer.jsp

343

JSP: The Complete Reference

3 Metadata Explorer - Microsoft Internet Explorer

File Edit ‘Wiew Favoites Tools Help “
-3 -QHNA QS B SHNE
Agkhess [@] hiip/AuzSew/sper/Chap! 3/examples/metadata T— -] o6

Metadata Explorer for ACCESS 3.5 Jet
[sun.jdbc.odbc. JdbcOdbcDriver]

allProceduresarecCallable true
allTablesareSelectable true
dataDefinitionCausesTransactionComrmit true
dataDefinitionIgnaredInTransactions false
doesMaxRowSizelncludeBlobs false

getCatalogSeparator ¢
getCatalogTerm DATABASE

getDatabaseProductiarne ACCESS
getDatabaseProductiersion 3.5 Jet

getDriverName ICBC-CDBC Brdge (odbejt32.dil}
getDriverVersion 2.0001 (03.51.1713.00)

QetExtraNameCharacters o @REH RN
getidentifierQuoteString g

ABS,ATAN,CEILING,COS EXP FLOOR,LOG, MOD POWER,RAND
JSIGN,SIN,SQRT,TAN

getProcedureTerm QUERY

ALPHANUMERIC, AUTOINCREMENT, BINARY BYTE,COUNTER, CURRENCY
J[DATARASE,DATABASENAME,DATETIME, CISALLOW DISTINCTROW
,DOUBLEFLOAT, FLOATS,FLOATA, GENER AL, IEEEC:OUBLE, IEEESINGLE
,JJGNORE,INT, INTEGER1, INTEGER 2, INTEGER, LEVEL, LOGICAL

getsQLKeywords ,LOGICALL,LONG LONGBINART LONGCHAR, LONGTEAT MEMO,
MONEY NOTE,NUMBER, OLECBIECT,OPTION, OWNERACCESS, PARAMETERS
JPERCENT,PIVOT,SHORT, SINGLE, SINGLEFLOAT, SMALLINT,
STDEV,STOEVR, STRING, TABLEID, TEXT, TOP, TRANSFORM, UNSIGNEDBYTE
JMALUES W AR, VARBINARY WARP, TESNO El

gethumearicFunctions

&) Done

Local intranet

Figure 13-14. MetadataExplorer used with a Microsoft Access database

Method Value
allProceduresAreCallable True
allTablesAreSelectable True
dataDefinitionCauses True

TransactionCommit

dataDefinitionIgnored False
InTransactions
doesMaxRowSizeIncludeBlobs False

getCatalogSeparator

Table 13-4. Metadata from Microsoft Access Database

Chapter 13: Database Access

Method

getCatalogTerm
getDatabaseProductName
getDatabaseProductVersion
getDriverName
getDriverVersion
getExtraNameCharacters
getIdentifierQuoteString

getNumericFunctions

getProcedureTerm

getSQLKeywords

getSchemaTerm

getStringFunctions

Value

DATABASE

ACCESS

3.5]Jet

JDBC-ODBC Bridge (odbc;jt32.d11)
2.0001 (03.51.1713.00)
~@H$YN & _-+=\{";:?/><,

ABS, ATAN, CEILING, COS, EXP,
FLOOR, LOG, MOD, POWER, RAND,
SIGN, SIN, SQRT, TAN

QUERY

ALPHANUMERIC, AUTOINCREMENT,
BINARY, BYTE, COUNTER, CURRENCY,
DATABASE, DATABASENAME,
DATETIME, DISALLOW,
DISTINCTROW, DOUBLEFLOAT,
FLOAT4, FLOATS, GENERAL,
IEEEDOUBLE, IEEESINGLE, IGNORE,
INT, INTEGER1, INTEGER?2, INTEGER4,
LEVEL, LOGICAL, LOGICAL1, LONG,
LONGBINARY, LONGCHAR,
LONGTEXT, MEMO, MONEY, NOTE,
NUMBER, OLEOBJECT, OPTION,
OWNERACCESS, PARAMETERS,
PERCENT, PIVOT, SHORT, SINGLE,
SINGLEFLOAT, SMALLINT, STDEV,
STDEVP, STRING, TABLEID, TEXT,
TOP, TRANSFORM, UNSIGNEDBYTE,
VALUES, VAR, VARBINARY, VARP,
YESNO

\

ASCII, CHAR, CONCAT, LCASE, LEFT,
LENGTH, LOCATE, LOCATE_2, LTRIM,
RIGHT, RTRIM, SPACE, SUBSTRING,
UCASE

Table 13-4.

Metadata from Microsoft Access Database (continued)

345

346)SP: The Complete Reference

Method Value

getSystemFunctions CURDATE, CURTIME, DAYOFMONTH,
DAYOFWEEK, DAYOFYEAR, HOUR,
MINUTE, MONTH, NOW, SECOND,
WEEK, YEAR

getURL jdbc:odbc:Composers

getUserName admin

isCatalogAtStart True

isReadOnly False

nullPlusNonNullIsNull False

nullsAreSortedAtEnd False

nullsAreSortedAtStart False

nullsAreSortedHigh False

nullsAreSortedLow True

storesLowerCaseldentifiers False

storesLowerCaseQuoted False

Identifiers

storesMixedCaseIdentifiers False

storesMixedCaseQuoted True

Identifiers

storesUpperCaseldentifiers False

storesUpperCaseQuoted False

Identifiers

SupportsANSI92EntryLevel SQL True

SupportsANSI92FullSQL False

supportsANSI92IntermediateSQL False

supportsAlterTableWith True

AddColumn

supportsAlterTableWith True

DropColumn

supportsBatchUpdates True

supportsCatalogsInData True

Manipulation

Table 13-4. Metadata from Microsoft Access Database (continued)

Chapter 13: Database Access
Method Value
supportsCatalogsInIndex True
Definitions
supportsCatalogsInPrivilege False
Definitions
supportsCatalogsInProcedure False
Calls
supportsCatalogsInTable True
Definitions
supportsColumnAliasing True
supportsConvert True
supportsCoreSQLGrammar False
supportsCorrelatedSubgqueries True
supportsDataDefinitionAndData True
ManipulationTransactions
supportsDataManipulation False
TransactionsOnly
supportsDifferentTable False
CorrelationNames
supportsExpressionsInOrderBy True
supportsExtendedSQLGrammar False
supportsFullOuterJoins False
supportsGroupBy True
supportsGroupByBeyondSelect True
supportsGroupByUnrelated False
supportsIntegrity False
EnhancementFacility
supportsLikeEscapeClause False
supportsLimitedOuterJoins False
supportsMinimumSQLGrammar True
supportsMixedCaselIdentifiers True
supportsMixedCaseQuoted False

Identifiers

Table 13-4. Metadata from Microsoft Access Database (continued)

347

348 JSP: The Complete Reference

Method Value

supportsMultipleResultSets False

supportsMultipleTransactions True

supportsNonNullableColumns False

supportsOpenCursorsAcross False

Commit

supportsOpenCursorsAcross False

Rollback

supportsOpenStatements True

AcrossCommit

supportsOpenStatements True

AcrossRollback

supportsOrderByUnrelated False

supportsOuterJoins True

supportsPositionedDelete False

supportsPositionedUpdate False

supportsSchemasInData False

Manipulation

supportsSchemasInIndex False

Definitions

supportsSchemasInPrivilege False

Definitions

supportsSchemasInProcedure False

Calls

supportsSchemasInTable False

Definitions

supportsSelectForUpdate False

supportsStoredProcedures True

supportsSubqueriesIn True

Comparisons

supportsSubqueriesInExists True

supportsSubqueriesInIns True
Table 13-4. Metadata from Microsoft Access Database (continued)

Chapter 13: Database Access 349

Method Value
supportsSubgqueriesIn True
Quantifieds

supportsTableCorrelationNames True
supportsTransactions True
supportsUnion True
supportsUnionAll True
usesLocalFilePerTable False
usesLocalFiles True

Table 13-4. Metadata from Microsoft Access Database (continued)

ResultSetMetadata

In addition to DatabaseMetaData for database connections, ResultSetMetaData
also gets information about the columns of a result set. This interface consists of one
method to get the number of columns—getColumnCount () —and 20 other methods
that describe individual columns.

To obtain a ResultSetMetaData object, a program invokes the ResultSet.
getMetaData () method., and then invokes its methods, passing it a column number
parameter. As is the case with ResultSet, the column numbers start with 1.

Table 13-5 describes the methods available in ResultSetMetaData.

Method Description

getColumnCount () Returns the number of columns in each row
of the result set.

getCatalogName (int col) Returns the catalog name of the table from
which the specified column is drawn.

getColumnClassName (int col) Returns the fully qualified Java type name
of the specified column.

Table 13-5. Methods Available in ResultSetMetaData

JSP: The Complete Reference

Method

getColumnDisplaySize (int col)

getColumnLabel (int col)
getColumnName (int col)

getColumnType (int col)

getColumnTypeName (int col)
getPrecision (int col)

getScale (int col)

getSchemaName (int col)

getTableName (int col)

isAutoIncrement (int col)

isCaseSensitive (int col)
isCurrency (int col)

isDefinitelyWritable (int col)

isNullable (int col)

isReadOnly (int col)

isSearchable (int col)

isSigned (int col)

isWritable (int col)

Description

Returns the maximum display width for the
specified column.

Returns the label for the specified column.
Returns the name of the specified column.

Returns the type of the specified column in
a form corresponding to java.sql. Types.

Returns the column data type as a string.
Returns number of decimal positions.

Returns the number of digits to the right of
the decimal point.

Returns the schema name of the
column's table.

Returns the name of the column's
underlying table.

True if the column is automatically
numbered.

True if the column's case matters.
True if the column is a cash value.

True if a write to the specified column will
definitely succeed.

Returns a constant indicating whether the
column can have a null value.

True if the result set is read-only.

True if this column can be used in a
where clause.

True if the column value is signed numeric.

True if a write to the specified column
may succeed.

Table 13-5.

Methods Available in ResultSetMetaData (continued)

Chapter 13: Database Access 351

___| New Features in JDBC 2.0 and Beyond

JDBC 2.0 was originally referred to as the JDBC 2.0 Standard Extension API and has
now been renamed as the JDBC 2.0 Optional Package API. This is included in the
JDBC 2.1 core API package that ships with the Java 2 Standard Edition. A number
of its new features were discussed throughout this chapter, which include:

B DataSource JDBC driver names and URLs can be stored in a name service
and retrieved using JNDIL

B Connection pooling A data source provider can offer connection pooling,
allowing connections to be activated and recycled, usually with a significant
performance improvement. This capability is configured entirely in the naming
service and requires no changes to applications.

B Scrollable result sets JDBC 1.0 allowed only forward navigation through a
result set starting at the first record. JDBC 2.0 provides methods for forward
and backward navigation, as well as relative and absolute cursor positioning.

B RowSets Disconnected result sets can be made to conform to the
JavaBeans model.

B BatchUpdates Transactions can be grouped and sent to the database as a unit.

The first public draft of JDBC 3.0 was released for public review in September 2000.
Its new features include

B Enhanced control of commit/rollback transaction boundaries
B Configurability for connection pools

B Better interface to parameters in prepared and callable statements

___ | Summary

Almost all nontrivial JSP applications require access to a database. Java provides a
standard API known as JDBC. JDBC allows a wide variety of database systems to be
accessed using standard SQL statements in an object-oriented framework. To use JDBC,
a driver must be available for the database. Drivers exist for virtually all commercial
databases, as well as a JDBC-ODBC bridge for using ODBC data sources.

Only a few key objects exist in JDBC, which makes it easy to learn. The Connection
object maintains an active link to a database. The three types of Stateme